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Abstract. We complete the proof of a theorem we announced and partly proved in [Math.
Nachr. 271 (2004), 69–90, math.AG/0111299]. The theorem concerns a family of curves
on a family of surfaces. It has two parts. The first was proved in that paper. It describes
a natural cycle that enumerates the curves in the family with precisely r ordinary nodes.
The second part is proved here. It asserts that, for r ≤ 8, the class of this cycle is given by
a computable universal polynomial in the pushdowns to the parameter space of products of
the Chern classes of the family.
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1 Introduction

This paper is the fourth in a series about enumerating nodal curves on smooth complex surfaces.
Here we complete the proof of Theorem 2.5 on p. 74 in [16]. It has two parts. The first was
proved in [16]. It describes a natural cycle U(r) on the parameter space of a family of pairs of
a surface and of a curve on it; U(r) enumerates the curves with precisely r ordinary nodes. The
second part is proved here. It asserts that, for r ≤ 8, the class [U(r)] is given by a computable
universal polynomial in the pushdowns of products of the Chern classes of the family.

The second part was not proved in [16], because we believed our approach, inspired by
Vainsencher’s paper [27], would eventually yield an algorithm for computing the entire polyno-
mial for [U(r)] not only for r ≤ 7, but also for r = 8 and perhaps for all r. So we chose to publish
only the construction of U(r) and to postpone the rest. Unfortunately, we were too optimistic.
Thus here we work out an ad hoc determination of the polynomial for r = 8; specifically, we
show that the “correction term” is independent of the family, and so can be found by working
out a particular example, such as we did in [16, Example 3.8, p. 80].

In [16, Remark 2.7, p. 74] we conjectured that the class [U(r)] is given for all r by a universal
polynomial in certain classes y(a, b, c), defined here in Section 4.4, which are pushdowns of
products of the (relative) Chern classes of the family. Moreover, this polynomial should be of
the form Pr(a1, . . . , ar)/r!, where Pr(a1, . . . , ar) is the rth (complete) Bell polynomial and the ai
are linear polynomials in the y(a, b, c).

This paper is a contribution to the Special Issue on Enumerative and Gauge-Theoretic Invariants
in honor of Lothar Göttsche on the occasion of his 60th birthday. The full collection is available at
https://www.emis.de/journals/SIGMA/Gottsche.html
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Göttsche [9] had already conjectured the special case where the pairs consist of a fixed surface
and of the divisors in a linear system. This celebrated conjecture was proved independently by
Tzeng [26] and Kool–Shende–Thomas [18]. For the history of the case of plane curves, see [16,
Remark 3.7, p. 78] and the more recent [4].

A part of our conjecture has now been proved by Laarakker [19, Theorem A, p. 4921].
He defined a cycle γ(r) which, under suitable genericity assumptions on the family, is supported
on U(r), and its class [γ(r)] is given by a universal polynomial in the y(a, b, c). Although he did
not prove that the polynomial is Bell (see his footnote [19, p. 4918]), he did prove that [γ(r)] is
“multiplicative” when the family of surfaces is a direct sum of families over the same base (see
[19, Lemma 5.5 and Remark 5.6, p. 4936]). When the family is trivial, Göttsche had observed
that this multiplicative property implies the polynomial is Bell. However, when the family is
nontrivial, the multiplicative property is insufficient.

In [16] we applied our theorem in several enumerations involving nontrivial families of surfaces,
including the family of all planes in P4. In [19, Theorem B, p. 4922] Laarakker proved that the
number of r-nodal plane curves of degree d in P3 meeting the appropriate number of general
lines, is given by a universal polynomial in d of degree ≤ 9 + 2r. Moreover, he explicitly
computed the polynomial for r ≤ 12. In [21] Mukherjee, Paul, and Singh did the same; they
obtained a recursive formula, and verified that their results agree with Laarakker’s. In [5] Das
and Mukherjee treated the case where the curves may have one additional nonnodal singularity.
In [22] Mukherjee and Singh did the same for rational curves.

In [16, Remark 2.7, p. 74] we conjectured that universal polynomials also enumerate curves
with any given equisingularity type. In [13, Theorem 10.1, p. 713] Kazaryan gave a “topological
justification” of our conjecture, but gave no algebraic proof. He worked with a linear system
on a fixed surface, and found several explicit formulas for curves with singularities of codimen-
sion ≤ 7. A few of these formulas had been given in [15, Theorem 1.2, p. 210]. In [2] Basu and
Mukherjee gave recursive formulas for the number of curves in a linear system on a fixed surface
that have r nodes and one additional singularity of codimension ≤ 8 − r. In particular, their
formula for 8-nodal curves recovers ours in this case; see [15, Theorem 1.1, p. 210].

In [20] Li and Tzeng and, independently in [23], Rennemo proved the existence of universal
polynomials enumerating divisors with isolated singularities of given topological or analytical
types in a trivial family of varieties of arbitrary dimension.

In short, we work here over an algebraically closed field of characteristic 0 with pairs (F/Y,D),
where Y is a Cohen–Macaulay algebraic scheme, F/Y is a smooth projective family of surfaces,
and D is a relative, or Y -flat, effective divisor on F . We let π : F → Y denote the structure
map.

In Section 2, given a pair (F/Y,D), we recall from [15, pp. 226–227] the construction and
elementary properties of its induced pairs (Fi/Xi, Di). Then we prove some further properties.
Intuitively, (Fi/Xi, Di) represents a family of curves that sit on blowups of the surfaces of F/Y
and that have one less i-fold point.

In Section 3, the main results are Lemmas 3.2 and 3.3, which concern properties of certain
subschemes of the relative Hilbert scheme Hilb3r

D/Y . In Section 4, we develop some results of
bivariant intersection theory for use in the subsequent sections. Our treatment here generalizes
and improves our shorter one in [15].

In Section 5, we state the main theorem, Theorem 5.4. Then we prove a key recursion
relation; we prove the theorem for r ≤ 7; and we explain what more is needed for r = 8. The
difficulty is that the induced pair (F2/X2, D2) does not satisfy the hypotheses of the theorem,
as D2/X2 has nonreduced fibers in codimension 7 above the relative quadruple-point locus X4

of D/Y .

Therefore, the recursion that works for r ≤ 7 must be corrected accordingly. In Section 6 we
find an expression for the correction term, and in Section 7 we prove that the correction term is
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equal to C[X4] for some integer C that is independent of the given (F/Y,D). Our proof illustrates
the advantage of developing intersection theory over any universally catenary Noetherian base.
Thus, to complete the proof of the theorem, it suffices to compute the integer C in a particular
case, such as that of 8-nodal quintic plane curves, which we did in [16, Example 3.8, p. 80].

However, our proof requires an additional genericity hypothesis: the analytic type of a fiber
of D at an ordinary quadruple point must not remain constant along any irreducible component
of X4. This hypothesis comes into play at just one spot in the proof of Lemma 7.4 to ensure
a certain map is flat. We believe that Lemma 7.4 and Theorem 5.4 hold without this hypothesis.
At any rate, the hypothesis is usually fulfilled in practice.

2 The induced pairs

The induced pairs (Fi/Xi, Di) of a given pair (F/Y,D) play a central role in the present work.
So, in this section, we recall the theory and develop it further. Here F and Y need only be
Noetherian, and F/Y need only be of finite type.

2.1. The induced pairs. From [15, pp. 226–227], let’s recall the construction and elementary
properties of the induced pairs, but make a few minor changes appropriate for the present work.

Denote by pj : F ×Y F → F the jth projection, by ∆ ⊂ F ×Y F the diagonal subscheme, and
by I∆ its ideal. Say D is defined by the global section σ of the invertible sheaf OF (D). Then σ
induces a section σi of the sheaf of relative twisted principal parts,

P i−1
F/Y (D) := p1∗

(
p∗2OF (D)

/
Ii∆
)

for i ≥ 1. (2.1)

Take the scheme of zeros of σi to be Xi, and set X0 := F .
Then X1 = D. Further, a geometric point of Xi, that is, a map ξ : Spec(K)→ Xi, where K

is an algebraically closed field, is just a geometric point ξ of F at which the fiber Dπ(ξ) has
multiplicity at least i. Also, as i varies, the Xi form a descending chain of closed subschemes.

The sheaf P i−1
F/Y (D) fits into the exact sequence,

0→ Symi−1 Ω1
F/Y (D)→ P i−1

F/Y (D)→ P i−2
F/Y (D)→ 0,

where the first term is the symmetric power of the sheaf of relative differentials, twisted
by OF (D). Hence P i−1

F/Y (D) is locally free of rank
(
i+1

2

)
by induction on i. Therefore, at

each scheme point x ∈ Xi, we have

codx(Xi, F ) ≤
(
i+ 1

2

)
, (2.2)

where, as usual, codx(Xi, F ) stands for the minimum min(dimOF,η) as η ranges over the gener-
izations of x in Xi. If codxXi =

(
i+1

2

)
and if Y is Cohen–Macaulay at π(x), then, since F/Y is

smooth, Xi is a local complete intersection in F at x, and is Cohen–Macaulay at x.
Denote by β : F ′ → F ×Y F the blowup along ∆, and by E the exceptional divisor. Set

ϕ′ := p1β and π′ := p2β. Then π′ : F ′ → F is again a smooth family of surfaces, and projective
if π is; in fact, over a point ξ of F , the fiber F ′ξ := π′−1(ξ) is just the blowup (via p1) of the fiber

Fπ(ξ) := π−1π(ξ) at ξ. For each i, set Fi := π′−1(Xi), and denote by πi : Fi → Xi the restriction
of π′. In sum, we have this diagram:

F

π

��

F ×Y F
p1oo

p2

��

F ′
βoo

π′

��

Fi?
_β′ioo

πi
��

Y F
πoo F Xi.? _

βioo
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In addition, given r ≥ 1, set

ri := r −
(
i+ 1

2

)
+ 2, D′i := ϕ′

−1
D − iE and Di := D′i

∣∣
Fi
. (2.3)

As F ′ has no associated points on E, the subscheme ϕ′−1D is an effective divisor; so D′i is
a divisor on F ′. If i ≥ 1, then

D′i = D′i−1 − E.

In [15, p. 227], we proved the second assertion of the next lemma. Taking a little more care, we
now prove the first too. Later, in Lemma 2.8, we relate Xi and ri.

Lemma 2.2. For each i ≥ 1, the subscheme Xi of F is the largest subscheme over which D′i is
effective. Furthermore, Di := D′i

∣∣
Fi

is relative effective on Fi/Xi.

Proof. By definition of Xi, a Y -map t : T → F factors through Xi iff t∗σi = 0. Now,
P i−1
F/Y (D) is locally free on F , so flat over Y ; hence, (1 × t)∗Ii∆OF×Y F (p∗1D) is a subsheaf

of (1 × t)∗OF×Y F (p∗1D) owing to display (2.1). Therefore, t∗σi = 0 iff (1 × t)∗p∗1σ : OF×Y T →
(1× t)∗OF×Y F (p∗1D) factors through that subsheaf.

Let q : F ×Y T → F denote the projection. Then q = p1(1× t). So

(1× t)∗OF×Y F (p∗1D) = OF×Y T (q∗D).

Let Γ ⊂ F ×Y T be the graph subscheme of t, and IΓ its ideal. Then (1 × t)−1∆ = Γ.
Hence (1 × t)∗Ii∆ = IiΓ. Therefore, t∗σi = 0 iff q∗σ : OF×Y T → OF×Y T (q∗D) factors through
IiΓOF×Y T (q∗D).

Set F ′T := F ′ ×F T and βT := β ×F T . Then βT : F ′T → F ×Y T is the blowup of F ×Y T
along Γ as (1× t)∗Ii∆ = IiΓ. Set ET := E ×F T . Then ET is the exceptional divisor. Trivially,
IiΓOF ′T = OF ′T (−iET ). However, IiΓ

∼−→ (βT )∗OF ′T (−iET ) since Γ is a local complete intersection;
see [7, display (6), p. 601]; so the projection formula yields

IiΓOF×Y T (q∗D) = βT∗OF ′T (β∗T q
∗D − iET ).

Set ϕ′T := qβT . Then, therefore, t∗σi = 0 iff ϕ′∗T σ : OF ′T → OF ′T (ϕ′∗TD) factors through
OF ′T (ϕ′∗TD − iET ).

Let τ : F ′T → F ′ denote the projection. Then ϕ′∗TD − iET = τ∗D′i. Therefore, t∗σi = 0 iff
τ∗D′i is effective. Thus Xi is the largest subscheme of F over which D′i is effective.

In particular, on every fiber of πi, the restriction of Di is effective. Furthermore, πi is flat.
Hence, Di is relative effective. Thus the lemma holds. �

Lemma 2.3. Let (F/Y,D) be a pair. Then forming all of the induced pairs (Fi/Xi, Di) com-
mutes with arbitrary base change g : Y ′ → Y .

Proof. It follows from [17, Proposition 3.4, p. 422] that the formation of F (1) and E(1) com-
mutes with base change. Set g′ : F ×Y Y ′ → F . By [11, Proposition 16.4.5, p. 19], we have
g′∗P i−1

F/Y (D) = P i−1
F×Y Y ′/Y ′

(
g′−1(D)

)
, and the section σi pulls back to the corresponding sec-

tion σ′i. Hence the zero scheme of σ′i is equal to Xi ×Y Y ′. �

Definition 2.4. Let Y (∞) denote the subset of Y whose geometric points are those η of Y
whose fiber Dη is not reduced.

Fix a minimal Enriques diagram D; see [15, Section 2, p. 213]. Denote by Y (D) the subset
of Y whose geometric points are those η whose fiber Dη has diagram D.
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2.5. Arbitrarily near points. Recall the following notions, notation, and results. First, as in
[17, Definition 3.1, p. 421], for j ≥ 0, iterate the construction of π′ : F ′ → F from π : F → Y to
obtain π(j) : F (j) → F (j−1) with π(0) := π, with π(1) := π′, and so forth. By [17, Proposition 3.4,
p. 422], the Y -schemes F (j) represent the functors of arbitrarily near points of F/Y ; the latter
are defined in [17, Definition 3.3, p. 422]. As in [17, Definition 3.1, p. 421], we denote by
ϕ(j) : F (j) → F (j−1) the map equal to the composition of the blowup and the first projection,
and by E(j) ⊂ F (j) the exceptional divisor.

Given a minimal Enriques diagram D on j + 1 vertices, fix an ordering θ of these vertices.
Also, let U be the unweighted diagram underlying D. By [17, Theorem 3.10, p. 425], the
functor of arbitrarily near points with (U, θ) as associated diagram is representable by a Y -
smooth subscheme F (U, θ) of F (j).

By [17, Corollary 4.4, p. 430], the group of automorphisms Aut(U) acts freely on F (U, θ).
So its subgroup Aut(D), of automorphisms of D, does too. Set

Q(D) := F (U, θ)
/

Aut(D);

it is independent of the choice of θ by [17, Theorem 5.7, p. 438]. Set d := deg D.
Form the structure map and the universal injection of [17, Theorem 5.7, p. 438]:

q : Q(D)→ Y and Ψ: Q(D)→ HilbdF/Y ;

in fact, Ψ is a an embedding in characteristic 0. The construction and study of Ψ is based on
the modern theory of complete ideals. Finally, set

G(D) := HilbdD/Y ×Hilbd
F/Y

Q(D). (2.4)

Lemma 2.6. The sets Y (D) and Y (∞) are constructible; in fact, Y (∞) is closed if F/Y is
proper. Furthermore, for all z ∈ G(D) and y ∈ Y (D), we have

codz(G(D), Q(D)) ≤ d and cody(Y (D), Y ) ≤ cod D. (2.5)

Finally, for only finitely many D, is either G(D) r q−1Y (∞) or Y (D) nonempty.

Proof. Note that Y (∞) is just the image in Y of the set of x ∈ X2 at which the fiber of X2/Y
is of dimension at least 1. This set is closed in X2, so in F . Hence Y (∞) is constructible; in
fact, Y (∞) is closed if π is proper.

Only finitely many D arise from the fibers of D/Y ; indeed, this statement is proved in [16,
Lemma 2.4, p. 73] without making use of its blanket hypothesis that Y is Cohen–Macaulay and
of finite type over the complex numbers; that proof just requires Y to be Noetherian. Thus
there are only finitely many D such that Y (D) is nonempty; denote the set of these D by Σ.

The subscheme HilbdD/Y of HilbdF/Y is locally cut out by d equations by [1, Proposition 4,
p. 5]. Therefore, the first bound holds in (2.5).

The definitions yield q(G(D)) ⊃ Y (D). Further, take any y ∈ q(G(D))rY (∞), and let D′ be
the diagram of DK , where K is the algebraic closure of k(y). Then the definitions yield a natural
injection α : D ↪→ D′ such that each V ∈ D has weight at most that of α(V ). So deg D′ > d if
y /∈ Y (D). Hence

Y (D) = q(G(D)) r
(
Y (∞) ∪

(⋃
{q(G(D′)) | D′ ∈ Σ and deg D′ > d}

))
.

But G(D) and the G(D′) are locally closed. Thus Y (D) is constructible.
To prove the second bound in (2.5), note that G(D) has a unique point, z say, lying over the

given y. Now, Q(D)/Y is smooth of relative dimension dim D by [17, Theorem 3.10, p. 425].
Thus, as desired,

cody(Y (D), Y ) = codz(G(D), Q(D))− dim D ≤ d− dim D = cod D.
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Finally, suppose G(D) r h−1Y (∞) is nonempty. Then, as we have just seen, there is an
injection α : D ↪→ D′, where D′ ∈ Σ, and each V ∈ D has weight at most that of α(V ). But
there are only finitely many such D, as desired. �

Definition 2.7. We say that (F/Y,D) is r-generic if for every minimal Enriques diagram D
and for every y ∈ Y (D), we have

cody(Y (D), Y ) ≥ min(r + 1, cod D). (2.6)

We say that (F/Y,D) is strongly 8-generic if it is 8-generic and if the analytic type of Dπ(x)

at an ordinary quadruple point x ∈ X4 is not constant along any irreducible component Z of X4;
that is, the cross ratio of the four tangents at x is not the same for all x ∈ Z.

Proposition 2.8. Fix r. Assume that Y is universally catenary and that (F/Y,D) is r-generic.
Then, for each i ≥ 2, the induced pair (Fi/Xi, Di) is ri-generic.

Proof. Fix i. Let D′ be a minimal Enriques diagram. Let x be a generic point of the closure
of Xi(D

′). Then x ∈ Xi(D
′) as Xi(D

′) is constructible by Lemma 2.6 applied with (Fi/Xi, Di)
and D′ for (F/Y,D) and D. Set y := π(x). LetK be an algebraically closed field containing k(x);
then K contains k(y) too.

Consider the curves DK and (Di)K . Note x ∈ Xi(D
′). So the curve (Di)K is reduced, and

is obtained from DK as follows: blow up FK , at the K-point, xK say, defined by x; take the
preimage of DK ; and subtract i times the exceptional divisor. Hence DK is reduced and of
multiplicity either i or i + 1 at xK . In the latter case, (Di)K contains the exceptional divisor;
in the former, it doesn’t. In either case, let D be the diagram of DK . Then [17, Proposition 2.8,
p. 420] yields

cod(D) ≥ cod(D′) +

(
i+ 1

2

)
− 2. (2.7)

Since F/Y is flat, the dimension formula yields

dimOF,x = dimOY,y + dimOFy ,x.

However, x is the generic point of a component, X say, of the closure of Xi(D
′); hence,

dimOF,x = codx(X,F ). So y = π(x). So dimOY,y = cody(π(X), Y ). Further, F/Y is of
relative dimension 2; so dimOFy ,x = 2. Thus

codx(X,F )− 2 = cody(π(X), Y ). (2.8)

However, y := π(x) ∈ Y (D). Hence,

cody(π(X), Y ) ≥ cody(Y (D), Y ).

Combine the last two displays; then (2.6) yields

codx(X,F )− 2 ≥ min(r + 1, cod D). (2.9)

Since Y is universally catenary, F is catenary; hence,

codx(X,Xi) = codx(X,F )− codx(Xi, F ). (2.10)

Hence (2.9) and (2.2) yield

codx(X,Xi) ≥ min(r + 1, cod D) + 2−
(
i+ 1

2

)
.

Therefore, (2.3) and (2.7) yield the desired lower bound:

codx(X,Xi) ≥ min(ri + 1, cod D′). �
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Corollary 2.9. Fix r. Assume (F/Y,D) is r-generic. Fix i ≥ 2, let X be a component of Xi,
take x ∈ X r Y (∞), and set y := π(x). Then

codx(X,F ) =

(
i+ 1

2

)
, cody(π(X), Y ) =

(
i+ 1

2

)
− 2 if ri ≥ −1, (2.11)

codx(X,F ) ≥ r + 3, cody(π(X), Y ) ≥ r + 1 if ri ≤ −1. (2.12)

Proof. Plainly we may assume x is the generic point of X. Let K be an algebraically closed
field containing k(x), so k(y). Then DK is reduced as x /∈ Y (∞). Let D be the diagram of DK ,
and D′ that of Di. Then X is a component of the closure of Xi(D

′). So we may appeal to the
proof of Proposition 2.8. Note that equation (2.10) is trivial here, and we do not need Y to be
universally catenary.

Since x ∈ Xi, at the corresponding K-point, DK is of multiplicity at least i. Hence D has
a root of weight at least i. So cod D ≥

(
i+1

2

)
− 2.

Suppose ri ≥ −1. Then (2.3) yields r + 1 ≥
(
i+1

2

)
− 2. So (2.9) yields

codx(X,F ) ≥
(
i+ 1

2

)
.

But the opposite inequality is (2.2), which always holds. So equality holds. Thus, in (2.11), the
first equation holds. The second follows from it and (2.8).

Suppose ri ≤ −1 instead. Then
(
i+1

2

)
− 2 ≥ r + 1. So cod D ≥ r + 1. Hence (2.9) and (2.8)

yield (2.12). Thus the corollary is proved. �

3 Virtual double points

The minimal Enriques diagram rA1 consists of r roots of weight 2 and no other vertices. The
corresponding scheme G(rA1) is particularly important, as it is equal to the subscheme of the
Hilbert scheme Hilb3r

D/Y associated to the geometric fibers of D/Y with at least r distinct
singular points. Moreover, we need to consider it for various (F/Y,D) and r. So, for clarity, we
set G(F/Y,D; r) := G(rA1).

In this section, we first recall the basic properties of G(F/Y,D; r), which were treated in [17,
Proposition 5.9, p. 439]. Then we fix r ≥ 1, and assume (F/Y,D) is r-generic. For each i ≥ 1,
we find a natural large open subscheme of

Hi := G(Fi/Xi, Di; ri)

such that the associated geometric fibers of Di/Xi have exactly ri nodes. None lies on the
exceptional divisor of a fiber of Fi. Further, adding the exceptional divisor to the fiber of Di/Xi

yields a fiber of Di−1/Xi−1, and thus establishes an isomorphism from the preceding open
subscheme to a natural open subscheme of Hi−1, which is dense in the preimage of Xi. These
results are treated in Lemmas 3.2 and 3.3 below for later use.

3.1. Subschemes of the Hilbert scheme. Fix r. If r ≥ 1, letH(r) denote the open subscheme
of HilbrF/Y over which the universal family is smooth; in other words, H(r) parameterizes the
unions of r distinct reduced points in the geometric fibers of F/Y . By convention, if r = 0,
then H(r) and HilbrF/Y are both equal to Y ; if r ≤ −1, then both are empty.

If r ≥ 1, then Proposition 5.9 on p. 439 in [17] asserts that H(r) = Q(rA1) and that the map
Ψ: H(r) → Hilb3r

F/Y is given on T -points, where T is a Y -scheme, by sending a subscheme W

of FT , say with ideal I, to the subscheme W ′ with ideal I2 (note that W ′ is flat, because the
standard sequence

0→ I/I2 → OW ′ → OW → 0

is exact and because I/I2 and OW are flat); furthermore, Ψ is always an embedding.
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Consequently, we may view G(rA1) as a subscheme of Hilb3r
D/Y . Set

G(F/Y,D; r) := G(rA1) ⊂ Hilb3r
D/Y

to avoid confusion. Furthermore, set G(F/Y,D; 0) := Y , and for r ≤ −1, set G(F/Y,D; r) := ∅.
Finally, for an arbitrary fixed r and for i ≥ 0, set

Hi := G(Fi/Xi, Di; ri).

Lemma 3.2. Fix r ≥ 1. Assume that (F/Y,D) is r-generic and that Y (∞) is empty. Then
there is an open subscheme U ⊂ Y such that (1) for every y ∈ Y r U ,

cody(Y r U, Y ) ≥ r + 1 (3.1)

and (2) for every i ≥ 1 with ri ≥ 0, if we set

Ui :=
(
π−1U

)
∩ (Xi rXi+1) and Vi :=

(
π−1U

)
∩ (Xi−1 rXi+1),

then Ui is dense in Xi, and there is a natural isomorphism of F -schemes

γi : Hi ×F Ui ∼−→ Hi−1 ×F Ui.

Proof. Let U be the complement in Y of the union of the closures of those Y (D) with cod D ≥
r+1. Then U is open since there are only finitely many nonempty Y (D) by Lemma 2.6. By the
same token, (2.6) implies (3.1). Thus (1) holds.

Fix i ≥ 1 such that ri ≥ 0. Then r + 1 >
(
i+1

2

)
− 2. Let X be a component of Xi; let

x ∈ X, set y := π(x). Then (2.11) yields that r + 1 > cody(π(X), Y ); moreover, if x ∈ Xi+1,
then cody(π(Xi+1), Y ) > cody(π(X), Y ). So (3.1) implies π(X) r π(Xi+1) 6⊂ Y r U . Hence
π(Xi rXi+1) meets U . Thus Ui is dense in Xi rXi+1.

Let z ∈ Hi ×F Ui; let x be its image in Ui, and set y := π(x). Let K be an algebraically
closed field containing k(z), so k(x) and k(y) too. Then DK is reduced since Y (∞) is empty,
and DK has multiplicity exactly i at the K-point xK defined by x since x ∈ Ui, so x /∈ Xi+1.
Hence (Di)K is reduced, and does not contain the exceptional divisor EK .

Let D be the diagram of DK , and D′ that of (Di)K . By [17, Proposition 2.8, p. 420], we
have

cod(D) ≥ cod(D′) +

(
i+ 1

2

)
− 2, (3.2)

with equality if and only if DK has an ordinary i-fold point at xK . Now, (Di)K has at least ri
singular points since z ∈ Hi; hence, formula (2.6.2) in [17, p. 419] yields cod(D′) ≥ ri since D′

has at least ri roots, each root has multiplicity at least 2, and the summands in that formula
corresponding to the other vertices of D′ are nonnegative. So the right-hand side of (3.2) is at
least r. However, r ≥ cod(D) since y ∈ U . So equality obtains everywhere. Hence DK has
an ordinary i-fold point at xK . Furthermore, (Di)K has exactly ri singular points, each is an
ordinary double point, and none lies on EK ; also, (Di)K and EK meet transversally in i points.

We define γi as follows. A T -point of its source Hi ×F Ui is given by a map T → Ui and
a T -smooth subscheme W ⊂ F ′T of relative length ri whose squared ideal defines a subscheme
W ′ ⊂ F ′T contained in (Di)T . Owing to the discussion above, in every geometric fiber of F ′T /T ,
the fibers of (Di)T and ET meet transversally in i points. Hence, since (Di)T and ET are relative
effective divisors, their intersection is a T -smooth subscheme Z ⊂ F ′T of relative length i.

Let Z ′ be the subscheme of F ′T defined by the squared ideal of Z. Then Z ′ is contained in
the sum (Di)T + ET , which is equal to (Di−1)T . So W ∪ Z is a T -smooth subscheme of F ′T of
relative length ri + i, or ri−1. And its squared ideal defines a subscheme of F ′T , namely W ′ ∪Z ′,
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which is contained in (Di−1)T . So W ∪ Z determines a T -point of Hi−1 ×F Ui, and the latter
scheme is to be the target of γi. We define γi by sending W to W ∪ Z. Plainly, γi is injective
on T -points since W is determined by W ∪ Z as the part off ET .

To prove γi is surjective on T -points, fix a T -point of Hi−1×F Ui. It is given by a map T → Ui
and a T -smooth subscheme S ⊂ F ′T of relative length ri−1 such that its squared ideal defines
a subscheme S′ ⊂ F ′T contained in (Di−1)T . Then (Di−1)T = (Di)T + ET by (2.3), and (Di)T
is relative effective by Lemma 2.2 since Ui ⊂ Xi. Let W be the part of S off ET . Plainly, W is
a T -smooth subscheme of F ′T , and its squared ideal defines a subscheme contained in (Di)T .

Consider a geometric point of T , say with (algebraically closed) field K. Then DK is reduced
since Y (∞) is empty, and DK has multiplicity exactly i at the center of K since T maps into Ui.
Hence (Di)K is reduced, and (Di)K ∩ EK is a scheme of length i. Now, SK is K-smooth of
length ri−1. Hence SK consists of ri−1 distinct reduced points, of which at most i lie on EK .
So WK consists of at least ri−1 − i, or ri, distinct reduced points. By choosing any ri of them,
we obtain a K-point of Hi ×F Ui. But then, by the discussion of such points right after (3.2),
there was no choice: (Di)K has exactly ri singular points, and all are ordinary nodes. Hence WK

consists exactly of ri distinct reduced points. Thus W is of relative length ri.
Therefore, W defines a T -point of Hi×F Ui. According to the discussion above, this T -point

is carried by γi to the T -point of Hi−1 ×F Ui that is given by R, where R := W ∪ Z and
Z := (Di)T ∩ ET . To prove that γi is surjective on T -points, so bijective on T -points, so an
isomorphism, it remains to prove that R = S.

The equation R = S may be checked locally over T and locally on F . So we may replace T
and F by affine open subsets Spec(A) and Spec(B). Then B is étale over a polynomial subring
A[x, y]. Let I ⊂ B denote the ideal of S. Shrinking F further if necessary, we can find an
f ∈ B that generates the ideal of (Di−1)T . Then f ∈ I2 as R determines a T -point of Hi−1.
Hence f , ∂f/∂x, ∂f/∂y ∈ I. But those three elements generate the ideal of Z := (Di)T ∩ ET
on a neighborhood N of ET . Hence Z ⊃ S ∩ N . But both Z and S ∩ N are T -flat of relative
length i. Hence Z = S ∩N . But R and S are equal off ET . Thus R = S, as desired. �

Lemma 3.3. Under the conditions of Lemma 3.2, the closed subscheme Hi−1×FUi of Hi−1×F Vi
is also open.

Proof. Consider any T -point of Hi−1 ×F Vi. Let T ′ be the preimage of Hi−1 ×F Ui. It suffices
to prove T ′ is an open subscheme, as we may take T = Hi−1 ×F Vi.

Let I ⊂ OT denote the ideal of T ′. Then it suffices to prove that the stalk It vanishes for
all t ∈ T ′ for the following reason. Since I is coherent, the t ∈ T , where It vanishes form an
open subset T ′′. By hypothesis, T ′ ⊂ T ′′. But, if t /∈ T ′, then It = OT,t; whence, T ′ ⊃ T ′′.
So T ′ = T ′′. Give T ′′ the induced structure as an open subscheme of T . Then T ′ is the closed
subscheme of T ′′ with ideal I |T ′′ . But I |T ′′= 0. Thus T ′ is equal to the open subscheme T ′′.

Given t ∈ T ′, to check if It vanishes, we may replace T by Spec(OT,t). Thus we may assume
that T is of the form Spec(A), where A is local and that T ′ is nonempty. Then it suffices to
prove the ideal I ⊂ A of T ′ vanishes, or equivalently, T = T ′.

There exists a flat local homomorphism A→ B such that B is complete and its residue class
field is algebraically closed. Then A→ B is faithfully flat. So I vanishes if I⊗AB does. Thus we
may replace A by B, and so assume that A is complete and its residue class field is algebraically
closed.

Consider the composition T → Hi−1 ×F Vi → Vi. Via it, T ′ is the preimage of Ui. Hence
T = T ′ if and only if (D′i)T is effective, owing to Lemma 2.2. By the same token, (D′i−1)T is
effective.

Consider the local ring C of FT at the closed point of the center of the blowing up F ′T → FT .

Let Ĉ be its completion. Since C → Ĉ is faithfully flat, (D′i)T is effective if and only if (D′i)T⊗C Ĉ
is effective.
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As F/Y is a smooth family of surfaces and as Ĉ is complete with algebraically closed residue
class field, Ĉ is a power series ring; say Ĉ = A[[u, v]]. Say that the section T → FT is defined by
mapping u, v to a, b ∈ A. Replacing u, v by u− a, v− b, we may assume that T → F is defined
by mapping u, v to 0, 0.

Let f in A[[u, v]] define the pullback of D. Write f = f1 + f2 + · · · , where fj is homogeneous

of degree j in u and v. Then fj = 0 for 1 ≤ j ≤ i− 2 since (D′i−1)T ⊗C Ĉ is effective. It remains
to prove that fi−1 = 0.

To prove that fi−1 = 0, denote the maximal ideal of A by m, and write

fi−1(u, v) = a1u
i−1 + a2u

i−2v + · · ·+ aiv
i−1 with aj ∈ A. (3.3)

Then it suffices to prove that aj ∈mn for all j and n ≥ 0.
Since T maps into Hi−1, there is a T -smooth subscheme S ⊂ F ′T of relative length ri−1 whose

squared ideal defines a subscheme S′ ⊂ F ′T contained in (Di−1)T . Since A has an algebraically
closed residue class field K, the fiber SK consists of ri−1 distinct points. Of them, exactly i lie
on EK according to our discussion above. Further, the fiber SK is the singular locus of (Di−1)K ,
which consists of ri−1 ordinary double points, and i of them constitute (Di)K ∩ EK , which is
a transverse intersection.

By replacing u and v with suitable linear combinations of themselves, we may assume that the
u-axis is not tangent to DK at the center of the blowing up. Now, A is complete; so by Hensel’s
lemma, S decomposes into the disjoint sum of ri−1 sections. Of them, i sections meet ET .
Hence, they correspond to A-algebra maps

sj : A[[u, v]][w]
/

(u− vw)→ A for 1 ≤ j ≤ i.

Set bj := sj(v) and cj := sj(w). Then, for all j, let’s check that

bj ∈m and fi(cj , 1) ∈m.

The first relation holds as the closed points of the sections lie on EK . The second holds because
these same points lie on (Di)K ∩ EK . Further, the points are distinct; so mod m, the cj are
distinct elements of K.

Proceeding by induction on n ≥ 1, suppose that bj ∈mn for all j. Set

f̄(v, w) := f(vw, v)/vi−1.

Then f̄ defines the pullback of (Di−1)T . Now, S ⊂ (Di−1)T . Hence, for each j,

0 = f̄(bj , cj) = fi−1(cj , 1) + bjfi(cj , 1) + b2jdj

for some dj ∈ A. But fi(cj , 1) ∈m. Thus fi−1(cj , 1) ∈mn+1.
From (3.3), we obtain the following linear system of equations for the aj :

fi−1(cj , 1) = a1c
i−1
j + a2c

i−2
j + · · ·+ ai for 1 ≤ j ≤ i.

The coefficient matrix is Vandermonde. Its determinant is invertible in A, as the cj are distinct
mod m. As fi−1(cj , 1) ∈mn+1 for all j, solving yields aj ∈mn+1.

To complete the proof, we must show bj ∈ mn+1 for each j. Set Ij := Ker(sj). Then f̄ ∈ I2
j

as S′ ⊂ (Di−1)T . Hence ∂f̄/∂w ∈ Ij . Therefore,

0 = (∂f̄/∂w)(bj , cj) = (∂fi−1/∂u)(cj , 1) + bj(∂fi/∂u)(cj , 1) + b2jd
′
j (3.4)

for some d′j ∈ A. Now, aj ∈mn+1; so (3.3) yields

(∂fi−1/∂u)(cj , 1) = (i− 1)a1c
i−2
j + (i− 2)a2c

i−3
j + · · ·+ ai−1 ∈mn+1.

But bj ∈ mn. So (3.4) yields bj(∂fi/∂u)(cj , 1) ∈ mn+1. But (cj , 1) is, mod m, a simple root
of fi; so (∂fi/∂u)(cj , 1) /∈m. Thus bj ∈mn+1, as desired. �
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4 Intersection theory

For use in the remaining sections, we extend the intersection theory of bivariant classes developed
in [8, Chapter 17] and generalized over any universally catenary base in [14, Sections 2 and 3],
in [25], and in [24, Chapter 42]. However, only [8] is cited below.

4.1. Push down. Assume that f : X → Y is a map of schemes such that its orientation class [f ]
is defined [8, Section 17.4, p. 326]. If f is also proper, define an additive map

f# : A∗(X)→ A∗(Y ) by f#a := f∗(a · [f ]),

where f∗ : A∗(f) → A∗(Y ) is the proper push-forward operation discussed in (P2) on p. 322
of [8].

Proposition 4.2. Let a, b ∈ A∗(X). Assume that a is a polynomial in Chern classes of vector
bundles on X. Then f#a · f#b = f#b · f#a.

Proof. By (A12) on p. 323 of [8], product and push-forward commute; so

f#a · f#b = f∗(a · [f ] · f∗(b · [f ])).

Let pi : X ×Y X → X denote the ith projection. Form the diagram

X ×Y X
1−−−−→ X ×Y X

p2−−−−→ Xyp1 yp1 yf
X

1−−−−→ X
f−−−−→ Y

1−−−−→ Y.

Apply the projection formula of (A123) of [8, p. 323] with f := f , with g := f , with h := 1Y ,
with c := [f ] and with d := b · [f ]. The result is

[f ] · f∗(b · [f ]) = p1∗
(
f∗([f ]) · b · [f ]

)
.

The definitions of f∗, of [f ], and of p2 yield f∗([f ]) = [p2]. But Axiom (C2) on p. 320 of [8]
yields [p2] · b = p∗2(b) · [p2]. Thus [f ] · f∗(b · [f ]) = p1∗(p

∗
2(b) · [p2] · [f ]).

Apply this projection formula again, but now with f := 1X , with g := p1, with h := f , with
c := a and with d := p∗2(b) · [p2] · [f ]. The result is

a · p1∗
(
p∗2(b) · [p2] · [f ]

)
= p1∗

(
p∗1(a) · (p∗2(b) · [p2] · [f ])

)
.

The formula just before Proposition 17.4.1 on p. 327 of [8] yields [p2] · [f ] = [fp2]. So the
functoriality of pushforwards, stated in (A2) on p. 323 of [8], yields

f∗
(
p1∗
(
p∗1(a) · p∗2(b) · [p2] · [f ]

))
= (fp1)∗

(
p∗1(a) · p∗2(b) · [fp2])

)
.

Putting it all together yields

f#a · f#b = (fp1)∗
(
p∗1(a) · p∗2(b) · [fp2]

)
. (4.1)

By hypothesis, a is a polynomial in Chern classes of vector bundles on F . But product and
pullback commute by property (A13) on p. 323 of [8]. So p∗1(a) is the same polynomial in the
same Chern classes of the pullbacks under p1 of those vector bundles. But, as stated just before
Proposition 17.3.2 on p. 325 of [8], Chern classes commute with all bivariant classes. Thus
p∗1(a) · p∗2(b) = p∗2(b) · p∗1(a).
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Of course, fp1 = fp2. Thus

f#a · f#b = (fp2)∗
(
p∗2(b) · p∗1(a) · [fp1]

)
.

But a and b are arbitrary in (4.1); moreover, p1 and p2 may be interchanged. So

(fp2)∗
(
p∗2(b) · p∗1(a) · [fp1]

)
= f#b · f#a.

Thus f#a · f#b = f#b · f#a, as asserted. �

Assume g : Y ′ → Y , and consider f ′ : X ′ := X ×Y Y ′ → Y ′. Then,

g∗f# = f ′#g
∗ : A∗(X)→ A∗(Y ′). (4.2)

This property results from property (A23) on p. 323 of [8] as follows:

g∗f#(a) = g∗f∗(a · [f ]) = f ′∗g
∗(a · [f ]) = f ′∗(g

∗(a) · g∗[f ])

= f ′∗(g
∗(a) · [f ′]) = f ′#(g∗(a)).

Assume that f : X → Y and g : Y → Z are proper and that [f ], [g], and [gf ] exist. Then

(gf)# = g#f#,

since, by [8, Section 17.4, p. 327],

(gf)#(a) = g∗f∗(a · [gf ]) = g∗f∗(a · [f ] · [g]) = g∗(f∗(a · [f ]) · [g]) = g#(f#(a)).

4.3. Blowups. Let ι : W → V be a closed, regular embedding of codimension d. Then the
orientation class [ι] is defined. Let V ′ denote the blowup of V along W , with exceptional
divisor E. Then E = P

(
ν∨
)
, where ν is the normal bundle of W in V . Set ξ := c1(OV ′(−E)).

The map f : E → W is flat, hence has an orientation class [f ]. Then, by [8, Corollary 4.2.2,
p. 75], for k ≥ 1,

f#ξ
k = −sk−d

(
ν∨
)
, (4.3)

where s
(
ν∨
)

= c(ν)−1 denotes the Segre class of ν∨.

4.4. Derived classes. Consider the setup of Section 2.1. We have the Chern classes v :=
c1(OF (D)), wj := cj

(
Ω1
F/Y

)
(for j = 1, 2), e := c1(OF ′(E)) ∈ A∗(F ′), where E is the exceptional

divisor on F ′. Let β : E → ∆ ∼= F also denote the restriction of β : F ′ → F ×Y F . Recall that
βi : Xi → F and β′i : Fi → F ′ denote the inclusions. Let v, wj , e ∈ A∗(F ′) also denote their own
pullbacks via ϕ′ = p1β. As in [15, 16], we have

c1(OFi(Di)) = (β′i)
∗(v − ie), c1

(
Ω1
F ′/F

)
= w1 + e, and c2

(
Ω1
F ′/F

)
= w2 − e2.

We also have the following relations:

e3 + w1e
2 + w2e = 0, β#e = 0, and β#e

2 = −s0

(
ν∨
)
.

The first relation results from the relation e2 +w1e+w2 = 0 on E, cf. [8, Remark 3.2.4, p. 55];
the second and third, from equation (4.3).

Let ι : ∆→ F×Y F denote the embedding, which is regular of codimension 2, since π : F → Y
is smooth of relative dimension 2. As a class on F ×Y F , we can write β#e

2 = −ι# s0

(
ν∨
)
.
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Set y(a, b, c) := π#

(
vawb1w

c
2

)
∈ A∗(Y ). (Note, by Proposition 4.2, multiplying these y(a, b, c)

is commutative.) The corresponding classes for the map πi : Fi → Xi (defined in Section 2.1)
are

yi(a, b, c) := πi#(β′i)
∗((v − ie)a(w1 + e)b

(
w2 − e2

)c)
.

By (4.2), β∗i π
′
# = πi#β

′
i
∗; hence,

yi(a, b, c) = β∗i π
′
#

(
(v − ie)a(w1 + e)b

(
w2 − e2

)c)
.

We have π′ = p2β, and

β#

(
(v − ie)a(w1 + e)b

(
w2 − e2

)c)
= β#

(
vawb1w

c
2 −Q(i; a, b, c)e2

)
= p∗1

(
vawb1w

c
2

)
+ p∗1Q(i; a, b, c) · ι#s0

(
ν∨
)
,

where Q(i; a, b, c) is the (weighted homogeneous, degree a+ b+ 2c− 2) polynomial in v, w1, w2

returned by the function in Algorithm 2.3 in [16, p. 72]. Hence, since [π′] = [p2β] = [β] · [p2] by
[8, Section 17.4, p. 327]), we get

π′#
(
(v − ie)a(w1 + e)b

(
w2 − e2

)c)
= p2#p

∗
1

(
vawb1w

c
2

)
+ p2#

(
p∗1Q(i; a, b, c) · ι#s0

(
ν∨
))
.

Since p1ι = p2ι, we have

p∗1Q(i; a, b, c) · ι#s0

(
ν∨
)

= ι#
(
ι∗p∗1Q(i; a, b, c) · s0

(
ν∨
))

= p∗2Q(i; a, b, c) · ι#s0

(
ν∨
)
.

Since s0(ν∨) = c0(ν) =: 1∆ ∈ A∗(∆) is the class that acts as identy on A∗(∆) and since p2ι is
an isomorphism, we get p2#ι#s0

(
ν∨
)

= 1F . Since p2#p
∗
1 = π∗π#, we obtain

π′#
(
(v − ie)a(w1 + e)b

(
w2 − e2

)c)
= π∗π#v

awb1w
c
2 +Q(i; a, b, c).

Thus we have

yi(a, b, c) = β∗i (π∗y(a, b, c) +Q(i; a, b, c)). (4.4)

5 The main theorem

Fix a smooth projective family of surfaces π : F → Y , and a relative effective divisor D on F/Y .
For each r ≥ 1, we introduce a natural cycle U(D, r) on Y that enumerates the fibers Dy with r
nodes. Our first goal is to prove Proposition 5.3, which gives a recursive relation for the class
u(D, r) := [U(D, r)] in terms of the classes u(Di, ri) of the induced pairs (Fi/Xi, Di) introduced
in Section 2.1. This relation is the key to the proof of our main theorem, Theorem 5.4.

Definition 5.1. Fix r ≥ 1. Form the direct image on Y of the fundamental cycle [G(F/Y,D; r)],
remove the part supported in Y (∞), and denote the result by U(D, r). In other words, U(D, r)
is obtained as follows. For each generic point z of G(F/Y,D; r), let nz be the length of Oz
over Oq(z) provided this length is finite and q(z) /∈ Y (∞); otherwise, let nz be 0. Let {q(z)} be
the closure of {q(z)}.

U(D, r) :=
∑
z

nz{q(z)}.

In addition, let U(D, 0) denote the fundamental cycle of Y , and set U(D,−r) := 0.
Finally, set u(D, r) := [U(D, r)]. It’s a class on Y .
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Proposition 5.2. Fix r ≥ 1. Assume that the pair (F/Y,D) is r-generic. Then U(D, r) has
pure codimension r, and its support is just the closure of Y (rA1).

Proof. This follows from the second part of Lemma 2.6, with D = rA1: Let z be a generic
point of G(F/Y,D; r). Then codz(G(F/Y,D; r), H(r)) ≤ 3r because Hilb3r

D/Y is the zero scheme

of a section of a locally free sheaf of rank 3r on Hilb3r
F/Y by [1, Proposition 4, p. 5]. �

Proposition 5.3. Fix r ≥ 1. Then the following formula holds:

u(D, r) =
1

r
π#

∑
i≥2

(−1)iβi#u(Di, ri), (5.1)

where βi : Xi → F denote the inclusions.

Proof. Notice that the sum in (5.1) is finite, as ri = r −
(
i+1

2

)
+ 2 by (2.3) and as U(D, s) = 0

for s < 0 by Definition 5.1.

Let’s first explain set-theoretically why the formula should hold. Consider a closed point
y ∈ Y (r). The curve Dy has precisely r nodes, and if we blow up one of the nodes, x ∈ X2 say,
the strict transform (D2)x has r−1 nodes. Hence, above y ∈ Y (r), we get r points x ∈ X2(r−1).
But not all r−1-nodal curves of D2/X2 arise in this way: if x ∈ X3 is an (ordinary) triple point
of Dπ(x), then (D2)x = (D3)x + Ex, hence it has the 3 nodes (D3)x ∩ Ex. Therefore, set-
theoretically, X2(r−1) consists of two parts, one mapping r : 1 to Y (r), the other mapping 1 : 1
to Y (D4 + (r − 4)A1). The second part is equal to the part of X3(r − 4) not contained in X4.
The part contained in X4 is equal to X4(r − 8) minus the part contained in X5, and so on.

The fact that this reasoning is valid on the cycle level is precisely what Lemma 3.3 shows.
It therefore only remains to show that there is a natural map

G(F2/X2, D2; r − 1) rG(F3/X3, D3; r − 4)→ G(F/Y,D; r)

which is r : 1. If Z ′ → T is a T -point of G(F2/X2, D2; r−1)rG(F3/X3, D3; r−4) (i.e., a family
of r − 1 double points in D2 ⊂ F2 over T , none of which lie on E), we send it to the image
ϕ′(Z ′ ∪ 2E) in F to get a family over T of r double points in D. This map induces an r : 1 map
from the components of the cycle U(D2, r − 1) that are supported on X2 rX3 to U(D, r). �

Notice that the case r = 8 of (5.1) looks different from (4.6) on p. 230 of [15]. Indeed,
in [15], we used u(D2, 7) to denote what we denote by 1

7!P7(a•(D2)) ∩ [X2] here. However, the
mathematics is consistent.

Our main result is Theorem 5.4, the first part of which was proved in [16]. We now prove
the last part of the theorem, namely the part concerning the expression for u(D, r) = [U(D, r)],
where U(D, r) is the cycle introduced in Definition 5.1.

Recall from Section 2 that for a given pair (F/Y,D), the subscheme Xi ⊂ F denotes the
scheme of zeros of the natural section σi of P i−1

F/Y (D). After making some simplifications, we
prove the theorem when X4 = ∅. This proof is easy, and it yields the case r ≤ 7. We then
consider the case r = 8, which is more difficult due to the presence of nonreduced fibers in
codimension r2 = 7 in the family of curves of the induced pair (F2/X2, D2).

Theorem 5.4 (Main). Let π : F → Y be a smooth projective family of surfaces, and D a relative
effective divisor. Assume Y is Cohen–Macaulay and equidimensional. Fix an integer r ≥ 0, and
assume

(i) if Y (∞) 6= ∅, we have codY (∞) ≥ r + 1,

(ii) the pair (F/Y,D) is r-generic.
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Then either Y (rA1) is empty, or it has pure codimension r; in either case, its closure Y (rA1)
is the support of a natural nonnegative cycle U(D, r).

Let bs(D) be the polynomial in v, w1, w2 output by Algorithm 2.3 in [16], set as(D) :=
π#bs(D), and let Pr be the rth Bell polynomial. Assume r ≤ 8, and if r = 8, then (F/Y,D)
is strongly 8-generic. Then the rational equivalence class u(D, r) := [U(D, r)] is given by the
formula

u(D, r) =
1

r!
Pr(a1(D), . . . , ar(D)) ∩ [Y ].

Proof. First of all, we may assume Y (∞) = ∅. Indeed, codY (∞) ≥ r + 1 by hypothesis.
Hence we may replace Y by Y r Y (∞), and thus assume that all the fibres of π|D : D → Y are
reduced.

Second, codXi =
(
i+1

2

)
for i = 2, 3, 4 by Corollary 2.9. Therefore, Xi is a local complete inter-

section in F , and F is smooth over the Cohen–Macaulay scheme Y , hence is Cohen–Macaulay,
and so Xi is too. Since Y is equidimensional, so is F , and hence so is Xi.

By [16, Lemma 2.4, p. 73] there are at most finitely many D such that Y (D) is nonempty;
hence, we may remove all Y (D) with codY (D) ≥ r + 1. If x ∈ Xi is a closed point, i ≥ 5,
then Dπ(x) contains a point of multiplicity at least i; hence, the minimal Enriques diagram D

of Dπ(x) satisfies cod D ≥
(
i+1

2

)
− 2 ≥ 13 by the formula for cod D in [15, p. 217]. Therefore,

codY (D) ≥ 13 > r, since r ≤ 8. Hence Xi = ∅ for i ≥ 5. If x ∈ X4, then x ∈ Dπ(x) has
multiplicity ≥ 4; hence, cod D ≥ 8. If cod D ≥ 9, then codY (D) ≥ 9; so Y (D) = ∅. Hence we
have cod D = 8. But the only diagram with a root of multiplicity 4 and codimension 8 is the
diagram X1,0 corresponding to an ordinary quadruple point; see [15, Figures 2–6, p. 218].

The recursive formula of Proposition 5.3 applies. It gives, for r ≤ 8,

ru(D, r) = π#

4∑
i=2

(−1)iβi#u(Di, ri),

where r2 = r − 1, r3 = r − 4 and r4 = r − 8.

Proposition 5.5. The theorem holds if X4 = ∅ and Y (∞) = ∅.

Proof. The proof is by induction on r. For r = 1, we have

u(D, 1) = π#β2#u(D2, 0) = π#[X2] = π#x2 ∩ [Y ]

= π#b1(D) ∩ [Y ] = a1(D) ∩ [Y ] = P1(a1(D)) ∩ [Y ].

Assume next that r ≥ 2 and that the theorem holds for all families verifying the hypotheses
of the theorem with r replaced by r′ < r. In particular, the statement then holds for the induced
pairs (Fi/Xi, Di), for i = 2, 3, defined in Section 2.1. Indeed, Xi(∞) = ∅, and (Fi/Xi, Di) is
ri-generic by Proposition 2.8; that is, (ii) of the theorem holds with r replaced by ri.

To simplify the notation, let us write

Pm(z•) := Pm(z1, . . . , zm), (5.2)

where Pm is the mth Bell polynomial and z1, . . . , zm are variables. Then we get

r!u(D, r) = π#

(
β2#Pr−1(a•(D2))− (r − 1)!/(r − 4)!β3#Pr−4(a•(D3))

)
∩ [Y ].

By definition, as(Di) = πi#bs(Di). By applying (4.4) to the polynomials bs(D) (cf. [16, Algo-
rithm 2.3]),

βi#Pm(a•(Di)) = Pm(π∗a•(D) +Q(i, b•(D))) · xi(D).
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By the binomial property of the Bell polynomials [3, equation (4.9), p. 265], we have

Pm(π∗a•(D) +Q(i, b•(D))) =

m∑
k=0

(
m

k

)
Pm−k(π

∗a•(D))Pk(Q(i, b•(D))).

Plugging this in and using the definition of bs(D) and as(D), we get

r!u(D, r) =

r−1∑
k=0

(
r − 1

k

)
Pr−1−k(a•(D))ak+1(D) ∩ [Y ] = Pr(a•(D)) ∩ [Y ],

where the last equality follows from the recursive property of the Bell polynomials [3, equa-
tion (4.2), p. 263]. �

When r ≤ 7, we can remove all Y (D) with cod D ≥ 8. If D contains a root of multiplicity
≥ 4, then cod D ≥

(
4+1

2

)
− 2 = 8, hence we may assume X4 = ∅. This proves the theorem for

r ≤ 7.

Assume r = 8. By Proposition 5.3, we have

8u(D, 8) = π#

(
β2#u(D2, 7)− β3#u(D3, 4) + β4#u(D4, 0)

)
.

The induced pairs (Fi/Xi, Di), i = 3, 4 satisfy the conditions of the theorem, with r replaced
by ri, hence, by the case r ≤ 7 of the theorem:

u(D3, 4) =
1

4!
P4(a•(D3)) ∩ [X3] and u(D4, 0) = [X4].

Note that, since F is Cohen–Macaulay, [Xi] = xi ∩ [F ] with xi as in Algorithm 2.3 in [16]. The
induced pair (F2/X2, D2) does not satisfy the conditions for r replaced by r2. Indeed, note
that D2|F4 = (D − 2E)|F4 = (D − 4E + 2E)|F4 = D4 + 2E|F4 and that D4 is relative effective
on F4/X4 by Lemma 2.2; hence, D2 has nonreduced fibers above X4. So X2(∞) = X4, and
hence has codimension r2 = 7 in X2.

However, from what we have seen above, if we restrict the family F2 → X2 to X2 rX4, then
1
7!P7(a•(D2)) ∩ [X2 rX4] is the class of the 7-nodal curves of that family. So the difference

1

7!
P7(a•(D2)) ∩ [X2]− u(D2, 7) (5.3)

is the correction term we are looking for. It is the class of a cycle of codimension 7, supported on
the codimension 7 subscheme X4 of X2. As Theorem 7.5 shows, (5.3) is equal to C[X4], where
the constant C is an integer, which is independent of the given pair (F/Y,D). Hence it suffices
to compute C in any particular case; for example, in [16, Example 3.8, p. 80], we worked out
the case of 8-nodal quintic plane curves, and found C = 3280. Thus Theorem 5.4 is proved. �

Remark 5.6. Assume (F/Y,D) is the direct sum of two pairs (F ′/Y,D′) and (F ′′/Y,D′′) over
the same base. Then the r-nodal curves of D → Y consists of the unions of the (r − i)-nodal
curves of D′ → Y and the i-nodal curves of D′′ → Y for i = 0, . . . , r. Hence, the existence of
a universal polynomial for r-nodal curves implies that the generating series for (F/Y,D) is equal
to the product of the generating series for (F ′/Y,D′) and (F ′′/Y,D′′). This fact was observed
by Göttsche in the case of a trivial family [9, p. 525], and by Laarakker in the general case [19,
Section 5.1, p. 4935]. In the case of a trivial family, Göttsche observed that this multiplicativity
implies that the universal polynomials are Bell polynomials. However, as observed by Laarakker,
this conclusion does not follow in the case of a nontrivial family.
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Let aj(D), aj(D
′), aj(D

′′) be the classes, introduced in Theorem 5.4, for the three pairs.
Clearly, aj(D) = aj(D

′) + aj(D
′′). So (for r ≤ 8), in the notation of (5.2),

u(D, r) =
1

r!
Pr(a•(D)) ∩ [Y ] =

1

r!
Pr(a•(D

′) + a•(D
′′)) ∩ [Y ].

By the binomial property of the Bell polynomials, the right-hand side is equal to

r∑
i=0

1

(r − i)!
Pr−i(a•(D

′))
1

i!
Pi(a•(D

′′)) ∩ [Y ].

Hence the Bell polynomial shape of the universal polynomials is in agreement with the multi-
plicative property of the generating series of (F/Y,D).

6 An expression for the correction term

We now find an expression for the correction term (5.3). First, in Section 6.1 we define some
useful schemes. Then in Lemma 6.2, we give an expression for u(D2, 7), obtained via repeated
use of the recursion formula of Proposition 5.3. Then in Section 6.3, we introduce classes e(Wi)
on X2 of cycles on X4. Finally, in Proposition 6.4, we express (5.3) as a linear combination of
the e(Wi).

6.1. Some important schemes. Let
(
F

(1)
2 /X

(0)
2 , D

(1)
2

)
:= (F2/X2, D2) be the induced pair of

(F/Y,D). Define recursively
(
F

(j+1)
2 /X

(j)
2 , D

(j+1)
2

)
as the induced pair of

(
F

(j)
2 /X

(j−1)
2 , D

(j)
2

)
.

Let
(
F

(j+1)
3 /X

(j)
3 , D

(j+1)
3

)
be the induced pair of

(
F

(j)
2 /X

(j−1)
2 , D

(j)
2

)
. Let X2

(
D

(j+1)
3

)
⊂ F (j+1)

3

be the zero scheme of the section of P1

π
(j+1)
3

(
D

(j+1)
3

)
induced by that defining the divisor D

(j+1)
3 .

Let D(j+1)−E(j) denote the restriction of the divisor D(j+1)−ϕ(j+1)−1
E(j) to F (j+1)|

X2(D
(j)
3 )

.

This divisor is effective; so it induces a section of the restriction of P1
π(j+1)

(
D(j+1)−ϕ(j+1)−1

E(j)
)
.

Let X2

(
D(j+1) − E(j)

)
denote its scheme of zeros. Let D(j+2) − E(j) denote the restriction of

D(j+2) − ϕ(j+2)−1
ϕ(j+1)−1

E(j) to F (j+2)|X2(D(j+1)−E(j)), and X2

(
D(j+2) − E(j)

)
the scheme of

zeros of the induced section of the restriction of P1
π(j+2)

(
D(j+2) − ϕ(j+2)−1

ϕ(j+1)−1
E(j)

)
.

Form these five equidimensional schemes of dimension dimX2 − 7, or dimX4:

X
(7)
2 := X

(7)
2 rX

(7)
2 |X4 ,

X
(4)
3 := X

(4)
3 rX

(4)
3 |X4 ,

X2

(
D

(4)
3

)
:= X2

(
D

(4)
3

)
rX2

(
D

(4)
3

)
|X4 ,

X2

(
D(4) − E(3)

)
:= X2

(
D(4) − E(3)

)
rX2

(
D(4) − E(3)

)
|X4 ,

X2

(
D(4) − E(2)

)
:= X2

(
D(4) − E(2)

)
rX2

(
D(4) − E(2)

)
|X4 .

For j = 2, . . . , 7, consider the composed map π(j)◦· · ·◦π(1) : F (j) → F , and let πj : F (j)|X2 → X2

denote its restriction.

Lemma 6.2. Then

u(D2, 7) =
1

7!
π7#

[
X

(7)
2

]
− 3!

7!
π4#

[
X

(4)
3

]
− 4!

7!
π4#

[
X2

(
D

(4)
3

)]
− 5!

7!2!
π4#

[
X2

(
D(4) − E(3)

)]
− 6!

7!3!
π4#

[
X2

(
D(4) − E(2)

)]
.
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Proof. As (F/Y,D) is 8-generic, the successive induced pairs are j-generic (for appropriate j)
by Proposition 2.8. Thus the lemma follows from repeated use of the recursion formula of
Proposition 5.3. �

6.3. The classes e(Wi). Next we find an expression for each term appearing in the formula

for u(D2, 7) in Lemma 6.2. We just consider X
(7)
2 , since the other schemes can be studied in

a similar way and their classes have similar expressions.

By definition, X
(j)
2 is the scheme of zeros of the section σ

(j)
2 of P1

π
(j)
2

(
D

(j)
2

)
induced by the

section σ(j) defining D
(j)
2 . For j = 1, . . . , 6, set

X
(j)
2 := X

(j)
2 rX

(j)
2 |X4 , F

(j+1)
2 := F

(j+1)
2 |

X
(j)
2

, (6.1)

W
(j)
1 :=

(
X

(j)
2 |X(j−1)

2

)
|X4 . (6.2)

Then X
(j)
2 |X(j−1)

2

= X
(j)
2 ∪W

(j)
1 . Notice the F

(j)
2 are equidimensional of dimension dimX2− j+ 3

and that cod
(
X

(j)
2 ,F

(j)
2

)
= 3. Thus dimX

(j)
2 = dimX2 − j.

To determine the dimensions of the “excess schemes” W
(j)
1 , consider the fibers of W

(j)
1 →

W
(j−1)
1 ∩ X

(j−1)
2 . Starting with x ∈ X4, we have

(
D

(1)
2

)
x

= Γx ∪ 2E
(1)
x , where Γx is the strict

transform of Dπ(x) under the blowup of Fπ(x) at x. Hence, a local calculation yields
(
W

(1)
1

)
x
,

which is
(
X

(1)
2

)
x
, is equal to E

(1)
x with four embedded points at the intersections of Γx with E

(1)
x .

Thus dimW
(1)
1 = dimX4 + 1.

Next take z ∈
(
W

(1)
1

)
x
, but z /∈ Γx. Then the fiber

(
W

(2)
1

)
z

is the strict transform of E
(1)
x

plus four embedded points. If z ∈ Γx ∩E(1)
x , then

(
W

(2)
1

)
z

has an additional point, namely, the

intersection of the strict transform of Γx with E
(2)
z . Hence dimW

(2)
1 = dimX4 + 2. Continuing,

we get

dimW
(3)
1 = dimX4 + 3 = dimX2 − 4 = dimX

(3)
2 − 1.

Thus W
(j)
1 ⊂ X(j)

2 and X
(j)
2 = X

(j)
2 for j ≤ 3.

For j = 4 we get dimW
(4)
1 = dimX4 + 4 = dimX2 − 3 = dimX

(4)
2 + 1. Then dimW

(4)
1 ∩

X
(4)
2 ≤ dimX

(4)
2 − 1. Hence dimW

(5)
1 ≤ dimX

(4)
2 − 1 + 1 = dimX

(5)
2 + 1. Continuing, we get

dimW
(j)
1 ≤ dimX

(j)
2 + 1 for j ≥ 4.

To simplify notation, set P(j) := P1
π(j)

(
D(j)

)
. Consider P(7) restricted to F

(7)
2 . The scheme of

zeros of its section σ
(7)
2 is equal to X

(7)
2 ∪W

(7)
1 . Blow up F

(7)
2 along W

(7)
1 and apply the residual

formula for top Chern classes [8, Example 14.1.4, p. 245]. After pushing down to F
(7)
2 , we find[

X
(7)
2

]
= c3

(
P(7)

)
∩
[
F

(7)
2

]
+
{
c
(
P(7)

)
∩ s
(
W

(7)
1 ,F

(7)
2

)}
dimX4

. (6.3)

Here is why (6.3) holds.

Let σ′ denote the induced section of P(7) twisted by the ideal sheaf of the exceptional divisor

on the blowup of F
(7)
2 . Let Z(σ′) denote the localized top Chern class of the pullback of P(7)

with respect to σ′. The zero scheme Z(σ′) is equal to the strict transform of X
(7)
2 , hence has

codimension 3 in the blowup of F
(7)
2 . It follows from [8, Proposition 14.1(b), p. 244] that Z(σ′)

is the class of a positive cycle with support Z(σ′). Since the blowup of F
(7)
2 need not be Cohen–

Macaulay, we cannot immediately conclude that Z(σ′) = [Z(σ′)]. However, since F
(7)
2 r F

(7)
2 |X4
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is Cohen–Macaulay, the restrictions of Z(σ′) and [Z(σ′)] agree above X
(7)
2 rX

(7)
2 |X4 ; hence they

are equal.

Since
[
F

(7)
2

]
=
[
F

(7)
2 |X(6)

2

]
= π(7)∗[X(6)

2

]
, the pushdown of the first term under π(7) gives

π
(7)
# c3

(
P(7)

)
∩
[
X

(6)
2

]
by the projection formula. We then replace

[
X

(6)
2

]
by the analogue of

equation (6.3) and push down the resulting terms by π(6).

Continuing this way, we get a formula for π7#

[
X

(7)
2

]
. To simplify notation, set

dj(W1) :=
{
c
(
P(7−j)) ∩ s(W (7−j)

1 ,F
(7−j)
2

)}
dimX4+j

for j = 0, . . . , 3,

e(W1) := π
(1)
# · · ·π

(7)
# d0(W1) + π

(1)
# · · ·π

(6)
#

(
π

(7)
# c3

(
P(7)

)
d1(W1)

)
+ π

(1)
# · · ·π

(5)
#

(
π

(6)
#

(
π

(7)
# c3

(
P(7)

)
c3

(
P(6)

)
d2(W1)

))
+ π

(1)
# · · ·π

(4)
#

(
π

(5)
#

(
π

(6)
#

(
π

(7)
# c3

(
P(7)

)
c3

(
P(6)

)
c3

(
P(5)

))
d3(W1)

))
.

Note that the dj(W1) are classes in A∗
(
W

(7−j)
1

)
, and that restricting the map π7−j gives a proper

map W
(7−j)
1 → X4.

Then the resulting formula for π7#[X
(7)
2 ] is the following:

π7#

[
X

(7)
2

]
= π

(1)
#

(
π

(2)
#

(
· · ·
(
π

(7)
# c3

(
P(7)

)
· · ·
)
c3

(
P(2)

))
c3

(
P(1)

))
∩ [X2] + e(W1).

Similarly, we obtain formulas for the classes π4#

[
X

(4)
3

]
and π4#

[
X2

(
D

(4)
3

)]
and π4#

[
X2

(
D(4)−

E(3)
)]

and π4#

[
X2

(
D(4) − E(2)

)]
. For i = 2, . . . , 5, define the classes e(Wi) on X2 correspond-

ingly.

Proposition 6.4. The correction term (5.3) is equal to

1

7!
P7(a•(D2)) ∩ [X2]− u(D2, 7) =

1

7!
e(W1)− 3!

7!
e(W2)− 4!

7!
e(W3)− 5!

7!2!
e(W4)− 6!

7!3!
e(W5).

Proof. Recall that the classes as(D2) on X2 are obtained by pushing down the classes bs(D2)
on F2 obtained by applying Algorithm 2.3 of [16, p. 72] to the pair (F2/X2, D2). In the case
that X4 = ∅, the Algorithm would have produced the formula u(D2, 7) = 1

7!P7(a•(D2)) ∩ [X2].
Removing the classes e(Wi), we get

1

7!
P7(a•(D2)) ∩ [X2] =

1

7!

(
π7#

[
X

(7)
2

]
− e(W1)

)
− 3!

7!

(
π4#

[
X

(4)
3

]
− e(W2)

)
− 4!

7!

(
π4#

[
X2

(
D

(4)
3

)]
− e(W3)

)
− 5!

7!2!

(
π4#

[
X2

(
D(4) − E(3)

)]
− e(W4)

)
− 6!

7!3!

(
π4#

[
X2

(
D(4) − E(2)

)]
− e(W5)

)
.

Lemma 6.2 now yields the asserted formula. �

7 Independence of the correction term

In this section, we prove Theorem 7.5, which asserts that the correction term (5.3) is equal
to C[X4], where C is independent of the strongly 8-generic pair (F/Y,D) with Y (∞) = ∅.
We work locally analytically on F at a general closed point x in X4. Section 7.1 describes the
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local setup. Lemma 7.2 asserts that locally we have the properness we need to pushdown classes.
Lemma 7.3 asserts that the key classes e(Wi) pull back to their local counterparts e

(
Ŵi

)
.

Lemma 7.4 asserts that the coefficient in e
(
Ŵi

)
of
[
X̂4

]
depends only on the analytic type

of the ordinary quadruple point x ∈ Dπ(x); namely, on the cross ratio of the four tangents at x.
Its proof requires (F/Y,D) to be strongly 8-generic. Finally, we prove Theorem 7.5 by exhibiting
a pair (F/Y,D), where X4 is irreducible and where any given value of the cross ratio appears
at some x ∈ X4.

7.1. The local setup. Fix an 8-generic pair (F/Y,D) with Y (∞) = ∅, and a general closed
point x ∈ X4. By general , we mean that x lies on a single irreducible component Z of X4

and that x is an ordinary quadruple point of Dπ(x). Let us arrange for every x ∈ X4 to be
general as follows. First, if two components Z ′ and Z ′′ of X4 meet, then dim(Z ′∩Z ′′) < dimX4.
So codπ(Z ′ ∩ Z ′′) > codπ(X4). But cod(π(X4), Y ) = 8 by (2.11) as (F/Y,D) is 8-generic.
Hence we may discard Z ′ ∩ Z ′′. Second we may discard the locus of y ∈ Y , where Dy has
a singularity x worse than an ordinary quadruple point, again because (F/Y,D) is 8-generic.

Set F̃ := SpecOF,x and Ỹ := SpecOY,π(x) and D̃ := SpecOD,x. Denote the induced pair

of
(
F̃ /Ỹ , D̃

)
by
(
F̃2/X̃2, D̃2

)
. The bundles of relative principal parts are compatible not only

with the base change Ỹ → Y , but also with the maps F̃ → F and F̃ (j) → F (j); cf. [11,
Proposition 16.4.14, p. 22]. So although the X̃i for i ≥ 2 are defined in terms of

(
F̃ /Ỹ , D̃

)
, we

have X̃i = Spec ÕXi,x. Similarly, the schemes constructed in Section 6 for (F2/X2, D2) induce

the corresponding schemes for
(
F̃2/X̃2, D̃2

)
. Denote by W̃

(j)
i the scheme corresponding to W

(j)
i ;

see (6.2).
Next consider the completions of the local rings, giving us a pair

(
F̂ /Ŷ , D̂

)
. Replacing the

principal parts bundles by their completions, cf. [6, Example 16.14, p. 416], construct the X̂i,
the induced pair

(
F̂2/X̂2, D̂2

)
, and the corresponding schemes of Section 6. Since the complete

principal parts bundles are pullbacks, X̂i = Spec ÔXi,x, and all the schemes of Section 6 for

(F2/X2, D2) pull back to the corresponding schemes for
(
F̂2/X̂2, D̂2

)
. Denote by Ŵ

(j)
i the

scheme corresponding to W̃
(j)
i , so to W

(j)
i .

The classes e(Wi) of Section 6.3 are sums of pushdowns of classes on the W
(j)
i . By Lemma 7.2

below, the Ŵ
(j)
i are proper over X̂2; hence, we may form the corresponding classes e(Ŵi) for

the pair
(
F̂2/X̂2, D̂2

)
. Denote them by e(Ŵi).

Let ε : X̂2 → X2 denote the composition of the flat maps X̂2 → X̃2 and X̃2 → X2. Then[
X̂4

]
= ε∗[X4], and Lemma 7.3 asserts e(Ŵi) = ε∗e(Wi).

Each e(Wi) is the class of a cycle Ui on X4 of dimension dimX4. Say that the component Z
of X4 containing x appears in Ui with coefficient C ′i and in the fundamental cycle |X4| with
coefficient C ′′i . Set Ci := C ′i/C

′′
i . Then the cycles Ui and Ci|X4| become equal after restriction

to a neighborhood of Z, so the classes e(Wi) and Ci[X4] do too. Thus

e
(
Ŵi

)
= Ci

[
X̂4

]
; (7.1)

furthermore, Ci is independent of the choice of x in Z.

Lemma 7.2. The schemes Ŵ
(j)
i are proper over X̂2.

Proof. Let us first show that the schemes W̃
(j)
i and W

(j)
i |X̃2

have the same support. It suffices

to consider only the W
(j)
1 as the other cases are similar.

Let Ej ⊂ F (j) be the union of the strict transforms of the exceptional divisors E(1), . . . , E(j);

see [17, Definition 3.5, p. 423]. It follows from the description in Section 6 that W
(j)
1 is supported

in Ej . The fibers of the exceptional divisor of F̃2 are the same as the corresponding fibers of
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the exceptional divisor of F2. Hence, above x ∈ X̃2, the fiber of E(j) lies in F̃
(j)
2 . Thus W

(j)
1 |X̃2

has support in F̃
(j)
2 , and it is the same as the support of W̃

(j)
i ; moreover, this support is proper

over X̃2.

For w ∈ W (j)
i |X̃2

, the map O
F

(j)
2 ,w

� OW (j),w pulls back to O
F̃

(j)
2 ,w

� O
W̃ (j),w

. But clearly

O
F

(j)
2 ,w

= O
F̃

(j)
2 ,w

; hence O
W

(j)
i ,w

= O
W̃ (j)1 ,w

. Hence W̃
(j)
i = W

(j)
i |X̃2

. Therefore, W̃
(j)
i is proper

over X̃2. Thus the pullback Ŵ
(j)
i is proper over X̂2. �

Lemma 7.3. We have e
(
Ŵi

)
= ε∗e(Wi).

Proof. It suffices to check that each summand of e(Wi) pulls back to the corresponding sum-

mand of e
(
Ŵi

)
. Here we only consider the first summand of e(W1), since the other cases are

similar.

In (6.1), we defined the schemes F
(j)
2 . Denote by ε

(j)
2 : F̂

(j)

2 → F
(j)
2 the map induced by the

map ε defined in Section 7.1. Notice that, as ε
(7)
2 is flat,

s
(
Ŵ

(7)
1 , F̂

(7)

2

)
= s
(
ε
(7)−1
2 W

(7)
1 , ε

(7)−1
2 F

(7)
2

)
= ε

(7)∗
2 s

(
W

(7)
1 , F

(7)
2

)
;

cf. [8, Proposition 4.2(b), p. 74]. But π̂
(j)
# ε

(j)∗
2 = ε

(j−1)∗
2 π

(j)
# by (4.2). Thus

e
(
Ŵi

)
= π̂

(1)
# · · · π̂

(7)
#

{
c
(
P̂(7)

)
∩ s
(
Ŵ

(7)
1 , F̂

(7)

2

)}
dimX4

= π̂
(1)
# · · · π̂

(7)
#

{
ε
(7)∗
2 c

(
P(7)

)
∩ ε(7)∗

2 s
(
W

(7)
1 , F

(7)
2

)}
dimX4

= π̂
(1)
# · · · π̂

(6)
# ε

(6)∗
2 π

(7)
#

{
c
(
P(7)

)
∩ s
(
W

(7)
1 , F

(7)
2

)}
dimX4

= · · · = ε∗π
(1)
# · · ·π

(7)
#

{
c
(
P(7)

)
∩ s
(
W

(7)
1 , F

(7)
2

)}
dimX4

= ε∗e(Wi),

as desired. �

Lemma 7.4. Assume (F/Y,D) is strongly 8-generic. Then Ci depends just on the analytic type
of Dπ(x) at x, but is otherwise inpenendent of the choice of (F/Y,D).

Proof. Recall that x is an ordinary quadruple point of D̂π̂(x). Let (V/B,D) be its versal
deformation; see [12, Example 14.0.1, p. 101 and Theorem 14.1, p. 103]. Recall how (V/B,D)
is constructed. Take variables t1, . . . , t9, u, v. Identify F̂π(x) with Spec k[[u, v]]. Say D̂π(x) is
defined by f(u, v) in k[[u, v]], and choose g1, . . . , g9 in k[u, v] whose classes in k[[u, v]]/(f, fu, fv)
form a basis of that vector space. Then

B := Spec k[t1, . . . , t9] and D := SpecB[[u, v]]
/(
f +

∑
tigi

)
.

Note that (V/B,D) depends just on the analytic type of Dπ(x) at x.

Since x ∈ D̂π(x) is an ordinary quadruple point, f = f4 + f5 + · · · , where f4 is a product of
independent linear forms. Choose the gi so that only g9 ∈ (u, v)4. Define B4 by the vanishing
of t1, . . . , t8. Then b ∈ B lies in B4 iff the fiber Db has a quadruple point.

Recall from [12, Theorem 14.1, p. 103] that there exists a map δ : Ŷ → B such that D̂ and
D ×B Ŷ become isomorphic after completion along their fibers over π̂(x). Since D̂ is complete
at x, it is already complete along its fiber. Form the completions V̂, B̂, D̂, B̂4 at the origin b0
of B. Then δ : Ŷ → B factors through a map δ̂ : Ŷ → B̂, and D̂ is isomorphic to the completion
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of D̂×B̂ Ŷ along its fiber over π̂(x). Each subscheme X̂i of D̂ is the pullback of the corresponding

subscheme of D̂×B̂ Ŷ , which, in turn, is the pullback of the corresponding subscheme X̂i of D̂.

Let us show δ̂ : Ŷ → B̂ is flat. Notice δ̂
(
π̂
(
X̂4

))
⊂ B̂4. But δ̂

(
π̂
(
X̂4

))
6= {b0} because

(F/Y,D) is strongly 8-generic. However, dim B̂4 = 1. It follows that cod
(
δ−1(b0), π̂

(
X̂4

))
= 1.

Now, cod
(
π̂(X̂4), Ŷ

)
= 8 by (2.11) since (F/Y,D) is 8-generic. So cod

(
δ̂−1(b0), Ŷ

)
= 9. But Ŷ

is Cohen–Macaulay, and B̂ is smooth. Thus δ̂ is flat by [10, Proposition 15.4.2, p. 230].

Form the class e
(
Ŵi

)
for

(
V̂/B̂, D̂

)
analogous to the class e

(
Ŵi

)
for

(
F̂ /Ŷ , D̂

)
. The map

X̂2 ×B̂ Ŷ → X̂2 is flat, as it is induced by δ̂. Since the map X̂2 → X2 ×B Ŷ is also flat, we can

argue as in the proof of Lemma 7.3 to conclude that e
(
Ŵi

)
pulls back to e

(
Ŵi

)
. Owing to the

same flatness, the fundamental class
[
X̂4

]
on X̂2 pulls back to the fundamental class

[
X̂4

]
on X̂2.

Form the equation e
(
Ŵi

)
= Ci

[
X̂4

]
on X̂2 analogous to e

(
Ŵi

)
= Ci

[
X̂4

]
on X̂2, see (7.1).

The former equation pulls back to the latter owing to the preceding paragraph. Thus Ci = Ci.
But Ci depends just on (V/B,D), so just on the analytic type of Dπ(x) at x. Thus Ci depends
just on the analytic type of Dπ(x) at x. �

Theorem 7.5. Assume (F/Y,D) is strongly 8-generic. Then the correction term (5.3) is equal
to C[X4], where C is independent of the choice of (F/Y,D).

Proof. By Lemma 7.4, each Ci depends just on the analytic type of Dπ(x) at x; that is, on
the cross ratio of the four tangents at x. By the last line in Section 7.1, furthermore, Ci is
independent of the choice of x in Z. Below, we exhibit a pair where X4 is irreducible and where
any given value of the cross ratio appears at some x ∈ X4. It follows that Ci is independent
of the choice of (F/Y,D). Finally, Proposition 6.4 now implies that C is independent too, as
desired

To build the pair, say k is the base field, take variables t1, . . . , t8, t, u, v, and set

A := k

[
t1, . . . , t8, t,

1

t
,

1

t− 1

]
, B := A[u, v], C := B/(g),

where

g := t1 + t2u+ t3v + t4u
2 + t5uv + t6v

2 + t7u
2v + t8uv

2 + uv(u− v)(u− tv).

Set Y := SpecA and F := P2
k × Y and D := Spec C.

ThenX4 ⊂ SpecB. Its ideal I is generated by the partial derivatives with respect to u and v of
g up to order three; so I = (t1, . . . , t8, u, v). It follows that X4 = Spec(B/I) = Spec k

[
t, 1
t ,

1
t−1

]
.

Thus X4 is irreducible.
Given c ∈ k, let x ∈ X4 be the point with t = c. Then the fiber Dπ(x) ⊂ P2

k is equal to the
four lines uv(u− v)(u− cv) through (0 : 0 : 1) with cross ratio equal to c. Thus all cross ratios
appear in this family, as desired. �
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[7] Esteves E., Gagné M., Kleiman S., Autoduality of the compactified Jacobian, J. London Math. Soc. 65
(2002), 591–610, arXiv:math.AG/9911071.

[8] Fulton W., Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 2, Springer-
Verlag, Berlin, 1984.
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