
UNIVERSITY OF OSLO
Department of Informatics

Evaluation of SCTP
retransmission
delays

Master thesis

Jon Pedersen

24th May 2006

i

Abstract

Many applications today (e.g., game servers and video streaming serv­

ers) deliver time­dependent data to remote users. In TCP based systems,

retransmission of data might give high varying delays. In applications

with thin data streams (e.g., interactive applications like games), the in­

teraction between players raise stringent latency requirements and it is

therefore important to retransmit lost or corrupted data as soon as pos­

sible.

In the recent years, SCTP has been developed to improve several require­

ments not found in TCP. In this thesis, SCTP is compared, tested and

evaluated against the default Linux TCP protocol with respect to retrans­

mission latency in different and varying RTT and loss scenarios. Various

enhancements are proposed, implemented and tested.

ii

Contents

1 Introduction 1

1.1 Background and motivation . 1

1.2 Problem definition . 2

1.3 Outline . 3

2 Background 4

2.1 Transmission Control Protocol 4

2.1.1 TCP Reno . 5

2.1.2 Selective Acknowledgement 7

2.1.3 Forward Acknowledgement 7

2.1.4 Duplicate SACK . 8

2.2 Stream Control Transport Protocol 8

2.3 Summary . 12

3 Testing SCTP and TCP NewReno 13

3.1 Test Configuration . 13

3.1.1 Test tools . 14

3.1.2 Test Setup . 15

3.2 SCTP Test results . 17

iii

3.2.1 Thick stream scenarios 18

3.2.2 Thin stream scenarios 22

3.3 TCP NewReno test results . 33

3.3.1 Thick stream scenarios 34

3.3.2 Thin stream scenarios 37

3.4 Comparision and evaluation . 42

3.4.1 Thick streams . 42

3.4.2 Thin streams . 44

3.5 Ideas for proposed enhancements 46

3.6 Summary . 47

4 Evaluation and implementation of proposed enhancements 48

4.1 A way to define and detect thin streams 48

4.1.1 Packets in flight to define thin streams 48

4.1.2 Packets in flight handling in SCTP 49

4.2 Modifying fast retransmits in thin streams 52

4.2.1 Fast retransmit after 1 SACK 52

4.2.2 Bundling of outstanding data chunks in fast retrans­

mits . 53

4.3 Modifying the SCTP retransmission timer 55

4.3.1 Reducing the RTO minimum value 55

4.3.2 Thin stream influence on RTO calculations 56

4.3.3 Correcting the RTO value in timer restarts 60

4.3.4 Exponential backoff elimination 62

4.4 Bundling of outstanding data chunks with new data chunks 63

iv

4.5 Summary . 65

5 Testing of proposed enhancements 67

5.1 Test Layout . 67

5.1.1 Testing various enhancements 67

5.1.2 Testing modified fast retransmit 68

5.2 Omitted tests . 69

5.3 Test results . 69

5.3.1 Various enhancements 70

5.3.2 Modified fast retransmit 75

5.4 Evaluation . 78

5.5 Summary . 80

6 Conclusion and remaining challenges 81

6.1 Conclusion . 81

6.2 Remaining challenges . 83

A Code for new SCTP routines 86

A.1 add_pkt_in_flight() . 86

A.2 remove_pkts_in_flight() . 86

A.3 check_stream_before_add() . 87

A.4 Modified restart timer algorithm 88

A.5 bundle_outstanding_chunks() 88

B Sctp_trace source code 90

B.1 sctp_trace.c . 90

B.2 sctp_trace.h . 99

v

Chapter 1

Introduction

1.1 Background and motivation

The large improvement in computer technology in the recent years have

provided new requirements to the applications. Today, it is more and

more common that many applications interact with each other across

large distributed systems such as the Internet. Examples are distrib­

uted video stream applications and massive multi­player online games

(MMOGs) such as role­playing games, first person shooter games and

real­time strategy games. MMOGs are increasing in size and complexety

and supports hundreds or thousands of concurrent players [17]. Many

players are moving around in a virtual world and frequently interact with

each other at the same time, in a way that is experienced as a real world.

Thus, the players need to get the same information at more or less the

same time to have a consistent view of the game. Because of the interac­

tion between players in the game, MMOGs must deliver time­dependent

data to remote users which require stringent latency requirements. E.g,

data loss should not affect the experience of the game.

Most MMOGs are running on a centralized server and distribute game

data in a point­to­point communication with the players. To recover

from errors, the servers are mostly running the standard protocols of

the system kernels. In most cases, this means running TCP as it is one

of the most used transport protocols on the Internet today. In the re­

cent years, a new transport protocol named SCTP has been developed to

answer the requirements for transmission of signaling data. It is based

on TCP, but has been considered more appropriate than TCP for con­

gestion controlled streaming because of its support of partial reliability,

1

multi­homing and several streams inside a connection.

Both TCP and SCTP are developed to achieve the highest possible through­

put in various network scenarios. Thus, they will try to make use of all

the available bandwidth in the network to transmit as much data as fast

as possible to remote users. This is characterized as a thick stream.

When there are much data in transit, recovery from errors such as data

loss is achieved quickly because of the quick feedback from receivers.

This is important when data needs to get retransmitted as it leads to

low retransmission delays. However, applications like MMOGs do make

use of very thin streams when transmitting data to remote users. The

characteristics of a thin stream is that very few packets are sent once

in a while without the need to make use of the available bandwidth and

achieve the highest possible throughput. The packets are often small

compared to the available payload.

1.2 Problem definition

Both TCP and SCTP have not been optimized for thin streams. This leads

to a behaviour where data is not retransmitted fast enough when data

loss occurs. When data is sent in thin streams and needs to get retrans­

mitted, the feedback from the receivers are so infrequent that it leads to

high and varying delays. This is criticial for interactive applications that

must deliver time­dependent data.

In this thesis, we will test and compare SCTP against TCP NewReno with

respect to retransmission delays. TCP NewReno is the standard TCP pro­

tocol in the Linux kernel version 2.6.15. As SCTP is based on TCP, both

protocols have much of the same properties, but there are also several

differences that affect the retransmission mechanisms in various ways.

Based on our findings from the testing and comparison, we propose sev­

eral enhancements for SCTP that improve the retransmission delays in

thin streams.

In this thesis, we are considering sender side modifications only as it is

impossible to change the implementation of hundreds or thousand of

receivers. The reason is that they are running various operating systems

and also different versions of the SCTP protocol that is impossible to

change.

2

1.3 Outline

The thesis is organized as follows. In chapter 2 we are presenting TCP

NewReno and SCTP. In chapter 3, TCP NewReno and SCTP are tested and

compared in both thin and thick streams with respect to retransmission

delays in different loss scenarios. Based on our findings, we evaluate and

implement several proposed enhancements for SCTP in chapter 4 with

the goal of improving the retransmission mechanisms in thin streams.

In chapter 5 we test and evaluate the proposed enhancements before we

conclude our work in chapter 6.

3

Chapter 2

Background

In this chapter, we are presenting TCP NewReno and SCTP. As

TCP NewReno is an extension to TCP Reno, we will first describe the

properties of TCP Reno and later explain what sort of extensions TCP

NewReno makes to TCP Reno.

2.1 Transmission Control Protocol

The Transmission Control Protocol (TCP) [9] is standard transport pro­

tocol in most computer networks today. Examples of its usage is web­

traffic, e­mail and file­transfer. TCP is connection­oriented which means

that a connection is established to send packets between the sender and

receiver. Each packet consists of a specific header and a data payload.

The data payload inside a TCP packet is organized as a continous se­

quence of bytes which governs the sequence number assignments. Thus,

TCP is said to be byte­oriented. TCP ensures that all packets are sucess­

fully received in the same order as they were sent.

TCP uses congestion control to determine the capacity of the network

and further adjust the number of packets it can have in transit. If there

is little traffic in the network, TCP increases the sending rate. Otherwise,

if congestion is detected, TCP decreases the sending rate. This leads to

a Additive­increase, multiplicative­decrease (AIMD) of the sending rate.

TCP uses acknowledgments (ACK) from the receiver to adjust the num­

ber of packets it can have in transit. An ACK is a verification of that a

packet has left the network and new packets could be sent without in­

creasing the level of congestion. If ACKs fail to arrive in a given time or

4

packet loss is detected, this is an indication of congestion in the network

and the sender must reduce the sending rate accordingly.

2.1.1 TCP Reno

TCP Reno [10] is a varition of the TCP protocol which TCP NewReno is

built on. TCP Reno makes use of four mechanisms during congestion

control. These are slow­start, congestion avoidance, fast retransmit and

fast recovery.

Slow­start and congestion avoidance are used by the sender to control

the amount of outstanding data being injected into the network. Out­

standing data is data that is sent, but not yet acknowledged. In order

to control this, a congestion window is used. The congestion window

is a limit on the amount of data transmitted before an ACK is received.

The congestion window is determined by how much congestion there is

in the network in addition to the amount of data the receiver is capable

to receive. The latter is known as the advertised window and its capa­

city is placed in each ACK to report the sender of how much data that

can be received. This means that the sender can have the minimum of

the congestion window bytes and the advertised window bytes in transit

without getting an ACK. This is known as flow­control.

The slow­start mechanism inhibits the sender from sending large bursts

of data into the network without knowing anything about its capacity

and is mainly used when a connection is initialized. Initally, the conges­

tion window is set less or equal to twice the Sender Maximum Segment

Size (SMSS). During slow start, the congestion window is incremented by

SMSS bytes for every ACK received in one Round­Trip Time (RTT). Ini­

tially, one packet is sent and when the ACK for this packet is received,

the congestion window is incremented from one to two. The sender con­

tinues to send two packets and two ACKs are received. When both pack­

ets are acknowledged, the congestion window is incremented to four

packets and so on. This gives an exponential growth per RTT. If the con­

gestion window reaches the slow­start threshold (ssthresh), TCP enters

congestion avoidance. Its initial value could be arbitrary large.

During congestion avoidance, the congestion window is incremented by

one per RTT. This process continues until congestion is detected. Con­

gestion is indicated by a retransmission timeout where an ACK does not

arrive before the retransmission timer expires or when three duplicate

ACKs are received. If a packet is lost, then the sender continues to send

duplicate ACKs for the last packet in the received sequence until the se­

5

quence is restored. In both cases, a retransmission is neceassary. When

a retransmission timeout occurs, ssthresh is reduced to half of the cur­

rent congestion window before going back to slow­start. Further the lost

packet is retransmitted.

If three duplicate ACKs are received, the fast retransmit mechanism is

used. Fast retransmit ensures that the packet is retransmitted before the

retransmission timer expires. Next the fast recovery mechanism is used

instead of slow­start to transmit new packets until a non­duplicate ACK

arrives. Fast recovery uses the receipt of duplicate ACKs to indicates that

packets have left the network and no longer consume network resources.

The sender can therefore continue to transmit new packets, but ssthresh

is reduced to half of the congestion window. As 3 duplicate ACKs have

left the network, the congestion window is set to ssthresh+3*SMSS to

be sure to avoid congestion at the first time. In this way, the conges­

tion window is increased by the number of packets (three) that have left

the network. For each duplicate ACK that is received, the congestion

window is incremented by one and sender can continue to send new

packets for each duplicate ACK that is received. When a non­duplicate

ACK is received, fast­recovery is left and the congestion window is set

to ssthresh before the congestion control enters congestion avoidance.

The non­duplicate ACK should at least acknowledge the retransmitted

packet and also all new packets sent under fast recovery.

The TCP Retransmission timer value (RTO) is calculated according to

[12]. But Linux TCP differs from this calculation by setting the minimum

RTO to hz/5 = 200 ms. The RTO calculations results in an RTO equal to

minimum RTO + the measured RTT. When the retransmission timer ex­

pires, TCP performs an exponential backoff by doubling the RTO value.

TCP NewReno

TCP NewReno [8] is an extension to TCP Reno with the goal of improving

the fast retransmit and fast recovery mechanisms. In TCP Reno, fast re­

covery is left after a non­duplicate ACK acknowledges the retransmitted

packet. If there are multiple loss of packets in a window, TCP Reno will

retransmit each lost packet by fast retransmit and fast recovery where

both need to start over again for each retransmitted packet. Each time,

the congestion window and ssthresh is reduced accordingly. The ACK

for a retransmitted packet will acknowledge some, but not all packets.

This is known as a partial acknowledgment.

When three duplicate ACKs are received, TCP NewReno will reduce ss­

6

thresh to half of the current congestion window and enter fast retrans­

mit. The lost packet is retransmitted and the current congestion window

is reduced to ssthresh+3*SMSS as in TCP Reno. When an ACK is received,

TCP NewReno will check if it acknowledges the packet with the highest

sequence number. If that is not the case, the ACK is a partial acknow­

ledgment and confirms that one or more packets are lost in the same

window. Hence, the packet acknowledged by the partial acknowledge­

ment is retransmitted and TCP NewReno continues to retransmit one

packet per RTT until it receives an ACK for the packet with the highest

sequence number. The reason for this is that it will take an RTT to

get an acknowledgment for each retransmitted packet. Thus, if there

are multiple loss of packets, TCP NewReno does not know the next lost

packet before an acknowledgment is received for the previous packet.

When the packet with the highest sequence number is acknowledged,

TCP NewReno will leave fast recovery, reduce the congestion window to

ssthresh and enter congestion avoidance.

2.1.2 Selective Acknowledgement

TCP does not acknowledge packets that are not located in the left edge

of the receiver window. If a packet is lost, then the next packets are not

acknowledged before the expecting packet arrives although they are suc­

cessfully received. If there are multiple loss of packets in a window, then

the sender must wait an entire RTT to discover each lost packet. This

may lead to uneccesary retransmissions and a reduction of the through­

put.

Selective Acknowledgment (SACK) [6] is a strategy that corrects this

problem by informing the sender of which packets that are received.

This allows the sender to discover multiple packet loss and only retrans­

mit those packets that are actually lost. The SACK option provides this

information by storing each received block’s first and last 32 bits in the

header where each block is acknowledging a continous stream of re­

ceived bytes.

2.1.3 Forward Acknowledgement

Forward Acknowledgment (FACK) [19] is developed to improve TCP con­

gestion control during recovery and works in combination with SACK.

The FACK algorithm uses the additional SACK information to explicitly

measure the number of outstanding packets in the network. TCP with

7

or without the SACK extension both estimates this by assuming that a

duplicate ACK represents a received packet which is taken out of the

network.

FACK uses the state variables snd_nxt and retran_data to estimate

the amount of outstanding data in the network. The first is increased

when a new packet is sent, the latter is increased when a lost packet

is retransmitted. The highest sequence number acknowledged by SACK

is stored in snd_fack. These variabels are used in combination with

cwnd to decide if a packet should be sent in the following way:

while(snd.nxt < snd.fack + cwnd ­ retran_data){

send_something()

}

2.1.4 Duplicate SACK

Duplicate SACK (DSACK) [7] is an extension to SACK and uses this option

to acknowledge duplicate packets. When duplicate packets are received,

the first block of the SACK option should be a D­SACK block and used

to report the sequence numbers of the duplicate packets that triggered

the acknowledgement. This extension makes it possible for the sender

to find the order of packets at the receiver and find out if a packet is

retransmitted unnecessary.

2.2 Stream Control Transport Protocol

The Stream Control Transmission Protocol (SCTP) [11] is a new transport

protocol which provides new functionality to the transport layer, com­

pared to the functionality found in TCP. Originally, SCTP was developed

to provide a transport protocol for message­oriented applications such

as transportation of signalling data. SCTP provides a number of func­

tions that are considered critical for signaling data, but they can also

provide transport benefit to other applications requiring additional per­

formance and reliability.

SCTP is message­oriented, unlike TCP which is byte­oriented. This means

that SCTP sends a sequence of messages within a stream that are de­

livered to applications requiring message­oriented data transfer. Data

8

is transmitted in chunks which are a unit of user data or control in­

formation within a SCTP packet consisting of a specific chunk header

and specific contents dependent of its usage. A message from the ap­

plication layer is transmitted in a data chunk which has its own unique

Transmission Sequence Number (TSN). Several chunks of different types

may get bundled into one packet as long as the total size of the packet

does not exceed the Maximum Transmission Unit (MTU) of the network

path. If a message does not fit into a single packet according to the MTU,

it is fragmented into multiple data chunks where each fits into a packet.

When fragmented messages are received, the data contents of the data

chunks are defragmented into the original message.

SCTP uses SACK to acknowledge the receipt of data chunks. A SACK

chunk does in addition to the specific chunk headers consist of the

cumulative TSN and the size of the advertised receiver window. Fur­

ther, a SACK chunk consists of several gap ack blocks, denoting received

chunks when there are holes in the data chunk sequence. Each gap ack

block contains the offset number of the first TSN and last TSN of a con­

tinous block of data chunks. The TSNs can be found by adding the offset

number to the cumulative TSN. At last, a SACK chunk consists of blocks

of duplicate TSNs. Multiple blocks of SACK information can get bundled

into one packet as long as the total size of the packet does not exceed

the network MTU. In the absence of loss, a SACK is sent back for every

second packet received or within 200 ms of the arrival of any unacknow­

ledged data chunks. If one or more holes in the received data chunk

sequence is detected, the receiver will immediately send a SACK back

for every incoming packet until the data chunk sequence is restored.

Data could get transmitted in one or more streams within a single asso­

ciation and are subject to a common congestion and flow control. These

mechanisms are based on the mechanisms found in TCP Reno. This

means that SCTP is using slow­start and congestion avoidance in its pro­

cedures. During slow­start the initial congestion window is set to 2 *

MTU. The initial value of ssthresh could be arbitrarily large. If a SACK

advances the cumulative TSN, then the congestion window is increased

by at most the lesser of the total size of the previously outstanding data

chunks acknowledged and the MTU. During congestion avoidance, the

congestion window is increased by 1 * MTU per RTT. A data chunk is

not considered to be fully delivered until the cumulative TSN of a SACK

passes the TSN of the data chunk. This is because the incoming SACKs

could give different reports of what data chunks are missing and de­

livered caused by packet reordering in the network. Thus, it is the size

of the data chunks acknowledged by the cumulative TSN that controls

the size of the congestion window. the network.

9

SCTP supports multi­streaming which allows data to be partitioned into

multiple streams. These are sent sequentially, independent of each other.

Message loss therefore only affect delivery within that stream and none

of the others. This makes it possible to continue sending messages to

unaffected streams while the receiver is buffering messages in the af­

fected stream until retransmission occurs. Unlike SCTP, TCP sends data

in a single stream. When messages are lost or appear to be out­of­order,

TCP must delay delivery of all data until the lost message is retransmit­

ted or the sequence of messages is restored.

SCTP supports multi­homing which allows a SCTP endpoint to support

multiple IP addresses within an association. A single address is chosen

as the primary address and is used when data is transmitted under nor­

mal conditions. Retransmitted data could use one or more alternate ad­

dresses to improve the probability of reaching the endpoint. If a primary

address is inaccessible, then one of the alternate addresses is chosen as

the primary address. To support multi­homing, endpoints need to ex­

change lists of available IP addresses during the initiation of the associ­

ation. Each endpoint receives data from any of the addresses associated

with a remote endpoint and share a common port number.

A data chunk can get retransmitted by a retransmission timeout or the

receipt of 4 SACKs that all report the data chunk to be lost and trigger

a fast retransmit. If multi­homing is used, there is one retransmission

timer per destination transport address. An RTT measurement is made

each round trip and is used to calculate the RTO in the following way:

• If no RTT measurement has been made, set RTO = 3000 ms.

• When the first RTT measurement R has been made:

1. Set the smoothed RTT (SRTT) = R.

2. Set the RTT variance (RTTVAR) =
R
2

3. Set RTO = SRTT + 4 * RTTVAR.

• When a new RTT measurement R’ has been made:

1. Set RTTVAR = (1 ­ β) * RTTVAR + β * |SRTT −R′| where β =
1

4

2. Set SRTT = (1 ­ α) * SRTT +α * R’ where α =
1

8
.

3. Set RTO = SRTT + 4 * RTTVAR.

• If the RTO is less than 1000 ms, set RTO = 1000 ms

• If the RTO is greater than 60 seconds, set RTO = 60 seconds.

10

Each time a data chunk is transmitted, the retransmission timer is star­

ted if it is not already running. The retransmission timer is stopped

whenever all outstanding data chunks have been acknowledged. If a

SACK acknowledges some, but not all outstanding data chunks, then

the retransmission timer is restarted with the current RTO. When the

retranmission timer expires, then the retransmission timer will backoff

exponentially by setting the new RTO to twice the old RTO and no more

than 60 seconds. If a new RTT estimate is made after an exponential

backoff, it will result in a newly calculated RTO. If the retransmission

timer is restarted after an exponential backoff, it will use the newly cal­

culated RTO to collapse the exponential RTO back to its normal value.

After a retransmission timeout, SCTP will enter slow start by setting ss­

thresh to half of the current congestion window and the new congestion

window to 1 * MTU. Further, the number of the earliest outstanding data

chunks that will fit into a single packet is determined, starting with the

earliest outstanding data chunk. These data chunks are then bundled

and retransmitted.

Fast retransmit is triggered by four SACKs. Whenever the sender re­

ceives a SACK that reports missing data chunks, it will wait for three

further SACKs reporting the same data chunks as missing before going

into fast retransmit. When data chunks is reported missing in the fourth

consecutive SACK, SCTP will:

• Mark the missing data chunks for fast retransmit.

• Set ssthresh to half of the current congestion window and the new

congestion window to ssthresh.

• Determine how many of the earliest data chunks marked for fast

retransmit that will fit into a single packet and retransmit this

packet.

• Restart the retransmission timer only if the last SACK acknow­

ledged the earliest outstanding data chunk, or the endpoint is re­

transmitting the first outstanding data chunk sent.

By waiting for fourt consecutive SACKs, SCTP tries to reduce spurious

retransmissions caused by packets that are received out of order. SCTP

has no fast recovery mechanism specified.

11

2.3 Summary

TCP NewReno and SCTP are both transport protocols with similar prop­

erties. The biggest difference is that TCP is byte­oriented while SCTP is

message­oriented. This means that TCP sends and acknowledge bytes

where each packet has its own sequence number. In contrast, SCTP puts

data into data chunks where each data chunk has its own sequence num­

ber inside a packet. If there is room in a packet according to the MTU,

several data chunks can get bundled inside a SCTP packet.

TCP NewReno and SCTP use the same congestion control algorithm, but

they differ in how it is controlled. TCP NewReno increases the congestion

window by 1 SMSS for each ACK. In contrast, SCTP increases the conges­

tion window by at most the lesser of the size of the acknowledged data

chunks and 1 MTU. Both protocols uses slow­start in the initialization

of a connection or after a retransmission timeout. In addition, SCTP can

bundle several outstanding chunks in a packet after a retransmission

timeout. If ssthresh is exceeded, both go into congestion avoidance and

continue to increase the congestion window by SMSS or MTU bytes once

per RTT until packet loss is detected. TCP NewReno uses 3 duplicate

ACKs to trigger a fast retransmit before entering fast recovery. In con­

trast, SCTP uses 4 SACKs to trigger a fast retransmit and has no specified

fast recovery mechanism. The RTO calculation of SCTP differ from the

one found in TCP NewReno. In TCP NewReno the minimum RTO is 200

ms. In SCTP the minimum RTO is 1000 ms.

In the next chapter, we will test TCP NewReno and SCTP with respect to

retransmission delays and further evaluate and compare both protocols

against each other.

12

Chapter 3

Testing SCTP and TCP NewReno

We wanted to test and compare SCTP against TCP NewReno with respect

to retransmission delays. In this chapter we will descripe the test con­

figuration and further present and evaluate the results from the tests.

3.1 Test Configuration

In order to compare SCTP with TCP, streams are sent by both protocols

in turn with the same test conditions. To get a complete evaluation and

comparison of retransmissions in both protocols, they are tested with

thick and thin streams, respectively.

Testing the protocols in thick streams gives a view of how both pro­

tocol’s retransmission strategies are performing when the sender injects

as much data as possible into the network. This way, it is possible to see

the effects of the retransmission strategies in an environment they are

developed to work well in. This is important for evaluating the retrans­

mission strategies when streams get thin and better understand the per­

formance of the retransmission strategies. Testing the protocol in thin

streams gives a view of how both protocol’s retransmission strategies

are performing when the sender injects very few packets into the net­

work during a given time period. As SACK, DSACK and FACK are de­

veloped to improve TCP’s retransmission strategies, it is important for

the evaluation to see how TCP is performing with various combinations

of these mechanisms, both in thin and thick streams.

13

3.1.1 Test tools

In this section, the tools used in the tests are described.

Netperf

Netperf [4] is a benchmark tool which sends specified TCP streams from

a sender to receiver. Basically Netperf sends as much data as it can, but

the thickness of the stream can be reduced by the optional parameters

­w, ­b and ­m. The first one specifies a burst interval in milliseconds, the

second one specifies the burst size (denoting how many TCP messages

that are sent from Netperf in a given burst interval) and the latter one

specifies the message size.

Netem

Netem [3] is a tool which makes it possible to emulate various network

types by setting delay rules and packet loss rules on chosen network

interfaces. Netem is used in combination with tc [14] which manipulates

traffic control settings in the Linux kernel.

Sctpperf

Sctpperf [13] is a SCTP benchmark tool which sends SCTP data from a

sender to a receiver. The size of each message can be specified and

the tool supports the multiple streams and multi­homing features of

SCTP. Originally, the tool sends as much data as possible, but it has been

modified to sleep a given time interval before sending a new message

which results in thinner streams.

Linux kernel implementation of the SCTP protocol

The Linux kernel implementation of the SCTP protocol (Lksctp) [2] is

beeing used during the tests. It comes with the Linux kernel version

2.6.15 and is loaded into the kernel as a kernel module.

14

Tcpdump

Tcpdump [15] is a tool which let you specify a network interface for

which packets are captured on. The packets can be dumped to screen or

a tracefile which can be read and analyzed by programs based on libp­

cap [5], a packet capture library for Linux. As standard, Tcpdump uses a

packet capture buffer of maximum 96 byte to minimize the overhead of

handling a packet capture buffer in the kernel. Often, the length of the

packets are found to be larger than 96 byte, limited by the network MTU.

A buffer size of 96 byte is enough to extract TCP headers as they are all

located in the beginning of the packet. Most of the time network beha­

vior is analyzed, one is not interested in the data contents of a packet.

However, when SCTP is bundling several chunks into one packet, the

header of the next chunk is stored after the payload of the last chunk,

making them sparse. An enlargement of the packet capture buffer is

therefore necessary to extract all SCTP headers and its size is set by the

­s parameter.

Tcptrace

Tcptrace is a tool which is used to analyze TCP traffic. It prints various

network statistics including retransmission statistics to standard out­

put. Tcptrace considers the minimum, maximum and average retrans­

mission delay of consequtive retransmissions.

Sctp_trace

In order to get retransmission strategies from SCTP streams, a program

sctp_trace.c has been written to analyze SCTP streams from a libpcap

tracefile and print retransmission statistics to screen. In contrast to

Tcptrace, Sctp_trace considers cumulative retransmission delays. Its

code is listed in appendix B.

3.1.2 Test Setup

The test setup is as shown on figure 3.1. TCP and SCTP streams are sent

from computer A to computer C through computer B where all com­

puters are running version 2.6.15 of the Linux kernel and using 100

15

Computer A

SCTP/TCP Sender

Computer B

Network Emulator

Computer C

SCTP/TCP Receiver

Figure 3.1: Test setup

Mbit/s ethernet cards. The intermediate computer acts as a network

emulator and emulates different types of loss scenarios by using Netem.

Both protocols are first tested with thick streams in three loss scen­

arios with RTTs of 0 ms, 100 ms and 200 ms, respectively. As com­

puter networks span from short distances to long distances, the time

between packets are sent and received is varying. Hence, it is neces­

sary to see how retransmission strategies are performing under various

RTTs. The various RTTs are emulated by adding delay with Netem on

the emulator machine. The RTT of 0 ms is achieved by not adding any

packet delay which means the actual delay between the sender machine

and the receiver machine, which is close to 0 ms. TCP streams are sent

with Netperf by sending as many packets as possible between the sender

and receiver machine in a single conection. In each loss scenario, TCP

streams are sent plain, that is without any combination of SACK, DSACK

and FACK. Then with SACK, SACK + DSACK, SACK + DSACK + FACK and

at last SACK + FACK. This results in five different TCP streams in each

test scenario. Each test is running for 600 seconds with 5% packet loss

emulated by Netem. A 5% packet loss is chosen to trigger enough re­

transmissions to see the full effect of retransmission strategies during

the tests. In an equivalent way, SCTP thick streams are sent with Sctp­

perf by sending as many data chunks as possible between the sender

and receiver machine in a single connection. To transfer as much data

as possible, a message size of 1400 byte is chosen which is close to the

MTU of the test network.

Next, both protocols are tested in thin streams in four loss scenarios

with RTTs of 0 ms, 100 ms, 200 ms and 400 ms, respectively. The nature

of a thin streams could vary and still be classified as a thin stream. The

properties that every thin stream have in common is that very few pack­

ets are sent with a large time interval between each packet. In addition,

the size of a message could be small compared to the network MTU.

Thus, in order to simulate a thin, one message of 100 byte is sent every

250 ms by both protocols. TCP streams are sent plain and with the same

combinations of SACK, DSACK and FACK as in the thick tests. Each test

is running for 1800 seconds with a 5% packet loss. This results in enough

16

retransmissions to see the full effect of both protocol’s retransmission

strategies in thin streams.

Both TCP and SCTP streams are dumped by Tcpdump on the sender

machine and the retransmissions are later analyzed by Tcptrace and

Sctp_trace, respectively.

3.2 SCTP Test results

In this section, the results of the the SCTP thick and thin tests is presen­

ted and evaluated. We are evaluating the retransmission delays of data

chunks since SCTP transports data in chunks which have their own se­

quence number. In each test scenario, the cumulative retransmission

delay is evaluated. This means that we consider the time between a data

chunk is sent and retransmitted for the first time, the time between a

data chunk is sent and retransmitted for the second time and so on. This

evaluation let us inspect each number of retransmissions and find the

minimum and maximum retransmission delay of all data chunks inde­

pendent of how many retransmissons were needed to retransmit them.

SCTP retransmits data chunks after a fast retransmit and a retransmis­

sion timeout. After a retransmission timeout, outstanding data chunks

could get bundled into the packet if it is room and thus get retrans­

mitted. Bundling of outstanding chunks could be divided into two re­

transmisson types to get a better analyzation. The first is the bundling

of outstanding data chunks that have been reported missing by SACKs

before they are retransmitted. The second is the bundling of outstand­

ing data chunks that are in flight to the receiver where no SACKs have

reported them to be lost.

An evaluation of what retransmission types have been used and how

many retransmission this type caused ease our evaluation of the retrans­

mission mechanisms and let us see their performance during the tests. If

the retransmission delays are evaluated independent of retransmission

type, then it is hard to see the effect of the retransmission strategies as

several data chunks could get bundled into a single packet during re­

transmissions. This leads to retransmission delays that could be hard to

analyze and understand the reason of. In the worst case, this could lead

to no significant difference in retransmission delay at all. By separating

retransmission by their type, it will also be possible to see how the distri­

bution of the retransmission types change when the RTT increases and

detect the performance of each retransmission type separately. Hence,

17

Loss Scenario Retr Min Max Avg

RTT = 0ms 1 0.7 2.5 1.2

2 1.1 2.8 1.5

3 1.5 3.2 2.0

4 2.6 2.9 2.5

5 2.6 3.3 2.8

RTT = 100ms 1 103.9 312.0 168.9

2 104.1 312.1 225.8

3 104.2 416.0 245.8

4 207.8 312.0 240.8

5 208.1 311.8 260.0

RTT = 200ms 1 208.0 624.1 338.4

2 208.1 832.0 454.0

3 208.2 1040.0 472.6

4 415.9 1248.0 566.2

5 416.1 427.9 422.0

Table 3.1: Thick stream: SCTP cumulative retransmission delays

each number of retransmissions is sorted by the minimum, maximum

and average retransmission delay of the four retransmission types and

shown in tables and plots for each scenario.

3.2.1 Thick stream scenarios

The test results of the SCTP thick streams are shown in table 3.1. The

table shows the cumulative retransmission delay of each retransmission,

sorted by loss scenario. The corresponding values are shown in figure

3.2. The retransmissions of thick streams are not sorted by their type.

Instead, retransmissions caused by fast retransmits and retransmission

timeouts are seen as a whole. The reason is that Sctp_trace uses incom­

ing SACKs to determine if it is a retransmission timeout or a fast re­

transmit based on missing reports in SACK gap ack blocks. This works

fine in thin streams as the incoming SACKs arrive more slowly than in

thick streams. However, in thick streams, the incoming packet­flow is so

large that it is impossible to distinguish between how many SACKs that

trigger a retransmission. Sctp_trace assumes that it is a retransmission

timeout when it is a fast retransmit and vice versa. Thus, they must be

seen as a whole.

18

 0

 200

 400

 600

 800

 1000

 1200

5.
re

tr

4.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

5.
re

tr

4.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

5.
re

tr

4.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

m
s

RTT 0 ms RTT 100 ms RTT 200 ms

Figure 3.2: Thick stream: SCTP cumulative retransmission delays

RTT = 0 ms

When sending as many data chunks as possible according to the avail­

able bandwidth, incoming SACKs controls the number of data chunks in­

jected into the network as there is an exponential growth of the conges­

tion window when SACKs acknowledge outstanding data chunks. When

no delay is added with Netem, the RTT constitutes of the network delay

between the sender machine and the receiver machine which in this case

is almost equal to 0 ms. With an RTT of 0 ms, SACKs need very short

time to acknowledge outstanding data chunks and this leads to a fast

increase of the congestion window until congestion occurs. With a large

congestion window and the fact that many packets are in flight to the re­

ceiver at once, several SACKs reporting the lost data chunk are received

in very short time.

By looking at the retransmission distribution sorted by each number

of retransmissions, the minimum retransmission delay for the first re­

transmission is 0.7 ms. This is the fastest way of receiving the 4 SACKs

needed to fast retransmit a data chunk. The maximum retransmission

delay of the first retransmissions is 2.5 ms and is not considerable higher

19

than the minimum value due to the small RTT.

By looking at the next number of retransmissions, something unexpec­

ted is happening. The cumulative retransmission delay of the fifth re­

transmission of the same data chunks is not considerable higher than

the first retransmissions and all the retransmissons are caused by fast

retransmits. This behaviour shows that SCTP has no fast recovery mech­

anism implemented. After a fast retransmit, TCP NewReno does not al­

low new duplicate ACKs to trigger new fast retransmits until an ACK is

received for the earliest retransmitted packet that is not acknowledged

yet. This is the main purpose of the fast recovery mechanism. If the

fast retransmitted packet is lost, then it have to get retransmitted by a

retransmission timeout. If SCTP also should have followed this scheme,

the second retransmissions should have been retransmitted over 1000

ms later since the minimum RTO is set to 1000 ms. The low cumu­

lative retransmission delay for the fifth retransmission show that SCTP

allows the next SACKs to trigger new fast retransmits independent of

each other without receiving acknowledgemts for the previous retrans­

missions. Since the congestion window could be relatively large in thick

streams, there could be many subsequent SACKs reporting the same

data chunk to be lost. In these testresults, table 3.1 shows that SACK

could trigger up to five fast retransmits of the same data chunk just after

each other where each fast retransmit is halving the congestion window.

As SCTP allows incoming SACKs to trigger independent retransmissions,

all data chunks are retransmitted by a fast retransmit long time before

the retransmission timer expires as the RTO minimum value is 1000 ms.

RTT = 100 ms

With an RTT of 100 ms, it will take longer time for SACKs to acknow­

ledge outstanding data chunks. This leads to a slower growth of the

congestion window as an exponential growth occurs every RTT until the

congestion window is equal to ssthresh or a data chunk is lost. This

affects the retransmission delays.

By looking at the distribution of the number of retransmissions of this

loss scenario in table 3.1, the lowest cumulative retransmission delay

is 103.9 ms and is the fastest way of receiving 4 SACKs and trigger a

fast retransmit. To be able to trigger a fast retransmit after RTT ms,

the data chunk that triggers the fourth SACK must be sent in the same

window as the lost data chunk. If the lost data chunk is sent in the

first window and the data chunk that triggers the fourth SACK is sent

20

in the next window, a fast retransmit is triggered after two RTTs. The

maximum retransmission delay of the first retransmission is 312.0 ms.

This is three times the size of the RTT and show occurrences where a

data chunk sent in the third window trigger the fast retransmit of a data

chunk sent in the first window as the windows are very small. In total,

this leads to an average retransmission delay of 168.9 ms.

By looking at the distribution of the next number of retransmissions,

there are occurrences of fast retransmits that is retransmitting the same

data chunk just after each other as in the last scenario. The minimum

retransmission delay of a third retransmission is 104.2 ms and is only

0.2 ms above the minimum retransmission delay of the first retrans­

mission and close to the RTT. This proves again that SCTP allows sub­

sequent SACKs to trigger new fast retransmits of the same data chunk

without waiting for a SACK acknowledging the first retransmission. In

addition, the retransmission timer never have the chance to expire as

all subsequent fast retransmits of the same data chunk take care of re­

transmitting the data chunk a long time before a retransmission timeout

occurs.

RTT = 200 ms

With an RTT of 200 ms, the retransmission delay is expected to increase

as a result of increasing the RTT compared to the previous scenario. As

it takes longer time for SACKs to arrive, it leads to a slower growth of

the congestion window.

By looking at the distribution of the number of retransmissions in table

3.1, the lowest cumulative retransmission delay is 208.0 ms and shows

the fastes way of receiving 4 SACKs triggering a fast retransmit where

the lost data chunk and the data chunk triggering the fourth SACK are

sent in the same window. The maximum retransmission delay of a first

retransmission is 624.0 ms and show occurrences of data chunks sent

in different windows triggers the fast retransmit. In total, this leads to

an average retransmission delay of 338.4 ms.

By looking at the distribution of the next number of retransmission,

there are also here occurrences of fast retransmits that are triggered

just after each other as explained in the previous scenario. The min­

imum retransmsission delay of a third fast retransmit is only 0.25 ms

higher than the minimum retransmission delay of a first retransmission

and close to the RTT. In contrast to the previous scenario, the maximum

retransmission delay of 1248.0 ms indicates that some data chunks are

21

retransmitted by a retransmission timeout. If there are multiple loss of

the same data chunk in combination with a relatively large RTT where

the subsequent fast retransmits fail to retransmit or SACKs are lost,

then retransmission timeouts could be triggered. Because of SCTP’s

way of letting SACKs trigger consequtive retransmissions of the same

data chunk, the maximum retransmission delay of a fifth retransmission

delay is lower than the maximum retransmission of a fourth retransmis­

sion delay.

Summary

When the sender makes use of all the available bandwidth and injects as

much data as possible into the network, all retransmissions are triggered

by a fast retransmit expect of that some data chunks could get retrans­

mitted by a retransmission timeout in a third retransmission when the

RTT is 200 ms. Thus, the fastest way of triggering a retransmission is

close to the RTT. One of the reasons that almost all retransmissions are

triggered by a fast retransmit is because of the high RTO minimum value

used in SCTP. When the RTO minimum value is so high, all retransmis­

sions are supposed to be triggered by a fast retransmit.

The main reason for that almost all retransmissions are triggered by a

fast retransmit, is because SCTP retransmits the same data chunk over

and over again independent of each other as multiple SACKs arrives

and triggers new fast retransmits. As an example, only 0.2 ms could

elapse between a first retransmission and a fifth retransmission of the

same data chunk. SCTP does not even know if the first retransmission

was sucessfully received before starting on a new fast retransmit. Thus,

SCTP is handling fast retransmit in an erroneous way and fast recovery

is not implemented at all. Although there are multiple loss of packets,

the subsequent fast retransmits will take care of retransmitting the lost

data chunk long time before a possible retransmission timeout occurs.

The worstest thing about this behaviour is that each subsequent fast re­

transmit cuts the congestion window in half and reduces the throughput

drastically when it is unnecessary. In addition, many retransmissions,

except for the first retransmissions, are spurious.

3.2.2 Thin stream scenarios

In this section, the test results of the SCTP thin tests are presented and

evaluated. The characteristics of a thin stream is that very few packets

22

Retr Type Number Min Max Avg

1. Retransmission timeout 282 999.1 1256.6 1005.5

Fast retransmit 24 1024.4 1280.4 1088.373

B:Reported missing 34 464.0 744.0 592.7

B:In flight 30 231.8 744.0 274.7

2. Retransmission timeout 3 1256.0 2000.1 1752.1

Fast retransmit 7 1279.7 1792.4 1646.0

B:Reported missing 0 0 0 0

B:In flight 0 0 0 0

3. Retransmission timeout 3 2000.1 2000.1 2000.1

Fast retransmit 0 0 0 0

B:Reported missing 2 1487.4 1744.1 1615.7

B:In flight 0 0 0 0

Table 3.2: SCTP cumulative retransmission statistics, RTT = 0 ms

are sent in a large time interval without the need to make use of the

available bandwidth and achieve the highest possible throughput. The

packets are often small compared to the available payload.

RTT = 0 ms

The retransmission distribution of this scenario is shown in table 3.2.

The bundling of outstanding data chunks that are reporting missing

is denoted B:Reported missing and the bundling of outstanding data

chunks that are in flight to the receiver is denoted B:In flight.

In this loss scenario, most retransmissions are caused by a retransmis­

sion timeout. These are mostly occuring in the first retransmission of a

data chunk. In the first retransmission, such retransmissions have a min­

imum retransmission delay of 999.1 ms and an average retransmission

delay of 1005.5 ms. Both values are close to the RTO minimum value

used in RTO calculations. The reason for that the minimum retransmis­

sion delay is lower than the RTO minimum value could be because of

the conversion between jiffies and ms in the kernel that sometimes does

not lead to correct values. The value is still close to the RTO minimum

value of 1000 ms. The maximum value of 1256.6 ms occurs as late ar­

rivals of SACKs acknowledge some, but not all outstanding data chunks.

In these cases, SCTP performs a restart of the retransmission timer and

the the expiration time gets further delayed if the earliest outstanding

data chunk needs to be retransmitted by a retransmission timeout. Late

23

 0

 500

 1000

 1500

 2000

1.
re

tr

1.
re

tr

2.
re

tr

1.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

m
s

Retr timeout Fast Retr B: Rep missing B: In flight

Figure 3.3: SCTP cumulative retransmission delays, RTT = 0 ms

SACK arrivals occurs as packets are sent every 250 ms. If no loss is de­

tected, then the SACK acknowledging the data chunk arrives after 200

ms. During this time, new data chunks could be sent which are outstand­

ing when the SACK arrives and then restarts the timer.

The high ratio of retransmission timeouts is because of the sender has a

small chance to receive the fourth SACK needed to trigger a fast retrans­

mit before the data chunk is retransmitted by a retransmission timeout.

When the receiver discovers holes in the data chunk sequence, it will

each time it receives a new packet immediately send a SACK reporting

the lost data chunks until the sequence is restored. As packets are sent

every 250 ms and the RTT is 0 ms, the time between a lost data chunk

is sent and the sender receives the first SACK reporting the loss will be

more than 250ms. This is because the receiver needs new data chunks

to discover holes in the sequence. As a consequence it will take more

than 1000 ms for the sender to receive 4 SACKs. At this time the data

chunk has already been retransmitted by a retransmission timeout.

The results show that a few data chunks are still retransmitted by a

fast retransmit in its first retransmission. This occurs when the expir­

ation time of the retransmission timer is delayed by an intermediate

24

restart caused by late arrivals of SACKs. If a SACK delays the timer, then

4 SACKs have time to arrive and trigger a fast retransmit of the data

chunk before the retransmission timer expires again. The maximum re­

transmission delay of 1280.4 ms shows that fast retransmits can have

a relatively high delay as the timer is delayed. An average retransmis­

sion delay of 1088.4 ms shows the average time of receiving 4 SACKs

and then trigger a fast retransmit. The minimum retransmission delay

of 1024.4 is the fastest way of receiving 4 SACKs.

In special cases, fast retransmits and retransmission timeouts are triggered

independently of each other. This mostly happens when data chunks are

retransmitted two or three times in the absence of a SACK confirming

that the data chunks are sucessfully received. A data chunk is not fully

acknowledged and removed from the retransmisson queue until the cu­

mulative TSN of a SACK passes the TSN of the data chunk. SCTP will

continue to retransmit data chunks independet of retransmission type

until the data chunk is acknowledged, either by a gap ack field or by the

cumulative TSN in a SACK. Since there are large intervals between each

sent packet, this leads to large intervals between the incoming SACKs.

The test results show that data chunks are retransmitted the second

time by retransmission timeouts down to 1256.0 ms. At this point, the

data chunk is first retransmitted by a fast retransmit, before it is retrans­

mitted by a delayed retransmission timeout at 1256.0 ms for the second

time independently of the fast retransmit. This also indicates that the

timer is not restarted after a fast retransmit and that the retransmission

timer and the fast retransmit mechanisms are triggered independently

of each other.

The results of the second retransmission also show that the opposite

could happen. The average retransmission delay of 1792.4 ms show oc­

casions where the data chunk is first retransmitted by a retransmission

timeout and fast retransmitted the second time. If the retransmitted

data chunk is lost, then 4 SACKs arrives in time to trigger a second re­

transmission of the same chunk almost 792 ms after the retransmission

timeout. This indicates that it is occurrences of multiple loss, it is diffi­

cult to know which retransmissions were necessary or not.

By looking at third retransmissions, there are one data chunk that is

retransmitted by a retransmission timeout after 2000.1 ms. A cumulat­

ive retransmission delay of 2000.1 ms indicates that this is the second

retransmission timeout as the value is twice the minimum RTO. This

means that the second retransmission was triggered by an intervening

fast retransmit. This also confirms that the timer is not restarted after a

25

Retr Type Number Min Max Avg

1. Retransmission timeout 275 1039.9 1612.1 1049.8

Fast retransmit 23 1126.5 1386.2 1173.1

B:Reported missing 27 460.0 1356.1 689.3

B:In flight 314 15.3 532.0 51.2

2. Retransmission timeout 17 1152.1 2048.1 1750.9

Fast retransmit 8 1129.0 1896.2 1800.3

B:Reported missing 4 1016.0 1528.1 1209.0

B:In flight 0 0 0 0

3. Retransmission timeout 7 2040.1 2048.1 2043.5

Fast retransmit 2 1895.6 2919.7 2407.7

B:Reported missing 0 0 0 0

B:In flight 1 1276.0 1276.0 1276.0

4. Retransmission timeout 1 3040.1 3040.2 3040.2

Fast retransmit 0 0 0 0

B:Reported missing 1 2016.1 2016.1 2016.1

B:In flight 0 0 0 0

Table 3.3: SCTP cumulative retransmission statistics, RTT = 100 ms

fast retransmit.

The results show that 16.7% of the retransmitted data chunks are bundled

with data chunks retransmitted by a retransmission timeout. As the

SCTP packets contain small data chunks and are sent every 250 ms be­

fore they are retransmitted, there will be room for bundling of several

data chunks as long as the total size of the packet does not exceed the

network MTU. Results from the first retransmission show that bundled

outstanding data chunks are retransmitted faster than data chunks re­

transmitted by a retransmission timeout or a fast retransmit. This is

as expected since the average retransmission delay for retransmission

timeouts is so high. During this time, one or more SACKs could arrive

and report loss of some data chunks before a retransmission timeout.

With an average retransmission delay of 592.7 ms, this leads to faster

retransmissions of the bundled data chunks that are actually reported

missing. Bundled data chunks that are in flight to the receiver may

already have been sucessfully received. But since they are bundled, they

will not increase the number of packets in the network.

26

 0

 500

 1000

 1500

 2000

 2500

 3000

4.
re

tr

3.
re

tr

1.
re

tr

2.
re

tr

1.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

4.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

m
s

Retr timeout Fast Retr B: Rep missing B: In flight

Figure 3.4: SCTP cumulative retransmission delays, RTT = 100 ms

RTT = 100 ms

The retransmission distribution of this loss scenario is shown in table

3.3. A plot of the same corresponding values is shown in figure 3.4 In

this loss scenario, 300 retransmissions are caused by a retransmission

timeout. In comparison, only 33 retransmissions are caused by a fast

retransmit.

By looking at first retransmissions of data chunks, the average retrans­

mission delay of retransmission timeouts is 1049.8 ms. This is close to

the minimum value of 1039.9 ms. With an increase in RTT of 100 ms

compared to the last scenario, the RTO calculation does not result in an

RTO higher than the minimum RTO since the RTO minimum value is so

high compared to the RTT. Thus, the calculated RTO used in this scen­

ario is 1000 ms. The reason for the delayed retransmission timeouts are

restarts of the retransmission timer caused by late SACKs as described

in the last section. Since the RTT is increasing, SACKs are arriving later

and lead to later restarts of the timer. The maximum retransmission

delay for retransmission timeouts is 1612.1 ms. This occurs when one

or more SACKs is lost and one of the next SACKs is arriving relatively

27

late without acknowledging the data chunk and restarts the timer before

it expires.

As the SACKs are arriving in late intervals, multiple SACK loss could

lead to further displacement of the expiration time of the retransmis­

sion timer. In such cases, a data data chunk could first get retransmit­

ted by a fast retransmit although it does not happen often compared

to retransmission timeouts. An average retransmission delay of 1173.1

shows that 4 SACKs can trigger fast retransmits before the retransmis­

sion timer expires.

By looking at the second retransmissions, one could see that the min­

imum retransmission timeout delay is 1152.1 ms. This occurs when

data chunks is retransmitted by a fast retransmit the first time and then

retransmitted by a delayed retransmission timeout the second time. The

retransmission timer is triggered independently of and just after the fast

retransmit. There are a few fast retransmits with an average retransmis­

sion delay of 1896.2 ms. These occurs when data chunks are retransmit­

ted by a retransmission timeout the first time and fast retransmitted the

second time. If the first retransmission is lost, then the SACKs are sent

without delay and arrives in time to trigger the second retransmission

before the retransmission timer expires again. The maximum values of

the third and fourth retransmissions indicates that multiple loss of the

same data chunk has occured, but it is hard to know which are spurious

or not.

Almost 50% of the retransmissions are bundled with data chunks re­

transmitted by a retransmission timeout. With an increase in the RTT,

SACKs will use longer time to arrive and report lost data chunks. This

leads to an average retransmission delay of 689.3 ms and results in

faster retransmissions of bundled data chunks that are actually reported

missing despite that it is not many of them. Most bundled data chunks

are data chunks that are in flight to the receiver and may already have

been sucessfully received.

RTT = 200 ms

The retransmission distribution is shown in table 3.4 and figure 3.5. In

this loss scenario, 290 retransmissions are caused by a retransmission

timeout. This is still large compared to the number of fast retransmits

(46).

By looking at the first retransmission of data chunks, one can see that

28

Retr Type Number Min Max Avg

1. Retransmission timeout 266 996.2 1460.1 1144.6

Fast retransmit 35 1228.4 1740.7 1274.2

B:Reported missing 24 487.9 976.0 780.7

B:In flight 338 28.0 888.0 172.8

2. Retransmission timeout 16 1460.1 2144.1 1672.1

Fast retransmit 11 1230.2 1999.6 1835.6

B:Reported missing 0 0 0 0

B:In flight 0 0 0 0

3. Retransmission timeout 8 2144.0 2144.1 2144.1

Fast retransmit 0 0 0 0

B:Reported missing 3 1376.1 1888.1 1546.7

B:In flight 0 0 0 0

Table 3.4: SCTP cumulative retransmission delays, RTT = 200 ms

 0

 500

 1000

 1500

 2000

3.
re

tr

1.
re

tr

1.
re

tr

2.
re

tr

1.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

m
s

Retr timeout Fast Retr B: Rep missing B: In flight

Figure 3.5: SCTP cumulative retransmission delays, RTT = 200 ms

29

the average retransmission delay for retransmission timeouts is 1114.6.

The RTT has increased since the last scenario, but the calculated RTO is

still to low compared to the minimum RTO. Thus, the RTO calculations

always result in an RTO of 1000 ms. The results show an increase of

100 ms in average retransmission timeout delay caused by retransmis­

sion timeouts compared to the last scenario. Since the RTT is increasing,

then intervening SACKs could arrive later and restart the timer. The min­

imum value of 1000 ms shows an example of a retransmission timeout

that occurs when no SACKs restarts the timer. In addition, the maximum

retransmission delay of 1460 ms shows what is happening if the retrans­

mission timer is restarted late as one or more intervening SACKs get lost

and the timer is restarted by the next SACK that arrives.

The fast retransmits occurs as a result of the restart of the retransmis­

sion timer with an average retransmission delay of 1274.2 ms. If a data

chunk is sent just after a retransmission timeout, then the timer is set

to twice the old RTO because of the following exponential backoff. The

maximum fast retransmit retransmission delay is 1740.7 ms and is a

result of this occurrence.

The second retransmissions show occurrences of retransmission timeouts

with an average retransmission delay of 1672.1 ms. This occurs when

the data chunk is first retransmitted by a fast retransmit and then re­

transmitted by a delayed retansmission timeout. The third retransmis­

sions of data chunks consists of retransmission timeouts only. With an

average retransmission timeout of 2144.0 ms, this is the second retrans­

mission timeout where the data chunk has been retransmitted by a fast

retransmit the second time.

Almost 50% of the data chunks are retransmissions of bundled outstand­

ing data chunks. 3.85% consists of data chunks that are actually reported

missing. With an average retransmission delay of 780.7 ms for such re­

transmissions, outstanding data chunks that are reported missing are

still retransmitted faster than data chunks retransmitted by a retrans­

mission timeout or a fast retransmit. There is an increase in the average

retransmission delay of such data chunks compared to the last scenario

which is a result of a higher RTT.

RTT = 400 ms

The retransmission distribution is shown in table 3.5 and figure 3.6. In

this loss scenario, 29.93% of the data chunks are retransmitted by a re­

transmission timeout.

30

Retr Type Number Min Max Avg

1. Retransmission timeout 242 1343.0 1660.1 1352.0

Fast retransmit 31 1427.2 1943.6 1496.2

B:Reported missing 26 780.0 1430.1 1011.1

B:In flight 567 11.8 832.0 213.4

2. Retransmission timeout 21 1496.1 2348.1 1897.3

Fast retransmit 11 1940.6 2202.0 2174.6

B:Reported missing 2 1320.1 2088.1 1704.1

B:In flight 1 1444.0 1444.0 1444.0

3. Retransmission timeout 10 2344.1 2344.1 2344.1

Fast retransmit 0 0 0 0

B:Reported missing 0 0 0 0

B:In flight 1 2088.1 2088.1 2088.1

Table 3.5: SCTP cumulative retransmission statistics, RTT = 400 ms

 0

 500

 1000

 1500

 2000

 2500
2.

re
tr

1.
re

tr

2.
re

tr

1.
re

tr

2.
re

tr

1.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

m
s

Retr timeout Fast Retr B: Rep missing B: In flight

Figure 3.6: SCTP cumulative retransmission delays, RTT = 400 ms

31

By looking at the first retransmissions of data chunks, the average re­

transmission delay for retransmission timeouts are 1352.0 ms. An RTT

of 400 ms is still to small to make the RTO exceed the RTO minimum

value. Thus, the calculated RTO is always resulting in an RTO value of

1000 ms. An increase in RTT results in later arrivals of SACKs which

leads to later restarts of the retransmission timer. These occurrences

reflects that the retransmission timer is further delayed since the last

scenario. As a consequence, some few fast retransmits can occur with an

average retransmission delay of 1496.2 ms. The maximum retransmis­

sion delay of fast retransmits is 1943.6 ms. The retransmission timer is

unlikely to be delayed that much, but a fast retransmit can happen if the

retransmitted data chunk was sent just after a retransmission timeout,

using the exponential RTO. The second and third retransmissions be­

haves in the same manner as in the previous tests.

Almost 3% of the data chunks are bundled data chunks that are repor­

ted lost. With an average retransmission delay of 1011.1 ms, this data

chunks get retransmitted faster compare to data chunks retransmitted

by a retransmission timeout or a fast retransmit despite there are few

of them. As many as 62.4% of the retransmissions are bundled data

chunks that are in flight to the receiver. With an increase in RTT, SACKs

are arriving later and more data chunks could be in flight when the re­

transmission timeouts occur. With an average retransmission delay of

213.4 ms this is small compared to the others, but they may already have

been successfully received as no missing reports are given.

Summary

In the thin streams used in the loss scenarios, almost all of the retrans­

missions are triggered by retransmission timeouts compared to fast re­

transmits. This occurs as 4 SACKs do not have the chance to arrive be­

fore the retransmission timer expires. When the RTT increases, the test

results show that the retransmission timer can be considerably delayed

by late SACKs which restarts the timer. In such situations, 4 SACKs may

have the chance to arrive and trigger fast retransmits before a retrans­

mission timeout occurs.

The results of the second and third retransmissions show that retrans­

mission timeouts and fast retransmits are triggered independently of

each other until the data chunk is acknowledged. This also show that

the Linux kernel implementation does not follow the timer rules after

a fast retransmit as the timer is not restarted after a fast retransmit of

32

the earliest outstanding data chunk. Thus, SCTP allows SACKs to trig­

ger fast retransmits after a retransmission timeout without ignoring the

next SACK until an acknowledgment for the first retransmission is re­

ceived. In the same way, if no new SACKs acknowledge the data chunk,

the timer is triggered just after a fast retransmit. This leads to an erro­

neous retransmission behaviour where it is hard to know what retrans­

missions are spurious or not. By looking at the average retransmission

delays of the first retransmission timeouts and fast retransmits, they all

have an average retransmission delay above 1000 ms. In addition to the

RTT, a 1000 ms lag in an interactive application should be noticeable by

the users.

There are few occurrences of bundling of outstanding data chunks that

are reported missing. This leads to smaller retransmission delays for

such data chunks. When the RTT increases, more than half of the re­

transmitted data chunks are bundled data chunks that are in flight to the

receiver, but these may already have been successfully receieved. The av­

erage retransmission delay in all scenarios lies around 1000 ms which is

further displaced when the RTT increases. Bundling of outstanding data

chunks decrease this value. The maximum retransmission delay from a

data chunk is sent and retransmitted for the last time is 3000 ms for all

tests. After a retransmission timeout, the congestion window is set to

1 MTU. As the message size used in the tests is 100 bytes, this allows

new data chunks to be sent after a retransmission timeout. If multiple

loss occurs, these data chunks could trigger new fast retransmits inde­

pendent of the the timer. These data chunks could generate new RTO

calculations which collapse the exponential RTO value down to the nor­

mal value. Thus, in the test scenarios, exponential backoffs rarely occur

and play a minor role in raising the retransmission delays.

3.3 TCP NewReno test results

In this section, the test results of TCP NewReno are presented and eval­

uated. It is important to notice that the representation of the retrans­

mission delays differ from SCTP. In the TCP NewReno results, the re­

transmission delay between consequtive retransmissions is considered.

The reason is that Tcptrace was the only alternative to analyze TCP re­

transmission delays. Because of SCTP’s inconsistet handling of retrans­

missions, it would be impossible to analyze the retransmission delays

without considering cumulative retransmission delays.

33

Loss Scenario Extension Retransmission Delay Statistics

Min Max Avg Std

RTT = 0 ms Plain 0.5 2997.1 46.6 113.5

S 0.7 13608.2 42.1 188.3

S+D 0.7 6912.4 40.1 121.0

S+D+F 0.5 3238.4 36.9 108.0

S+F 0.5 3456.2 34.6 98.8

RTT = 100 ms Plain 104.0 5405.5 251.6 227.9

S 104.0 3264.2 227.6 198.1

S+D 104.0 11912.7 239.2 413.7

S+D+F 104.0 1260.0 214.6 118.1

S+F 104.0 2448.0 231.5 164.6

RTT = 200 ms Plain 208.0 2088.1 443.4 227.7

S 208.0 1880.1 395.1 164.8

S+D 208.0 3138.8 400.1 217.0

S+D+F 208.0 1672.0 366.5 154.6

S+F 208.0 1680.1 375.1 160.8

Table 3.6: Thick streams: TCP NewReno retransmission delays

3.3.1 Thick stream scenarios

The results of the TCP NewReno thick streams is presented in table

3.3.1. A plot of the average retransmission delays for TCP NewReno

thick streams is shown in figure 3.7. In both table and figure, P is ab­

breviation for plain, S is the abbreviation for SACK, D is the abbreviation

for DSACK and F is the abbreviation for FACK.

RTT = 0 ms

When the sender sends as much data as possible, the number of received

ACKs control the number of packets that are sent. When all packets

in a window are acknowledged, TCP NewReno performs an exponential

growth of the congestion window during slow­start. If a packet is lost,

then TCP NewReno waits for three duplicate ACKs before starting fast

retransmit and going into fast recovery. Otherwise, if fast retransmit is

not triggered, a retransmission timeout occurs and TCP NewReno goes

back to slow­start and retransmits the lost packet. With an RTT of 0

ms, an ACK acknowledging a packet arrives in short time and leads to a

fast growth of the congestion window. In the same way, three duplicate

ACKs arrive in short time and trigger a fast retransmit. In this scenario,

34

 0

 100

 200

 300

 400

 500

S
F

S
D

F

S
DSP

S
F

S
D

F

S
DSP

S
F

S
D

F

S
DSP

m
s

RTT 0 ms RTT 100 ms RTT 200 ms

Figure 3.7: Thick streams: TCP NewReno avg retransmission delays

this leads to a behaviour where almost all packets are retransmitted by a

fast retransmit and the minimum retransmission delay of 0.5 ms shows

the fastest way of receiving three duplicate ACKs. As TCP NewReno

enters fast recovery after a fast retransmit, it will retransmit one packet

per RTT although more packets are lost at once. This means that it

ignores subsequent duplicate ACKs after the first retransmission until

the packet is acknowledged.

The maximum retransmission delays vary between 2997.1 ms and 13608.2

ms. These occur because of multiple loss of the same packet where three

duplicate ACKs did not trigger a fast retransmit the first time or the fast

retransmitted packet is lost. If a fast retransmitted packet is lost, it must

be retransmitted by a retransmission timeout. After a retransmission

timeout, the congestion window is set to 1 SMSS. This only allows the

retransmitted packet to be sent. If duplicate ACKs are received, they are

ignored until the ACK for the first retransmitted packet arrives. Thus,

multiple loss of the same packet leads to subsequent retransmission

timeouts where each is growing exponentially. As the average retrans­

mission delays for the various streams are close to 40 ms, these high

retransmission delays affect the results and lead to a small increase,

but the average retransmission delay is still so small that exponential

35

backoffs occur often. Since duplicate ACKs are received in short time,

they will mostly take care of retransmitting the packet before the timer

expires.

Plain TCP NewReno has an average retransmission delay of 46.6 ms

The results show that streams sent with the various combinations of

SACK, DSACK and FACK lead to a decrease of 4 to 10 ms, compared to

plain TCP NewReno. This confirm that the mechanisms are working pro­

pely when the streams are thick, as expected. No significant difference

between the various SACK mechanisms can be seen. During this test, it

is therefore hard to determine which of them is the best.

RTT = 100 ms

With an RTT of 100 ms, it takes 100 ms to perform an exponential

growth of the congestion window as 100 ms is the time needed to re­

ceive all ACKs acknowledging the packets sent in a window. In the same

way does it take 100 ms to receive the three duplicate ACKs needed to

trigger a fast retransmit.This leads to the minimum retransmission delay

of 104.0 ms which isalmost equal to the RTT and the shortest time to

receive three duplicate ACKs. If several packets are lost, TCP NewReno

ignores the following duplicate ACKs until the first packet is acknow­

ledged. Hence, it can only fast retransmit one packet per RTT and the

retransmission delay will therefore not get below the RTT as in SCTP.

The maximum retransmission delays from 1260.0 ms to 11912.7 ms re­

flects several retransmission timeouts of the same packet and the fol­

lowing exponential backoffs. With an RTT of 100 ms, this results in a

calculated RTO of 300 ms. If the packet is not acknowledged in 300 ms,

then it will be retransmitted by a retransmission timeout. If a packet

is sent in the current window and the third duplicate ACK is caused by

a packet sent in the second window, then the fast retransmit will get

delayed by twice the RTT. These occurrences, in addition to exponential

backoffs of the retransmission timer, do both raise the average retrans­

mission delays considerably.

The average retransmission delay for plain TCP NewReno is 251.6 ms.

The various combinations of SACK, DSACK and FACK decrease the aver­

age retransmission delay. These delays span from 214.6 ms to 239.6 ms

and is a small reduction compared to plain TCP NewReno, as expected.

36

RTT = 200 ms

With an RTT of 200 ms, the minimum retransmission delay is 208.0 ms.

This reflects the fastest way of receiving three duplicate ACKs and trig­

ger fast retransmits. As in the last scenario, exponential backoffs of the

retransmission timer occurs and lead to the maximum retransmission

delays from 1672.0 ms to 3138.8 ms. With an RTT of 200 ms, the min­

imum calculated RTO equals 400 ms. If a fast retransmitted packet is

lost, then it must be retransmitted by a retransmission timeout. In addi­

tion, duplicate ACKs could get triggered by packets sent in two different

windows. This leads to a considerable raise of the average retransmis­

sion delay, but fast retransmits will take care of most retransmissions.

The average retransmission delay for plain TCP NewReno is 443.4 ms.

The various combinations of SACK, DSACK and FACK do also here de­

crease the average retransmission delay. With average retransmission

delays from 366.5 ms to 400.1, it is a reduction compared to plain TCP

NewReno, as expected.

Summary

When the stream is as thick as possible, almost all retransmissions are

triggered by a fast retransmit and the results show that three duplicate

ACKs are mostly received in the time of the RTT as the RTO value is 200

ms higher than the RTT. There are still some retransmission timeouts

with occurrences of exponential backoffs. In addition to delayed fast

retransmits where the duplicate ACKs are triggered by packets sent in

two different windows, this leads to a considerable raise of the aver­

age retransmission delays. The various combinations of SACK, DSACK

and FACK are decreasing the average retransmission delays compared

to plain TCP NewReno, as they are developed to do.

3.3.2 Thin stream scenarios

The results of the TCP NewReno thin streams is presented in table 3.7. A

plot of the average retransmission delays of TCP NewReno thin streams

is shown in figure 3.8.

37

Loss Scenario Extension Retransmission Delay Statistics

Min Max Avg Std

RTT = 0 ms Plain 203.6 1632.1 231.7 98.6

S 203.2 816.1 224.5 72.0

S+D 202.9 1632.1 233.4 101.9

S+D+F 200.1 1632.1 234.6 108.9

S+F 200.1 1632.1 225.2 87.8

RTT = 100 ms Plain 308.1 1216.1 328.3 97.7

S 308.1 1264.1 348.5 113.9

S+D 308.1 11185.2 388.4 554.4

S+D+F 308.1 9816.6 360.3 378.4

S+F 308.1 16901.0 392.6 708.7

RTT = 200 ms Plain 412.1 6614.4 481.6 305.1

S 412.1 3328.2 488.2 277.7

S+D 412.1 3360.2 461.1 180.5

S+D+F 412.1 2752.1 464.6 179.0

S+F 412.1 5912.4 487.3 404.5

RTT = 400 ms Plain 612.1 4960.3 728.4 437.2

S 612.1 2842.5 692.5 264.2

S+D 612.1 2480.2 693.0 239.4

S+D+F 612.1 2480.2 708.7 286.2

S+F 612.1 2480.2 697.8 246.1

Table 3.7: Thin streams: TCP NewReno retransmission delays

38

 0

 100

 200

 300

 400

 500

 600

 700

 800

S
F

S
D

F
S

DSP

S
F

S
D

F
S

DSP

S
F

S
D

F
S

DSP

S
F

S
D

F
S

DSP

m
s

RTT 0 ms RTT 100 ms RTT 200 ms RTT 400 ms

Figure 3.8: Thin streams: TCP NewReno avg retransmission delays

RTT = 0 ms

In this loss scenario, all retransmissions will be triggered by a retrans­

mission timeout. Since the RTT is close to 0 ms, the retransmission

timer will mostly expire at the TCP minimum RTO of 200 ms except for

when an exponential backoff occurs just before the packet is sent.

When packets are sent every 250 ms, there will take at least 250 ms be­

fore the receiver discovers a lost packet as it needs new packets to dis­

cover a hole in the sequence. Hence, it takes at least 250 ms to trigger

the first duplicate ACK when the RTT is close to 0. As the RTO value is

200 ms in this loss scenario, the packet has already been retransmitted

by a retransmission timeout. This explains the minimum retransmission

delays of this scenario where all are just above 200 ms which is equal

to the RTO. With a RTT close to 0, the packet is already successfully re­

ceived and acknowledged before the receiver has the chance to discover

the packet loss. The first duplicate ACK will never be sent. If the first

packet is lost, then the third duplicate ACK is sent after 750 ms. Thus,

there is not enough time to receive a triple duplicate ACK that will trig­

ger a fast retransmit before a retransmission timeout. When a packet

39

is retransmitted by a retransmission timeout, a new packet is not sent

before the retransmitted packet is acknowledged. The reason for this is

that the packet is retransmitted in the start of the following slow­start

and an acknowledgment is needed to increase the congestion window in

order to send more packets. In addition, TCP enters a loss state when a

packet is retransmitted by a retransmission timeout. This means that it

ignores subsequent duplicate ACKs until the packet is acknowledged.

In the same way, the various combinations of SACK, DSACK and FACK

give no improvements as SACKs reporting loss is not received before

the packet has been retransmitted by a retransmission timeout. This

can be seen in the results as there is no significant difference between

the average retransmission delays when running plain NewReno or with

the various combinations of SACK, DSACK and FACK. For all streams,

the average retransmission delays lie between 224.5 ms and 234.6 ms.

The maximum retransmission delays span from 816.1 ms to 1632.1 ms

and reflect several exponential backoffs of the retransmission timer dur­

ing multiple loss of the same packet. This occurs if the packet is first

retransmitted by a retransmission timeout and then gets lost between

subsequent retransmissions. TCP enters a loss state when a packet is

retransmitted by a retransmission timeout. This explains the high max­

imum retransmission delays.

The average retransmission delays are close to the minimum retransmis­

son delays and show that most times packets are not victim to exponen­

tial timeouts. The small difference in the average retransmission delays

are caused by how Netem drops packets. Netem drops 5% of the packets,

but the drop distribution could vary.

RTT = 100 ms

In this scenario, all retransmissions are triggered by a retransmission

timeout as in the last scenario. With an increase in the RTT of 100 ms

compared to the last scenario, it takes longer time between a packet is

sent and a duplicate ACK or a SACK reporting lost packets can be re­

ceived. With an RTT of 100 ms and absence of exponential backoffs,

the retransmission timer expires at approxemately 300 ms according to

the increased RTT’s influence on RTO calculations. The results show

that plain NewReno and the various combinations of SACK, DSACK and

FACK have a minimum retransmission delay of approxemately 300 ms.

This value reflects the minimum calculated RTO when the RTT is 100

ms as duplicate ACKs or SACKs never have the time to trigger fast re­

40

transmits before the timer expires. There are no significant difference in

the average retransmission delays between the various streams as they

all lie between 328.3 ms and 392.6 ms. The difference between the low­

est and highest average value is due to Netems emulating of packet loss

that could vary in each test. The values are expected since the RTO is

increasing as result of an increase in the RTT. The maximum retrans­

mission delays span from 1216.1 ms to 16901.2 ms and are results of

several exponential backoffs as explained in the last scenario. Since the

average retransmission delays for all streams are around 350 ms and

close to the minimum value of 300 ms, exponential backoffs do rather

here occur often enough to make a big influence on the average retrans­

mission delays.

RTT = 200 ms

With an RTT of 200 ms, the retransmission timer uses a RTO of 400 ms

as a result of the RTO calculations. This is the minimum RTO + the RTT

which results in a calculated RTO of 400 ms. This reflects the minium

retransmission delays of 412.1 ms which is close to the calculated RTO.

As in the last scenario, most retransmissions are triggered by a retrans­

mission timeout as duplicate ACKs or SACKs never have the chance to

trigger fast retransmits. The average retransmission delays lie between

461.0 ms and 487.3 ms and there are rather here no significant differ­

ence between the retransmission delays for the various streams. The

maximum retransmission delays span from 2752.1 ms to 6614.4 ms and

is a result of several exponential backoffs as explained before. The av­

erage retransmission delay is still close to the minimum retransmission

delays and show that exponential backoffs do not play a major role on

the average retransmission delays.

RTT = 400 ms

With an RTT of 400 ms, the calculated minimum RTO in this scenario

is 600 ms. As the RTT is increasing and the stream is still very thin,

duplicate ACKs or SACKs have little chance to get received before the

packet is retransmitted by a retransmission timeout and successfully re­

ceived. The results show no significant difference in the average retrans­

misson delays which lie between 692.5 ms and 728.4 ms, as expected.

The minimum retransmission delay of 612.1 ms, equal for each stream,

is reflecting the minimum RTO. The maximum retransmission delays lie

between 2480.5 to 4960.3 ms and show several exponential backoffs of

41

the retransmission timer. The lowest average retransmission delay is

660.3 ms which is close to the minimum retransmission delay of 612.1

ms. Although subsequent exponential backoffs play a larger role on the

retransmission delays, they are neither here making a big influence on

the results.

Summary

In thin streams, all retransmissions are triggered by a retransmission

timeout without any significant difference between the various streams.

This is because triple duplicate ACKs or SACKs reporting loss have no

chance to arrive before the packet is retransmitted by a retransmis­

sion timeout. The maximum retransmission delays reflects several sub­

sequent exponential backoffs as a consequence of multiple loss of the

same packet. In such cases, the TCP ignores further duplicate ACKs.

Because of the following slow­start, a new packet is not sent before the

retransmitted packet has been acknowledged. Exponential backoffs are

the main reason for a higher average retransmission delay compared

to the minimum value that is also high because all retransmissions are

triggered by a retransmisson timeout.

3.4 Comparision and evaluation

3.4.1 Thick streams

SCTP has two ways to trigger a retransmission of a data chunk; after

a retransmission timeout with a minimum RTO of 1000 ms and after

the retrieval of 4 SACKs that trigger a fast retransmit. In addition,

SCTP bundles the earliest outstanding data chunks after a retransmis­

sion timeout as long as there is room in the packet according to the

network MTU. In thick streams with a reasonable RTT, all data chunks

are retransmitted by a fast retransmit. The reason for this behaviour

is that the RTO minimum value is high. In addition, SCTP does not ig­

nore the following SACKs reporting the loss of the retransmitted data

chunk after a fast retransmit or a retransmission timeout. If many pack­

ets are sent in a window and one of the first is lost, this may lead to

frequent occurrences of subsequent fast retransmits. As each fast re­

transmit is halving the congestion window, this leads to a drastic reduc­

tion of throughput and waste of bandwidth when this is unnecessary.

42

[87467.256] TSN: 6344
[87467.275] TSN: 6345
[87466.957] SACK CUM ACK: 6328 #GAP ACKs: 0
[87467.298] TSN: 6346
[87467.312] TSN: 6347
[87466.962] SACK CUM ACK: 6330 #GAP ACKs: 0
[87467.338] TSN: 6348
[87466.981] SACK CUM ACK: 6332 #GAP ACKs: 0
[87467.537] TSN: 6349
[87467.581] TSN: 6350
[87468.400] TSN: 6351
[87570.891] SACK CUM ACK: 6334 #GAP ACKs: 0
[87571.009] TSN: 6352
[87571.027] TSN: 6353
[87570.896] SACK CUM ACK: 6336 #GAP ACKs: 0
[87571.076] TSN: 6354
[87571.090] TSN: 6355
[87570.918] SACK CUM ACK: 6338 #GAP ACKs: 0
[87571.113] TSN: 6356
[87571.126] TSN: 6357
[87570.924] SACK CUM ACK: 6340 #GAP ACKs: 0
[87571.148] TSN: 6358
[87571.161] TSN: 6359
[87570.942] SACK CUM ACK: 6342 #GAP ACKs: 0
[87571.184] TSN: 6360
[87571.198] TSN: 6361
[87570.948] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6345
[87571.221] TSN: 6362
[87571.235] TSN: 6363
[87570.969] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6346
[87571.255] TSN: 6364
[87570.975] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6347
[87571.273] TSN: 6365
[87570.999] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6348
[87571.294] RETRANSMISSION:

R1 6344 (104.038ms) Fast retransmit
[87571.005] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6349
[87571.041] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6350
[87674.900] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6352
[87674.906] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6353
[87675.173] RETRANSMISSION:

R2 6344 (207.917ms) Fast retransmit
[87674.910] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6354
[87674.927] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6355
[87674.931] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6356
[87674.954] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6357
[87675.228] RETRANSMISSION:

R3 6344 (207.972ms) Fast retransmit
[87674.959] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6358
[87674.978] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6359
[87674.983] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6360
[87675.006] SACK CUM ACK: 6343 #GAP ACKs: 1 GAP ACKED: 6345­6361
[87675.274] RETRANSMISSION:

R4 6344 (208.018ms) Fast retransmit

Figure 3.9: Consequtive fast retransmits of the same data chunk in SCTP

43

The only positive thing about this behaviour is that the retransmission

delays get very low, but most of them are spurious. Figure 3.9 shows

a snapshot provided by Sctp_trace which documents SCTP’s subsequent

fast retransmits. In this snapshot, the data chunk with TSN 6344 is re­

transmitted three times as incoming SACKs triggers new fast retransmits

without knowing if the data chunk has been successfully received or not.

By looking at the cumulative retransmission delay between the third and

second retransmission, there is only 0.04 ms between the retransmis­

sions. As each fast retransmit is halving the congestion window, this

leads to a drastic reduction in throughput.

In thick streams, most TCP NewReno retransmissions are triggered by

3 duplicate ACKs or SACKs. In contrast to SCTP, TCP NewReno ignores

the following duplicate ACKs until the packet is acknowledged. If mul­

tiple packets are lost, each packet will get retransmitted per RTT in fast

recovery. If a fast retransmitted packet gets lost, then it must be re­

transmitted by a retransmission timeout. Therefore, more packets are

retransmitted by a retransmission timeout compared to SCTP. Since the

RTO minimum value in TCP NewReno is lower than in SCTP, this does not

lead to high retransmission delays unless there are exponential backoffs

of the retransmission timer. The usage of the various combinations of

SACK, DSACK and FACK improves the retransmission delays, as expec­

ted. But it is hard to tell which of them is the best.

3.4.2 Thin streams

When streams get thin, SCTP has major problems retransmitting data

in a reasonable time. In most situations almost all retransmisisons are

triggered by a retransmission timeout unless it is delayed by late re­

starts and 4 SACKs have the chance to trigger a fast retransmit before

the timer expires. With a minimum RTO of 1000 ms, this leads to av­

erage retransmission delays above 1000 ms. In comparision, most TCP

NewReno retransmissions are triggered by a retransmission timeout as

3 duplicate ACKs never have the chance to be sent before the packet is

retransmitted by a retransmission timeout. The various combinations of

SACK, DSACK and FACK mechanisms does not make any difference as

there are to few packets and SACKs in thin streams to make them work

properly.

SCTP’s minimum RTO is five times higher than TCP NewReno’s minimum

RTO. The average retransmission delays of SCTP is therefore consider­

ably higher than the average retransmission delays of TCP NewReno.

44

In addition does TCP NewReno’s take late restarts of the retransmis­

sion timer into account when calculating a new RTO which lead to more

stable RTO calculations although ACKs arriving late. In contrast, SCTP

RTO calculations do not take late restarts of the retransmission timer

into account which in many situations lead to delayed expirations of the

retansmission timer in thin streams.

As TCP NewReno ignores the following duplicate ACKs until the packet

is acknowledged while in fast recovery or after a retransmission timeout,

it is a victim of several exponential backoffs which leads to high re­

transmission delays during multiple loss of the same packet. After

subsequent retransmission timeouts, the exponential RTO could be ex­

tremely high, and is very noticeable by users of an interactive applica­

tion.

In contrast, SCTP allows new data chunks to be sent after a retransmis­

sion timeout as the congestion window is set to 1 MTU and each data

chunks is 100 bytes + size of headers. After the exponential backoff,

this makes it possible to perform new RTT measurements and calculate

a new RTO. If the timer is restarted by a late SACK, then the the newly

calculated RTO is used in the following restart of the timer and collapses

the exponential backoff. In addition, SCTP allows incoming SACKs to

trigger new fast retransmits after the first fast retransmit or retransmis­

sion timeout without waiting for an acknowledgement of the data chunk

in the first time. Thus, SCTP mostly avoids exponential backoffs in the

tests compared to TCP NewReno in multiple loss scenarios.

Lksctp does not restart the timer after fast retransmits of the earliest

outstanding data chunks according to the timer rules. Therefore, the

timer and the fast retransmit mechanism could retransmit the same data

chunk independent of each other as long as the data chunk is not ac­

knowledged. Figure 3.10 shows a snapshot provided by Sctp_trace which

documents independent fast retransmits and retransmissions timeouts

of the same data chunk. All in all, this could lead to a behaviour where

the data chunk is first retransmitted by a retransmission timeout before

it is retransmitted by a fast retransmit independent of the retransmis­

sion timer. As the timer is not restarted after a fast retransmit, the timer

is triggering a third retransmission of the same data chunk if a SACK is

not acknowledging the data chunk. This way of handling retransmis­

sions is erroneous, especially in thick streams. In thin streams, it could

lead to faster retransmissions although many retransmissions are spuri­

ous. In this scheme, all first retransmissions are triggered as a reason

of that the data chunk is lost. However, it is hard to determine which of

the following retransmissions are triggered by actual data chunk loss or

45

[264205.476] TSN: 1007
[264248.117] SACK CUM ACK: 1006 #GAP ACKs: 0
[264461.498] TSN: 1008
[264564.135] SACK CUM ACK: 1006 #GAP ACKs: 1 GAP ACKED: 1008­1008
[264717.514] TSN: 1009
[264820.146] SACK CUM ACK: 1006 #GAP ACKs: 1 GAP ACKED: 1008­1009
[264973.525] TSN: 1010
[265076.161] SACK CUM ACK: 1006 #GAP ACKs: 1 GAP ACKED: 1008­1010
[265229.542] TSN: 1011
[265245.495] RETRANSMISSION:

R1 1007 (1040.019ms) Retr timeout
R1 1011 (15.953) In flight

[265332.177] SACK CUM ACK: 1006 #GAP ACKs: 1 GAP ACKED: 1008­1011
[265485.554] TSN: 1012
[265588.184] SACK CUM ACK: 1006 #GAP ACKs: 1 GAP ACKED: 1008­1012
[265741.571] TSN: 1013
[265844.202] SACK CUM ACK: 1006 #GAP ACKs: 1 GAP ACKED: 1008­1013
[265997.585] TSN: 1014
[266100.212] SACK CUM ACK: 1006 #GAP ACKs: 1 GAP ACKED: 1008­1014
[266100.284] RETRANSMISSION:

R2 1007 (1894.808ms) Fast retransmit
[266245.564] RETRANSMISSION:

R3 1007 (2040.088ms) Retr Timeout
[266253.583] TSN: 1015
[266509.618] TSN: 1016
[266552.232] SACK CUM ACK: 1015 #GAP ACKs: 0

Figure 3.10: SCTP erroneous retransmissions

not.

As the messages size in thin streams are small compared to what they

are in thick streams there are room for mor data in packets. Bundling

of outstanding data chunks can be seen as a good way to faster retrans­

mit data chunks, especially those that are reported missing by some

SACK. If data chunks in flight gets bundled, this can be an extra safety

to retransmit faster if the data chunk unfortunalety gets lost. Since the

number of packets in the network is the same as packets are just filled

up, bundling of outstanding data chunks does not make any damage to

the network. TCP NewReno does not perform bundling the same way in

its retransmissions.

3.5 Ideas for proposed enhancements

There are several ideas for proposed enhancements for SCTP that all

shoud be evaluated after the tests and comparision with TCP NewReno.

SCTP needs a way to detect that the stream is thin in order to decide

if thin streams mechanisms should be used or not. Thus, a mechanism

46

should be considered and evaluated to define and detect the nature of

thin streams.

Since almost all chunks in SCTP are retransmitted by a retransmission

timeout in thin streams, the minimum RTO should be reduced since its

almost 5 times higher than TCP NewReno’s minimum RTO and leads to

high retransmission delays. But when the minimum RTO is reduced, it is

important to see how thin streams affects the RTO calculations because

delayed SACKs may lead to wrong RTT measurements. In addition, late

timer restarts delay the expiration time of the retransmission timer. A

solution should be considered to avoid a delayed retransmission timer

after restarts. TCP New Reno suffers from several exponential backoffs

of the retransmission timer, but it could also be a problem in SCTP if no

new data chunks are sent within a couple of seconds or no new SACKs ar­

rive and trigger a fast retransmit. Elimination of the exponential backoff

mechanism should be considered to avoid high retransmission delays

if there are occurrences of multiple loss when almost none SACKs are

sent. Since the number of SACKs are small in thin streams and rarely

have the chance to trigger a fast retransmit, a way to make use of fewer

SACKs to trigger a fast retransmit should be considered. At last, as the

data chunks are relatively small in thin streams according to the net­

work MTU and therefore do not make use of all available room inside a

packet, new ways to put more data into a packet should be considered

if the stream is thin.

3.6 Summary

In this chapter we have seen that the retransmission mechanisms are

working well in thick streams. However, when the stream gets thin, both

TCP NewReno and SCTP suffer from very high retransmission delays.

Several enhancements are needed to trigger retransmissions earlier. In

the next chapter, we will evaluate and implement the ideas of the pro­

posed enhancements for SCTP.

47

Chapter 4

Evaluation and implementation

of proposed enhancements

In the previous chapter, we saw that SCTP works well for thick streams

except for its lack of handling retransmissions correctly. However, SCTP’s

original retransmission strategies are not working well in thin streams.

In this chapter, we will evaluate and implement several proposed en­

hancements for thin streams.

4.1 A way to define and detect thin streams

The original retransmission strategies are working well in thick streams

and should therefore be used when the stream is thick. However, when

the stream is thin, several enhancements are needed which are espe­

cially developed for thin streams only. In order to get retransmission

strategies to work well in both thin and thick streams, a way is needed

to detect and determine the nature of the stream to decide what retrans­

mission strategies should be used. In some cases, the nature of a stream

could change between being thin and thick. Something, that should be

taken into acount.

4.1.1 Packets in flight to define thin streams

SCTP must be able to define the nature of thin streams to decide if thin

stream strategies should be used or not. The number of packets in flight

48

is a good indication of how thin the stream is.

In thick streams, SCTP sends as much data as possible according to

the available bandwidth. The test results show that the retransmission

delays in thick streams are very low. This is because there are many

packets in flight to the receiver. Once a packet is lost, SCTP uses no

time to detect it as the next packets arrive quickly and trigger the SACKs

needed to fast retransmit the lost data chunks.

In thin streams, the time between packets could be large and thus redu­

cing the number of packets in flight to the receiver. If a fast retransmit

should be triggered in a reasonable time, then a minimum of 5 packets

must be in flight to the receiver. If a data chunk is lost, then the next

four packets in flight will trigger the 4 SACKs that are needed to fast re­

transmit the lost data chunks provided that none of the SACKs are lost

on the way. This also means that when more than 4 packets are in flight

to the receiver, then then the original retransmission strategies should

be used as 4 SACKs should arrive in time to trigger a fast retransmit of

the data chunk before an expiration of the retransmission timer. Thus,

if packets in flight is less than five, then the thin stream retransmission

strategies is used.

4.1.2 Packets in flight handling in SCTP

As SCTP is message­oriented, it does not hold packets in the transmis­

sion queue. In contrast, TCP uses this strategy because ACKs acknow­

ledge the receipt of each packet; if a packet is lost, the same packet

is retransmitted. Instead, SCTP will hold data chunks in the transmis­

sion queue as packet contents could vary because of various bundling

strategies, for instance when data chunks in a packet are transmitted

and later need to get retransmitted. This is possible as a data chunk

has its own TSN and SACKs acknowledge the receipt of each data chunk.

However, a strategy is needed to keep track of how many packets that

are in flight to the receiver in order to determine if thin stream retrans­

mission strategies should be used or not. This is because it is the receipt

of each packet, and not each data chunk, that triggers each SACK.

The problem can be solved by keeping the highest TSN in each packet,

that are in flight from the sender to the receiver, in a linked list. Each list

element will then represent each packet in flight. Each time a packet con­

taining one or more data chunks is sent, the highest TSN in the packet

is determined and added to the list. At the same time a variable pack­

ets_in_flight is increased by one. If a packet is successfully received

49

in the absence of loss, then the highest TSN in the packet will corres­

pond to the cumulative TSN of the following SACK, as the cumulative

TSN will acknowledge the last data chunk received in sequence and thus

the highest TSN. When a SACK arrives, the sender checks if there exist

any gap ack blocks. If it does, then the sender knows that one packet

has left the network as a SACK is sent back immediately. The missing

packets are still counted as in flight to the receiver as they could ar­

rive at a later time. The variable packets_in_flight is decremented by

one and a variable packets_left_network is incremented by one. The gap

ack blocks indicate that more packets are received, but the sender will

not inspect them to find out which packets have left the network as the

sender knows that one packet has left the network when a SACK with

gap ack blocks arrives.

Instead, when a received SACK does not contain any gap ack blocks, the

sender knows that all packets with its highest TSN lesser than or equal

to the cumulative TSN of the SACK has left the network. At this point,

the sender does not know exactly how many packets that have left the

network before the SACK was sent, as the receiver will send a SACK back

for every second packet received or within 200 ms of the arrival of any

unacknowledged data chunk when no loss is detected. But the sender re­

moves each such packet from the list and count them by decrementing

packets_in_flight by one for each removal. The sender must not count

packets that already have left the network in the first case. Thus, pack­

ets_in_flight is incremented by packets_left_network, and then pack­

ets_left_network is reset to zero. The variable packets_in_flight can now

be used as an estimate to decide if thin stream retransmission strategies

should be used or not.

In SCTP, packets in flight handling should apply to each association.

This means that the number of packets in flight are shared between

each transport destination address if multi­homing is used. The reason

for this is that the transmission queue and the cumulative ack point

are shared between each destination transport address. Thus, the asso­

ciation takes care of incoming SACKs independent of which transport

destination addreess the data chunks were sent to, manages and cleans

up the transmission queue and if necessary send data chunks to another

transport destination address.

In Lksctp, there is a struct named sctp_association declared in structs.h

which holds information about each individual association. The vari­

ables packets_in_flight and packets_left_network is declared in

this struct in addition to pointers to the head and tail of the list hold­

ing packets in flight. Each list element in the list is represented by the

50

following struct:

struct pkt_in_flight{

__u32 highestTSN;

struct pkt_in_flight *next, *prev;

};

The routine sctp_packet_transmit() located in output.c is respons­

ible for traversing all data chunks in a packet, assign TSNs to data chunks

and create specific packet and data chunk headers. Finally it creates

the packet as it will appear on the network and sends it to the lower

layer. When data chunks in a packet are traversed, the highest TSN in

the packet is found by the following code:

currentTSN = ntohl(chunk­>subh.data_hdr­>tsn);

if(currentTSN > pktHighestTSN)

pktHighestTSN = currentTSN;

Finally, the highest TSN representing the packet is added to the packets

in flight list by calling add_pkt_in_flight(asoc,pktHighestTSN).

The new routine add_pkt_in_flight() is listed in appendix A.1. It is

located in output.c and is responsible for adding a new packet to the

packets in flight list. It takes as parameters a pointer to the current as­

sociation and the value of the highest TSN in the packet. Adding a new

packet in flight is done by allocation memory for it by calling kmalloc. Fi­

nally, it is added to the tail of the list before packets in flight is increased

by one.

The routine sctp_outq_sack() is responsible for processing an incom­

ing SACK and remove acknowledged data chunks from the transmitted

queue. The following test is performed to check if the SACK contains

any gap acked blocks and further determine how to count packets in

flight.

if(sack­>num_gap_ack_blocks > 0){

asoc­>packets_in_flight­­;

asoc­>packets_left_network++;

}

else{

remove_pkts_in_flight(asoc, sack_ctsn);

}

51

The new routine remove_pkts_in_flight() located in outqueue.c is

responsible for removing packets from the packet in flight list that have

its highest TSN lower or equal to the cumulative TSN of a SACK. Finally,

the value of packets in flight is updated according to the packets that

already have left the network. The routnie takes a pointer to the current

association and the value of the cumulative TSN in the SACK as parama­

ters.

4.2 Modifying fast retransmits in thin streams

4.2.1 Fast retransmit after 1 SACK

The test results show that the number of fast retransmits are drastic­

ally reduced in thin streams. As explained earlier, this is because not

enough packets are sent to get the four SACKs needed to trigger a fast

retransmit before the retransmission timer expires. Despite a minimum

RTO value as high as 1000 ms, most retransmissions are triggered by a

retransmission timeout.

Depending on the time between each sent packet, less than four SACKs

could arrive before the retransmission timer expires. Since there are

very few SACKs reporting loss in thin streams, a fast retransmit should

be triggered by the first indication that a data chunk is lost. This means

that if the stream is thin, then a fast retransmit should be triggered by

one SACK. This is because there could be few SACKs reporting loss in

thin streams and the time waiting for 4 SACKs could lead to high re­

transmission delays. As fast retransmits has been shown to be working

properly in thick streams, SCTP should use the original fast retransmit

mechanisms by waiting for 4 SACKs if the stream is thick.

The reason for waiting for 4 SACKs is to be sure that data chunks are

actually lost and not reordered in the network. If the stream is thick, the

sender uses short time to discover that SACKs were sent because of a re­

ordering of packets in the network. If a SACK reports the data chunk to

be lost during a possible reordering, then the next SACK acknowledging

the data chunk arrives in short time. In thin streams, waiting for sev­

eral SACKs to discover possible reorderings of packets in the network

takes long time. In thin streams, the time between each packet could be

so large that packet reordering should happen much less than in thick

streams. xsIf a reordering unfortunately occurs, then the receiver will

earn more by receiving a spurious retransmission than let the sender

52

wait for several SACKs to discover possible reorderings. As very few

data chunks are sent, some spurious retransmissions will not eat much

of the available bandwidth.

In Lksctp, the routine sctp_mark_missing() located in outqueue.c is

responsible for traversing the transmitted queue and mark data chunks

as missing when a SACK arrives and furhter start the fast retransmit

procedure if necessary. The old algorithm for marking a data chunk as

eligible for fast retransmit is replaced by the following algorithm:

if(q­>asoc­>packets_in_flight < 5)

fr_threshold = 1;

else

fr_threshold = 4;

if (chunk­>tsn_missing_report >= fr_threshold) {

chunk­>fast_retransmit = 1;

do_fast_retransmit = 1;

}

In the algorithm, q is a pointer to the current transmitted queue. As

each transmitted queue belongs to a specific association, the number of

packets in flight can be found by further following the asoc pointer to

the current association. If the stream is thin, a variable fr_threshold

of type int is set to 1 to tell SCTP to fast retransmit a data chunk after 1

SACK reporting it to be lost. Otherwise, if the stream is thick,

fr_threshold is set to 4 to fast retransmit the original way. Finally, a

test is performed to check if a data chunk’s missing reports are greater

than or equal to fr_threshold. If this is true, the data chunk is marked

as eligible for fast retransmit by setting chunk­>fast_retransmit to

true. Finally, do_fast_retransmit is set to true to tell SCTP to start

the fast retransmit procedure when the transmitted queue has been tra­

versed.

4.2.2 Bundling of outstanding data chunks in fast retransmits

If there is room in the packet after a retransmission timeout, SCTP per­

forms bundling of the earliest outstanding data chunks. In thick streams,

this ensures that as much data as possible is transmitted to the reciever

as a retransmission timeout is an indication of heavy congestion. In thin

streams, a retransmission timeout is a indication of a very thin stream as

the data chunks are not acknowledged before the retransmission timer

53

expires. This way, the earliest outstanding data chunks could get re­

transmitted faster and ensur that as many data chunks as possible are

sent within a single packet. If the bundled outstanding data chunks are

already received, then the receiver will just drop them and it will not

lead to more packets on the network or increasing router costs. How­

ever, when SCTP fast retransmits in thin streams, then bundling of out­

standing data chunks is not performed unless they are marked for fast

retransmit. As packets must be filled up as often as possible, SCTP can

also perform bundling of outstanding data chunks in fast retransmits,

the same way as after a retransmission timeout. If the stream is thick,

SCTP should use the original bundling strategies as these work properly

in thick streams.

In Lksctp, the routine sctp_retransmit_mark() located in outqueue.c

is responsible for traversing the transmitted queue and add data chunks

that are marked for retransmission to the retransmit queue. The routine

is called when SCTP is going to retransmit. If the routine is called as

a reason of a retransmission timeout, then all outstanding data chunks

are added to the retransmit queue as the earliest outstanding data chunk

will get retransmitted and even more could get bundled if allowed by the

network MTU. If the routine is called because of a fast retransmit, then

only the data chunks that are marked for fast retransmit is added to the

retransmit queue.

For each data chunk in the transmitted queue, the test is originally per­

formed by the following algorithm expressing the requirements above:

if((fast_retransmit && chunk­>fast_retransmit) ||

(!fast_retransmit && !chunk­>tsn_gap_acked)){

.

.

}

This test is replaced by the following algorithm which allows bundling

of outstanding chunks in fast retransmits:

if(check_thinstream_before_add(transport, chunk,

fast_retransmit)){

.

.

}

The routine check_stream_before_add() is listed in appendix A.3. It

is located in outqueue.c and takes a pointer to the struct representing

54

the current transport address, a pointer to the struct representing the

current chunk and a variable fast_retransmit which tells SCTP if it is

a retransmission timeout or a fast retransmit as paramaters. First, a test

is performed to check if the stream is thin by following the pointer to

the current transport address’ association to get the number of pack­

ets in flight. If they are less than 5, all outstanding data chunks are

added to the retransmit queue in addition to data chunks marked for

fast retransmit independent of if it is a retransmission timeout or a fast

retransmit. To find out if the data chunk is outstanding or not, a test

is performed on the value of chunk­>tsn_gap_acked. If the stream is

thick, outstanding data chunks are only bundled if it is a retransmission

timeout, as the original way.

4.3 Modifying the SCTP retransmission timer

4.3.1 Reducing the RTO minimum value

If the stream is thin, the test results show that most retransmissions

occurs due to an expiration of the retransmission timer. If the time

between each packet is large and one is lost, it could take long time be­

fore a SACK arrives and triggers a fast retransmit as the receiver needs

new packets to discover loss before a SACK is sent. At this point, a

retransmission is determined by the RTO value if SACKs do not arrive

before the retransmission timer expires. With a minimum RTO value of

1000 ms, many retransmissions should be triggered by a fast retransmit

unless the stream is very thin. However, the time between a data chunk

is sent and gets fast retransmitted is determined by the time between

data chunks are sent and could lead to large retransmission delays, es­

pecially if SACKs are lost. In such cases, the retransmission timer must

get triggered earlier and the minimum RTO value must be reduced ac­

cordingly.

To trigger a retransmission timeout in a reasonable time, the RTO min­

imum value is reduced to 200 ms when the stream is thin. This way, data

chunks will get retransmitted earlier than the old RTO minimum value

of 1000 ms if a retransmission is not triggered by an intervening fast

retransmit. The RTO calculations used in SCTP could get lead to an RTO

that is close to the RTT [18]. Here, we are not considering to implement

a retransmission timer that fixes this problem due to the available time

we have during this thesis. Instead, we simply set the RTO minimum

value to 200 ms. If the RTO calculation results in a value that is below

55

200 ms, then it is set to 200 ms. If the stream is thick, then the original

RTO minimum of 1000 ms is used. That way, SCTP uses its original RTO

calculation when the stream is thick.

In SCTP, each transport address belonging to an association has its own

retransmission timer if multi­homing is used. When multi­homing is not

used, SCTP uses a single retransmission timer for the primary transport

address. . In Lksctp, the routine sctp_transport_update_rto() loc­

ated in transport.c is responsible for calculating a new RTO and is called

once an RTT measurement has been made. Each transport address has

its own struct sctp_transport that is holding information about the

transport and variables required for RTO calculation. When the time

comes for the new RTO to be set, the old RTO update algorithm will be

replaced by the following algorithm:

if(tp­>asoc­>packets_in_flight < 5){

if(tp­>rto < msecs_to_jiffies(200))

tp­>rto = msecs_to_jiffies(200);

}

else{

if(tp­>rto < tp­>asoc­>rto_min)

tp­>rto = tp­>asoc­>rto_min;

}

First a test is performed to check if packets in flight are less than 5.

Each transport has a pointer to the association which it belongs to. A

pointer tp points to the current transport and packets_in_flight can

be found by following the asoc pointer to the current association. The

RTO is set in jiffies, which are the number of ticks that have elapsed since

the system is booted and is the time unit used by timers in the Linux

kernel. The routine msecs_to_jiffies() is used to convert between

ms and jiffies before the RTO is set. If packets in flight are greater than

or equal to 5, then the RTO is set to the original RTO minimum value if

it is less than RTO minimum.

4.3.2 Thin stream influence on RTO calculations

To trigger retransmissions earlier in the absence of SACKs, a reduction

of the RTO minimum value has been done. When the RTO minimum

value is reduced to 200 ms, it is necessary to evaluate thin streams influ­

ence on the RTO calculations. The reason for this is that the RTO value

is based on measured RTT and is updated each time an RTT measure­

ment has been made. If packets are sent in large intervals, the interval

56

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200

m
s

RTO samples

Calculated RTO
Measured RTT

Real RTT

Figure 4.1: Calculated RTO in thin streams

time will determine the measured RTT as the receiver sends a SACK back

After receiving the second packet or within the SACK delay of 200 ms if

no new packets arrive. As a consequence, the measured RTT could be

from from 0 to 200 ms too high, depending on the time between each

arrived packet. This should result in an over estimation of the RTO as

a result of incorrect RTT measurements. A correct RTT measurement

is only made when the receiver discovers loss and immediately sends a

SACK.

To see the thin stream influence on RTO calculations, a test is run where

data chunks are sent in an interval of 250 ms with 5% packet loss and

a constant RTT of 200 ms. Several samples of the calculated RTO and

the corresponding RTT are collected during the test. Figure 4.1 shows

the collected samples of the calculated RTO and the measured RTT. The

dotted line shows the real RTT between sender and receiver which in

this test is constant as it is emulated by Netem.

In this thin scenario, the measured RTT is mostly 400 ms as delayed

SACKs lead to a 200 ms increase of the measured RTT compared to the

real RTT. A few RTT measurements down to 200 ms occur when SACKs

are sent back immediately. In addition, some few RTT measurements at

57

approxemately 650 ms occur when SACKs are lost and the RTT meas­

urement is made based on the next SACK which is triggered by the next

packet arriving 250 ms later.

If the measured RTT is suddenly dropping or raising, then the calculated

RTO will increase at approxemately the same rate [18]. The reason for

this is SCTP’s computation of the RTTVAR parameter used in RTO cal­

culations. In the computation of RTTVAR, the value α∗ |SRTT − R′|1

is added to (1−α)∗RTTVAR. If R’ is drastically reduced or increased,

then the computation of |SRTT −R′| is leading to large values as SRTT

is the smoothed value of the last measured RTT. This results in adding

a quarter of the difference in measured RTT to the new RTTVAR. The

changes in the measured RTT will not affect SRTT as much as RTTVAR

beacuse β results in less weightning of R’ when β∗ R′ is used to up­

date SRTT. This is because β is set to half the value of α. When the

new RTO is computed, then 4∗ RTTVAR will approxemately add the

difference in measured RTT to the new RTO as 4∗RTTVAR upweights
1

4
∗ |SRTT −R′|.

The figure shows that rapid changes in RTT measurements will lead to

almost an equivalent rapid growth of the RTO. This results in several

peaks up to almost 1000 ms in addition to an already over estimated

RTO. If data chunks are sent in varying intervals, the variance in RTT

measurements leads to the same effect on the calculated RTO. A modi­

fication must be considered to get more correct RTO estimates despite

that packets could be sent in large and varying intervals.

The best solution to the problem is to avoid delayed SACKs if the stream

is thin despite this will change the strategies of the receiver. Another

solution is to change the α and β values used in the weightening of

RTTVAR and SRTT. This will make the RTO not so affected by rapid

changes in the RTT. Changing the variables used in RTO calculations

require a complete evaluation of the following RTO behaviour, especially

in thin streams. There is a reason for the choice of RTO calculation

algorithm that is strongly evaluated under most conditions. Without a

omplete evaluation, changing the RTO calculation algorithm may lead to

critical errors if it is not proved to work properly. Hence, we will not

touch the RTO calculations, but consider delayed SACKs removal to be

the best experimental solution.

Figure 4.2 shows the RTO calculations of a rerun of the same test where

SACK delay is removed. This means that the receiver will send a SACK

immediately without waiting up to 200 ms in the absence of the next

1α = 1

4
, R’ = the new RTT measurement

58

 200

 300

 400

 500

 600

 700

 800

 0 20 40 60 80 100 120 140

m
s

RTO samples

Calculated RTO
Measured RTT

Real RTT

Figure 4.2: Calculated RTO without SACK delay

packet. Figure 4.2 shows that removal of SACK delays leads to correct

RTT measurements despite that packets are sent in large intervals. The

only exception is when SACKs are lost and the RTT measurement is done

based on the next SACK. This leads to some peaks in the calculated RTO

up to 600 ms.

Subsequent correct RTT measurements leads to a calculated RTO that

falls down to a constant value around 250 ms, 50 ms above the actual

RTT. Totally, the overall RTO values are lower when SACK delay is re­

moved, compared to the RTO values when SACK delay is used. As a

result, SACK delay should be considered removed unless the timer is

taking delayed SACKs into acount in its RTO calculations. Since we have

not implemented and evaluated such a timer, removal of delayed SACKs

could give a good view of the retransmission delays if such a timer exis­

ted.

59

TSN 100

TSN 101

0

250
Sack delay

SACK 100400

Timeout

TSN 100

Timer restart

Sender

loss

300

1400

100

Receiver

Figure 4.3: Timer restart in thin streams

4.3.3 Correcting the RTO value in timer restarts

SCTP performs a restart of the retransmission timer with the current

RTO at the time an incoming SACK acknowledges some, but not all out­

standing data chunks. In thin streams, late arrivals of such SACKs often

occur as the time between packets could be large in thin streams. This

leads to a delayed expiration time of the timer. An example of a timer re­

start in thin streams is shown in figure 4.3. In this example, data chunks

are sent every 250 ms with an RTT of 200 ms. At time 0 ms, the data

chunk with TSN 100 is sent and successfully received at time 100 ms. As

no new data chunks arrives within the SACK delay of 200 ms, the SACK

is sent back at time 300 ms and arrives at the receiver at time 400 and

acknowledges the data chunk with TSN 100. As the data chunk with TSN

101 is sent at time 250, it is outstanding when the SACK arrives. Thus,

at time 400 ms, SCTP performs a restart of the timer with the current

RTO of 1000 ms. The data chunk with TSN 101 is lost and is then re­

transmitted by a retransmission timeout at time 1400 ms, 1150 ms after

it was sent. In the example, this leads to a 150 ms delay in the expiration

time of the timer.

Depending on the nature of the thin stream, the retransmission timer

60

could be a victim of large delays when SACKs arrive late. The testres­

ults show that retransmission timer restarts create large retransmis­

sion delays in thin streams which should be reduced accordingly. The

delayed expiration of the retransmission timer is avoided by adjusting

the timer expiration time before it is restarted. No more than RTO ms

should have elapsed before the current outstanding data chunks will get

retransmitted by a timeout although SACKs arrive later and restart the

timer.

When the retransmission timer expires, the earliest outstanding data

chunk is always retransmitted first. In the same way; since the earliest

outstanding data chunk is the oldest data chunk, it suffers most when

the timer is restarted if it later needs to get retransmitted by a retrans­

mission timeout. According to [18], the solution to the problem is to

always subtract the age of the earliest outstanding data chunk from the

current RTO value each time the timer is restarted. If this data chunk is

lost, then no more than RTO ms will elapse before it is retransmitted by

a timeout.

In Lksctp, the routine sctp_check_transmitted() in outqueue.c is re­

sponsible for cleaning up the transmitted queue when a SACK is received

and further stop or restart the retransmission timer. The transmitted

queue is holding data chunks that are sent, but not yet acknowledged

and is structured as a list of sctp_chunk structs where each struct is

holding relevant information about each chunk. Once data chunks are

acknowledged by the cumulative TSN of a SACK, they will get removed

from this queue. This means that data chunks that are gap acked by a

SACK is still on the queue in combination with outstanding data chunks.

Data chunks are added to the tail of the queue once they are transmitted

which means that the earliest outstanding data chunk is the first data

chunk on the queue that is not gap acked yet.

A modified restart timer algorithm takes care of handling the require­

ments described above. It’s code is listed in appendix A.4. If the re­

transmission timer needs to get restarted, a variable restart_timer is

set to true. A test on this variable is performed to check if a restart of

the timer should be made. At this point, the current management of

retransmission timer restarts is replaced by the modified restart timer

mechanism. First, the earliest outstanding data chunk needs to be found.

This is done by traversing the transmitted queue and look for the first

data chunk that has not been acknowledged yet. If this data chunk is

found, the time in jiffies of when it was last sent is extracted from the

sent_at variable in the data chunk’s struct. When a data chunk is sent,

the current time is always set in this variable and is originally used for

61

RTT measurement if necessary. The age of a data chunk can now be

found by subtracting this value from the current jiffies value. When the

timer is restarted, the age of the data chunk is subtracted from the cur­

rent RTO before this RTO is used in the restart of the timer. If the earlist

outstanding data chunk is not found, the timer is restarted the original

way. To avoid late timer restarts both in thick and thin streams, the

modified restart timer algorithm should be considered implemented as

the usual way of restarting timers in SCTP.

4.3.4 Exponential backoff elimination

If there are very few SACKs to trigger a fast retransmit or no new pack­

ets are sent to let the receiver discover loss, retransmissions could be

triggered by subsequent retransmission timeouts without any interven­

ing fast retransmits. At this point, an exponential backoff of the retrans­

mission timer is performed, leading to an exponential growth of the re­

transmission delays when it should be unecessary. If no new packets

are sent or few SACKs arrive as the stream is so thin, this is not neces­

sary an indication of heavy congestion which is the reason for doubling

the retransmission timer. By eliminating exponential backoffs when the

stream is thin, subsequent retransmissions timeouts will not lead to an

exponential growth of the following retransmission delays.

In Lksctp, exponential backoff of the retransmission timer is handled in

the routine sctp_do_8_2_transport_strike(), located in

sm_sideeffect.c. The routine is responsible for handling path failure de­

tection by marking the destination transport address as inactive if the

maximum number of retransmissions after subsequent retransmission

timeouts is exceeded. In such cases, each timer expiration leads to an ex­

ponential backoff of the retransmission timer. The packets_in_flight

variable is accessible by following the asoc pointer to the current asso­

ciation. If packets_in_flight is less than 5, then exponential backoff is

eliminated by the following code:

if(asoc­>packets_in_flight >= 5){

transport­>rto = min((transport­>rto * 2),

transport­>asoc­>rto_max);

}

62

4.4 Bundling of outstanding data chunks with new

data chunks

In thin streams, packets could be sent in large intervals which means

that the retransmission delay will increase as a result of waiting for the

timer to expire or late arrivals of SACKs that trigger fast retransmits.

In the time between a data chunk is sent and gets retransmitted, new

packets could be sent since the retransmission delays in thin streams

could be high.

If the size of a new packet is small according to the network MTU, then it

is suitable for bundling of outstanding data chunks if there is room for

more data chunks in the packet. Bundling is possible in SCTP although

there are gaps between each data chunk. The reason for this is that each

data chunk has its own sequence number and appears independent of

each other inside the packet. The bundling is performed by starting with

the earliest outstanding data chunks until the packet is filled up or there

are no more data chunks eligible for bundling. The earliest outstanding

data chunks are bundled first as they are the data chunks that need to be

delivered first. Bundling of outstanding data chunks is only done when

the stream is thin. If the stream is thick, bundling is not performed.

The effect of this procedure is that bundling of outstanding data chunks

is a way to faster deliver data chunks to the receiver since the next packet

is sent before a possible retransmission of the outstanding data chunks

occurs. This procedure does not lead to an increase in router costs or a

decrease of the available bandwidth in the network as the same number

of packets are sent with or without bundling. It does not affect the deliv­

ering of new data chunks as bundling of outstanding data chunks is only

performed if there is room in the packet after the new data chunks are

placed in the packet. In addition, bundling of outstanding data chunks

is not considered to be a normal retransmission. Thus, it does not affect

the congestion control by reducing the congestion window per retrans­

mission. As the size of the congestion window is determined by the size

of the data chunks, bundled data chunks affect the congestion window

the same way as new data chunks.

Situations where the receiver benefits from this procedure are when data

chunks are lost and possibly are bundled in the next packet that arrives.

If all data chunks that unfortunately get lost are bundled in the next

packet, then the receiver has no chance to discover this as the earliest

outstanding data chunks are the next data chunks which the reciever

expects to arrive. In addition, lost data chunks could arrive even before

63

1 SACK or a retransmission timeout triggers a retransmission of them.

However, the disadvantage of this procedure is that the loss rate in the

network could be small which leads to data chunks that are delivered up

to several times. The receiver solves this problem by dropping the data

chunks that are already delivered. Since the stream is thin, there are not

many data chunks that need to get dropped compared to if this type of

bundling was performed in thick streams.

In Lksctp, the routine sctp_outq_flush() located in outqueue.c is re­

sponsible for traversing the transmission queue and the retransmission

queue, and send or retransmit data chunks by sending packets to the

lower layer. The packets could be sent to different transport addresses

if multi­homing is used. First, the retransmit queue is traversed to re­

transmit data chunks before sending new data chunks. Afterwards, the

transmission queue is traversed to send new data chunks. Next, bund­

ling of control chunks with data chunks is done if there are any control

chunks ready to be sent. Further, if a packet is filled up, then it is sent

to the lower layer with either new data chunks or retransmitted data

chunks. Finally, all unsent packets are sent to the lower layer. These

are packets that are not filled up yet or for another reason not sent. If

these packets are small according to the network MTU, they are eligible

for bundling of outstanding data chunks. The following test is added

to check if the stream is thin before trying to bundle outstanding data

chunks in the packet before it is sent:

if (!sctp_packet_empty(packet)){

if(asoc­>packets_in_flight < 5){

bundle_outstanding_chunks(packet, t);

}

error = sctp_packet_transmit(packet);

}

The new routine bundle_outstanding_chunks() is responsible for bund­

ling of outstanding chunks with new chunks and is listed in appendix

A.5. It takes a pointer to the packet and a pointer to the current trans­

port destination address as parameters. First, a test is performed to

check if it is a valid transport destination address. If it is not, then

bundling is aborted. Next, chunks that are already stored in the packet,

represented by packet­>chunk_list, is traversed to find the first data

chunk in the packet. If this data chunk already has a TSN, this packet

contains data chunks that will get retransmitted. Bundling of outstand­

ing data chunks prior to the retransmission has already been done and

the current bundling is aborted. Otherwise, the packet contains new data

64

chunks as TSN assignments are done later by sctp_transmit_packet(),

just before the packet is sent.

Before bundling can start, the size of the packet and the network MTU

is found. Next, a list named outstanding_list is initialized to hold

all outstanding data chunks that will get bundled into the packet. The

reason for this is that all data chunks in a packet must be in TSN increas­

ing order. As the outstanding data chunks have a lower TSN than the

new data chunks will get, the outstanding data chunks must be placed

in the start of the packet and are first added to the list.

Then, the transmitted queue is traversed to find outstanding data chunks.

If an outstanding data chunk is found, the size of the data chunk includ­

ing headers and padding is calculated. If there is no more room in the

packet according to the MTU, then bundling is aborted. Otherwise, the

data chunk length is added to the packet size and the size of the current

bundled outstanding data chunks, before the data chunk is added to the

tail of the outstanding list. Finally, the list containing the outstanding

data chunks is merged with the packet’s chunk list such that all out­

standing chunks appear in the start of the packet. The final size of the

packet is calculated and stored in the packet struct.

4.5 Summary

In this chapter, we have evaluated and implemented several proposed

enhancements to improve the retransmission delays in thin streams.

Since the original retransmission strategies are working well in thick

streams, SCTP needed a way to detect a thin stream as the proposed

enhancements is used in thin streams only. We have considered the

number of packets in flight to indicate that the stream is thin and de­

termine the retransmission strategies. A way of determine the number

of packets in flight is evaluated and implemented as SCTP does not have

this functionality built­in. Further, we have considered fast retransmit

after 1 SACK as necessary in thin streams as there could be few SACKs.

In addition, bundling of outstanding data chunks is also performed with

data chunks that are fast retransmitted.

We have reduced the RTO minimum value to 200 to let the retransmis­

sion timer expire earlier, in the absence of SACKs triggering fast retrans­

mits. When the RTO value is decreased, we saw that the RTO value could

get over­estimated as an effect of incorrect RTT measurements caused

by delayed SACKs or large time intervals between each packet. Thus, re­

65

moving delayed SACKs have been considered as a good solution since we

have not evaluated and implemented a timer that handles the problem.

Late restarts could lead to delayed expiration time of the retransmisison

timer. This is solved by letting no more than RTO ms elapse before the

timer expires independent of that the restart is delayed or not.

We eliminated exponential backoff as this could lead to high retransmis­

sion delays if data chunks are continously retransmitted by subsequent

retransmission timeouts. Finally, we saw that bundling of outstanding

data chunks with new data chunks is a good solution to faster retrans­

mit data chunks. As the same number of packets is sent with or without

bundling, this does not lead to higher routing costs or bandwidth re­

quirements. In addition, the retransmission of bundled outstanding data

chunks does not affect the congestion window as a fast retransmit or re­

transmission timeout does. Bundling is possible in SCTP although there

are gaps between each data chunk. The reason for this is that each data

chunk has its own sequence number and appears independent of each

other inside the packet. In the next chapter we will test and evaluate the

proposed enhancements’ effect on the retransmission delay.

66

Chapter 5

Testing of proposed

enhancements

We have evaluated and implemented several proposed enhancements for

thin streams. In this chapter, we will test and evaluate their effect on the

retransmission delays in thin streams. The test results are compared

against the test results of the original SCTP protocol which is discussed

and evaluated in chapter 3.

5.1 Test Layout

5.1.1 Testing various enhancements

Each proposed enhancement of the SCTP protocol has been developed

to improve the retransmission strategies according to the various char­

acteristics of a thin stream. First, we will show that the modified restart

timer mechanism is working properly by running a simple test where we

look at a single snapshot of a retransmission timeout where the timer is

restarted by a late SACK.

Next, in order to see the full effect of the new mechanisms, they are

introduced one by one and evaluated against the test results where the

original SCTP protocol has been used. We will first test and evaluate the

modified fast retransmit mechanism in combination with the RTO min­

imum reduction. In the second test, we are including the modified re­

start timer algorithm. In the third test, we are removing delayed SACKs

67

in addition to keep using the proposed enhancements of the previous

test. As described in section 4.3.2, delayed SACKs have been shown

to have a negative effect on the RTO calculations as they lead to incor­

rect RTT measurements when the time interval between each packet is

large or changes rapidly. Although there is impossible to remove delayed

SACKs at all receivers, it is interesting to see the effect on the retrans­

mission delays when delayed SACKs are removed. This will give an indic­

ation on how the retransmission delays performs if the RTO calculation

is taking delayed SACKs into account. In total, this results in three tests

which let us evaluate each mechanism’s influence on the retransmission

delays separately.

All tests are running the original test configuration as described in sec­

tion 3.1. This means that a data chunk of 100 byte + size of headers is

sent every 250 ms with a 5% packet loss. This let us compare and evalu­

ate the proposed enhancements against the original protocol. SCTP has

shown to have the same behaviour in thin streams independent of the

RTT except that the retransmission delays are increasing as a result of

an increase in the RTT. Hence, all tests are run in the same loss scenario

with an RTT of 200 ms only.

5.1.2 Testing modified fast retransmit

To see the full effect of the modified fast retransmit mechanisms, three

tests are run by sending a burst of 4 data chunks, of 100 byte each, every

1000 ms. To avoid the data chunks to get bundled into one packet, there

is a 10 ms time interval between each data chunk. As the modified fast

retransmit is triggered by 1 SACK, it is possible to trigger enough fast

retransmits to see its full effect in thin streams when a burst of 4 data

chunks is sent. To make the tests comparable, a test is run with the ori­

ginal protocol to see the performance of the retransmission strategies in

this scenario. The second test is run with the modified fast retransmit

mechanism and the reduced RTO, but without bindling in fast retrans­

mits. The final test includes bundling in fast retransmits to see if there

is possible to bundle more chunks. All tests are run with an RTT of 200

ms and 5% packet loss.

68

5.2 Omitted tests

We are not testing and evaluating the effect of exponential backoff. In

the original tests, there were few occurrences of exponential backoff

because SCTP allows sending new data chunks after a retransmission

timeout which could trigger new fast retransmits or collapse the expo­

nential RTO value down to its normal value. Thus, to be able to see the

effect of some consequtive exponential backoffs, the time between each

data chunk must be several seconds. If data chunk loss occurs, this will

only trigger the retransmission timer. During multiple loss, the effect

of several exponential backoffs can be seen since no new data chunks

are sent to trigger fast retransmits or collapse the timer within several

seconds. However, this sort of testing tries to enforce exponential back­

offs to get the desired effect on retransmission delays as it does not

appear clearly in the original tests. Thus, it is dropped.

Bundling of outstanding data chunks with new data chunks has not been

tested. The reason is that the effect of bundling does not appear clearly

by just looking at the retransmission delays performed by Sctp_trace. If

the same data chunk is bundled in consequtive packets, then Sctp_trace

will measure the bundling as a retransmission which could lead to high

cumulative retransmission delays of the same data chunks. Thus, the

bundling gives a strange view on the retransmission delays where the

bundling’s real effect do not appear clearly. To be able to test bundling

and see its full effect, involving the receiver should be considered. At

the receiver, it is possible to measure the effect of receiving data chunks

as fast as possible. The available time we have during this thesis is too

short to be able to test this out.

5.3 Test results

The improvement of the new mechanisms is best seen in the first re­

transmissions of data chunks and is therefore most important for the

evaluation. The reason for this is SCTP’s erroneous handling of retrans­

missions by letting SACKs and the retransmission timer trigger retrans­

missions independently of each other. Thus, it is almost impossible to

know if consequtive retransmissions of the same data chunk are spuri­

ous or not. However, the first retransmissions of data chunks are al­

ways triggered as a reason of that the data chunk is actually lost. In this

way, possible improvements of the mechanisms should appear clearly in

the first retransmissions of data chunks. The new modifications should

69

Test Scenario Type Number Min Max Avg

orig. SCTP Retransmission timeout 266 996.2 1460.1 1144.6

Fast retransmit 35 1228.4 1740.7 1274.2

B:Reported missing 24 487.9 976.0 780.7

B:In flight 338 28.0 888.0 172.8

Retr timeout & FR 301 996.2 1740.7 1159.6

+reduce RTO+FR Retransmission timeout 197 435.8 732.0 626.7

Fast retransmit 284 460.3 731.2 472.3

B: Reported missing 0 0 0 0

B: In flight 635 3.8 471.8 197.6

Retr timeout & FR 481 435.8 732.0 535.5

+mod timer restart Retransmission timeout 331 436.0 696.0 525.0

Fast retransmit 288 460.2 464.3 462.3

B: Reported missing 0 0 0 0

B: In flight 574 12.0 616.0 189.6

Retr timeout & FR 619 436.0 696.0 495.8

+no SACK delay Retransmission timeout 633 255.7 448.0 282.9

Fast retransmit 1 463.0 463.0 463.0

B: Reported missing 0 0 0 0

B: In flight 425 8.0 255.9 47.1

Retr timeout & FR 634 255.7 463.0 283.2

Table 5.1: SCTP 1. retransmission statistics, RTT = 200 ms

affect the cumulative retransmission delays of each number of retrans­

missions. Thus, we will take a look at how the proposed enhancements

are affecting the retransmission delays when retransmissions caused by

retransmission timeouts and fast retransmits are seen as a whole.

5.3.1 Various enhancements

The test results are presented in table 5.1 and will be discussed and

evaluated in the following sections.

Restart timer modification

To be able to show that the modified restart timer algorithm is working

properly, one simple test is run with the original protocol including the

modified restart timer algorithm. Figure 5.1 shows a snapshot from the

70

pkt 1 [43007.009] TSN: 167

pkt 2 [43096.221] SACK CUM ACK: 165 #GAP ACKs: 0

pkt 3 [43263.033] TSN: 168

pkt 4 [43352.230] SACK CUM ACK: 166 #GAP ACKs: 0

pkt 5 [43519.038] TSN: 169

pkt 6 [43668.262] SACK CUM ACK: 166 #GAP ACKs: 1 GAP ACKED: 168­168

pkt 7 [43775.059] TSN: 170

pkt 8 [43924.259] SACK CUM ACK: 166 #GAP ACKs: 1 GAP ACKED: 168­169

pkt 9 [44007.036] RETRANSMISSION:

R1 TSN: 167 (1000.027ms) Retr Timeout

R1 TSN: 170 (231.977ms) In flight

Figure 5.1: Snapshot of a timer restart

packet­by­packet listing of the test which is provided by Sctp_trace. The

snapshow shows a retransmission timeout of data chunk 167 and the

following timer restart. First, packet 1 containing data chunk 167 is sent

at time 43007.0 ms. Then, a SACK arrives 345.2 ms later and restarts

the timer with the current RTO as the SACK acknowledges data chunk

166 when data chunk 167 is still outstanding. Finally, data chunk 167 is

retransmitted by a retransmission timeout at time 44007.036 ms, RTO

ms after it was sent. The modified restart timer algorithm ensures that

no more than RTO ms elapse before the timer expires although it is

restarted by late arrivals of SACKs.

RTO min reduction and modified fast retransmit

In this test scenario, the test is run with the modifed fast retransmit

mechanism and the RTO min reduction only. With this modifications, we

expect to trigger retransmissions earlier, both by retransmission timeouts

and fast retransmits.

By looking at the first retransmissions of the test, denoted +reduce

RTO+FR in table 5.1 caused by retransmission timeouts, we see an aver­

age retransmision delay of 626.7 ms. Although the RTO minimum value

is reduced to 200 ms, the reason for the high average retransmission

delay is the delayed SACKs’ influence on the RTO calculations as shown

in section 4.3.2. With a reduced RTO minimum value only, the tests show

that the minimum retransmission delay of a retransmission timeout is

435.8 ms. As the RTO minimum value in the modified protocol is 200

ms, this shows the lowest value possible when the RTO calculations are

influenced by delayed SACKs. In comparision, the original protocol, de­

71

noted orig. SCTP in the table, has an average retransmission timeout

delay of 1144.6 ms. By reducing the RTO minimum value only, this gives

an improvement of 517.9 ms.

The modified fast retransmit mechanisms are meant to make use of

fewer SACKs reporting loss by triggering a fast retransmit after the first

SACK. The retransmissions caused by fast retransmit show a minimum

retransmission delay of 460.3 ms. Assume that a lost packet is sent at

time 0. The next packet is then sent 250 ms later and is successfully

received. With an RTT of 200 ms, the second packet is received 350 ms

after the lost packet is sent. The receiver discovers the loss and sends

a SACK immediately which arrives at the sender 450 ms after the lost

packet is sent and triggers the fast retransmit. With protocol overhead

and other possible network delays,this gives a minimum retransmission

delay of 460.3 ms. With an average retransmission delay of 472.3 ms,

the modified fast retransmit always make use of the first SACK that ar­

rives and reduce the retransmission delays to almost a third compared

to the corresponding retransmission delay of the original protocol where

it is 1274.2 ms. The maximum retransmission delay is 727.5 ms and oc­

curs if a SACK is lost and the modified fast retransmit is triggered by

the next SACK. At this point, the RTO value is so high that the next

SACK triggers a fast retransmit before the timer expires. We see that the

number of fast retransmits has increased compared to the original pro­

tocol. In cases where retransmission timeouts are displaced by delayed

SACKs, the modified fast retransmit will take care of retransmitting the

data chunks before the timer expires and trigger retransmissions earlier.

As a fast retransmit is triggered by 1 SACK, there are no bundling of

outstanding data chunks that are reported missing as they will get re­

transmitted by a fast retransmit. By looking at the retransmission delays

of bundled data chunks in flight, no significant difference in the retrans­

mission delays can be seen. In the test scenario of the original protocol,

338 data data chunks in flight are bundled in their first retransmission.

In comparision, 635 data data chunks in flight are bundled in this test

scenario. A decrase in the RTO minimum value increases this number as

retransmissions are triggered earlier in the following retransmissions.

This makes it possible to bundle more outstanding data chunks.

By looking at the first retransmissions of both retransmission timeouts

and fast retransmits as a whole, denoted Retr timeout & FR, in each test

scenario, it gives an average retransmission delay of 535.5 ms. In the

original protocol, the corresponding value is 1159.6 ms. This gives an

improvement of 624.1 ms which is a considerable reduction.

72

Including the restart timer modification

In this test scenario, we are including the new restart timer modification

in addition to continue using the mechanisms of the previous test. The

goal is to show the modified timer restart’s influence on the retransmis­

sions caused by retransmission timeouts. We are now making use of all

proposed mechanisms except for bundling of outstanding data chunks

with new data chunks. The results of the test, denoted +mod timer re­

start is shown in table 5.1.

By looking at the retransmissions caused by retransmission timeouts,

the average retransmission delay is 525.0 ms. In comparision, the cor­

responding average retransmission delay of the previous test scenario

is 626.7 ms. Thus, the modified restart timer algorithm alone gives an

improvement of 101.7 ms on the retransmission timeouts.

By looking at the first retransmissions caused by fast retransmits, we

see a minimum retransmission delay of 462.3 ms. This is caused by 288

fast retransmits and show that fast retransmits could still get triggered

in a first retransmission although the modified restart timer algorithm is

in use. In this loss scenario, the time needed to trigger a fast retransmit

is 450 ms as in the previous scenario. With an average retransmission

delay of 462.3 ms and a maximum retransmission delay of 464.3 ms, all

first fast retransmits are caused by the first possible SACK to report it

lost.

By looking at the first retransmissions of both retransmission timeouts

and fast retransmits as a whole, it gives an average retransmission delay

of 495.8 ms. Compared to the last test, this is an improvement of 39.7

ms. There is no difference in the retransmission delay of bundled data

chunks although the retransmission delay of retransmission timeouts

are reduced.

Removing delayed SACKs

In this test scenario, we continue to use the same mechanisms as in

the previous test in addition to remove the SACK delay at the receiver.

The goal of the test is to show the removal of delayed SACKs influence

on the retransmission delays as we have no timer implementation that

could handle them. We are still using the same modifications as in the

previous test. The results of the test is shown in table 5.1 and denoted

+no SACK delay.

73

By looking at the first retransmissions caused by retransmission timeouts,

we see an average retransmission delay of 282.9 ms. In comparision,

the average retransmission delay of a first retransmission timeout with

delayed SACKs is 525.0 ms which is a reduction of 241.2 ms. A re­

moval of delayed SACKs leads to correct RTT measurements as the SACK

is always sent back immediately independent of the high arrival time

between each packet. The minimum retransmission delay is 255.7 and

shows the lowest RTO value possible in this test scenario when the RTO

calculations are based on correct RTT measurements of 200 ms. If the

first SACK is lost, the RTT measurement is based on the next SACK that

arrives 250 ms later. As shown in section 4.3.2, this leads to a rapid

increase in the calculated RTO which allows a first fast retransmit to get

triggered before the timer expires. As described earlier, the minimum

time needed to trigger a fast retransmit is 450 ms in this scenario. Thus,

with an average retransmission timeout delay of 282.9 ms, fast retrans­

mits occurs rarely in a first retransmission unless the RTO value exceeds

the time needed to trigger a fast retransmit.

In this situation, a first fast retransmit is triggered after 463.0 ms, before

the timer expires. If a data chunk is successfully received, the removal of

delayed SACKs makes it possible to acknowledge each data chunk close

to RTT ms which in this case is 200 ms. With an average retransmis­

sion timeout of 282.9 ms in this test scenario, the absence of a SACK

acknowledging the data chunk triggers the retransmission timeout 82.9

ms after the lowest possible time of getting an acknowledgment. This

shows that the RTO calculations could get close to the RTT.

By looking at the first retransmissions of both retransmission timeouts

and fast retransmits as a whole, we see an average retransmission delay

of 283.2 ms. Compared to the last test, this is an improvement of 212.6

ms and shows that delayed SACKs play a major role on the retransmis­

sion delays. This also makes it possible to bundle data chunks earlier

and the average retransmission delay of bundled data chunks has been

decreased from 189.6 ms to 47.1 ms compared to the previous test scen­

ario.

In the results of the test, we have been looking at the first retransmis­

sions to see the effect of the proposed enhancements on the retrans­

mission delays. As retransmission timeouts and fast retransmits trigger

retransmissions, we will take a look at the cumulative retransmission

delays when these are seen as a whole. Figure 5.2 shows the cumulative

retransmission delays for each number of retransmissions in the previ­

ous tests compared to the original SCTP protocol. The figure shows that

the retransmissions has been considerable reduced compared to the ori­

74

 0

 500

 1000

 1500

 2000

 2500

3.
re

tr

2.
re

tr

1.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

m
s

orig. SCTP +reduced
RTO&FR

+mod timer
 restart

+no SACK delay

Figure 5.2: SCTP effect of proposed enhancements

ginal SCTP protocol.

By looking at the average retransmission delays of reduced RTO and

modified fast retransmit only (denoted +reduced RTO&FR), they have

been halved compared to the original SCTP protocol. The maximum

retransmission delay of a third retransmission is reduced by about 1000

ms, which is considerable for interactive applications. By introducing

the modified restart timer mechanism (denoted +mod timer restart), a

small decrease in the retransmission delays can be seen. But it is not

very noticeable in these tests. The best improvement is by removing

delayed SACKs which further decreases the retransmission delays by a

half compared to the other proposed mechanisms.

5.3.2 Modified fast retransmit

In the following two tests, we are considering the first retransmissions

of each test to demonstrate the effect of the modified fast retransmit

mechanism. The results of the tests are presented in table 5.2.

By looking at the results of the original protocol we see that the min­

75

Test Scenario Type Number Min Max Avg

orig. SCTP Retransmission timeout 286 996.2 1388.1 1163.9

Fast retransmit 35 1255.4 1268.1 1260.9

B:Reported missing 20 343.7 1224.1 764.3

B:In flight 885 60.0 1192.0 248.1

Retr timeout & FR 321 996.2 1388.1 1174.4

+reduce RTO+FR Retransmission timeout 150 264.2 351.0 270.8

Fast retransmit 243 216.9 254.2 223.8

B: Reported missing 0 0 0 0

B: In flight 185 213.9 334.5 241.7

Retr timeout & FR 393 216.9 351.0 241.7

+reduce RTO+FR Retransmission timeout 148 264.1 1071.9 279.4

+FR bundling Fast retransmit 244 216.8 242.8 223.5

B: Reported missing 0 0 0 0

B: In flight 405 15.8 555.8 212.7

Retr timeout & FR 402 216.9 351.0 241.7

Table 5.2: SCTP fast retransmit test results

imum retransmission delay of a retransmission timeout is 996.2 ms.

This value is almost equal to the RTO minimum value of 1000 ms. The

reason for that the retransmission delay is 3.8 ms below the minimum

RTO could be because the conversion between jiffies and ms in the kernel

does not always lead to exact values. This does not make any difference

as the RTO is still close to the RTO minimum value of 1000 ms. The

average retransmission delay of a first retransmission timeout is 1163.9

ms and confirms situations where the retransmission timer is delayed

by late SACKs. In such cases, some fast retransmits has the time to get

triggered by 4 SACKs before the retransmission timer expires with an

average retransmission delay of 1260.9 ms. If the last data chunk in the

burst of 4 data chunks is lost, then the 4 data chunks of the next burst

triggers the 4 SACKs needed to fast retransmit. By considering first re­

transmission timeouts and fast retransmits as a whole, this leads to an

average retransmission delay of 1174.4 ms. This value is close to 5 times

higher compared to the thick test of the corresponding scenario in table

3.1 where the average retransmission delay of the first retransmissions

is 208.0 ms.

By looking at the first retransmissions of the modified fast retransmit

test denoted +reduce RTO+FR, we see an average retransmission delay

of 216.9 ms when retransmission timeouts and fast retransmits are seen

as a whole. In comparision, the corresponding average retransmission

delay without the modified fast retransmit mechanism is 1260.9 ms and

76

the new mechanism gives a great reduction and is close to the minimum

value of the thick stream scenario. The modified fast retransmit mech­

anism will take care of retransmitting the lost data chunk if it is sent as

one of the three first in the burst of 4 data chunks. This is because the

next data chunk, sent 10 ms later, will trigger the SACK needed to fast

retransmit. By taking the RTT of 200 ms into account and other possible

protocol and network delays, this leads to the minimum retransmission

delay of 216.9 ms. The maximum retransmission delay of 254.2 ms oc­

curs as the first data chunk in the burst is lost and the data chunk is

fast retransmitted by a SACK triggered by the fourth consequtive data

chunk. In total, this leads to an average retransmission delay of 223.8

ms. If the fourth data chunk in the burst is lost, then it must be retrans­

mitted by a retransmission timeout as the next data chunk is sent 960

ms later. During this time, a retransmission timeout will take care of

retransmitting the data chunk. The average retransmission delay of a

retransmission timeout is 270.7 which is close to the average RTO when

SACK delay is removed as described in section 5.3.1. Although delayed

SACKs is beeing used in this test, bursts of four data chunks lead to

more correct RTT measurements as the second or fourth data chunk in

a burst triggers the second SACK which is sent back by waiting 10 ms,

the time between each data chunk is sent. This leads to almost correct

RTT measurements. By considering first retransmission timeouts and

fast retransmits as a whole, this lead to an average retransmission delay

of 241.7 ms which is a great reduction compared to the original protocol

where the average retransmission delay is 1174.4 ms.

The third test considers bundling in fast retransmits. By looking at the

first retransmissions of this test denoted +reduce RTO+FR + FR bund­

ling in table 5.2, there are no significant difference between the average

retransmission delays or the number of retransmissions except that the

number of bundled data chunks has increased. Table 5.3 shows the

number of bundled data chunks in the last two tests independent of the

number of retransmissions. With bundling in fast retransmits enabled,

there are 509 bundled data chunks. In comparison, without bundling

in fast retransmit enabled, there are 204 bundled data chunks. Thus,

when the modified fast retransmit mechanism is triggered often as in

these tests, the number of bundled data chunks will increase consider­

able. As the stream is thin, there is always important to transfer as many

data chunks as possible inside a packet if there is room according to the

MTU.

Figure 5.3 shows the modified fast retransmit’s effect on the cumulative

retransmission delays when fast retransmit and retransmission timeout

is seen as a whole. Compared to the original protocol, the modified

77

Without FR bundling With FR bundling

204 509

Table 5.3: SCTP Number of bundled data chunks in fast retransmits

 0

 500

 1000

 1500

 2000

 2500

4.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

3.
re

tr

2.
re

tr

1.
re

tr

m
s

original SCTP reduced RTO & FR

Figure 5.3: SCTP effect of modified fast retransmit

fast retransmit and the reduced retransmission timer alone reduces the

retransmission delays drastically in all number of retransmissions. The

maximum cumulative retransmssion delay is reduced from almost 2500

ms to below 1000 ms. This should be very considerable in interactive

applications.

5.4 Evaluation

We have been running several tests that demonstrates the effect of the

proposed enhancements in thin streams. We have seen that the new

mechanisms are improving the retransmission delays compared to the

original protocol. As the stream in the tests is thin, the improvements

in retransmission delays show that the packets in flight algorithm is in­

78

voking the modified mechanisms as it is supposed to do. In the tests,

we have been looking at the effect on the first retransmissions and es­

pecially the modified mechanism’s influence on retransmission timeouts

and fast retransmits in addition to bundling of outstanding data chunks.

Because of SCTP minimum RTO value of 1000 ms and the fact that 4

SACKs rarely have the chance to trigger a fast retransmit before the

timer expires, the test results of the thin streams in section 3.2 show

a minium retransmission delay of 1000 ms in all scenarios. This is a

great increase compared to the similar scenario running thick streams.

The nature of the thin stream used in the tests are able to trigger several

SACKs, but 4 SACKs are mostly to much to trigger a fast retransmit in a

first retransmission before the timer expires. However, the large time in­

terval between the incoming SACKs are able to displace retransmission

timeouts by restarting the timer. This lead to some occurrences of fast

retransmits before the timer expires, but the retransmission delays are

higher in average compared to retransmission timeouts.

The tests of the proposed enhancements, discussed in section 5.3.1,

show that the most effective way of reducing the retransmission delays

in thin streams is by decreasing the minimum RTO value to trigger re­

transmissions earlier. If the time between each sent data chunk is high,

the retransmission timer will take care of retransmitting them as early

as possible as the time needed to trigger a fast retransmit could be high.

But the tests confirms that if the time between each sent data chunk

is higher than the SACK delay of 200 ms, there is impossible to trigger

retransmission timeouts below 435.8 although the minimum RTO value

has been reduced to 200 ms. This confirms that in such scenarios, the

RTO value is always 200 ms to high. In addition, the average RTO value

could be considerably higher than the minimum value. This is critical

for the retransmission delays in thin streams if no SACKs are able to

trigger fast retransmits earlier.

Although the test including the modified restart timer mechanism has

been shown to give improvements in the average retransmission timeout

delays, the tests show that a removal of the SACK delay gives most im­

provements. In the tests, it is almost halving the retransmission delays

and proves that SACK delay makes a big influence on the RTO calcula­

tions by increasing the retransmission delays considerably. Thus, if the

stream is thin and SACK delay could not be removed at the receiver, a

retransmission timer should be considered to handle this problem. If

SACK delay is not taken into account, it leads to higher retransmission

delays than necessary in the absence of SACKs that could trigger fast

retransmits before the timer expires.

79

Reducing the number of SACKs needed to trigger a fast retransmit from

4 to 1 gives large improvements in the tests. The effect depends on the

time interval between each data chunk. The test of the modified fast re­

transmit mechanism show that waiting for 4 SACKs takes too long time.

If the nature of the thin stream is like sending some few data chunks

in a burst, then the modified fast retransmit mechanism comes to its

rights. It also reduces the retransmission delays when data chunks are

sent in large intervals by triggering fast retransmits much earlier com­

pared to the original protocol. In situations where a SACK arrives before

the retransmission timer expires, the tests show that it is necessary to

make use of the first indication of data chunk loss as it leads to lower

retransmission delays.

5.5 Summary

In this chapter we have tested the proposed enhancements. The tests

show that the proposed enhancements were invoked by the packets in

flight mechanism. Thus, it shows that the packet in flight mechanism is

working properly. By reducing the RTO value, the average retransmis­

sion delays reflected an over estimated RTO because of delayed SACKs.

By introducing the modified restart timer mechanism, some decrease

in the retransmission delays were seen although they were not con­

siderable lower. The best effect was simply to remove delayed SACKs

although it modifies the receiver. However, the modification could in­

dicate the achieved retransmission delays if the retransmission timer

considers delayed SACKs in its RTO calculations. The modified fast re­

transmit mechanism is very impressive when it came to its rights by

lowering the retransmission delays considerably.

80

Chapter 6

Conclusion and remaining

challenges

In this thesis we have investigated TCP NewReno and SCTP with respect

to retransmission delays in thick and thin streams. The observations

have been used to propose various enhancements in SCTP with the goal

of improving the retransmission delays in thin streams.

6.1 Conclusion

The tests showed that TCP NewReno and SCTP have different ways to

retransmit data in regards to how the retransmissions are handled and

what is retransmitted in different situations.

In thick streams, TCP NewReno retransmissions are mostly caused by

a fast retransmit. Because of its fast recovery mechanism, new packets

are not allowed to be sent or retransmitted before an ACK acknowledges

the earliest lost packet. If a packet is lost, it has to get retransmitted by

a retransmission timeout which during situations of multiple loss grows

exponentially. This affects the retransmission delays. The tests showed

that the various combination of SACK mechanisms gives improvement

on the retransmission delay without pointing out a winner.

In thick streams, the tests showed that SCTP retransmits almost all pack­

ets by a fast retransmit without triggering the retransmission timer at

all. It was quickly discovered that SCTP has neither a fast recovery

mechanism implemented nor a limit on how many times a data chunk

81

could get subsequently fast retransmitted without getting an acknow­

ledgement. This lead to much lower retransmission delays compared to

TCP NewReno. In addition, the subsequent fast retransmits are each cut­

ting the congestion window in half and reduces the throughput drastic­

ally. This is unecessary as most retransmissions are spurious.

In thin streams, the tests showed that all retransmissions are triggered

by the retransmission timer in TCP NewReno as the stream is so thin that

three duplicate ACKs never have the chance to trigger fast retransmits

before the timer expires. Thus, the various SACK extensions do not

come to its rights. During multiple loss, this lead to several exponential

backoffs of the retransmission timer which caused some extremly high

retransmission delays.

SCTP has similar retransmission characteristics as TCP NewReno in thin

streams, but there are also differences. Most retransmissions are triggered

by the retransmission timer, but because of the high RTO minimum

value, most first retransmission delays are higher, compared to TCP

NewReno. Because of late arrivals of SACKs, the retransmission timer

could get considerable delayed. This makes it possible to trigger some

fast retransmits before the timer expires. In addition, SCTP triggers the

retransmission timer and fast retransmit independently of each other.

This avoids the extreme maximum values in TCP NewReno caused by ex­

ponential backoffs, but several retransmissions are spurious. In contrast

to TCP NewReno, SCTP could retransmit some data earlier because of

different bundling strategies. All in all, SCTP first retransmission delays

are considerable higher than TCP NewReno’s first retransmission delays

because of the RTO minimum value. If the packet or data chunk is lost

only once, TCP NewReno is preferred. As TCP NewReno suffers from

several exponential backoffs, the suceeding retransmission delays are

considerable higher than SCTP’s suceeding retransmission delays. Dur­

ing multiple loss of the same packet or data chunk, SCTP is preferred

although it leads to several spurious retransmissions beacuse of its re­

transmission handling.

To improve the retransmission delays in thin streams, several enhance­

ments were proposed and implemented. This contain a mechanism

to detect thin streams, fast retransmit after 1 SACK, bundling of data

chunks in fast retransmits, reducing the RTO minimum value, correct­

ing RTO value in timer restarts and eliminate the exponential backoff

mechanism. In addition, bundling of outstanding data chunks with new

data chunks has been proposed and implemented. The tests show that

reducing the RTO value triggers retransmissions earlier, but because

of delayed SACKs it was still considerable high. By removing delayed

82

SACKs in the lack of a retransmission timer handling their presence,

there is possible to trigger retransmission even earlier. The danger is

that this could lead to RTO values close to the RTT which could trigger

spurious retransmissions without a retransmission timer handling this

problem. But the retransmission delays of first retransmissions are al­

most 1/5 lower compard to the original SCTP protocol. The modified

timer restart algorithm prevents the retransmission delays of going too

high, but its effect is not very well seen in the tests because of the nature

of the stream. The modified fast retransmit mechanism also improves

the retransmission delays drastically when data chunks are sent in a way

to let it come to it rights. Compared to the original protocol, the retrans­

mission delays of first retransmissions is reduced to 1/5. In addition,

allowing bundling in fast retransmits leads to a doubling in the number

of bundled data chunks.

6.2 Remaining challenges

SCTP needs to handle retransmissions correctly by avoiding several fast

retransmits of the same data chunk as it leads to a drastic reduce in

throughput. In addition a fast recovery mechanism should be imple­

mented to avoid subsequent lowerings of the congestion window during

multiple loss scenarios. A way to incorporate the NewReno fast recov­

ery mechanisms in SCTP is suggested by [16]. In addition, prevention of

subsequent fast retransmits of the same data chunks and a fast recovery

mechanism in SCTP is suggested by [1].

The SCTP retransmission timer should be changed to handle RTO cal­

culations more correctly, especially to handle delayed SACKs and rapid

changes in the RTT measurements when the stream is thin. The Eifel

Retransmission Timer [18] solves several of these problems and should

be considered implemented into SCTP.

We have not been looking at the multi­homing and multiple streams fea­

tures of SCTP. Since each destination address has its own retransmission

timer, one approach could be to always send data to the address with the

lowest RTO. Thus, SCTP will always try to retransmit as early as possible

when a retransmission timeout occurs.

The nature of the thin streams used in tests are very limited. They will

not manage to cover all scenarios the proposed mechanisms is designed

for. Thus, they should be further tested, especially with real applications

in real networks.

83

Bibliography

[1] IETF SCTP Implementors Guide 16. http://www3.ietf.org/

proceedings/06mar/IDs/draft­ietf­tsvwg­sctpimpguid%e­16.

txt.

[2] Linux kernel SCTP implementation. http://lksctp.sourceforge.

net/.

[3] Netem. http://linux­net.osdl.org/index.php/Netem.

[4] Netperf. http://www.netperf.org/netperf/NetperfPage.html.

[5] Pcap ­ packet capture library. http://www.tcpdump.org/pcap3_man.

html.

[6] RFC 2018 ­ TCP Selective Acknowledgment Options. http://http:

//www.rfc.net/rfc2018.html.

[7] RFC 2883: An extension to the selective acknowledgement (SACK)

option for tcp. http://rfc.net/rfc2883.html.

[8] RFC 3782: The NewReno Modification to TCP’s Fast Recovery Al­

gorithm. http://www.rfc.net/rfc3782.html.

[9] RFC 793: Transmission Control Protocol (TCP). http://rfc.net/

rfc793.

[10] RFC2581: TCP Congestion Control. http://rfc.net/rfc2581.html.

[11] RFC2960 Stream Control Transmission Protocol (SCTP). http://

www.rfc.net/rfc2960.html.

[12] RFC2988: Computing TCP’s Retransmission Timer. http://rfc.

net/rfc2988.html.

[13] Sctpperf. http://drakkar.imag.fr/~phadam/work/sctpperf/

index.html.

[14] Tc man page. http://lartc.org/manpages/tc.txt.

84

[15] Tcpdump. http://www.tcpdump.org.

[16] A. Caro, K. Shah, J. Iyengar, P. Amer, and R. Stewart. SCTP and

TCP variants: Congestion control under multiple losses. Technical

Report TR2003­04, CIS Dept, University of Delaware, February 2003.

[17] C. Griwodz and P. Halvorsen. The Fun of using TCP for an MMORPG.
Technical report. http://heim.ifi.uio.no/~jonped/funtrace.pdf.

[18] R. Ludwig and K. Sklower. The Eifel Retransmission Timer. ACM Com­

puter Communications Review, 30(3), July 2000.

[19] M. Mathis and J. Mahdavi. Forward acknowledgement: Refining TCP Con­

gestion Control. Association for Computer Machinery (ACM), 26(4):11,

1996.

85

Appendix A

Code for new SCTP routines

A.1 add_pkt_in_flight()

1 void add_pkt_in_flight(struct sctp_association *a, __u32 tsn){

if(a­>pkt_in_flight_head == NULL){
a­>pkt_in_flight_head = (struct pkt_in_flight*)

5 kmalloc(sizeof(struct pkt_in_flight),
GFP_KERNEL);

a­>pkt_in_flight_head­>highestTSN = tsn;
a­>pkt_in_flight_head­>next = NULL;
a­>pkt_in_flight_head­>prev = NULL;

10 a­>pkt_in_flight_tail = a­>pkt_in_flight_head;
}
else{
a­>pkt_in_flight_tail­>next = (struct pkt_in_flight*)

kmalloc(sizeof(struct pkt_in_flight),
15 GFP_KERNEL);

a­>pkt_in_flight_tail­>next­>highestTSN = tsn;
a­>pkt_in_flight_tail­>next­>prev = a­>pkt_in_flight_tail;
a­>pkt_in_flight_tail = a­>pkt_in_flight_tail­>next;
a­>pkt_in_flight_tail­>next = NULL;

20 }
a­>packets_in_flight++;

}

A.2 remove_pkts_in_flight()

1 void remove_pkts_in_flight(struct sctp_association *a, __u32 sack_cum_tsn){

struct pkt_in_flight *pkt, *pkt_temp, *pkt_next;

5 for(pkt = a­>pkt_in_flight_head; pkt != NULL; pkt = pkt_next){

86

if(pkt­>highestTSN <= sack_cum_tsn){

if(pkt == a­>pkt_in_flight_head){
10 /* Removing head of list */

a­>pkt_in_flight_head = pkt­>next;

if(a­>pkt_in_flight_head != NULL){
15 a­>pkt_in_flight_head­>prev = NULL;

}
pkt­>next = NULL;
kfree(pkt);
pkt_next = a­>pkt_in_flight_head;

20 }
else if(pkt == a­>pkt_in_flight_tail){
/* Removing tail of list */

if(pkt­>prev != NULL){
25 a­>pkt_in_flight_tail = pkt­>prev;

pkt­>prev­>next = NULL;
}
pkt­>prev = NULL;
kfree(pkt);

30 pkt_next = NULL;
}
else{
/* Removing an inbetween element */
pkt­>prev­>next = pkt­>next;

35 pkt­>next­>prev = pkt­>prev;
pkt_temp = pkt­>next;
pkt­>next = NULL;
pkt­>prev = NULL;
kfree(pkt);

40 pkt_next = pkt_temp;
}
a­>packets_in_flight­­;

}
else{

45 pkt_next = pkt­>next;
}

}

/* Do not count packets that already have left the network */
50

a­>packets_in_flight += a­>packets_left_network;
a­>packets_left_network = 0; /* Reset variable */

}

A.3 check_stream_before_add()

1 int check_stream_before_add(struct sctp_transport *t,
struct sctp_chunk *chunk,
__u8 fast_retransmit){

5 if(t­>asoc­>packets_in_flight < 5)
return ((fast_retransmit && chunk­>fast_retransmit) ||

!chunk­>tsn_gap_acked);

87

else

return ((fast_retransmit && chunk­>fast_retransmit) ||
10 (!fast_retransmit && !chunk­>tsn_gap_acked));

}

A.4 Modified restart timer algorithm

1 if (restart_timer) {

oldest_outstanding_chunk = NULL;

5 list_for_each(list_chunk, &tlist){
cur_chunk = list_entry(list_chunk, struct sctp_chunk,

transmitted_list);

if(sctp_chunk_is_data(cur_chunk)){
10 if(!cur_chunk­>tsn_gap_acked){

oldest_outstanding_chunk = cur_chunk;
break;

}
}

15 }

if(oldest_outstanding_chunk != NULL){
if (!mod_timer(&transport­>T3_rtx_timer,

(jiffies ­
20 (jiffies ­ oldest_outstanding_chunk­>sent_at)

+ transport­>rto)))
sctp_transport_hold(transport);

}
else{

25 if (!mod_timer(&transport­>T3_rtx_timer,
jiffies + transport­>rto))

sctp_transport_hold(transport);
}

}

A.5 bundle_outstanding_chunks()

1 void bundle_outstanding_chunks(struct sctp_packet *packet,
struct sctp_transport *transport){

size_t packet_size, pmtu, outstanding_chunks_size = 0;
5 struct sctp_chunk *chunk;

struct list_head *chunk_list, *list_head;
struct list_head outstanding_list;
int bundling_performed = 0;
__u16 chunk_len;

10

if(transport == NULL){
return;

}

88

15 list_for_each(chunk_list, &packet­>chunk_list){
chunk = list_entry(chunk_list, struct sctp_chunk,

list);

if(sctp_chunk_is_data(chunk)){
20 if(chunk­>has_tsn)

return;
else

break;
}

25 }

packet_size = packet­>size;

pmtu = ((packet­>transport­>asoc) ?
30 (packet­>transport­>asoc­>pmtu) :

(packet­>transport­>pmtu));

INIT_LIST_HEAD(&outstanding_list);

35 list_for_each(list_head, &transport­>transmitted){

chunk = list_entry(list_head, struct sctp_chunk,
transmitted_list);

40 if(sctp_chunk_is_data(chunk)){
if(chunk­>has_tsn){

chunk_len = WORD_ROUND(ntohs(chunk­>chunk_hdr­>length));

45 if((packet_size + chunk_len) > pmtu){
break;

}
else{
packet_size += chunk_len;

50 outstanding_chunks_size += chunk_len;
chunk­>transport = packet­>transport;
list_add_tail(&chunk­>list, &outstanding_list);
bundling_performed = 1;

}
55 }

}
}

if(bundling_performed){
60 list_splice(&outstanding_list, &packet­>chunk_list);

packet­>size += outstanding_chunks_size;
}

}

89

Appendix B

Sctp_trace source code

B.1 sctp_trace.c

1 #include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <pcap.h>

5 #include <errno.h>
#include <time.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

10 #include <netinet/if_ether.h> /* includes net/ethernet.h */
#include "sctp_trace.h"

struct timeval global_time;
struct datachunk datachunks[MAX_CHUNKS];

15

/* Hold retransmissions of specific number and type*/
/* 0 = FR+RTO */
/* 1 = Retransmission Timeout */
/* 2 = Fast Retransmit */

20 /* 3 = Bundled reporting missing */
/* 4 = Bundled in flight */
struct retr retr[5][MAX_RETRANSMISSIONS];

/* Max retransmissions of a data chunk encountered */
25 int max_retransmissions = 0;

double calc_timediff(const struct timeval *t1, const struct timeval *t2){

double sec_diff, msec_diff;
30

sec_diff = (double)((t2­>tv_sec ­ t1­>tv_sec) * 1000);
msec_diff = ((double)(t2­>tv_usec) ­ (double)(t1­>tv_usec)) / 1000;

return sec_diff + msec_diff;
35 }

90

/* Update retransmission statistics for a specific retransmission*/

40 void update_retr(double cumulative_retrtime,
struct retr *retransmission,
u_int32_t TSN){

retransmission­>retransmissions++;
45

retransmission­>avg_cumulative_retrtime =
((retransmission­>avg_cumulative_retrtime *

(retransmission­>retransmissions ­ 1))
+ datachunks[TSN].cumulative_retrtime) / retransmission­>←֓

→֒retransmissions;
50

if(retransmission­>retransmissions < 2){

retransmission­>min_cumulative_retrtime = datachunks[TSN].←֓
→֒cumulative_retrtime;

retransmission­>max_cumulative_retrtime = datachunks[TSN].←֓
→֒cumulative_retrtime;

55 }
else{
if(datachunks[TSN].cumulative_retrtime > retransmission­>←֓

→֒max_cumulative_retrtime){
retransmission­>max_cumulative_retrtime = datachunks[TSN].←֓

→֒cumulative_retrtime;
}

60 if(datachunks[TSN].cumulative_retrtime < retransmission­>←֓
→֒min_cumulative_retrtime){

retransmission­>min_cumulative_retrtime = datachunks[TSN].←֓
→֒cumulative_retrtime;

}
}

}
65

/* Handles a data chunk retransmission in the modified SCTP protocol for ←֓
→֒thin streams

Also allows bundling of chunks in fast retransmits.
*/

70 void handle_chunk_mod_retransmission(int firstInPacket,
double retr_time, u_int32_t TSN,
const struct pcap_pkthdr *header, int ←֓

→֒*is_rto){
double first_chunk_time;
int retr_nr = datachunks[TSN].retransmissions;

75

if(firstInPacket){
if(datachunks[TSN].sacks < 1){

/* Retransmission Timeout */
80 *is_rto = 1;

printf(" Retr Timeout\n");
update_retr(datachunks[TSN].cumulative_retrtime, &retr[1][retr_nr], ←֓

→֒TSN);
update_retr(datachunks[TSN].cumulative_retrtime, &retr[0][retr_nr], ←֓

→֒TSN);
}

85 else{
/* Fast retransmit */

91

printf(" Fast Retransmit\n");
update_retr(datachunks[TSN].cumulative_retrtime, &retr[2][retr_nr], ←֓

→֒TSN);
90 update_retr(datachunks[TSN].cumulative_retrtime, &retr[0][retr_nr], ←֓

→֒TSN);
}

}
else{
/* Bundled chunks in retransmission timeout and modified fast ←֓

→֒retransmit */
95

if(datachunks[TSN].sacks == 0){
printf(" In flight\n");
update_retr(datachunks[TSN].cumulative_retrtime, &retr[4][retr_nr], ←֓

→֒TSN);
}

100 else{
update_retr(datachunks[TSN].cumulative_retrtime, &retr[2][retr_nr], ←֓

→֒TSN);
update_retr(datachunks[TSN].cumulative_retrtime, &retr[0][retr_nr], ←֓

→֒TSN);
}

}
105 }

/* Handle a data chunk retransmission in the original SCTP protocol */
void handle_chunk_retransmission(int firstInPacket,

double retr_time, u_int32_t TSN,
110 const struct pcap_pkthdr *header, int *←֓

→֒is_rto){
double first_chunk_time;
int retr_nr = datachunks[TSN].retransmissions;

if(firstInPacket){
115 if(datachunks[TSN].sacks < SACK_THRESHOLD){

/* Retransmission Timeout */
*is_rto = 1;
printf(" Retr Timeout\n");

120

update_retr(datachunks[TSN].cumulative_retrtime,
&retr[1][retr_nr], TSN);

update_retr(datachunks[TSN].cumulative_retrtime,
125 &retr[0][retr_nr], TSN);

}
else{

/* Fast retransmit */
printf(" Fast Retransmit\n");

130 update_retr(datachunks[TSN].cumulative_retrtime,
&retr[2][retr_nr], TSN);

update_retr(datachunks[TSN].cumulative_retrtime,
&retr[0][retr_nr], TSN);

135 }
}
else{
/* Bundling */
if(*is_rto == 1){

140 if(datachunks[TSN].sacks == 0){
printf(" In flight\n");
update_retr(datachunks[TSN].cumulative_retrtime,

92

&retr[4][retr_nr], TSN);
}

145 else{
printf(" Reported missing\n");
update_retr(datachunks[TSN].cumulative_retrtime,

&retr[3][retr_nr], TSN);
}

150 }
/* If first is not a retransmission timeout, bundled chunk is a fast ←֓

→֒retransmit */
else{

printf(" Fast Retransmin\n");
update_retr(datachunks[TSN].cumulative_retrtime,

155 &retr[2][retr_nr], TSN);
update_retr(datachunks[TSN].cumulative_retrtime,

&retr[0][retr_nr], TSN);
}

}
160 datachunks[TSN].sacks = 0; /* Reset SACK missing report */

}

/* Sniff packet:*/

165 void sniff_packet(const struct pcap_pkthdr *header,
const u_char *packet){

static u_int32_t firstTSN, expectedTSN;
double retr_time;

170

const struct sniff_ip *ip; /* IP header */
const struct sctpHeader *sctpPacketHeader; /* SCTP packet header*/
const struct sctpChunkDesc *chunkDescPtr; /* chunk header */
const void *sctpPacketEnd; /* End of SCTP packet */

175 const u_char *chunkEnd; /* End of chunk */
const struct sctpDataPart *dataChunkHeader;
const void *nextChunk; /* Next chunk in packet */

static int first_datachunk = 1; /* First data chunk encountered? */
180 int firstInPacket = 1; /* First data chunk in a packet?*/

int isRTO = 0; /* Is this a retransmission timeout ?*/

double timediff;

185 u_int8_t chunkID;
u_int sctpPacketLength;
u_int size_ipheader;
u_int16_t chunkLength;
u_int16_t align;

190

u_int32_t TSN;

if(header­>caplen < header­>len){
printf("Error: Packet is truncated, need whole packet to extract SCTP ←֓

→֒headers\n");
195 exit(1);

}

/* Extract packet and chunk headers */
ip = (struct sniff_ip*)(packet + SIZE_ETHERNET);

200 size_ipheader = IP_HL(ip)*4;

sctpPacketLength = header­>len ­ (SIZE_ETHERNET + size_ipheader);

93

sctpPacketHeader = (const struct sctpHeader*)(packet + SIZE_ETHERNET + ←֓
→֒size_ipheader);

sctpPacketEnd = (const u_char*) sctpPacketHeader + sctpPacketLength;
205

chunkDescPtr = (const struct sctpChunkDesc *)
((const u_char*) sctpPacketHeader + sizeof(struct sctpHeader));

/* Pring global time: */
210 timediff = calc_timediff(&global_time, &header­>ts);

printf("[%.3f]", timediff);

/* Traverse chunks in packet */

215 while(chunkDescPtr != NULL && ((const void *)((const u_char *) ←֓
→֒chunkDescPtr

+ sizeof(struct sctpChunkDesc))) <= ←֓
→֒sctpPacketEnd){

chunkLength = EXTRACT_16BITS(&chunkDescPtr­>chunkLength);
chunkID = chunkDescPtr­>chunkID;

220 chunkEnd = ((const u_char*)chunkDescPtr + chunkLength);

/* Handle data chunks */

if(chunkID == SCTP_DATA){
225

dataChunkHeader=(const struct sctpDataPart*)(chunkDescPtr + 1);
TSN = EXTRACT_32BITS(&dataChunkHeader­>TSN); /* Extract TSN */

if(chunkLength == 0){
230 printf("ERROR: CHUNK LENGTH = 0\n");

break;
}

/* If the first data chunk discovered, set the inital TSN */
235 if (first_datachunk){

expectedTSN = TSN + 1;
firstTSN = TSN;

240 /* Reset retransmission statistics */
datachunks[TSN ­ firstTSN].retransmissions = 0;
datachunks[TSN ­ firstTSN].sacks = 0;
datachunks[TSN ­ firstTSN].cumulative_retrtime = 0;

245 printf(" TSN: %u\n", (TSN­firstTSN));

first_datachunk = 0;
}

250 /* Handle retransmission */
else if (TSN < expectedTSN){

retr_time = calc_timediff(&datachunks[TSN ­ firstTSN].timestamp,
&header­>ts);

255

if(retr_time > 0){

if(firstInPacket) printf(" RETRANSMISSION:\n");
datachunks[TSN ­ firstTSN].retransmissions++;

260

94

if(datachunks[TSN ­ firstTSN].retransmissions > ←֓
→֒max_retransmissions){

max_retransmissions = datachunks[TSN ­ firstTSN].←֓
→֒retransmissions;

}

265 datachunks[TSN ­ firstTSN].cumulative_retrtime += retr_time;

printf("\t R%d %u (%.3fms)",
datachunks[TSN ­ firstTSN].retransmissions,
(TSN­firstTSN),

270 datachunks[TSN ­ firstTSN].cumulative_retrtime);

/* Call routine based on if we are testing the original SCTP
or modified SCTP.

*/
275

if(!TEST_MODIFIED_SCTP){
handle_chunk_retransmission(firstInPacket,

retr_time, (TSN­firstTSN),
header, &isRTO);

280 }
else{

handle_chunk_mod_retransmission(firstInPacket,
retr_time, (TSN­firstTSN),
header, &isRTO);

285 }
if(firstInPacket) firstInPacket = 0;

}
else{
// Timestamp failure, throw packet

290 break;
}

}

295 /* A new data chunk, reset retransmission statistics */
else{
printf(" TSN: %u\n", (TSN­firstTSN));
datachunks[TSN ­ firstTSN].retransmissions = 0;
datachunks[TSN ­ firstTSN].sacks = 0;

300 datachunks[TSN ­ firstTSN].cumulative_retrtime = 0;
expectedTSN = TSN + 1;

}

/* Set timestamp of when data chunk is transmitted */
305 datachunks[TSN ­ firstTSN].timestamp.tv_sec = header­>ts.tv_sec;

datachunks[TSN ­ firstTSN].timestamp.tv_usec = header­>ts.tv_usec;
}

else if(chunkID == SCTP_SELECTIVE_ACK){
310

const struct sctpSelectiveAck *sack;
const struct sctpSelectiveFrag *gapblock;
u_int16_t numberOfdesc, startBlock, endBlock;
u_int32_t gapStart, gapEnd;

315 int blockNo, j;

/* Need to start retransmission statistics with a data chunk */
if(first_datachunk){

320 break;

95

}

/* Extract SACK chunk*/
sack=(const struct sctpSelectiveAck*)(chunkDescPtr+1);

325

/* Get number of gap ack blocks */
numberOfdesc = EXTRACT_16BITS(&sack­>numberOfdesc);

printf(" SACK CUM ACK: %u #GAP ACKs: %u ",
330 (EXTRACT_32BITS(&sack­>highestConseqTSN)­firstTSN),

numberOfdesc);

if(numberOfdesc > 0) {
/* Print gap ack blocks */

335 printf("GAP ACKED: ");

gapblock = (const struct sctpSelectiveFrag *)((const struct ←֓

→֒sctpSelectiveAck *) sack+1);
gapStart = (EXTRACT_32BITS(&sack­>highestConseqTSN)­firstTSN) + 1;

340 for(blockNo = 0; blockNo < numberOfdesc; blockNo++){

startBlock = EXTRACT_16BITS(&gapblock­>fragmentStart)
+ (EXTRACT_32BITS(&sack­>highestConseqTSN)­firstTSN);

345 endBlock = EXTRACT_16BITS(&gapblock­>fragmentEnd)
+ (EXTRACT_32BITS(&sack­>highestConseqTSN)­firstTSN);

for(j = gapStart; j < endBlock; j++){
/* Update SACK missing report of data chunk */

350 datachunks[j].sacks++;
}
gapStart = endBlock+1;

printf("%u­%u ", startBlock, endBlock);
355 gapblock++;

}
}

printf("\n");
360 break;

}

else{

365 /* Print other chunk types */

if(chunkID == 1) printf(" INIT\n");
else if(chunkID == 2) printf(" INIT ACK\n");
else if(chunkID == 4) printf(" HEARTBEAT\n");

370 else if(chunkID == 5) printf(" HEARTBEAT ACK\n");
else if(chunkID == 6) printf(" ABORT\n");
else if(chunkID == 7) printf(" SHUTDOWN\n");
else if(chunkID == 8) printf(" SHUTDOWN ACK\n");
else if(chunkID == 9) printf(" ERROR\n");

375 else if(chunkID == 10) printf(" COOKIE ECHO\n");
else if(chunkID == 11) printf(" COOKIE ACK\n");
else if(chunkID == 12) printf(" ECNE\n");
else if(chunkID == 13) printf(" CWR\n");
else if(chunkID == 14) printf(" SHUTDOWN COMPLETE\n");

380 else printf("\n");
break;

96

}

/* Chunk length must be a multiple of 4 bytes,
385 max alignment = 3 bytes */

align = chunkLength % 4;
if (align != 0){

align = 4 ­ align;
390 }

/* Find pointer to next chunk in packet */
nextChunk = (const void *) (chunkEnd + align);
chunkDescPtr = (struct sctpChunkDesc *)((u_char*) nextChunk);

}
395

fflush(stdout);
}

400 /* Reset retransmission statistics */
void reset_retr(){

int i = 0, j =0;

405 for(i=0; i< 5; i++){
for(j=1; j<MAX_RETRANSMISSIONS; j++){

retr[i][j].avg_cumulative_retrtime = 0;
retr[i][j].min_cumulative_retrtime = 0;
retr[i][j].max_cumulative_retrtime = 0;

410 }
}

}

/* Print retransmission statistics */
415 void print_retr(){

int i = 1;

if(TEST_MODIFIED_SCTP){
420 printf("\n MODIFIED ");

}
else{
printf("\n");

}
425

printf("SCTP RETRANSMISSION STATS SORTED BY RETRANSMISSION NR AND TYPE:\n←֓
→֒");

for(i = 1; i <= max_retransmissions; i++){

430 printf("\n%d. RETRANSMISSION:\n\n", i);
printf("RTO (%d): min = %.1f ms, max = %.1f ms, avg = ←֓

→֒%.1f ms\n",
retr[1][i].retransmissions,
retr[1][i].min_cumulative_retrtime,
retr[1][i].max_cumulative_retrtime,

435 retr[1][i].avg_cumulative_retrtime);

printf("Fr (%d): min = %.1f ms, max = %.1f ms, avg = ←֓
→֒%.1f ms\n",

retr[2][i].retransmissions,
retr[2][i].min_cumulative_retrtime,

440 retr[2][i].max_cumulative_retrtime,

97

retr[2][i].avg_cumulative_retrtime);

printf("B: Reported missing (%d): min = %.1f ms, max = %.1f ms, avg = ←֓
→֒%.1f ms\n",

retr[3][i].retransmissions,
445 retr[3][i].min_cumulative_retrtime,

retr[3][i].max_cumulative_retrtime,
retr[3][i].avg_cumulative_retrtime);

printf("B: In flight (%d): min = %.1f ms, max = %.1f ms, avg = ←֓
→֒%.1f ms\n",

retr[4][i].retransmissions,
450 retr[4][i].min_cumulative_retrtime,

retr[4][i].max_cumulative_retrtime,
retr[4][i].avg_cumulative_retrtime);

printf("FR + RTO: (%d): min = %.1f ms, max = %.1f ms, avg = ←֓
→֒%.1f ms\n",

455 retr[0][i].retransmissions,
retr[0][i].min_cumulative_retrtime,
retr[0][i].max_cumulative_retrtime,
retr[0][i].avg_cumulative_retrtime);

}
460

}

int main(int argc, char *argv[]){

465 /* Check if first packet to set global time */
int first = 1;

if(argc != 2){
fprintf(stderr, "Usage: %s <SCTP pcap tracefile>\n", argv[0]);

470 exit(1);
}

char errbuf[PCAP_ERRBUF_SIZE];
pcap_t* file = pcap_open_offline(argv[1], errbuf);

475

if(file == NULL){
fprintf(stderr, "Couldn’t open tracefile ’%s’\n", argv[1]);
exit(1);

}
480 /* Reset retransmission statistics */

reset_retr();

struct pcap_pkthdr h;
const u_char *data;

485

/* Sniff each packet in pcap tracefile: */
do {
data = (const u_char *)pcap_next(file, &h);
if(data == NULL){

490 pcap_perror(file, "\nNo more data on file\n");
}
else{

if(first){

495 /* Store the time of the first packet as global time */

global_time.tv_sec = h.ts.tv_sec;
global_time.tv_usec = h.ts.tv_usec;
first = 0;

98

500 }
sniff_packet(&h, data); /* Sniff packet */

}
}
while(data != NULL);

505

/* Print retransmission statistics to screen */
print_retr();

/* Close pcap file */
510 pcap_close(file);

return 0;

}

B.2 sctp_trace.h

1 #define SIZE_ETHERNET 14
#define MAX_CHUNKS 1000000
#define MAX_RETRANSMISSIONS 100
#define SACK_THRESHOLD 4

5

/* Are we testing the modified SCTP protocol for thin streams? */
#define TEST_MODIFIED_SCTP 0

#define SCTP_DATA 0x00 /* Chunk ID for data chunk */
10 #define SCTP_SELECTIVE_ACK 0x03 /* Chunk ID for SACK chunk */

#define EXTRACT_16BITS(p) \
((u_int16_t)ntohs(*(const u_int16_t *)(p)))

#define EXTRACT_32BITS(p) \
15 ((u_int32_t)ntohl(*(const u_int32_t *)(p)))

/* IP header */
struct sniff_ip {
u_char ip_vhl;/* version << 4 | header length >> 2 */

20 u_char ip_tos;/* type of service */
u_short ip_len;/* total length */
u_short ip_id;/* identification */
u_short ip_off;/* fragment offset field */

#define IP_RF 0x8000/* reserved fragment flag */
25 #define IP_DF 0x4000/* dont fragment flag */

#define IP_MF 0x2000/* more fragments flag */
#define IP_OFFMASK 0x1fff/* mask for fragmenting bits */
u_char ip_ttl;/* time to live */
u_char ip_p;/* protocol */

30 u_short ip_sum;/* checksum */
struct in_addr ip_src,ip_dst; /* source and dest address */

};

#define IP_V(ip) (((ip)­>ip_vhl & 0xf0) >> 4)
35 #define IP_HL(ip) ((ip)­>ip_vhl & 0x0f)

/* Retransmission statistics for a specific retransmission */
struct retr{

99

40 double avg_cumulative_retrtime;
double min_cumulative_retrtime;
double max_cumulative_retrtime;
int retransmissions;

};
45

/* Holds retransmission information for a data chunk*/
struct datachunk{

/*TSN of this DATA chunk */
50 u_int32_t TSN;

/* Number of retransmissions of this DATA chunk */
int retransmissions;

55 /* Number of SACKs reporting this chunk to be lost */
int sacks;

/* The cumulative retransmission time of this DATA chunk */
double cumulative_retrtime;

60

/* Timestamp of when DATA chunk is transmitted */
struct timeval timestamp;

};

65 /* SCTP packet header */
struct sctpHeader{
u_int16_t source;
u_int16_t destination;
u_int32_t verificationTag;

70 u_int32_t adler32;
};

/* SCTP Chunk header*/
struct sctpChunkDesc{

75 u_int8_t chunkID;
u_int8_t chunkFlg;
u_int16_t chunkLength;

};

80 /* SCTP Data Chunk header */
struct sctpDataPart{
u_int32_t TSN;
u_int16_t streamId;
u_int16_t sequence;

85 u_int32_t payloadtype;
};

/* SCTP SACK chunk header*/
struct sctpSelectiveAck{

90 u_int32_t highestConseqTSN;
u_int32_t updatedRwnd;
u_int16_t numberOfdesc;
u_int16_t numDupTsns;

};
95

/* SACK Gap ack block */
struct sctpSelectiveFrag{
u_int16_t fragmentStart;
u_int16_t fragmentEnd;

100 };

100

