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A1 � P1

Figure 1. The logarithmic interval � is contractible asA1 and compact as P1

1. Introduction

One of the basic ideas in Voevodsky’s work on motives and motivic homotopy theory is to
parameterize homotopies by the affine line A1, see [23, 32, 36]. This choice of a unit interval is
adequate for many purposes, such as Rost and Voevodsky’s solution of the Milnor and Bloch–Kato
conjectures on Milnor K -theory and Galois cohomology [33,35]. Stable motivic homotopy theory
has applications in the study of vector bundles over smooth affine schemes [2, 22], and opens
up new vistas such as universal motivic invariants [16, 28]. By construction, all (co)homology
theories in this setting are necessarily insensitive to A1. For example, motivic cohomology or
higher Chow groups do not distinguish betweenA1 and the base field.

Many important algebro-geometric invariants, however, witness the difference between A1

and its field of definition: for example, the abelianized étale fundamental group in characteris-
tic p (an object of study in geometric Class Field Theory), the additive group scheme Ga , abso-
lute Kähler differentials Ωi , Hodge–Witt sheaves WnΩ

i , and crystalline and Hodge cohomology
groups. Such examples bring the following question into focus: is there a convenient framework
for non-A1-invariant (co)homology theories? Our attempt at answering this question invokes log-
arithmic geometry developed by Fontaine, Illusie, Kato, and many others [26]. In our approach
we replace the affine line by its logarithmic counterpart

� := (P1,∞) (1)

Here we view the point at infinity as a boundary of the projective line P1, see Figure 1. Starting
from this definition, we have developed theories of motives and homotopies in logarithmic
geometry. The purpose of this note is to give a concise overview of [8, 9].

2. Background on logarithmic geometry

Our primary reference for logarithmic geometry is Ogus’s book [26]. We let k be a field for
simplicity, considered a log scheme with a trivial log structure.

2.1. Logarithmic schemes and finite log correspondences

Suppose X ∈ Smk is a smooth k-scheme with a smooth proper compactification j : X → X for
which the complement ∂X is a strict normal crossings divisor on X (this is can be achieved
under resolution of singularities). The sheaf of monoids j∗O×

X ∩OX̄ on the small Zariski site of
X specifies the data of a compactifying log structure; this is a convenient tool for keeping track
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of the boundary of the compactification, cf. Deligne’s work on the definition of the mixed Hodge
structure on the Betti cohomology of smooth open varieties [12]. The “log interval” � arises in
this way for X = A1, X = P1, ∂X = ∞. Similarly, (X ,D), where D is an effective Cartier divisor
on X ∈ Smk , defines a (divisorial) log scheme. Manifolds with boundary is a close topological
analog of such log schemes. In parallel with schemes, logarithmic forms, i.e., differential forms
with poles of order at most one along the boundary of the compactification ∂X , are used to
define notions of log-smoothness and log-étaleness [26]. We write l Smk for the category of fine
and saturated (fs for short) log schemes that are log smooth over k and Sm l Smk for its full
subcategory of log schemes X whose underlying scheme X is a smooth k-scheme. By [9, A.5.10],
every X ∈ Sm l Smk is obtained from a smooth k-scheme X with compactifying log structure given
by a strict normal crossing divisor ∂X . The difference between l Smk and Sm l Smk is intuitively
measured by (singular) toric varieties, which are geometric objects defined by combinatorial
data [13].

Replacing maps of schemes by finite correspondences in the sense of Suslin–Voevodsky turns
Smk into the additive category of correspondences Cork . This is the starting point in Voevodsky’s
theory of mixed motives, see [1, 20]. In the logarithmic setting, we introduce an analogous
notion of finite log correspondences. One can intuitively regard finite log correspondences as
multi-valued functions, but some subtleties are arising involving the log structure. For every
X ,Y ∈ l Smk , an elementary log correspondence Z from X to Y consists of

• an integral closed subscheme Z of X ×Y that is finite and surjective over a connected
component of the underlying k-scheme X

• a morphism Z N → Y of fs log schemes, where Z N denotes the fs log scheme whose
underlying scheme is the normalization of Z and the log structure MZ N is given by the
pullback p∗

log MX , where p : Z N → X denotes the induced scheme morphism

We turn l Smk into an additive category l Cork of finite log correspondences over k. The objects
of l Cork are fs log schemes that are log smooth over k. As morphisms, we take the free abelian
group generated by elementary log correspondences, see [9, 2.1]. The above definitions coincide
with the ones in [20] and [36] when X and Y have trivial log structures. Let Λ be a commutative
unital ring. A presheaf of Λ-modules with log transfers is an additive presheaf of Λ-modules on
l Cork . We let Λltr(X ) denote the presheaf with log transfers represented by X ∈ l Smk .

2.2. Dividing Nisnevich coverings and admissible blow-ups

To build a category of log motives, we single out a topology witnessing local properties of log
schemes. We achieve this in two steps. First, we consider the strict Nisnevich topology; it is the
Grothendieck topology associated to the cd-structure on l Smk given by cartesian squares

Y ′ Y

X ′ X

g ′

f ′ f

g

(2)

Here, g is an open immersion, f is strict étale (a strict morphism [26, Definition III.1.2.3] of fs log
schemes and an étale morphism on the underlying schemes), and f −1(X − g (X ′)) → X − g (X ′) is
an isomorphism when both sides are considered with the reduced scheme structure. Concretely,
the diagram (2) says the log structure on X pulls back to Y , X ′ and Y ′, and the underlying square
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of schemes is a Nisnevich distinguished square. Moreover, (2) yields the Nisnevich distinguished
square

Y ′−∂Y ′ Y −∂Y

X ′−∂X ′ X −∂X

(3)

Here, for any fs log scheme X , ∂X denotes the closed subset where the log structure is non-trivial.
We note that ∂X is a closed subset of X according to [26, Proposition III.1.2.8]. For X ∈ l Smk , it is
the support of an effective Cartier divisor on the underlying scheme X .

The second input for the topology comes from the idea that the motive of a log scheme X over
k should be as close as possible to the motive of the open complement X − ∂X . To make this
precise, we introduce the dividing cd-structure on l Smk defined by proper log étale surjective
monomorphisms, which we call dividing covers. Intuitively, one can think of such morphisms as
blow-ups with a center in the boundary ∂X . An example of a dividing cover is the blow-up of the
affine plane in the origin

(Bl{0}A
2,E +H ′

1 +H ′
2) → (A2, H1 +H2)

Here E is the exceptional divisor and H ′
i is the strict transform of the i th coordinate axis Hi ⊂A2.

The dividing Nisnevich cd-structure is the union of the strict Nisnevich cd-structure and the
dividing cd-structure; these are complete and regular cd-structures, but not bounded in the
sense of Voevodsky [34]. For our purposes, however, it suffices to verify the weaker condition of
quasi-boundedness for a density structure. The resulting topology is called the dividing Nisnevich
topology on l Smk . As for Voevodsky’s h-topology on schemes [31], it is not sub-canonical.

3. Logarithmic motives

3.1. Construction and basic properties

The ∞-category logDM eff(k,Λ) of effective log motives over k with Λ-coefficients is a localiza-
tion of the stable ∞-category of (unbounded) chain complexes of presheaves with log transfers
on l Smk . One localization imposes descent for all dividing Nisnevich coverings, and the other
localization imposes �-homotopy invariance. To every X ∈ l Smk we associate its motive

M(X ) ∈ logDM eff(k,Λ)

It is the image of adNisΛltr(X ) ∈ Shvltr
dNis(k,Λ) in the category of dividing Nisnevich sheaves with

log transfers. Here adNis(−) denotes the sheafification functor for the dividing Nisnevich topology
on l Smk . The Tate objectsΛ(n), n ∈N, are defined by shifted cofiber and derived tensor products

Λ(0) := M(k),Λ(1) := M(k
i0→P1)[−2],Λ(n) :=Λ(1)⊗n

Here i0 : Speck →P1 is the 0-section, and both schemes are equipped with a trivial log structure.
For the log schemeAN = (A1,0), the left and outer squares of the commutative diagram

Gm AN A1

A1 � P1

(4)

are strict Nisnevich distinguished squares. This implies the naturally induced equivalence

M(AN→A1)
'−→ M(�→P1) 'Λ(1)[2]

In logDM eff(k,Λ) there is a monoidal equivalence M(X ×Y ) ' M(X )⊗M(Y ) and�-homotopy
invariance M(X ×�) ' M(X ) for all X ,Y ∈ l Smk . Our log version of the Mayer-Vietoris property
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says that for every strict Nisnevich distinguished square in l Smk , see (2), there is a naturally
induced homotopy cartesian square of log motives

M(Y ′) M(Y )

M(X ′) M(X )

Moreover, every dividing cover f : Y → X of fs log schemes log smooth over k induces an
isomorphism of log motives M( f ) : M(Y ) ' M(X ).

To every fs log scheme X ∈ l Smk and vector bundle ξ : E → X we associate the Thom motive

MT hX (E ) ∈ logDM eff(k,Λ)

Our construction of log Thom motives is slightly different from the one in the A1-invariant
setting; this is related to the fact that localization fails for log motives. In the motivic theory,
one forms the cofiber of the natural map E − Z → E , where Z is the zero section. In the log
setting, the open subset E − Z does not give the “correct” homotopy type. Instead, we use the
log compactification (BZ E ,E), where BZ E is the blow up of E along its 0-section and E is the
exceptional divisor. We can then define MT hX (E ) as the cofiber M((BZ E ,E) → E ). The Betti
realization of MT hX (E ) is homotopy equivalent to the quotient of the unit disk bundle by the
unit sphere bundle for the Betti realization of ξ : E → X . In the presence of a Euclidean metric,
the latter is one formulation of Thom spaces in topology [21]. We use Thom spaces of vector
bundles to show a logarithmic Gysin triangle (see [9, Construction 7.5.3, Theorem 7.5.4]).

• Let X ∈ Smk and let Z be a smooth closed subscheme of X . Let Z1, . . . , Zr be smooth
divisors on X such that D =∑r

i=1 Zi is a strict normal crossing divisor on X , and let Y be
the divisorial log scheme (X ,D) ∈ l Smk . Assume that Z intersects transversally with D .
Let E be the exceptional divisor of the blow-up BZ Y of Y along Z , and let NZ Y denote
the normal bundle of Z in Y . Then there is a functorial cofiber sequence

M(BZ Y ,E) → M(Y ) → MT h(NZ Y )

This sequence is a motivic incarnation of the triangle induced by the residue map along a smooth
closed divisor for the logarithmic de Rham–Witt complex due to Gros [14]. It is also compatible
with the analogous Gysin sequence for the cohomology of reciprocity sheaves due to Binda–
Rülling–Saito [10].

In motivic homotopy theory, affine space An is contractible. It is natural to ask whether its
“canonical” log compactification (Pn ,Pn−1), where Pn−1 is the hyperplane at infinity in Pn , is
contractible in the logarithmic setting. Using dividing descent, we show that log motives are
(Pn ,Pn−1)-invariant in the following sense (see [9, Proposition 7.3.1]).

• For every X ∈ l Smk and n ≥ 1 there is a naturally induced equivalence of log motives

M(X × (Pn ,Pn−1)) ' M(X )

Assuming resolution of singularities, we show a projective bundle theorem and a Thom
isomorphism for log motives (see [9, Theorems 8.3.5, 8.3.7]).

• Suppose k is a perfect field admitting resolution of singularities and let E be a vector
bundle of rank n over X ∈ l Smk . Then there are canonical isomorphisms

M(P(E )) '
n−1⊕
i=0

M(X )(i )[2i ]

and

MT h(E ) ' M(X )(n)[2n]

C. R. Mathématique — 2022, 360, 717-727
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The following admissible blow-up property tells us how M(X ) depends on the boundary ∂X
(see [9, Theorem 7.6.7]).

• Suppose k is a perfect field admitting resolution of singularities. Let f : Y → X be a
proper morphism of fs log schemes that are log smooth over k. If the naturally induced
morphism Y −∂Y → X −∂X is an isomorphism of k-schemes, then there is a naturally
induced isomorphism

M(Y ) ' M(X )

We also show a more familiar type of cofiber sequence for blow-ups (see [9, Theorem 7.3.3]).
In this result, we do not assume resolution of singularities because we can reduce to the case of
the zero section Z ,→ Z ×An .

• Suppose X ∈ Smk and let X ′ be the blow-up of X along a smooth center Z . Then there is
a cofiber sequence

M(Z ×X X ′) → M(X ′)⊕M(Z ) → M(X )

3.2. Comparison with Voevodsky’s triangulated category of effective motives

It is a natural question to relate our construction to Voevodsky’s category of derived motives. A
formal argument shows the existence of an adjoint pair

ω] : logDM eff(k,Λ) DM eff(k,Λ) :ω∗ (5)

Here DM eff(k,Λ) is the ∞-category of Voevodsky’s effective motives introduced in [36] (as
a triangulated category, see also [20]), and the adjunction (ω],ω∗) is induced by the functor
ω : l Smk → Smk that sends X to X − ∂X . We write DMeff(k,Λ) for the homotopy category of
DM eff(k,Λ) and logDMeff(k,Λ) for the homotopy category of logDM eff(k,Λ).

The following results hold when k is a perfect field admitting resolution of singularities.

• If X ,Y ∈ l Smk and X is proper, then for every i ∈ Z, there is a naturally induced
isomorphism of abelian groups

HomlogDMeff(k,Λ)(M(Y )[i ], M(X )) ' HomDMeff(k,Λ)(M(Y −∂Y )[i ], M(X −∂X ))

• The right adjoint functor ω∗ is fully faithful.

Next we describe the essential image ofω∗. Recall that F ∈ logDM eff(k,Λ) isA1-local if, for every
X ∈ l Smk , the projection X ×A1 → X induces an equivalence of mapping spaces

MaplogDM eff(k,Λ)(M(X ),F ) → MaplogDM eff(k,Λ)(M(X ×A1),F )

It turns out that every A1-local effective log motive is in the essential image of ω∗. That is, the
A1-localization of logDM eff(k,Λ) is equivalent to DM eff(k,Λ). Alternatively, we can describe
DM eff(k,Λ) as the full subcategory logDM eff

prop(k,Λ) of logDM eff(k,Λ) generated by M(X ) for
all proper schemes X ∈ l Smk . We may identify the latter with the essential image of ω∗, and
hence there is an equivalence

logDM eff
prop(k,Λ) 'DM eff(k,Λ) (6)

Note thatω∗ is clearly not essentially surjective: for example, the sheaf of logarithmic differentials
Ωi

/k , considered as a dividing Nisnevich sheaf with log transfers, is not A1-local. Thus it does not
belong to the essential image of ω∗.
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3.3. Log étale motives

It is also interesting to study the construction of log motives in other topologies on l Smk , such
as the log étale and the dividing étale topologies [9, Definition 3.1.5], none of which arises from
a cd-structure. Log motives with Λ = Q-coefficients are invariant under change of the dividing
Nisnevich and dividing étale topologies [9, Proposition 8.4.4] (this is unsurprising: for motivic
sheaves and rational coefficients, there is no difference between the Nisnevich and the étale
theories). On the other hand, (6) is false with Λ = Z-coefficients if we replace the dividing
Nisnevich topology with its étale counterparts (see [9, Example 9.7.3] — the constant sheaf Z/p
is non-trivial for the dividing étale topology, where p is the characteristic of the field k).

3.4. Relation with other works

A significant interest in logDM eff(k,Λ) concerns representability of non-A1-invariant theories
such as Hochschild and cyclic homology, (log)-crystalline and Hodge cohomology, and log de
Rham–Witt theory. Reciprocity sheaves, see Kahn–Saito–Yamazaki–Rülling [18], provide such ex-
amples, and similarly for the closely related theory of modulus sheaves with transfers due to
Kahn–Miyazaki–Saito–Yamazaki [17]. The category RSCNis of (Nisnevich) reciprocity sheaves is a
full subcategory of Voevodsky’s category of Nisnevich sheaves with transfers Shvtr

Nis(k,Z); it con-
tains A1-invariant Nisnevich sheaves with transfers, but also the additive group scheme Ga , the
sheaf of absolute Kähler differentials Ωi , and the de Rham–Witt sheaves WmΩ

i . Binda–Rülling–
Saito [10] established the existence of Gysin sequences, blow-up formula, and projective bundle
formula in this setting.

Using the existence of proper push-forward established in [10], Saito [29] has related RSCNis to
dividing Nisnevich sheaves with log transfers by showing there exists a fully faithful exact functor

L og: RSCNis → Shvltr
dNis(k,Z)

such that L og(F ) is strictly�-invariant for every F ∈ RSCNis. For each X ∈ Sm/k, there is a natural
isomorphism

H i
Nis(X ,FX ) ' HomlogDM eff(k,Λ)(M(X ),L og(F )[i ])

In particular, the above shows that Nisnevich cohomology of reciprocity sheaves (at least for
reduced modulus) is representable in logDM eff(k,Λ).

In [6], Binda–Merici proved the log analog of Morel’s connectivity theorem, together with a
purity result for �-local complexes of sheaves with log transfers. Using this, and adapting an ar-
gument due to Ayoub and Morel, they construct a homotopy t-structure on logDM eff(k,Λ). The
comparison functor logDM eff(k,Λ) → DM eff(k,Λ) is t-exact. The heart of the said homotopy
t-structure is the Grothendieck abelian category CIltr

dNis of strictly �-invariant sheaves with log
transfers. Under resolution of singularities, the purity theorem of [6] implies the composite

CIltr
dNis ,→ Shvltr

dNis(k,Λ)
ω]−→ Shvtr

Nis(k,Λ)

is fully faithful and exact (moreover, it is expected to be full). Its essential image contains RSCNis as
a full subcategory; one may view it as a replacement of reciprocity sheaves with better categorical
properties. Binda–Merici–Saito [7] employs this to construct a logarithmic analog of the motivic
higher Albanese sheaves of Ayoub–Barbieri-Viale [3] and Barbieri-Viale–Kahn [4].

4. Logarithmic motivic homotopy theory

4.1. Log motivic spaces and spectra

Logarithmic motivic homotopy theory is analogous to Morel–Voevodsky’s motivic homotopy
theory in [23]. The setups are very similar: let us begin with S a noetherian fs log scheme of finite
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Krull dimension and the symmetric monoidal ∞-category P (l SmS ) of presheaves of spaces on
l SmS . Similarly to the case of log motives, we consider the accessible subcategories of �-local
and dividing Nisnevich local presheaves, and denote the corresponding localization functors by

L� : P (l SmS ) → L�P (l SmS )

LdNis : P (l SmS ) → LdNisP (l SmS )

Here F ∈ P (l SmS ) is �-local if the naturally induced map F (X ) → F (X ×�) is an equivalence
for every X ∈ l SmS . Moreover, F is dividing Nisnevich local if and only if F (;) ' ∗, F turns every
strict Nisnevich distinguished square (2) into a cartesian square, and every dividing cover into an
equivalence. Note that representable presheaves are neither �-local nor dividing Nisnevich local
in general.

The ∞-category of log motivic spaces logH consists of presheaves that are both dividing
Nisnevich local and �-local. Moreover, the inclusion logH ⊂ P (l SmS ) admits a left adjoint
Lmlog : P (l SmS ) → logH called the logarithmic motivic localization functor. We write logH∗
for the symmetric monoidal ∞-category of pointed log motivic spaces.

There is an equivalence of pointed log motivic spaces

(P1,;) ' S1 ⊗ (P1,0+∞) (7)

Here, the trivial log scheme (P1,;) is pointed at∞; the simplicial circle S1 is a constant log motivic
space; ⊗ is the symmetric monoidal product on pointed log motivic spaces; the log structure on
(P1,0+∞) is given by the divisor 0+∞, and as a log motivic space it is pointed at 1. We view (7)
as the log motivic analogue of the Morel–Voevodsky equivalence P1 ' S1 ⊗Gm in [23] obtained
from the standard covering of P1 by two copies of A1. To deduce (7) we use the identification
�= (P1, i ), i = 0,∞, contractibility of the �-localization of �, and the cocartesian square

(P1,0+∞) �

� (P1,;)

(8)

For integers p ≥ q ≥ 0, the (p, q)-motivic log sphere is defined by setting

Sp,q := Sp−q ⊗ (P1,0+∞)⊗q (9)

in logH∗(S). Building on the discussion in 3.1, the Thom space of a rank d vector bundle E → X
with 0-section Z → E is defined as the pointed log motivic space

Th(E /X ) := E /(BlZ (E ),E) (10)

Here E is the exceptional divisor on the blow-up BlZ (E ). If E is the rank n trivial bundle over S
and O := (0, . . . ,0) ∈An , there are equivalences

An/(BlO(An),E) 'Pn/(BlO(Pn),E) ' S2n,n (11)

Our preferred suspension coordinate is (P1,;) pointed at ∞, see (7). The stable log motivic
∞-category logS H (S) is defined by

logS H (S) := lim

(
· · · ΩP1−−−→ logH∗(S)

Ω
P1−−−→ logH∗(S)

)
(12)

Here ΩP1 (−) = MaplogH∗(S)(P
1,−) and the limit is taken in the ∞-category of ∞-categories.

The P1-suspension functor Σ∞
P1 : logH∗(S) → logS H (S) is left adjoint to Ω∞

P1 : logS H (S) →
logH∗(S). Since P1 is a symmetric object, i.e., the cyclic permutation on (P1)⊗3 ∈ logH∗(S) is
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�-homotopic to the identity, by appealing to [27, Corollary 2.22] we deduce that logS H (S) is
equivalent to the colimit

logH∗(S)[(P1)−1] := colim

(
logH∗(S)

Σ
P1−−→ logH∗(S)

Σ
P1−−→ ·· ·

)
(13)

If S has a trivial log structure, the left adjoint functor

ω : l SmS → SmS ; X 7→ X −∂X (14)

induces an adjoint functor pair of stable ∞-categories

ω] : logS H (S) S H (S) : ω∗ (15)

The adjunction (15) shows in particular that every motivic spectrum has a naturally associated
log motivic spectrum. In analogy with (5), one may ask whether ω∗ is fully faithful when the base
scheme is a perfect field admitting resolution of singularities.

Universality is an important philosophical aspect of motivic theories; log motivic homotopy
types are supposed to capture the (co)homological essence of log schemes. Our characterization
of logS H (S) is analogous to Lurie’s characterization of the stable ∞-category of spectra in [19]
and Robalo’s characterization of the stable ∞-category of motivic spectra in [27].

• The stable log motivic ∞-category logS H (S) is the universal stable presentably sym-
metric monoidal ∞-category equipped with a monoidal functor l SmS → logS H (S)
from smooth fs log S-schemes and satisfying dividing Nisnevich excision, �-invariance,
and P1-stability.

The universal property simplifies the problem of constructing realization functors such as the
Kato–Nakayama realization functor into topological spaces (over fields of characteristic zero) and
the log étale realization functor into `-profinite spaces.

The stable ∞-category logS H (S) enjoys many of the same fundamental properties as
logDM eff(k,Λ). For example, the following (Pn ,Pn−1)-invariance property is a key result.

• If X ∈ l SmS and n ≥ 1, then X × (Pn ,Pn−1) → X induces a natural equivalence

Σ∞
P1 (X × (Pn ,Pn−1))+

'−→Σ∞
P1 X+

The log motivic sphere 1 =Σ∞
P1 S+ is the unit object for the monoidal structure on logS H (S).

Understanding the properties of 1 is one of the most fundamental problems in logS H . While
the canonical comparison functor ω∗ : S H (S) → logS H (S) is lax monoidal, it is unclear how 1
relates to the unit in S H (S) because ω∗ is not known to be monoidal.

4.2. Log motivic cohomology theories

In this section, we assume for simplicity that S has a trivial log structure. To every log motivic
spectrum E ∈ logS H (S) and integers p, q ∈Zwe assign the homology theory

Ep,q (X ) = HomlogS H (S)(Sp,q ,E⊗Σ∞
P1 X+)

and the cohomology theory

Ep,q (X ) = HomlogS H (S)(Σ
∞
P1 X+,Sp,q ⊗E)

First we discuss the example of log cobordism logMGL with constituent spaces

logMGLm := L�,dNis
colimn Th(Tm,n) (16)

Here Th(Tm,n) is the Thom space (computed in the logarithmic sense, as explained above) of
the tautological bundle Tm,n over the Grassmannian Gr(m,n) with the trivial log structure. The
inclusion On → On ⊕O induces a closed immersion Gr(m,n) → Gr(m,n + 1) and a morphism
of Thom space Th(Tm,n) → Th(Tm,n+1). The bonding maps in (16) are determined by the
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maps Th(Tm,n) ⊗ Th(Tr,s ) → Th(Tm+r,n+s ) in logH∗(S). Our use of log Thom spaces mimics
Voevodsky’s approach to algebraic cobordism in S H (S) [32, Section 6.3].

Log cobordism logMGL is the universal oriented log motivic spectrum in the sense that there
is a one-to-one correspondence between the ring maps logMGL → E and orientations on E, i.e.,
classes c∞ ∈ E2,1(P∞/pt) whose restriction to P1/pt is the class of E2,1(P1/pt) given by

(P1/pt) ' (P1/pt)⊗1 → (P1/pt)∧E =Σ2,1E

We note there is a theory of characteristic classes for oriented log motivic spectra reminiscent of
their topological namesakes. In particular, for every rank d vector bundle E → X in l SmS , there
is a naturally induced Thom isomorphism

−^ t (E ) : E∗∗(E )
'−→ E∗+2d ,∗+d (Th(E )) (17)

We discuss two more examples beginning with a version of “log K -theory” which differs from
Niziol’s logarithmic K -theory in [24, 25]: our log K -theory is an oriented log motivic spectrum
constructed as follows. We let K denote the Bass K -theory presheaf of spectra in [30]. Owing
to [23, Propositions 3.9] there is a canonical equivalence

Ω∞K ' LNisΩ

( ∐
n≥0

BGLn

)
∈H∗(S) (18)

Here LNi s is the Nisnevich localization functor, and Ω∞ is the infinite loop space functor. If S is
regular, the logarithmic K -theory spectrum is

logKGL := (ω∗Ω∞K,ω∗Ω∞K, . . .) ∈ logS H (S) (19)

Hereω∗ : H∗(S) → logH∗(S) is induced by (14). We note that logKGL is Bott-periodic in the sense
that

P1 ⊗ logKGL ' logKGL.

Over a regular base scheme S, logKGL represents the K -theory of the open complement of the
log structure in the sense that for every X ∈ l SmS there is a natural equivalence

K(X −∂X ) ' maplogS H (S)(Σ
∞
P1 X+, logKGL)

When S is the spectrum of a perfect field admitting resolution of singularities, the infinite
Grassmannian Gr with the trivial log structure yields the geometric model for log K -theory

logKGL ' (L�,dNis
Z×Gr,L�,dNis

Z×Gr, . . .) (20)

Related to log K -theory we define the logarithmic topological Hochschild spectrum logTHH in
logS H (S), see also [5] for a related discussion of arbitrary log schemes. The torus group action
gives rise to a refined invariant, the logarithmic topological cyclic homology spectrum logTC in the
spirit of [15]. When S is the spectrum of a perfect field admitting resolution of singularities, we
develop a logarithmic version logKGL → logTC of the cyclotomic trace due to Bökstedt–Hsiang–
Madsen [11]. The cyclotomic log trace is orientation preserving in the sense that the formal group
laws of logKGL and logTC coincide with the multiplicative one. We expect this map to play a
major role in our understanding of logKGL, logTHH, and logTC.
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