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Abstract. We introduce a first-order theory of finite full binary trees
and show that the analogue of Hilbert’s Tenth Problem is undecidable by
constructing a many-to-one reduction of Post’s Correspondence Problem.

1 Introduction

Hilbert’s Tenth Problem asks whether there exists an algorithm that given a
polynomial f ∈ Z[x1, x2, . . . , xn] decides whether f has a zero in Zn. In 1970,
Yuri Matiyasevich proved that Hilbert’s Tenth Problem is undecidable by show-
ing that the exponential function is existentially definable in terms of addi-
tion and multiplication (see for example Davis [1]). After this, a standard tech-
nique for showing that a structure has undecidable existential theory has been
to show that it existentially interprets the first-order structure of arithmetic
(N, 0, 1,+,×) (see sections 5.3 and 5.4a of Hodges [2] for more details). In this
paper, we introduce a first-order structure T (LBT) of finite full binary trees (see
Section 2) and prove that the analogue of Hilbert’s Tenth Problem for T (LBT) is
undecidable without interpreting arithmetic, that is, without relying on the solu-
tion to Hilbert’s Tenth Problem (such a proof can also be produced by modifying
slightly the coding in Section 5 to translate multiplication).

2 Preliminaries

We consider the first-order language LBT = {⊥, 〈·, ·〉, ·[· 7→ ·]} where ⊥ is a
constant symbol, 〈·, ·〉 is a binary function symbol and ·[· 7→ ·] is a ternary
function symbol. The intended structure T (LBT) is a term model: The universeH
is the set of all variable-free terms in the language {⊥, 〈·, ·〉} (equivalently, finite
full binary trees). The constant symbol ⊥ is interpreted as itself. The function
symbol 〈·, ·〉 is interpreted as the function that maps the pair (s, t) to the term
〈s, t〉. The function symbol ·[· 7→ ·] is interpreted as a term substitution operator:
t[r 7→ s] is the term we obtain by replacing each occurrence of r in t with s. We
define t[r 7→ s] by recursion as follows: If t = r, then t[r 7→ s] = s. If r 6=⊥, then
⊥ [r 7→ s] =⊥. If r 6= t = 〈t1, t2〉, then t[r 7→ s] =

〈
t1[r 7→ s] , t2[r 7→ s]

〉
.

To improve readability, it will occasionally be more convenient to represent
finite binary trees using notation that is closer to their visual form: By recur-
sion, for n ≥ 2, let 〈x1, . . . , xn, xn+1〉 be shorthand for 〈〈x1, . . . , xn〉 , xn+1〉. By
recursion, let ⊥1=⊥ and ⊥n+1= 〈⊥n,⊥〉.
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We let Th∃(T (LBT)) denote the set of all existential LBT-sentences that are
true in T (LBT). We let ThH10(T (LBT)) denote the set of all LBT-sentences of
the form ∃~x [ s = t ] that are true in T (LBT). In Section 7, we prove that
Th∃(T (LBT)) is undecidable by constructing a reduction of Post’s correspon-
dence problem. The coding techniques that form the basis of the encoding are
developed in sections 3, 4, 5, 6. In Section 8, we show that undecidability of
Th∃(T (LBT)) implies undecidability of ThH10(T (LBT)).

Definition 1. Let {0, 1}+ denote the set of all nonempty binary strings. The
Post Correspondence Problem (PCP) is given by

– Instance: a list of pairs 〈a1, b1〉, . . . , 〈an, bn〉 where ai, bi ∈ {0, 1}+
– Solution: a finite nonempty sequence i1, ..., im of indexes such that we have

the equality ai1ai2 . . . aim = bi1bi2 . . . bim .

To analyze further what we can and cannot effectively decide over T (LBT),
we introduce bounded quantifiers. We let x v t and x 6v t be shorthand for
t[x 7→ 〈x, x〉 ] 6= t and t[x 7→ 〈x, x〉 ] = t, respectively. Observe that v is
the subtree relation on finite binary trees. In [5], Venkataraman shows that the
existential theory of the structure we obtain by taking T (LBT) and replacing
the substitution operator with the subtree relation is decidable and the decision
problem is NP-complete. Let ∀x v t φ be shorthand for ∀x [ x v t → φ ]. Let
Σ
T (LBT)
1,0,1 denote the set of all LBT-sentences that are true in T (LBT) and are of the

form ∃x ∀y v x φ where φ is quantifier-free. In Section 9, we show that ΣT (LBT)
1,0,1

is undecidable. We cannot prove this result by encoding Post’s correspondence
problem since this problem is about sequences of pairs and therefore necessitates
the use of two bounded universal quantifiers. Instead, we encode the Modulo
Problem of Kristiansen & Murwanashyaka [3].

Definition 2. Let f0(x) = x and fn+1(x) = f(fn(x)). The Modulo Problem is
given by

– Instance: a list of pairs 〈A0, B0〉, . . . , 〈AM−1, BM−1〉 where M > 1 and
Ai, Bi ∈ N for i = 0, . . . ,M − 1.

– Solution: a natural number N such that fN (3) = 2 where f(x) = Ajz+Bj
if there exists j ∈ {0, 1, . . . ,M − 1} such that x =Mz + j.

3 Numbers

To encode Post’s correspondence problem, we need to associate strings over a
finite alphabet with finite binary trees. As a step towards this, we show that
certain classes of number-like objects are existentially definable in T (LBT).

Definition 3. Let α ∈ H. Let s1, . . . , sn ∈ H be such that α is not a subtree of
si for all i ≤ n and sn 6= sj for all j < n. Let

1

α,~s
≡ 〈α, s1, . . . , sn〉 and

m+ 1

α,~s
≡ 1

α,~s

[
α 7→ m

α,~s

]
.

Let Nα~s = { mα,~s ∈ H : m ∈ N ∧ m ≥ 1 }.
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Lemma 1. Let α ∈ H. Let s1, . . . , sn ∈ H be such that α is not a subtree of si
for all i ≤ n and sn 6= sj for all j < n. Then, for all T ∈ H

T ∈ Nα~s ⇔ T =
1

α,~s
∨
( 2

α,~s
v T ∧ T =

1

α,~s

[
α 7→ T

[ 2

α,~s
7→ 1

α,~s

] ] )
.

Proof. The left-right implication of the claim is straightforward. Let the size of
a binary tree T be the number of nodes in T . We prove by induction on the size
of T that

T =
1

α,~s
∨
( 2

α,~s
v T ∧ T =

1

α,~s

[
α 7→ T

[ 2

α,~s
7→ 1

α,~s

] ] )
(*)

implies T ∈ Nα~s .
Assume T satisfies (*). We need to show that T ∈ Nα~s . If T = 1

α,~s , then
certainly T ∈ Nα~s . Otherwise, by the second disjunct in (*), we have 2

α,~s v T . Let
S = T

[
2
α,~s 7→

1
α,~s

]
. Then, S is strictly smaller than T . By the second disjunct

in (*), we have T = 1
α,~s

[
α 7→ S

]
. By Definition 3, 1

α,~s = 〈α, s1, . . . , sn〉. Since
α is not a subtree of any si

T =
1

α,~s

[
α 7→ S

]
= 〈α, s1, . . . , sn〉

[
α 7→ S

]
= 〈S, s1, . . . , sn〉 . (**)

We know that 2
α,~s v T . By Definition 3, 2

α,~s = 〈α, s1, . . . , sn, s1, . . . , sn〉. Since
sn 6= sj for all 1 ≤ j < n, it follows from 2

α,~s v T and (**) that we have one of
the following cases: (i) S = 1

α,~s , (ii) occurrences of 2
α,~s in T can only be found

in S. In case of (ii), we have

S = T
[

2
α,~s 7→

1
α,~s

]
= 〈S, s1, . . . , sn〉

[
2
α,~s 7→

1
α,~s

]
=
〈
S
[

2
α,~s 7→

1
α,~s

]
, s1, . . . , sn

〉
= 〈α, s1, . . . , sn〉

[
α 7→ S

[
2
α,~s 7→

1
α,~s

] ]
= 1

α,~s

[
α 7→ S

[
2
α,~s 7→

1
α,~s

] ]
.

We see that in case of either (i) or (ii), S satisfies (*). Thus, by the induction
hypothesis, S ∈ Nα~s . It then follows from (**) that T ∈ Nα~s . ut

4 Strings

Given a finite alphabet A = {a1, . . . , am}, let ε denote the empty string and let
A∗ denote the set of all finite strings over A. Let A+ = A∗ \ {ε}. We will now
associate A∗ with an existentially definable class of finite binary trees.

Definition 4. Let A = {a1, . . . , am} be a finite alphabet. For each natural num-
ber i ≥ 1, let gi ≡ 〈⊥3+i,⊥3+i〉. Let α ∈ H be incomparable with gi with respect
to the subtree relation for all i. We define a one-to-one map τα : A∗ → H by
recursion

τα(w) =


α if w = ε

〈α, gi〉 if w = ai

τα(w0)
[
α 7→ τα(w1)

]
if w = w0w1 and w0 ∈ A .
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Given s ∈ A∗, we write s
α for τα(s). Furthermore, we write ai for gi.

For example, a1a1a3a1a2α = 〈α , a2 , a1 , a3 , a1 , a1 〉.

Lemma 2. Let A = {a1, . . . , am} be a finite alphabet. Then, τα(A∗) is existen-
tially definable in T (LBT).

Proof. We need the following property to prove that τα(A∗) is existentially de-
finable

(*) g1, . . . , gm are incomparable with respect to the subtree relation.

Lemma 1 tells us that the classes Nαgi ∪ {α} are existentially definable in
T (LBT). The idea is to show that s ∈ τα(A∗) if and only if we can transform
s into an element of Nαgi ∪ {α}. We show that τα(A∗) is defined by the formula
φ(x) ≡ x[ g2 7→ g1 ] . . . [ gm 7→ g1 ] ∈ Nαg1 ∪ {α}.

Clearly, each element in τα(A∗) has the property φ(x). To see that the con-
verse holds, assume φ(s). We need to show that s ∈ τα(A∗). Since Nαg1 ∪ {α} ⊆
τα(A

∗), it suffices to show that for each 1 ≤ i ≤ n and each finite binary tree t,
if t[ gi 7→ g1 ] ∈ τα(A∗), then t ∈ τα(A∗). We prove this by induction on the size
of t.

Assume t[ gi 7→ g1 ] ∈ τα(A
∗). We need to show that t ∈ τα(A

∗). If gi
is not a subtree of t, then t = t[ gi 7→ g1 ] ∈ τα(A

∗). Assume now gi is a
subtree of t. Let t = 〈t0, t1〉. We cannot have t = gi since g1 6∈ τα(A∗). Hence,
t[ gi 7→ g1 ] =

〈
t0[ gi 7→ g1 ] , t1[ gi 7→ g1 ]

〉
. By how the elements of τα(A∗)

are defined, t0[ gi 7→ g1 ] ∈ τα(A∗) and t1[ gi 7→ g1 ] = gj for some 1 ≤ j ≤ n.
Since t0[ gi 7→ g1 ] ∈ τα(A∗), by the induction hypothesis, t0 ∈ τα(A∗). If gi is
not a subtree of t1, then t1 = t1[ gi 7→ g1 ] = gj . Assume now gi is a subtree of
t1. Then, g1 is a subtree of gj since t1[ gi 7→ g1 ] = gj . By (*), g1 = gj , which
implies t1 = gi. Hence, t0 ∈ τα(A

∗) and t1 = gl for some 1 ≤ l ≤ n. Then,
t = 〈t0, t1〉 ∈ τα(A∗) by how the elements of τα(A∗) are defined.

Thus, by induction, if t[ gi 7→ g1 ] ∈ τα(A∗), then t ∈ τα(A∗). ut

5 Sequences of Strings I

Recall that the instance 〈a1, b1〉, . . . , 〈an, bn〉 of PCP has a solution if and only
if there exist a finite nonempty sequence i1, ..., im of indexes such that we have
ai1ai2 . . . aim = bi1bi2 . . . bim . So, given a finite sequence C = 〈c1, c2, . . . , cn〉 of
nonempty binary strings, we need to express that a sequence w1, w2, . . . , wk of bi-
nary strings satisfies the following two properties: (A) there exists i ∈ {1, . . . , n}
such that w1 = ci, (B) for all j ∈ {1, . . . , k − 1} there exists i ∈ {1, . . . , n} such
that wj+1 = wjci. In other words, we need to give an existential definition of the
class P(C) of all sequences w1, w2, . . . , wk that satisfy (A)-(B). In this section,
we give a formal definition of P(C), as a class of finite binary trees, and show
that it is existentially definable.

Since we are interested in describing sequences that satisfy (A)-(B), it is
not the set {0, 1}∗ we are interested in, but rather the subset generated by
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{c1, c2, . . . , cn} under concatenation. We also need to treat the ci‘s as distinct
objects since we intend to replace C with one of the sequences 〈a1, . . . , an〉,
〈b1, . . . , bn〉 where 〈a1, b1〉, . . . , 〈an, bn〉 is an instance of PCP. To capture this,
we associate elements of {c1, c2, . . . , cn}+ with strings over a larger alphabet
{0, 1, µ1, µ2, . . . , µn} where µi represents the last letter of ci. Assume for example
c1 = 110, c2 = 011 and c3 = 1010. Then, we associate the binary string c2c1c3
with the string 01µ211µ1101µ3.

Definition 5. Let C = 〈c1, c2, . . . , cn〉 be a sequence of nonempty binary strings.
We associate ci with a finite binary tree in τα({0, 1, µ1, . . . , µn}∗) as follows

ci
C,α

≡ wiµi
α

where ci = wid ∧ wi ∈ {0, 1}∗ ∧ d ∈ {0, 1} .

We let ε
C,α ≡ α. We associate the string ci1ci2 . . . cim with a finite binary tree

in τα({0, 1, µ1, . . . , µn}∗) as follows

ci1ci2 . . . cim
C,α

≡ wi1µi1wi2µi2 . . . wimµim
α

.

We are finally ready to give a formal definition of the class of those finite
binary trees that encode sequences that satisfy (A)-(B).

Definition 6. Let C = 〈c1, c2, . . . , cn〉 be a sequence of nonempty binary strings.
Let α, γ ∈ H be incomparable with respect to the subtree relation. Assume α also
satisfies the condition in Definition 4. Let P(C,α, γ) be the smallest subset of H
that satisfies

– 〈γ , ci
C,α 〉 ∈ P(C,α, γ) for all i ∈ {1, . . . , n}

– if T ∈ P(C,α, γ) where T =
〈
R ,

ci1ci2 ...cim
C,α

〉
, then

〈
T ,

ci1ci2 ...cimcj
C,α

〉
∈

P(C,α, γ) for all j ∈ {1, . . . , n}.

Lemma 3. Let C = 〈c1, c2, . . . , cn〉 be a sequence of nonempty binary strings.
Let α, γ ∈ H be incomparable with respect to the subtree relation. Assume α also
satisfies the condition in Definition 4. Let δ = 〈α, α〉. Let Fαδ (L) = L[ α 7→ δ ]
for all L ∈ H. Let T ∈ H. Then, T ∈ P(C,α, γ) if and only if

(1) δ 6v T
(2) there exists m ∈ {1, . . . , n} such that

〈
γ , cm

C,α

〉
v T

(3) there exists S ∈ τα({0, 1, µ1, . . . , µn}∗) such that

T =
〈
Fαδ (T )

[〈
γ ,

cm
C, δ

〉
7→ γ ,

c1
C, δ

7→ α , . . . ,
cn
C, δ

7→ α
]
, S

〉
.

Before we prove the lemma, we illustrate why the left-right implication holds.
First, observe that (1) holds if T ∈ P(C,α, γ). Now, assume for example T =〈
γ , c2

C,α ,
c2c3
C,α ,

c2c3c1
C,α

〉
. The tree Fαδ (T ) is just the tree we obtain by re-

placing each one of the three occurrences of α in T with δ. Hence, Fαδ (T ) =
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γ , c2

C,δ ,
c2c3
C,δ ,

c2c3c1
C,δ

〉
. Since there is only one occurrence of

〈
γ , c2

C,δ

〉
in Fαδ (T ),

we have R0 := Fαδ (T )
[ 〈

γ , c2
C,δ

〉
7→ γ

]
=
〈
γ , c2c3C,δ ,

c2c3c1
C,δ

〉
. We replace the

one occurrence of c1
C,δ in R0 and obtain R1 := R0

[
c1
C,δ 7→ α

]
=
〈
γ , c2c3C,δ ,

c2c3
C,α

〉
.

Since c2c3
C,α does not contain a subtree of the form ci

C,δ by the choice of δ, there is
no occurrence of c2

C,δ in R1. Hence, R2 := R1

[
c2
C,δ 7→ α

]
= R1. We replace the

occurrence of c3
C,δ in R2 and obtain R3 := R2

[
c3
C,δ 7→ α

]
=
〈
γ , c2

C,α ,
c2c3
C,α

〉
.

Now, observe that R3 is the left subtree of T .

Proof (Proof of Lemma 3).
The left-right implication is obvious. We prove right-left implication by in-

duction on the size of T . We need the following properties:

(A) Since γ and α are incomparable with respect to the subtree relation, the
binary tree

〈
γ , cm

C,α

〉
is not a subtree of elements of τα({0, 1, µ1, . . . , µn}∗).

(B) Since γ and δ are incomparable with respect to the subtree relation, the
binary tree

〈
γ , cm

C,α

〉
is not a subtree of elements of τδ({0, 1, µ1, . . . , µn}∗).

Assume T satisfies (1)-(3). We need to show that T ∈ P(C,α, γ). By assump-
tion, we have a natural numberm ∈ {1, . . . , n} and a string s ∈ {0, 1, µ1, . . . , µn}∗
such that the following three properties hold: (i) δ 6v T , (ii)

〈
γ , cm

C,α

〉
v T ,

(iii) T =
〈
Fαδ (T )

[〈
γ , cmC,δ

〉
7→ γ , c1

C,δ 7→ α , . . . , cn
C,δ 7→ α

]
, s
α

〉
. Let

T0 = Fαδ (T )
[〈
γ , cmC,δ

〉
7→ γ , c1

C,δ 7→ α , . . . , cn
C,δ 7→ α

]
.

Assume T0 = γ. By (ii),
〈
γ , cm

C,α

〉
v T . By (A),

〈
γ , cm

C,α

〉
6v s

α . Hence,
T =

〈
T0 ,

s
α

〉
=
〈
γ , cm

C,α

〉
∈ P(C,α, γ).

Assume now T0 6= γ. Since T0 v T , it follows from (i) that δ 6v T0. Since〈
γ , cm

C,α

〉
v T , T 6=

〈
γ , cm

C,α

〉
and

〈
γ , cm

C,α

〉
6v s

α , we have
〈
γ , cm

C,α

〉
v T0.

Finally, we have

T0 = Fαδ (T )
[〈
γ , cmC,δ

〉
7→ γ , c1

C,δ 7→ α , . . . , cn
C,δ 7→ α

]
= Fαδ

(〈
T0 ,

s
α

〉)[〈
γ , cmC,δ

〉
7→ γ , c1

C,δ 7→ α , . . . , cn
C,δ 7→ α

]
=
〈
Fαδ (T0) ,

s
δ

〉[〈
γ , cmC,δ

〉
7→ γ , c1

C,δ 7→ α , . . . , cn
C,δ 7→ α

]
=
〈
Fαδ (T0)

[〈
γ , cmC,δ

〉
7→ γ , c1

C,δ 7→ α , . . . , cn
C,δ 7→ α

]
, S0

〉
where

S0 = s
δ

[〈
γ , cmC,δ

〉
7→ γ , c1

C,δ 7→ α , . . . , cn
C,δ 7→ α

]
= s

δ

[
c1
C,δ 7→ α , . . . , cn

C,δ 7→ α
]

(by (B) )

= s′s′′

δ

[
ck
C,δ 7→ α

]
= s′

α ∈ τα({0, 1, µ1, . . . , µn}∗)
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where we have used that s = s′s′′ and s′′

δ = ck
C,δ for some k ∈ {1, . . . , n} since

we would otherwise have s
δ

[
c1
C,δ 7→ α , . . . , cn

C,δ 7→ α
]
= s

δ while δ 6v T by
(1). Since T0 satisfies (1)-(3), T0 ∈ P(C, γ) by the induction hypothesis. It then
follows that T ∈ P(C, γ).

Thus, by induction, T ∈ P(C,α, γ) if T satisfies (1)-(3). ut

6 Sequences of Strings II

Recall that the instance 〈a1, b1〉, . . . , 〈an, bn〉 of PCP has a solution if and only
if there exist a finite nonempty sequence i1, ..., im of indexes such that we have
ai1ai2 . . . aim = bi1bi2 . . . bim . Let C = 〈c1, c2, . . . , cn〉 be one of the sequences
〈a1, . . . , an〉, 〈b1, . . . , bn〉. Each element T ∈ P(C,α, γ) represents a sequence
of the form w1, w2, . . . , wm where wk = ci1ci2 . . . cik and ij ∈ {1, . . . , n} for
all j ∈ {1, . . . ,m}. We need the sequence i1, i2, . . . , im to verify the equality
ai1ai2 . . . aim = bi1bi2 . . . bim . We need an existential LBT-formula that extracts
this information from T . To achieve this, we need to encode sequences that are
more complex than those we encountered in Section 5.

The class P(C,α, γ) consists of finite binary trees that encode sequences of the
form w1, w2, . . . , wk where wi ∈ τα({0, 1, µ1, . . . , µn}∗) for all i ∈ {1, . . . , k}. We
need to consider the class of those binary trees that encode sequences of the form
W1,W2, . . . ,Wk where Wi ∈ P(C,α, γ) for all i ∈ {1, . . . , k}. To illustrate how
this helps us identify the sequence i1, i2, . . . , im, let T =

〈
γ , c2

C,α ,
c2c3
C,α ,

c2c3c1
C,α

〉
where c1 = 01, c2 = 00, c3 = 10. We need to find an existential LBT-formula
Ψ(T,X) that is true in T (LBT) if and only if X represents the string µ2µ3µ1.
Instead of working with T , we work with the binary tree W1 = Γαn (T ) in Fig-
ure 1. It contains the information µ2, µ3, µ1 and has the advantage of having a
simpler structure. We give a formal definition of the operator Γαn : H→ H that
takes T and gives us Γαn (T ). It is really the restriction of Γαn to P(C,α, γ) we are
interested in. It will follow from the definition that Γαn is existentially definable.

Definition 7. Let α, 0, 1, µ1, . . . , µn be as in Definition 5. Let µn+1, . . . , µ2n be
distinct fresh letters. Let Γαn : H → H be the function defined by Γαn (T ) = T2
where

T0 = T
[
µ1

α 7→
µ1

µn+1
, . . . , µn

α 7→
µn

µn+n

]
T1 = T0

[
1 7→ 0 , µ1 7→ 0 , µ2 7→ 0 , . . . , µn 7→ 0

]
T2 = T1

[
µn+1 7→ µ1 , µn+2 7→ µ2 , . . . , µn+n 7→ µn

]
.

Recall that we are interested in specifying an existential LBT-formula Ψ(T,X)
that is true if and only if X encodes the string µ2µ3µ1. As we have just seen,
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Γαn (T ) contains also the information µ2, µ3, µ1. So, we let Ψ(T,X) be a for-
mula of the form ∃W Φ(T,X,W ) where W is a finite binary tree that en-
codes a sequence W1,W2, . . . ,Wk where W1 = Γαn (T ) and Wk = X. Before
we give a formal definition of the class P2(C,α, γ) of all W with this property,
we use the binary tree T =

〈
γ , c2

C,α ,
c2c3
C,α ,

c2c3c1
C,α

〉
to illustrate the form of

W . Let W1, . . . ,W7 be the binary trees in Figure 1. Then, W can for example
be the binary tree

〈
α , W7 , W6 , W5 , W4 , W3 , W2 , W1

〉
or the binary tree〈

α , W7 , W7 , W6 , W5 , W4 , W3 , W2 , W1

〉
. It is not a problem that there are

many choices forW . What is important is that Γαn (T ) is the unique right subtree
of W , and W7 encodes the information we need in a simple format and is the
unique subtree X of W which is such that 〈α , X〉 vW .

W1

γ

µ2 0

0

µ3 0

0

0

0

µ1 0

0

0

0

0

0

W2

γ

µ2 0

µ3 0

0

0

µ1 0

0

0

0

0

W3

γ µ2

µ3 0

0

µ1 0

0

0

0

W4

γ µ2 µ3 0

µ1 0

0

0

W5

γ µ2

µ3

µ1 0

0

W6

γ µ2

µ3 µ1 0

W7

γ µ2

µ3

µ1

Fig. 1. Let T =
〈
γ , c2

C,α
, c2c3
C,α

, c2c3c1
C,α

〉
. Then,W1 = Γαn (T ). Binary trees of the form

W =
〈
α , W7 , . . . , W7 , W6 , W5 , W4 , W3 , W2 , W1

〉
are elements of P2(C,α, γ).
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Definition 8. Let C = 〈c1, c2, . . . , cn〉 be a sequence of nonempty binary strings.
Let α, γ ∈ H be incomparable with respect to the subtree relation. Assume α
satisfies the condition in Definition 4. Assume γ is not a subtree of µi for
all i ∈ {1, . . . , n}. Let W ∈ P2(C,α, γ) if and only if there exists a sequence
W1,W2, . . . ,Wk ∈ H such that there exists T ∈ P(C,α, γ) such that W1 =
Γαn (T ), W =

〈
α , Wk,Wk−1 , . . . , W1

〉
, Wk ∈ τγ({µ1, . . . , µn}+) and Wi+1 =

Wi

[
0
µ1
7→ µ1 ,

0
µ2
7→ µ2 , . . . ,

0
µn
7→ µn

]
for all i ∈ {1, 2, . . . , k − 1}.

We prove that P2(C,α, γ) is existentially definable.

Lemma 4. Let C = 〈c1, c2, . . . , cn〉 be a sequence of nonempty binary strings.
Let α, γ ∈ H be incomparable with respect to the subtree relation. Assume α
satisfies the condition in Definition 4. Assume γ is not a subtree of µi for all
i ∈ {1, . . . , n}. Let W ∈ H. Then, W ∈ P2(C,α, γ) if and only if

(1) there exists X ∈ τγ({µ1, . . . , µn}+) such that 〈α , X〉 vW
(2) there exists T ∈ P(C,α, γ) such that W = 〈V , Γαn (T )〉 where

V =W
[
〈α , X〉 7→ α ,

0

µ1
7→ µ1 ,

0

µ2
7→ µ2 , . . . ,

0

µn
7→ µn

]
.

Proof. The left-right implication is a straightforward consequence of Definition
8. We focus on proving the right-left implication.

Assume W satisfies (1)-(2). We need to show that W ∈ P2(C,α, γ). By
Definition 8, we need to show that there exist W1, . . . ,Wk ∈ H such that: (A)
W =

〈
α , Wk,Wk−1 , . . . , W2 , W1

〉
, (B) Wk ∈ τγ({µ1, . . . , µn}+), (C) Wi+1 =

Wi

[
0
µ1
7→ µ1 ,

0
µ2
7→ µ2 , . . . ,

0
µn
7→ µn

]
for all i ∈ {1, 2, . . . , k − 1}, (D)

there exists T ∈ P(C,α, γ) such that W1 = Γαn (T ) .
Let X and T be binary trees that satisfy clauses (1)-(2). First, we prove by

(backward) induction that if 〈α , X〉 v U vW and U = 〈U0 , U1〉, then

U0 = U
[
〈α , X〉 7→ α ,

0

µ1
7→ µ1 , . . . ,

0

µn
7→ µn

]
and α 6v U1 .

We let (*) refer to the equality, and we let (**) refer to α 6v U1. The base case
U = W is Clause (2). So, assume U = 〈V , U1〉, V = 〈V0 , V1〉, 〈α , X〉 v V v
U v W and U satisfies (*) and (**). We need to show that V satisfies (*) and
(**). Since U satisfies (**), 〈α , X〉 6v U1. Since α is incomparable with 0 and µi
with respect to v, the binary tree 0

µi
cannot equal a binary tree that has α as

subtree. Furthermore, if α v R, then α v R[ 0
µi
7→ µi ]. Hence, by (*)

V = U
[
〈α , X〉 7→ α , 0

µ1
7→ µ1 , . . . ,

0
µn
7→ µn

]
= 〈V , U1〉

[
〈α , X〉 7→ α , 0

µ1
7→ µ1 , . . . ,

0
µn
7→ µn

]
=
〈
U ′ , U ′′

〉
where by (**)

U ′′ = U1

[
0
µ1
7→ µ1 , . . . ,

0
µn
7→ µn

]
6w α

U ′ = V
[
〈α , X〉 7→ α , 0

µ1
7→ µ1 , . . . ,

0
µn
7→ µn

]
.
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Thus, V satisfies (*) and (**). Thus, by induction, if 〈α , X〉 v U v W and
U = 〈U0 , U1〉, then U satisfies (*) and (**).

Now, to prove that (A)-(D) hold, it suffices to prove by induction on the size of
finite binary trees that if U is a subtree ofW which is such that 〈α , X〉 v U , then
there exists a sequence U1, . . . , Um such that: (i) U =

〈
α,Um, Um−1, . . . , U1

〉
,

(ii) Um = X, (iii) Ui+1 = Ui

[
0
µ1
7→ µ1 , . . . , 0

µn
7→ µn

]
for all i ∈

{1, 2, . . . ,m− 1}.
So, assume 〈α , X〉 v U v W . If U = 〈α , X〉, then U satisfies (i)-(iii)

trivially. Otherwise, by (**), there exist V and U1 such that U = 〈V , U1〉 and
〈α , X〉 v V . By the induction hypothesis, there exists a sequence V1, . . . , Vm
such that the following holds: (iv) V =

〈
α, Vm, Vm−1, . . . , V1

〉
, (v) Vm = X,

(vi) Vi+1 = Vi

[
0
µ1
7→ µ1 , . . . ,

0
µn
7→ µn

]
for all i ∈ {1, 2, . . . ,m − 1}.

In particular, U = 〈V , U1〉 =
〈
α , Vm , Vm−1 , . . . , V1 , U1

〉
. By (v)-(vi) and

(**), there can only be one occurrence of α in U . Hence U
[
〈α , X〉 7→ α

]
=〈

α , Vm−1 , . . . , V1 , U1

〉
. Then, by (*) and (vi)〈

α , Vm , Vm−1 , . . . , V1
〉
= V =

U
[
〈α , X〉 7→ α ,

0

µ1
7→ µ1 , . . . ,

0

µn
7→ µn

]
=〈

α , Vm−1 , . . . , V1 , U1

〉[ 0

µ1
7→ µ1 , . . . ,

0

µn
7→ µn

]
=〈

α , Vm , . . . , V2 , U
′
1

〉
where U ′1 = U1

[
0
µ1
7→ µ1 , . . . ,

0
µn
7→ µn

]
. Hence

U =
〈
α , Vm , Vm−1 , . . . , V1 , U1

〉
and V1 = U1

[ 0

µ1
7→ µ1 , . . . ,

0

µn
7→ µn

]
.

Thus, U satisfies (i)-(iii).
Thus, by induction, if U is a subtree of W which is such that 〈α , X〉 v U ,

then U satisfies (i)-(iii). ut

7 Reduction of Post’s Correspondence Problem

We are ready to specify a many-to-one reduction of Post’s Correspondence Prob-
lem.

Theorem 1. The Post Correspondence Problem is many-to-one reducible to the
fragment Th∃(T (LBT)).

Proof. Consider an instance 〈a1, b1〉, . . . , 〈an, bn〉 of PCP. We need to construct
an existential LBT-sentence φ that is true in T (LBT) if and only if 〈a1, b1〉, . . . , 〈an, bn〉
has a solution. The instance 〈a1, b1〉, . . . , 〈an, bn〉 has a solution if and only if there
exist two sequences u1, u2, . . . , uk and v1, v2, . . . , vm such that
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(I) there exists f1 ∈ {1, . . . , n} such that u1 = af1 and for all j ∈ {1, . . . , k− 1}
there exist fj+1 ∈ {1, . . . , n} such that uj+1 = ujafj+1

(II) there exists g1 ∈ {1, . . . , n} such that v1 = bg1 and for all j ∈ {1, . . . ,m− 1}
there exist gj+1 ∈ {1, . . . , n} such that vj+1 = vjbgj+1

(III) k = m and fj = gj for all j ∈ {1, . . . , k}
(IV) uk = vm.

Let α = 〈⊥ , ⊥2〉 and γ = 〈⊥ , ⊥3〉. Then, α and γ satisfy the condi-
tions in Definition 6 and Definition 8. Let A = 〈a1, a2, . . . , an〉 and let B =
〈b1, b2, . . . , bn〉. Definition 6 tells us that the sequence u1, u2, . . . , uk is encoded
by a binary tree L ∈ P(A,α, γ) and the right subtree of L, denoted U , encodes uk.
Similarly, the sequence v1, v2, . . . , vm is encoded by a binary tree R ∈ P(B,α, γ)
and the right subtree of R, denoted V , encodes vm. Lemma 3 tells us that
P(A,α, γ) and P(B,α, γ) are existentially definable.

Definition 8 gives us binary trees XL and WL ∈ P2(A,α, γ) such that Γαn (L)
is the right subtree of WL, 〈α , XL〉 v WL and XL encodes the sequence
f1, f2, . . . , fk. The existentially definable operator Γαn is defined in Definition
7. Similarly, there exist XR and WR ∈ P2(B,α, γ) such that Γαn (R) is the right
subtree of WR, 〈α , XR〉 v WR and XR encodes the sequence g1, g2, . . . , gm.
Lemma 4 tells us that P2(A,α, γ) and P2(B,α, γ) are existentially definable.

Now, encoding (III) corresponds to requiring that XL = XR holds. To encode
(IV), we cannot simply require that U = V holds since U is the representation of
uk when viewed as an element of {0, 1, µ1, . . . , µn}+ and V is the representation
of vm when viewed as an element of {0, 1, µ1, . . . , µn}+. So, let ΘAn (U) be the
binary tree we obtain by replacing µi with the last letter of ai and let ΘBn (V )
be the binary tree we obtain by replacing µj with the last letter of bj . Then,
encoding (IV) corresponds to requiring that ΘAn (U) = ΘBn (V ) holds.

Let ΘAn (U) = U
[
µ1 7→ d1 , . . . , µn 7→ dn

]
where di is the last letter of ai.

Let ΘBn (V ) = V
[
µ1 7→ e1 , . . . , µn 7→ en

]
where ej is the last letter of bj . Let

φ ≡ ∃L ∈ P(A,α, γ) ∃U,U ′ ∃R ∈ P(B,α, γ) ∃V, V ′

∃WL ∈ P2(A,α, γ) ∃XL, SL ∃WR ∈ P2(B,α, γ) ∃XR, SR

[
L = 〈U ′ , U〉 ∧ R = 〈V ′ , V 〉 ∧ 〈α , XL〉 vWL ∧ WL = 〈SL , Γαn (L)〉 ∧

〈α , XR〉 vWR ∧ WR = 〈SR , Γαn (R)〉 ∧ ΘAn (U) = ΘBn (V ) ∧ XL = XR

]
.

Then, φ is true in T (LBT) if and only if 〈a1, b1〉, . . . , 〈an, bn〉 has a solution. ut

8 Analogue of Hilbert’s Tenth Problem

In this section, we show that the analogue of Hilbert’s Tenth Problem for T (LBT)
is undecidable.

Theorem 2. The fragment ThH10(T (LBT)) is undecidable.
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Proof. Since Th∃(T (LBT)) is undecidable, it suffices to show that given an ex-
istential LBT-sentence φ, we can compute a finite number of LBT-sentences
φ1, . . . , φn of the form ∃~x [ s = t ] such that T (LBT) |= φ ↔

∨n
i=1 φi. Since

T (LBT) |= ( s1 = t1 ∧ s2 = t2 )↔ 〈s1, s2〉 = 〈t1, t2〉, it suffices to show that given
a LBT-formula of the form s 6= t, we can compute a finite number of atomic LBT-
formulas s1 = t1, . . . , sk = tk such that we have T (LBT) |= s 6= t↔

∨k
j=1 sj = tj .

This is the case since s 6= t ⇔ t[ s 7→ 〈s, s〉 ] = t ∨ s[ t 7→ 〈t, t〉 ] = s. ut

9 Bounded Quantifiers

We end this paper by showing that ΣT (LBT)
1,0,1 is undecidable. We prove this by

encoding the Modulo Problem.

Theorem 3. The fragment ΣT (LBT)
1,0,1 is undecidable.

Proof. We encode natural numbers as follows: n ≡ ⊥n+2. The next step is to
associate linear polynomials in one variable with LBT-terms. We let L(z) ≡
z[0 7→ z]. If z represents the natural number q, then L(z) represents the natural
number 2q since 0 has exactly one occurrence in z. Recall that L0(z) = z and
Lk+1(z) = L(Lk(z)). Hence, if n > 0, then Ln−1(z) represents the natural
number nq. If n > 0, then the term m[0 7→ Ln−1(z)] represents the natural
number nq+m. We complete our translation of linear polynomials in one variable
as follows: For any formula φ(x) where x is a free variable, φ(nz+m) = φ(m) if
n = 0 and φ(nz +m) = φ(m[0 7→ Ln−1(z)]) if n > 0.

Given an instance 〈A0, B0〉, . . . , 〈AM−1, BM−1〉 , we need to compute aΣ1,0,1-
sentence ψ that is true in T (LBT) if and only if the instance has a solution.
Let x ∈ y be shorthand for 〈x, α〉 v y ∧ α 6v x where α ≡ 〈⊥ , ⊥2〉. The
sentence ψ needs to say that there exists a finite set T such that 3 ∈ T , 2 ∈ T
and if 2 6= Mz + j ∈ T ∧ 0 ≤ j < M , then Ajz + Bj ∈ T . With this
in mind, we let ψ be the sentence ∃T ∀z v T [ 3 ∈ T ∧ ψ0 ] where ψ0 is∧M−1
j=0

(
( Mz + j ∈ T ∧ Mz + j 6= 2 )→ Ajz +Bj ∈ T

)
. ut
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