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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor at the University of Oslo. The research presented here was
conducted at the University of Oslo, under the supervision of associate professor Ulrik
Skre Fjordholm and professor Nils Henrik Risebro.

The thesis is a collection of three papers. The papers are preceded by an introductory
chapter that relates them to each other and provides background information and
motivation for the work and wrapped up by a concluding chapter that gives an outlook
on potential future research. The first and third papers are joint work with Ulrik Skre
Fjrodholm and Nils Henrik Risebro. I am the sole author of the remaining paper.

iii



Preface

Acknowledgements

I want to express my sincere gratitude to:

My supervisors, Prof. Dr. Ulrik Skre Fjordholm and Prof. Dr. Nils Henrik Risebro
for their support in writing my thesis and for sharing their immense knowledge with me.

Find people you admire and ask how they got where they are. Seek book recom-
mendations. Isn’t that what Socrates would do? – Ryan Holiday

My previous mentors, Prof. Dr. Peter Knabner, Prof. Dr. Vadym Aizinger and Prof.
Dr. Andreas Rupp, for giving me the chance to work with them.

Mentors have their own strengths and weaknesses. The good ones allow you to
develop your own style and then to leave them when the time is right. – Robert Greene

My parents, Dieter Musch and Petra Musch, for supporting me since the first day.

Like it or not, children are and will always be their own beings; but they need
great love and guidance to come to full humanness. – Jon Kabat-Zinn

My sisters, Melanie Karl and Simone Musch, for regularly reminding me of the "I
am normal" paradox.

The greatest obstacle to accurately identifying someone else’s style is what I call
the “I am normal” paradox. That is, our hypothesis that the world should look to others
as it looks to us. – Chris Voss

All my friends, for making this a fun journey full of unexpected adventures.

[...] If a space is too rich in possibilities, you are often better off moving around
at random rather than exploring it in a systematic way. [...] That way you are free
from time to time to choose a path that, although it may not seem the best one at first,
promises to lead to increasingly better options down the road. – Cedric Villani

A great future is lying ahead. We have only just begun!

Markus Musch
Oslo, May 2022

iv



List of Papers

Paper I

Fjordholm, U. S., Musch, M., Risebro, N. H. “Well-Posedness Theory for Nonlinear
Scalar Conservation Laws on Networks”. Published in Networks & Heterogeneous
Media, Vol. 17, no. 1 (2022), pp. 101-128.

Paper II

Musch, M. “Convergence Rates of Numerical Schemes for Nonlinear Conservation
Laws on Graphs with Boundary Nodes”. Submitted for publication.

Paper III

Fjordholm, U. S., Musch, M., Risebro, N. H. “Well-posedness and convergence of a
finite volume method for conservation laws on networks”. To appear in SIAM Journal
on Numerical Analysis.

v





Contents

Preface iii

List of Papers v

Contents vii

Introduction ix

Bibliography xvii

Papers 2

I Well-Posedness Theory for Nonlinear Scalar Conservation Laws on
Networks 3

II Convergence Rates of Numerical Schemes for Nonlinear Conserva-
tion Laws on Graphs with Boundary Nodes 33

III Well-posedness and convergence of a finite volume method for con-
servation laws on networks 59

Conclusion 87

Bibliography 93

vii





Introduction

Partial differential equations have become an invaluable tool for modeling processes in
fields like engineering, science, economics and beyond. For a mathematical model to
be useful, we need to know that there exists at least one solution to the equations that
constitute the model of our observed phenomenon. Furthermore, it would be even better
to know that the equations have exactly one solution, because what would our model
be worth if it gave us several contradicting solutions to our problem. Lastly, it would
be desirable for the solution to experience changes in the outcome which are in some
way proportional to changes of the initial state. If not, small measurement errors in our
observation of the process we want to model could lead to vastly different outcomes in
our predictions. This property we call stability.

These three properties, existence, uniqueness, and stability of a solution constitute
well-posedness after the definition of the 20th century french mathematician Jacques
Hadamard. In this thesis we want to address the question of well-posedness of non-linear
hyperbolic conservation laws on networks.

The finite volume method plays an essential role in the numerical analysis of partial
differential equations especially of the hyperbolic type. Furthermore, in many cases it is
not possible to find an analytical solution to a given problem. If we know, though, that
a given numerical scheme converges towards a well-posed solution we can compute
approximate solutions with a high degree of accuracy, to get a clear idea of what the
solution looks like. This is particularly relevant in applied sciences.

In addition to investigating well-posedness for hyperbolic conservation laws
on networks, we will also show a numerical scheme and give an error bound on
approximations constructed with this method. We present test runs of numerical
experiments obtained by an implementation of said method on a computer.

To approximate a solution for a given equation with the finite volume method, one
partitions the given spatial domain into a finite number of volumes and takes the average
of the unknown quantity as an approximation. In case one is looking at a time-dependent
problem, an appropriate discretization of the time dimension has to be applied as well,
in the simplest case by a forward Euler scheme. Though higher order schemes exist, a
lot of work is necessary to make them well-behaved. The difficulties of constructing
higher order methods is in stark contrast to the finite element method, where higher
order approximations are oftentimes a simple extension of the first order case. Finite
element methods, though, have difficulties dealing with discontinuous solutions which
are standard in hyperbolic problems so while often being the method of choice for
parabolic problems, for hyperbolic problems a finite volume method will often be
chosen over a finite element approximation. A third class of schemes which try to
combine the advantages of finite volume and finite element methods are Discontinuous
Galerkin methods. Those allow for an easy adaption to higher order approximations
while still being able to handle discontinuous solutions very well. The price one pays for
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Introduction

this is computational efficiency. Most recently the so called hybridized discontinuous
Galerkin method has been developed and investigated. This method keeps many of the
advantages of DG methods while at the same time being more computationally efficient.

While it is interesting to know how the method behaves when the space and time
discretization are being chosen at ever higher resolution for practical purposes, namely
to know how well one can approximate the problem in question on a computer, the
limit case of the space and time discretization parameters going to zero is relevant to the
analysis of PDE problems. If we can show that a numerical approximation converges
as the discretization is being chosen finer and finer, then we gain knowledge of the
existence of a solution to our analytical problem. This was one point on our agenda
of proving well-posedness. If we already know that in case a solution exists, and that
this solution is unique, we can conclude that the solution the numerical scheme is
converging to must be the unique solution to our problem. Uniqueness of a solution can
be concluded from a stability result. If we know that the difference of two solutions of
the same equation with different initial data is bounded by the difference of the initial
data, we get uniqueness of our solution by choosing the same initial data. This is the
strategy which we want to apply here to show well-posedness of our problems.

While finite volume methods may appear unsophisticated at first, they still play
a large role in industrial applications. This is also due to the fact that they are easily
parallelizable.

Nonlinear Scalar Hyperbolic Conservation Laws on Networks

In this section we want to give a slightly more technical introduction to the problem we
will be investigating in this thesis.

We consider nonlinear hyperbolic conservation laws on networks and focus in
particular on the scalar, one-dimensional case

ut + f (u)x = 0 (0.0.1)

on a network. Here, u = u(x, t) is the unknown conserved variable and f is a scalar
flux function defined either on R or some subinterval. We aim to make sense of the
conservation law on a directed graph and obtain existence, uniqueness, stability and
approximability results.

Consider a network represented by a connected and directed graph. We tag the edges
of this graph with an index k and impose on each edge a scalar conservation law

uk
t + f k(uk)x = 0, x ∈ Dk, t > 0

uk(x, 0) = ūk(x), x ∈ Dk
(0.0.2)

for some spatial domain Dk ⊂ R. The initial data ūk is given. (Here and in the remainder,
a superscript k will refer to an edge or a vertex.) We may think of edges as pipes or
roads and the vertices as intersections, with the convention that the direction of travel is
in the positive x-direction, as shown in Figure 1.

The reason why these types of equations have been studied extensively during the
last decades is their many applications. The first big group of applications is problems
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Figure 1: A star shaped network with two ingoing and three outgoing edges.

of fluid flow such as water flowing in irrigation channels, gas flowing in pipelines and
blood flow [BCG13; G10]. Other problems which do not necessarily describe actual
fluids can be approximated by equations of fluid dynamics satisfactorily under suitable
assumptions. These include traffic flow on a road of networks, air traffic management,
supply chains and data and telecommunication networks [BCG13; G10].

The first work for hyperbolic conservation laws on networks was done by Holden
and Risebro in 1995 [HR95]. In this very first work, Holden and Risebro investigate
a front tracking algorithm to show existence of a solution to a traffic flow problem.
The traffic flow problem is characterized by flux functions which are concave and bell
shaped. A good overview over the research that had been done since 1995 up until 2010
can be found in the review article [CG10]. In the last decade, the major developments
were focused on vanishing viscosity solutions [ACD17; CD19; CD20] and numerical
methods [ACD17; T20].

It is well-established that nonlinear hyperbolic conservation laws develop shocks in
finite time. Therefore, solutions are always understood in the weak sense. Unfortunately,
weak solutions to nonlinear hyperbolic conservation laws turn out to be non-unique, and
additional conditions, usually referred to as entropy conditions, are imposed to select a
unique solution. If the flux function is continuous then the theory of entropy solutions is
covered by Kruzkhov’s theory [K70]. For conservation laws with discontinuous fluxes
the choice of entropy conditions is not obvious, and different physical models might
lead to different entropy conditions. Although suitable entropy conditions can yield
uniqueness, different entropy conditions are known to yield different solutions. The
approach we chose here is to construct a numerical approximation of the continuous
problem and then let the discretization in space and time become infinitely small. We
show that the limit of the numerical approximation exists.
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Figure 2: The grid

Finite Volume Methods for Nonlinear Scalar Hyperbolic Conservation
Laws on Networks

Now, we want to take a look at how to reasonably construct a finite volume method on a
network. A good starting point for investigations into networks is always conservation
laws with discontinuous fluxes on the line, since the network case can be seen as a
generalization of this case.

With regards to numerical methods for conservation laws with discontinuous fluxes,
a lot of research has been done, one of the earliest being an article by Towers in 2000
[T00]. Later, in 2002, Towers together with Karlsen and Risebro investigated an upwind
method for degenerate parabolic equations with discontinuous coefficient [KRT02].
After that, an Enquist–Osher scheme has been investigated as well [BKT09].

Not many works are available on numerical schemes for conservation laws on
networks, though we have to mention the work by Andreianov, Coclite and Donadello
from 2016 [ACD16], as well as the work by Towers from 2020 [T20]. The scheme in
the former paper is implicit in the joint node, while the scheme in the later paper is fully
explicit.

Now we want to have a look at the exact scheme we are going to investigate in this
thesis. First, let us look at a single edge Dk . This is just an interval. We can therefore
discretize the physical domain into cells

C k
i = Dk ∩ (

xi−1/2, xi+1/2
)
,

and the space time domain into rectangles

C k,n
i = C k

i ×
[
tn, tn+1],

with side length ∆x, ∆t > 0 as seen in Figure 2. Here, tn = n∆t, and xi+1/2 = (i + 1/2)∆x
for integer index values n, i where ∆t, ∆x are the discretization parameters.

Now we apply the well known explicit finite volume method on the real line,

uk,n
i ≈ 1

∆x

ˆ

C k
i

uk (x, tn) dx ∀i.

Afterwards we want to connect the different edges Dk . As is being emphasized in red in
Figure 3, this is done by one central cell on the node. We compute the cell average of
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Figure 3: Three-dimensional visualization of the approximation by averages

this cell as
un+1

0 − un
0

∆t
+

1
∆x0

( ∑
k∈Iout

Fk,n
1/2 −

∑
k∈Iin

Fk,n
−1/2

)
= 0. (0.0.3)

which is what distinguishes the finite volume method from a finite difference method on
the real line.

Research Questions Considered in this Thesis

We want to give an overview of the research questions which will be considered in this
thesis, and explain why they are highly relevant problems.

General Framework and Monotone Fluxes

Due to the non-linearity the complexity of the problem in question is considerable.
Therefore it is not uncommon to start out considering only relatively simple flux
functions such as monotone fluxes or convex fluxes when approaching a new model.
Even though this might seem simple at first it turns out that even this restricted case is
quite complicated. More general flux functions can then be considered later on.

While the case of only monotone fluxes is relatively simple, these equations
have important applications, nonetheless. For example, nonlinear scalar hyperbolic
conservation laws on networks with monotone fluxes can be used to model gas flow in a
network of pipelines by means of Burgers’ equation.
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Figure 4: The boundary

Boundary Conditions

While there is no issue to look at edges of infinite length from a mathematical perspective,
from an application viewpoint this is not reasonable. To make our model more realistic
we want to include nodes with only ingoing or only outgoing edges as shown in Figure 4
which will serve as boundary nodes. On these boundary nodes a value for the flux will
be given. This leads us to an initial boundary value problem.

Convergence Rates

If we want to use our numerical scheme in practical applications it is important to know
how precisely the numerical solution will approximate the actual solution at a given
degree of grid refinement. This is the question of the convergence rate of a numerical
method. The very first result in this regard was obtained by Kuznetsov in 1976 [K76].
If we have a grid with spatial grid size ∆x, a classical result for conservation laws on
the line gives us a convergence rate for monotone methods of

‖u(·,T) − u∆t (·,T)‖L1(Ω) 6 C
√
∆x.

Here, u is a solution at time T > 0 and u∆t is an approximate solution at time T to
the equation (0.0.2). That is to say that the L1-norm of the difference between the
approximation and the actual solution is bounded by the square root of the grid size.

General Flux Functions

After having a firm grasp of the easier cases like all fluxes being monotone, one will
want to investigate more complex cases. This comes at the cost of increased complexity,
though. More sophisticated means of proof will be necessary to show the desired results.
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Outline

Outline

The rest of the thesis is a collection of three papers followed by a conclusion section.
In the first paper we construct a very general framework for numerical methods for

scalar non-linear hyperbolic conservation laws on networks. This includes a general
stability result as well as L1-contractiveness, an L∞-bound and Lipschitz-continuity in
time for consistent, conservative and monotone finite volume schemes. The general
framework, though, depends on the existence of a large enough set of solutions which
are constant in time, so called stationary solutions. We show the existence of such sets
for the case of monotone as well as bell-shaped flux functions. The fluxes can differ on
each edge of the network. We do this by constructing numerical approximations and
then let the discretization parameters go to zero. For monotone fluxes we also show
convergence towards the entropy solution via a Crandall–Majda type argument.

The results described in this paper were gained in collaboration with Ulrik Skre
Fjordholm and Nils Henrik Risebro.

In the second paper we want to present a numerical scheme for which we can show
a convergence rate of

√
∆x where ∆x is the gridsize of the spatial discretization. We

show that a particular numerical approximation has a convergence rate of
√
∆x where

∆x is the gridsize of the spatial discretization.
Furthermore, to make the model more realistic we want to address the question of

boundary conditions. In particular we want to include nodes into our graph which has
only outgoing or only ingoing edges and a given function of the value of the influx or
outflux of the preserved quantity.

In the third paper we want to extend the results from Paper 1 to non-monotone flux
functions. In this case we consider Lipschitz continuous flux functions f k : [0, α] →
[0,∞) satisfying f k(0) = 0 and f k(u) = 0 for u > αk , with finitely many extrema
0 = νk0 < νk1 < · · · < νk

mk = α
k , where αk ∈ (0,∞), k ∈ I are given.

Such flux functions include, but are not restricted to, bell-shaped fluxes which are
used to model traffic flow.

We gain an existence and uniqueness result for non-linear scalar hyperbolic
conservation laws on networks with non-monotone, non-concave fluxes. We do this by
constructing numerical approximations and then let the discretization parameters go to
zero.

The results described in this paper were gained in collaboration with Ulrik Skre
Fjordholm and Nils Henrik Risebro.

The final section gives a short summary of our findings and an outlook on relevant
open questions.
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