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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree of

Philosophiae Doctor at the University of Oslo. The research presented here was

conducted at the University of Oslo under the supervision of Førsteamanuensis

Makoto Yamashita and Professor Sergey Neshveyev. This work was partially

supported by the Norwegian Research Council through project 30087 “Quantum

Symmetry”, and by the Trond Mohn Foundation via the project “Pure Mathematics

in Norway”.

The thesis is a collection of three papers, presented in order of when the

main results were obtained. This differs slightly from the order of publication (on

arXiv), which would put Paper III before Paper II. The papers are preceded by an

introductory chapter that relates them to each other and provides background

information and motivation for the work.
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Introduction
This thesis is concerned with two very different flavours of quantum groups. On the

one hand there are the universal compact quantum groups of Kac type, which form

one of the most well-behaved classes of quantum groups. We will primarily study

their associated reduced operator algebras, the von Neumann algebraic variant of

which will always be a type II1-factor. As such, one can use the powerful techniques

of free probability to derive structural results about these operator algebras. On the

other hand we want to consider examples of locally compact quantum groups that

arise as quantizations of real simple Lie groups. Here the obstacles are much more

immediate and fundamental, and we will have to content ourselves with studying

some shadows of quantum phenomena in geometry and Lie theory.

The introduction begins by recalling the notion of compact quantum groups

and some of their history, before discussing some important examples in more detail.

An excellent reference for this material is the book by Neshveyev and Tuset [NT13].

We then proceed to give an overview of the relevant parts of free probability theory,

a thorough account of which can be found in [MS17]. At this point we are ready

to summarize Papers I and III.

We then move on to briefly discuss locally compact quantum groups and some

of the most prominent examples. Finally, we review some notions from the theory

of Poisson–Lie groups and their infinitesimal models (see [CP95] for more) and we

summarize Paper II.

1 The Road to Compact Quantum Groups

The modern theory of operator algebraic quantum groups is by now over 30 years

old, and in this time it has grown into a mature field with connections to many

other areas of mathematics. Rather than diving into the long history of the term

‘quantum group’, let us instead motivate the modern operatic algebraic definition

best suited to our purposes.

Let G be a topological group, which we will take to be compact for the moment

for simplicity. Then by the celebrated Gelfand Duality we can recover the structure

of G as a topological space from the commutative C∗-algebra C(G) of continuous

C-valued functions on G.

It is a natural question whether it is possible to add data to C(G) that also

allows for recovery of the group structure. Looking at the group axioms, we need

to encode the multiplication, inverses, and the unit element at the level of functions.

On the group level, we have continuous maps

∇ : G × G → G, γ : G → G, e : {∗} → G.
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The map ∇ encoding the multiplication has to be associative, meaning that

∇ ◦ (∇× ι) = ∇ ◦ (ι×∇).

Here, ι is a symbol used for generic identity maps. The inversion map γ is an

involution, and an ‘antihomomorphism’ with respect to ∇ in the sense that

γ ◦ ∇ = ∇ ◦Σ ◦ (γ × γ),

where Σ: G × G → G × G is the flip map. One can similarly write down the other

group axioms in terms of these functions.

We now ‘dualize’ these functions and their relations to C(G). This results in

maps

Δ: C(G)→ C(G × G), S : C(G)→ C(G), ε : C(G)→ C,

which are defined by

(Δf )(g, h) = f (gh), (Sf )(g) = f (g−1), ε(f ) = f (e),

respectively. The map Δ is a unital ∗-homomorphism satisfying (Δ⊗ι)Δ = (ι⊗Δ)Δ,

which is dual to the associativity condition for ∇. The assignment ε is also a

∗-homomorphism and interacts with Δ according to the rule (ε⊗ι)Δ = ι = (ι⊗ε)Δ.

Finally, S is an involutive linear map, and its compatibility condition reads

m(S ⊗ ι) = ε(·)1 = m(ι ⊗ S), where m is the map m : C(G × G) → C(G)
given by sending a function to its restriction to the diagonal in G × G.

It is now tempting to follow the philosophy of noncommutative geometry and

pass to a more general class of objects than compact groups by allowing the

commutativity of the function algebra to be violated. This is analogous to how one

passes from compact topological spaces to compact quantum spaces described by a

function algebra which is allowed to be any unital C∗-algebra. Such a more general

category of group-like objects then deserves to be called the category of compact

quantum groups. However, in this case things are not quite so straightforward and

a naive approach quickly runs into problems. Primarily, it turns out that the maps

S and ε will generally become unbounded when one passes to noncommutative

C∗-algebras.

The way forward was found by Woronowicz in the 80s. First, he restricted

to compact subgroups of GL(n,C) and wrote down the definition of a compact

matrix quantum group in [Wor87a]. One starts with a unital C∗-algebra A which is

of a special form, namely, it is generated by the entries (ui j)
n
i,j=1 of an operator

matrix u such that both u and u (entry-wise adjoint) are invertible. One then

assumes that the map Δ: A→ A⊗ A defined by

Δ(ui j) =

n∑
k=1

uik ⊗ ukj

2



The Road to Compact Quantum Groups

is a unital ∗-homomorphism. This is a very concrete definition, and most of the

quantum groups that we will encounter in the papers below are of this form.

Nevertheless, this definition is not general enough to cover all of the examples

that deserve to be called a compact quantum group1. In [Wor98] Woronowicz

introduced the following more abstract definition, which subsumes the previous

one.

Definition 1.1. A compact quantum group G consists of a pair (A,Δ), where A is

a unital C∗-algebra and Δ: A→ A⊗ A is a unital ∗-homomorphism such that

(i) (Δ⊗ ι)Δ = (ι⊗ Δ)Δ (coassociativity);

(ii) the sets {(a ⊗ 1)Δ(b)|a, b ∈ A} and {(1 ⊗ a)Δ(b)|a, b ∈ A} are total in

A⊗ A, meaning for each set that the span of its elements is dense (cancellation

property).

We call Δ the comultiplication or coproduct. Following the example of Gelfand

Duality, we talk about G as a ‘virtual’ object, and hence often write A = C(G).

For the moment it seems like the maps S and ε have disappeared, but we will see

them again later on. In fact, it is a nice feature of the theory of compact quantum

groups that the two properties above suffice to capture all of the group-like structure.

Let us indicate how this works in case the function algebra C(G) is commutative.

Gelfand Duality immediately gives us a compact Hausdorff space G and Δ becomes

a continuous map from C(G) to C(G × G). Coassociativity then implies that

G is a compact semigroup, and the cancellation property moreover implies that

G has the structure of a compact semigroup with cancellation. However, any

such object is necessarily a compact group by standard arguments. Let us remark

for completeness that in the other direction the cancellation property is an easy

consequence of the Stone–Weierstraß Theorem.

There is another piece of compact group technology that makes sense in the

quantum setting and is easily obtainable from the definition above. This is the

Haar state h on C(G), which satisfies

(ι⊗ h)Δ(a) = h(a)1 = (h ⊗ ι)Δ(a)

for all a ∈ C(G). An important ingredient in its construction is the realization

that Δ can be used to define a convolution product for bounded linear functionals

on C(G). Consequently we can define the Hilbert space of square integrable

functions L2(G) on G through the Gelfand–Naimark–Segal (GNS) Construction.

Accordingly, we also obtain two reduced operator algebras associated to G, namely

the C∗-algebra Cr (G) as the image of C(G) under the h-GNS representation, and

its von Neumann algebraic closure L∞(G). These operator algebras will be the

primary objects of interest in two of the articles below.

1This is clear already at the level of genuine compact groups, as any compact group with a
faithful finite dimensional representation is automatically a Lie group. As a concrete example of a
compact group without such a representation once can take

∏
n
U(n).
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Thus a compact quantum group G comes with three operator algebraic models,

namely C(G), Cr (G), and L∞(G). There is also an algebraic model that is

based instead on O(G), the Hopf ∗-algebra of regular functions on the compact

group G. This algebra is spanned by coefficients of the finite dimensional unitary

representations of G, and so to make sense of this in our framework, we first need

to briefly discuss the representation theory of compact quantum groups.

There is a straightforward way to adapt the definition of a representation of

a compact group into the one for a compact quantum group. Indeed, a unitary

representation of a compact quantum groupG is given by a finite dimensional Hilbert

space H and a unitary element U ∈ B(H)⊗ C(G) such that (ι⊗ Δ)U = U12U13.
Here we are using leg-numbering notation, where we have as many subscripts as

the tensor has factors and the numbers indicate to which ‘leg’ in a larger tensor

product the factors are mapped, with units filling any gaps. This is illustrated by

the example (a ⊗ b)31 = (b ⊗ 1⊗ a). In case we have a compact group G, this is

asking for a continuous function U from G into the unitary operators on H such

that U(gh) = U(g)U(h) as functions on G × G.

From this point on, the (abstract) representation theory of compact quantum

groups is almost identical to the that of compact groups. In particular Peter–Weyl

Theory remains valid, Schur’s Lemma holds, and we can take tensor products and

duals of representations. This leads to the structure of a rigid C∗-tensor category,

denoted Rep(G).
Here however, some subtle and interesting differences with the classical theory

emerge. The categorical dimension on Rep(G), often called the quantum dimension,

need not assign integer values to representations. Moreover, in the classical case,

the map that flips the factors in a tensor product of two representations is always

an intertwiner, but this fails to be true in the quantum setting. Finally, the

contragredient to a representation can fail to be a representation and in general it

is necessary to conjugate the contragredient by some matrix to obtain the dual

representation. It should be noted that these phenomena are strongly related to

each other.

We can now define the ∗-algebra O(G) of coefficients of representations of

G. This ∗-algebra sits densely inside C(G), and it turns out that the coproduct Δ

sends O(G) into the algebraic tensor product O(G)⊗O(G). In fact, we can turn

O(G) into a Hopf ∗-algebra by introducing the counit ε and antipode S as those

maps characterized by

(ι⊗ ε)(U) = 1, (ι⊗ S)(U) = U∗,

for any finite dimensional unitary representation U. This is reminiscent of the naive

approach we took at the start of this section, but in general we cannot pass to a

C∗-closure, as the map S will typically not be bounded. This should be intuitively

clear to any reader familiar with modular theory, and indeed the modular theory of

the Haar state is very interesting, but we will not need it.

As an aside, note that Hopf ∗-algebras are precisely those ∗-algebras with a

‘well-behaved’ unitary representation theory. It is a pleasing fact that any Hopf

4



Examples of Compact Quantum Groups

∗-algebra that can be generated by the coefficients of its unitary representations

must come from a compact quantum group [DK94]. In essence this works because

one can construct a Haar functional by projecting onto the span of the trivial

representation.

Another upside of the Hopf ∗-algebraic picture is that we can talk about the

(algebraic) dual algebra, which is again a Hopf ∗-algebra in a natural way by taking

the transpose of the product as the coproduct and so on. Let G be a compact

quantum group and O(G) its algebra of regular functions, then dual Hopf ∗-algebra

gives rise to a so-called discrete quantum group

hatbG, which it is said to be the dual quantum group to G.

Before discussing the most important examples of ‘genuine’ compact quantum

groups for us, we will end this section with some elaborations on the duality above

in the classical case. Aside from O(G), another important class of examples of

Hopf ∗-algebras are the group algebras associated to discrete groups. Let Γ be a

discrete group, then for any s ∈ Γ the coproduct is given by Δs = s ⊗ s, the counit

is the map s �→ 1, and the antipode sends s to s−1. In fact, any discrete group Γ

defines a compact quantum group Γ̂ in this way, considering instead C(Γ̂) = C∗r (Γ)
with the same formula for the coproduct. The algebraic model O(Γ̂) then becomes

the group algebra C[Γ]. In terms of duality we hence identify O(G) = C[Ĝ]. This

is the point of view on the free orthogonal quantum groups that we take in Paper I.

Notice that the coproduct on Γ̂ is cocommutative in the sense that applying the

flip map after Δ gives Δ again. The Hopf algebra O(G) is of course commutative,

but not cocommutative, and C[Γ] is not commutative unless Γ itself is. It is easy

to see that the dual of a commutative Hopf algebra is cocommutative, and vice

versa. In particular the dual to a Hopf algebra that is both commutative and

cocommutative is again of this type.

This is of course related to the famous result that the Pontryagin dual of a

compact Abelian group is a discrete Abelian group. However, the dual of a possibly

non-Abelian compact group is in general only a discrete quantum group. A major

motivation for the development of (general) quantum groups was to find a category

of group-like objects that is closed under such a duality [Tak69]. The formalism of

compact and discrete quantum groups accomplishes this.

2 Examples of Compact Quantum Groups

2.1 The Quantum SU(2) Group

Shortly before Woronowicz laid out his general theory of compact matrix quantum

groups, he established significant parts of the theory for a particular example, namely

his famous q-deformation of SU(2) [Wor87b]. Woronowicz was motivated by the

idea of applying the process of quantization from physics to important symmetry

groups within that field. The group SU(2) is such a group because it encodes the

symmetries of the spin degree of freedom of elementary particles. Classically, one

would usually not expect to be able to find a ‘continuous deformation’ of such Lie

5
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groups, since for example connected simply connected complex simple Lie groups

are classified by discrete structures (their Dynkin diagrams).

Woronowicz’s approach was the following. One can define SU(2) as the group

of 2× 2 complex unitary matrices that have determinant equal to 1. The idea is

to try and find a way to deform the determinant condition. For this, start with the

following definition of the determinant. Consider C2, then ∧2C2 is one-dimensional,

and for any non-zero vector ξ in it, the determinant of a matrix u in M2 is the

number such that

(u ⊗ u)ξ = det(u)ξ.

In particular, u has determinant 1 if and only if

(u ⊗ u)ξ = ξ.

Now we can try to allow general (unit) vectors ζ from C2 ⊗ C2 in this relation.

Woronowicz first showed that is necessary to allow the unitary matrix u to have

entries in a C∗-algebra and to have the vector ζ be of the form

ζ ∝ e1 ⊗ e2 − qe2 ⊗ e1

for some real number q. From this one can derive the relations in the definition

below, which Woronowicz also showed to be sufficient.

Definition 2.1 (Woronowicz’ SUq(2) [Wor87b]). For any −1 ≤ q ≤ 1 we define

C(SUq(2)) to be the universal C∗-algebra generated by the operators α and γ such

that γ is normal satisfying and the following relations,

α∗α+ γ∗γ = 1, αα∗ + q2γ∗γ, αγ = qγα, αγ∗ = qγ∗α.

We define the coproduct on the generators as

Δ(α) = α⊗ α− qγ∗ ⊗ γ, Δ(γ) = γ ⊗ α+ α∗ ⊗ γ.

We can demystify these relations somewhat if we present SUq(2) concretely

as a compact matrix quantum group. Note that C(SUq(2)) is generated by the

entries of the matrix

u =

(
α −qγ∗
γ α∗

)
,

and that the relations above are precisely those that make u unitary and ensure

that

detq(u) = αα
∗ − qγ(−qγ∗) = 1.

The formulas for the coproduct then become the standard ones for compact matrix

quantum groups. Notice that we recover SU(2) ∼= SU1(2).

6



Examples of Compact Quantum Groups

The example of SUq(2) fits into a whole family of examples that come from Lie

groups. Namely, if G is a simply connected semisimple compact Lie group, there

is always a one-parameter family (Gq)q>0 of compact quantum groups such that

G ∼= G1. These are called the Drinfeld–Jimbo q-deformations of G, see [Ros90]

and [CP95, Section 10.1.E]. We will have more to say about other examples of

operator algebraic quantum groups coming from Lie groups in a later section.

2.2 The Free Quantum Groups

Now, we turn to three families of examples that do not come from some sort of

deformation quantization. Instead, these examples are ‘universal’ in some sense

within the category of compact quantum groups (or a subcategory). The first two

families come with a matrix parameter, and were first defined by Wang [Wan95] in

case this matrix is the identity. The more general definition is due to van Daele

and Wang [VW96].

Definition 2.2 ([VW96; Wan95]). Let F,Q ∈ GL(n,C) for some n ≥ 2. Denote

by C(U+Q) the universal C∗-algebra generated by the entries of a matrix (vi j)
n
i,j=1

such that both v and QvQ−1 are unitary, where v = (v ∗i j)
n
i,j=1. Denote by C(O+F )

the universal C∗-algebra generated by the entries of a matrix (ui j)
n
i,j=1 such that

u is unitary and FuF−1 = u. This defines two compact matrix quantum groups,

called the free unitary quantum group U+Q and the free orthogonal quantum group

O+F respectively. The entire family is sometimes referred to as the family of free

quantum groups.

The free unitary quantum groups are universal in the sense that any compact

matrix quantum group can be realised as a quantum subgroup of one of them.

More precisely, this means that for every compact matrix quantum group G there

is a surjective ∗-homomorphism from some C(U+Q) to C(G) that intertwines the

coproducts. This is a quantum analogue of the classical theorem that any compact

Lie group admits a faithful unitary representation, and this was in fact a motivation

to consider these quantum groups.

The conjugation by the matrices Q and F appear in the definition precisely

because of the fact mentioned above that the contragredient to a representation is

not automatically the dual. The free orthogonal quantum group has the additional

requirement that the defining representation is self-dual, and is universal among

this class of compact matrix quantum groups. This class includes SUq(2), as it can

in fact be realised as a free orthogonal quantum group for a suitable 2× 2 matrix.

While the free quantum groups are (in general) not q-deformations, they still

bear resemblance to the classical unitary and orthogonal groups. This is clearest

when one makes the choice Q = In = F , where it is simple to see that the

Abelianization of C(U+n ) is isomorphic to C(U(n)) and that of C(O+n ) is isomorphic

to C(O(n)). Here we have used the customary notation U+In = U
+
n , and similarly

for the free orthogonal quantum group. For this reason the free quantum groups

are sometimes called liberations of these classical groups [BS09].
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Let us briefly say some words about the discrete quantum group dual to the

free orthogonal quantum group. This discrete quantum group is often denoted as

FOF , and in this dual picture the function algebra C(O+F ) is instead interpreted

as the full group C∗-algebra C∗(FOF ). If one takes the quotient of C∗(FOn) by

the ideal generated by the off-diagonal elements of u, one obtains the full group

C∗-algebra of the free product group ∗ni=1Z2. In Paper I, we will take this point of

view on the free orthogonal quantum group, since we will need to talk about its

‘quantum Cayley graph’, which is more natural from a discrete standpoint.

From this point on we will only discuss free unitary quantum groups with Q = In.

For the free orthogonal quantum group we shall be slightly more inclusive and

allow both F = In and F = J2m, where J2m is the standard symplectic matrix

in 2m dimensions. For the latter, we will use the notation O+J2m = O
+J
2m, and

FOJ2m = FO
J
2m on the dual side. The reason for this restriction is that (up to

isomorphism) these are the only matrices for which the associated free quantum

groups have a tracial Haar state.

A compact quantum group G whose Haar state is a trace is said to be of Kac

type, and its discrete dual is called unimodular. An immediate consequence is that

the quantum group von Neumann algebra L∞(G) = L(Ĝ) is then a finite von

Neumann algebra.

Let us suggestively call the quantum group von Neumann algebras of the free

quantum groups of Kac type the free quantum group factors. These have been

extensively studied and many of their properties are known [Ban96; BC07; Bra12;

Bra14; Cas21; CFY14; FV15; Fre13; Iso15; VV07]. For instance, they are indeed

factors, and hence type II1-factors. Banica established a deep link between these

II1-factors and the free probability theory of Voiculescu, which we shall describe in

a subsequent section.

2.3 The Quantum Automorphism Groups

So far we have been discussing compact quantum groups for their own sake,

rather than as a ‘collection’ of symmetries of some other object. Motivated by a

question of Connes, Wang [Wan98] investigated what it should mean for a finite

(noncommutative) space to posses ‘quantum symmetry’.

In the paradigm of noncommutative geometry, a finite noncommutative space

is described by a finite dimensional C∗-algebra, with the classical n-point space

corresponding to the commutative C∗-algebra Cn. It turns out that we want to

talk about finite noncommutative measured spaces instead, that is to say a pair

(B,ψ) where B is a finite dimensional C∗-algebra and ψ is a state on B, which

we will assume to be tracial. Let us now define what it means for a compact

quantum group to act on (B,ψ), which one can easily obtain by dualizing the

classical definition.

Definition 2.3. A left action of a compact quantum group G on a finite

noncommutative measured space is a unital ∗-homomorphism δ : B → O(G)⊗ B
such that (ι⊗ δ)δ = (Δ⊗ ι)δ, (ε⊗ ι)δ = ι, and (ι⊗ ψ)δ = ψ(·)1.

8
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Definition 2.4 ([Wan98]). Let (B,ψ) be a finite noncommutative measured space.

We define the quantum automorphism group of (B,ψ) to be the universal compact

quantum group admitting an action on (B,ψ). It is denoted by Aut+(B,ψ) and it

is of Kac type.

While this definition is very nicely packaged, it is not particularly illuminating

and of course one needs to show that such a quantum group exists (although

uniqueness is clear by abstract nonsense). Banica instead provided a presentation

of Aut+(B,ψ) as a compact matrix quantum group [Ban99]. He also showed that

there is a link between the free quantum groups and the quantum automorphism

groups of the full matrix algebras Mn. Classically, the group of automorphisms

of Mn is isomorphic to the projective orthogonal group PO(n) through acting by

conjugation. Banica defined the projective free orthogonal quantum group PO+n
and showed that it is isomorphic to Aut+(Mn, tr).

The quantum automorphism groups for the classical n-point space with the

normalized counting measure admit a particularly nice presentation, and will feature

prominently in Paper III. It is commonly referred to as the quantum permutation

group S+n , and it can be defined as the compact matrix quantum group whose

defining representation is given by a magic unitary matrix. This means that all of

its entries are projections, and that the sum of these projections along any row or

column is the identity operator. Unsurprisingly, its C∗-algebra C(S+n ) is a liberation

of the C∗-algebra of continuous functions on Sn. What is a little more surprising is

that S+n is isomorphic to Sn for n = 1, 2, 3, and that as soon as n ≥ 4, S+n is a

genuine, not finite, compact quantum group.

Keeping in mind the universality properties of the free quantum groups, one

might hope that the quantum permutation groups are universal for finite quantum

groups, but this is too much to expect [BBN12]. However, it is trivial that the

entire collection of quantum automorphism groups is universal for finite quantum

groups, since every finite quantum group G acts on the finite noncommutative

measured space (C(G), h) and is therefore a subgroup of Aut+(C(G), h).

3 Free Probability and Strong 1-Boundedness

3.1 A Brief Introduction to Free Probability

The various operator algebras constructed out of (discrete) groups form some of

the central families of examples in the entire field. In particular the free groups Fn
give rise to very interesting but also very difficult questions. Perhaps the most basic

such question is which isomorphisms exist among the reduced group C∗-algebras

C∗r (Fn) or the group von Neumann algebras L(Fn) respectively, or whether any

exist at all. These questions are as old as the field of operator algebras, and only

the C∗-version has received a definitive answer, when in 1982 in [PV82], Pimsner

and Voiculescu constructed an exact sequence in K-theory with which they could

show that all the C∗r (Fn) are distinct.

9
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At that time, essentially nothing was known about the free group factors

beyond that they were not isomorphic to the hyperfinite II1-factor R, established

by Murray and von Neumann through property Γ [MN43]. However, this changed

when Voiculescu decided to study free products from a probabilistic point of view

[Voi85], leading to his celebrated theory of free probability. Using the ideas of

free probability, it could be shown that the free group factors admit no Cartan

subalgebra [Voi96], hence they cannot be realized through a group-measure space

construction, and that the free group factors are either all isomorphic or all distinct

[Dyk94; Răd94].

In the theory, the algebras of random variables are modelled by tracial von

Neumann algebras and the concept of independence is modelled by the free product.

Classically, one would take L∞(X,μ) as the algebra of (bounded) random variables

on a probability space (X,μ), and one would model two independent random

variables by taking their tensor product. Nevertheless, strong analogies between

free and classical probability theory exist and are a source of inspiration. Important

examples are Voiculescu’s Central Limit Theorem [Voi85] and his asympototic

freeness for random matrices [Voi91; Voi98a].

We succinctly review the definitions and results from free probability theory

that will be relevant for the rest of this thesis, starting with the notion of free

independence itself.

Definition 3.1. Let X = (X1, . . . , Xn) be an n-tuple of elements in a tracial

von Neumann algebra (M, τ). Denote by Xi the ∗-algebra generated by Xi .

We say that X is freely independent or a free family if whenever we have

1 ≤ i1, . . . , im ≤ n, ik �= ik+1, and yk ∈ Xik such that τ(yk) = 0, then we

also have that τ(y1 · · · ym) = 0.

Note that while we define free independence using ∗-algebras, this is enough to

ensure that the same conclusion holds if we are allowed to pick the yk to lie in X ′′ik
instead.

Definition 3.2. If X is an n-tuple as above, its joint moments are the numbers

{τ(Xε1i1 · · ·X
εm
im
)} with εi ∈ {1, ∗}, 1 ≤ ij ≤ n, and m ∈ Z≥0.

For a single self-adjoint element X0, its moments are just the numbers

{τ((X0)k)}, which can be computed through spectral theory as∫
R

tk dμX0(t),

where μX0 is the spectral measure of X0 with respect to τ . From a probabilistic

point of view, the moments and this measure are the important objects. Accordingly,

call a self-adjoint element S in a tracial von Neumann algebra (M, τ) semicircular

if its spectral measure with respect to τ is

dμS(t) =
1

2π

√
4− x2χ[−2,2](x) dλ(x),

10
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where λ is the Lebesgue measure. Semicircular elements are to free probability

what Gaußian distributions are to classical probability. Their odd moments vanish,

and their even moments are given by the Catalan numbers. There are also circular

elements, which are those of the form (S1+ iS2)/
√
2 for S1 and S2 free semicircular

elements.

If the tuple X happens to generate the ambient von Neumann algebra, it turns

out that their joint moments characterize the von Neumann algebra in the following

sense.

Theorem 3.3. Let (M, τ) and (N , σ) be tracial von Neumann algebras. Assume

that X and Y are n-tuples generatingM and N respectively. If the joint moments

of X with respect to τ agree with the joint moments of Y with respect to σ, then

M and N are isomorphic. Moreover, one can take the extension of Xi �→ Yi to be

the isomorphism.

Corollary 3.4. Let (M, τ) be a tracial von Neumann algebra. Assume that it

can be generated by an n-tuple X of free normal elements, each having a diffuse

spectral measure with respect to τ . ThenM is isomorphic to L(Fn).

The corollary follows by using measurable functional calculus to deform the

generators Xi in a suitable way. For example, the group-like generators of L(Fn)
are what are known as Haar unitaries. That is to say, they are unitaries and their

spectral measure is the Haar measure on the unit circle. Moreover, these generators

form a free family. It is straightforward to write down an explicit function that

deforms a Haar unitary into a semicircular element, and so we can also identify

L(Fn) with the von Neumann algebra generated by n free semicircular elements.

We now move on to Voiculescu’s relative microstates free entropy and the

derived notion of microstates free entropy dimension. These will play a central role

in Papers I and III.

Assume once again that we have an n-tuple X of self-adjoint elements in a

tracial von Neumann algebra (M, τ). Since entropy is a powerful tool in classical

probability and information theory, we want to introduce a free analogue. It turns

out that there are several approaches to defining such a thing, and it is unclear

whether the different definitions give rise to equivalent objects2.

The notion that we shall make the most use of is the so-called microstates

approach [Voi94]. Its definition is inspired both by statistical physics and the

philosophy that (random) matrices are a suitable finite-dimensional approximate

model of free probability. Here, we mean approximation in the sense of moments,

which is natural given the theorem above.

Definition 3.5 ([Voi94]). For �, k ∈ Z≥1 and ε > 0, an (�, k, ε)-microstate is an

n-tuple of k × k self-adjoint matrices (A1, . . . , An) such that

|τ(Xi1 · · ·Xim)− tr(Ai1 · · ·Aim)| < ε

2The proposed proof of MIP*=RE [Ji+20] and its implied refutation of the Connes Embedding
Problem would have as a consequence that some notions are different.
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for all m ≤ �. In words, the tuple of matrices approximate the moments of degree

at most � with a tolerance of ε. The set of all (�, k, ε)-microstates is denoted by

Γ(X; �, k, ε).

Note that the space of n-tuples of self-adjoint k×k matrices is a real Euclidean

space, and hence admits a Lebesgue measure, which we will still denote by λ.

There is also the notion of a relative microstate which we will need. For this,

assume that Y is an m-tuple of self-adjoint elements inM. The set of microstates

of X relative to Y is then

Γ(X : Y ; �, k, ε) = pnΓ(X ∪ Y ; �, k, ε),

where pn is the projection onto the first n factors. We recover the usual microstates

of X by taking Y to be the empty tuple.

Definition 3.6 ([Voi96]). The microstates free entropy of X relative to Y is

χ(X : Y ) = lim
�→∞

lim
ε→0
lim sup
k→∞

(
1

k2
lnλ(Γ(X : Y ; �, k, ε)) +

n

2
ln k

)
.

It can be shown that this is well-defined if we allow for the value −∞.

The normalizations in the definition are necessary because we need to look at

the volume of microstates as a fraction of the volume of a certain ball (for details

see [MS17, Section 7.5]). This quantity χ, setting Y to be the empty tuple for

the moment, has many nice properties. For instance, it is subadditive

χ(X1, . . . , Xn) ≤ χ(X1, . . . , Xk) + χ(Xk+1, Xn) ≤ χ(X1) + · · ·+ χ(Xn),

and if X is a free family then it is even additive

χ(X1, . . . , Xn) = χ(X1) + · · ·+ χ(Xn).

There is an integral formula available for the free entropy of a single random

variable [Voi94]. As a consequence, a sufficient condition for χ(Y0) to be finite

is that Y0 admits a bounded density with respect to the Lebesgue measure on

R. Moreover, in the case that X generates M, one can show that several von

Neumann algebraic properties imply that χ(X) cannot be finite. For instance, this

holds for property Γ, having a Cartan subalgebra, or not being prime [Ge98; Voi96].

However, the free entropy is finite for a free familiy of semicircular elements, which

thus has dramatic consequences for the structure of the free group factors.

Since the particular value of the free entropy of X is not so illuminating, it is

often more useful to consider the following derived quantity.

Definition 3.7 ([Voi96]). Let S be an n-tuple of free semicircular elements, that is

also free from X. The (modified) microstates free entropy dimension of X is then

the number

δ0(X) = n + lim sup
ε↓0

χ(X + εS : S)

|ln ε| .

It can be shown that δ0(X) ≤ n.

12
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One should interpret the combination Xi + εSi as regularizing the Xi by a

free analogue of ‘mollifying with a Gaußian’. The free entropy dimension of a

free n-tuple of semicircular elements is precisely n. It is unknown whether or

not δ0 is a W∗-invariant (it is not a total invariant [Bro05]). There is another

commonly used version of the free entropy dimension, δ∗, which comes from

a ‘non-microstates’ definition of a free entropy [Voi98b], but it will not play a

significant role in the sequel. The only fact we will need about it is the deep result

of Biane–Capitaine–Guionnet [BCG03] that microstates free entropy is always

dominated by non-microstates free entropy.

3.2 Free Group Factors and Free Quantum Group Factors

Let us now link the theories of the free compact quantum groups and free probability.

When Banica worked out the representation theories of O+F and U+Q in the late 90s,

he discovered that, up to rescaling, the characters of their defining representations

are semicircular and circular respectively with respect to the Haar state [Ban96;

Ban97]. In the case of O+F for instance, this is equivalent to saying that the

dimensions of the spaces of intertwiners from u to u⊗2n is the n-th Catalan number,

and that there are no intertwiners between u and an odd tensor power. Moreover,

the combinatorics of these (and other compact quantum group) representation

categories are similar to those that appear in free probability, most notably the

combinatorics of non-crossing partitions [BS09].

From here on we stick to the free quantum groups of Kac type, which are U+n ,

O+n , and O+J2m. We often tacitly assume that n ≥ 3 and m ≥ 2. Closer investigation

of the moments of the generators of the free quantum groups uncovered even more

relations to free probability [BCZ09; BC07; Bra14]. It turns out that asymptotically,

these generators behave as a free (semi)circular family in a strong sense. This

suggests that there should be structural similarities between the free group factors

and the free quantum group factors. Indeed, Banica had already observed in

[Ban97] that L∞(U+2 ) and L(F2) are isomorphic.

In fact, there is a large amount of results in the literature that establish such

structural similarities, of which we mention some here. On the von Neumann

algebra level, the free quantum group factors are indeed II1-factors, see [VV07] and

[CFY14, Appendix]. Moreover, both they and the free group factors are strongly

solid [FV15; Iso15; OP10] and thus without Cartan subalgebras (see also [Oza04;

Voi96]), both are full and hence prime [CFY14; Con74; VV07] (but see also [Ge98;

Şte98]), and they are all Connes embeddable [BCV17; Con76]. In the setting of

II1-factors, fullness is equivalent to not having property Γ.

Furthermore, the free quantum groups share many group-like properties with

the free group factors as well. None of them are amenable [Ban97], they all have

the Haagerup property [Bra12; Haa79], and they are all weakly amenable with

Cowling–Haagerup constant equal to 1 [CH85; CH89; Fre13] (see also [CFY14]).

Thus one is lead to the question when there are isomorphisms between the free

group factors and the free quantum group factors. For the free unitary quantum
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groups, we know that such an isomorphism is possible when n = 2, but very little is

known beyond this result and we will not have much to say on the topic. The case

of the free orthogonal quantum groups is one of the main themes of this thesis,

but before we can say more we need to introduce a bit of L2-cohomology.

In [Kye08] Kyed introduced �2-Betti numbers for unimodular discrete quantum

groups, following work of Lück [Lüc98] and Connes–Shlyakhtenko [CS05]. These

generalize the �2-Betti numbers for discrete groups. Now, the first �2-Betti number

of a free group remembers the number of generators, since β
(2)
1 (Fn) = n − 1 for

n ≥ 2. However, it was shown by Vergnioux [Ver12] and Bichon [Bic13] that

β
(2)
1 (Ô

+
n ) = 0 = β

(2)
1 (Ô

+J
2m), while β

(2)
1 (Û

+
n ) = 1 [KR17]. Thus one does not expect

any isomorphisms beyond the one we have already discussed.

An important step in the direction of turning this into a proof of the absence of

isomorphisms is to combine an estimate of Connes–Shlyakhtenko [CS05] connecting

free entropy dimension to �2-Betti numbers with [BCG03] to give

δ0(w) ≤ 1− β(2)0 (Ĝ) + β
(2)
1 (Ĝ).

Here, G can be any of O+n , U+n , and O+J2m, and w is then the corresponding defining

representation. The eagle-eyed reader will object that w is not a tuple of self-

adjoint elements, except when G = O+n , but this is not important since δ0 turns

out to only depend on the ∗-algebra generated by the tuple [Voi98a].

If one plugs in the known values of the �2-Betti numbers, we find that δ0(u) ≤ 1
for O+n (and O+J2m), and that δ0(v) ≤ 2 for U+n . This is a good start, but recall that

it is unknown whether δ0 of a tuple only depends on the generated von Neumann

algebra. In the next section, we will introduce a strengthening of the inequality

δ0(X) ≤ 1 due to Jung which will turn out to be a W∗-invariant.

3.3 Strong 1-Boundedness

Let us say that a tracial von Neumann algebra for which one has that δ0(X) ≤ 1
for any generating tuple has weak property J. The first examples of von Neumann

algebras with weak property J appeared already in Voiculescu’s paper introducing

δ0 itself [Voi96]. There he shows that any tracial von Neumann algebra containing

a regular diffuse hyperfinite von Neumann subalgebra (usually called a Cartan

subalgebra for II1-factors) satisfies this property, and concludes from this that the

free group factors cannot have such subalgebras. He shows that the same holds if

the von Neumann algebra has property Γ. Building on these ideas, Ge and Shen

could show that any von Neumann algebra that is not prime has weak property

J, and the same for group von Neumann algebras of certain property (T) groups

[GS02].

Subsequently, major progress was made in this direction by Jung [Jun03]. Jung

computed the value of δ0 for any tuple that generates a hyperfinite von Neumann

algebra, and could conclude that it is a W∗-invariant in this case. Additionally, he

proved that for a Connes embeddable diffuse tracial von Neumann algebra, any

generating tuple X satisfies 1 ≤ δ0(X). Consequently, free entropy dimension is an
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invariant for the class of Connes embeddable von Neumann algebras that admit a

regular diffuse hyperfinite subalgebra, have property Γ, are non-prime, or are diffuse

hyperfinite. Seeking to single out a more fundamental property that implied weak

property J, he made the following definitions.

Definition 3.8 ([Jun07]). Let (M, τ) be a tracial von Neumann algebra, and X

an n-tuple of self-adjoint elements in M, and let r > 0. The tuple X is called

r -bounded if for ε small enough, we have the estimate

χ(X + εS : S) ≤ (r − n)|ln ε|+K,

for some constant K ≥ 0 not depending on ε. If Y is another such tuple that is

1-bounded and in addition contains some Yi with finite free entropy, then we say

that Y is strongly 1-bounded.

Comparing the definitions of δ0 and r -boundedness for a tuple X, one sees that

this is indeed a strengthening of the bound δ0(X) ≤ r . Jung then proved the truly

remarkable result that any tracial von Neumann algebra that can be generated

by a strongly 1-bounded tuple has weak property J. This class of von Neumann

algebras contains all of the examples mentioned above.

In another article, Jung provided sufficient conditions for r -boundedness [Jun16],

which we were reproved and generalized by Shlyakhtenko [Shl21]. The gist of

their result is that whenever an n-tuple X satisfies a system of sufficiently regular

algebraic relations, it is r -bounded for some r that can be computed explicitly from

the relations (it is morally n minus the rank of the associated Jacobian matrix).

When the von Neumann algebra is a group von Neumann algebra for a finitely

generated and finitely presented group sofic Γ, Shlyakhtenko could determine that

r = 1− β(2)0 (Γ) + β
(2)
1 (Γ), a combination that we have already seen above. This,

among other things, recovers the property (T) examples since the first �2-Betti

number of such groups always vanishes [Sha00].

It was observed by Brannan and Vergnioux that Shlyakhtenko’s arguments

go through for the quantum group von Neumann algebras of the Kac type free

quantum groups [BV18]. Their strategy was to take the defining relations of O+n
and establish their regularity by connecting them to the so-called quantum Cayley

tree for the discrete dual Ô+n , a notion due to Vergnioux [Ver05]. Since the relevant

�2-Betti numbers were known to vanish, they could conclude in this way that the

standard generators of L∞(O+n ) form a 1-bounded set. To complete the argument

and obtain strong 1-boundedness for L∞(O+n ), they relied on explicit computations

of the spectral measures of the standard generators with respect to the Haar state

due to Banica, Collins, and Zinn-Justin [BCZ09].

Thus, Brannan and Vergnioux could show that L∞(O+n ) is never a free group

factor. However, natural follow-up questions immediately present themselves.

• Is the same true for the other Kac type free orthogonal quantum groups

OJ+2m?
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• What about other universal compact quantum groups with vanishing first

�2-Betti number? This includes for example the quantum permutation groups,

and more generally the quantum automorphism groups for finite dimensional

C∗-algebras B equipped with their Plancherel trace, i.e., the unique tracial

state on B that is also a δ-form [Kye+17].

• Finally, we expect that L∞(U+n ) is never strongly 1-bounded based on the

�2-Betti number estimate, but can we prove this?

In Papers I and III we address all of these questions, and more. We provide

complete answers to the first and last questions, and make significant progress on

the second. The next two sections provide a summary of these two papers.

4 Summary of Paper I

In the first paper we investigate the strong 1-boundedness of the other family

of Kac type free orthogonal quantum groups, which is OJ+2m. The strategy is

fundamentally the same as for O+n , but a few additional obstacles need to be

overcome. First, the canonical generators of L∞(OJ+2m) are not self-adjoint and

so one needs a suitable choice of self-adjoint generators that keep the relations

manageable and preserve the link to the quantum Cayley tree. This is achieved by

introducing a decomposition of the fundamental representation in terms of Pauli

matrices.

Second, detailed information about the spectral measures of the generators

is not available in the case of OJ+2m. Brannan and Vergnioux relied on [BCZ09],

where the main steps are to pass to SUq(2) for a suitable q and then do concrete

calculations in an explicit representation of this compact quantum group. However,

this approach does not carry over into the twisted setting of OJ+2m. While the

Weingarten calculus developed in [BC07] can still be applied to the twisted case to

find the moments of the generators, it is not clear how to proceed as in [BCZ09]

and find the corresponding measure.

Our solution is to avoid the problem entirely and instead prove a technical

lemma that allows, under mild regularity conditions, to enlarge a tuple without

spoiling r -boundedness. This is then used to append the character of the defining

representation to the tuple of canonical generators. As we mentioned above, Banica

showed that this is a semicircular element, so in particular it has finite free entropy,

and we obtain a strongly 1-bounded generating set. Note that this also removes

the dependence of the original proof for O+n on the highly non-trivial calculations

performed in [BCZ09].

5 Summary of Paper III

Paper III is in collaboration with Michael Brannan, Samuel J. Harris, and Makoto

Yamashita (the author’s supervisor). In this paper we develop tools to transfer
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various properties between compact quantum groups and their associated operator

algebras and apply them to the quantum automorphism groups. The starting point

consists of the following two facts. First, it is known that Aut+(Mn) occurs as

the ‘even’ part of O+n [Ban99]. Recall that two compact quantum groups are said

to be monoidally equivalent if there is a unitary monoidal equivalence between

their representation categories [BRV06]. Such a monoidal equivalence can be

implemented by an object called the linking algebra. Then the second fact is

that the monoidal equivalence of the quantum automorphism groups is completely

understood.

In particular, dimB is a complete invariant for the equivalence class of

Aut+(B,ψ) where ψ is the Plancherel trace [RV10]. Hence, if dimB = n, then

we obtain that Aut+(B,ψ) is monoidally equivalent to the quantum permutation

group S+n . The linking algebra implementing this for B = Mn can have a finite

dimensional representation, which was first noticed by Brannan–Ganesan–Harris in

the context of non-local games [BGH21]. This is a rather rare property that we

will leverage extensively in the paper.

In fact, we prove that if two compact quantum groups G1 and G2 are monoidally

equivalent with the linking algebra admitting a finite dimensional representation,

then one can transfer several finite dimensional approximation properties through

this monoidal equivalence, namely residual finite-dimensionality of O(Gi) and

Connes embeddability of L∞(Gi). Since these properties are known to hold for S+n
[BCF20], this establishes them for all quantum automorphism groups.

Inspired by all this, we also construct 2-cocycles on S+n which are induced from

a finite subgroup Γ and we show that the induced cocycle twist can be used to

realize all quantum automorphism groups Aut+(B,ψ) with dimB = n and ψ the

Plancherel trace. Moreover, this allows us to prove crossed product equivalences

between such O(Aut+(B,ψ)) and O(S+n ), namely that

O(S+n )� Γ2 ∼= O(Aut+(B,ψ))� Γ2

as tracial ∗-algebras.

We then use these twists to also pass inner unitarity of S+n [BCF20] to the

other quantum automorphism groups, using a result from [BB10]. Inner unitarity

is a strong form of residual finite-dimensionality, where it is asked that the Hopf

∗-algebra admits a ∗-homomorphism into some full matrix algebra Mk such that its

kernel contains no non-zero Hopf ∗-ideal. Furthermore, by Takesak–Takai Duality

the crossed product equivalence gives rise to finite index embeddings

L∞(Aut+(B,ψ)) ↪→ M|Γ|2 ⊗ L
∞(S+n ).

In order to apply this to strong 1-boundedness, we establish the permanence

of strong 1-boundedness under finite index subfactors. Therefore, the strong

1-boundedness of L∞(O+n ) implies strong 1-boundedness of L∞(Aut+(Mn, tr)),
which then implies strong 1-boundedness of any L∞(Aut+(B,ψ)) for which dimB

is a square. Moreover, we realize L∞(U+n ) as a finite index subfactor of a von
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Neumann algebra that is not strongly 1-bounded. Hence it cannot be strongly

1-bounded itself, and is hence never isomorphic to an orthogonal free quantum

group factor.

We conclude the paper with another construction of the crossed product

equivalence and the finite index embeddings, this time using tools from quantum

information theory and non-local games. This construction has the benefit of

producing explicit maps and actions, and allows us to use the group Γ itself instead

of Γ2.

6 Locally Compact Quantum Groups

So far, we have been almost exclusively discussing compact quantum groups (even

of Kac type). A more general notion of a locally compact quantum group is

of course desirable, since there are many such interesting classical groups, and

also here there is the opportunity to find a category of group-like objects closed

under Pontryagin duality. However, it turned out to be far more difficult to find

the ‘correct’ axioms for locally compact quantum groups, and even the currently

accepted ones could be said to be not entirely satisfactory.

While in the compact case the existence of the Haar state could easily be

derived from the axioms, it is not known how to achieve this in the locally compact

setting. Indeed, the existence of left and right invariant Haar weights has to

be assumed. We now present the von Neumann algebraic definition of a locally

compact quantum group due to Kustermans and Vaes.

Definition 6.1 ([KV03]). A locally compact quantum group G consists of a von

neumann algebra M, a normal unital ∗-homomorphism Δ:M→M⊗M, and

two normal semifinite faithful weights ϕ and ψ onM, satisfying

• coassociativty: as maps betweenM andM⊗3 we have that

(Δ⊗ ι)Δ = (ι⊗ Δ)Δ;

• left invariance: for all x ∈M+ with ϕ(x) <∞, and any normal state ω on

M, it holds that ϕ((ω ⊗ ι)Δ(x)) = ϕ(x)ω(1);

• right invariance: for all y ∈M+ with ψ(y) <∞, and any normal state σ on

M, it holds that ψ((ι⊗ σ)Δ(y)) = ψ(y)σ(1);

For a locally compact quantum group G, we will write L∞(G) for the associated

von Neumann algebraM.

An early example of a locally compact quantum group was constructed by

Woronowicz [Wor91a]. He started with the group of matrices

E(2)∼ =
{(

v n

0 v ∗

)∣∣∣∣ v , n ∈ C, |v | = 1} ,
18
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which is a double cover of the group E(2) = SO(2)�R2 of rigid motions of the

plane. Now choose q ∈ (0, 1) and consider the following two operators acting on

�2(Z)⊗ �2(Z),

v(ei ⊗ ej) = ei−1 ⊗ ej , n(ei ⊗ ej) = qiei ⊗ ej+1.

Note that the operator n is normal but unbounded. We take the von Neumann

algebra generated by v and the bounded spectral projections of n as L∞(Eq(2)∼).
Then L∞(Eq(2)∼) is isomorphic to B(�2(Z))⊗L(Z). The quantum group structure

now comes from the coproduct

Δ(v) = v ⊗ v , Δ(n) = n ⊗ v+̇v ∗ ⊗ n,

where +̇ is the sum of unbounded operators. This formula is dictated by the matrix

presentation we started with, in the same way as for compact matrix quantum

groups, but we see that we cannot interpret it in a purely algebraic way. This is a

sign of many more technical difficulties to come.

An important example where many such technical obstacles arise is SU(1, 1).

We can start again with a matrix presentation, say

SU(1, 1) =

{(
z w

w z

)∣∣∣∣ z, w ∈ C, |z |2 − |w |2 = 1} ,
and then try to quantize as we did for SUq(2), since there is ‘only a minus sign

difference’ as

SU(2) =

{(
z −w
w z

)∣∣∣∣ z, w ∈ C, |z |2 + |w |2 = 1} .
Unfortunately, Woronowicz discovered that this does not give a locally compact

quantum group, as the tensor product of representations cannot be consistently

defined [Wor91b]. It was suggested by Korogodsky [Kor94] on the basis of Poisson–

Lie geometric arguments that one should consider instead the normalizer SU(1, 1)∼

of SU(1, 1) inside SL(2,C). This gives a larger Hopf ∗-algebra with a canonical

projection onto O(SU(1, 1)), while the rest comes from the other connected

component of the normalizer.

From here, it is still a difficult and delicate task to actually construct SUq(1, 1)
∼.

It was carried out by Kustermans and Koelink in [KK03]. Korogodsky [Kor94]

had found all of the relevant representations of the q-deformation of the Hopf

∗-algebraic model of SU(1, 1)∼, and Kustermans–Koelink ‘glued’ together a subset

of these representations to generate an operator algebra. There are severe technical

obstacles to overcome when doing this, since the representations are in terms of

unbounded operators with non-unique extensions. Moreover, it turns out that one

needs to include an additional operator that is ‘invisible’ in the Hopf ∗-algebraic

picture. Its function is to connect the two parts of the decomposition coming from

the canonical projection. This then gives L∞(SUq(1, 1)∼), but defining the rest of
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the locally compact quantum group structure requires extensive use of the theory

of second order q-difference operators and q-hypergeometric function theory.

There are preciously few examples beyond these two. Some of these other

examples arise as deformations of complex simple Lie groups, and there is a general

scheme to quantize such groups [PW00]. However, no such general scheme is

known for real simple Lie groups, and the extended quantum SU(1, 1) group

we have just described is in fact the only example in this class. Moreover, its

construction was carried out ‘by hand’ and gives no clues as to how to generalize

the procedure.

Hence it is all the more remarkable that there is a strong relation between

Eq(2)
∼, SUq(1, 1)

∼ and SUq(2). It was discovered by de Commer [Com11;

Com12a; Com12b] when he investigated actions of locally compact quantum

groups on type I-factors, which he calls quantum torsors. A natural example of such

actions comes from the quantization of the action of SU(2) on its homogeneous

space SU(2)/U(1), which is a 2-sphere. This yields an action of SUq(2) on the

quantum spheres S2qc of Podleś for c = 0,∞ [Pod87].

As the von Neumann algebric models of the coordinate algebras of the Podleś

spheres are type I-factors, the action of SUq(2) on them can be implemented by

a unitary. To be more precise, one has a faithful normal unital ∗-homomorphism

α : L∞(S2qc)→ L∞(SUq(2))⊗ L∞(S2qc) such that (ι⊗α)α = (Δ⊗ ι)α, and then

one can construct a unitary G such that α(x) = G∗(1⊗ x)G. The quantum group

structure of any locally compact quantum group can be encoded in a similar way

by defining the multiplicative unitary W , which is such that Δ(y) = W ∗(1⊗ y)W
[BS93]. Combining W with G one can define a new locally compact quantum group

which keeps the same underlying von Neumann algebra but has a new coproduct.

Applying this to SUq(2) acting on the standard quantum sphere S2q0 produces

Eq(2)
∼, and acting on the equatorial quantum sphere S2q∞ yields SUq(1, 1)

∼.

After this result was established, there was hope that such techniques could

be used to construct more examples of locally compact quantum groups, but this

has unfortunately not materialized. Additionally, there was no classical geometric

picture that could explain this quantum phenomenon and why these three particular

groups show up. The motivation behind Paper II was precisely to try and establish

such a picture, and for this we turn to Poisson structures on Lie groups.

7 Poisson–Lie Geometry and Deformation Quantization

Let M be a manifold, then a Poisson structure on M is a R-bilinear map

{·, ·} : C∞(M)× C∞(M)→ C∞(M), with C∞(M) the smooth R-valued functions

on M, such that the Poisson bracket is skew-symmetric and satisfies the Leibniz

and Jacobi identities. Alternatively we can encode the Poisson structure into a

bivector Π ∈ ∧2TM satisfying {f , g} = 〈df ⊗ dg,Π〉. Let F be a smooth map

between Poisson manifolds N and M, then it is a Poisson map if it intertwines the
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Poisson brackets, i.e.,

{f1 ◦ F, f2 ◦ F}N = {f1, f2}M ◦ F

for all f1, f2 ∈ C∞(M). The product M × N is also a Poisson manifold when

endowed with the bracket

{g1, g2}M×N(p, q) = {g1(·, q), g2(·, q)}M(p) + {g1(p, ·), g2(p, ·)}N(q),

where p ∈ M, q ∈ N, and g1, g2 ∈ C∞(M × N).
The following informal example will motivate why we are considering this

geometric structure. Consider a particle moving in 1 dimension in some potential V .

Then classically its motion is governed by Newton’s Second Law ẍ = ṗ = −V ′(x),
which is a second order ODE and hence requires position and momentum at an

initial time to be integrated. So the phase space is R2 and has coordinates x and

p. These two coordinate functions generate C∞(R2), and we have the natural

Poisson structure {x, p} = 1. Then Newton’s second law can be packaged in terms

of this Poisson structure by introducing the Hamiltonian H = p2/2 + V (x), where

p2/2 is the kinetic energy term, and saying that any function f ∈ C∞(R2) on the

state space evolves in time according to the differential equation

df

dt
= {f , H}.

Indeed, this recovers

ẋ = {x, p2/2} = p{x, p} = p,
ṗ = {p, V (x)} = V ′(x){p, x} = −V ′(x).

In quantum mechanics, this system would instead be described by the

Schrödinger Equation for the wave function of the particle, which lives in L2(R).
One obtains predictions about the position and momentum of the particle by

evaluating non-commuting operators X and P on the vector state given by the

wave function. The failure of X and P to commute is measured by a constant

denoted �. More precisely it holds that [X, P ] = i�. The Correspondence Principle

now asserts that if one sends � to 0, one should recover the classical description

of the system. Concretely, we see that

lim
�→0
1

i�
[X, P ] = {x, p},

and the claim is that this should be true much more generally.

Formally, the idea is that if one has a family of quantum spaces Xh depending

on some parameter h such that h = 0 corresponds to a classical space X, then

one should interpret C(Xh) for h > 0 as being modelled on C(X) with a deformed

multiplication ·h. One should of course have that f ·h g → f g as h goes to zero,

but according to the Correspondence Principle we should also have that

lim
h→0
1

ih
(f ·h g − g ·h f ) = {f , g}
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for a Poisson bracket on X.

This limit where h goes to 0 is called the semiclassical limit, and the upshot

of the discussion above is that the semiclassical limit of a parametrized family of

quantum spaces deforming some classical space should correspond to a Poisson

structure on this classical space. Since the spaces we are interested in deforming

also carry a group structure, we need a refinement of the notion of a Poisson

structure for groups.

Definition 7.1 ([Dri83]). A Lie group G is called a Poisson–Lie group if it is

equipped with a Poisson structure such that the multiplication map G × G → G is

a Poisson map between G × G (with the product Poisson structure) and G.

Any connected compact semisimple Lie group G possesses a non-trivial (meaning

the bracket is not the zero map) Poisson–Lie group structure coming from

the structure theory of the complexification of its Lie algebra [LW90]. This

simultaneously gives a non-trivial Poisson–Lie group structure on the split real

form of the complexification. In the case of SU(2), this Poisson–Lie structure

is precisely the one that is recovered in the semiclassical limit q → 1 of SUq(2)

[LW90]. Moreover, the complexification of SU(2) is SL(2,C), whose split real

form SL(2,R) is isomorphic to SU(1, 1). However, it should be noted that it is

unknown whether SUq(1, 1)
∼ can be viewed as a deformation quantization.

A Poisson–Lie subgroup of a Poisson–Lie group G is a Lie subgroup H that is

simultaneously a Poisson submanifold, i.e., the Poisson bracket restricts to one on

C∞(H). There is a unique structure of a Poisson manifold on the quotient G/H,

which is called a Poisson homogeneous space of G. Moreover, the translation

action of G on G/H is such that the action map G × G/H → G/H is a Poisson

map, which is called a Poisson action of G.

We now return to SU(2) and its homogeneous space S2. The Poisson structure

Π1 on S2 that it inherits as a homogeneous space is SU(2)-covariant, and it turns

out that all SU(2)-covariant Poisson structures on S2 are of the form Π1 + cΠ0,

where c ∈ R and Π0 is the standard symplectic (Poisson) structure on S2 that

comes from viewing TS2 ↪→ R3, restricting the cross product to obtain a 2-form,

and dualizing to a bivector [LW90].

There is a correspondence between these Poisson structures with c ∈ [0, 1]
and the quantum spheres of Podleś. For c = 1, the bivector vanishes at a single

point, and this partitions the sphere into a point and a complementary disk. When

0 ≤ c < 1, the bivector vanishes instead on a circle, which is of maximal diameter

when c = 0, and this partitions the sphere into the points on this circle, and two

complementary disks. These are precisely the primitive ideal spaces of the quantum

spheres, with c = 1 corresponding to the standard quantum sphere, and c = 0

corresponding to the equatorial quantum sphere. The correct Poisson structures on

S2 are also obtained in the semiclassical limit, and there is a consistent deformation

quantization scheme [She91].

These results already strongly suggest that Poisson–Lie geometry is an

appropriate place to look for a classical shadow of de Commer’s twisting result.
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Moreover, Stachura recently made progress towards writing the so-called quantum

κ-Poincaré group as a deformation quantization of a Poisson–Lie group [Sta17;

Sta19], expanding upon work of Zakrzewski [Zak94; Zak97]. Stachura realizes the

appropriate Poisson–Lie group structure as dual to the total space of a certain

Lie algebroid, which has a canonical Poisson manifold structure [Cou90]. The Lie

groupoid giving rise to the Lie algebroid is constructed out of a matched pair of

subgroups B,C < G. In Paper II we investigate this recipe in greater generality,

paying special attention to the case where the matched pair of subgroups comes

from the Iwasawa decomposition of a real simple Lie group. Before we give a

summary of Paper II, we need to introduce the infinitesimal picture for Poisson–Lie

groups.

Let G be a Poisson–Lie group with Poisson bivector Π, then one can define

a map η : G → g ⊗ g by right-translating Πg into g ⊗ g for every g ∈ G. Here

g = TeG is the associated Lie algebra. The compatibility of the Poisson and Lie

group structures turn the map η into a 1-cocycle on G with values in g⊗ g. This

means that η satisfies the relation

η(gh) = η(g) + (Adg ⊗ Adg) η(h).

Taking the derivative of this map yields the following definition.

Definition 7.2 ([Dri83]). A Lie bialgebra consists of a Lie algebra g and a linear

map δ : g→ g⊗ g such that

• δ is skew-symmetric;

• δ∗ : g∗ ⊗ g∗ → g∗ defines a Lie bracket on g∗;

• δ is a 1-cocycle on g with values in g⊗ g, meaning

δ([X, Y ]) = (adX ⊗ 1 + 1⊗ adX)δ(Y )− (adY ⊗ 1 + 1⊗ adY )δ(X).

The map δ is then called the cocommutator.

A particularly nice class of Lie bialgebras g are those for which the cocommutator

δ is a 1-coboundary, that is, δ(X) = δr (X) = (adX ⊗ 1 + 1 ⊗ adX)(r) for some

r ∈ g ⊗ g. Such Lie bialgebras are called coboundary Lie bialgebras, and the

element r is usually called the r -matrix. There are of course some restrictions

on the choice of r if δr is to define a 1-cocycle. These are that r12 + r21 be

g-invariant and that [[r, r ]] = [r12, r13] + [r12, r23] + [r13, r23] also be g-invariant (in

g⊗3). The stronger condition [[r, r ]] = 0 is the famous (classical) Yang-Baxter

Equation. It is particularly easy to integrate δr to a 1-cocycle on G, namely one sets

ηr (g) = (Adg ⊗ Adg)(r)− r . The Poisson brackets associated to these 1-cocycles

on G are called Sklyanin brackets [Skl82].

Another way to package a Lie bialgebra structure is the notion of a Manin triple

[Dri83]. This is a triple of Lie algebras (h, h+, h−) with a non-degenerate symmetric

bilinear form on h such that h± are Lie subalgebras of h and isotropic with respect
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to the form, and h = h+ ⊕ h− as a vector space. In this picture, Lie bialgebra

structures on g are precisely the Manin triples such that h+ = g. This form of

the definition reveals that we can flip the roles of g and g∗ to also obtain a Lie

bialgebra structure on g∗. This gives rise to the notion of a Poisson dual. A simple

observation that we will elaborate on in Paper II is that the Poisson duals of SU(2)

and SU(1, 1), with their canonical Poisson–Lie structures, are isomorphic, and that

there also is a Poisson–Lie structure on E(2) such that its dual is isomorphic to

that of the others.

8 Summary of Paper II

Paper II is in collaboration with Makoto Yamashita, who is the supervisor of the

author.

Let B,C < G be a matched pair of subgroups, that is, B and C are closed

subgroups of G with trivial intersection such that BC is open in G. Then one

has a Lie groupoid GB = BC ∩ CB over B. The total space E of the dual of the

associated Lie algebroid can be identified with the Lie group B� b0. Here, b0 ⊂ g∗

is the annihilator of the Lie algebra of B viewed as an additive group, on which B

acts by the coadjoint action. There is a canonical Poisson structure on E due to

Courant [Cou90], and we show that it in fact always defines a Poisson–Lie group

structure on E. We accomplish this by showing that the map η (as above) induced

by the Poisson bivector is a 1-cocycle, and we discuss an alternative proof using

methods of Zakrzewski [Zak90] in the case of a double Lie group, i.e., when the

matched pair is such that BC = G. Additionally, we explain how the groupoid

C∗-algebra of GB can be interpreted as a deformation quantization, and when this

coincides with the bicrossed product construction [VV03].

Then we investigate in detail the case when the matched pair comes from the

compact and solvable parts of the Iwasawa decomposition of a real simple Lie

group with finite center. Taking the compact part as the base of the groupoid,

we prove that the induced Poisson–Lie groups have coboundary Lie bialgebras and

we give a simple formula for their r -matrices. This is illustrated in detail with the

example of SU(p, 1) for p ≥ 2.
Another example we work out is the matched pair of U(1) and the (ax + b)-

group inside SU(1, 1). Then the group E is isomorphic to E(2)∼, but the induced

Poisson–Lie structure is different from the one underlying Woronowicz’ Eq(2)
∼.

However, we present another deformation scheme on the level of Lie algebras that

does simultaneously produce the correct Lie bialgebra structures on su(2), su(1, 1),

and e(2). We also explain how these Lie bialgebras are related by 2-cocycles,

providing a formal analogue on the level of Lie bialgebras of de Commer’s result

[Com11].
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Abstract

Recently, Brannan and Vergnioux showed that the orthogonal free quantum

group factors LFOM have Jung’s strong 1-boundedness property, and hence

are not isomorphic to free group factors. We prove an analogous result

for the other unimodular case, where the parameter matrix is the standard

symplectic matrix in 2N dimensions J2N . We compute free derivatives

of the defining relations by introducing self-adjoint generators through a

decomposition of the fundamental representation in terms of Pauli matrices,

resulting in 1-boundedness of these generators. Moreover, we prove that

under certain conditions, one can add elements to a 1-bounded set without

losing 1-boundedness. In particular this allows us to include the character of

the fundamental representation, proving strong 1-boundedness.
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I. Strong 1-Boundedness of Unimodular Orthogonal Free Quantum Groups

I.1 Introduction

The C∗-algebras and von Neumann algebras associated to discrete groups form

a rich and important class of examples. The theory of discrete quantum groups,

dual to Woronowicz’s compact quantum groups [Wor87; Wor98], has in recent

years proven itself to be another fruitful source of interesting C∗-algebras and von

Neumann algebras. The discrete duals of the free orthogonal and free unitary

quantum groups of Van Daele and Wang [VW96; Wan95], depending on an

invertible complex N × N matrix parameter Q, have been particularly well studied.

Write FO(Q) for the orthogonal free quantum group associated to a general Q

and let J2N be the standard symplectic matrix in 2N dimensions. We will use the

notations FON = FO(IN) and FOJ2N = FO(J2N) for the unimodular orthogonal

free quantum groups. These two cases are of particular interest, as their associated

quantum group von Neumann algebras LFON and LFOJ2N share many properties

with the free group factors [Ban96; BC07; Bra12; Bra14; Cas21; CFY14; FV15;

Fre13; Iso15; VV07]. Whether or not they could be isomorphic to a free group

factor LFM remained open for over 20 years, until it was recently settled for

Q = IN by Brannan and Vergnioux [BV18]. They distinguish LFON from the free

group factors by proving that it satisfies strong 1-boundedness, a free probabilistic

property due to Jung [Jun07]. The main result of the present paper is that this

property also holds when Q = J2N .

Theorem (See Theorem I.5.1). The orthogonal free quantum group von Neumann

algebras LFOJ2N are strongly 1-bounded for N ≥ 2.

Combined with the work of Brannan and Vergnioux, this yields the following

corollary.

Corollary. Let Q ∈ GLN(C), N ≥ 3, be such that QQ ∈ CIN and such that FO(Q)
is unimodular. Then LFO(Q) is not isomorphic to any finite von Neumann algebra

admitting a tuple of self-adjoint generators whose (modified) free entropy dimension

exceeds 1. In particular this excludes being isomorphic to any (interpolated) free

group factor.

Evidence pointing towards this outcome had already appeared in the literature.

Vergnioux [Ver12] and Bichon [Bic13] proved that the first L2-Betti number vanishes

for both FON and FOJ2N . Using this, it can be shown that Voiculescu’s modified

microstates free entropy dimension δ0 and non-microstates free entropy dimension

δ∗ [Voi96; Voi98] give different results for the canonical set of generators in LFON
or LFOJ2N , and LFM respectively [BCV17].

It is unknown whether or not free entropy dimension is a von Neumann algebra

invariant in general, but this is the case for strongly 1-bounded von Neumann

algebras [Jun07]. In a finite von Neumann algebraM with faithful normal tracial

state τ , a finite tuple X1, . . . , Xn ∈M of self-adjoint elements is called 1-bounded

(without the ‘strong’) if it satisfies a condition that is slightly stronger than

δ0(X1, . . . , Xn) ≤ 1 (see Section I.2.4). If M admits self-adjoint generators
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X1, . . . , Xn that form a 1-bounded tuple, and at least one of the Xi has finite free

entropy, M is said to be strongly 1-bounded. Jung introduced these definitions

and showed that for a strongly 1-bounded von Neumann algebra N , any finite

set of self-adjoint generators Y1, . . . , Ym ∈ N must satisfy δ0(Y1, . . . , Ym) ≤ 1.
This forbids N being isomorphic to any interpolated free group factor LFr for

1 < r ≤ ∞ [Jun07, Section 3].

Checking directly that the canonical generators of LFON and LFOJ2N form a

1-bounded set turns out to be difficult. Instead, the strategy of [BV18] for FON
relies on results of Jung [Jun16] and Shlyakhtenko [Shl21]. The quantum group

von Neumann algebra LFON has N2 self-adjoint operators u = (ui j)
N
i,j=1 as its

canonical set of generators. These generators satisfy some polynomial relations

F , i.e. F (u) = 0 in LFON . One then considers the free derivatives ∂F (u) of the

relations F with respect to the generators ui j . The results of Jung and Shlyakhtenko

now say that in order to conclude 1-boundedness of u, it is sufficient to prove that

the operator D = ∂F (u)∗∂F (u) is of determinant class and has rank N2 − 1 (see

Section I.2.4 for details).

Brannan and Vergnioux achieve this by computing the operator D and relating

it to something called the edge-reversing operator on the quantum Cayley tree due

to Vergnioux [Ver05; Ver12]. Regularity results for this edge-reversing operator

are proved in [BV18] for many FO(Q), including the cases Q = IN , J2N . The

computation of the rank of D proceeds by expressing the rank in terms of L2-Betti

numbers, which are known for all orthogonal free quantum groups. To complete

the proof, there are calculations by Banica, Collins, and Zinn-Justin [BCZ09] which

imply that every ui j individually has finite free entropy.

There are two obstacles to generalising this proof to the case of FOJ2N . The

first is that the canonical generators are no longer self-adjoint, complicating the

determination of ∂F . We will remedy this by choosing a convenient set of self-

adjoint generators using a decomposition of the fundamental representation in

terms of Pauli matrices, which have simple algebraic properties and relations.

Fortunately, the connection to the edge-reversing operator remains intact, allowing

us to conclude that our new set of generators is 1-bounded.

The second obstacle is that calculations like [BCZ09] are not available for FOJ2N .

We sidestep this by proving a technical result of independent interest, inspired by

a relative free entropy estimate due to Voiculescu [Voi96]. This lemma states

that under certain regularity conditions, one is allowed to add redundant elements

to a generating set without spoiling 1-boundedness. This works in particular if

the redundant element is a noncommutative polynomial in the generators. It is a

result of Banica that the character of the fundamental representation of FOJ2N is

a semicircular element [Ban96], and hence possesses finite free entropy. As the

fundamental character is a linear combination of generators, we have completed

the proof. Note that this method also applies to FON , removing the dependence

on the non-trivial results of [BCZ09].

The remainder of this paper is structured as follows. In Section I.2, we recall

the necessary facts and definitions about orthogonal free quantum groups, their
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corepresentation theory, quantum Cayley graphs, and free probability. In Section

I.3, we introduce generators for LFOJ2N , compute their free derivatives, and show

how this results in 1-boundedness. In Section I.4, we prove a technical lemma

stating conditions under which one is allowed to enlarge a 1-bounded set without

destroying 1-boundedness. Finally, in Section I.5 we prove our main result and

discuss some consequences.

I.2 Preliminaries

We will keep our notations and conventions close to [BV18]. Generally, the letters

H, K, and L represent (separable) Hilbert spaces, and K(H) or U(H) denotes the

compact or unitary operators on the Hilbert space H respectively. All von Neumann

algebras are assumed to have a separable predual. We write H ⊗K for the tensor

product of Hilbert spaces, and the same symbol is also used for the minimal tensor

product of C∗-algebras. Put Σ for the map H ⊗K → K ⊗H that flips the tensor

legs. The Greek letter ι will be used as a generic symbol for any identity map. We

will also make use of leg numbering notation, which we will explain by example. If

x, y are elements of a unital algebra A, then A⊗3 � (x ⊗ y)31 = y ⊗ 1⊗ x , while

A⊗4 � (x ⊗ y)13 = x ⊗ 1 ⊗ y ⊗ 1, and so on. It will always be clear from the

context in which space the tensors lie. For an operator V on H ⊗H, we have for

instance that V32 = ι⊗ (ΣV Σ) on H⊗H⊗H. We write IN for the N ×N identity

matrix and J2N denotes the standard 2N × 2N symplectic matrix

J2N =

(
0N IN
−IN 0N

)
.

I.2.1 Orthogonal Free Quantum Groups

For brevity, we will discuss discrete quantum groups within the context of FO(Q).

Definition I.2.1. Let N ≥ 2 and Q ∈ GLN(C) such that QQ ∈ CIN , where the bar

denotes taking the adjoint (i.e. complex conjugate) entry-wise. Then the orthogonal

free quantum group FO(Q) is given by the unital Woronowicz C∗-algebra

C∗FO(Q) =
〈
ui j

∣∣ 1 ≤ i , j ≤ N, u unitary, QuQ−1 = u〉 , (I.1)

where u denotes the matrix (ui j)i j ∈ MN(C) ⊗ C∗FO(Q). The matrix u is

the fundamental representation of FO(Q), and the coproduct Δ: C∗FO(Q) →
C∗FO(Q)⊗ C∗FO(Q) takes the form

Δ(ui j) =

N∑
k=1

uik ⊗ ukj

on its entries. The coproduct Δ is a co-associative unital ∗-homomorphism satisfying

the cancellation property that the subspaces

span {(x ⊗ 1)Δ(y) | x, y ∈ C∗FO(Q)} ⊂ C∗FO(Q)⊗ C∗FO(Q),
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span {(1⊗ x)Δ(y) | x, y ∈ C∗FO(Q)} ⊂ C∗FO(Q)⊗ C∗FO(Q),

are dense.

These algebras come with a unique invariant state h, called the Haar state,

where invariance means that (h ⊗ ι)Δ(x) = h(x)1 = (ι ⊗ h)Δ(x) for all

x ∈ C∗FO(Q). If h is a trace, then FO(Q) is said to be unimodular. It is

known (see [Bra17, Section 9.1]) that FO(Q) is unimodular when either Q = IN
or Q = J2N (up to isomorphism). Hence we introduce the special notations

FON = FO(IN) and FOJ2N = FO(J2N).

One also has an involutive ∗-anti-automorphism R of C∗FO(Q) such that

ΔR = (R ⊗ R)ΣΔ, called the unitary antipode. The ordinary antipode S is an

anti-automorphism of the ∗-algebra generated by the ui j with the property that

(ι⊗ S)(u) = u∗. In the unimodular case, the maps R and S are the same.

Applying the GNS construction to the Haar state h gives a Hilbert space

�2FO(Q) = HQ with canonical cyclic unit vector ξ0 implementing h as a vector

state. This representation gives rise to the reduced quantum group C∗-algebra

C∗r FO(Q) and the quantum group von Neumann algebra LFO(Q) in the usual

ways.

On C∗r FO(Q), the comultiplication Δ is implemented by an operator V ∈
U(HQ ⊗ HQ) as Δ(y) = V (y ⊗ 1)V ∗. This multiplicative unitary V is defined

explicitly by V (xξ0⊗yξ0) = Δ(x)(1⊗y)(ξ0⊗ξ0) for x, y ∈ C∗FO(Q), and witnesses

the pentagon equation V12V13V23 = V23V12. The unitary antipode R descends to

give an involutive unitary U on HQ by U(xξ0) = R(x)ξ0 for x ∈ C∗FO(Q).
We recall some facts about the orthogonal free quantum groups and the parallels

to the free group factors on the von Neumann algebraic level. If one takes an

identity matrix IN in the Definition (I.1) above, the orthogonal free quantum groups

FON are obtained. This family is both a liberation of C(ON) and its diagonal

quotient (setting all off-diagonal elements to zero) are related to the full group

C∗-algebra of the N-fold free product group Z2 ∗ · · · ∗ Z2 [Wan95]. This explains

the F and the O appearing in FON .

As we are taking the point of view of discrete quantum groups, we use the

notation C∗FON to underline the analogy with the full group C∗-algebra mentioned

above. If one takes the point of view of compact quantum groups instead, the

notation C∗FON = Cu(O+N ) is more natural in light of the relation to the orthogonal

group ON . The original notation Ao(N) (and more generally Ao(Q)) of van Daele

and Wang is also common. For general Q, we have a family of deformations of

this Woronowicz C∗-algebra that still satisfy many of the same properties.

The analogy with free groups becomes stronger when one considers approx-

imation properties. It is a result of Banica [Ban96] that FO(Q) is ‘generically’

non-amenable, that is if and only if N ≥ 3. De Commer, Freslon, and Yamashita

[CFY14] proved that FO(Q) has the Haagerup property and is weakly amenable

with Cowling–Haagerup constant 1 (also referred to as the CCAP or CMAP),

generalising results by Brannan [Bra12] and Freslon [Fre13].
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This trend continues on the von Neumann algebraic level. By [Cas21; FV15;

Iso15] it holds that LFO(Q) is strongly solid and has no Cartan subalgebra. With

some restrictions on Q, Vaes and Vergnioux [VV07] showed that LFO(Q) is a full

factor and hence prime. In particular, if QQ∗ = IN and N ≥ 3, then LFO(Q) is

a factor of type II1. Recall that FO(Q) is unimodular for Q = IN , J2N . Thus the

analogy between the orthogonal free quantum group von Neumann algebras LFON
and LFOJ2N on one hand and the free group factors LFM on the other is especially

striking. It was even shown that the series {LFON} has free group factor-like

asymptotics in a strong sense [BC07; Bra14].

I.2.2 Corepresentations

All constructions in this section are general, but we state them for FO(Q). We

refer to [NT13] for the general theory of the representation categories of discrete

and compact quantum groups.

A unitary corepresentation of FO(Q) on a Hilbert space H is defined as a

unitary operator v which lies in the multiplier algebra M(K(H)⊗ C∗FO(Q)) and

which interacts with the comultiplication as

(ι⊗ Δ)v = v12v13 ∈ M(K(H)⊗ C∗FO(Q)⊗ C∗FO(Q)).

The fundamental representation u and the multiplicative unitary V are important

examples.

Taking all finite dimensional unitary corepresentations of FO(Q) as objects and

their intertwiners as morphisms yields a rigid C∗-tensor category when equipped

with the obvious direct sum and the tensor product v ⊗ w = v13w23. Write vtriv
for the trivial corepresentation on C represented by 1 ∈ C∗FO(Q), and choose a

set of representatives Irr(Q) of the irreducible corepresentations such that u and

vtriv are among them. If v ∈ Irr(Q), write Hv for its Hilbert space.

The algebraic direct sum
⊕

v∈Irr(Q)B(Hv ) is dense in HQ. Restricting the

multiplicative unitary V to this subspace gives the decomposition V =
∑

v∈Irr(Q) v
acting by left multiplication. Using the c0 direct sum instead, one forms the dual

algebra

c0(FO(Q)) = c0(Q) =
c0⊕

v∈Irr(Q)
B(Hv ),

again acting by left multiplication on the subspace defined above. It turns out that

V ∈ M(c0(Q) ⊗ C∗r FO(Q)). There are two minimal central projections p0, p1 ∈
Z(M(c0(Q))) such that p0HQ = B(Hvtriv)

∼= Cξ0 and p1HQ = B(Hu) ∼= MN(C).
Note that p0p1 = 0 and Up1 = p1U.

I.2.3 Quantum Cayley Trees

To the pair FO(Q) and p1, one can associate a quantum Cayley tree [Ver05]. This

consists of the following four pieces of data. We have the Hilbert spaces HQ and
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KQ = HQ ⊗ p1HQ, to be thought of as the vertex and edge spaces respectively.

There is a bounded linear operator E from KQ to HQ ⊗HQ, called the boundary

operator, given by restricting the multiplicative unitary V to KQ. Finally, we have

the important edge-reversing operator Θ = Σ(1⊗ U)V (U ⊗ U)Σ ∈ B(KQ) (this

uses Up1 = p1U). Note that Θ need not be involutive, but it is unitary.

Let us explain how this generalises the classical Cayley graph. Let G be a discrete

group, and consider its group C∗-algebra C∗G with the coproduct Δ(g) = g ⊗ g.
It is easy to see that Δ is cocommutative, that is ΣΔ = Δ. A standard fact in

this context is that the unitary antipode R is given by R(g) = g−1. Passing to the

reduced group C∗-algebra C∗r G, we write {δg} for the orthonormal basis of �2G

given by the point-indicator sequences, and λ : C∗G → B(�2G) for the left regular

representation. The definition of the multiplicative unitary V becomes

V (λgδe ⊗ λhδe) = (λg ⊗ λg)(1⊗ λh)(δe ⊗ δe) = (λgδe ⊗ λghδe).

The vertex Hilbert space is now just �2G. The right analogue of p1 in this

context turns out to be the indicator sequence of a set H ⊂ G, not containing the

neutral element e and closed under inverses. As the boundary operator E is just

a restriction of V , we see that the ‘boundary’ of an edge (δg ⊗ δh) is (δg ⊗ δgh).
Thus we should view (δg ⊗ δh) as an edge in the classical Cayley graph that starts

at g, and whose endpoint is given by right translating by h, i.e. gh. Accordingly,

the edge-reversing operator acts as

Θ(δg ⊗ δh) = Σ(1⊗ U)V (δh−1 ⊗ δg−1)
= Σ(1⊗ U)(δh−1 ⊗ δh−1g−1)
= δgh ⊗ δh−1 .

I.2.4 Free Probability and Determinant Class Operators

Throughout this section (M, τ) is a finite von Neumann algebra with faithful

normal tracial state τ . Let X1, . . . , Xn and Y1, . . . , Ym be self-adjoint elements in

M. In [Voi94], Voiculescu introduced the microstates free entropy χ(X1, . . . , Xn).

This relies on the notion of microstates Γ(X1, . . . , Xn; �, k, ε) of X1, . . . , Xn, which

are n-tuples of k × k self-adjoint complex matrices that approximate the moments

of the Xi up to degree � within precision ε. The microstates free entropy χ is then

a normalised limit over the logarithm of the volume of sets of microstates.

For later use, we state a finiteness result for the microstates free entropy of a

single self-adjoint element X ∈M.

Lemma I.2.2. Let X = X∗ ∈ M and write μX for its spectral distribution with

respect to τ . If μX admits an essentially bounded density with respect to the

Lebesgue measure on R, then χ(X) is finite.

This is a direct consequence of the formula

χ(X) =

∫∫
log |s − t|dμX(s)dμX(t) +

3

4
+ 2−1 log(2π),

41



I. Strong 1-Boundedness of Unimodular Orthogonal Free Quantum Groups

which can be found in Proposition 4.5 of [Voi94].

We next recall the relative microstates free entropy

χ(X1, . . . , Xn : Y1, . . . , Ym)

from [Voi96]. This is defined in the same way, except one considers relative

microstates Γ(X1, . . . , Xn : Y1, . . . , Ym; �, k, ε). These are the projections onto

the first n factors of the microstates Γ(X1, . . . , Xn, Y1, . . . , Ym; �, k, ε). We record

some of its properties that will be used later.

Proposition I.2.3. The relative microstates free entropy satisfies

• Domination by the microstates free entropy and global upper bound

χ(X1, . . . , Xn : Y1, . . . , Yn) ≤ χ(X1, . . . , Xn)

≤
n

2
log

[
2πe

n
τ
(
X21 + · · ·+X2n

)]
.

• χ is ‘subadditive’

χ(X1, . . . , Xn : Y1, . . . , Ym) ≤χ(X1, . . . , Xp : Xp+1, . . . , Xn, Y1, . . . , Ym)
+ χ(Xp+1, . . . , Xn : X1, . . . , Xp, Y1, . . . , Ym).

• Let Z1, . . . , Zq ∈ M be self-adjoint and lying in the von Neumann algebra

generated by Y1, . . . , Ym, then

χ(X1, . . . , Xn : Y1, . . . , Ym) ≤ χ(X1, . . . , Xn : Z1, . . . , Zq).

• If Yp, . . . , Ym lie in the von Neumann algebra generated by X1, . . . , Xn and

Y1, . . . , Yp−1, we have

χ(X1, . . . , Xn : Y1, . . . , Ym) = χ(X1, . . . , Xn : Y1, . . . , Yp−1).

This leads us to the definition of the modified free entropy dimension δ0 [Voi96].

Without loss of generality (replacing M by a free product if necessary) we can

assume that there is a free family of standard semicircular elements S1, . . . , Sn
that are also free from the Xi . Now define

δ0(X1, . . . , Xn) = n + lim sup
ε→0

χ(X1 + εS1, . . . , Xn + εSn : S1, . . . , Sn)

|log ε| . (I.2)

It turns out that δ0(X1, . . . , Xn) ≤ n, and this inequality is saturated when the Xi
form a free standard semicircular family. Thus the free group factor LFM admits an

M-tuple of generators such that their modified free entropy dimension is precisely

M.

An important goal of free probability theory is to decide whether δ0 is a

von Neumann algebraic invariant. That is, is it true that when X1, . . . , Xn and
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Y1, . . . , Ym generate isomorphic von Neumann algebras, then δ0(X1, . . . , Xn) =

δ0(Y1, . . . , Ym)? An affirmative answer to this would solve the long-standing free

group factor isomorphism problem.

Jung made progress in this direction when he introduced the notion of strong

1-boundedness and showed that every generating set of a strongly 1-bounded von

Neumann algebra has modified free entropy dimension less than 1 [Jun07]. Hence

any such von Neumann algebra is not isomorphic to a free group factor LFM with

M ≥ 2. The most convenient definition in our case is not the original one, but

rather the equivalent final bullet point of Corollary 1.4 in [Jun07].

Definition I.2.4. Let α > 0, then X1, . . . , Xn is α-bounded if

lim sup
ε→0

[χ(X1 + εS1, . . . , Xn + εSn : S1, . . . , Sn) + (n − α)|log ε|] <∞. (I.3)

If in addition to being 1-bounded, at least one of the Xi satisfies χ(Xi) > −∞, we

say that X1, . . . , Xn are strongly 1-bounded.

Comparing (I.3) with the definition (I.2) of δ0, one sees that α-boundedness is

a strengthening of the estimate δ0(X1, . . . , Xn) ≤ α. An alternate way to state the

definition of α-boundedness is to say that for small ε there is a constant K ≥ 0,
depending only on the Xi , such that

χ(X1 + εS1, . . . , Xn + εSn : S1, . . . , Sn) ≤ (α− n)|log ε|+K.

Recalling Lemma I.2.2, upgrading 1-boundedness to strong 1-boundedness can be

achieved by showing that one of Xi has a sufficiently regular spectral measure μXi .

Remark I.2.5. There is another approach to defining a free notion of entropy,

called χ∗, also due to Voiculescu [Voi98]. Instead of going through microstates, χ∗

is defined through the notions of conjugate variables and free Fisher information.

This leads to a non-microstates free entropy dimension δ∗, and an analogous

definition of α-boundedness for δ∗. It is a deep result of Biane, Capitaine, and

Guionnet [BCG03] that χ∗(X1, . . . , Xn) ≥ χ(X1, . . . , Xn) (and so also larger than

the relative microstates free entropy). Consequently, α-boundedness for δ∗ implies

α-boundedness for δ0.

In the remainder of this section, let us introduce some terminology necessary

to state a result of Jung [Jun16] reproved by Shlyakhtenko [Shl21].

Let T1, . . . , Tn be formal noncommuting indeterminates, and write

C〈T1, . . . , Tn〉 for their unital algebra of noncommutative polynomials. For

each 1 ≤ i ≤ n, define a map

∂i : C〈T1, . . . , Tn〉 → C〈T1, . . . , Tn〉 ⊗ C〈T1, . . . , Tn〉,

by the relations

∂iTj = δi j(1⊗ 1), ∂i(P1P2) = (∂iP1)(1⊗ P2) + (P1 ⊗ 1)(∂iP2),
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where P1, P2 ∈ C〈T1, . . . , Tn〉. When we equip C〈T1, . . . , Tn〉⊗2 with the

C〈T1, . . . , Tn〉-bimodule structure P1 · (P2 ⊗ P3) · P4 = (P1P2 ⊗ P3P4), the ∂i
become derivations.

For a vector of such polynomials P = (P1, . . . , Pm) ∈ C〈T1, . . . , Tn〉m, we

define

∂P =

n∑
i=1

m∑
j=1

(∂iPj)⊗ ej ⊗ e∗i ∈ C〈T1, . . . , Tn〉⊗2 ⊗Mm×n(C).

We now want to evaluate such expressions in self-adjoint X1, . . . , Xn ∈M, where

M is still a finite von Neumann algebra with faithful normal tracial state τ . This

results in ∂P (X1, . . . , Xn), which we view as an element inM⊗Mop ⊗Mm×n(C).
Equip L2M⊗L2Mop with the rightM⊗Mop-module structure (ξ⊗η)·(x⊗yop) =
(ξx ⊗ yopη). Then ∂P (X1, . . . , Xn) is a bounded right M⊗Mop-module map

from L2M⊗ L2Mop ⊗ Cn to L2M⊗ L2Mop ⊗ Cm. Consequently, we can define

the rank of ∂P (X1, . . . , Xn), denoted rank(∂F (X1, . . . , Xn)), as the Murray–von

Neumann dimension of the closure of its image.

Finally, recall that when A ∈ Mn(C) is strictly positive we have the identity

det(A) = exp(Tr(log(A))).

This motivates the definition of the Fuglede–Kadison–Lück determinant detFKL
on (M, τ). Let x ∈ M, and write μ|x | for the spectral distribution of |x | with

respect to τ . Then

detFKL(x) = exp

(∫ ∞
0+
log(s)dμ|x |(s)

)
,

when the integral is finite, and zero else. We say that x is of determinant class

(with respect to τ) if detFKL(x) �= 0.

Theorem I.2.6 ([Jun16, Theorem 6.9] and [Shl21, Theorem 2.5]). LetM be a finite

von Neumann algebra with faithful normal tracial state τ , and X1, . . . , Xn ∈ M
self-adjoint. Assume that there is a vector F ∈ C〈T1, . . . , Tn〉m such that

F (X1, . . . , Xn) = 0 and detFKL [∂F (X1, . . . , Xn)
∗∂F (X1, . . . , Xn)] �= 0.

Then it holds that X1, . . . , Xn are α-bounded (for both δ0 and δ∗) with

α = n − rank (∂F (X1, . . . , Xn)) .

I.3 Generators, Relations, and 1-Boundedness

I.3.1 Generators

We now fix Q = J2N and consider FOJ2N = FO(J2N). Recall the 2N × 2N matrix

of canonical generators u. Let us split u up into four N × N pieces as

u =

(
u(1) u(2)
u(3) u(4)

)
.
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Writing out the last relation in the definition (I.1) of C∗FOJ2N , one obtains(
u(1) u(2)
u(3) u(4)

)
=

(
u(4) −u(3)
−u(2) u(1)

)
.

Therefore, u must be of the form

u =

(
Au + iCu Bu + iDu

−Bu + iDu Au − iCu
)
, (I.4)

where Au, . . . , Du are N × N matrices of self-adjoint operators (consisting of real

and imaginary parts of the canonical generators) from C∗FOJ2N . Thus Au = Au,

and so on, and we write (Au)i j = a
u
ij (1 ≤ i , j ≤ N), and so on. The reasons for

this slightly clunky notation will become clear in the next section. We use the

convention that the alphabetical indices i , j, k, · · · run from 1 to N, and Greek

indices from the beginning of the alphabet (e.g., α, β, γ, . . . ) run over {a, b, c, d}.
Motivated by the above, we will usually interpret M2N(C) ∼= M2(C)⊗MN(C).

The above form (I.4) for u can be nicely expressed in terms of the matrices

τa = I2, τb = iσy , τc = iσz , τd = iσx ,

where σx,y ,z are the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
.

Namely,

u = τaA
u + τbB

u + τcC
u + τdD

u

=
∑
i j,α

(
τα ⊗ Ei j ⊗ αuij

)
=
∑
i j,α

(
Eαij ⊗ αuij

)
. (I.5)

Here, we have suppressed the tensor products in the first equality (an abuse of

notation we will keep committing), used the standard matrix units Ei j ∈ MN(C) in

the second, and defined Eαij = τα ⊗ Ei j in the last. Thus we are using the Eαij as

our basis for M2N(C). Notice that in this form

u∗ = τa(Au)t − τb(Bu)t − τc(Cu)t − τd(Du)t

=
∑
i j

(
Eaij ⊗ auji − Ebij ⊗ buji − Eci j ⊗ cuji − Edij ⊗ duji

)
. (I.6)

Remark I.3.1. As an aside, it already follows from the proof of Theorem 5.1 in

[BCV17] that δ0 and δ∗ of this set of generators is 1 (but 1-boundedness is of

course slightly stronger than this). To see this, note that the inequality (13) above
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the aforementioned theorem collapses due to the vanishing of the L2-Betti numbers

of FOJ2N [Bic13]. To obtain Connes embeddability of LFOJ2N , notice that it lies

inside the graded twist LFO2N �Z2 (where Z2 acts on u by conjugating with J2N),

which is in LFO2N ⊗M2(C) obtained by the crossed product by the dual action.

Connes embeddability of LFO2N ⊗M2(C) follows from the Connes embeddability

of LFO2N .

I.3.2 Relations

In this section we compute the free derivatives of the defining relations with

respect to the generators fixed in the previous section. Let F = (F (1), F (2))

be the vector containing the defining relations (I.1), in the form F (u) = 0. So

F (1)(u) = u∗u − I2N and F (2)(u) = uu∗ − I2N . Here, F (u) is shorthand for

F (u11, . . . , u2N,2N), and similar notation will be used throughout the remainder of

the paper.

Let ai j , . . . , di j , 1 ≤ i , j ≤ N, be (2N)2 self-adjoint noncommuting formal

indeterminates, and set C = C〈a11, . . . , dNN〉. When we evaluate in the actual

operators, ck� will for instance correspond to cuk�. Accordingly, collect the formal

indeterminates into matrices A =
∑

i j ai j ⊗ Ei j and so on. Thus we view

F ∈ C ⊗ (M2N(C)⊕M2N(C)), where we consider M2N(C) to just be a linear

space. Keeping in mind Equations (I.5) and (I.6), we get the explicit polyonomials

F (1) =
(
Atτa − Btτb − Ctτc −Dtτd

)
(Aτa + Bτb + Cτc +Dτd)− I2N ,

F (2) = (Aτa + Bτb + Cτc +Dτd)
(
Atτa − Btτb − Ctτc −Dtτd

)
− I2N .

When evaluating, we will take the generators auij , . . . , d
u
ij in their ‘reduced’ form

acting on H. This is due to the fact that we want to investigate properties of

the von Neumann algebra LFOJ2N , which is represented on H, the GNS space of

C∗FOJ2N coming from the Haar state.

Our goal in this section is to determine

∂F (Au, Bu, Cu, Du) ∈ B(H)⊗ B(H)⊗ B(M2N(C);M2N(C)⊕M2N(C)),

and express it in terms of the quantum group theoretic data coming from FOJ2N .

The result is stated in the lemma below, whose proof constitutes one of the main

technical components of this article and should be viewed as analogous to [BV18,

Lemma 4.2]. Recall from Section I.2.2 that there is a copy M2N(C) ∼= p1H. This

identification will be important for the next lemma.

Lemma I.3.2. On H ⊗H ⊗ p1H it holds that

∂F (1)(Au, Bu, Cu, Du)∗∂F (1)(Au, Bu, Cu, Du) = 2 + 2Re[W ],

where W = V31(1⊗ U ⊗ U)V32(1⊗ U ⊗ 1). The same relation is true for F (2).
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Proof. Since we are going to take free derivatives of F (1) and F (2), we can ignore

the I2N terms. Let us first focus on F (2), which can be written out using the

algebraic relations of the τ ’s to read

F (2) = F (2)a τa − F
(2)
b τb − F

(2)
c τc − F

(2)
d τd ,

with

F (2)a = AAt + BBt + CCt +DDt , F
(2)
b = ABt +DCt − BAt − CDt ,

F (2)c = ACt + BDt − CAt −DBt , F
(2)
d = ADt + CBt −DAt − BCt .

Now, by definition ∂F (2) is the map such that

∂F (2)(Eαij ) =
∑
k�,β

∂αij

(
F (2)

)β
k�
.

Here, ∂aij for instance refers to taking the free partial derivative with respect to ai j .

By linearity of ∂, we can compute the free derivatives of the four pieces F
(2)
a,b,c,d

separately.

We perform the computation for F
(2)
a in detail, the others are similar. By

definition

∂αij

(
F (2)a τa

)β
k�
= δaβ∂

α
ij

[(∑
m,γ

γkmγ�m

)
⊗ Eak�

]

= δaβ

(∑
m

[δikδjm(1⊗ α�m) + δi�δjm(αkm ⊗ 1)]
)
⊗ Eak�

= δaβ [δik(1⊗ α�j) + δi�(αkj ⊗ 1)]⊗ Eak�.

So that [
∂

(
F (2)a τa

)] (
Eαij
)
=
∑
�

(1⊗ α�j ⊗ Eai�) +
∑
k

(αkj ⊗ 1⊗ Eaki) .

Now notice that

Eai� = (Tλ�jT ⊗ ϑa,α)Eαij , Eaki = (λkjT ⊗ ϑa,α)Eαij ,

where T and λi j are the transpose map and left multiplication by Ei j respectively,

acting on MN(C), and ϑα,β is the rank one operator on M2(C) that sends τβ to

τα. Thus

∂

(
F (2)a τa

)
=
∑
i j,α

(1⊗ α�j ⊗ Tλi jT ⊗ ϑa,α) +
∑
k�,β

(βk� ⊗ 1⊗ λk�T ⊗ ϑa,β)

47



I. Strong 1-Boundedness of Unimodular Orthogonal Free Quantum Groups

Analogously one finds that

∂

(
F
(2)
b τb

)
=+

∑
i j

(1⊗ bi j ⊗ Tλi jT ⊗ ϑb,a)−
∑
k�

(bk� ⊗ 1⊗ λk�T ⊗ ϑb,a)

−
∑
i j

(1⊗ ai j ⊗ Tλi jT ⊗ ϑb,b) +
∑
k�

(ak� ⊗ 1⊗ λk�T ⊗ ϑb,b)

−
∑
i j

(1⊗ di j ⊗ Tλi jT ⊗ ϑb,c) +
∑
k�

(dk� ⊗ 1⊗ λk�T ⊗ ϑb,c)

+
∑
i j

(1⊗ ci j ⊗ Tλi jT ⊗ ϑb,d)−
∑
k�

(ck� ⊗ 1⊗ λk�T ⊗ ϑb,d) ,

∂

(
F (2)c τc

)
=+

∑
i j

(1⊗ ci j ⊗ Tλi jT ⊗ ϑc,a)−
∑
k�

(ck� ⊗ 1⊗ λk�T ⊗ ϑc,a)

+
∑
i j

(1⊗ di j ⊗ Tλi jT ⊗ ϑc,b)−
∑
k�

(dk� ⊗ 1⊗ λk�T ⊗ ϑc,b)

−
∑
i j

(1⊗ ai j ⊗ Tλi jT ⊗ ϑc,c) +
∑
k�

(ak� ⊗ 1⊗ λk�T ⊗ ϑc,c)

−
∑
i j

(1⊗ bi j ⊗ Tλi jT ⊗ ϑc,d) +
∑
k�

(bk� ⊗ 1⊗ λk�T ⊗ ϑc,d) ,

∂

(
F
(2)
d τd

)
=+

∑
i j

(1⊗ di j ⊗ Tλi jT ⊗ ϑd,a)−
∑
k�

(dk� ⊗ 1⊗ λk�T ⊗ ϑd,a)

−
∑
i j

(1⊗ ci j ⊗ Tλi jT ⊗ ϑd,b) +
∑
k�

(ck� ⊗ 1⊗ λk�T ⊗ ϑd,b)

+
∑
i j

(1⊗ bi j ⊗ Tλi jT ⊗ ϑd,c)−
∑
k�

(bk� ⊗ 1⊗ λk�T ⊗ ϑd,c)

−
∑
i j

(1⊗ ai j ⊗ Tλi jT ⊗ ϑd,d) +
∑
k�

(ak� ⊗ 1⊗ λk�T ⊗ ϑd,d) .

The next step is to rewrite the rank one operators ϑα,β in the right way. Let us

investigate what the action of the antipode S looks like in terms of the self-adjoint

generators from Section I.3.1. A quick computation yields

S(auij) = a
u
ji , S(buij) = −buji , S(cuij ) = −cuji , S(duij ) = −duji .

Compare this with

(Eaij)
∗ = Eaj i , (Ebij)

∗ = −Ebji , (Eci j)
∗ = −Ecj i , (Edij )

∗ = −Edji .

Thus write Γ for the linear extension of the map Γτa = τa, Γτb,c,d = −τb,c,d on

M2(C). Recall the operator U from Section I.2.1, which was induced by the unitary

antipode R. As we are in the unimodular case, R is the same as S. Hence we can
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decompose U = (T ⊗ Γ) on p1H ∼= M2N(C) ∼= M2(C)⊗MN(C) when we evaluate

in auij , . . . , d
u
ij .

We have already written the MN(C) leg of ∂F (2) in terms of multiplication

operators and transposes, so this suggests that we should find expressions for ϑα,β
in terms of λa,b,c,d (left multiplication by τa,b,c,d), Γ, and Pa,b,c,d which are the

projections onto τa,b,c,d in M2(C). For example, ϑd,b = ΓλcΓPb = −λcΓPb.
With this the above relations become

∂

(
F (2)a τa

)
=+

∑
i j

(1⊗ ai j ⊗ Tλi jT ⊗ ΓλaΓPa) +
∑
k�

(ak� ⊗ 1⊗ λk�T ⊗ λaΓPa)

+
∑
i j

(1⊗ bi j ⊗ Tλi jT ⊗ ΓλbΓPb) +
∑
k�

(bk� ⊗ 1⊗ λk�T ⊗ λbΓPb)

+
∑
i j

(1⊗ ci j ⊗ Tλi jT ⊗ ΓλcΓPc) +
∑
k�

(ck� ⊗ 1⊗ λk�T ⊗ λcΓPc)

+
∑
i j

(1⊗ di j ⊗ Tλi jT ⊗ ΓλdΓPd) +
∑
k�

(dk� ⊗ 1⊗ λk�T ⊗ λdΓPd) ,

∂

(
F
(2)
b τb

)
=−

∑
i j

(1⊗ bi j ⊗ Tλi jT ⊗ ΓλbΓPa)−
∑
k�

(bk� ⊗ 1⊗ λk�T ⊗ λbΓPa)

−
∑
i j

(1⊗ ai j ⊗ Tλi jT ⊗ ΓλaΓPb)−
∑
k�

(ak� ⊗ 1⊗ λk�T ⊗ λaΓPb)

−
∑
i j

(1⊗ di j ⊗ Tλi jT ⊗ ΓλcΓPd)−
∑
k�

(dk� ⊗ 1⊗ λk�T ⊗ λdΓPc)

−
∑
i j

(1⊗ ci j ⊗ Tλi jT ⊗ ΓλdΓPc)−
∑
k�

(ck� ⊗ 1⊗ λk�T ⊗ λcΓPd) ,

∂

(
F (2)c τc

)
=−

∑
i j

(1⊗ ci j ⊗ Tλi jT ⊗ ΓλcΓPa)−
∑
k�

(ck� ⊗ 1⊗ λk�T ⊗ λcΓPa)

−
∑
i j

(1⊗ di j ⊗ Tλi jT ⊗ ΓλdΓPb)−
∑
k�

(dk� ⊗ 1⊗ λk�T ⊗ λdΓPb)

−
∑
i j

(1⊗ ai j ⊗ Tλi jT ⊗ ΓλaΓPc)−
∑
k�

(ak� ⊗ 1⊗ λk�T ⊗ λaΓPc)

−
∑
i j

(1⊗ bi j ⊗ Tλi jT ⊗ ΓλbΓPd)−
∑
k�

(bk� ⊗ 1⊗ λk�T ⊗ λbΓPd) ,

∂

(
F
(2)
d τd

)
=−

∑
i j

(1⊗ di j ⊗ Tλi jT ⊗ ΓλdΓPa)−
∑
k�

(dk� ⊗ 1⊗ λk�T ⊗ λdΓPa)

−
∑
i j

(1⊗ ci j ⊗ Tλi jT ⊗ ΓλcΓPb)−
∑
k�

(ck� ⊗ 1⊗ λk�T ⊗ λcΓPb)
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−
∑
i j

(1⊗ bi j ⊗ Tλi jT ⊗ ΓλbΓPc)−
∑
k�

(bk� ⊗ 1⊗ λk�T ⊗ λbΓPc)

−
∑
i j

(1⊗ ai j ⊗ Tλi jT ⊗ ΓλaΓPd)−
∑
k�

(ak� ⊗ 1⊗ λk�T ⊗ λaΓPd) .

Since

∂F (2) = ∂
(
F (2)a τa

)
− ∂

(
F
(2)
b τb

)
− ∂

(
F (2)c τc

)
− ∂

(
F
(2)
d τd

)
,

we obtain the compact formula

∂F (2) =
∑
i j,α

(
1⊗ αi j ⊗

[
(T ⊗ Γ)λαij (T ⊗ Γ)

])
+
∑
k�,β

(
βk� ⊗ 1⊗

[
λ
β
k� (T ⊗ Γ)

])
,

where λαij = λi j ⊗ λα.

By the same techniques it can be shown that

∂F (1) =+
∑
i j

(
1⊗ ai j ⊗

[
(T ⊗ Γ)λaj i

])
+
∑
k�

(ak� ⊗ 1⊗ λa�k)

−
∑
i j

(
1⊗ bi j ⊗

[
(T ⊗ Γ)λbji

])
−
∑
k�

(
bk� ⊗ 1⊗ λb�k

)
−
∑
i j

(
1⊗ ci j ⊗

[
(T ⊗ Γ)λcj i

])
−
∑
k�

(ck� ⊗ 1⊗ λc�k)

−
∑
i j

(
1⊗ di j ⊗

[
(T ⊗ Γ)λdji

])
−
∑
k�

(
dk� ⊗ 1⊗ λd�k

)
.

Now we evaluate the ‘formal’ expressions above in the ‘actual’ operators. Let us

start with ∂F (1). Note that we are taking auij , . . . , d
u
ij to act on H, i.e. as elements

of C∗r FO
J
2N ⊂ LFOJ2N . Due to the bimodule structure on C, elements in the first

tensor leg act from the left, but in the second leg they act from the right. It is

simple to check that in the unimodular case, the right multiplication ρ on H of

x ∈ C∗r FOJ2N can be written ρ(x) = US(x)U.

Keeping in mind the identification of U restricted to p1H with (T ⊗Γ) discussed

above,

∂F (1)(Au, . . . , Du) = +
∑
i j

(1⊗ U ⊗ U)
(
1⊗ auji ⊗ λaj i

)
(1⊗ U ⊗ 1)

+
∑
k�

(auk� ⊗ 1⊗ λa�k)

+
∑
i j

(1⊗ U ⊗ U)
(
1⊗ buji ⊗ λbji

)
(1⊗ U ⊗ 1)

−
∑
k�

(
buk� ⊗ 1⊗ λb�k

)
+
∑
i j

(1⊗ U ⊗ U)
(
1⊗ cuji ⊗ λcj i

)
(1⊗ U ⊗ 1)
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−
∑
k�

(cuk� ⊗ 1⊗ λc�k)

+
∑
i j

(1⊗ U ⊗ U)
(
1⊗ duji ⊗ λdji

)
(1⊗ U ⊗ 1)

−
∑
k�

(
duk� ⊗ 1⊗ λd�k

)
,

as an element of B(H ⊗H ⊗ p1H). This can be written more compactly as

∂F (1)(Au, . . . , Du) = + (1⊗ U ⊗ U)

⎡⎣∑
i j,α

1⊗ αuij ⊗ λαij

⎤⎦ (1⊗ U ⊗ 1)
+
∑
k�

[
auk� ⊗ 1⊗ λa�k − buk� ⊗ 1⊗ λb�k

−cuk� ⊗ 1⊗ λc�k − duk� ⊗ 1⊗ λd�k
]
.

Notice that due to Equation (I.5), left multiplication by u on (p1H)⊗H looks

like
∑

i j,α(λ
α
ij ⊗ αuij). This is also the restriction of the multiplicative unitary V

to (p1H) ⊗ H by the decomposition discussed in Section I.2.2. Thus, using leg

numbering notation and recalling also Equation (I.6) yields

∂F (1)(Au, . . . , Du) = (1⊗ U ⊗ U) V32 (1⊗ U ⊗ 1) + V ∗31.

Similarly

∂F (2)(Au, . . . , Du) = (1⊗ U ⊗ U) V ∗32 (1⊗ U ⊗ U) + V31 (1⊗ 1⊗ U) .

Setting W = V31(1⊗ U ⊗ U)V32(1⊗ U ⊗ 1), it is now a simple matter to see

that

∂F (1)(Au, Bu, Cu, Du)∗∂F (1)(Au, Bu, Cu, Du) = 2 + 2Re [W ] .

For F (2)(Au, . . . , Du) it holds that

∂F (2)(Au, Bu, Cu,Du)∗∂F (2)(Au, Bu, Cu, Du)

= 2 + 2Re [(1⊗ U ⊗ U)V32(1⊗ U ⊗ U)V31(1⊗ 1⊗ U)] ,

which reduces to the desired result upon commuting V31 with the terms in front

of it. This is allowed because the two terms only act simultaneously on the third

tensor leg, where the terms lie in Uc0(FOJ2N)U and c0(FOJ2N) respectively, which

commute. One way to check this is to use the fact that c0(FOJ2N) can be recovered

from V by applying the slice maps (ι⊗ ϕ)(V ), with ϕ coming from the predual of

B(H), and taking the closed linear span. �
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I.3.3 1-Boundedness

In this section we prove 1-boundedness of the generator set auij , . . . , d
u
ij . Given the

calculation of ∂F (Au, . . . , Du) from the previous section, the rest of the arguments

are the same as those for the case FOM covered in [BV18], but we reproduce some

of them here for convenience and completeness.

It remains to determine the rank of ∂F (Au, . . . , Du) and to show that it is of

determinant class.

Lemma I.3.3. rank ∂F (Au, . . . , Du) = (2N)2 − 1

Proof. The proof of Lemma 4.1 of [BV18], where the rank of this operator for

FOM is computed, goes through unchanged, as the L2-Betti numbers of FOJ2N
also vanish due to [Bic13, Theorem 6.6] (but see also [Ver12, Section 5]). �

Theorem I.3.4 (cf. [BV18, Theorem 3.5]). Let Θ = U1V21U1U2 be the edge-

reversing operator on the quantum Cayley tree of FOJ2N . View 1 +Re [Θ] as an

operator in ULFOJ2NU ⊗ B(p1H). Then it is of determinant class with respect to

h ⊗ Tr.

Proof. The proof is the same as the one of Theorem 3.5 in [BV18]. Although it is

stated there only for FOM , it is also valid for FOJ2N . This is due to the fact that the

result only depends on the general theory of quantum Cayley graphs [Ver05; Ver12]

valid for all FO(Q) with Q ∈ GLM(C), M ≥ 2, QQ ∈ CIM , and qdim(u) > 2 (see

the remark at the start of Section 3 in [BV18]), and on the Haar state being a

trace. �

Proposition I.3.5. ∂F (Au, . . . , Du)∗∂F (Au, · · · , Du) is of determinant class with

respect to h ⊗ h ⊗ Tr.

Proof. Write Ṽ = Σ(1⊗ U)V (1⊗ U)Σ and notice that W = V31U2U3V32U2. We

will conjugate W by unitaries Ω as Ω∗WΩ to relate it to Θ. First conjugate by

U2Σ23 to obtain

Σ23U2V31U2U3V32U2U2Σ23 = U3V21U3U2Σ23V32Σ23 = V21U2V23.

Next, conjugate by U1 to find

U1V21U2V23U1 = U1V21U1U2V23 = Σ12U2V12U2Σ12U2V23 = Ṽ12U2V23.

Finally, conjugate by V ∗23V
∗
13 to arrive at

V13V23Ṽ12U2V23V
∗
23V

∗
13 = V13V23Ṽ12U2V

∗
13.

Now use the formula V13V23Ṽ12 = Ṽ12V13 of Baaj and Skandalis, which can be found

in Proposition 6.1 of [BS93]. Thus

V13V23Ṽ12U2V
∗
13 = Ṽ12V13U2V

∗
13 = Ṽ12U2.
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Comparing with the definition ofΘ, we see that Ṽ12U2 = Θ⊗1, and we can conclude

that W is unitarily conjugate to Θ⊗ 1. On account of Lemma I.3.2, we also have

that ∂F (Au, . . . , Du)∗∂F (Au, · · · , Du) is unitarily conjugate to 4(1 +Re[Θ⊗ 1]).
We now consider what happens to h ⊗ h ⊗ Tr under this conjugation process.

The Haar state h is implemented as a vector state by ξ0 ∈ H, and Tr is implement

by some finite sum of vector states by finite dimensionality. Thus, let ζ ∈ p1H and

compute

V ∗23V
∗
13U1U2Σ23(ξ0 ⊗ ξ0 ⊗ ζ) = V ∗23V ∗13(ξ0 ⊗ ζ ⊗ ξ0) = V ∗23(ξ0 ⊗ ζ ⊗ ξ0).

Hence h⊗ h⊗Tr is transformed into (h⊗Tr⊗h)(V23 · V ∗23). Note that the last two

legs of 1 +Re[Θ⊗ 1] lie in the finite dimensional algebra B(p1H)⊗ 1. By finite

dimensionality, (Tr⊗h)(V · V ∗) is dominated by some multiple of the standard

trace (Tr⊗h) on this algebra. Thus we can use Theorem I.3.4 to conclude that

1 + Re[Θ ⊗ 1] is of determinant class with respect to (h ⊗ Tr⊗h)(V23 · V ∗23).
Therefore ∂F (Au, . . . , Du)∗∂F (Au, · · · , Du) is of determinant class with respect

to h ⊗ h ⊗ Tr, as desired. �

Corollary I.3.6. The set of self-adjoint generators auij , . . . , d
u
ij of LFOJ2N is 1-

bounded.

Proof. Combine Lemma I.3.3 and Proposition I.3.5 with Theorem I.2.6. �

I.4 Adding Elements to an r-Bounded Set

LetM be a finite von Neumann algebra with faithful normal tracial state τ , and

let X1, . . . , Xn ∈M be self-adjoint. In this section we prove a lemma that allows

us to add certain redundant elements to the set X1, . . . , Xn while preserving r -

boundedness. We achieve this using ideas from Proposition 6.9 in [Voi94] and its

analogue Proposition 6.12 in [Voi96].

Let Y1, . . . , Ym also be self-adjoint elements in M such that Y1, . . . , Ym ∈
W ∗(X1, . . . , Xn). Before stating the lemma, we introduce a distance function that

measures how far away the Yj lie from the von Neumann algebras generated by

semicircular perturbations of the Xi . Let S1, . . . , Sn be a free standard semicircular

family, free from the Xi , and set

d2(Yj ;X1, . . . , Xn)(ε) = inf
{
‖Yj − T‖2 |T ∈ W

∗(X1 + εS1, . . . , Xn + εSn)
}
.

Lemma I.4.1. Let M be a finite von Neumann algebra with faithful normal

tracial state τ . Suppose that X1, . . . , Xn and Y1, . . . , Ym are self-adjoint elements

such that Y1, . . . , Ym ∈ W ∗(X1, . . . , Xn) (redundancy). Assume moreover that

ε−1d2(Yj ;X1, . . . , Xn)(ε) is bounded around ε = 0 for all 1 ≤ j ≤ m (regularity).

Then if {X1, . . . , Xn} is an r -bounded set, so is {X1, . . . , Xn, Y1, . . . , Ym}.
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Proof. Note that it suffices to prove the case m = 1. Without loss of generality

we can extend S1, . . . , Sn to a free standard semicircular family S1, . . . , Sn+1, still

free from the Xi . Recalling Definition I.2.4, we need to show that

lim sup
ε→0

[χ(X1 + εS1, . . . , Xn + εSn, Y1 + εSn+1 :S1, . . . , Sn+1)

+ (n + 1− r)|log ε|] <∞.

Write T1 for the conditional expectation of Y1 ontoW ∗(X1+εS1, . . . , Xn+εSn),
then by Proposition 1.11 in [Voi96] and the redundancy assumption we have

χ(X1 + εS1, . . . , Xn + εSn, Y1 + εSn+1 : S1, . . . , Sn+1)

= χ(X1 + εS1, . . . , Xn + εSn, Y1 − T1 + εSn+1 : S1, . . . , Sn+1).

By subadditivity ((ii) of Proposition I.2.3), we can split this in half as

χ(X1 + εS1, . . . , Xn + εSn, Y1 + εSn+1 : S1, . . . , Sn+1)

≤ χ(X1 + εS1, . . . , Xn + εSn : Y1 − T1 + εSn+1, S1, . . . , Sn+1)
+ χ(Y1 − T1 + εSn+1 : X1 + εS1, . . . , Xn + εSn, S1, . . . , Sn+1).

Consider the first term on the right hand side. By (iv) of Proposition I.2.3,

χ(X1 + εS1, . . . , Xn + εSn : Y1 − T1 + εSn+1, S1, . . . , Sn+1)
= χ(X1 + εS1, . . . , Xn + εSn : S1, . . . , Sn+1),

as Y1 − T1 + εSn+1 ∈ W ∗(X1 + εS1, . . . , Xn + εSn, S1, . . . , Sn+1). To get rid of

the trailing semicircular Sn+1, note that we may apply (iii) of Proposition I.2.3, as

S1, . . . , Sn ∈ W ∗(S1, . . . , Sn+1). So

χ(X1 + εS1, . . . , Xn + εSn, Y1 + εSn+1 : S1, . . . , Sn+1)

≤ χ(X1 + εS1, . . . , Xn + εSn : S1, . . . , Sn)
+ χ(Y1 − T1 + εSn+1 : X1 + εS1, . . . , Xn + εSn, S1, . . . , Sn+1).

Let us now focus on the second term on the right hand side. By (i) of

Proposition I.2.3, we may replace the relative microstates free entropy by the

ordinary microstates free entropy, as we are only after upper bounds. So

χ(Y1 − T1 + εSn+1 : X1 + εS1, . . . , Xn + εSn, S1, . . . , Sn+1)
≤ χ(Y1 − T1 + εSn+1).

Apply the linear change of variable formula for χ to it (Proposition 3.6 (b) in

[Voi94]), with transformation ‘matrix’ ε. This yields

χ(Y1 − T1 + εSn+1) = log ε+ χ
(
ε−1(Y1 − T1) + Sn+1

)
.

Using again (i) of Proposition I.2.3, we estimate

χ
(
ε−1(Y1 − T1) + Sn+1

)
≤
1

2
log

{
2πe τ

[(
ε−1(Y1 − T1) + Sn+1

)2]}
.
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Thus, if we can control
∥∥ε−1(Y1 − T1) + Sn+1∥∥2 uniformly in ε, we obtain a

constant upper bound. For this use the triangle inequality and our regularity

assumption to obtain∥∥ε−1(Y1 − T1) + Sn+1∥∥2 ≤ ε−1d2(Y1;X1, . . . , Xn)(ε) + ‖Sn+1‖2 ≤ C′.
In total we have

χ(X1 + εS1, . . . , Xn + εSn, Y1 + εSn+1 : S1, . . . , Sn+1)

≤ χ(X1 + εS1, . . . , Xn + εSn : S1, . . . , Sn) + log ε+ C.

To complete the proof, combine all of the above to get

lim sup
ε→0

[
χ
(
X1 + εS1, . . . , Xn + εSn, Y1 + εSn+1 : S1, . . . , Sn+1

)
+ (n + 1− r)|log ε|

]
≤ lim sup

ε→0

[
χ(X1 + εS1, . . . , Xn + εSn : S1, . . . , Sn) + log ε+ C

+ (n + 1− r)|log ε|
]

= C + lim sup
ε→0

[
χ(X1 + εS1, . . . , Xn + εSn : S1, . . . , Sn)

+ (log ε+ |log ε|) + (n − r)|log ε|
]

= C + lim sup
ε→0

[
χ(X1 + εS1, . . . , Xn + εSn : S1, . . . , Sn)

+ (n − r)|log ε|
]

<∞,

as we assumed that {X1, . . . , Xn} is r -bounded. �

Remark I.4.2. The ideas used in the proof above can be used show that the result

is also true when δ0 is replaced by δ∗. In fact the proof is simpler.

I.5 Main Result

In this section we present our main results and discuss some corollaries.

Theorem I.5.1. The orthogonal free quantum group von Neumann algebras LFOJ2N
are strongly 1-bounded when N ≥ 2.

Proof. We check that the fundamental character χu = (Tr⊗ι)(u) = 2(au11 + · · ·+
auNN) satisfies the requirements of Proposition I.4.1. The redundancy assumption
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is trivial, and for the regularity assumption simply note that plugging in the obvious

candidate gives a bound

d2(χ
u; au11, . . . , d

u
NN)(ε) ≤ ‖χu − 2 (au11 + εSa11 + · · ·+ auNN + εSaNN)‖2

= ‖2εSa11 + . . . 2εSaNN‖2
≤ 2Nε.

Here Sαij is a free standard semicircular family, free from au11, . . . , d
u
NN . Thus,

the set of generators {au11, . . . , duNN , χu} is also 1-bounded by Corollary I.3.6 and

Proposition I.4.1.

By [Ban96], χu is a semicircular element and hence possesses a continuous

density with respect to the Lebesgue measure. Lemma I.2.2 then allows us to

conclude that χ(χu), i.e. the microstates free entropy of the fundamental character,

is finite. We conclude that LFOJ2N is strongly 1-bounded. �

Remark I.5.2. The proof of Theorem I.5.1 also extends to strong 1-boundedness

with respect to δ∗ when combined with Remark I.4.2 and recalling that the proof

of Corollary I.3.6 also goes through for δ∗ due to the statement of Theorem I.2.6.

Corollary I.5.3. Let Q ∈ GLM(C), M ≥ 3, be such that QQ ∈ CIM and FO(Q) is

unimodular, then LFO(Q) is not isomorphic to any finite von Neumann algebra

admitting a tuple of self-adjoint generators whose (modified) free entropy dimension

exceeds 1. In particular this excludes being isomorphic to any (interpolated) free

group factor.

Proof. By the discussion at the start of section 9.1 in [Bra17], it follows that (up

to isomorphism) the only two family of matrices satisfying the assumptions are

the identity matrices IM , and when M = 2N the standard symplectic matrices

J2N . These two cases are covered by Corollary 4.4 in [BV18] and Theorem I.5.1

above. �

In fact, the class of von Neumann algebras to which LFO(Q) cannot be

isomorphic contains all countable free products of finitely generated, diffuse, tracial,

Connes embeddable von Neumann algebras by Lemma 3.7 of [Jun07]. The free

perturbation algebras of Brown [Bro05] are also in this class.

Remark I.5.4. One might hope to extend these results to the (discrete duals of the)

quantum permutation groups S+n with n ≥ 4 [Wan98]. Indeed, from Theorem 5.2

in [Kye+17] we know that their L2-Betti numbers vanish (this even holds for general

quantum automorphisms groups of finite dimensional C∗-algebras equipped with

their Markov trace). Hence Equation (13) from [BCV17] implies that the standard

generating set (see Equations (3.1)–(3.3) in [Wan98]) has free entropy dimension

1. Nevertheless, these generators satisfy non-homogeneous and non-trivial linear

relations, and so taking their free derivatives is unfortunately not well-defined.
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