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The ecological conservation and high-quality development of the Yellow River basin (YRB)
has been adopted as a major national strategy of China. However, the YRB is still afflicted
by floods. Here, we proposed a flood risk indicator using direct economic loss degree and
improved the SNRD (station-based nonlinear regression downscaling model) and
simulated extreme precipitation processes. The correlation coefficient of downscaled
average extreme precipitation of CMORPH and CMIP6 data reached 0.817. Moreover, we
evaluated flood risk and flood hazard across the YRB based on the sixth phase Coupled
Model Intercomparison Project (CMIP6) data under different SSPs. Under SSP126,
SSP245, and SSP585 scenarios, the areas with increasing flood hazards during
2015–2045 accounted for 65.2, 69.0, and 64.5% of the entire YRB. In the spatial
pattern, flood hazards decreased from southeastern to northwestern parts of the YRB.
When compared with the spatial pattern of flood risks in 2015, regions with high flood risks
expanded slightly and regions with low flood risks shrunk slightly. Higher flood risks can be
observed in themiddle and lower YRB and particularly in the lower YRB. These findings are
critical for the mitigation of flood risk across the YRB under warming climate.
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INTRODUCTION

Floods have devastating casualties and property losses (Lai et al., 2016; Hu et al., 2018; Li et al., 2021;
Zhang et al., 2022). According to the “Yearbook of Meteorological Disasters in China”, from 2003 to
2018, the annual average disaster-affected population of China reached 107.127 million due to
rainstorms and floods, accounting for 32.3% of the total population affected by all meteorological
disasters. The average annual direct economic loss due to floods reached to 134.95 billion RMB,
accounting for 44.5% of the total direct economic loss by all meteorological disasters (CMA, 2020). In
the backdrop of global warming and rapid urbanization, the threats of floods to agricultural
production, human life, and socioeconomic development will be further exacerbated. The
Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report (AR6) shows that
intensifying global warming will lead to increased frequency and intensity of future extreme
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precipitation changes (IPCC, 2021). In China, precipitation
extremes will be more frequent and more severe in the future
(Duan et al., 2019), and climate change and land use change
would increase the probability of heavy rains and flooding;
moreover, rapid urbanization caused by increasing population
and economic development will also increase flood risk (Duan
et al., 2016). It has been well evidenced that increasing
temperature tends to trigger the intensification of
precipitation. The temperature changes can influence
precipitation changes by altering the thermodynamic
properties of air masses and, hence, the moisture
transportation (Zhang et al., 2013). Meanwhile, with respect to
population exposure to extreme precipitation, more people and
the land in China will be exposed to extreme precipitation events
(Wang et al., 2020; Ridolfi et al., 2021). In addition to the increase
in extreme precipitation, the booming development of the socio-
economy will also lead to a significant increase in flood risk
(Hallegatte et al., 2013; Yu et al., 2019).

The AR6 report attached considerable importance to extreme
weather and climate events at regional scales (IPCC, 2021), and
signified risk evaluation of rainstorms and floods in different
regions. The YRB is an important grain-producing area in China,
holding an unshakable position in socioeconomic development,
and ecological conservation in China. Nowadays, ecological
protection and high-quality development of the YRB are
accepted as major national strategies, while frequent floods
and resultant frequent levee breaches and channel avulsions
pose great challenges to the regional sustainability of the
socio-economy (Chen et al., 2012; Zhang and Fang, 2017).
Floods severely constrain regional, social, and economic
development, posing a huge threat to the population and cities
in the basin, especially in the lower YRB. The lower YRB has a

low-lying terrain with a dense population and a highly-developed
socio-economy. In addition, there has been built an 800-km long
confined and super-elevated channel belt perching around 10 m
above the surrounding ground; hence, economic losses and
fatalities would be massive if the river banks were breached.
The documentary records show that the lower Yellow River
changed its course on 26 occasions from 602 BCE to 1949 CE
(YRCC, 2001). Therefore, a thorough investigation of flood risk
and relevant driving factors and predicting future spatiotemporal
evolution of flood risk in the YRB under different SSPs are of
great significance for flood control, flood mitigation, and high-
quality development of the YRB.

A number of publications have been reported to address the
evaluation of flood risk. Many techniques have been used for
flood risk evaluation, such as risk evaluation based on historical
flood data and mathematical-statistical methods (Benito et al.,
2004; Rodda, 2005; Coeur and Lang, 2008), flood risk evaluation
based on remote sensing and GIS techniques (Sanyal and Lu,
2005; Mason et al., 2010; Waghwala and Agnihotri, 2019), and
index system-based flood risk evaluation (Okazawa et al., 2011;
Kandilioti and Makropoulos, 2012). In addition, flood risk
evaluation has also been done, based on the modeling of flood
scenarios (Abdulrazzak et al., 2019). Using the flood data from
1989 to 2015, Luu et al. (2019) used the multiple linear regression
TOPSIS method for the evaluation of flood risk across Vietnam.
Rahman and Thakur (2018) extracted flood-induced submerged
areas using Synthetic Aperture Radar (SAR) data and analyzed
the flood-induced submerged area, flood inundation process, and
spatiotemporal evolution of floods. Zischg et al. (2018) validated a
2D flood model and quantified flood risk across Sweden.

It is of paramount importance to evaluate flood risk in a
warming climate based on multisource datasets at the river basin

FIGURE 1 | Yellow River basin and the division of flood risk units. Considering the resolution of CMORPH data (0.25° × 0.25°) and the size of the study area, the
entire YRB was subdivided into 419 risk units with a grid size of 0.5°*0.5°.
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scale since mitigation of flood is done at the river basin scale
(Beylich et al., 2021). Therefore, a lot of work has been done on
the evaluation of flood risk at river basin scales in China. Zhang
et al. (2018) evaluated the flood risk in the Pearl River Basin of
China, based on the peak flow data of 78 stations from 1951 to
2014 and historical flood records of the past 1,000 years. Wu et al.
(2015) developed a model for the evaluation of flood risk based on
GIS and disaster risk theory and evaluated flood risk across the
Huai River basin. Liu et al. (2019) did an integrated risk
assessment for agricultural drought and flood based on
entropy information diffusion theory in the middle and lower
Yangtze River basin, China. However, relatively few reports are
available, addressing flood risk evaluation over the YRB. Ji et al.
(2021), based on the cellular automata-Markov model and SWAT
model, predicted the future runoff and flood risk over the YRB in
the context of land use and climate changes. Liu et al. (2018)
analyzed the impacts of climate change on flood risk across the
YRB for the next 30 years. Qiu et al. (2010) used a distributed
hydrological model to analyze the impact of land-use changes on
flood risk over the YRB. However, a lot of studies at present are
subjective in the selection of indicators for flood risk evaluation,
while the weights should be optimally determined.

In order to study the driving factors of flood risk of YRB and
temporal and spatial evolution of flood risk under different SSPs
in the future, we conducted the following tasks: 1) we proposed a
flood risk indicator to reflect the degree of harmful effects caused
by floods, especially the degree of direct economic loss, and the
flood hazard indicator to reflect the frequency and intensity of
rainstorms and floods; 2) we analyzed the driving factors behind
the flood risk of YRB by using the geodetector method (Wang and
Hu, 2012) and correlation analysis, screened-out indicators
having significant impacts on the flood risk indicator and took
the power of determinant value obtained by the geodetector as the
indicator weight; 3) based on CMIP6 data, we used the FLUS
model and improved the SNRD downscaling model to explore
future land use changes and precipitation patterns across the
YRB, which would affect the flood risk indicator and flood hazard
indicator of YRB in the future; and 4) we calculated the flood risk
indicator and the flood hazard indicator and evaluated the
temporal and spatial evolution of flood risk covering a period
of 2015–2045 under different SSPs. This study helped in
highlighting flood risk changes in both space and time,
bridging the knowledge gap in regional sustainability in the
backdrop of a warming climate, and enhancing mitigation of
floods over the YRB. These points constitute the major objectives
and motivation of this study.

DATA AND METHODS

Study Regions, Analysis Procedure, and
Data Sources
The Yellow River flows through nine provinces of China, that is,
Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi,
Shanxi, Henan, and Shandong, with a basin area of
795,000 km2 (YRCC, 2020). Considering the resolution of
CMORPH data (0.25° × 0.25°) and the size of the study area,

we divided the entire YRB into 419 risk units with a grid size of
0.5°*0.5° (Figure 1). The analysis procedure of this current study
is shown in Figure 2. The multisource data included
precipitation, land use, social, and economy, and so on
(Supplementary Table S1).

The precipitation data we used included CMORPH data
(Janowiak et al., 2005) and Coupled Model Intercomparison
Project Phase 6 (CMIP6) data (https://esgf-index1.ceda.ac.uk/
search/cmip6-ceda/). The CMORPH data (0.25° × 0.25°, 3 h,
https://ftp.cpc.ncep.noaa.gov/precip/CMORPH_V1.0/) from
1998 to 2014 was used for daily precipitation calculation of
each risk unit, construction, and precision evaluation of
CMIP6 data downscaling model, and precipitation indicators
calculation of provinces in the Yellow River basin from 2004 to
2018. Based on the historical CMIP6 data from 1998–2010 and
2011–2014 (combined with CMORPH data), the downscaling
model was constructed and tested. Based on the CMIP6 data of
SSP126, SSP245, SSP370, and SSP585 from 2015 to 2045, daily
precipitation at each risk unit under different SSPs was calculated,
which was used to predict the future flood hazard indicator and
risk indicator.

In this study, we also used the ESA land use data (http://maps.
elie.ucl.ac.be/CCI/viewer/) from 2004 to 2018. The land use types
in the Yellow River basin were divided into cropland, green land
(including forest and grassland), water area, built-up land, and
unused land. This data was used to simulate the land usage
pattern in the study area from 2015 to 2045, and calculate the land
use indicators of each province in the YBR from 2004 to 2018.
Combining the land use data, land use driving factor data, and the
FLUS model, we predicted the future land use pattern of the YRB.
The driving factors behind land use included natural factors,
accessibility factors, and social and economic factors: 1) The
natural factors included elevation, slope and aspect, elevation data
sourced from Geospatial Data Cloud Platform (http://www.
gscloud.cn), and slope and aspect data were calculated based
on the elevation data; 2) The accessibility factors included
distance to rivers, roads, railways, coastlines, and
administrative centers, they were calculated based on vector
data in the 1:100 million national basic geographic database
and were sourced from the national geographic information
resource directory service system (www.webmap.cn); 3) The
social and economic factors (http://www.resdc.cn/DOI)
included the spatial distribution of population density (Xu,
2017b) and GDP data (Xu, 2017a) in 2015.

We also used social and economic data, terrain data, and
disaster data. The data of population quantity, population
density, GDP, average GDP per person, and GDP per unit
area of each province from 2004 to 2018 were sourced from
Statistical Yearbooks of provinces across the YRB and were used
as various social and economic indicators of the provinces within
the YRB from 2004 to 2018. Shared socioeconomic path (SSPs)
population and economic estimation data (Huang et al., 2019;
Jing et al., 2019) was used to calculate the population and GDP
indicators under different SSPs in the study area from 2015 to
2045. Terrain data, including elevation, slope, and aspect was
used to calculate the terrain indicator of each risk unit in the study
area and each province within the YRB. The disaster data referred
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to flood-induced direct economic loss data by provinces from
2004 to 2018, which were extracted from the Yearbook of
Meteorological Disasters in China (CMA, 2020) and were used
to screen the influencing factors of flood risk.

Downscaling and Correction of the CMIP6
Dataset
We used the precipitation datasets from 20 CMIP6 models with
high temporal resolution (day) under historical, SSP126, SSP245,
SSP370, and SSP585 scenarios of future emissions
(Supplementary Table S2). Meanwhile, we improved a
precipitation downscaling model based on precipitation data
during the period from 1998 to 2010 to downscale the CMIP6
dataset. In addition, we used the precipitation data covering a
period from 2011 to 2014 to evaluate the downscaling
performance of the improved precipitation downscaling
model. Then we had done the precipitation downscaling
practice for the CMIP6 data from 2015 to 2045. The
improvement and evaluation of the downscaling model can be
elaborated as follows: 1) Adoption of the basic precipitation
downscaling model. Based on the historical precipitation data
of CMIP6 and the CMORPH data from 1998 to 2010 (the

CMORPH precipitation data were used to reflect the actual
observed precipitation data and hereafter), a nonlinear
regression downscaling model (station-based nonlinear
regression downscaling model, SNRD) (Shen et al., 2021) was
used to downscale the CMIP6 precipitation data. Based on the
SNRD model, 20 CMIP6 models can be ensembled to produce
one new precipitation downscaling dataset which has the same
spatial resolution (0.5° × 0.5°) as the risk unit. 2) Improvement of
the abovementioned precipitation downscaling models. The first
step was to correct the precipitation data using the correction
coefficient method with the aim to overcome the underestimation
of summer precipitation and the overestimation of winter
precipitation. Correction of daily precipitation at each risk
unit can be elaborated as follows:

ai �
(∑2010

j�1998bij − ∑2010
j�1998cij)

∑2010
j�1998dij

, (1)

Tij � Pij + ai(j � 2011, 2012, . . . , 2045), (2)
where i denotes the month, j denotes the year, ai denotes the
correction coefficient for the ith month, bij denotes the monthly
CMORPH precipitation for the ith month of the jth year, cij
denotes the monthly CMIP6 precipitation of the ith month of the

FIGURE 2 | Analysis procedure of this current study.
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jth year, and the dij denotes the number of days of the ith month
in the jth year. Pij denotes the downscaled CMIP6 daily
precipitation of the ith month in the jth year, and Tij denotes
the corrected downscaled daily precipitation.

The second step was to fit extreme precipitation using the
generalized extreme value (GEV) distribution (Kharin and
Zwiers, 2005), enhancing the modeling performance of the
precipitation downscaling model. In this study, we defined the
time period with daily precipitation of the top 5% for a certain
period as extreme precipitation days, and then we obtained the
fitting parameters at each risk unit by fitting the extreme daily
precipitation data from 1998 to 2010, and these parameters were
used to obtain extreme precipitation during the period of
2011–2045 at each risk unit. The final step was to deal with
the outliers and negative precipitation values of the
aforementioned downscaled precipitation. The downscaled
extreme precipitation at risk units exceeding the maximum
precipitation relative to the historical precipitation
(1998–2010) was corrected to the maximum precipitation
during the historical period, and the negative precipitation
value in the downscaling results was corrected to 0. Then, we
verified the abovementioned precipitation downscaling model by
comparison between precipitation indicators, such as rainstorm
days, days of heavy rain, and five-day maximum precipitation for
each risk unit during 2011–2014, and the precipitation indicators
based on CMORPH precipitation data during 2011–2014. In this
study, we downscaled the CMIP6 data from 2015 to 2045 under
different SSPs to explore changes in precipitation across the YRB.

FLUS Model-Based Simulation of Future
Land Use Changes
The land use and land cover changes over the YRB would
significantly affect the future evolution of flood risk (Qiu et al.,
2010; Ji et al., 2021). Here, we simulated the spatial patterns of
land use and land cover changes over the YRB using the FLUS
model during a period from 2015 to 2045. The FLUS model is
based on the historical land use pattern of a certain area and
simulates the future land use changes in the area under the
impacts of various driving factors. This model contains two
computing modules, i.e., cellular automata and optimal

probability computation based on the artificial neural network.
The FLUS model can be called by GeoSOS-FLUS software for
land use simulation (Liu et al., 2017). Based on land use driving
factor data of the Yellow River basin and land use data from 2005
to 2015, we simulated and predicted the spatial pattern of land use
changes using the FLUS model in 2025, 2035, and 2045.
Furthermore, we set the same model parameters in GeoSOS-
FLUS and simulated land use pattern in 2015 based on the spatial
patterns of land use changes in 2005. We compared the simulated
spatial pattern of land use in 2015 with the real-world spatial
pattern of land use in 2015, evaluating modeling performance of
FLUS in simulating land use changes based on the Kappa
coefficient and the overall modelling accuracy.

Selection of Driving Indicators Behind Flood
Risk
Here, we listed flood-induced direct economic loss recorded in
the Yearbook of Meteorological Disasters in China (CMA, 2020)
in the provinces passed by the Yellow River from 2004 to 2018
and categorized flood-induced direct economic loss into low,
slightly low, middle, slightly high, and high level in equal
proportions (each accounted for 20% of the records). We
assigned 1, 2, 3, 4, and 5 to different levels of flood-induced
direct economic loss as the historical flood risk indicator over the
years. It was generally accepted that flood risk was jointly
determined by the precipitation factor, land use factor, terrain
factor, and social and economic factor. Extreme precipitation can
induce serious floods, and precipitation is one of the most
important indicators affecting flood hazards and flood risks
(Okazawa et al., 2011). Land use changes will affect flood risk
in the river basin, for example, the increase of built-up land and
cropland with high property value will increase the potential
damage when floods occur (Schmitt et al., 2004). At the same
time, urbanization and the increase of impervious surfaces will
affect infiltration and flood runoff (Ogden et al., 2011). The
terrain factors, such as elevation and slope, will affect the
drainage capacity and the possibility of flooding in the area,
and social and economic factors, such as population density, will
affect the potential danger of flood to human life and health
(Kandilioti and Makropoulos, 2012). Therefore, we calculated 77

TABLE 1 | Indicators that significantly affect the flood risk indicator.

Indicator category Indicator name Correlation coefficient between
this indicator and
flood risk indicator

Power
of determinant value

Precipitation indicator A1 Rainstorm days* B1 0.604 0.425
Days of heavy rain* B2 0.573 0.367
Rainstorm days+ B3 0.686 0.472
Five-day maximum precipitation+ B4 0.628 0.397

Land use indicator A2 Quantity of cropland B5 0.459 0.366
Quantity of built-up land B6 0.475 0.359

Terrain indicator A3 Height variation coefficient B7 0.499 0.393
Number of pixels at medium and lower elevations B8 0.526 0.388
Number of pixels at slightly high and lower elevations B9 0.526 0.441

Socioeconomic indicators A4 Population quantity B10 0.532 0.437
GDP B11 0.597 0.413
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indicators that may influence flood risk (Supplementary Table
S3), including 26 precipitation indicators (Nos. 1–26), 10 land use
indicators (Nos. 27–37), and 36 terrain indicators (Nos. 38–74),
five social and economic indicators (Nos. 74–79).

Then, we screened out the indicators that were significantly
correlated with the historical flood risk indicator (the correlation
coefficient was significant at 0.001 significance level). Then, we
performed attribution analysis using the geodetector method to
screen out the indicators with a power of the determinant value of
>0.35. In so doing, the screened-out indicators were convincing
and the number of indicators screened out was moderate. Finally, a
total of 11 indicators that significantly affected flood risk indicators
were screened out (Table 1). We calculated the future flood risk
indicator based on the screened-out indicators listed in Table 1.

Calculation of Future Flood Risk Indicator
Based on the screened-out indicators (Table 1), we calculated
future flood risk indicators for each risk unit following the analysis
procedure as shown in Figure 2. First, we computed indicators in
Table 1 for each risk unit from 2015 to 2045 under different SSPs.
Here, precipitation and society and economic data were changing

over the years and SSPs, land use was also changing over the years,
and terrain data were kept the same in different years under SSPs.
Then, we listed the values of each indicator at each SSP, each year,
and each risk unit, and reassigned 1, 2, 3, 4, and 5 to each indicator
in the order from low to high in equal proportion to eliminate the
influence of different dimensions and magnitudes on each
indicator. Finally, we took the power of determinant value
obtained by the geodetector method as the indicator weight and
did the weighted sum of each indicator at each risk unit to calculate
the future flood risk for all risk units under SSPs.

Therefore, the calculation method of flood risk indicator was
as follows:

Irisk � 0.425B1 + 0.367B2 + 0.472B3 + 0.397B4 + 0.366B5

+ 0.359B6 + 0.393B7 + 0.388B8 + 0.441B9 + 0.437B10

+ 0.413B11,

(3)
where Irisk denotes the flood risk indicator; B1, B2, B3, . . . , B11 are
the indicators assigned 1, 2, 3, 4, and 5; B1 denotes the indicator
“Rainstorm days*”; B2 denotes the indicator “Days of heavy

FIGURE 3 | Spatial pattern and area proportion of land use types in the Yellow River basin from 2015 to 2045. (A–D)Respectively refer to the spatial pattern of land
use in 2015, 2025, 2035, and 2045. (E) Refers to the proportion of various land use types over the years.

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 9008666

Song et al. Flood Risk Assessment

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


rain*”; B3 denotes the indicator “Rainstorm days+”; B4 denotes
the indicator “Five-day maximum precipitation+”; B5 denotes the
indicator “Quantity of cropland”; B6 denotes the indicator
“Quantity of built-up land”; B7 denotes the indicator “Height
variation coefficient”; B8 denotes the indicator “Number of pixels
at medium and lower elevations”; B9 denotes the indicator
“Number of pixels at slightly high and lower elevations; B10
denotes the indicator “population quantity”; and B11 denotes
the indicator “GDP.”

We evaluated the reliability of the results by a comparison
between the calculated flood risk indicator using the
aforementioned methods and the real flood risk indicator
obtained by actual flood-induced direct economic loss, and the
correlations were significant at the 0.001 significance level. The
power of the determinant obtained by the geodetector reached
0.484. These verification results well-evidenced the modeling
accuracy and can be accepted for further calculation of the
future flood risk indicator. In this case, we adopted the
abovementioned techniques to calculate the flood risk
indicator across the YRB covering the period from 2015 to
2045 under different SSPs. It is worth noting that the
indicators “Rainstorm days*” and “Rainstorm days+” at each

risk unit had the same values, which were equal to the
number of rainstorm days for the risk unit in a certain year
and SSPs. Moreover, the indicators “Days of heavy rain*” and
“Five-day maximum precipitation+” were the number of heavy
rain days and the five-day largest precipitation amount for the
risk unit in a certain year and SSP.

Different from the flood risk indicator, the flood hazard
indicator is only determined by the precipitation indicator in
Table 1. The calculation procedure was as follows: calculate the
“Rainstorm days*”, “Rainstorm days+”, “Days of heavy rain*”, and
“Five-day maximum precipitation +”, rank indicators from low to
high values, and assign 1, 2, 3, 4, and 5 to each ranked indicators in
equal proportion. Then, we took the power of determinant value by
geodetector as the index weight and did weighted summation of
each index to calculate the flood hazard indicator.

Therefore, the calculation method for flood hazard indicator
was as follows:

Ihazard � 0.425B1 + 0.367B2 + 0.472B3 + 0.397B4, (4)
where Ihazard denotes the flood hazard indicator; B1, B2, B3, and B4
are the indicators assigned 1, 2, 3, 4, and 5; B1 denotes the
indicator “Rainstorm days*”; B2 denotes the indicator “Days of

FIGURE 4 | Comparison of the average daily precipitation in the Yellow River basin obtained from CMORPH and CMIP6 downscaling data from 2011 to 2014
before (A) and after correction (B).
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heavy rain*”; B3 denotes the indicator “Rainstorm days+”; and B4
denotes the indicator “Five-day maximum precipitation+”.

The advantages of the flood risk indicator calculation method
proposed in this study are as follows: 1) the flood risk indicator
was rigorously defined and used to reflect flood-induced direct
economic loss; 2) rigorous selection of risk-related indicators that
were directly related to flooding risk; 3) when calculating the
flood risk indicator, precipitation, land use, terrain, social and
economic, and other indicators were thoroughly considered,
showing holistic impacts of driving factors on the flood.

After the calculation of the flood risk indicator and flood
hazard indicator at all risk units in 2015–2045 under different
SSPs, the following methods were adopted for further processing:

1) When displaying and analyzing the spatial distribution
pattern of flood risk indicator (and flood hazard indicator),
we divided the flood risk indicator (and flood hazard
indicator) of each year, each SSP, and each risk unit into
low, slightly low, medium, slightly high, and high grades (all
accounting for 20%) according to the proportional method,
and used the Kriging interpolation method to process the data
of each risk unit, and drew a map based on the interpolation
results.

2) UsingMann–Kendall (MK) trend test (Guo et al., 2018) with a
significance level of 0.05 to explore the changing trend of flood
hazard indicators under different SSPs.

3) Because the frequency and intensity of extreme precipitation
events fluctuate over time, the flood hazard indicator and
flood risk indicator tend to fluctuate over time. Therefore, in
order to reflect the overall change trend of flood risk indicator
and eliminate the influence of interannual fluctuation, we
calculated linear regression between the flood hazard
indicator of each risk unit under each SSPs and the year,
and then calculated the fitting values of flood risk indicators of
each risk unit under SSPs from 2015 to 2045 according to the
regression equation, and used them to replace the measured
values. Based on this value, the flood risk indicator of each risk
unit under each SSP was calculated.

RESULTS AND DISCUSSION

Land Use and Land Cover Changes
The comparison between simulated and real-world land use
patterns in 2015 showed a Kappa coefficient of 0.958 and the
overall modeling accuracy was 0.979, indicating that the
prediction accuracy was acceptable. The simulated land use
pattern over the YRB from 2015 to 2045 is shown in Figure 3,

which reveals the expanding built-up land area from 1.4 to
3.4% during 2015–2045 based on the FLUS model, and
expanding built-up land was found mainly in Xi’an,
Zhengzhou, Luoyang, and Taiyuan, while the cultivated land
and unused land decreased slightly and the proportion of
cultivated land (unused land) decreased from 30.2 (3.2%) to
28.7% (2.7%) in the future 30 years. Green land and cultivated
lands were the main land use and land cover types across the
YRB, accounting for 64.1 and 29.5% of the average annual land
area of the YRB, respectively. The cultivated land was mainly
distributed in the southeastern parts of the YRB, and the green
land was mainly distributed in the western and northwestern
parts of the YRB.

Precipitation Downscaling Performance of
Downscaling Models
Comparison of areal average daily precipitation of the
downscaled CMIP6 and CMORPH data across the YRB from
2011 to 2014 indicated underestimation (overestimation) of
summer (winter) precipitation by SNRD (Figure 4A). In
addition, downscaled precipitation by SNRD poorly described
the extreme precipitation processes. Figure 4B shows that the
improved SNRD model well overcame the underestimation
(overestimation) of summer (winter) precipitation. The
improved or modified SNRD enhanced the downscaling
performance of the SNRD model.

Based on the CMIP6 data and the CMORPH data, we
computed the long-term average of rainstorm days, days of
heavy rain, and five-day maximum precipitation for all risk

TABLE 2 | Correlation coefficient between downscaled CMIP6 data and
CMORPH data.

Precipitation indicator Correlation coefficient

Rainstorm days 0.691
Days of heavy rain 0.825
Five-day maximum precipitation 0.733

FIGURE 5 | Standardized Taylor diagram of spatial distribution
sequence of average precipitation in extreme precipitation period of each risk
unit obtained from CMORPH data and CMIP6 downscaling data in different
stages of correction (Step 1: before correction; Step 2: only correction by
correction coefficient method; Step 3: complete all corrections).
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units. Then, we did a correlation analysis of the downscaled
CMIP6 data and CMORPH data (Table 2). We found that
correlations between downscaled CMIP6 data and CMORPH
data were statistically significant at 0.001 significance level. Based
on the downscaled CMIP6 data using the original SNRD (Step 1),
corrected downscaled precipitation using the correction
coefficient (Step 2), and holistically corrected downscaled
precipitation (Step 3) from 2011 to 2014, we calculated the
average precipitation during the time interval with
precipitation amount larger than 5% percentile for 2011–2014.
We standardized the Taylor plot (Figure 5), reflecting differences
in average precipitation by the downscaled CMIP6 after different
corrections and CMORPH data. Figure 5 shows a closer relation
of corrected downscaled CMIP6 by the correction coefficient to
CMORPH data with increased correlation coefficients from 0.611
to 0.758 and was significant at 0.001 significance level. The

standard deviation and central RMSE were closer to the
CMORPH data. After all, corrections were done to the SNRD-
based downscaling practice, the downscaled CMIP6 data was
closer to the CMORPH data with a correlation coefficient
increased to 0.817. These findings evidenced that the corrected
downscaled CMIP6 data can better depict precipitation changes
after correction by the GEV distribution function.

Flood Hazard Indicator
It can be seen from Figure 6 that under SSP126, SSP245, and
SSP585, the risk units with an increasing (significantly increasing)
flood hazard indicator from 2015 to 2045 reached 65.2, 69.0, and
64.5% (4.8, 6.2, and 4.1% respectively), being significantly more
than the risk units with decreasing flood hazard indicator (33.6,
29.8, and 32.9%, respectively) and significantly decreasing flood
hazard indicator (1.7, 0.2, and 0.7% respectively). Under SSP370,

FIGURE 6 | Trends in flood hazard indicators in the Yellow River basin from 2015 to 2045 under SSP126, SSP245, SSP370, and SSP585 based on the Mann-
Kendall (MK) trend test with a significance level of 0.05 (A–D); the proportion of risk units with various trends under SSP126, SSP245, SSP370, and SSP585 (E) and
proportion of risk units with a significant increase or decrease under SSP126, SSP245, SSP370, and SSP585 (F).

Frontiers in Earth Science | www.frontiersin.org May 2022 | Volume 10 | Article 9008669

Song et al. Flood Risk Assessment

https://www.frontiersin.org/journals/earth-science
www.frontiersin.org
https://www.frontiersin.org/journals/earth-science#articles


the proportion of risk units with an upward trend in the flood
hazard indicator was 46.0%, being slightly less than the risk units
with a downward trend (52.3%) in the flood hazard indicator,
while risks units with a significant upward trend (3.3%) in flood
hazard indicator were more than risk units with a significant
downward trend (2.4%) in flood hazard indicator. All these
findings indicated that the overall flood hazard indicator
across the YRB was amplified from 2015 to 2045, which was
manifested by the increase in the frequency and intensity of
rainstorms and flood events.

The spatial pattern of long-term (from 2015 to 2045) average
flood hazard indicators under different SSPs is shown in Figure 7.
It can be seen from Figure 7 that no remarkable difference can be
identified in the flood hazard indicator over the YRB under
different SSPs, while the flood hazard indicator was subjected
to obvious spatial differentiation, and this spatial differentiation
tended to be weak in the southeastern parts to the northwestern
parts of the YRB. Meanwhile, high and slightly high flood hazard
indicator area was identified mainly concentrated in the
southeastern parts of the YRB. This was because the extreme
precipitation amounts decreased from southeastern to
northwestern parts of the YRB, and higher extreme
precipitation amount can be observed in eastern and
southeastern parts of the YRB (Li et al., 2017) with higher
frequency and intensity of rainstorms and flood events.

Flood Risk Indicator
Figure 8 demonstrates the flood risk indicator over the YRB
covering a period from 2015 to 2045 under different SSPs. We
found no distinct differences in flood risk indicator values under
different SSPs. The period from 2015 to 2045 witnessed a slight

increase in the flood risk indicator over the YRB. When
compared to the spatial distribution of flood risk indicators
in 2015, in 2045, areas with high flood risk indicators would
expand slightly, but areas with low flood risk indicators would
shrink slightly. Just as presented in the aforementioned section,
the flood hazard indicator over the YRB would increase as a
whole from 2015 to 2045. Also, the rainstorm and flood events
would become more frequent and intensified. Meanwhile, the
built-up land would increase from 1.4 to 3.4% in 2045
(Figure 3), according to the estimated population and the
economic data of the shared socioeconomic pathways (SSPs),
under SSP126, SSP245, SSP370, and SSP585, the total GDP of
the YRB in 2045 would be 3.93, 3.75, 3.00, and 4.29 times higher
than that of 2015, respectively. Therefore, given the occurrence
of floods, the YRB would suffer higher economic losses.
Furthermore, the flood risk indicator would be subject to
more obvious spatial differentiation. High and slightly high
flood risk indicator area is mainly distributed in the
southeastern parts of the YRB, including the lower and
middle YRB, the southern part of the YRB, and the northern
part of the Ningxia (Figure 9A).

The lower YRB is low-lying in terrain with high risks of
extreme precipitation and is vulnerable to flooding inundation
(Figures 9A,C). In addition, the lower YRB is dominated by
cultivated land and built-up land (Figure 3) with a highly-
developed economy and dense population (Figures 9D,E),
such as, according to China City Statistical Yearbook 2020
(Urban Social and Economic Investigation Division of
National Bureau of Statistics, 2020), Zhengzhou (in 2019, the
city’s annual average population reached 8.73 million, and the
regional GDP reached 1.159 trillion RMB), and Jinan (with an

FIGURE 7 | Spatial distribution of flood hazard indicator (multiyear average from 2015 to 2045) in the Yellow River basin under SSP126 (A), SSP245 (B),
SSP370 (C), and SSP585 (D).
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average annual population of 7.91 million in 2019 and a GDP of
944.3 billion RMB) (Figure 9A). Massive economic losses can be
expected given the occurrence of flood events. For example, on
July 17–22, 2021, Henan Province suffered torrential rain, with
an hourly rainfall of 201.9 mm from 16:00 to 17:00 on July 20,
breaking the record of the maximum hourly rainfall on the
Chinese mainland. The accumulated rainfall in 3 h was
333 mm and that in 24 h was 627.4 mm (Zhong et al.,
2021), which caused extremely serious casualties and

property losses. Therefore, the lower YRB is at high flood
risk. According to the “Yellow River Yearbook”, in the 20 years
from 1919 to 1938, floods occurred in 14 out of 20 years in the
lower YRB. The river banks along the lower YRB are higher
than the surrounding ground. There stands an 800-km long
confined and super-elevated channel belt perching around
10 m above the surrounding ground (Chen et al., 2012). If
the river bank breaches, flood bursts, and massive economic
losses and fatalities would occur. In addition, more evidence

FIGURE 8 | Flood risk indicator in the Yellow River basin under SSP126 (A–D), SSP245 (E–H), SSP370 (I–L), and SSP585 (M–P) from 2015 to 2045.
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indicated that the length of the elevated channel and riverbank
in the lower YRB increased to 550 km, and the main trough is
1.16 m higher than the floodplain on average, posing a serious
threat to the downstream cities and residents (Zhang and Fang,
2017).

The distribution of high flood risk indicators in the southern
part of the YRB can be attributed to the high frequency of extreme
precipitation events. Vast low-lying plains combined with hills
and highlands accelerate flow confluence when heavy
precipitation events occur (Figures 9B,C). At the same time,
theWei River flows through this region (Figure 9A), and theWei
River has high sediment content and muddy water. The sand

deposition is serious, and the river bed will also rise. Floods with
high sediment content have posed serious threats to this region
(Li and Xia, 2020). In addition, built-up land and arable land in
this area are widely distributed (Figure 3) with a densely
populated and highly-developed economy (Figures 9D,E). For
example, according to China City Statistical Yearbook 2020
(Urban Social and Economic Investigation Division of
National Bureau of Statistics, 2020), Luoyang (the city’s annual
average population reached 7.43 million in 2019 and a regional
GDP reached 503.5 billion RMB), Xi’an (with an average annual
population of 9.4 million in 2019 and a GDP of 932.1 billion
RMB), Xianyang (with an average population of 4.59 million in

FIGURE 9 | Spatial pattern of regions with slightly high and high flood risks in the Yellow River Basin (A) and distribution map of some influencing factors (B–E).
Note: In Figure 9A,① the lower reaches of the Yellow River,② the southern part of the Yellow River basin,③ the middle Yellow River basin, and④ the northern part of
Ningxia. Figure 9A shows the spatial pattern of flood risks in the Yellow River basin in 2025 under SSP245. Figures 9D–E shows the spatial pattern of distribution of
population and GDP under shared socioeconomic pathways (SSPs) in 2025 under SSP245.
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2019 and a GDP of 2,195 million RMB) (Figure 9A), are all under
high flood risk.

The middle YRB is dominated by the Fenhe Plain, the spatial
combination of hills and plains accelerates the speed of flow in
plain areas (Figures 9B,C). High frequent extreme precipitation
renders the middle YRB susceptible to floods (YRCC, 2020).
Meanwhile, built-up land and arable land in this area are widely
distributed (Figure 3). A relatively dense population and
developed socio-economy render this region susceptible to
flood-induced losses (Figures 9D,E). The middle YRB is not
only seriously threatened by torrential rains and floods, but is also
the main source of floods for the lower YRB, posing a threat to the
lower YRB (YRCC, 2020). The mainstream of the Yellow River
flows through the northern part of Ningxia (Figure 9A), which is
located in the Ningxia Plain with low-lying terrain (Figures
9B,C). There are major cities, such as Yinchuan with an
average annual population of 1.97 million and a regional GDP
of 189.7 billion RMB in 2019 (Urban Social and Economic
Investigation Division of National Bureau of Statistics, 2020)
(Figure 9), being highly susceptible to floods. From the Qing
Dynasty to 1949, there occurred 24 recorded serious floods in
Ningxia, about one serious flood even per 13 years (YRCC, 2020).

CONCLUSION

There are still critical scientific issues in flood risk evaluation,
such as subjectivity in the selection of evaluation indicators and
obscure definitions of flood risk. Here, we classified flood-induced
direct economic losses, quantifying flood risk indicators.
Meanwhile, correlation analysis and geodetector were adopted
to evaluate the weights of indicators, such as precipitation, land
use, terrain, social, and economy that have profound impacts on
flood risk over the YRB. Furthermore, we did a holistic evaluation
of flood risk indicators and flood hazard indicators using the
FLUS model and the improved SNRD downscaling model across
the YRB from 2015 to 2045 under different SSPs. We obtained the
following important findings and conclusions.

1) From the simulated land use pattern over the YRB from 2015
to 2045, we detected expanding built-up land area from 1.4 to
3.4% from 2015 to 2045 and a slight decrease in cultivated
land and unused land from 30.2 (3.2%) to 28.7% (2.7%) in the
future 30 years. The cultivated land is mainly distributed in
the southeastern parts of the YRB, and the green land is
mainly distributed in the western and northwestern parts of
the YRB. These changes in land use and land cover change
have enhanced susceptibility to flooding. In addition, we
improved the SNRD precipitation downscaling model using
correction coefficient and GEV model, greatly improving the
accuracy of downscaled extreme precipitation.

2) In most areas of the Yellow River basin, the flood hazard is
increasing from 2015 to 2045 under SSP126, SSP245, and
SSP585, which is manifested by the increase in the frequency
and intensity of rainstorm and flood events. Therefore, we can
conclude that flood hazards would be amplified in the
backdrop of climate change during 2015–2045. With

respect to the spatial pattern of flood hazard indicators, we
identified high and slightly high flood hazard indicators
mainly concentrated in the southeastern parts of the YRB
of the basin. Specifically, flood hazard indicators decreases
from southeastern to northwestern parts of the YRB as a
whole, and high and slightly high flood hazard indicator was
identified mainly in the middle and lower YRB.

3) We detected no distinct difference in flood risk indicators
across the YRB under different SSPs. From 2015 to 2045, we
depicted a slight increase in the flood risk indicator over the
YRB.Meanwhile, when compared to the spatial distribution of
flood risk indicators in 2015, we found slightly expanded areas
with high flood risk indicators and slightly shrunk regions
with low flood risk indicators. Specifically, we found regions
with high and slightly high flood risk indicators mainly in the
southeastern parts of the YRB, including the lower and middle
YRB, the southern YRB, and the northern parts of Ningxia.

4) For evaluating uncertainties, we first calculated the daily
precipitation of each risk unit in 2015–2045 under different
SSPs based on CMIP6 data but we must admit that the
simulation of future precipitation by each CMIP6 model
itself was uncertain and the spatial resolution of CMIP6
data was coarse, although we used the SNRD method to
downscale CMIP6 data and corrected the downscaling
result, the uncertainty of future precipitation prediction still
existed. Second, we used the FLUS model to predict the future
land use change in the Yellow River basin based on the land
use pattern in 2005 and 2015, which was based on the
assumption that land use change in 2005–2015 in the
Yellow River basin would remain unchanged in 2015–2045.
Once the new land use policy is adopted in the Yellow River
basin, the future land use simulation based on the FLUSmodel
would be modified, which would introduce uncertainty. At the
same time, shared socioeconomic path (SSPs) population and
economic estimation data used in this study also involve
uncertainties because the data of the future period is
obtained by estimation. Finally, there are uncertainties in
flood risk assessment methods, although this study
screened the driving indicators behind flood risk and
verified the accuracy of the research method many times.
However, the model constructed in this study was still
relatively simple, with inadequate consideration given to
some indicators that are difficult to quantify, such as
disaster prevention policies and disaster mitigation
capabilities but the mechanism of flood disaster is very
complicated. Therefore, the calculation method of future
flood risk indicator was also one of the sources of uncertainty.

In this study, we inadequately considered the disaster
mitigation capability of each risk unit in the Yellow River
basin, including fortification level, drainage pipeline
construction level, reliability of disaster prevention system,
emergency rescue management capability, etc. Because these
factors were difficult to express quantitatively, it was also
difficult to predict their changing trends with time under
different SSPs. Therefore, the flood risk indicator calculated in
this study has not included these factors; our findings here
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reflected the relative degree of potential losses that each risk unit
would suffer under the influence of a flood disaster. The results
can better reflect which areas need to improve their disaster
mitigation capabilities to deal with high potential flood risks.
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