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ABSTRACT. We investigate stochastic Volterra equations and their limiting laws. The stochastic Volterra
equations we consider are driven by a Hilbert space valued Lévy noise and integration kernels may have non-
linear dependence on the current state of the process. Our method is based on an embedding into a Hilbert
space of functions which allows to represent the solution of the Volterra equation as the boundary value of
a solution to a stochastic partial differential equation. We first gather abstract results and give more detailed
conditions in more specific function spaces.

1. INTRODUCTION

Stochastic Volterra integral equations (SVIE) appear for example in population dynamics and spread of
epidemics (see [Gripenberg et al., 1990]) and in mathematical finance as stochastic volatility models (see
[Gatheral et al., 2018]). The defining characteristic of stochastic Volterra integral equations is that they are
in some way defined based on an integral of the form

∫ t
0
K(t, s)dM(t) with a possibly stochastic integrand

kernel K depending on the integration horizon t and some stochastic process M as integrator. They have
first been systematically analyzed in [Berger and Victor, 1980a,b] although specific cases appeared in the
literature before (see references in [Berger and Victor, 1980a,b]). The analysis of SVIEs has later been
extended in many directions, for example to allow for a term in the equation that is not adapted [Pardoux
and Protter, 1990, Øksendal and Zhang, 1993], for singular kernels and in relation to fractional Brownian
motion [Cochran et al., 1995, Coutin and Decreusefond, 2001, Decreusefond, 2002, Wang, 2008] and for
equations driven by general semi-martingales [Protter, 1985]. We also mention [Jaber et al., 2017] for
a treatment of Volterra processes with the state and space dependence of affine form. The recent paper
[Agram et al., 2018] deals with optimal stopping of stochastic Volterra integral equations. Stochastic
Volterra integral equations in a random field setting and driven by a Lévy basis have been considered in
[Chong, 2017] and [Pham and Chong, 2018].

In this paper we demonstrate how existence results for a class of first order stochastic partial differential
equations (SPDE) can be used to derive solutions for stochastic Volterra integral equations of the form (the
precise assumptions will be introduced below)

(1.1) X(t) = x0(t) +

∫ t

0

µ(t, s,X(s)) ds+

∫ t

0

σ(t, s,X(s−)) dL(s) ,

with X in a general separable Hilbert space U and the driving Lévy process L in another Hilbert space
V . Our approach rests on the observation that x 7→ σ(s + x, s,X(s−)) can be considered as an element
in a space of functions H mapping from R+, the non-negative real numbers, to U . We then consider
an SPDE involving the derivative operator ∂x in a way such that in the mild solution of this SPDE the
shift operator (which is generated by ∂x) ensures that the boundary at zero is driven by integrands of the
form σ(t, s,X(s−)) and allows to retrieve the SVIE. This way the Volterra equation arises as a boundary
solution to an SPDE with values inH and required properties for σ are encoded in the function spaceH and
properties of the shift semigroup defined on H. In addition to showing existence of solution this method
then allows us to provide results on the existence of invariant measures for the Volterra equations derived
from tailor made abstract results about invariant measures of SPDEs.

The connection between Volterra dynamics and SPDEs defined on some function space is not new in
light of mild solutions of SPDEs on Hilbert space. In [Benth and Eyjolfsson, 2016] a lifting of Lévy
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semistationary processes (see [Barndorff-Nielsen et al., 2018]) to solutions of SPDEs has been utilized to
develop numerical schemes for Monte Carlo simulations of paths. Furthermore, as shown in a Brownian
setting in [Zhang, 2010], Volterra solutions can be lifted to construct mild solutions for SPDEs.

Contribution and outline: In Section 2 we analyze the above outlined embedding method systemati-
cally and derive abstract results for the conditions on the space H needed in order to retrieve the SVIE as
a boundary solution of the SPDE. To our knowledge this is the first time that the method itself has been
analyzed and treated in this generality. Understanding precisely this connection is not only of interest in
itself but also relevant for applications. For example in energy markets it is natural to model the forward
curve as a solution to a first order stochastic partial differential equation. The electricity spot price is then
given as the boundary solution and solves a SVIE. As mentioned above, for numerical approximation of
an SVIE the SPDE formulation is crucial and it is thus important to know when such formulation exists.
In Section 3 we state conditions that ensure existence of a limiting measure for the SVIE. The question
of existence of a limiting distribution is relevant in particular for applications and has not been considered
for Hilbert space valued SVIE before. In Section 4 we give an example for a possible specification of the
function spaceH and derive required properties of the shift semigroup and related operators on this space.
With this example at hand the solution to the Stochastic Volterra integral equation (1.1) follows directly
from recent existence results for SPDEs (see [Tappe, 2012] and [Filipović et al., 2010]) and extends pre-
vious existence results for Stochastic Volterra integral equations. Further, with this example at hand we
use the abstract results from Section 3 to provide more specific conditions for the existence of a limiting
measure both, in terms of the SPDE and the SVIE coefficients.

2. AN SPDE REPRESENTATION

Let (Ω,F , (Ft)t≥0, P ) be a filtered probability space satisfying the usual conditions. Let U and V be
separable Hilbert spaces. Let further L be a square integrable Lévy process in V with E[L(t)] = 0 for
all t ≥ 0 and with characteristic triplet equal to (α,Q0, ν) in the sense of [Peszat and Zabczyk, 2007,
Definition 4.28]. Here Q0 ∈ L+

1 (V) is the covariance operator of a Wiener process, where L+
1 (V) is the

class of non-negative trace class operators, ν is the Lévy measure of L and α the drift. We refer the reader
to [Peszat and Zabczyk, 2007] for the definition of Hilbert space valued Lévy processes.

We introduce some further notations, for Hilbert spaces X and Y and (ek)k∈N an orthonormal basis of
X we denote by L(X ,Y) the bounded linear operators from X to Y and by L2(X ,Y) the space of Hilbert
Schmidt operators from X to Y , i.e.

L2(X ,Y) := {R ∈ L(X ,Y) : ‖R‖L2(X ,Y) <∞},

where ‖R‖L2(X ,Y) :=
∑
k∈N‖Rek‖2Y is the Hilbert-Schmidt norm. We shall further denote by ‖R‖op the

usual operator norm of R ∈ L(X ,Y) whenever the involved spaces are clear from the context. We remark
that while we are mainly interested in all involved spaces to be of infinite dimensions all over results also
cover the finite dimensional case.

We are concerned with adapted càdlàg solutions to the following SVIE

(2.1) X(t) = x0(t) +

∫ t

0

µ(t, s,X(s)) ds+

∫ t

0

σ(t, s,X(s−)) dL(s) ,

where x0 is a U-valuedF0-measurable stochastic process, µ(t, s, ·) : U → U and σ(t, s, ·) : U → L2(V,U)
are parameter functions satisfying conditions which we state below.

The solution to the above SVIE will arise as a boundary solution of a process Y that lives in a larger
(function) space H. For this let H be a separable Hilbert space of measurable functions h : R+ → U ,
where we use the notation R+ for the non-negative real numbers. For t ≥ 0 denote by δt : H → U the
evaluation map given by δt : h 7→ h(t). In order to have δt well defined it is crucial here that each element
h ∈ H is really a function and not an equivalence class of functions which might render the definition of
δt arbitrary. The following Assumption onH will be needed for our main existence result Theorem 2.5.

Assumption 2.1. The function spaceH is such that

• the evaluation map δ0 : h 7→ h(0) is a bounded linear operator,
• the set {u ∈ U : u = δ0f, f ∈ H constant function} is closed in U and



STOCHASTIC VOLTERRA EQUATIONS AND SPDES 3

• the translation operator St : h 7→ h(·+ t) for t ≥ 0 is well defined and (St)t≥0 is a C0-semigroup
inH and we denote its generator by ∂x or ∂/∂x. Furthermore, (St)t≥0 is quasi-contractive, i.e.

‖St‖op ≤ eωt,∀t ≥ 0

for some ω ∈ R.

We remark that Assumption 2.1 implies continuity for the evaluation maps δt = Stδ0 for any t ≥ 0. We
assume for the rest of this section that Assumption 2.1 holds and we provide an example of a specific space
satisfying the assumption in Section 4.

The name ∂x for the generator is motivated by the fact that for a function f in the domain of ∂x we have

∂xf(t) = δt lim
r↘0

Srf − f
r

= lim
r↘0

f(r + t)− f(t)

r
, t ≥ 0

from which we see that ∂x computes the right-derivative.
We also like to remark that the closedness condition for the constant functions in H is satisfied under

any of the following conditions:
(1) All constant functions are contained inH,
(2) 0 is the only constant function contained inH or
(3) U is finite dimensional.

The reason for the closedness assumptions is to allow to embed U into H or, more precisely, into an
enlargement of H. This can be particularly useful as many classical spaces of functions on R+ do not
include constant functions who will however be crucial in proving existence of a solution to (2.1). In this
case we can use the following Lemma to enrich these spaces.

Lemma 2.2. There is a Hilbert spaceH+ which containsH as a closed subspace, which satisfies Assump-
tion 2.1 and such that there is a continuous linear map π : U → H+ with πu(t) = u for any u ∈ U ,
t ≥ 0.

Proof. Let P be the set of constant functions from R+ to U and ‖f‖P := ‖f(0)‖U be the push-forward
norm π : U → P, u 7→ (t 7→ u). Note that π as a mapping to P is a bijective isometry from (U , ‖ · ‖U )
to (P‖ · ‖P) by construction. Let C := P ∩ H = π(δ0(P ∩ H)) which is closed in P because δ0(P ∩ H)
is closed in U by assumption. Also, note that C is closed in (H, ‖ · ‖H) because it is the set of constant
functions in H and the point evaluations (δt)t≥0 are continuous and separating. Let B be the orthogonal
complement of C in (P‖ · ‖P) and define

H+ := H⊕ B.
We define the norm

‖h+ b‖2H+ := ‖h‖2H + ‖b‖2P , h+ b ∈ H ⊕ B.
Then (H+, ‖ · ‖H+) is a Hilbert space andH, B are orthogonal complements by construction. For h+ b ∈
H ⊕ B we have

‖δ0(h+ b)‖2U ≤ 2‖h(0)‖2U + 2‖b(0)‖2U ≤ 2(‖δ0‖2 + 1)‖h+ b‖2H+ ,

where we used orthogonality for the last inequality. Thus, δ0 is a bounded linear operator and its range is U
which is closed. Since δ0|P is bounded relative to the ‖ · ‖H+ -norm we find that its inverse π has a closed
graph. The closed graph theorem yields continuity of π.

Now it remains to see that H+ satisfies Assumption 2.1. We already proved continuity of δ0. The set
{u ∈ U : u = δ0f, f ∈ H+ constant function} = U by construction ofH+. We now inspect the behaviour
of the shift semigroup (St)t≥0. Since the functions b ∈ B are constant we find that Stb = b for all t ≥ 0.
Also, for h+ b ∈ H⊕B we have Sth ∈ H and, hence, it is orthogonal to b = Stb. For this reason we find

‖St(h+ b)‖2H+ = ‖Sth+ b‖2H+ = ‖Sth‖2H+ + ‖b‖2H+ ≤ max{1, ‖St‖2op}‖h+ b‖2H+ .

Thus, (St)t≥0 is a quasi-contractive semigroup and we have

St(h+ b) = Sth+ b→ h+ b, t↘ 0

and, hence, (St)t≥0 is a C0-semigroup onH+. 2
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In order to make sense out of the Volterra Equation (2.1) we need some more assumptions.

Assumption 2.3. The coefficient functions µ, σ are such that
• for each fixed (t, u) ∈ R+ × U , the functions x 7→ µ(t + x, t, u) and x 7→ σ(t + x, t, u) are

elements ofH and L(V,H) respectively,
• the mappings R+×U 3 (t, u) 7→ µ(t+·, t, u) ∈ H and R+×U 3 (t, u) 7→ σ(t+·, t, u) ∈ L(V,H)

are measurable.

We now define the functions a : R+ ×H → H and b : R+ ×H → L(V,H) by

a(t, h) = µ(t+ ·, t, δ0h),(2.2)

b(t, h) = σ(t+ ·, t, δ0h) .(2.3)

Continuity of δ0 and Assumption 2.3 yield that a : R+ × H → H and b : R+ × H → L(V,H) are
measurable functions.

Related to the SVIE is the following class of first order SPDEs

(2.4) dY (t) = (∂xY (t) + a(t, Y (t))) dt+ b(t, Y (t)) dL(t) ,

with Y (0) being given as an F0-measurableH-valued random variable.
We shall need some standard Lipschitz and growth conditions.

Assumption 2.4. We say that functions a : R+ ×H → H and b : R+ ×H → L(V,H) fulfil a Lipschitz
and linear growth condition, if there exist measurable functions La, Lb,Ka,Kb : R+ → R+ which are
bounded on compacts and such that

‖a(t, h1)− a(t, h2)‖H ≤ La(t)‖h1 − h2‖H(2.5)

‖b(t, h1)− b(t, h2)‖op ≤ Lb(t)‖h1 − h2‖H(2.6)

for all t ∈ R+ and all h1, h2 ∈ H and moreover

‖a(t,0H)‖H ≤ Ka(t)(2.7)

‖b(t,0H)‖op ≤ Kb(t)(2.8)

for all t ∈ R+ and h ∈ H. By 0H we mean the zero element ofH, i.e. the function which is constant zero.

Note that from the above assumption it follows directly by the triangular inequality that ‖a(t, h)‖H ≤
La(t)‖h‖H + Ka(t) and ‖b(t, h)‖op ≤ Lb(t)‖h‖H + Kb(t), which explains the name linear growth
condition. Of course, when looking for solutions for (2.1) it is more natural to state assumptions on the
functions µ and σ directly and we will do so for a particular choice ofH in Section 4.1.

By [Filipović et al., 2010, Theorem 8.8] under the linear growth and Lipschitz condition, for every H-
valued F0-measurable square-integrable random variable x0 there exists a unique mild solution of (2.4)
given by the integral equation

(2.9) Y (t) = StY (0) +

∫ t

0

St−sa(s, Y (s)) ds+

∫ t

0

St−sb(s, Y (s−)) dL(s)

with Y (0) = x0 and this solution Y is càdlàg and adapted. The first main result of the paper follows now
and shows that the boundary of this solution solves the SVIE in Eq. (2.1).

Theorem 2.5. Suppose that the coefficient functions satisfy Assumption 2.3 and that x0 is anH-valuedF0-
measurable square-integrable random variable. Let a and b be as defined in (2.2) and (2.3), and assume
that the functions fulfil Assumption 2.4. Then there is a unique adapted càdlàg solution X to the SVIE
(2.1). Moreover, this solution satisfies

E[ sup
t∈[0,T ]

‖X(t)‖2U ] <∞

for any T > 0 and it is given byX(t) = δ0Y (t) where Y is the solution to the SPDE (2.4) with Y (0) = x0.

Proof. Step 1; construction of a solution: First we observe that as Y (0) = x0, Y (0) is an F0-measurable
square integrable random variable with values inH from the assumption on x0. We defineX(t) := δ0Y (t)
and apply δ0 to the representation (2.9). Note that continuous linear operators can always be pushed into
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Bochner integrals and the stochastic integral [Peszat and Zabczyk, 2007, Proposition 3.15(ii), Theorem
8.7(v)]. Hence, we find that

X(t) = δ0(StY (0)) +

∫ t

0

δ0St−sa(s, Y (s))ds+

∫ t

0

δ0St−sb(s, Y (s−))dL(s)

= x0(t) +

∫ t

0

µ(t, s,X(s))ds+

∫ t

0

σ(t, s,X(s−))dL(s)

for any t ≥ 0. Thus, X is a solution to the SVIE (2.1). By [Filipović et al., 2010, Theorem 8.8] the solution
Y to the SPDE (2.4) satisfies

(2.10) E[ sup
t∈[0,T ]

‖Y (t)‖2H] <∞

for any T > 0. Hence, we find

E[ sup
t∈[0,T ]

‖X(t)‖2U ] ≤ ‖δ0‖2opE[ sup
t∈[0,T ]

‖Y (t)‖2H] <∞

for any T > 0 which proves that there is a solution with the required integrability condition. According to
[Tappe, 2012, Theorem 4.5. (1)] Y has càdlàg paths and, hence, X has càdlàg paths.

Step 2; uniqueness of solutions: For the remainder of the proof, let X be any adapted càdlàg solution
to the SVIE (2.1). We define the stopping times τN := inf{t ≥ 0 : ‖X(t)‖U ≥ N} for any N ≥ 0 and
note that τN → ∞ for N → ∞ due to the path property of X . By Lemma 2.2 we may assume that the
embedding π : U → H, u 7→ (t 7→ u) is an everywhere defined continuous linear operator (where we
might possibly have to replace H by a larger space). [Sz.-Nagy and Foiaş, 1970, Theorem 1.8.1] yields
that there is a Hilbert space H̄ which containsH as a closed subspace, its norm restricted toH is the norm
ofH, and such that there is a C0-group S̄ defined on H̄ such that

St = ΓH(S̄t)|H, t ≥ 0

where ΓH : H̄ → H is the orthogonal projection. We also use the notations δ̄0 := δ0ΓH, ā(s, h) :=
µ(s+ ·, s, δ̄0h) and b̄(s, h) := σ(s+ ·, s, δ̄0h) for s ≥ 0, h ∈ H̄. Note that ā, b̄ have values inH. Define

ZN (t) := S̄t∧τNx0 + S̄t∧τN
∫ t∧τN

0

S̄−sā(s, πX(s))ds+ S̄t∧τN
∫ t∧τN

0

S̄−sb̄(s, πX(s−))dL(s), t ≥ 0

where the integrals exist because the integrands are bounded. Fix t ≥ 0 and define AN := {t < τN}. We
find

ZN (t)1AN
= 1AN

S̄t∧τNx0 + 1AN
S̄t∧τN

∫ t∧τN

0

S̄−sā(s, πX(s))ds

+ 1AN
S̄t∧τN

∫ t∧τN

0

S̄−sb̄(s, πX(s−))dL(s)

= 1AN
S̄tx0 + 1AN

S̄t
∫ t

0

S̄−sā(s, πX(s))ds+ 1AN
S̄t
∫ t

0

S̄−sb̄(s, πX(s−))dL(s)

=

(
S̄tx0 +

∫ t

0

S̄t−sā(s, πX(s))ds+

∫ t

0

S̄t−sb̄(s, πX(s−))dL(s)

)
1AN

and, hence,
δ̄0ZN (t)1AN

= X(t)1AN
.

Since the value of a, b depend only on the initial value of the inserted function we find that

ZN (t) := S̄t∧τNx0 + S̄t∧τN
∫ t∧τN

0

S̄−sa(s, ZN (s))ds+ S̄t∧τN
∫ t∧τN

0

S̄−sb(s, ZN (s−))dL(s), t ≥ 0.

Thus, ZN is the τN -stopped solution of the SPDE (2.4), i.e. ZN (t) = Y (t ∧ τN ) for any t ≥ 0 where Y is
the unique H̄-valued solution of the SPDE (2.4). We find that

E[ sup
0≤s≤t

‖ZN (s)‖2H̄] ≤ E[ sup
0≤s≤t

‖Y (s)‖2H̄] <∞.
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The sequence (AN )N∈N is an increasing and exhausting sequence of sets. The monotone convergence
theorem yields

E[ sup
0≤s≤t

‖X(s)‖2H̄]
N→∞←−−−− E[ sup

0≤s≤t
‖X(s)‖2U1AN

]

≤ ‖δ̄0‖2opE[ sup
0≤s≤t

‖ZN (s)‖2H̄1AN
]

≤ ‖δ̄0‖2opE[ sup
0≤s≤t

‖Y (s)‖2H̄1AN
]

≤ ‖δ̄0‖2opE[ sup
0≤s≤t

‖Y (s)‖2H̄] <∞.

Thus, we find E[sup0≤s≤t ‖X(s)‖2H̄] <∞ and

X(t) = lim
N→∞

X(t)1AN
= lim
N→∞

δ̄0ZN (t)1AN
= lim
N→∞

δ0Y (t ∧ τN )1AN
= δ0Y (t).

Since X and δ0Y have càdlàg paths we find that X = δ0Y . 2

3. INVARIANT DISTRIBUTIONS

In this section we investigate existence of an invariant distribution for homogeneous SVIEs, i.e. we
consider equations of the following type

(3.1) X(t) = x0 +

∫ t

0

µ(t− s,X(s)) ds+

∫ t

0

σ(t− s,X(s−)) dL(s) ,

where x0 is a square-integrable, F0-measurable and U-valued random variable, µ : R+ × U → U and
σ : R+ × U → L(V,U). This implies that a and b do not depend on time, namely a(h) = µ(·, δ0h) and
b(h) = σ(·, δ0h) for any h ∈ H. We will assume for the remainder of this section that our Assumptions
(2.3), (2.4) are satisfied and that L is a square integrable Lévy process with E[|L(1)|2V ] = 1 and zero mean.1

We shall focus on abstract results for a generic function space H here. In Section 4 our Theorems 4.10
and 4.11 provide more specific existence results of limiting laws.

One way to guarantee existence of a limiting measure for the SPDE is to ensure that ‖St‖op ≤ e−βt

for β > 0 large enough (its required magnitude depending on the Lipschitz coefficients of the SPDE).
However, in order to derive the SVIE we need to ensure that H contains constant functions. For constant
h ∈ H the shift operator acts as the identity, i.e. Sth = h and thus ‖St‖op ≥ 1 and the standard conditions
are not fullfilled. We provide two conditions under which one can still ensure existence of a limiting
measure for the SPDE and as a result for the SVIE. The first one captures the case where the coefficients
are orthogonal to the subspace generated by constant functions. In this case the influence of the starting
value persists in the limiting measure as the coefficient functions leave it untouched. The second results
covers a setting where h ∈ H can be split into an orthogonal sum of two subspaces, one on which St
has nice contraction properties and one on which it is only quasi-contractive but the drift coefficient mean
reverts towards 0 on that subspace. In this case the limiting measure is independent of the starting value.

Proposition 3.1. Let C ⊆ {h ∈ H : ∂xh = 0} such that its orthogonal complement B is invariant under
the shift semigroup (St)t≥0. Further we assume that there is α > 0, La, Lb > 0 such that

(i) a is B-valued and b is L(V,B)-valued,
(ii) ‖St|B‖op ≤ e−αt/2,

(iii) ‖a(h1)− a(h2)‖H ≤ La‖h1 − h2‖H,
(iv) ‖b(h1)− b(h2)‖op ≤ Lb‖h1 − h2‖H and
(v) 2La + L2

b < α

for any h1, h2 ∈ B. Then for any x0 ∈ U there is a limiting distribution νx0
for the solution to the SVIE

X(t) = x0 +

∫ t

0

µ(t− s,X(s))ds+

∫ t

0

σ(t− s,X(s))dL(s),

1If R is the RKHS of L, cf. [Peszat and Zabczyk, 2007, Definition 7.2], then R ⊆ V and for T ∈ L(V,U) one has
‖T‖L2(R,U) ≤ ‖T‖op.
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i.e. X(t)→ νx0
in law for t→∞.

If C = {0}, then the limiting distribution ν does not depend on the distribution of x0 and it is an
invariant law for X .

Proof. Let πB : H → B be the orthogonal projection and z0 := πBx0 where we identify x0 with the
constant function t 7→ x0. Note that πBSt = StπB for any t ≥ 0 because Sth = h for any h ∈ C and B is
S-invariant. Let Y be the mild solution to the SPDE 2.4, i.e.

Y (t) = x0 +

∫ t

0

St−sa(Y (s))ds+

∫ t

0

St−sb(Y (s))dL(s)

and by condition (i)

Z(t) := πBY (t) = z0 +

∫ t

0

St−sa(Y (s))ds+

∫ t

0

St−sb(Y (s))dL(s).

We see that Y (t) = Z(t) + x0 − z0 for any t ≥ 0 which yields

Z(t) = z0 +

∫ t

0

St−sa(Z(s) + z0 − x0)ds+

∫ t

0

St−sb(Z(s) + z0 − x0)dL(s).

We now like to verify [Peszat and Zabczyk, 2007, Theorem 16.5] for Z on B. First note that [Peszat
and Zabczyk, 2007, Theorem 16.5] does not allow for stochastic coefficients. However, our stochastic
dependency is on F0 only and the increments of the driving Lévy process L are F0-independent. A simple
conditioning argument allows to use F0-dependent coefficients in [Peszat and Zabczyk, 2007, Theorem
16.5].

Now, let An be the n-th Yosida approximation of S onH, i.e.

Anh := n2

∫ ∞
0

e−nt(Sth− h)dt, h ∈ B

and condition (ii) yields that when restricting to B we have

〈Anh, h〉 = n2

∫ ∞
0

e−nt〈(Sth− h), h〉dt

≤ n2

∫ ∞
0

e−nt(‖St|B‖op − 1)‖h‖2Hdt

≤ n2

∫ ∞
0

e−nt(e−αt/2 − 1)dt‖h‖2H

≤ − α

2 + α/n
‖h‖2H, h ∈ B.

Due to conditions (iii), (iv) and (v), we find with ε := α − (2La + L2
b) > 0 and n ∈ N larger than

max{2α, 2α2/ε} that

2〈An(g − h) + a(g)− a(h), g − h〉+ ‖b(g)− b(h)‖2L(V,H)

≤ −2
α

2 + α/n
‖g − h‖2H + (2La + L2

b)‖g − h‖2H

≤ −ε+ (α2/n− ε)
2 + α/n

‖g − h‖2H

≤
− 3

2ε

2 + α/n
‖g − h‖2H

≤ −ε/2‖g − h‖2H
for any g, h ∈ B. Thus, the requirements of [Peszat and Zabczyk, 2007, Theorem 16.5] are met and, hence,
there is a limiting law µ for Z(t) when t → ∞ which does not depend on the initial law of Z. Since
X(t) = δ0(x0 − z0 + Z(t)) = x0 + δ0(Z(t)− z0) we find that X has a limiting law, depending on x0.

For the last part of the statement we may now assume additionally that C = {0}. Then B = H and πB
is the identity. Thus, x0 − z0 = 0 which yields

X(t) = δ0Z(t)→ ν := µδ0 , in law when t→ 0.
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Now, let the law of Z(0) be µ and X := δ0Z. Then Z(t) has the same law as Z(0) for any t ≥ 0, the
law of X(0) is ν, X(0) is the unique solution to the SVIE (3.1) and the law of X(t) is the pushforward law
of Z(t) under δ0 and, hence, this law is ν. Consequently, ν is an invariant law for the SVIE (3.1). 2

Proposition 3.2. Let π0, π1 be orthogonal projections on H with π0 + π1 equal to the identity operator.
We assume that there is La, Lb, β, γ ≥ 0 such that

(i) ‖π0Stg‖H ≤ eγt/2‖π0g‖H,
(ii) ‖π1Stg‖H ≤ e−βt‖π1g‖H,

(iii) 〈π0(a(g)− a(h)), g − h〉 ≤ −β‖π0(g − h)‖2H,
(iv) ‖π1(a(g)− a(h))‖H ≤ La‖g − h‖H,
(v) ‖b(g)− b(h)‖op ≤ Lb‖g − h‖H and

(vi) γ + 2La + L2
b < 2β

for any t ≥ 0 and g, h ∈ H.
Then there is a limiting distribution ν for the solution to the SVIE

X(t) = x0 +

∫ t

0

µ(t− s,X(s))ds+

∫ t

0

σ(t− s,X(s))dL(s),

i.e. X(t)→ ν in law for t→∞ and ν does not depend on the initial value.

Proof. Let Y be the mild solution to the SPDE (2.4), i.e.

Y (t) = x0 +

∫ t

0

St−sa(Y (s))ds+

∫ t

0

St−sb(Y (s))dL(s)

for t ≥ 0. We now like to verify the conditions of [Peszat and Zabczyk, 2007, Theorem 16.5] for Y . To this
end, let An be the n-th Yosida approximation of S. Condition (i) yields together with the Cauchy-Schwarz
inequality and 〈π0h, g〉 = 〈π0h, π0g〉 for every h, g ∈ H that

〈π0Anh, h〉 = n2

∫ ∞
0

e−nt〈π0(Sth− h), h〉dt

= n2

∫ ∞
0

e−nt〈π0(Sth− h), π0h〉dt

≤ n2

∫ ∞
0

e−nt(‖π0Sth‖H‖π0h‖H − ‖π0h‖2Hdt

≤ n2

∫ ∞
0

e−nt(eγt/2 − 1)dt‖π0h‖2H

≤ γ

2− γ/n
‖π0h‖2H, h ∈ H(3.2)

whenever n is such that γ/n < 2. Similarly we obtain from (ii) that

(3.3) 〈π1Anh, h〉 ≤
−β

1− β/n
‖π1h‖2H, h ∈ H

for β/n < 1. Moreover, from (iv) it follows by Cauchy-Schwarz

(3.4) 〈π1a(g)− π1a(h), g − h〉 ≤ ‖π1a(g)− π1a(h)‖H‖g − h‖H ≤ La‖g − h‖2H
Define now ε := (2β − γ − 2La −L2

b)/2 (which is strictly positive by (vi). Using (iii), (v), (3.2), (3.3),
(3.4) and the fact that ‖π1(g − h)‖H ≤ ‖g − h‖H we obtain

2〈An(g − h) + a(g)− a(h), g − h〉+ ‖b(g)− b(h)‖2H
= 2〈π0An(g − h), g − h〉+ 2〈π1An(g − h), g − h〉+ 2〈π0a(g)− π0a(h), g − h〉
+ 2〈π1a(g)− π1a(h), g − h〉+ ‖b(g)− b(h)‖2H

≤ 2γ

2− γ/n
‖π0(g − h)‖2H −

2β

1− β/n
‖π1(g − h)‖2H − 2β‖π0(g − h)‖2H + 2La‖g − h‖2H + L2

b‖g − h‖2H
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≤
(

γ

1− γ/(2n)
− 2β + 2La + L2

b

)
‖g − h‖2H −

2β2

n− β
‖π1(g − h)‖2H

≤
(

γ

1− γ/(2n)
− 2β + 2La + L2

b

)
‖g − h‖2H ≤ −ε‖g − h‖2H

for n large. Thus, [Peszat and Zabczyk, 2007, Theorem 16.5] yields that Y has a limiting law which does
not depend on the initial value and, hence, X(t) = β0Y (t) has a limiting law which does not depend on its
initial value. 2

In the next section we provide more specific conditions for our example spaceH and further analyze the
interplay of Lipschitz conditions and contractivity properties of the semigroup in relation to the constant
functions.

4. AN EXAMPLE OF A FUNCTION SPACE H

We shall now provide a specification ofH that allows us to consider Volterra SDEs in general separable
Hilbert spaces U . Our example is the extension in [Benth and Eyjolfsson, 2017] of the Filipović space
introduced by [Filipović, 2001]. We denote by L1

loc(R+,U) the space of locally Bochner-integrable func-
tions from R+ to U and by AC(R+,U) the space of absolutely-continuous functions from R+ to U , i.e.
f ∈ AC(R+,U) if and only if there is a function g ∈ L1

loc(R+,U) with f(x) − f(y) =
∫ x
y
g(s)ds for

any 0 ≤ y ≤ x. If f ∈ AC(R+,U) is given, then the function g ∈ L1
loc(R+,U) is ds-a.e. unique and we

write f ′ := g for a version. Whenever f ′ has a continuous version we mean by f ′ the unique continuous
version. Following [Benth and Eyjolfsson, 2017] we define the space Hw of U-valued smooth functions.
We assume that w ∈ C1(R+) is a non-decreasing function with w(0) = 1 and such that w−1 ∈ L1(R+).

We define the spaceHw by

Hw = {f ∈ AC(R+,U)|‖f‖w <∞},

where ‖f‖2w := ‖f(0)‖2U +
∫∞

0
w(x)‖f ′(x)‖2U dx. Further define the scalar product

〈f, g〉w = 〈f(0), g(0)〉U +

∫ ∞
0

w(x)〈f ′(x), g′(x)〉U dx

which obviously satisfies ‖f‖2w = 〈f, f〉w.
It is already known that (Hw, ‖·‖w) is a separable Hilbert space ([Benth and Eyjolfsson, 2017, Prop.

3.4.]). Additionally, we know from [Benth and Eyjolfsson, 2017, Lemma 3.8.] that the evaluation map δx
is a bounded linear operator from H to U . This allows us to show that the semigroup (St)t≥0 is strongly
continuous and to identify its generator.

Proposition 4.1. The family (St)t≥0 is a C0-semigroup inHw, the domain Dom(∂x) of its generator ∂x is
densely defined, satisfies

Dom(∂x) = {f ∈ Hw|f ′ ∈ Hw}
and its generator is given by

∂xf = f ′, f ∈ Dom(∂x).

Proof. It was shown in [Benth and Eyjolfsson, 2017, Lemma 3.7.] that (St)t≥0 is strongly continuous.
It then follows (see for example [Engel and Nagel, 1999, Thm 1.4.]) that the generator ∂x of (St)t≥0 is
densely defined. Let f ∈ Dom(∂x). Then ∂xf ∈ Hw and

∂xf(r) = lim
t↘0

Stf(r)− f(r)

t
= lim
t↘0

f(t+ r)− f(t)

r

which is the classical right-derivative. Since f ∈ AC(R+,U), Lebesgue’s differentiation theorem yields
that f ′ is the derivative of f ds-a.e., i.e. there is a set N including {0} of Lebesgue measure zero such that
outside N we find f ′(r) = limt→0

f(t+r)−f(r)
t = ∂xf(r). Thus, f ′ = ∂xf ds-a.e. but ∂xf ∈ AC(R+,U)

and, hence, continuous. Consequently, ∂xf is a continuous version of f ′, so f ′ = ∂xf . This proves that

Dom(∂x) ⊆ {f ∈ Hw|f ′ ∈ Hw}
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and that
∂xf = f ′, f ∈ Dom(∂x).

Now let f ∈ Hw be such that f ′ ∈ Hw. Then, t 7→ Stf ′, t ≥ 0, is continuous and, hence

Γ(r) := f +

∫ r

0

Stf ′dt

defines a C1-function from R+ to U with Γ(0) = f and Γ′(t) = Stf ′. For x ≥ 0 we see that

δx(Γ(r)) = f(x) +

∫ r

0

f ′(t+ x)dt = f(r + x) = δx(Srf)

and, hence, we have Γ(r) = Srf . Consequently, f ∈ Dom(∂x) and

∂xf = Γ′(0) = f ′.

This concludes the proof. 2

It remains to show that (St)t≥0 is quasi-contractive. The proof will make use of the adjoint operator δ∗x
of δx, which we derive in Lemma 4.3. For this we need the following result about the weak derivative of
the scalar product.

Lemma 4.2. Let f ∈ Hw. Then, for every u ∈ U

(4.1) 〈f(x), u〉U = 〈f(0), u〉U +

∫ x

0

〈f ′(t), u〉U dt.

Proof. Using that w−1 ∈ L1(R+), it follows from [Benth and Eyjolfsson, 2017, Prop. 3.5.] that

f(x) = f(0) +

∫ x

0

f ′(t) dt

with f ′ ∈ L1(R,U) and the integral on the right hand side is in the sense of Bochner. This shows that

〈f(x), u〉U = 〈f(0), u〉U + 〈
∫ x

0

f ′(t) dt, u〉U .

But since for every u ∈ U the operator 〈·, u〉 : U → R is bounded and linear, we obtain that

〈
∫ x

0

f ′(t) dt, u〉U =

∫ x

0

〈f ′(t), u〉U dt,

by properties of the Bochner integral. Thus, (4.1) follows. 2

The last lemma allows us to derive the adjoint operator of the evaluation map δx.

Lemma 4.3. The adjoint operator δ∗x : U → Hw of δx, x ∈ R+ is given by

δ∗x(u)(·) = (1 +

∫ ·∧x
0

w−1(s) ds)u

and ‖δ∗x‖2op = ‖δx‖2op = 1 +
∫ x

0
w−1(s) ds ≤ 1 + x.

Proof. Let δ∗x be defined as above. First observe that by the integral representation of δ∗x, it follows that

δ∗x(u)′(t) = w−1(t)1{t≤x} · u.
We need to show that 〈f, δ∗x(u)〉w = 〈δx(f), u〉U . To see this calculate

〈f, δ∗x(u)〉w = 〈f(0), δ∗x(u)(0)〉U +

∫ ∞
0

w(t)〈f ′(t), δ∗x(u)′(t)〉U dt

= 〈f(0), u〉U +

∫ x

0

〈f ′(t), u〉U dt

= 〈f(x), u〉U
= 〈δx(f), u〉U ,
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where we used Lemma 4.2 in the second to the last line. The norm calculates as

‖δ∗x(u)‖2w = 〈u, u〉U +

∫ x

0

w(t)〈w−1(t)u,w−1(t)u〉U dt

= ‖u‖2U + ‖u‖2U
∫ x

0

w−1(t) dt

and since w(t) ≥ 1 it follows that ‖δ∗x(u)‖2w ≤ (1 + x)‖u‖2U . Since ‖A‖op = ‖A∗‖op for any adjoint
operator A∗ of a linear operator A, it follows that ‖δ∗x‖2op = ‖δx‖2op. 2

With the help of the last lemma we can now show that the semigroup (St)t≥0 is quasi contractive.

Proposition 4.4. The semigroup (St)t≥0 satisfies the operator-norm bound

‖St‖op ≤ et/2, t ≥ 0.

In particular, it is quasi-contractive.

Proof. The proof is a straightforward modification of a similar result of [Benth and Krühner, 2019+] in the
case when U = R. We include the proof here for the convenience of the reader.

Fix t ≥ 0 and f ∈ Hw. Define the functions g(x) = f(t ∧ x) and g̃(x) = 1t≤x(f(x) − f(t)). Then
it is easy to see that g, g̃ ∈ Hw are orthogonal and f = g + g̃. Moreover, ‖f‖2w = ‖g‖2w + ‖g̃‖2w. Since
Stg(x) = g(x+ t) = f(t ∧ (x+ t)) = f(t) = g(t), we find

‖Stg‖2w = ‖g(t)‖2U = ‖δtg‖2U ≤ ‖δt‖2op‖g‖2w.

But from Lemma 4.3 it holds that ‖δt‖2op ≤ 1 + t, and hence, ‖Stg‖2w ≤ (1 + t)‖g‖2w. On the other hand,
it follows from the non-decreasing property of w and g̃(t) = 0 that,

‖Stg̃‖2w = ‖(Stg̃)(0)‖2U +

∫ ∞
0

w(x)‖(Stg̃)′(x)‖2U dx

= ‖g̃(t)‖2U +

∫ ∞
0

w(x)‖g̃′(x+ t)‖2U dx

=

∫ ∞
t

w(y − t)‖g̃′(y)‖2U dy

≤
∫ ∞
t

w(y)‖g̃′(y)‖2U dy

≤ ‖g̃‖2w .
The constancy of Stg and Stg̃(0) = g̃(t) = 0 yield orthogonality of Stg and Stg̃:

〈Stg,Stg̃〉w = 〈g(t), g̃(t)〉U +

∫ ∞
0

w(x)〈(Stg)′(x), (Stg̃)′(x)〉U dx = 0 .

We therefore find,

‖Stf‖2w = ‖Stg + Stg̃‖2w = ‖Stg‖2w + ‖Stg̃‖2w ≤ (1 + t)‖g‖2w + ‖g̃‖2w.
But as t ≥ 0, (1 + t)‖g‖2w + ‖g̃‖2w ≤ (1 + t)(‖g‖2w + ‖g̃‖2w) = (1 + t)‖f‖2w, and(1 + t) ≤ exp(t). Hence,
‖Stf‖2w ≤ exp(t)‖f‖2w, and we conclude that ‖St‖op ≤ exp(t/2). 2

4.1. Conditions on the parameter functions µ and σ. Let us now look at sufficient conditions on the
parameter functions µ and σ in the SVIE which ensure Lipschitz continuity and linear growth as required
in Assumption 2.4. We will assume that Assumption 2.3 holds and write Hw(R) when we replace U with
R in the definition ofHw, i.e.Hw(R) is the space of absolutely continuous functions f from R+ to R such
that ∫ ∞

0

(f ′(x))2w(x)dx <∞.

We will have to assume that

x 7→ µ(x, t, u), x 7→ σ(x, t, u)
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is absolutely continuous and that they posses versions of their absolute continuous derivatives µ′ and σ′

(w.r.t. their first variable) which are measurable as functions from R+ × R+ × U to U resp. L(U ,V).

Proposition 4.5. Assume that there are `a, `b ∈ Hw(R) with

‖µ(t, t, 0)‖U ≤ `a(0),

‖µ′(t, s, 0)‖U ≤ `′a(t− s),
‖µ(t, t, u1)− µ(t, t, u2)‖U ≤ `a(0)‖u1 − u2‖U ,
‖µ′(t, s, u1)− µ′(t, s, u2)‖U ≤ `′a(t− s)‖u1 − u2‖U ,

‖σ(t, t, 0)‖op ≤ `b(0),

‖σ′(t, s, 0)‖op ≤ `′b(t− s),
‖σ(t, t, u1)− σ(t, t, u2)‖op ≤ `b‖u1 − u2‖U ,
‖σ′(t, s, u1)− σ′(t, s, u2)‖op ≤ `′b(t− s)‖u1 − u2‖U

for any t, s ≥ 0, u1, u2 ∈ U . Then Assumption 2.4 holds withLa = ‖`a‖2Hw(R)‖δ0‖
2
op, Lb = ‖`b‖2Hw(R)‖δ0‖

2
op,Ka =

‖`a‖2Hw(R) and Kb = ‖`b‖2Hw(R).

Proof. Let t ≥ 0, h1, h2 ∈ Hw. Then we have

‖a(t, h1)− a(t, h2)‖2w

= ‖µ(t, t, δ0h1)− µ(t, t, δ0h2)‖2U +

∫ ∞
0

‖µ′(t+ s, t, δ0h1)− µ′(t+ s, t, δ0h2)‖2U w(s)ds

≤ |`a(0)|2‖δ0‖2op‖h1 − h2‖2w + ‖δ0‖2L(Hw,U)‖h1 − h2‖2w
∫ ∞

0

(`′a(s))2w(s)ds

= ‖`a‖2Hw(R)‖δ0‖
2
op‖h1 − h2‖2w.

Also, we have

‖a(t, 0)‖2w = ‖µ(t, t, 0)‖2U +

∫ ∞
0

‖µ′(t+ s, t, 0)‖2U w(s)ds

≤ ‖`a‖2Hw(R).

With similar arguments for σ and b we conclude that the Lipschitz and linear growth conditions are satis-
fied. 2

In the next section we investigate homogeneous SVIEs and their invariant measures. By homogeneous
we mean that

µ(t, s, u) = µ(t− s, 0, u) =: µ(t− s, u), σ(t, s, u) = σ(t− s, 0, u) =: σ(t− s, u)

for any s, t ≥ 0, u ∈ U . We have the following corollary to Proposition 4.5:

Corollary 4.6. Assume that µ, σ are homogeneous and that there are `a, `b ∈ Hw(R) with

‖µ(0, u1)− µ(0, u2)‖U ≤ `a(0)‖u1 − u2‖U ,
‖µ′(t, u1)− µ′(t, u2)‖U ≤ `′a(t)‖u1 − u2‖U ,
‖σ(0, u1)− σ(0, u2)‖op ≤ `b(0)‖u1 − u2‖U ,
‖σ′(t, u1)− σ′(t, u2)‖op ≤ `′b(t)‖u1 − u2‖U

for any t ≥ 0, u1, u2 ∈ U . Then Assumption 2.4 holds.

4.2. Limiting measure. We are going to discuss two types of conditions corresponding to Proposition 3.1
and Proposition 3.2 in the abstract setting that ensure a limiting measure for the SVIE. Both are written in
terms of the long-term behavior of the coefficients, i.e. on limt→∞(µ(t, ·), σ(t, ·)). They are tailored to our
specific choice of spaceHw from Section 4 and make use of the fact that the elements inHw have a ’value
at infinity’ which will allow us to identify these limits. This idea is adopted from Tehranchi [Tehranchi,
2005]. In order to make this rigorous we need the following
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Lemma 4.7. Let h ∈ Hw. Then h′ ∈ L1(R+,U).

Proof. Cauchy-Schwarz inequality yields(∫ ∞
0

‖h′(x)‖Udx
)2

=

(∫ ∞
0

‖h′(x)‖U
w(x)1/2

w(x)1/2
dx

)2

≤
(∫ ∞

0

‖h′(x)‖2Uw(x)dx

)(∫ ∞
0

w(x)−1dx

)
<∞.

Thus h′ ∈ L1(R+,U). 2

Proposition 4.8. For any h ∈ Hw the limit of h(t) for t→∞ exists, the linear map

δ∞h := lim
t→∞

h(t)

is an element of L(Hw,U) and

‖h‖2w,∞ := ‖h‖2w − ‖h(0)‖2U + ‖δ∞(h)‖2U
defines an equivalent Hilbert-space norm onHw with scalar product

〈h, g〉w,∞ = 〈δ∞h, δ∞g〉U +

∫ ∞
0

〈h′(s), g′(s)〉Uw(s)ds, f, g ∈ Hw.

Moreover, the operator norm of δ0 relative to the ‖ · ‖w,∞-norm is equal to
√

1 +
∫∞

0
1

w(s)ds and the
operator norm of δ0 restricted to

H0
w := {h ∈ Hw : δ∞h = 0}

is given by
√∫∞

0
1

w(s)ds.

Proof. Lemma 4.7 implies that h(t) = h(0) +
∫ t

0
h′(s)ds→ h(0) +

∫∞
0
h′(s)ds = δ∞h for t→∞. δ∞

is the everywhere defined pointwise limit of δt for t → ∞ and, hence, the uniform boundedness principle
yields that δ∞ ∈ L(Hw,U) and in fact Lemma 4.3 yields ‖δ∞‖op = 1 +

∫∞
0

1
w(s)ds. Obviously, ‖ · ‖w,∞

defines a Hilbert-space norm equivalent to ‖ · ‖w with

‖ · ‖2w,∞ ≤ ‖δ∞‖2op‖ · ‖2w, ‖ · ‖2w ≤ ‖δ∞‖2op‖ · ‖2w,∞
where ‖δ∞‖2op denotes the operator norm of δ∞ relative to the the ‖ · ‖w-norm.

Now, we define

φ : U → H, u 7→
(
R 3 x 7→ (1 +

∫ ∞
x

1

w(s)
ds)u

)
.

We have

〈φ(u), f〉w,∞ = 〈u, f(∞)〉U −
∫ ∞

0

〈u, f ′(s)〉Uds = 〈u, f(0)〉 = 〈u, δ0f〉U

for any f ∈ Hw, u ∈ U . Thus, φ = δ∗0 relative to the 〈·, ·〉w,∞-scalar product. The operator-norm of δ0 in
the ‖ · ‖w,∞-norm equals the operator norm of φ which is given by

‖φ‖2op = 1 +

∫ ∞
0

1

w(s)
ds.

For the last part we work on the smaller spaceH0
w and define

ψ : U → H0
w, u 7→

(
R 3 x 7→ (

∫ ∞
x

1

w(s)
ds)u

)
.

We have
〈ψ(u), f〉w,∞ = 〈φ(u), f〉w,∞ = 〈u, δ0f〉U

for any f ∈ H0
w where the first equality follows from the fact that f(∞) = 0. The operator norm of ψ

equals the operator norm of δ0 restricted to H0
w and, hence, we find the claimed formula for its operator

norm. 2
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We will use the notation h(∞) := δ∞h for any h ∈ Hw and the semi-norm ‖h‖20 := ‖h‖2w,∞ −
‖h(∞)‖2U for h ∈ Hw. Since a(h) is assumed to be in Hw we may write µ(∞, u) := a(ū)(∞) where
Hw 3 ū : R+ → U , t 7→ u. Also we write σ(∞, u) := b(ū)(∞) and both are simply the long-term limits,
i.e. µ(∞, u) = limt→∞ µ(t, u) for u ∈ U .

The advantage of the ‖ · ‖w,∞-norm lies in the fact that it orthogonalises the kernel of the generator of
∂x and the spaceH0

w which is S-invariant.

Lemma 4.9. Let C ⊆ Hw be the set of constant functions. Then C is orthogonal toH0
w in the Hilbert space

(Hw, ‖ · ‖w,∞). Moreover, we have

‖St|H0
w
‖op ≤ e−αw/2t

where αw := infx≥0
w′(x)
w(x) ≥ 0 and we have

‖St‖op ≤ 1

where ‖ · ‖op denotes the operator norm onH0
w andHw relative to the ‖ · ‖w,∞-norm respectively.

Proof. Let h ∈ H0
w. We have

‖Sth‖2w,∞ =

∫ ∞
0

‖h′(s+ t)‖2Uw(s)ds

≤ e−αwt

∫ ∞
0

‖h′(s+ t)‖2Uw(s+ t)ds

= e−αwt

∫ ∞
t

‖h′(s)‖2Uw(s)ds

≤ e−αwt‖h‖0
for any t ≥ 0. Moreover, for f ∈ Hw and h := f − f(∞) we find that

‖Stf‖2w,∞ = ‖f(∞)‖2U + ‖Sth‖2w,∞
≤ ‖f(∞)‖2U + e−αwt‖f‖20
≤ ‖f‖2w,∞

for any t ≥ 0. 2

We can now state our main results for the existence of invariant laws for the SVIE (3.1). The first is
about the case when the impact of a push in direction a(h) or b(h) vanishes over time. The second theorem,
Theorem 4.11, covers cases where these impacts do not vanish at infinity.

Theorem 4.10. Let w ∈ C1(R+,R+), assume αw = infx≥0
w′(x)
w(x) > 0 and that there are La, Lb ≥ 0 with

‖a(h1)− a(h2)‖w,∞ ≤ La‖h1 − h2‖w,∞(4.2)

‖b(h1)− b(h2)‖op ≤ Lb‖h1 − h2‖w,∞(4.3)

L2
b + 2La < αw(4.4)

for any h1, h2 ∈ H0
w. We also assume that

µ(∞, u) = 0, σ(∞, u) = 0.

Then there exists a probability measure Γ on U , which depends on the law of X(0), such that PX(t)

converges weakly to Γ as t→∞.

Proof. We apply Proposition 3.1 with C = {h ∈ Hw : ∂xh = 0}. The orthogonal complement of C in
(Hw, ‖ · ‖w,∞) is H0

w. The coefficient a is H0
w-valued and b is L(V,H0

w)-valued due to the assumptions.
Lemma 4.9 yields that ‖St|H0

w
‖op ≤ e−αwt/2 and conditions (iii) to (v) of Proposition 3.1 are met with the

given constants La, Lb. 2
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A common choice of weight function for the Filipović space is w(x) = exp(αx) for some constant
α > 0. Then in Theorem 4.10 we find αw = α > 0. This also demonstrates that the weight function puts
restrictions on the Lipschitz constants, as L2

b/2 + La < α. The bigger we choose α, the more generously
we can choose Lipschitz functions, but on the other hand the stronger assumptions we put on the asymptotic
behaviour towards zero of the derivative of the elements in Hw as x → ∞. Of course, for such choice of
w, we have that w−1(x) = exp(−αx) ∈ L1(R+).

Theorem 4.11. Let w ∈ C1(R+,R+), assume αw = infx≥0
w′(x)
w(x) > 0 and that there are La, Lb > 0 and

that there is β ∈ (0, αw/2] with

‖a(g)− a(h)‖0 ≤ La‖g − h‖w,∞
‖b(g)− b(h)‖op ≤ Lb‖g − h‖w,∞

〈δ∞(a(g)− a(h)), g(∞)− h(∞)〉U ≤ −β‖g(∞)− h(∞)‖2U
for any g, h ∈ Hw with 2La+L2

b < 2β. Then there is a probability measure Γ on U which does not depend
on the law of X(0), such that PX(t) converges weakly to Γ as t→∞.

Proof. We like to apply Proposition 3.2 with the projectors

π0 : Hw → Hw, f 7→ (x 7→ f(∞)),

π1 : Hw → Hw, f 7→ (x 7→ f(x)− f(∞)).

Obviously, π0 + π1 is the identity operator, they are orthogonal projections on (Hw, ‖ · ‖w,∞). As St acts
as the identity on {h ∈ Hw : ∂xh = 0} andH0

w is St invariant we get that

‖π0Stg‖Hw,∞ = ‖π0St(π0g)‖Hw,∞ = ‖π0(g)‖Hw,∞

and (i) of Proposition 3.2 holds with γ = 0 . Moreover

‖π1Stg‖Hw,∞ = ‖π1St(π1g)‖Hw,∞ = ‖St(π1g)‖Hw,∞ ≤ e−β‖π1g‖Hw,∞

for 0 < β ≤ αw/2 by Lemma 4.9 and thus (ii) of Proposition 3.2 holds.
Moreover, we have

〈a(h)− a(g), π0(h− g)〉w,∞ = 〈δ∞(a(h)− a(g)), h(∞)− g(∞)〉U
≤ −β‖g(∞)− h(∞)‖2U = −β‖π0(h− g)‖2w,∞

by assumption and thus (iii) holds. Conditions (iv) and (v) follow directly form the Lipchitz conditions and
the observation that δ∞π1(h) = 0 and (vi) holds by assumption. 2

We remark that while the conditions of Proposition 4.10 and Proposition 4.11 are stated in terms of the
coefficient functions a and b using Proposition 4.5 it is straightforward to derive conditions purely based
on the SVIE coefficients. The formulation here however is more general.

4.3. Examples. In the final part of this section we gather some examples. We start with a simple one,
namely the classical mean-reverting Ornstein-Uhlenbeck process.

Example 4.12. We first consider the Ornstein-Uhlenbeck process on R defined by

(4.5) X(t) = x0 +

∫ t

0

λ(θ −X(s)) ds+

∫ t

0

σ dW (s) ,

where W is a Brownian motion. Here the coefficient functions µ and σ are constant in the first argument
and given by µ(t− s, u) = λ(θ − u) and σ(t− s, u) = σ ∈ R for 0 ≤ s ≤ t, u ∈ R where λ > 0, θ ∈ R
are constants. The corresponding functions onHw(R) are given by

a(h) = (x 7→ λ(θ − δ0h)),

b(h) = (x 7→ σ)

for h ∈ Hw(R). However, due to the specification of a and b one can easily observe that the solution
Y to 2.4 stays in {h ∈ Hw : ∂xh = 0} and one could also define a as a(h) : x 7→ λ(θ − δ∞h). We
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see then that a and b satisfy the inequalities in Theorem 4.11 with La = 0 = Lb and 0 < β ≤ λ where
αw := infx≥0

w′(x)
w(x) > 0 is assumed to exist and to be positive (e.g. w(x) = exp(ρx) for some ρ > 0).

If we had chosen the space H of constant functions in Hw(R) with the trace norm instead, then we
could apply Proposition 3.2 directly. We find that on this space (St)t≥0 is simply the identity and we may
chose γ = 0, π0 equal to the identity, π1 = 0, β = λ, La = 0 = Lb and conditions (i) to (vi) are met.
Condition (vii) of Proposition 3.2 reads as

0 < 2β = 2λ,

i.e. again we find the invariant law for the OU process irrespective of the speed of mean-reversion.

Example 4.13. Our second example uses a generic separable Hilbert space U ,

x0 ∈ U ,

µ(t, u) :=
1

4
e−tu,

σ(t, u) :=
1

4
e−tu,

for t ≥ 0, u ∈ U and a 1-dimensional mean zero and square-integrable Lévy process L with E|L(1)|2 = 1,
i.e. the equation of interest is

X(t) = x0 +

∫ t

0

µ(t− s,X(s))ds+

∫ t

0

σ(t− s,X(s))dL(s)

= x0 +

∫ t

0

1

4
es−tX(s)ds+

∫ t

0

1

4
es−tX(s)dL(s).

We define as usual

a(h) := µ(·, δ0h) =
1

4
e−(·)δ0h,

b(h) := σ(·, δ0h) =
1

4
e−(·)δ0h

which for fixed function h are in the space Hw with w(x) = exp(x). Clearly, a, b satisfy the Lipschitz
and linear growth condition of Theorem 2.5 and hence, the SVIE has a unique adapted càdlàg solution X .
Also, σ(∞, u) = 0 = µ(∞, u) for any u ∈ U and, thus, we have what we may coin as temporary impact.
We find αw = 1 and

‖a(h)− a(g)‖2w,∞ =
1

16
‖δ0(h− g)‖2U

∫ ∞
0

e−2sw(s)ds

=
1

16
‖h− g‖2w,∞‖δ0|H0

w
‖2op

for any f, g ∈ H0
w where we used that according to Proposition 4.8 the operator norm of δ0 onH0

w equals√∫ ∞
0

1

w(s)
ds = 1.

With the choice La := Lb := 1
4 we find that

L2
b + 2La ≤

9

16
< 1 = αw

and, hence, the requirements of Theorem 4.10 are met. Consequently, there is a limiting distribution for X .
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319–337, 1980b.
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