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ABSTRACT. We investigate stochastic Volterra equations and their limiting laws. The stochastic Volterra
equations we consider are driven by a Hilbert space valued Lévy noise and integration kernels may have non-
linear dependence on the current state of the process. Our method is based on an embedding into a Hilbert
space of functions which allows to represent the solution of the Volterra equation as the boundary value of
a solution to a stochastic partial differential equation. We first gather abstract results and give more detailed
conditions in more specific function spaces.

1. INTRODUCTION

Stochastic Volterra integral equations (SVIE) appear for example in population dynamics and spread of
epidemics (see [Gripenberg et al.,|1990]]) and in mathematical finance as stochastic volatility models (see
[Gatheral et al.,|2018]]). The defining characteristic of stochastic Volterra integral equations is that they are
in some way defined based on an integral of the form fot K(t, s)dM (t) with a possibly stochastic integrand
kernel K depending on the integration horizon ¢ and some stochastic process M as integrator. They have
first been systematically analyzed in [Berger and Victor, [1980alb] although specific cases appeared in the
literature before (see references in [Berger and Victor, [1980albl)). The analysis of SVIEs has later been
extended in many directions, for example to allow for a term in the equation that is not adapted [Pardoux
and Protter, (1990, |@ksendal and Zhang, [1993]], for singular kernels and in relation to fractional Brownian
motion [Cochran et al., [1995| (Coutin and Decreusefond, 2001} |Decreusefond, 2002, [Wang}, [2008] and for
equations driven by general semi-martingales [Protter, |[1985]. We also mention [Jaber et al., 2017] for
a treatment of Volterra processes with the state and space dependence of affine form. The recent paper
[Agram et al.l 2018]] deals with optimal stopping of stochastic Volterra integral equations. Stochastic
Volterra integral equations in a random field setting and driven by a Lévy basis have been considered in
[Chong, 2017]] and [Pham and Chong} 2018].

In this paper we demonstrate how existence results for a class of first order stochastic partial differential
equations (SPDE) can be used to derive solutions for stochastic Volterra integral equations of the form (the
precise assumptions will be introduced below)

t

(L.1) X (t) = zo(t) +/O wu(t, s, X(s))ds +/ o(t,s, X(s—))dL(s),

0

with X in a general separable Hilbert space ¢/ and the driving Lévy process L in another Hilbert space
V. Our approach rests on the observation that z — o(s + z, s, X(s—)) can be considered as an element
in a space of functions H mapping from R, the non-negative real numbers, to /. We then consider
an SPDE involving the derivative operator d, in a way such that in the mild solution of this SPDE the
shift operator (which is generated by 0, ) ensures that the boundary at zero is driven by integrands of the
form o (¢, s, X (s—)) and allows to retrieve the SVIE. This way the Volterra equation arises as a boundary
solution to an SPDE with values in H and required properties for o are encoded in the function space H and
properties of the shift semigroup defined on H. In addition to showing existence of solution this method
then allows us to provide results on the existence of invariant measures for the Volterra equations derived
from tailor made abstract results about invariant measures of SPDEs.

The connection between Volterra dynamics and SPDEs defined on some function space is not new in
light of mild solutions of SPDEs on Hilbert space. In [Benth and Eyjolfsson, 2016] a lifting of Lévy
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semistationary processes (see [Barndorff-Nielsen et al., 2018]]) to solutions of SPDEs has been utilized to
develop numerical schemes for Monte Carlo simulations of paths. Furthermore, as shown in a Brownian
setting in [Zhang, [2010], Volterra solutions can be lifted to construct mild solutions for SPDEs.

Contribution and outline: In Section [2| we analyze the above outlined embedding method systemati-
cally and derive abstract results for the conditions on the space H needed in order to retrieve the SVIE as
a boundary solution of the SPDE. To our knowledge this is the first time that the method itself has been
analyzed and treated in this generality. Understanding precisely this connection is not only of interest in
itself but also relevant for applications. For example in energy markets it is natural to model the forward
curve as a solution to a first order stochastic partial differential equation. The electricity spot price is then
given as the boundary solution and solves a SVIE. As mentioned above, for numerical approximation of
an SVIE the SPDE formulation is crucial and it is thus important to know when such formulation exists.
In Section [3] we state conditions that ensure existence of a limiting measure for the SVIE. The question
of existence of a limiting distribution is relevant in particular for applications and has not been considered
for Hilbert space valued SVIE before. In Section[d] we give an example for a possible specification of the
function space H and derive required properties of the shift semigroup and related operators on this space.
With this example at hand the solution to the Stochastic Volterra integral equation follows directly
from recent existence results for SPDEs (see [Tappel 2012] and [Filipovi¢ et al.,|2010]]) and extends pre-
vious existence results for Stochastic Volterra integral equations. Further, with this example at hand we
use the abstract results from Section [3] to provide more specific conditions for the existence of a limiting
measure both, in terms of the SPDE and the SVIE coefficients.

2. AN SPDE REPRESENTATION

Let (2, F, (Fi)i>0, P) be a filtered probability space satisfying the usual conditions. Let ¢/ and V be
separable Hilbert spaces. Let further L be a square integrable Lévy process in V with E[L(¢)] = 0 for
all ¢ > 0 and with characteristic triplet equal to («, Qg, ) in the sense of [Peszat and Zabczykl, 2007,
Definition 4.28]. Here Qq € L] (V) is the covariance operator of a Wiener process, where L (V) is the
class of non-negative trace class operators, v is the Lévy measure of L and « the drift. We refer the reader
to [Peszat and Zabczyk, [2007] for the definition of Hilbert space valued Lévy processes.

We introduce some further notations, for Hilbert spaces X and ) and (e, )ren an orthonormal basis of
X we denote by L(X,)) the bounded linear operators from X’ to ) and by Lo (X, ) the space of Hilbert
Schmidt operators from X to ), i.e.

Ly(X,Y) :={R € L(X,Y) : | Rl|,x,y) < o0},

where || R||1,(x,y) = >_penllRex|3 is the Hilbert-Schmidt norm. We shall further denote by || R||op the
usual operator norm of R € L(X,Y) whenever the involved spaces are clear from the context. We remark
that while we are mainly interested in all involved spaces to be of infinite dimensions all over results also
cover the finite dimensional case.

We are concerned with adapted cadlag solutions to the following SVIE

2.1 X(t) = zo(t) + /U w(t,s, X(s))ds + /0 o(t,s,X(s=))dL(s),

where z is al{-valued Fy-measurable stochastic process, p(t, s,-) : Ud = U and o (t,s,-) : U = La(V,U)
are parameter functions satisfying conditions which we state below.

The solution to the above SVIE will arise as a boundary solution of a process Y that lives in a larger
(function) space H. For this let # be a separable Hilbert space of measurable functions h : Ry — U,
where we use the notation R for the non-negative real numbers. For ¢ > 0 denote by &; : H — U the
evaluation map given by d; : A — h(t). In order to have 0, well defined it is crucial here that each element
h € H is really a function and not an equivalence class of functions which might render the definition of
d; arbitrary. The following Assumption on # will be needed for our main existence result Theorem [2.3]

Assumption 2.1. The function space H is such that

o the evaluation map &y : h — h(0) is a bounded linear operator,
o the set {u €U : u=dof, f € H constant function} is closed in U and
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o the translation operator Sy : h — h(-+1t) fort > 0 is well defined and (Sy);>¢ is a Co-semigroup
in H and we denote its generator by Oy or 0/0y. Furthermore, (St)>0 is quasi-contractive, i.e.

[1St]lop < €,V >0
for some w € R.

We remark that Assumption [2.1]implies continuity for the evaluation maps &, = S;d¢ for any ¢ > 0. We
assume for the rest of this section that Assumption [2.1]holds and we provide an example of a specific space
satisfying the assumption in Section 4}

The name 0, for the generator is motivated by the fact that for a function f in the domain of 0, we have

S f— ) t) — f(t
8zf(t> :516 limﬂ = lim M) t>0
N0 r N0 r
from which we see that 0,, computes the right-derivative.

We also like to remark that the closedness condition for the constant functions in H is satisfied under

any of the following conditions:

(1) All constant functions are contained in H,
(2) 0 is the only constant function contained in H or
(3) U is finite dimensional.

The reason for the closedness assumptions is to allow to embed U into H or, more precisely, into an
enlargement of 7. This can be particularly useful as many classical spaces of functions on R do not
include constant functions who will however be crucial in proving existence of a solution to (2.1I)). In this
case we can use the following Lemma to enrich these spaces.

Lemma 2.2. There is a Hilbert space H which contains H as a closed subspace, which satisfies Assump-
tion and such that there is a continuous linear map © : U — HT with mu(t) = u for any v € U,
t>0.

Proof. Let P be the set of constant functions from Ry to U and || f||» := || f(0)||«s be the push-forward
norm 7 : U — P,u +— (¢t — u). Note that 7 as a mapping to P is a bijective isometry from (U, || - ||u/)
to (P|| - ||») by construction. Let C := P N'H = w(do(P N H)) which is closed in P because 5o (P N H)
is closed in U by assumption. Also, note that C is closed in (H, || - ||3) because it is the set of constant
functions in 7 and the point evaluations (d;);>¢ are continuous and separating. Let 3 be the orthogonal
complement of C in (P|| - ||p) and define

HT =HoB.
We define the norm
Ih+ b3 = Il + b3, h+beHeb.
Then (H T, || - ||4+) is a Hilbert space and H, B are orthogonal complements by construction. For h + b €
‘H & B we have
160 (h + D)1, < 2[A(0)1IZ; + 2[1b(0)1Iz < 2([10]1* + 1[I+ blI3,+

where we used orthogonality for the last inequality. Thus, Jy is a bounded linear operator and its range is I/
which is closed. Since do|p is bounded relative to the || - ||3+-norm we find that its inverse 7 has a closed
graph. The closed graph theorem yields continuity of 7.

Now it remains to see that H T satisfies Assumption We already proved continuity of dg. The set
{u €U :u=1¥yf, f € H* constant function} = U by construction of H+. We now inspect the behaviour
of the shift semigroup (S;);>0. Since the functions b € B are constant we find that S;b = b for all ¢ > 0.
Also, for h + b € H & B we have S;h € ‘H and, hence, it is orthogonal to b = S;b. For this reason we find

I1Se(h+0) 3+ = IS + bll3,+ = Sehll3+ + 1]+ < max{1, [[Sll3, MR+ bl5:-
Thus, (S;):>0 is a quasi-contractive semigroup and we have
Si(h+b)=8h+b—h+b, t\0

and, hence, (S;)¢>¢ is a Cp-semigroup on 1. a
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In order to make sense out of the Volterra Equation (2.1) we need some more assumptions.

Assumption 2.3. The coefficient functions ., o are such that

e for each fixed (t,u) € Ry x U, the functions © — u(t + x,t,u) and x — o(t + x,t,u) are
elements of H and L(V,H) respectively,

o the mappings Ry xU > (t,u) — p(t+-,t,u) € Hand Ry xU > (t,u) — o(t+-,t,u) € L(V, H)
are measurable.

We now define the functionsa : Ry x H — Handb: Ry x H — L(V,H) by
2.2) a(t,h) = p(t + -, t,50h),
(2.3) b(t,h) = o(t+-,t,00h).

Continuity of & and Assumption 2.3|yield that @ : Ry x H — Hand b : Ry x H — L(V,H) are
measurable functions.

Related to the SVIE is the following class of first order SPDEs
(2.4) dY (t) = (0. Y (t) + a(t,Y (¢))) dt + b(t, Y (t)) dL(t),

with Y'(0) being given as an Fy-measurable H-valued random variable.
We shall need some standard Lipschitz and growth conditions.

Assumption 2.4. We say that functions a : Ry x H — H and b : Ry x H — L(V, H) fulfil a Lipschitz
and linear growth condition, if there exist measurable functions L, Ly, K,, K : Ry — R4 which are
bounded on compacts and such that

2.5) la(t, h1) = a(t, ho)lln < La(t)[[h1 — hallx
(2.6) [6(£, h1) = b(t, he)llop < Lo (t)[[h1 — h2|ln
forallt € Ry and all hy, he € H and moreover

2.7) la(t, 090)[l2 < Ka(t)

(2.8) [[6(£,0%)[lop < Ko(t)

forallt € Ry and h € H. By 03y we mean the zero element of H, i.e. the function which is constant zero.

Note that from the above assumption it follows directly by the triangular inequality that ||a(¢, h)|3 <
Lo(t)||h|l% + Ka(t) and ||b(t, h)|lop < Lp(t)||h||2 + Kp(t), which explains the name linear growth
condition. Of course, when looking for solutions for (2.1)) it is more natural to state assumptions on the
functions  and o directly and we will do so for a particular choice of A in Section 4.1}

By [Filipovi€ et al., 2010, Theorem 8.8] under the linear growth and Lipschitz condition, for every H-
valued Fy-measurable square-integrable random variable x( there exists a unique mild solution of (2.4)
given by the integral equation

2.9) Y(t) = S,Y(0) + /0 Si_sa(s, Y (s)) ds + /O Si_ubls,Y (s—)) dL(s)

with Y (0) = x and this solution Y is cadlag and adapted. The first main result of the paper follows now
and shows that the boundary of this solution solves the SVIE in Eq. (2.1).

Theorem 2.5. Suppose that the coefficient functions satisfy Assumption[2.3|and that x is an H-valued Fy-
measurable square-integrable random variable. Let a and b be as defined in 2.2) and 2.3), and assume
that the functions fulfil Assumption Then there is a unique adapted cadlag solution X to the SVIE
(21). Moreover, this solution satisfies

E[ sup [[X(8)[|Z] < oo
t€[0,T]

foranyT > 0 and it is given by X (t) = 00Y (t) where Y is the solution to the SPDE (2.4) with Y (0) = xo.
Proof. Step 1; construction of a solution: First we observe that as Y (0) = zg, Y'(0) is an Fp-measurable

square integrable random variable with values in H from the assumption on xo. We define X (¢) := §pY ()
and apply dg to the representation (2.9). Note that continuous linear operators can always be pushed into
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Bochner integrals and the stochastic integral [Peszat and Zabczyk, 2007, Proposition 3.15(ii), Theorem
8.7(v)]. Hence, we find that

X(t) :50(StY(O))+/O 608t_sa(s,Y(s))ds+/O 00St—sb(s, Y (s—))dL(s)

= zo(t) + /Ol,u(t&X(s))ds + /Ola(t,&X(s—))dL(s)

forany ¢ > 0. Thus, X is a solution to the SVIE 2.I). By [Filipovié et al.|[2010, Theorem 8.8] the solution
Y to the SPDE (2.4) satisfies

(2.10) E[ sup [|Y(8)[3,] < oo
t€[0,T]
for any T' > 0. Hence, we find
E[ sup [|X(t)[lz] < [10]|2,E[ sup Y (£)]7] < oo
t€[0,T] t€[0,7]

for any 7' > 0 which proves that there is a solution with the required integrability condition. According to
[Tappel 2012 Theorem 4.5. (1)] Y has cadlag paths and, hence, X has cadlag paths.

Step 2; uniqueness of solutions: For the remainder of the proof, let X be any adapted cadlag solution
to the SVIE (2.1). We define the stopping times 7 := inf{¢t > 0 : || X(t)|]zy > N} for any N > 0 and
note that 7y — oo for N — oo due to the path property of X. By Lemma [2.2] we may assume that the
embedding 7 : U — H,u — (t — wu) is an everywhere defined continuous linear operator (where we
might possibly have to replace H by a larger space). [Sz.-Nagy and Foiag|, 1970, Theorem 1.8.1] yields
that there is a Hilbert space H which contains # as a closed subspace, its norm restricted to 7 is the norm
of H, and such that there is a Cp-group S defined on # such that

S =Tu(S)|lu, t>0

where I'y; : H — H is the orthogonal projection. We also use the notations 8o = 0oy, a(s,h) =
(s +-,s,00h) and b(s, h) := o (s + -, s,00h) for s > 0, h € H. Note that a, b have values in H. Define

tATN tATN _
ZN(t) = SinrnTo + Sinry / S_sa(s,mX(5))ds + Sinry / S_sb(s,mX(s—))dL(s), t>0
0 0

where the integrals exist because the integrands are bounded. Fix ¢ > 0 and define Ay := {t < 75 }. We
find

tATN
ZNB)1ay = 1aySinryTo + 1aySinry / S_sa(s,mX(s))ds
0
_ tATN o
Ay Sins / S_JB(s, 7X (s—))dL(s)
0
¢ ¢
=1a,Siwo + 1ANSt/ S_sa(s,mX(s))ds + ]‘ANSt/ S_b(s, X (s—))dL(s)
0 0

_ (gx v (s mX (5))ds + / t St_sb@,nX(s—))dL(s)) "

and, hence,
00Zn(t)1ay = X(t)1ay.
Since the value of a, b depend only on the initial value of the inserted function we find that

tINTN B B tINTN
In(E) = Sopmn 0+ Snn / S_sa(s, Zn(5))ds + Sinns / S_Jb(s, Zn(s—))dL(s), t> 0.
0 0

Thus, Z is the Ty-stopped solution of the SPDE 24, ie. Zy(t) =Y (t A7y) forany t > 0 where Y is
the unique #-valued solution of the SPDE (2.4). We find that

E[ sup [|Zn(s)l3] < E[ sup Y (s)[l3] < oo.
0<s<t 0<s<t
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The sequence (Ax)nen is an increasing and exhausting sequence of sets. The monotone convergence
theorem yields

N—oo
E[ sup [ X(s)|3] ¢ E[ sup [|X(s)[i1ay]
0<s<t 0<s<t

< 160/12,E[ sup [|Zn(s)[15;1a,]
0<s<t

< [|160]12,E[ sup [[Y(s)[51ay]
0<s<t

< (16012, E[ sup [[Y(s)]%] < oo.
0<s<t

Thus, we find E[supg< <, [| X (5)[|3,] < oo and
X(t)= lim X(t)lay, = lim 6Zn(t)1ay = lim Y (tATN)Lay = oY (2).
N—o00 N —o0 N—o0

Since X and doY have cadlag paths we find that X = §pY'. o

3. INVARIANT DISTRIBUTIONS

In this section we investigate existence of an invariant distribution for homogeneous SVIEs, i.e. we
consider equations of the following type

G.1) X(t):a:o+/0 u(t—s,X(s))ds+/O ot — 5, X(5—)) dL(s) |

where z( is a square-integrable, Fy-measurable and {/-valued random variable, ;x : Ry x U4/ — U and
o: Ry x U — L(V,U). This implies that ¢ and b do not depend on time, namely a(h) = u(-,doh) and
b(h) = o(-,dph) for any h € H. We will assume for the remainder of this section that our Assumptions
23), are satisfied and that L is a square integrable Lévy process with E[|L(1)|3,] = 1 and zero mean[

We shall focus on abstract results for a generic function space H here. In Section 4] our Theorems [4.10]
and [.TT| provide more specific existence results of limiting laws.

One way to guarantee existence of a limiting measure for the SPDE is to ensure that ||S;|lop, < ™5
for B > 0 large enough (its required magnitude depending on the Lipschitz coefficients of the SPDE).
However, in order to derive the SVIE we need to ensure that 7 contains constant functions. For constant
h € H the shift operator acts as the identity, i.e. S;h = h and thus ||S||op > 1 and the standard conditions
are not fullfilled. We provide two conditions under which one can still ensure existence of a limiting
measure for the SPDE and as a result for the SVIE. The first one captures the case where the coefficients
are orthogonal to the subspace generated by constant functions. In this case the influence of the starting
value persists in the limiting measure as the coefficient functions leave it untouched. The second results
covers a setting where h € H can be split into an orthogonal sum of two subspaces, one on which S;
has nice contraction properties and one on which it is only quasi-contractive but the drift coefficient mean
reverts towards O on that subspace. In this case the limiting measure is independent of the starting value.

Proposition 3.1. Let C C {h € H : O,h = 0} such that its orthogonal complement B is invariant under
the shift semigroup (S;)i>o0. Further we assume that there is &« > 0, L, Ly, > 0 such that
(i) a is B-valued and b is L(V, B)-valued,
(”) ||St|8||op S e—at/?y
(iii) ||a(h1) = a(h2)|ls < Lallh1 — hel2.
(iv) [|b(h1) = b(h2)llop < L|[h1 — ha|l3 and
(v) 2L, + L} < «
for any hy, ho € B. Then for any xo € U there is a limiting distribution v, for the solution to the SVIE

X(t):mo—i—/o u(t—&X(s))ds—i—/o o(t —s,X(s))dL(s),

If R is the RKHS of L, cf. [Peszat and Zabczyk, [2007, Definition 7.2], then R C V and for T € L(V,U) one has
TNy Ry < 1 Tllop-
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i.e. X (t) — vy, inlaw fort — oo.
If C = {0}, then the limiting distribution v does not depend on the distribution of xo and it is an
invariant law for X.

Proof. Let mg : H — B be the orthogonal projection and 2y := mpxo where we identify zy with the
constant function ¢ — xy. Note that 73S; = S;mp for any ¢t > 0 because S;h = h for any h € C and B is
S-invariant. Let Y be the mild solution to the SPDE[2.4] i.e.

Y(t) =0 —I—/O St,sa(Y(s))ds—&—/O Si—sb(Y (s))dL(s)

and by condition (i)

Z(t) :==mY (1) = 2 —|—/0 Si—sa(Y(s))ds +/0 Si—sb(Y (s))dL(s).

We see that Y (t) = Z(t) + xo — 2o for any ¢ > 0 which yields
t

Z(t) = 2o +/O Si—sa(Z(s) + zo — xo)ds +/0 Si—sb(Z(s) + z9 — xo)dL(s).

We now like to verify [Peszat and Zabczykl 2007, Theorem 16.5] for Z on B. First note that [Peszat
and Zabczyk, 2007, Theorem 16.5] does not allow for stochastic coefficients. However, our stochastic
dependency is on JF only and the increments of the driving Lévy process L are Fy-independent. A simple
conditioning argument allows to use Fy-dependent coefficients in [Peszat and Zabczyk, [2007, Theorem
16.5].

Now, let A,, be the n-th Yosida approximation of S on H, i.e.

Aph = n2/ e "(Sh —h)dt, heB
0
and condition (ii) yields that when restricting to 3 we have

(Aph,h)y = n? /OOo e " {((Sth — h), h)dt

< [ S sl — 1) bt
< [ e - varnly
0
«
————||n|3 h e B.
< —grlhle e

Due to conditions (iii), (iv) and (v), we find with € := o — (2L, + Lg) > 0 and n € N larger than
max{2a,2a? /e} that

2(An(g — h) +alg) — a(h), g — h) + [1b(g) — b(A)I|7 (v 30

o
<—2—|lg —hl3 2L L? — h||?
< 25l W+ 2L+ LDl — i
e+ (@fn=9
AT P g—h
e

3

—J€
<—2" |lg—hl|?
_2+a/n||9 1%

< —¢/2llg = k%
for any g, h € B. Thus, the requirements of [Peszat and Zabczykl [2007, Theorem 16.5] are met and, hence,
there is a limiting law u for Z(¢) when ¢ — oo which does not depend on the initial law of Z. Since
X(t) = o(xo — 20 + Z(t)) = xo + do(Z(t) — 20) we find that X has a limiting law, depending on xo.
For the last part of the statement we may now assume additionally that C = {0}. Then B = H and 75
is the identity. Thus, zg — 29 = 0 which yields

X(t)=060Z(t) > v:= u‘;“, in law when ¢t — 0.
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Now, let the law of Z(0) be p and X := §pZ. Then Z(t) has the same law as Z(0) for any ¢ > 0, the
law of X (0) is v, X (0) is the unique solution to the SVIE (3.1)) and the law of X (¢) is the pushforward law
of Z(t) under &y and, hence, this law is v. Consequently, v is an invariant law for the SVIE @ O

Proposition 3.2. Let 7y, w1 be orthogonal projections on H with wy + 71 equal to the identity operator.
We assume that there is L, Ly, 8,7~ > 0 such that

(i) |moSiglla < €/?||moglla

(ii) |1 Siglln < e P|miglla,

(iii) (mo(a(g) — a(h)),g —h) < =Bllmo(g — h)|I3,

(iv) ||lmi(a(g) — a(h))lln < Lallg = hll2

) [16(g) = b(h)|lop < Lollg — hllw and

(vi) v+ 2L, + L} <2
foranyt > 0and g,h € H.

Then there is a limiting distribution v for the solution to the SVIE

t t
X(t) = 20+ / ult— 5, X(5))ds + / ot — 5, X(5))dL(s),
0 0
i.e. X(t) = vinlaw for t — oo and v does not depend on the initial value.

Proof. Let Y be the mild solution to the SPDE (2.4), i.e.

V(1) = 20 + /O Si_sa(Y (s))ds + /O Se_ob(Y (5))dL(s)

for t > 0. We now like to verify the conditions of [Peszat and Zabczyk, 2007, Theorem 16.5] for Y. To this
end, let A,, be the n-th Yosida approximation of S. Condition (i) yields together with the Cauchy-Schwarz
inequality and (moh, g) = (moh, mog) for every h, g € H that

(moAnh,h) = n2/ e "m0 (Seh — h), h)dt
= / ’/TO Sth h) 7T0h>d
< / " (moSchllaell ol — [[mohllZdt

B / “ (72— 1)dt||mohl|3,

(3.2) < moh|ly, heH
5= Imohl
whenever n is such that v/n < 2. Similarly we obtain from (ii) that
—p 2

. Anh,h) < —F ;
(3.3) (m1 Aph, h) 1= 5/n||7r1h||ﬂ heH
for 8/n < 1. Moreover, from (iv) it follows by Cauchy-Schwarz
(3.4) (ma(g) —ma(h), g —h) < ||malg) = ma(h)||ullg = hllw < Lallg — R3,

Define now € := (23 — v — 2L, — L) /2 (which is strictly positive by (vi). Using (iii), (v), , ,
(3.4) and the fact that ||71 (g — h)||% < ||g — h|| we obtain
2(A, (9 — h) + a(g) — a(h), g — h) + [[b(g) — b(h) |5,

=2(moAn(9 —h), g — h) + 2(m1An(g — ), g — h) + 2(moa(g) — moa(h),g — h)

+2(ma(g) — ma(h),g — h) + [[b(g) — b(h)|%

2y 20
Sg— T Imo(g — )3, — m\lm(g — h)I3; = 2B|mo(g — h)ll3; + 2Lallg — RlIF, + Lillg — hll3,
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Y 2 2 252 2
<|l—FF -2 2L L — — —
—(1_7/(%) B+2La + b) llg = hll% n—BHm(g P15

Y 2 2 2
< —25+2LG+L> g—hl3 < —€lg—h

(2o ) lla = hll3 < —ellg — kil

for n large. Thus, [Peszat and Zabczyk, 2007, Theorem 16.5] yields that Y has a limiting law which does
not depend on the initial value and, hence, X (t) = 8yY (¢) has a limiting law which does not depend on its
initial value. O

In the next section we provide more specific conditions for our example space H and further analyze the
interplay of Lipschitz conditions and contractivity properties of the semigroup in relation to the constant
functions.

4. AN EXAMPLE OF A FUNCTION SPACE H

We shall now provide a specification of H that allows us to consider Volterra SDEs in general separable
Hilbert spaces ¢/. Our example is the extension in [Benth and Eyjolfsson, [2017] of the Filipovi¢ space
introduced by [Filipovic, 2001]. We denote by L}, (R ,U) the space of locally Bochner-integrable func-
tions from R to U and by AC(R,U) the space of absolutely-continuous functions from R to U, i.e.
[ € AC(R4,U) if and only if there is a function g € L, (Ry,U) with f(z) — f(y) = f; g(s)ds for
any 0 <y < x. If f € AC(Ry,U) is given, then the function g € L}, (R, U) is ds-a.e. unique and we
write f’ := g for a version. Whenever f’ has a continuous version we mean by f’ the unique continuous
version. Following [Benth and Eyjolfsson, [2017] we define the space H,, of /-valued smooth functions.
We assume that w € C*(R_.) is a non-decreasing function with w(0) = 1 and such that w=! € L' (R ).

We define the space H,, by
Hy ={f € ACRy, U)|[|f|lw < o0},
where || f]|2, == || f(0)[1Z + J5° w(@)||f'(2)|| dw. Further define the scalar product

(F 9w = ((0), g(0))us + /0 " w(@)(f (@), () de

which obviously satisfies || |2, = (f, f)w-

It is already known that (., ||-||) is a separable Hilbert space ([Benth and Eyjolfsson|, 2017, Prop.
3.4.]). Additionally, we know from [Benth and Eyjolfsson} 2017, Lemma 3.8.] that the evaluation map J,
is a bounded linear operator from H to /. This allows us to show that the semigroup (S;):>0 is strongly
continuous and to identify its generator.

Proposition 4.1. The family (S;)i>0 is a Co-semigroup in H.,,, the domain Dom(0,,) of its generator Oy, is
densely defined, satisfies

Dom(0;) = {f € Hulf' € Huw}
and its generator is given by

8”cf = fla f € Dom(ar)

Proof. Tt was shown in [Benth and Eyjolfsson, 2017, Lemma 3.7.] that (S;):> is strongly continuous.
It then follows (see for example [Engel and Nagel, {1999, Thm 1.4.]) that the generator 9, of (S;)¢>0 is
densely defined. Let f € Dom(0,). Then 9, f € H,, and

o) — iy SO = F0) e+ ()
* NG t NG r

which is the classical right-derivative. Since f € AC(R,,U), Lebesgue’s differentiation theorem yields
that f’ is the derivative of f ds-a.e., i.e. there is a set NV including {0} of Lebesgue measure zero such that

outside N we find f'(r) = lim;,o L= — 9 f(r). Thus, f' = 0, f ds-a.e. but 9, f € AC(R,U)
and, hence, continuous. Consequently, d,. f is a continuous version of f’, so f’ = 9, f. This proves that

Dom(ay) g {f € Hw|f/ S Hw}
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and that
arf = f/7 f S DOIII((?T)
Now let f € H,, be such that f' € H,,. Then, t — S; f’, t > 0, is continuous and, hence

r) = f—i—/rStf’dt
defines a C'*-function from R to ¢ with '(0) = f and I''(¢) = S, f’. For z > 0 we see that
5 (0() / £/t + )it = £+ ) = 6,(5.f)
and, hence, we have I'(r) = S,.f. Consequently, f € Dom(d,) and

O f=T"(0)=f".

This concludes the proof. O

It remains to show that (S;);>0 is quasi-contractive. The proof will make use of the adjoint operator §
of §,, which we derive in Lemma For this we need the following result about the weak derivative of
the scalar product.

Lemma 4.2. Let f € H,,. Then, for everyu € U
@ (@)= O+ [ (O
Proof. Using that w—! € L'(R, ), it follows from [Benth and Eyjolfsson, 2017, Prop. 3.5.] that
fa) =1+ [ Fod
with f/ € L'(R,U) and the integral on the right hand side is in the sense of Bochner. This shows that
(P = (7O + ([ £O a0
But since for every u € U the operator (-, u) : i — R is bounded and linear, we obtain that

/ f(t dtuu—/ (f'(t), wu dt,

by properties of the Bochner integral. Thus, (@.T)) follows. |

The last lemma allows us to derive the adjoint operator of the evaluation map 4.

Lemma 4.3. The adjoint operator 6% : U — H,, of 6, v € Ry is given by

‘Nz
SO =0+ [ i) ds)u
0
and ||<5;§||(2)lD = ||6I||2 1+ fo (s)ds <1+ .
Proof. Let §; be defined as above. First observe that by the integral representation of 4, it follows that

6x(u) (t) = w () 1<y - u.
We need to show that (f, §%(u)). = (02 (f), u)z. To see this calculate

(82 (1)) = (F(0), 8%(u)(0))ue + / T (1), 5 ) () dt
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where we used Lemma[4.2]in the second to the last line. The norm calculates as

o2l = e+ [ () (= (s w (B dit

= [lul + lul? / w (1) dt

and since w(t) > 1 it follows that |63 ()|, < (1 + x)||ul|. Since ||Allop = [|A*|lop for any adjoint
2

operator A* of a linear operator A, it follows that ||55]12, = [|6.[|2,. a

With the help of the last lemma we can now show that the semigroup (S;):>0 is quasi contractive.
Proposition 4.4. The semigroup (S;).>o satisfies the operator-norm bound
ISllop < €2, ¢ >0.
In particular, it is quasi-contractive.

Proof. The proof is a straightforward modification of a similar result of [Benth and Kriihner, 2019+ in the
case when &/ = R. We include the proof here for the convenience of the reader.

Fix t > 0 and f € H,,. Define the functions g(x) = f(¢t A z) and g(z) = 1;<,(f(z) — f(t)). Then
it is easy to see that g,§ € H,, are orthogonal and f = g + g. Moreover, ||f||2 = |lgl|? + ||g]%. Since
Sig(x) = gla+) = F(LA (@ +1) = f(t) = g(¢), we find

ISeallz = gz = Ideallze < N6ellp g1l

But from Lemmait holds that ||0 |2, < 1 +t, and hence, [|S;g||2, < (1 +t)]|gl|Z,. On the other hand,

it follows from the non-decreasing property of w and g(¢) = 0 that,

oo

183112 = [(S@) O + / w(@)|(8F) ()13 da
— 503 + / T w(@)[§ @ + 1) da
- / w(y — )17 )13 dy
< / " w7 W) dy

< Ilgll% -

The constancy of S;g and S;g(0) = g(¢) = 0 yield orthogonality of S;g and S.g:

(St9: Stg)w = (9(1), 9(t))u + / w(z)((Stg) (x), (S:9) (x)u dx = 0.
0
‘We therefore find,
I1Se 112 = (1S9 + Stglls, = [Segllz, + 1S:all7, < (L+0)llgllz, + gl

Butast >0, (14t)gll?, + Ig]17, < (L +0)([lgll2, + 191I%) = (L+ )| fII?,, and(1 +¢) < exp(t). Hence,
IS f 112, < exp(t)]| f]|2,, and we conclude that ||S||op < exp(t/2). a

4.1. Conditions on the parameter functions ;. and 0. Let us now look at sufficient conditions on the
parameter functions p and o in the SVIE which ensure Lipschitz continuity and linear growth as required
in Assumption[2.4] We will assume that Assumption [2.3|holds and write H,,(R) when we replace U with
R in the definition of H,,, i.e. H,, (R) is the space of absolutely continuous functions f from R, to R such
that

/ (f'(x)?w(z)dz < co.
0
We will have to assume that

z p(z,t,u), zw— o(z,t,u)
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is absolutely continuous and that they posses versions of their absolute continuous derivatives p’ and o’
(w.r.t. their first variable) which are measurable as functions from R} x Ry x U to U resp. L(U, V).

Proposition 4.5. Assume that there are £, 0, € H.,(R) with
l4(t,2,0)lr < £a(0),
1/ (, 5,0) [l < La(t = s),
[ty un) = b, ug) e < €a(0)[lur — waller,
/(8 s, u1) = ' (¢, 8, u2) o < G (E = ) [[ur — uzllu,
llo(t,2,0)llop < €6(0),
||Ul(t7 570)“01) < E;)(t - 5)7
”U(t’t’ul) - J(tﬂtaUQ)HOP < gb”ul - UQHZ/h
lo” (2, 5,u1) — 0" (t, 5, u2) lop < £y (t — 5)lur — uzlu
foranyt,s > 0, u1,us € U. ThenAssumptionholdswithL 1€a ||H1A)(R)||5O||Op, ||€b||Hw R)HéoHop,K =
HEaH?{w(R) and Ky = HEbH%w(R)
Proof. Lett >0, hy,ho € H,,. Then we have
la(t, 1) = alt, ho) |7,

o
= ||u(t,t, 6oh1) — p(t,t, doha)| +/ | (t + s, t,60h1) — p/'(t + s, ¢, 50h2)Hi[ w(s)ds
0

< [€a(0) 10l 1hy = ha %, + 180l Z (3¢, 211 = hzlli,/0 (€4 (3))*w(s)ds

= [[all3s, @00l 171 — hall2,.
Also, we have

o 2
la(t, 0)[2 = [t 0%, + / 1+ 5,8, 0)[12, w(s)ds

< all3., &)

With similar arguments for ¢ and b we conclude that the Lipschitz and linear growth conditions are satis-
fied. ]

In the next section we investigate homogeneous SVIEs and their invariant measures. By homogeneous
we mean that

w(t, s,u) = pu(t —s,0,u) = u(t—s,u), oft,s,u) =c(t—s,0,u)=:0(t—s,u)
for any s,¢ > 0, u € U. We have the following corollary to Proposition 4.3}
Corollary 4.6. Assume that i, o are homogeneous and that there are £, 0y € H.,(R) with
(1100, u1) = p1(0, u2)[lr < €a(0)[ur — uzlfu,
[l (t,ur) = p/ (t, u2)lle < 4o (1)
100, u1) — 0(0, uz)llop < £4(0)
lo” (8, u1) = o' (, u2) llop < €3 (8) lur — vzl
forany t >0, uy,uy € U. Then Assumption[2.4] holds.

lur — uzlu,

|ur — uzlfur,

4.2. Limiting measure. We are going to discuss two types of conditions corresponding to Proposition[3.1]
and Proposition [3.2)in the abstract setting that ensure a limiting measure for the SVIE. Both are written in
terms of the long-term behavior of the coefficients, i.e. on lim;_, o (uu(t, -), o (¢, )). They are tailored to our
specific choice of space H,, from Section ff]and make use of the fact that the elements in #,, have a "value
at infinity’ which will allow us to identify these limits. This idea is adopted from Tehranchi [Tehranchil
2005]. In order to make this rigorous we need the following
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Lemma 4.7. Let h € H,,. Then h' € L'(R4,U).

Proof. Cauchy-Schwarz inequality yields

“wea) = ([T )
0 0
< ([ W@ uar) ([ o) <.

Thus i/ € LY (R, U). 0

Proposition 4.8. For any h € H.,, the limit of h(t) for t — oo exists, the linear map
Oooh := tliglc h(t)
is an element of L(H.,,U) and
A1 0 = 17113 = 1R(O)IZ + lldoe (R)1IZ:

defines an equivalent Hilbert-space norm on H., with scalar product

(hs Ghuwse = (Bohs B} + / T (), g (New(s)ds,  fog € Hu

Moreover, the operator norm of &y relative to the || - ||w,oc-norm is equal to /1 + [ ﬁds and the

operator norm of §g restricted to

is given by \/ [, w%s ds.

Proof. Lemmaimplies that h(t) = h(0) + fo W (s)ds — h(0) + [;° W (s)ds = dch for t — c0. ds
is the everywhere defined pointwise 11m1t of & for t — oo and, hence, the uniform boundedness principle
yields that do, € L(H,,,U) and in fact Lemmaylelds [6c0llop = 1+ f3~ =& yds. Obviously, I lw,o0

defines a Hilbert-space norm equivalent to || - ||, with

I 100 < N8oollEpll - s 1+ 1% < 0ssllapll - 113 0

where ||0o ||Z,, denotes the operator norm of d relative to the the || - |,-norm.

Now, we define
1
—d .
™)

<¢(u)’ f>w,oo = <U, f(oo)>lxl - /Ooo<u’ f/(8)>z,{d5 = <u’ f(0)> = <U,(50f>1,{

forany f € H,, u € U. Thus, ¢ = §§ relative to the (-, -),, oo-scalar product. The operator-norm of dg in
the || - ||w,00o-norm equals the operator norm of ¢ which is given by

> 1
o)) :1+/ ——ds.
ll5p . w(s)

For the last part we work on the smaller space 7!, and define

w:Z/{—>’H2],u»—>(RSxH(/mwgs)dsﬁO.

(P(u), [w,co = (A1), flw,co = (u, 00 f)u
for any f € HO where the first equality follows from the fact that f(oc) = 0. The operator norm of 1)
equals the operator norm of J, restricted to 7—[81 and, hence, we find the claimed formula for its operator
norm. o

HO = {h € Hy : 6osh = 0}

W(

oo

¢:U—>H,u»—>(R9xn—>(l+/
We have

‘We have
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We will use the notation h(co) := d.oh for any h € H,, and the semi-norm [|A[|§ := [|h]12, . —
|h(c0)||7, for h € H,,. Since a(h) is assumed to be in H,, we may write (0o, u) := a(u)(oo) where
Hw D0 : Ry — U, t — u. Also we write o (oo, u) := b(u)(c0) and both are simply the long-term limits,
ie. p(oo,u) = limy_y oo pu(t, u) for u € U.

The advantage of the || - ||,,00o-norm lies in the fact that it orthogonalises the kernel of the generator of
0, and the space ’HS} which is S-invariant.

Lemma 4.9. Let C C H,, be the set of constant functions. Then C is orthogonal to HY, in the Hilbert space
(Huw, || - lw,00)- Moreover, we have

IS¢ llop < €=/
where o, :=inf;>¢ % > 0 and we have
ISillop < 1
where || - ||op denotes the operator norm on HY, and H., relative to the || - ||, 0o-norm respectively.

Proof. Let h € HY. We have

||Sth||721),oo

o0
|G+ olfusds
0
<t [ s+ 0l uls + ds
0

= et [ ) (o)
< e_a“’tH’”tLllo
for any ¢ > 0. Moreover, for f € H,, and h := f — f(c0) we find that
IS f 11300 = 11 (2017 + ISkl 00
< [1F(00)IZ + e~ "I £II3
< 1%

forany ¢ > 0. O

We can now state our main results for the existence of invariant laws for the SVIE (3.I). The first is
about the case when the impact of a push in direction a(h) or b(h) vanishes over time. The second theorem,
Theorem [.11] covers cases where these impacts do not vanish at infinity.

w'(x)
w(x)

Theorem 4.10. Let w € C' (R4, R.), assume o, = inf,>0 > 0 and that there are L, L, > 0 with

(42) la(h1) — a(h2)||w,co < Lallh1 — h2llw,c
(4.3) [6(h1) = b(h2)llop < Lp|lh1 — h2|lw,co
4.4) L2 1 2L, < ay

forany hy, hy € 7—[2,. We also assume that
p(oo,u) =0, o(oco,u) =0.

Then there exists a probability measure T' on U, which depends on the law of X(0), such that PX ®)
converges weakly to I" as t — oo.

Proof. We apply Proposition with C = {h € Hy : Ozh = 0}. The orthogonal complement of C in
(Havs || * lw,00) is HY . The coefficient a is HY -valued and b is L(V, HY )-valued due to the assumptions.
Lemmayields that ||St| 30 [lop < e~wt/2 and conditions (iii) to (v) of Propositionmare met with the
given constants L, L. O
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A common choice of weight function for the Filipovi¢ space is w(z) = exp(ax) for some constant

a > 0. Then in Theorem {.10| we find ., = o > 0. This also demonstrates that the weight function puts
restrictions on the Lipschitz constants, as L? /2 + L, < «. The bigger we choose «, the more generously
we can choose Lipschitz functions, but on the other hand the stronger assumptions we put on the asymptotic
behaviour towards zero of the derivative of the elements in H,, as © — oco. Of course, for such choice of
w, we have that w™!(z) = exp(—az) € L*(Ry).
Theorem 4.11. Let w € C1(Ry,Ry), assume cv, = inf,> % > 0 and that there are L, Ly, > 0 and
that there is 8 € (0, vy, /2] with

la(g) — a(h)llo < Lallg = Allw,c0

16(9) = b(A)llop < Lollg = Polluw,c0

(0o (a(g) — a(h)), g(00) — h(00))u < —Bllg(00) — h(o0)]z;

forany g, h € Hy, with2L,+ L3 < 2. Then there is a probability measure I on U which does not depend
on the law of X (0), such that PX®) converges weakly to T as t — oc.

Proof. We like to apply Proposition [3.2] with the projectors
o :Hw _>Hwaf'_> (.Tl—)f(OO)),
™ Ho = Hu, [ (2= f(z) = f(00)).

Obviously, o 4 1 is the identity operator, they are orthogonal projections on (H,,, || - |
as the identity on {h € H,, : 9,h = 0} and H? is S; invariant we get that

w,00)- As S acts

17089l .0 = 1T0Se(M09) 1300 = [T0(9) |70,
and (i) of Proposition [3.2]holds with v = 0 . Moreover

1m18:9030 o = 1T1S(T19) 1340y 0 = St (M19) 13400 oo < € PlIT19 100
for 0 < 8 < a,,/2 by Lemma.9]and thus (ii) of Proposition 3.2]holds.
Moreover, we have
(a(h) = a(g), mo(h — 9))w,c0 = (9sc(a(h) — a(g)), h(c0) — g(c0))us
< —Bllg(oc) = h(o0)ll7; = =Blmo(h — g7 o0

by assumption and thus (iii) holds. Conditions (iv) and (v) follow directly form the Lipchitz conditions and
the observation that 71 (h) = 0 and (vi) holds by assumption. m

We remark that while the conditions of Proposition and Proposition are stated in terms of the
coefficient functions a and b using Proposition [4.3] it is straightforward to derive conditions purely based
on the SVIE coefficients. The formulation here however is more general.

4.3. Examples. In the final part of this section we gather some examples. We start with a simple one,
namely the classical mean-reverting Ornstein-Uhlenbeck process.

Example 4.12. We first consider the Ornstein-Uhlenbeck process on R defined by

(4.5) X(t) = w0 +/O A — X(s))ds—i—/o o dW(s),

where W is a Brownian motion. Here the coefficient functions x4 and o are constant in the first argument
and given by u(t — s,u) = A0 —u)and o(t — s,u) =0 € Rfor0 < s <t,u € Rwhere A\ > 0,0 € R
are constants. The corresponding functions on ,,(R) are given by

a(h) = (z = A0 = doh)),

b(h) = (z — o)
for h € H,(R). However, due to the specification of a and b one can easily observe that the solution
Y to 2.4 stays in {h € H,, : d,h = 0} and one could also define a as a(h) : © +— A(0 — d0h). We
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see then that a and b satisfy the inequalities in Theorem with L, = 0 = Ly and 0 < 8 < A where
Q1= Infy> Z,((Z)) > 0 is assumed to exist and to be positive (e.g. w(z) = exp(px) for some p > 0).

If we had chosen the space H of constant functions in H,,(R) with the trace norm instead, then we
could apply Propositiondirectly. We find that on this space (S;):>¢ is simply the identity and we may
chose v = 0, my equal to the identity, m; = 0, § = A, L, = 0 = L; and conditions (i) to (vi) are met.
Condition (vii) of Proposition [3.2]reads as

0 <28 =2\,
i.e. again we find the invariant law for the OU process irrespective of the speed of mean-reversion.
Example 4.13. Our second example uses a generic separable Hilbert space U,
To €U,
1
t = -
pltyu) = g,

o(t,u) = 26 W

fort > 0, u € U and a 1-dimensional mean zero and square-integrable Lévy process L with E|L(1)|? = 1,
i.e. the equation of interest is

t t
X(t)=xo + / wu(t —s,X(s))ds + / o(t—s,X(s))dL(s)
0 0
‘1 "1
=z +/ fesftX(s)der/ —e* ' X (s)dL(s).
o 4 0 4
We define as usual
1
a(h) == p(-,dph) = Ze’(')éoh,
LIO)
b(h) = J(', (5()h) = 16 50h
which for fixed function h are in the space H,, with w(xz) = exp(z). Clearly, a, b satisfy the Lipschitz
and linear growth condition of Theorem 2.5|and hence, the SVIE has a unique adapted cadlag solution X.

Also, o(00,u) = 0 = (oo, u) for any u € U and, thus, we have what we may coin as temporary impact.
We find o, = 1 and

1 <.
lla(h) = a(g)Il% 00 = 75190 (R — g)llff/O e w(s)ds

1
S lh = 9113 ccllBolg I,

for any f,g € HC where we used that according to Proposition the operator norm of 5, on H% equals

With the choice L, := Ly, := 1 we find that

9
L} 420, < — <1l=aqy,
b+ _16< o

and, hence, the requirements of Theorem[4.10]are met. Consequently, there is a limiting distribution for X.
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