
UNIVERSITY OF OSLO
Department of Informatics

User-defined Code
generation from
UML 2.0

Master thesis

Asbjørn Willersrud

22nd May 2006

 2

Acknowledgments
This thesis is submitted to the Department of Informatics at the University of Oslo as part
of my Master degree.

I would like to thank my supervisor, Øystein Haugen, for his valuable advice and
feedback, and for continuously guiding me in the right direction.

I would also like to thank my family and friends for the support they have given me
throughout this challenging period.

 3

Table of Contents
1 Introduction... 6

1.1 Thesis structure ... 6

2 Technologies .. 8
2.1 Model technologies and standards .. 8

2.1.1 Model Driven Architecture (MDA).. 8
2.1.2 Meta-Object Facility (MOF)... 8
2.1.3 Eclipse Modeling Framework (EMF)... 9
2.1.4 The Unified Modeling Language (UML) ... 10

2.2 Transformation technologies and standards.. 11
2.2.1 Properties of transformations.. 11
2.2.2 QVT .. 12
2.2.3 ATL... 14
2.2.4 IBM Model transformation framework (MTF)... 14
2.2.5 Rational Software Modeler transformation framework............................ 15
2.2.6 MOFScript .. 15
2.2.7 Java Emitter Templates... 15

3 JavaFrame ... 17
3.1 StateMachines... 17
3.2 Composites.. 20
3.3 Mediators .. 22
3.4 Messages... 22

4 Modularizing transformations... 23
4.1 Rules as modules... 23
4.2 Transformations as modules and intermediate meta-models............................ 24

5 Case: UML2JavaFrame ... 27
5.1 Intermediate meta-model choice... 27

5.1.1 A subset of the UML meta-model .. 27
5.1.2 Java meta-model ... 30
5.1.3 JavaFrame meta-model ... 30

5.2 Transformation architecture and technology .. 31
5.2.1 Transformation architecture.. 31
5.2.2 Transformation technology choice ... 32

5.3 Advanced meta-model concepts ... 33
5.3.1 Read-only.. 34
5.3.2 Derived.. 34
5.3.3 Subsets .. 34
5.3.4 Derived union.. 34
5.3.5 Redefines... 34
5.3.6 Ecore profile.. 35

 4

5.3.7 Eclipse vs. RSM.. 35
5.4 JfJava intermediate meta-model ... 35

5.4.1 Java meta-model ... 36
5.4.2 JavaFrame meta-model extension... 38
5.4.3 JfJava Transformations ... 41
5.4.4 Generating meta-models from BNF.. 42

5.5 JfUml intermediate meta-model ... 45
5.5.1 Transformations .. 47

5.6 Comparing the JfUml to JfJava approaches.. 49

6 Customizing the generated code.. 50
6.1 User roles .. 50
6.2 Classification of changes .. 50

6.2.1 Supporting more of UML ... 50
6.2.2 Supporting extensions to UML... 51
6.2.3 Model checking... 51
6.2.4 Quality of Service (QoS) change .. 51
6.2.5 Platform change .. 51
6.2.6 Different semantic variation point implementation 51

6.3 Examples... 52
6.3.1 Generating Tests for JavaFrame models... 52
6.3.2 Generating C# code... 52
6.3.3 Adding memory optimization to signals... 53
6.3.4 Reusing the core.. 54

6.4 Maintenance.. 55

7 Summary and conclusions.. 56
7.1 Future work... 56

8 References.. 57

Appendix A - JfUml Transformations .. 59

Appendix B - JfJava Transformations.. 79

 5

List of Figures
Figure 1 3-level meta-model architecture ... 9
Figure 2 JavaFrame concepts.. 17
Figure 3 Tree view of PtnStateMachine from RSM model explorer................................ 18
Figure 4 The region of PtnStateMachine.. 19
Figure 5 Internal structure of an example Composite... 21
Figure 6 UML2Java composite transformation .. 25
Figure 7 Transformation architecture with extended intermediate meta-model............... 32
Figure 8 The JfJava meta-model composed of two parts ... 36
Figure 9 Java meta-model kernel.. 37
Figure 10 CompilationUnit, Class and related elements .. 38
Figure 11 The structure of the JavaFrame extension to the Java meta-model.................. 39
Figure 12 The CompositeStateClass element and its contents representing a UML region
... 40
Figure 13 JfJava transformation architecture.. 41
Figure 14 A simplified model showing the process of creating a meta-model from BNF43
Figure 15 Meta-model produces from BNF.. 44
Figure 16 JfUml adaptations of UML 2.0 elements ... 46
Figure 17 A JavaFrame meta-model that extends classes from the UML meta-model.... 46
Figure 18 CompositeStateClass and related elements .. 47
Figure 19 Transformations using a JavaFrame intermediate meta-model that extends the
UML meta-model.. 48
Figure 20 JfUml transformation architecture extended with support for UML Testing
Profile.. 52
Figure 21 C#Frame Transformations.. 53
Figure 22 QoS Signal memory optimization .. 53
Figure 23 GWT extension, reusing the core transformation layer.................................... 55

 6

1 Introduction
Traditionally compilers for programming languages have been written to generate a
specific set of code. The Unified Modeling Language is different in that it does not
specify complete semantics for all its concepts. UML is designed to be able to specify
software system in a wide variety of domains. The generated code for the different
domains will inevitably be different. For example there is a very different set of demands
for a real-time system as opposed to a bookkeeping system. This was of course true
before UML, but programming languages are at a lower level of abstraction and the set of
choices made to implement the concepts of a programming language does not change
much from domain to domain. UML on the other hand has a higher level of abstraction
and thus require more choices about how to implement it. Since there is a wide variety of
ways to implement concepts in UML, with different advantages and disadvantages, there
is a need for different code generators and a way for the users to customize the generated
code.

This thesis is based on an existing UML compiler written by myself as a plug-in for
Rational Software Modeler. I use a subset this compiler as an example scenario
throughout this thesis. This scenario is implemented using different transformation
technology and a transformation architecture is presented that aims at helping users
produce code generators that are customizable in a compact and maintenance friendly
way.

1.1 Thesis structure
Chapter 2 Technologies

This chapter gives an overview of technologies and standards relevant to the thesis. Both
modeling and transformation technologies are covered.

Chapter 3 JavaFrame

This chapter explains the JavaFrame framework JavaFrame is the target platform of the
UML compiler and the example scenario.

Chapter 4 Modularizing transformations

This chapter introduces reuse mechanisms for transformation rules, explains how
transformations can be used as modules by inheritance and composition. In addition the
concept of an intermediate meta-model is introduced.

Chapter 5 Case: UML2JavaFrame

This chapter introduces a general transformation architecture and implements it using two
different approaches. The choices made during the implementations and differences and
similarities between the approaches are explained.

Chapter 6

Chapter 6 shows how the transformation architecture introduced in chapter 5 can be used
to customize code generation.

 7

Chapter 7 Summary and conclusions

This chapter summarizes the thesis, and explains possible future work.

 8

2 Technologies
This chapter gives brief descriptions of relevant technologies and standards. First
modeling and meta-modeling are explained and then transformation technologies and
standards.

2.1 Model technologies and standards

2.1.1 Model Driven Architecture (MDA)

Throughout the history of software development new concepts and languages have
increased the level of abstraction, from assembler to procedural languages to object
orientation. Creating models of systems raises the abstraction level another level. Besides
raising the abstraction level, using models has other advantages:

• Models help visualize the system and it becomes easier to get an overview of the
system.

• Models are documentation of the system in addition to specification.

Model Driven Architecture (MDA) was proposed by Object Management Group (OMG)
in 2002 and is an approach to software development that is based on formal use of
models. Several models are used to describe a system. The process begins with creating a
model of the system on an abstract platform independent level. Transformations are
defined to transform the platform independent model to a platform specific model. The
idea is to abstract away the platform by creating several transformations to different
platforms and if a system needs to run on a different platform than originally intended all
that needs to be done is transform the platform independent model using a different
transformation. In this way implementation details are separated from application logic.

The final step is to generate code from the platform specific model [1] and this is the
focus of this thesis. Although code generation from models may follow the pattern
described by MDA, it does not have to. This thesis makes no assumption about what
platform the source model is specified for and whether or not MDA is used.

2.1.2 Meta-Object Facility (MOF)

In order to precisely define a model, for example a UML model, a set of concepts and
constraints that define what legal UML models may look like is needed. This is achieved
by creating a model of UML, this model is a model of a model: a meta-model. All UML
models must conform to this UML meta-model. However all models must conform to
their meta-model and the UML meta-model is no exception, a need for a metameta-
model* arises. This leads to a problem because even this metameta-model needs a meta-

* I will not use the term metameta-model throughout this thesis. I will only separate between models and
meta-models.

 9

model to conform to, leading to an infinite chain of meta-models. MOF [2] solves this
problem by defining a meta-model that conforms to itself.

MOF is a standard from OMG for meta-modeling. It was originally created in order to
have a meta-model to define UML. MOF may be described using the 3-level architecture
shown in Figure 1. The 3-level architecture consists of 3 model levels: M1, M2 and M3.

Figure 1 3-level meta-model architecture

At the M1 level there are normal models, at the M2 level there are meta-models (e.g., the
UML 2.0 meta-model) and at the M3 level there are metameta-models. MOF is at the M3
level and is its own meta-model. Sometimes a M0 level is included which would
represent the actual system a UML model represents.

2.1.3 Eclipse Modeling Framework (EMF)

EMF [3, 4] is a framework for modeling built on top of Eclipse. It was originally based
on MOF, but it only provides a partial implementation of the MOF standard. EMF was a
big influence on the EMOF (Essential MOF), which is part of the MOF specification.
EMF provides essentially the same functionality as EMOF.

Based on an EMF input model EMF can:

• Generate a java implementation of the model

• Generate a simple graphical editor for the model as a plugin for Eclipse.

The input model consists of

• Classes

• Class attributes

• Relationships between classes

• Operations

• Simple constraints (i.e., cardinality)

 10

Essentially it represents a UML class diagram, although it does not have to be specified
using UML. Different supported input formats are annotated Java classes, UML model
and XML schema.

EMF converts the input model to an Ecore model. Ecore is the meta-model for all EMF
models.

The generated java implementation of the model includes code for persistence using
XML/XMI. Both serialization and deserialization is supported automatically.

Uses of EMF include, among other things, modeling the data of an application and meta-
modeling. In this thesis I will use EMF to model meta-models. I use UML models as
input models.

2.1.4 The Unified Modeling Language (UML)

OMG’s Unified Modeling Language [5-7] is a language primarily for designing and
visualizing software systems, though it is not limited to modeling software and is often
used for modeling business processes, organizational structure and many other kinds of
systems/domains. UML is built upon object oriented concepts like classes and operation,
however non object oriented systems may also be modeled using UML.

UML is the OMG’s most used specification and together with MOF it provides the
foundation for MDA.

The first version of UML was released in 1997 and has since been expanded and revised
several times. The current version of UML is 2.1, although in this thesis all uses of UML
will be of version 2.0 because the tools are not yet updated to version 2.1.

The UML standard is divided in four parts: Superstructure, Infrastructure, Diagram
Interchange and Object Constraint Language (OCL). The superstructure and
infrastructure documents define the UML meta-model using MOF. The diagram
interchange document defines an extension to the UML meta-model so that diagram
information is also included. OCL is a language for querying both MOF and UML
models.

UML specifies 13 different diagram types. These are organized in three categories:

Structure Diagrams: Class Diagram, Object Diagram, Component Diagram, Composite
Structure Diagram, Package Diagram and Deployment Diagram.

Behavior Diagrams: Use Case Diagram, Activity Diagram and State Machine Diagram.

Interaction Diagram: Sequence Diagram, Communication Diagram, Timing Diagram
and Interaction Overview Diagram.

The UML specification is very big and in this thesis I mainly use classes, composite
structures and state machines.

The Eclipse UML2 project provides an implementation of the UML 2.0 meta-model
using EMF.

 11

2.1.4.1 Profiles

UML includes a built in way of extending the language. This is done using profiles. A
profile consists of stereotypes, tagged values and constraints.

A stereotype is defined as an extension to a meta-element and the stereotype may
redefine the semantics of the element. A stereotype may have tagged values which are
properties with name and type (the types of tagged values are restricted to primitive
types).

2.2 Transformation technologies and standards

2.2.1 Properties of transformations

T. Mens et al [8] and Czarnecki and Helsen [9] describes several different properties of
transformation approaches. I show a short overview.

2.2.1.1 Rules

All transformation implementations use rules. A single transformation consists of set of
rules. The rules can be defines either for imperative or declarative
execution/interpretation. Rules can be a composite of other rules and it is possible to
include object oriented properties such as inheritance and polymorphism. Rules are
usually described textually, but can also be described graphically.

2.2.1.2 Transformation composition

A transformation can be a composition of other transformations and these sub-
transformations can be run either in sequence, parallel or other more advanced control
flow mechanisms.

2.2.1.3 Direction

A transformation can be defined to transform in only one direction, in other words from
one meta-model to another, or a transformation can be defined in such a way that it can
be run both ways. Even more than 2 directions are possible if more than 2 meta-models
are specified as input/output. Declarative transformations are often suited for defining
transformation in two directions, however for many transformations it will not be
possible to define more than one direction at a time.

2.2.1.4 Trace

A transformation can create trace elements between source and target elements. These
trace elements can be of use for among other things debugging of the model and
synchronization between models. The trace elements can be stored in the model itself or
separately.

2.2.1.5 Relation between source and target model

Some transformations may have the same target and source model (for instance for
refactoring), but the most common scenario is to have a separate source and target model.

 12

Some approaches create a new target model and others may also update an existing target
model. The updates can be constrained to only extension, that is elements in the target
model can not be deleted.

2.2.2 QVT

Query View Transformation [10] is an upcoming standard from OMG, it is currently in
the finalization faze. The QVT language is, as the name suggest, a language for querying,
transforming and creating views from models.

Queries are expressions that filter or select model elements, combined with imperative
logic. QVT uses OCL (Object Constraint Language) for queries.

A view is a model that is derived from another model and that should not be persisted.
Views are not handled specifically by the QVT standard.

A transformation generates a target model from a source model. This is the main part of
QVT. Views and queries can be seen as side effects of the transformation language. The
transformation language is a hybrid declarative/imperative language and actually consists
of three languages: Relational, Core and Operational mappings.

Conformance to the QVT standard is defined by a matrix of language levels and
interoperability levels. The interoperability levels are: Syntax executable, syntax
exportable, XMI executable, XMI exportable and the language levels are Relational, Core
and Operational Mappings. Currently only partial implementations of the standard exist.

2.2.2.1 Relational language

The Relational language is a declarative language that specifies relationships between
elements in MOF models. The example below is taken from the QVT standard and it
shows a transformation between UML and a Relational Database System model.

transformation umlRdbms (uml : SimpleUML, rdbms : SimpleRDBMS) {

 relation PackageToSchema /* map each package to a schema */
 {
 domain uml p:Package { name = pn }
 domain rdbms s:Schema { name = pn }
 }

 relation ClassToTable /* map each persistent class to table */
 {
 domain uml c:Class {
 namespace = p:Package{},
 kind = 'Persistent',
 name = cn
 }
 domain rdbms t:Table {
 schema = s:Schema{},
 name = cn,
 column = cl:Column {
 name = cn + '_tid',
 type = 'NUMBER'

 13

 },
 primaryKey = k:PrimaryKey {
 name = cn + '_pk',
 column = cl
 }
 }
 when {
 PackageToSchema(p, s);
 }
 where {
 AttributeToColumn(c, t);
 }
 }
 ...
}

This relational transformation may be executed in both directions. The different
directions are represented by the domain blocks in each rule. If the above transformation
was executed from SimpleUML to SimpleRDBMS, the ClassToTable rule would first
check if any source class elements match the ‘c’ domain. In order to match kind =
‘Persistent’ must be true and the package that owns ‘c’ must be mapped to a Schema ‘s’.
If these conditions hold there should be a Table element ‘t’ in the target model with ‘s’ as
schema and the same name as ‘c’. If no such element exists the it is transformation
engine’s responsibility to create one.

2.2.2.2 Core language

The Core language implements the same semantics as the Relational language, but at a
lower level of abstraction. Transformations defined in the Core language are therefore
more verbose than Relational. In the Relational language trace elements are automatically
created on execution, in the Core language this must be specified manually.

A transformation, defined in the Core language, from the Relational language to the Core
language is provided in the QVT specification. This is so a transformation engine can
simply implement the Core language and transform any relational language input before
executing it.

2.2.2.3 Operational mappings

The operational mappings part of QVT is an imperative language. It can either be used to
define a completely imperative transformation or to implement relations from a relational
transformation.

Below is an example of a package to schema mapping:

mapping Package::packageToSchema() : Schema
 when { self.name.startingWith() <> "_" }
{
 name := self.name;
 table := self.ownedElement->map class2table();
}

 14

Operational Mappings provides OCL extensions with side effects that allow a more
procedural style. Some problem are not possible to define using the declarative constructs
found in the Relational language, the Operational Mappings language is more expressive.

2.2.2.4 Black box operations

QVT provides a way to ‘plug-in’ any MOF Operation as an implementation of a
Relation. This makes it possible to implement Relations using any programming
language that has a MOF binding (e.g., Java).

This is advantages because some things may be difficult to express using the Relations or
Operational Mappings languages. In addition this allows for reuse of existing domain
specific APIs which would be a lot of work to recode using QVT.

2.2.3 ATL

The Atlas Transformation Language [11] is developed by INRIA research group located
at the University of Nantes. Like QVT it is a hybrid declarative and imperative language
and currently ATL is probably the language that most closely resembles the QVT
standard.

Unlike QVT ATL is unidirectional, that is a transformation definition can only be
executed in one direction.

Below is an example of a declarative transformation with only one rule.

module SimpleUML2SimpleRDBMS;

create OUT : UML from IN : RDBMS;

rule Package2Schema {
 from p : UML!Package
 to
 s : RDBMS!Schema(
 name <- p.name
)
}

The ‘from’ and ‘to’ statements are the equivalent to QVT Relational’s domain blocks.

2.2.4 IBM Model transformation framework (MTF)

MTF [12] was developed as a prototype for a transformation language and it is a
completely declarative language for implementing transformations between EMF models.

Below follows a rule that relates a package to a schema:

relate Package2Schema(uml:Package p, rdbms:Schema s) {
 equals(p.name, s.name),
 Class2Table(over p.ownedMember, over s.tables)
}

 15

2.2.5 Rational Software Modeler transformation framework

The Rational Software Modeler (RSM) transformations framework is a Java framework
for transforming EMF models. Like transformation languages a RSM transformation
consists of a set of rules. These rules are defined using Java classes that extend the
framework class AbstractRule. Each rule implements a method for creating the target
object (or target code if it is model-to-text). This rule directly manipulates the generated
EMF APIs for the target and source meta-models.

Using this approach is a lot more verbose than using a transformation language, but given
the low level of maturity for current transformation languages, it may yet be a good
option.

2.2.6 MOFScript

MOFScript [13] is an extension to QVT for model-to-text transformations. It is based on
QVT Operational Mappings, which is the imperative part of QVT. MOFScript is
currently under development by SINTEF.

jfuml.JavaFramePackage::mapPackage() {
 self.ownedMember->forEach(c : jfuml.JavaFrameClass) {
 c.mapClass()
 }
 self.ownedMember->forEach(c:jfuml.JavaFramePackage) {
 c.mapPackage()
 }
}

jfuml.JavaFrameClass::mapPackageDeclaration() {
 println("package "+self.owner.getQualifiedName()+ ";")
}

jfuml.JavaFrameClass::mapClassDeclarationStart() {
 <%public class %> self.name <% extends %> self.getGeneralLiteral(OBJECT) <% { %>
 nl
}

The above code shows examples of built in OCL expressions (the mapPackage rule),
print statements and the template functionality.

2.2.7 Java Emitter Templates

Java Emitter Templates (JET) [14] is a template based language for text generation. A
JET template consists of pure text with embedded java code in <% %> markers. An
example is shown below.

<% ClassBuilder c = (ClassBuilder)argument; %>
package <%= c.package %>;

public <%= c.abstract ? “abstract ” : “”%>class <%= c.className %> extends <% c.superType %> {

 16

<% …. %>
}

Each JET template has a Java object passed to it as an argument; the ClassBuilder object
in the example above. A JET template file is compiled to a java class. This generated
class has a single method which takes a single object as a parameter and returns the
generated code as a String.

 17

3 JavaFrame
This thesis is based on an existing transformation written in Java that generates Java code
from UML 2.0. I will use the same scenario and equivalent transformations implemented
using different technologies as an ongoing example throughout this thesis. The generated
Java code is based on JavaFrame. In order to explain these examples I will first explain
how generated JavaFrame code represents the source UML model.

JavaFrame is a framework for implementing a subset of UML in Java. It consists of a
Java API (Application Programming Interface) for implementing models in Java and a set
of programming guidelines. The API contains classes for model elements like
StateMachine, Composite and Mediator (representing a UML port). A class diagram for
the JavaFrame concepts is shown in Figure 2. A JavaFrame system is a Composite which
contains ActiveObjects. These ActiveObjects can be either other Composites or
StateMachines. The ActiveObjects communicate with each other by sending
asynchronous messages through Mediators. However the details of how JavaFrame
systems work are beyond the scope of this thesis.

Figure 2 JavaFrame concepts

To implement models using JavaFrame new classes that extend the API classes must be
implemented using the programming guidelines/patterns. Below follows examples of
UML 2.0 model elements and the JavaFrame code that implements those elements.

3.1 StateMachines
A UML Statemachine is implemented by two Java classes, one extends the JavaFrame
StateMachine class and the other extends the JavaFrame CompositeState class.
Respectively they represent UML statemachine and region elements. Like UML
statemachine elements a JavaFrame statemachine can have ports, attributes and
operations, in addition it has a static compositestate representing its UML region.

 18

Figure 3 Tree view of PtnStateMachine from RSM model explorer

Figure 3 shows a statemachine with two ports and one attribute (of type String which is
not shown) and below is the code that implements this statemachine in JavaFrame.

public class PtnStateMachine extends StateMachine {

 static CompositeState states = new PtnStateMachineStates("outermostState");

 /* Formal ports */
 public Mediator myinputmediator;
 public Mediator myoutputmediator;

 /* Attributes */
 public String myAttribute;

 protected void execStartTransition() {
 states.enterState(this);
 }

 public PtnStateMachine(Scheduler sched, Mediator myinputmediator,
 Mediator myoutputmediator) {
 super(sched);
 myinputmediator.addAddress(this);
 this.myinputmediator = myinputmediator;
 this.myoutputmediator = myoutputmediator;
 }
}

 19

Figure 4 The region of PtnStateMachine

Figure 4 shows a regular UML state machine diagram of PtnStateMachine. Note that the
effects of the transitions are represented by UML activity element. These are used to
represent java code as text. This code is executed whenever the transition fires.

The JavaFrame class that implements this region is shown below. The states are
implemented as static fields and each statemachine instance has a pointer to its own
current state. All the transition logic is implemented by the execTrans method. This
checks the current state and the received message and fires any transitions according to
the model.

public class PtnStateMachineStates extends CompositeState {

 static State state1 = new State("state1");
 static State state2 = new State("state2");

 public PtnStateMachineStates(String sn) {
 super(sn);
 state1.enclosingState = this;
 state2.enclosingState = this;
 }

 public void enterState(StateMachine curfsm) {
 PtnStateMachine csm = (PtnStateMachine) curfsm;
 entry(curfsm);
 state1.enterState(curfsm);

 20

 }

 protected boolean execTrans(Message signal, State st, StateMachine curfsm) {
 PtnStateMachine csm = (PtnStateMachine) curfsm;
 if (st == state1) {
 if (signal instanceof PtnSignal) {
 PtnSignal sig = (PtnSignal) signal;
 performExit(csm);
 //Begin effect code
 System.out.println(sig.messageContent());
 //End effect code
 if (Math.random() < 0.5) {
 state1.enterState(curfsm);
 } else {
 state2.enterState(curfsm);
 }
 return true;
 }
 } else if (st == state2) {
 if (signal instanceof PtnSignal) {
 PtnSignal sig = (PtnSignal) signal;
 performExit(csm);
 //Begin effect code
 csm.myAttribute = sig.x;
 //End effect code
 state1.enterState(curfsm);
 return true;
 }
 }
 return false;
 }
}

3.2 Composites
Figure 5 shows the internal structure of the UML class PtnComposite. It has two parts:
sm1 and sm2. Both parts are of type PtnStateMachine. The tree-view to the left shows the
child elements of PtnComposite and PtnStateMachine. PtnComposite has 9 child
elements: 4 connectors, 2 ports, 2 parts (sm1 and sm2) and 1 diagram. The parts are
actually property elements with the isComposite attribute set to true.

Note that in the diagram both the parts are shown with ports. These ports are inferred
from the type of the part, in this case PtnStateMachine. As shown in the tree-view
PtnStateMachine has two ports, myinputmediator and myoutputmediator.

 21

Figure 5 Internal structure of an example Composite

The produced JavaFrame code for the PtnComposite class is shown below. The ports
owned by PtnComposite (i.e., formal ports) are declared as fields and so are the parts. In
addition the ports of the parts (i.e., actual ports) are also declared as fields using the
concatenation of the name of the part and the name of the port as the name of the field.

public class PtnComposite extends Composite {

 /* Used internally by JavaFrame */
 protected Scheduler sched;

 /* Formal ports of PtnComposite */
 public PtnRouterMediator inputmediator;
 public Mediator outputmediator;

 /* Part sm1 */
 protected PtnStateMachine sm1;
 public Mediator sm1myinputmediator;
 public Mediator sm1myoutputmediator;

 /* Part sm2 */
 protected PtnStateMachine sm2;
 public Mediator sm2myoutputmediator;
 public Mediator sm2myinputmediator;

 public PtnComposite(Scheduler sched, PtnRouterMediator inputmediator, Mediator
 outputmediator) {
 super();
 this.sched = sched;

 this.inputmediator = inputmediator;
 this.outputmediator = outputmediator;

 /* Creating property sm1 */
 sm1myinputmediator = new Mediator();
 sm1myoutputmediator = new Mediator();
 sm1 = new PtnStateMachine(sched, sm1myinputmediator,

 22

 sm1myoutputmediator);
 addActiveObject(sm1);

 /* Creating property sm2 */
 sm2myoutputmediator = new Mediator();
 sm2myinputmediator = new Mediator();
 sm2 = new PtnStateMachine(sched, sm2myinputmediator,

sm2myoutputmediator);
 addActiveObject(sm2);

 /* Setting addresses for the mediators based on UML connectors */
 inputmediator.addAddress(sm1myinputmediator);
 inputmediator.addAddress(sm2myinputmediator);
 sm2myoutputmediator.addAddress(outputmediator);
 sm1myoutputmediator.addAddress(outputmediator);
 }
}

The four last lines of addAddress function calls represent the UML connectors.

3.3 Mediators
Mediators are JavaFrame representations of UML ports. Or rather an instance of a
mediator represents a UML port. A mediator class represents the possible type of a port.
The PtnComposite class shown as an example above has two formal ports. One of them
has no type the other is of type PtnRouterMediator. PtnRouterMediator is a UML class
with the Mediator stereotype applied. In the code this is represented by the fields of the
PtnComposite class.

Custom mediator classes are implemented by extending the Mediator class from the
JavaFrame API. The Mediator class from the JavaFrame API implements the
Addressable interface. This interface contains one method: public void forward(Message
sig). Any custom mediator class must implement this method. In the UML model the
code implementing the forward method is represented as regular text by either an
Activity or the Actions of an Activity.

3.4 Messages
Messages are the JavaFrame representations of UML signals. Each signal element is
transformed to a class that extends the Message class from the JavaFrame API.

In UML signals are sent between ports, and in JavaFrame message objects are sent
between mediator instances. This is achieved by using the forward method implemented
by mediator classes. Like UML signals JavaFrame messages also trigger transitions in
statemachines.

 23

4 Modularizing transformations
Although UML elements like classes and attributes can be directly mapped to
programming language classes and attributes, most elements in UML do not have any
direct counterpart in programming languages (e.g. there is no concept of statemachines
and composite structures in Java). When a transformation bridge abstraction levels it will
inevitably become complicated and the need to split the transformation into manageable
modules arises.

This chapter explains how transformations can be modularized using both rules and entire
transformations as modules. The concept of an intermediate meta-model is introduced.

4.1 Rules as modules
A transformation definition consists of a set of rules. These rules form the basic modular
elements of a transformation. This is discussed in detail by Kurtev et al in [15].

In order to effectively use rules as modules there need to be reuse mechanisms for the
rules. There are several different ways of achieving this, including rule inheritance,
composition, polymorphism and others. I will give some examples of reuse mechanisms
from different model transformation languages.

In the declarative transformation language MTF rules can be reused by inheritance and
composition. The two rules shown below is an example of this. The rules are taken from
a transformation that copies a UML model.

abstract relate mapClassifier extends mapNamedElement(uml:Classifier e1, uml:Classifier e2) {
 mapGeneralization [0..1] (over e1.generalization, over e2.generalization)
 ,ordered mapPackageImport(over e1.packageImport, over e2.packageImport)
}

relate mapClass extends mapClassifier(uml:Class e1, uml:Class e2) {
 ordered mapProperty(over e1.ownedAttribute, over e2.ownedAttribute)
 ,ordered mapOperation(over e1.ownedOperation, over e2.ownedOperation)
 ,ordered mapActivity(over e1.ownedBehavior, over e2.ownedBehavior)
}

The first rule relates Classifier elements in the source model to Classifier elements in the
target model. This rule extends the mapNamedElement rule which is not shown and just
makes sure the elements have the same name. The mapClassifier rule explicitly invokes
two other rules: mapGeneralization and mapPackageImport, this is an example of a rule
composed of two other rules.

The second rule, mapClass, inherits from the first. The semantics of this is similar to
normal object oriented inheritance. The mapClass rule inherits the two rules invoked
from mapClassifier. And the signature of mapClass strengthens the constraints of the
mapClassifier signature (Class is a subtype of Classifier).

 24

Using this approach if I were to define a mapSignal rule that extended mapClassifier
(Signal is a subtype of Classifier, but not of Class) I would not have specify
mapGeneralization and mapPackageImport again. As meta-models usually have large
type hierarchies such a mechanism is very useful.

Unfortunately the QVT Relational (declarative) language does not have such an
inheritance mechanism, however the QVT Operational Mappings (imperative) language
does. Below is an example of inheritance in the Operational Mappings language.

mapping Classifier::mapClassifier() : Classifier inherits mapNamedElement {
 generalization := self.generalization->map mapGeneralization();
 packageImport := self.packageImport->map mapPackageImport();
}

mapping Class::mapClass() : Class inherits mapClassifier {
 ownedAttribute := self.ownedAttribute->map mapProperty();
 ownedOperation := self.ownedOperation->map mapOperation();
 ownedBehavior := self.ownedBehavior->map mapActivity();
}

MOFScript is a model-to-text transformation language so it is a little different. It does not
have inheritance between rules, but it does have polymorphism. MOFScript rules are
defined with a context element. The two MOFScript rules shown below is an example of
polymorphism.

jfuml.JavaFrameClass::mapClassDeclarationStart() {
 <%public class %> self.name <% extends %> self.getGeneralLiteral(OBJECT) <% { %>
 nl
}

jfuml.CompositeClass::mapClassDeclarationStart() {
 <% public class %> self.name <% extends Composite { %>
 nl
}

Since CompositeClass is a subtype of JavaFrameClass the second rule overrides the first.
Like normal polymorphism the type of the actual object at run-time specifies which rule
is executed.

4.2 Transformations as modules and intermediate meta-
models

In addition to rule modularization, transformations may be used as modules as well.
There are two ways to achieve this, either by transformation inheritance or by composite
transformations.

Reuse mechanisms for transformation rules forms the basis for transformations
inheritance. The rules in the sub-transformation may reuse rule definitions in the super-
transformation.

 25

The second way is to introduce an intermediate meta-model and split a transformation in
two parts. Figure 6 shows an example of a transformation that has been split it two
composite parts. In [16] Oldevik discusses composition of transformations in more detail.

Figure 6 UML2Java composite transformation

The use of general intermediate representations, in the form of data structures and code,
is used by compilers in order to separate the front end from the back end, and for splitting
the code generation in modular parts [17]. The first intermediate representation a
compiler uses is usually an abstract syntax tree of the source code. This abstract syntax
tree is then transformed to intermediate code. A normal form for the intermediate code is
stack based byte-code, effectively bridging the abstraction level between the abstract
syntax tree and assembler type code. Examples of intermediate code include Java byte-
code and CIL (Microsoft’s Common Intermediate Language). The intermediate code may
be interpreted at run-time or assembler code for the target machine may be generated.

For the same reasons compilers use intermediate representations it might be a good idea
to use intermediate meta-models for code generation from models. The intermediate
meta-model can be any MOF model, optionally with additional constraints. It may for
instance be a UML model with a certain profile applied. In [18] Vanhooff and Berbers
suggest using UML profiles to specify input and output model characteristics. Below
follows some alternatives for what an intermediate meta-model may be:

• A subset of the UML meta-model that directly maps to code (i.e. no
statemachines and composite structures, just classes/attributes/operations). A
profile for the programming language will probably be needed. Suggested by
Chauvel and Jézéquel in [19].

• A meta-model of the abstract syntax of the programming language.

• A dedicated meta-model for the implementation (e.g., a JavaFrame meta-model).

These different choices are discussed in detail in chapter 5.

An intermediate model should ideally satisfy these requirements:

 26

• Simple to generate code from

• Simple to generate from the source UML model

• Simple to define

• Preferably not add any platform restrictions beyond what is already in the source
UML model

 27

5 Case: UML2JavaFrame
In chapter 3 I gave an explanation of JavaFrame and how it relates to UML. The UML
2.0 compiler this thesis is based on implements a transformation from UML to
JavaFrame. I have implemented a subset of that transformation using two different
intermediate meta-models and different transformation technologies. This chapter
explains the process and the choices that were made while creating both the intermediate
meta-models and the transformations.

First different ways of creating an intermediate meta-model is discussed and two different
approaches are chosen. Then I present a general transformation architecture and discuss
the decision of both model-to-model and model-to-text transformation technologies.
Finally I show and explain the intermediate meta-models and the implemented
transformations.

5.1 Intermediate meta-model choice
In chapter 4 I introduce the concept of an intermediate meta-model. In this section I
propose different choices for intermediate meta-models, discuss the advantages and
disadvantages of each choice and choose two options to implement.

5.1.1 A subset of the UML meta-model

A subset of the UML meta-model is used as an intermediate meta-model. The subset is a
direct mapping of Java code to UML elements. Because UML has a lot in common with
object oriented programming languages like Java it is possible to represent a Java
program with UML elements.

Like Java, UML contains concepts like class, interface, and package. UML attributes are
very similar to Java fields and UML operations are almost equivalent to Java methods.
There are differences though, for instance UML supports multiple inheritance, but Java
does not. Also UML operations support multiple return values, which are not possible in
Java.

The structure of a Java language may be represented in UML using these previously
described elements, but UML operations really only represents the signature of a Java
method (i.e., the name, return value and parameters). The implementation of an operation
is represented by an activity element. It may be possible to use a UML activity element to
represent the body of a Java method, but activities are not designed to be a Java action
language. In [20] Rumbaugh et al discusses action languages for UML:

 28

5.1.1.1 Behavior problem

As described above the main problem with using a subset of UML as an intermediate
meta-model is how to deal with behavior / method bodies. How should a UML activity
element represent Java code? One option is to simply insert the code as text. This is not a
good solution for an intermediate meta-model because the model to model transformation
would have to generate this code, something that is better left to the final model to text
transformation.

A way of solving the behavior problem is to use stereotyped activity and action elements
to represent the code. The idea would be not to use the control flow mechanisms of
regular UML activities, but rely on the ordering of elements. This may be a problem with
certain declarative transformation technologies if the order of generated model elements
is nondeterministic. A possible stereotype could be ChoiceActivity which represents
either switch or if-else statement others could be Call, Assignment and
VariableDeclaration. This would alter the semantics of the Activity and Action UML
elements and it is probably better to use an approach like one of the two suggested below.

Another option is to use the control flow mechanisms in UML activity diagrams and
develop a Java profile for UML which contains stereotypes for activities and actions.
UML already has different action elements which may be reused. Examples of these
include Create action, Raise exception action, Return action, Test identity action and
Write action.

Yet another way of representing behavior is to use a programming language independent
UML action language, such as the Kermeta action language [21].

5.1.1.2 Fixed code problem

Even if the method body problem were solved there is another problem which remains.
When a single element in the source model is implemented by a large amount of fixed
code, this must be represented by a large number of elements in the intermediate meta-
model. For example the JavaFrame Main class is generated once for every JavaFrame
model and large parts of the generated code is fixed (i.e., it does not vary from model to
model). One method which is an example of this is shown below.

 public static void main(String[] args) {
 String hostname = "";
 int portnumber = 0;
 for (int i = 0; i < args.length; i++) {
 String token = args[i];

“The selection of one programming language as the basis for an action
language would, therefore, have the effect of discouraging the others, which
the designers did not want to do. The semantics of actions have therefore
been left low level and free of implementation concerns within UML itself.
For many practical uses, such as code generation, UML must be augmented
with the action language (often standard programming language) that is
being used.” [20] page 144

 29

 if (token.equals("-remote")) {
 if (i == (args.length - 1)) {
 System.out.println("No remote specified.");
 usage();
 System.exit(1);
 }
 int index = args[++i].indexOf(':');
 if (index != -1) {
 hostname = args[i].substring(0, index);
 Integer portnumberInt = new Integer(args[i]
 .substring(index + 1));
 portnumber = portnumberInt.intValue();
 } else {
 usage();
 System.exit(1);
 }
 }
 }
 new CompositeNameMain(hostname, portnumber);
 }

This code is the same for all models. The only exception is the constructor call on the last
line where the name of the composite is used (CompositeNameMain is an example). If
this entire method should be represented by using UML action elements or an action
language it would be a very large and complex representation. The first model-to-model
transformation would have to construct this fixed representation from one source
element. This is a very cumbersome approach compared to generating this code in a
model-to-text transformation where the code can just be written as is.

It might be possible to solve this problem by introducing parameterized template
elements in the intermediate meta-model. However this will leave the responsibility for
generating this fixed code to the model-to-model transformation. In my opinion it this is
better left to the final model-to-text transformation.

5.1.1.3 Existing code problem

Another problem arises when the generated code should reuse existing code. In this case
the generated code is based on an existing JavaFrame API. How can the UML model
specify for instance that a class should extend a JavaFrame statemachine? One way is to
use a JavaFrame extension to UML as described in 5.1.3, another is to reverse engineer
the JavaFrame source code into a UML model and use a regular UML generalization to
the appropriate class in the reverse engineered model. Although this will require that the
transformation is aware of this third model and which classes in it represents which
JavaFrame concepts.

Because of the problems listed above, the behavior problem, the fixed code problem and
the existing code problem, it is my conclusion that using a subset of UML to directly
represent the code leaves too much of the transformation logic to the first model-to-
model transformation and I will not implement transformations using this intermediate
meta-model. Though if these problems were solved it would be an interesting experiment
too perform.

 30

5.1.2 Java meta-model

The intermediate meta-model is a meta-model of the Java language. Like the previously
described option this intermediate meta-model is a direct representation of the code. As a
consequence of that some of the same problems apply.

The behavior problem is not a problem for a Java meta-model because Java has a well
defined way of representing method bodies using various statement and expression
elements.

The other two problems of directly representing the code remain; the fixed code problem
and the existing code problem. In addition a Java meta-model adds a platform restriction
in the capacity of being specific to Java. It may be possible to generate other kind of
object oriented code (e.g., C++, C#) from a Java meta-model, but it will probably be
more inconvenient than if UML was used.

Creating a meta-model for a programming language may require a lot of work. To make
this process a little more automatic the meta-model may be generated from BNF using a
tool such as agramm / mmm which is described in [22].

The conclusion for this option is the same as the last one; I believe this representation is
too close to the code.

5.1.3 JavaFrame meta-model

As explained above both the previously described intermediate meta-models are basically
another way to represent the actual code. This leaves almost all the transformation logic
to the first model to model transformation, which probably is too much for a single
transformation and much of the problems with generating code directly from the original
UML model remain. In addition, the ability for the model to text transformation to
customize the generated code is very limited if such an intermediate meta-model is
chosen. A way of solving this is introducing JavaFrame specific elements in the
intermediate model, either as a stand alone JavaFrame meta-model or as an extension to
one of the previously described intermediate meta-models.

Having the JavaFrame meta-model extend either the UML meta-model or a Java meta-
model provides the possibility of modularizing the transformations. The transformations
may be split in a core part and an extended part as explained in section 5.2.1. Because of
this I decided to drop the stand alone version of the intermediate meta-model and
implement two intermediate meta-models with transformations, one that extends the
UML meta-model and another that extends a Java meta-model. These will be called
JfUml and JfJava respectively and are explained in section 5.4 and 5.5.

Defining the intermediate meta-model as an extension to the UML meta-model provides
both advantages and disadvantages. A disadvantage is that there is a dependency on
UML. If UML changes from one version to the next it may effect the intermediate model
and any transformations from it. An advantage of extending UML is that elements that
exist both in UML and JavaFrame do not need to be redefined (e.g., both UML and
JavaFrame have concepts like class, attribute and operation). This provides advantages
not only in that it is easier to define the meta-model, but also when defining
transformations because these elements can simply be copied to the target model.

 31

If the JavaFrame meta-model is defined as an extension to the UML meta-model inter-
model references may also be used. That is, the target model may link to elements in the
source model. This may be useful if creating an alternative representation of an element
is not needed for code generation. For instance it may be decided that UML region
elements are sufficiently easy to generate code from, and that creating alternative
intermediate meta-model elements to represent a UML region is not necessary.

An essential property of the JavaFrame meta-model is how close it is to the code and how
close it is to the UML model. When I modeled the meta-models I tried to create a one to
one mapping between the meta-model and the produced JavaFrame code, this turned out
to be a good guideline, although on some occasions it was necessary to deviate from this.

Another question is if any relations between model elements be replaced by string
attributes? For instance can a generalization between two classes simply be replaced by
the name of the extended class? Certain such shortcuts might make it easier to generate
code, but the meta-model looses navigability. It is worth to note that navigability is very
important in a meta-model and that the code generation should be very simplified to
justify such a change. For this reason I decided not do this in my intermediate meta-
models.

5.2 Transformation architecture and technology

5.2.1 Transformation architecture

Both of the chosen intermediate meta-models consist of a core part and an extension. The
core parts are UML and Java meta-models and the extension is a JavaFrame meta-model
in both cases. This allows me to create a general transformation architecture that I will
use with slight modifications in both cases.

In chapter 4 I described a composite transformation, which consisted of an intermediate
meta-model, a model-to-model transformation, and model-to-text transformation. When
an intermediate meta-model extension is introduced, two more transformations need to be
implemented. Both of these extend the original transformations. The general architecture
is shown in Figure 7.

UML and Java are used as source and target in this diagram, but any meta-model and
programming language could be substituted.

 32

Figure 7 Transformation architecture with extended intermediate meta-model

Using this architecture what started out as one big transformation is now divided in four
much smaller parts.

5.2.2 Transformation technology choice

Having chosen the architecture previously described, I needed to choose the
transformation languages/technologies to implement the transformations. The
architecture sets two requirements for the transformation technologies:

1. Transformation extension/inheritance must be supported.

2. The source or target meta-model must be possible to specify using two meta-
models in separate files.

The second requirement is needed because when transforming for instance from a
JavaFrame meta-model that extends the UML meta-model the transformation rules need
access to not only elements from the JavaFrame meta-model, but also elements from the
extended meta-model (i.e., the UML meta-model). In order to achieve this, the
transformation must specify that the source meta-model is actually defined in two files,
one for JavaFrame and one for UML. For model-to-model technologies it is the target
meta-model that needs to be defined using two files, while for model-to-text it is the
source.

For model to model transformation the ideal option would be to use QVT. However there
are no sufficient implementations of QVT available at the moment. Borland has
implemented part of the QVT standard, but it is only an implementation of the
Operational Mappings language, none of the declarative languages (Relational and Core)
are implemented. In addition the implementation is based on the QVT-Merge [23]

 33

submission, not the final adopted specification. However the biggest problem is that no
rule reuse functionality is implemented, making it very difficult to use with my
transformation architecture.

The most commonly used model-to-model transformation language today is probably
ATL, but this does not support any of the two requirements specified.

Two viable options are MTF and using the RSM transformation framework. I decided to
use both of them; MTF for the intermediate meta-model that extends UML and the RSM
framework for the intermediate meta-model that extends Java.

For model to text the alternatives are JET, MTF and MOFScript. MTF has a very limited
support for text generation, which is primarily designed to create documents like for
instance html. Because of MTF’s limited support for text generation and that it only has
declarative rules I chose not to use MTF.

JET is what I used for code generation in the transformation this thesis is based on. It
offers limited modularization and no form of inheritance, although extension points may
be defined. JET is not a transformation technology in its own, but a template language.
To create a model-to-text transformation using JET, Java would have to be used to
traverse the model and invoke the templates.

MOFScript has good QVT like imperative rules and is specifically designed to transform
models to text. Although MOFScript currently support neither of the requirements
specified it is in early stages of development and is likely to implement this at a later
stage.

The final choice for model-to-text technology was MOFScript because it is very similar
to QVT and once its limitations are overcome it will be a very good text-transformation
language.

The problem that MOFScript does not support transformation extension sufficiently in
the current version was solved by creating only one transformation and marking what
part of it should be a subtransformation.

The problem of MOFScript not supporting source meta-models in several files was
solved differently by each approach.

5.3 Advanced meta-model concepts
Before I explain the intermediate meta-models I created I will explain some not so well
known UML constructs, I will explain the semantics of these and how they are shown in
the diagram. I assume the reader is familiar with concepts like generalization,
composition, visibility and multiplicity. More details about all these concepts can be
found in [4, 6, 20].

Both meta-models are implemented using EMF and so a few advanced EMF concepts are
also explained.

All these advanced concepts are regarding meta-properties of property elements.

 34

5.3.1 Read-only

The read-only property means just what it says, it can only be read. In practice this means
that the EMF code generator will generate a get method, but not a set method for the
property. Because read-only and other properties do not have a graphical representation
in class diagrams I use curly braces and list which of these properties are applied.

5.3.2 Derived

Derived means that the value of the property is computed from other properties. A
derived property does not represent any additional object state. For instance a qualified
name property of a java package is the concatenation of its own name and the names of
its owning packages (with ‘.’ in between). Such a property should be derived. Derived is
denoted by a ‘/’ in front of the property name. The generated code is unaffected by the
derived property, but when a model object is copied derived properties are not copied.

5.3.3 Subsets

A property may subset another property. This means that the collection associated with
an instance of the subsetting property must be a subset of the collection associated with
the corresponding instance of the subsetted property. For instance Class has a ‘field’
property (a containment list of type Field), this property subsets ‘ownedElement’ from
Element. This means that all fields owned by a class will also be contained in the
‘ownedElement’ property. The fact the a property is a subset of another does not effect
the code generated for the subsetting property, however it does effect the generated code
for the property that is subsetted as explained under derived union.

5.3.4 Derived union

A property marked as a derived union is derived by the union of all properties that subset
it. The ‘ownedElement’ property of Element is an example of this. Continuing the
example from subsets, Class not only has a ‘field’ property that subsets ‘ownedElement’,
but also a ‘method’ property. This means that the ‘ownedElement’ property will contain
all methods and fields of a class. The effect of marking a property derived union is that
the generated get method will return a list containing the union of the values of all
subsetting properties.

5.3.5 Redefines

A property may redefine another. It can change the name, multiplicity, type (to a subtype
of the original) and other values. Multiplicity constraints can only be strengthened. That
is the lower bound may be increased and the upper bound may be lowered. An example
from the JfJava meta-model is the ‘mediator’ property of MediatorField which redefines
‘type’ from TypedElement, constraining the type to be a MediatorClass.

Most EMF properties are generated by a protected field holding the actual value of the
property and a get and set method. A redefined property generates a set and get method
like other properties, the difference is that the field that stores the value of the property is

 35

shared with the redefined property. In the example of mediator from MediatorField
redefining type from TypedElement, the MediatorField implementation has both getType
and getMediator methods, but both return the protected mediator field.

5.3.6 Ecore profile

The previous concepts are all part of UML 2.0. However the model also includes some
additional EMF specific concepts. This is achieved through a Ecore profile. The profile
includes eAttribute and eReference stereotypes. Both have several tagged values, the
relevant ones are isVolatile and isTransient.

If a property is transient it means that it should not be persisted. That is when a model
instance is serialized as XMI (XML Metadata Interchange) any transient properties are
not stored.

Usually EMF generates both getter and setter methods for properties. However if a
property is marked as volatile just a method signature is generated, the implementation
must be written manually.

Usually any derived properties are both volatile and transient (e.g., qualifiedName).

5.3.7 Eclipse vs. RSM

Rational Software Modeler is built on Eclipse version 3.0. This version includes versions
of EMF and UML2 that do not support subsetting and redefinitions of properties. To
work around this problem I originally planned to model the meta-model in RSM, export
it and generate code and plug-in from Eclipse version 3.1. Then I could install the
generated plug-in in RSM. However it turns out that even the generated code requires a
newer version of UML2 than the one in RSM.

In the end I had to generate code from RSM and this means that subsetting and
redefinitions do not currently work as intended. When a newer version of RSM is
released what is needed is only a new code generation.

Without support for subsetting and redefinitions in the intermediate meta-models the
transformations may have to do some workarounds.

5.4 JfJava intermediate meta-model
This section first explains the two parts of the JfJava meta-model, and then the
implemented transformations are presented. Finally I examine the possibility of using a
tool to generate a Java meta-model from BNF.

The JFJava intermediate meta-model consists of a Java meta-model and a JavaFrame
extension. Even though they should be two separate models I decided to model them as
one. This is because if they were modeled as separate models, a MOFScript
transformation could only handle elements from one of them. If this situation changes it
should be very easy to refactor the model into two separate models.

 36

Figure 8 The JfJava meta-model composed of two parts

Figure 8 shows the JfJava meta-model and its two parts. Sections 5.4.1 and 5.4.2 describe
the contents of these two meta-model parts.

5.4.1 Java meta-model

The Java meta-model was created partly based on the BNF for the Java language, partly
from an existing Java meta-model from Sun which is used internally in Netbeans [24] and
partly from my special needs. In addition the UML meta-model was used as inspiration
for more general meta-model features.

Figure 9 show the core parts of the Java meta-model. The Java meta-model represents
only a subset of Java. The model is very similar to an abstract syntax tree representation
used by compilers, however this subset does not include any form of behavior. By
behavior in this context I mean detailed expressions and statements, like for instance
MethodInvocation, ForEachStatement and ConditionalExpression. These would have to
be included if the model should be a complete representation of Java. To replace these
elements there is a generic CodeString element (specializing both Statement and
Expression), which represents any arbitrary code in a string attribute. This is used
whenever code is represented as strings in the UML source model. For instance the
existing transformation interprets the default value of a property as code; this string is
transformed to a CodeString element.

 37

Figure 9 Java meta-model kernel

Element is the supertype of all classes in the model. This class has one composition
association to itself. Both association end properties are derived unions and read-only. All
composition association of subtypes of Element (i.e., all composition associations in the
model) specialize this association and their association end properties subset owner or
ownedElement. This is similar to how it is done in the UML 2.0 meta-model.

Element, NamedElement, TypedElement and Type are general abstract elements
common to most meta-models.

One option for extension is to include a Model element as a root element of all models
(like the UML meta-model). This could be used to contain java classes which should be
part of the default (nameless) package. And it could have contained meta information
about the model, for instance the path on the file system and maybe even the contents of
the classpath. In addition a Namespace element would probably have been advantages.

The StringType element was needed to represent strings. In UML String is a primitive
type, but in Java there is no equivalent such primitive type.

Figure 10 shows the rest of the Java meta-model. The two most central classes are
CompilationUnit and Class. A compilationunit represents a java file and consists of a list
of import statements and type declarations. In this model a type declaration can only be a
class/interface, this could have been expanded to also include enumeration.

 38

Figure 10 CompilationUnit, Class and related elements

When I was designing this meta-model I had a choice about how to structure the package
and compilationunit elements. I could either use the BNF of the Java language as a
starting point or use a more meta-model like approach.

The BNF rule for compilationunit looks like this:

CompilationUnit := PackageDecl Import* TypeDeclaration*

This would be the equivalent of ComilationUnit element with three composite
associations to Import, TypeDeclaration and PackageDecl. PackageDecl would then be a
new element with a reference to a Package element.

The other way, and the way I have chosen, is to have a composite association from
Package to CompilationUnit. This leaves out the PackageDecl element and makes sure
that all compilation units are contained within a package.

The reason the BNF for Java does not handle package structures very well is because it
only describes the content of a single Java file, as opposed to the meta-model that must
describe several files and packages.

Another omission is a Constructor element; this is because I let the model to text
transformation generate constructors.

5.4.2 JavaFrame meta-model extension

The JavaFrame extension to the Java meta-model was created partly based on the UML
2.0 meta-model and partly from the structure of the JavaFrame implementation/code.

 39

Figure 11 shows the main structure of the JavaFrame extension. Each class that has a
special implementation in JavaFrame is represented by a class that extends the Class
element from the Java meta-model.

Figure 11 The structure of the JavaFrame extension to the Java meta-model

The CompositeClass represents a UML class with internal structure. The composite
association to the ActiveObjectField element represents UML parts, the composite
association to MediatorField, which is inherited from ActiveObjectClass, represents
UML ports and the composite association to MediatorConnection represents UML
connector elements.

Both ActiveObjectField and MediatorField extend the Field element from the Java meta-
model. However as ActiveObjectField represents a UML part it also needs to represent
any actual ports on that part. This is achieved by a composite association to
MediatorField. The effect of this is that each UML port of a part is represented by a
MediatorField element in this meta-model. In UML a port is only one element, the parts
themselves do not have port elements. This causes problems because connector elements
connect to the ports of specific part not the general port of a type. A connector end has a
‘part with port’ property for determining which part the port belongs to. This is quite
difficult to generate code directly from and the JavaFrame meta-model solves this
problem by having each ActiveObjectField (uml: part) contain their own MediatorField
(uml: port) elements. As shown the MediatorConnection class, which represents a UML
connector, is directly connected to MediatorField with source and target associations, no
‘part with port’ construct is needed.

The JavaFrame meta-model need to represent the behavior, as well as the structure, of the
implementation, this is done by introducing high level abstract elements. The behavior

 40

that needs to be represented is the region of a statemachine. This is achieved by using the
UML meta-model as a starting point and making it better suited for code generation to
JavaFrame. As presented in chapter 3, a UML region is implemented by fields for states
and a method called execTrans for the transitions. The execTrans method is a combined
switch on current state and received signal type. All this is implemented by the
JavaFrame CompositeStateClass which is shown in Figure 12 along with other related
elements.

Figure 12 The CompositeStateClass element and its contents representing a UML region

Like in the UML meta-model, an abstract Vertex class is the supertype of all pseudostates
and states. The CompositeStateClass has a composite association to the Vertex class and
in addition several conveniences association to the concrete subtypes of Vertex. These
are all derived, read-only, transient and volatile.

The UML region class has a composite association to the transition class. In this meta-
model this is changed and Vertex is the class that owns transitions instead. This fits better
with the execTrans method where first current state is checked then all outgoing
transitions from that state is checked.

An advantage of keeping the intermediate meta-model on a relatively high abstraction
level is that there is a choice about how to implement these abstract features. In this case
there are at least two different ways to implement transitions. In the standard JavaFrame
approach the code for transitions (guard, effect and new state entered) are inserted in the
execTrans method. Another approach would be to generate a method for each transition.

 41

Such a change might have been more difficult if the intermediate meta-model was closer
to the code.

5.4.3 JfJava Transformations

The general transformation architecture used to implement the transformations from
UML to JfJava and from JfJava to code. For this scenario I chose to use the RSM
transformation framework as model-to-model technology. This allowed me to reuse part
of the original UML compiler, as that was also written using the RSM transformation
framework. The JfJava transformations are shown in Figure 13.

Figure 13 JfJava transformation architecture

Because of limited time the MOFScript transformation was not implemented completely.
The transformation would have been very similar to the MOFScript transformation from
JfUml (which is fully implemented). The RSM transformation was not implemented in
two parts for the same reason, however how to extend RSM transformations is described
in [25].

As explained in section 2.2.5 the RSM transformation framework is a Java framework for
creating transformations. A transformation consists of a set of rules which is represented
by Java classes that extends the AbstracRule framework class. To implement a rule the
code directly manipulates the meta-model API generated by EMF, in this case this is the
generated UML 2.0 API. This approach is much more verbose than using a dedicated
transformation language such as MTF, but it also gives a larger degree of control and
expressiveness to the transformation. An excerpt from the rule used to transform a UML
property to a Java field is given below.

 protected Object createTarget(ITransformContext ruleContext)
 throws Exception {
 Property source = (Property) ruleContext.getSource();
 Field target = createTargetObject();
 if (ruleContext.getTargetContainer() instanceof Class) {
 Class owner = (Class) ruleContext.getTargetContainer();
 setTargetContainer(target, owner);
 }

 42

 if (source.getType() instanceof Classifier) {
 // adding import to owning compilation unit
 CompilationUnit cu = getCompilationUnit(target);
 TypeImport typeImport = JmmFactory.eINSTANCE.createTypeImport();
 typeImport.setCompilationUnit(cu);
 References.setFeatureUnknownValue(typeImport, JmmPackage.eINSTANCE
 .getTypeImport_ImportedType(), source.getType());
 }

 updateTarget(source, target);
 References.mapReference(source, target);
 return target;
 }

Inheritance between rules is possible and I did implement a small inheritance hierarchy of
rules, but this requires much manual preparation and is not nearly as convenient as
extending MTF rules.

Some of the central classes in the RSM transformation are shown in Appendix B.

5.4.4 Generating meta-models from BNF

In [22] Fischer et al describes a method for developing meta-models from BNF [26].
Since I was making a meta-model for the Java language I examined the possibility of
using this method to create the Java meta-model. In the end I decided against using this
method for reasons I will explain later.

The method includes two steps. The first step is to generate a primitive meta-model from
the BNF definition. In the second step advanced meta-model concepts like generalization,
structural composition, and general abstract concepts are added manually. This manual
step is needed because meta-models are more expressive than grammars and those
concepts cannot be generated from the BNF definition.

Two things have to be manually provided for the second step of the process. The first is a
model of abstract concepts used by the language and the second is information about
which concrete language concept is a refinement of which abstract concept. Figure 14
shows a simplified activity diagram of the process.

 43

Figure 14 A simplified model showing the process of creating a meta-model from BNF

If this process is used on several programming languages, common abstract concepts may
be identified and a shared base of concept definitions may be used for related languages.
Such a language alignment would be helpful when creating transformations between
different modeling languages and programming languages.

The application mapping (step 1) is done by a tool called agramm and the model
transformation is implemented in Java using the mmm API, which is an API for model
transformation based on JMI*.

I will present an example of a very small BNF grammar, the transformation and the meta-
model produced from it. The grammar is shown below. Note that this grammar does not
describe any actual syntax (i.e., there are no terminals in this grammar).

Name :: TOKEN;

Class_name :: Name;
Import_name :: Name;
Package_name :: Name;
Field_name :: Name;

Identifier :: Package_name* Name;
Package_identifier :: Identifier;
Class_identifier :: Identifier;

CompilationUnit :: PackageDecl ImportDecl* ClassDecl;
PackageDecl :: Package_identifier;
ImportDecl :: Package_identifier | Class_identifier;
ClassDecl :: Class_name Field*;
Field :: Class_identifier Field_name;

* Java Metadata Interface. Sun’s implementation of MOF.

 44

The BNF is run through the agramm tool and a primitive meta-model is produced, this
completes step 1. For step 2 I need a model of abstract concepts and I need to implement
a transformation that links the abstract concepts to the concrete concepts of my language.
I will reuse the common abstract concepts used by Fischer et al. The transformation was
written manually, and an excerpt from it is presented below.

 // CompilationUnit
 compilationUnit.setContainer(structure);
 compilationUnit.setMetaSupertype(getAbstractModelElements().getNamespace());
 compilationUnit.addContainedType(packageDeclaration.getBase());
 compilationUnit.addContainedType(importDeclaration.getBase());
 compilationUnit.addContainedType(classDeclaration.getBase());

// ClassDecl
 classDeclaration.setContainer(structure);
 classDeclaration.setMetaSupertype(getAbstractModelElements().getNamespace());
 classDeclaration.setMetaSupertype(getAbstractModelElements().getNamedElement());
 classDeclaration.setIsNamedElement();
 classDeclaration.addContainedType(field.getBase());

The final produced meta-model is shown in Figure 15. The four elements in the Common
package are reused abstract elements.

Figure 15 Meta-model produces from BNF

As I said in the beginning I chose not to use this method, the first reason for this is that I
would have to modify the existing Java BNF. By modifying it I loose some of the
advantages of this approach; that it should be more automatic and less error prone. There
are several reasons I need to modify the BNF, the first is that the structure of the BNF
and the desired structure of the meta-model do not always match. For example the
CompilationUnit production of the grammar states that the CompilationUnit element
should have a composite association to PackageDecl. A better meta-model structure
would be to have a Package element with a composite association to CompilationUnit.
This problem is explained in section 5.4.1. Two other less important reasons I needed to
modify the BNF is that I was only creating a meta-model of a subset of the Java language

 45

and I would have needed to remove superfluous parts of the BNF. And I would have
needed to remove all terminals to make the grammar work with agramm.

The second reason is that the coding of the model transformation would be time
consuming and error prone, partly because the BNF needed to be modified and partly
because another difference between the grammar and the meta-model. The grammar
needs to have several identifiers (e.g., Class_identifier) because textually this is the only
way to identify elements. These identifiers are not needed in meta-models, direct
associations to the correct element is used instead. This change needed to be manually
implemented in the transformation. Fischer et al discuss this problem and conclude that
mostly it can be solved by modeling concepts that would use identifier in the grammar as
abstract concepts, thus removing the problem. However in Java some concrete elements
use identifiers, for instance ImportDecl. Note that the grammar I have shown includes
some identifiers, but these have not been implemented in the transformation.

The third reason is that the output meta-model was in the form of a MOF model. This
was a problem because no good MOF to EMF transformation tool was found. In addition
the generated MOF meta-model was structured in packages, the EMF code generator
treats each package as a different meta-model, though this is a minor point.

For all those reasons and because I was only going to create a meta-model of a subset of
the Java language, making the meta-model relatively simple, I chose to model it using
UML 2.0 and RSM instead. If I was making a meta-model of the complete Java language
I would not have to modify the BNF as much and the benefit of the generation would
have been bigger. In that case this approach might have been worth using.

5.5 JfUml intermediate meta-model
The JfUml meta-model consists of a subset of the UML 2.0 meta-model and a JavaFrame
extension to the UML 2.0 meta-model. In this section I explain the meta-model and the
transformations implemented.

As explained in section 5.2.2 MOFScript does not support input meta-models in several
files, this means that no UML 2.0 elements are available from the MOFScript
transformations. The JfJava intermediate meta-model solved this by simply defining the
two parts of the meta-model as one, but as this is not an option for this meta-model I
solved it by creating elements that extend the needed UML 2.0 elements. These elements
are shown in Figure 16. The metaclass stereotype shows that the element is from the
UML 2.0 meta-model.

 46

Figure 16 JfUml adaptations of UML 2.0 elements

Figure 17 shows a JavaFrame meta-model that extends the UML meta-model. It is very
similar to the JavaFrame extension of JfJava. The differences are partly due to limitations
of the MTF transformation language and partly due to just trying different approaches.

Figure 17 A JavaFrame meta-model that extends classes from the UML meta-model

An example of a difference is the MediatorConnection element and its association to
MediatorField called end. This would have been better represented by two associations
called source and target. This was not possible because this is represented as a single
association in the UML meta-model and because MTF has no way of distinguishing
between the order of elements in an association.

 47

Figure 18 CompositeStateClass and related elements

Figure 18 shows the CompositeStateClass and related elements, this almost the same as
the equivalent diagram in JfJava. The difference is that this meta-model do not have an
InitialState class, instead an initialTransition composite association from
CompositeStateClass to Transition represents this.

5.5.1 Transformations

The general transformation architecture was adapted to implement the transformations
needed for this intermediate meta-model. A difference from the general scenario is that
UML is both the source meta-model and the core part of the intermediate meta-model.
This has the consequence that the model-to-model transformations use UML as both
input and output and a UMLCopy transformation was needed. Figure 19 shows the
adapted transformation architecture. For this scenario MTF was chosen as model-to-
model transformation technology.

 48

Figure 19 Transformations using a JavaFrame intermediate meta-model that extends the UML
meta-model.

The UMLCopy transformation has rules for copying, among other things, classes,
attributes and operations. This is not useful by itself, but it allows for these rules to be
reused by any transformation that extend UMLCopy. Below is an example of a rule from
UMLCopy, it copies UML Property elements. This rule is then reused by extending it in
the UML2JavaFrame transformation.

.
relate mapProperty extends mapTypedElement(uml:Property e1, uml:Property e2) {
 equals(e1.visibility, e2.visibility)
 ,equals(e1.aggregation, e2.aggregation)
 ,equals(e1.default, e2.default)
 ,equals(e1.isStatic, e2.isStatic)
 ,equals(e1.isUnique, e2.isUnique)
 ,equals(e1.isLeaf, e2.isLeaf)
 ,mapLiteralSpecification(over e1.lowerValue, over e2.lowerValue)
 ,mapLiteralSpecification(over e1.upperValue, over e2.upperValue)
}

The next rule is a UML2JavaFrame rule that transforms ports to mediatorfield elements.
Since both Port and MediatorField are subtypes of Property, this rule can extend
mapProperty from UMLCopy.

relate mapMediatorField extends mapProperty(uml:Port e1, jf:MediatorField e2) {
 equals(e1.isBehavior, e2.isInput)
}

The UMLCopy transformation might have been generated by a transformation that takes
any meta-model as input and outputs code for copying that meta-model. Such a
transformation is defined with M3 level meta-models as source and is run with M2 level
meta-models as input, as opposed to the normal transformations that are defined with M2
level meta-models as source and are run with M1 level models as input.

For example I could have created a MOFScript transformation with Ecore meta-models
as source to produce a MTF transformation that copies any model that conforms to the

 49

input meta-model. I would then need to run the transformation with a UML Ecore meta-
model as input and a MTF transformation that copies UML models would have been
generated. Dennis Wagelaar [27] has created such a transformation using ATL as a
transformation language and MOF as source meta-model. This transformation generates
copy transformations defined in ATL.

As explained in section 5.2.2 MOFScript does not currently support transformation
inheritance sufficiently so UMLClasses2JavaCode and UML2JavaFrameCode was
implemented in one transformation called JfUml2Java. The three transformation files are
shown in Appendix A.

The core transformations may be reused to generate any Java code, not just code based on
JavaFrame. Also not all code generation scenarios warrant the use of an intermediate
meta-model, but even if no intermediate meta-model is used the UMLClasses2JavaCode
transformation may be useful to extend.

5.6 Comparing the JfUml to JfJava approaches
Even though the JfUml and JfJava intermediate meta-models started from two different
technologies, one from the Java programming language and the other from a subset of
UML, in the end they turned out to be quite similar. This is mostly because the core parts
only used structural concepts common to most object oriented systems. No behavior was
represented there. That was added in the JavaFrame extension, and that was going to
represent the same thing in both approaches.

One difference is the use of a CompilationUnit class in the JfJava meta-model, UML has
no such concept. Tough this is a minor difference.

The bigger differences in the intermediate meta-models were how they were created.
Creating an extension to the UML meta-model, and getting the code-generator to
generate correct code proved a technical challenge. The reuse of existing UML elements
made JfUml faster to create and gave it access to a lot of well thought out elements from
UML meta-model. However if some of those elements are better suited to be represented
differently in the intermediate meta-model, it can prove a problem.

The big difference regarding transformations is that JfUml can generate the UMLCopy
transformation. This has a potential to save time and to create a transformation that is
error free and well suited for extension.

The JfUml and JfJava intermediate meta-models are similar in level of abstraction. It
would be interesting to see how they compared with intermediate meta-models that are
closer to the code. Two good candidates for this are a complete Java meta-model and a
subset of the UML meta-model with a platform independent action language.

 50

6 Customizing the generated code
The previous chapter described the architecture and implementation of a transformation
from UML to JavaFrame. The transformations were implemented using two different
intermediate meta-models. In this chapter I look at how, given such a transformation, a
user can customize the generated code.

First different user roles involved in implementing and using transformations is
identified. Second a classification of customization alternatives is given and examples of
scenarios with partial implementations are shown. Finally how the transformation
architecture can benefit maintenance is discussed.

6.1 User roles
The different user roles involved in the implementation of and use of transformations are:

• Transformation designer / implementer

• Expert user / transformation extender

• Transformation user

Transformation designer is the role I have been addressing so far in this thesis. The
transformation designer creates the intermediate meta-models and implements
transformations. He may also be involved in creating extensions to existing
transformations.

The expert user is a user that not only uses the transformations to generate code, but also
customizes the generated code.

The transformation user creates models and runs the transformation(s). This thesis does
not discuss this user role.

This chapter describes how generated code can be customized and so the relevant user
roles are transformation designer and expert user.

6.2 Classification of changes
This section gives a short description of different types of possible changes to existing
transformations. A short outline of how the transformation architecture

6.2.1 Supporting more of UML

The existing transformation from UML to JavaFrame transforms composite structures,
statemachines and classes to Java code. A way of extending this transformation is to
support more of UML. Examples of this can be activity diagrams, deployment diagrams
and interactions.

 51

To implement such additions, the added source concepts must be represented in the
intermediate meta-model. Either the existing intermediate meta-model may be reused or
it must be extended to include the new concepts.

6.2.2 Supporting extensions to UML

The transformation can be extended to support extensions to UML. The UML extensions
are usually in the form of a profile. The effect on the transformations of this is very
similar to the last point about supporting more of UML.

6.2.3 Model checking

It may be desirable to not only generate code for running the model normally, but also to
run model checks. There are several ways to do this; it is for example possible to check a
running statemachine against a sequence diagram specification to verify that the
statemachine behaves according to the specification.

This would probably require change in the input, to specify which statemachine to verify
against which sequence diagram, and some change in the generated code, in other words
the intermediate meta-model needs to be extended.

6.2.4 Quality of Service (QoS) change

QoS changes is a large group of changes, some may require an intermediate meta-model
change, but a lot will probably only need a model-to-text extension. In section 6.3.3 I
show an implementation of an example of a QoS change; adding memory optimization to
signal classes.

6.2.5 Platform change

A possible change is to generate code for a different platform. Depending on the level of
the intermediate meta-model this may require an intermediate meta-model change; if it
does a lot needs to be changed. If not only the model-to-text transformations need to be
replaced.

6.2.6 Different semantic variation point implementation

One or more semantic variation points may be implemented differently. An example of
this is the choice of which transition to fire when outgoing transitions from a single state
has conflicting triggers. If a state has two outgoing transitions, one triggered by SignalA
and the other triggered by SignalB and SignalB is a subtype of SignalA, which transition
should be triggered if a SignalA object is received? This is a semantic variation point in
UML 2.0 and a conflict resolutions mechanism is needed. The default JavaFrame
behavior is to select a consistent arbitrary transition (based on order). Another solution
would be to choose randomly each time such a conflict occurs. It could be argued that
this is better for fairness purposes, but it is also less deterministic. This change could be
implemented by extending the model-to-text transformation. However UML 2.0 has

 52

many semantic variation points and some of them would probably require an intermediate
meta-model change to implement.

In [19] Chauvel and Jézéquel discusses in detail how semantic variation points can be
modeled and how different code can be generated for different solutions.

6.3 Examples
This section explains some specific examples of customization of the generated code. I
use the JfUml transformations as a starting point and show what changes need to be made
to implement the customizations.

6.3.1 Generating Tests for JavaFrame models

The UML 2.0 Testing profile is used to specify tests for the model and JavaFrame
specific tests are generated.

This is an example of adding support for an extension to UML and an extension that
requires a change in the intermediate meta-model. The changes are shown in Figure 20
where a new extension layer is added to the JfUml transformations. The extension layer
consists of an intermediate meta-model extension and two transformation extensions.

Whenever an extension to the intermediate meta-model is required such an extensions
layer needs to be added.

Figure 20 JfUml transformation architecture extended with support for UML Testing Profile

6.3.2 Generating C# code

If JavaFrame was ported to C#Frame there would be possible to generate C# code. This is
an example of a platform change. The existing intermediate meta-model and model-to-
model transformation could be reused but the model-to-text transformations would need

 53

to be replaced. The modified transformation architecture of the JfUml transformations is
shown in Figure 21.

Figure 21 C#Frame Transformations

6.3.3 Adding memory optimization to signals

This change is a Quality of Service (QoS) change. It does not require an extension to the
intermediate meta-model. Extending the model to text transformation is all that is
required.

Figure 22 shows the JfUml transformation architecture with an additional MOFScript
transformation. This transformation specializes the code generated from signal elements.

Figure 22 QoS Signal memory optimization

Methods for creation and destruction of signal objects is created and added to all signal
classes. If these methods are used instead of the Java ‘new’ operator a lot of unnecessary
object creation and garbage collection may be avoided.

To implement this change, four additional methods need to be generated for each signal
class.

 54

/* QoS extension: Add freelist to signals */
import "UmlJF2JavaFrame.m2t"

texttransformation SignalFreelist(in jf:"http:///JF.ecore") extends UmlJF2JavaFrame

jf.SignalClass::mapConstructor() {
 super.mapConstructor()
 var constructorPars = self.getConstructorParameterString()
 var constructorArgs = self.getConstructorArgString()
 newline
<%

private static %>self.name<% %> self.name<%Freelist; // top of the freelist stack
 private %> self.name <% %>self.name<%Next; // the list pointer

 synchronized public static %>self.name<% New%>self.name<%() {
 // method contents …

}

synchronized public static %>self.name<%New%>self.name<%(%>constructorPars<%) {
 // method contents …
}

synchronized private static void %>self.name<%DelMsg (%>self.name<% sig) {
 // method contents …
}

public void del() {
 %>self.name<%DelMsg (this);
}

%>
}

This transformation contains only one rule: mapConstructor. This rule overrides a rule
defined in UmlJF2JavaFrame which generates a constructor for the class. This have the
effect of replacing the original rule with this one, but because I still want to generate a
constructor for the class I call super.mapConstructor() which will call the original rule.

Note that this extension does not currently work as it is shown here due to a bug in the
inheritance mechanism of MOFScript. To run the transformation I implemented all the
three MOFScript transformations as one transformation. This transformation is shown in
Appendix A.

6.3.4 Reusing the core

If a transformation from UML to Java for something that is unrelated to JavaFrame needs
to be implemented, the core part of the transformation architecture may still be reused.
Figure 23 shows a transformation were the JavaFrame extension layer has been replaced
by a GWT* extension layer.

* Google Web Toolkit, a framework for developing web-applications in Java.

 55

Figure 23 GWT extension, reusing the core transformation layer

6.4 Maintenance
Change is inevitable and transformations must prepare for it. The reasons for changing
transformations may be new demands, bugs, and changes in the source or target
language.

By separating the source from the target with an intermediate meta-model the
consequences of a change in the source or target language is limited. In the case of a
change from UML version 2.0 to 2.1, only the model-to-model transformations need
changing. Although the JfUml meta-model uses a subset of UML this is probably
unlikely to change much, as this subset (classes, attributes, etc.) are well established
concepts.

Changes in the transformation that do not require an intermediate meta-model change can
probably be limited to changing one of the four transformations. However if a change of
the intermediate meta-model is needed, at least two transformations must be changed
(one model-to-model and one model-to-text).

Changes performed in a super-transformation may require changes in any sub-
transformations, although if none of the signatures of the rules in the super-
transformations are changed, the change can be limited to only that transformation.

 56

7 Summary and conclusions
The background for this thesis was an existing UML compiler producing JavaFrame code
from UML 2.0 models annotated with JavaFrame-specific stereotypes. The compiler was
written as a single transformation using Java and the RSM transformation framework.

The main problem was how transformations could be made more user-friendly in the
sense that there would be easier to customize the generated code.

To answer this I developed a general transformation architecture that uses an intermediate
meta-model in two parts: one core meta-model and one extension. The use of an
intermediate meta-model allowed the transformation to be split in a model-to-model
transformation and a model-to-text transformation. And because the intermediate meta-
model was defined in two parts, both of these transformations could be split in a core and
an extended part.

Different ways of creating intermediate meta-models were presented and analyzed, and
two intermediate meta-models were created. The first intermediate meta-model used a
Java meta-model as a core part and the second used a subset of the UML meta-model.
Both used a JavaFrame meta-model as an extension. Even though the two intermediate
meta-models had different starting points they turned out to be quite similar.

The general transformation architecture was adapted to the specific scenarios and
transformations were implemented using MTF, the RSM transformation framework, and
MOFScript.

Using the transformation architecture I showed how the generated code could be
customized either by extending the transformation or by replacing parts of it. The fact
that the transformation architecture consists of several small transformation, that
transformation inheritance is used, and that the intermediate meta-model provide a
separation layer between the source and the target allow for these customization and
replacements to be implemented while reusing large parts of the existing transformation.

7.1 Future work
When choosing intermediate meta-models I discussed using a subset of UML or a Java
meta-model as an intermediate meta-model and I identified problems with intermediate
meta-models this close to the code. Trying to overcome these problems and
implementing transformations for such an intermediate meta-model would be an
interesting experiment.

The major obstacle for developing large transformations is the immaturity of current
transformation languages. The developed transformation architecture had a set of
requirements for model transformation languages, these requirements were to demanding
for most transformation languages. A lot of work remains implementing transformation
languages that are suited for modular development.

 57

8 References

1. S. Savenko, Combined PIM-PSM, in Institute of Informatics. 2004, University of
Oslo. p. 135.

2. OMG, Meta Object Facility 1.4, OMG Document (formal/02-04-03). 2005.

3. Introducing EMF, Eclipse Foundation. [Slideshow presentation] 2004 [cited
14.3.2006]; Available from:
http://www.awprofessional.com/content/images/0131425420/samplechapter/budi
nskych02.pdf.

4. M. Paternostro and K. Hussey. Advanced Features of the Eclipse Modeling
Framework. EclipseCon [Slideshow presentation] 2006 [cited 10.5.2006];
Available from: http://eclipse.org/emf/docs/presentations/EclipseCon.

5. OMG. Unified Modeling Language (UML). [Webpage] [cited 13.5.2006];
Available from: http://www.uml.org/.

6. OMG, UML Superstructure Specification, OMG Document (formal/05-07-04).
2005.

7. Wikipedia. Unified Modeling Language. [Webpage] [cited 13.5.2006]; Available
from: http://en.wikipedia.org/wiki/Unified_Modeling_Language.

8. T. Mens, K. Czarnecki, and P.V. Gorp, A Taxonomy of Model Transformations.
Dagstuhl Seminar on Language Engineering for Model-Driven Software
Development, 2005.

9. K. Czarnecki and S. Helson, Classification of Model Tranformation Approaches.
OOPSLA’03 Workshop on Generative Techniques in the Context of MDA, 2003.

10. OMG, MOF QVT Final Adopted Specification (ptc/05-11-01). 2005.

11. F. Jouault and I. Kurtev. Transforming models with ATL. in Proceedings of the
Model Transformations in Practice Workshop. 2005. Jamaica.

12. IBM. Model Transformation Framework. [Application] [cited 21.5.2006];
Available from: http://www.alphaworks.ibm.com/tech/mtf.

13. MOFScript. [Transformation language] [cited 21.5.2006]; Available from:
http://www.eclipse.org/gmt/mofscript/.

14. G.v.E. Boas, Template Programming for Model-Driven Code Generation. 2004:
p. 17.

 58

15. I. Kurtev, K.v.d. Berg, and F. Jouault, Evaluation of Rule-based Modularization
in Model Transformation Languages illustrated with ATL (preliminary version).
2006.

16. J. Oldevik, Transformation Composition Modeling Framework. 2005: p. 7.

17. K.C. Louden, Compiler Construction: Principles and Practice. 1997: PWS
Publishing Company.

18. B. Vanhooff and Y. Berbers, Breaking Up the Transformation Chain. 2005: p. 5.

19. F. Chauvel and J.-M. Jézéquel, Code generation from UML Models with semantic
variation points. 2005: p. 15.

20. J. Rumbaugh, I. Jacobsen, and G. Booch, The Unified Modelling Language
Reference Manual, Second edition. 2004: Addison-Wesley.

21. P.-A. Muller, F. Fleurey, and J.-M. Jézéquel, Weaving Executability into Object-
Oriented Meta-Languages, in Proceedings of UML MoDELs. 2005, Springer
Verlag: Jamaica.

22. J. Fischer, M. Piefel, and M. Scheidgen, A Metamodel for SDL-2000 in the
Context of Metamodeling ULF. 4th SDL and MSC Workshop, 2004.

23. QVT-Merge_Group, Revised submission for MOF 2.0
Query/view/Transformation RFP (ad/05-03-02). 2005, OMG.

24. Sun. NetBeans Source. [Webpage] [cited 16.5.2006]; Available from:
http://www.netbeans.org/community/sources/.

25. D. Ruest. Extending the UML to Java transformation with Rational Software
Architect: An example explained. [cited 21.5.2006]; Available from: http://www-
128.ibm.com/developerworks/rational/library/05/802_uml/.

26. L.M. Garshol. BNF and EBNF: What Are They and How Do They Work? [cited
20.5.2006]; Available from: http://www.garshol.priv.no/download/text/bnf.html.

27. D. Wagelaar. MDE Case Studies. [Webpage] [cited 15.5.2006]; [Vrije
Universiteit Brusse, System and Software Engineering Lab.] Available from:
http://ssel.vub.ac.be/ssel/research:mdd:casestudies.

 59

Appendix A - JfUml Transformations

UMLCopy.rdl (MTF v 1.1)

import uml "http:///com/ibm/mtf/uml.ecore"
import uml "http://www.eclipse.org/uml2/1.0.0/UML"
import util "http:///com/ibm/mtf/util.ecore"
import ecore "http://www.eclipse.org/emf/2002/Ecore"
import emf "http:///com/ibm/mtf/model/emf.ecore"
import ws "http:///com/ibm/mtf/model/workspace.ecore"

relate File(ws:IFile file1, ws:IFile file2){
 mapModel(
 over file1.resource.contents,
 over file2.resource.contents)
}

relate mapModel (uml:Model m1, uml:Model m2) {
 equals(m1.name, m2.name)
 ,equals(over m1.profiles, over m2.profiles)
 ,ordered mapElement(over m1.ownedMember, over m2.ownedMember)
}

relate mapElement(uml:Element e1, uml:Element e2) {
 //equals(over e1.stereotypes, over e2.stereotypes)
}

abstract relate mapNamedElement extends mapElement(
 uml:NamedElement e1,
 uml:NamedElement e2)
 when equals(e1.name, e2.name) {}

relate mapPackageImport(uml:PackageImport e1, uml:PackageImport e2)
{
 mapLocalPackageImport(e1, e2),
 mapReferencePackageImport(e1, e2)
}

relate mapLocalPackageImport /*extends
mapPackageImport*/(uml:PackageImport e1, uml:PackageImport e2)
 when ref mapPackage(e1.importedPackage, e2.importedPackage)
{
 ref mapPackage(e1.importedPackage, e2.importedPackage)
}

relate mapReferencePackageImport /*extends
mapPackageImport*/(uml:PackageImport e1, uml:PackageImport e2)
 when !equals(e1.importedPackage.model, e1.model)
{
 equals(e1.importedPackage, e2.importedPackage)
}

 60

relate stereotypeByName(uml:Stereotype e1, ecore:EString name)
 when equals(e1.name, name)

/*
* Should seperate between types that are part of the model and types
that
* are inter-model references. Types that are part of the model should
* link to the new element in the target model, types that are
* inter-model references should link to the same element in the
* referenced model.
*/
abstract relate mapTypedElement extends mapNamedElement(
 uml:TypedElement e1,
 uml:TypedElement e2) {
 mapTypedElementType(e1,e2)
}

abstract relate mapTypedElementType(
 uml:TypedElement e1, uml:TypedElement e2)

relate mapTypedElementPrimitiveType extends mapTypedElementType(
 uml:TypedElement e1 ,
 uml:TypedElement e2)
 when util:InstanceOf "uml:PrimitiveType" (e1.type) {
 equals(e1.type, e2.type)
}

relate mapTypedElementClassType extends mapTypedElementType(
 uml:TypedElement e1 when util:InstanceOf"uml:Class" (e1.type),
 uml:TypedElement e2) {
 ref mapClass(e1.type, e2.type)
}

relate mapTypedElementNullType extends mapTypedElementType(
 uml:TypedElement e1,
 uml:TypedElement e2) when !util:InstanceOf "uml:Element" (e1.type)

relate mapPackage extends mapNamedElement(
 uml:Package e1, uml:Package e2) {
 mappedPackage(e1),
 ordered mapClassifier(over e1.ownedMember, over e2.ownedMember)
 ,ordered mapPackage(over e1.ownedMember, over e2.ownedMember)
}

relate mappedPackage(uml:Package e1)

abstract relate mapClassifier extends mapNamedElement(
 uml:Classifier e1,
 uml:Classifier e2) {
 mapGeneralization [0..1](
 over e1.generalization,
 over e2.generalization)
 ,ordered mapPackageImport(over e1.packageImport, over
e2.packageImport)
}

 61

relate mapClass extends mapClassifier(uml:Class e1, uml:Class e2) {
 ordered mapProperty(over e1.ownedAttribute, over e2.ownedAttribute),
 ordered mapOperation(
 over e1.ownedOperation,
 over e2.ownedOperation)
 ,ordered mapActivity(over e1.ownedBehavior, over e2.ownedBehavior)
}

relate mapGeneralization extends mapElement(
 uml:Generalization e1,
 uml:Generalization e2) {
 ref mapClassifier [1](over e1.general, over e2.general)
}

relate mapProperty extends mapTypedElement(uml:Property e1,
uml:Property e2) {
 equals(e1.visibility, e2.visibility)
 ,equals(e1.aggregation, e2.aggregation)
 ,equals(e1.default, e2.default)
 ,equals(e1.isStatic, e2.isStatic)
 ,equals(e1.isUnique, e2.isUnique)
 ,equals(e1.isLeaf, e2.isLeaf)
 ,mapLiteralSpecification(over e1.lowerValue, over e2.lowerValue)
 ,mapLiteralSpecification(over e1.upperValue, over e2.upperValue)
}

/*
relate mapMultiplicityElement extends mapElement(
 uml:MultiplicityElement e1, uml:MultiplicityElement e2) {
 mapLiteralSpecification(
 over e1.lowerValue, over e2.lowerValue)
 ,mapLiteralSpecification(
 over e1.upperValue, over e2.upperValue)
}
*/

abstract relate mapLiteralSpecification extends mapElement (
 uml:LiteralSpecification e1, uml:LiteralSpecification e2)

relate mapLiteralInteger extends mapLiteralSpecification(
 uml:LiteralInteger e1, uml:LiteralInteger e2)
{
 equals(e1.value, e2.value)
}

relate mapLiteralUnlimitedNatural extends mapLiteralSpecification(
 uml:LiteralUnlimitedNatural e1, uml:LiteralUnlimitedNatural e2)
{
 equals(e1.value, e2.value)
}

relate mapLiteralString extends mapLiteralSpecification(
 uml:LiteralString e1, uml:LiteralString e2)
{
 equals(e1.value, e2.value)
}

 62

relate mapLiteralBoolean extends mapLiteralSpecification(
 uml:LiteralBoolean e1, uml:LiteralBoolean e2)
{
 equals(e1.value, e2.value)
}

relate mapOperation extends mapTypedElement(
 uml:Operation e1,
 uml:Operation e2) {
 equals(e1.isLeaf, e2.isLeaf)
 ,equals(e1.isStatic, e2.isStatic)
 ,mapParameter [0..1] (over e1.returnResult, over e2.returnResult)
 ,ordered mapParameter (over e1.ownedParameter, over
e2.ownedParameter)
 ,ref mapActivity [0..1] (over e1.method, over e2.method)
}

relate mapParameter extends mapTypedElement (
 uml:Parameter e1,
 uml:Parameter e2) {
 equals(e1.visibility, e2.visibility)
 ,equals(e1.default, e2.default)
 ,equals(e1.isUnique, e2.isUnique)
 ,equals(e1.lower, e2.lower)
 ,equals(e1.upper, e2.upper)
 ,equals(e1.direction, e2.direction)
 ,ref mapActivity(e1.effect, e2.effect)
}

relate mapActivity extends mapNamedElement(
 uml:Activity e1,
 uml:Activity e2) {
 mapActivityEdge(over e1.edge, over e2.edge)
 ,mapNode(over e1.node, over e2.node)
}

abstract relate mapNode extends mapNamedElement(uml:ActivityNode e1,
 uml:ActivityNode e2) {}

relate mapInitial extends mapNode(
 uml:InitialNode e1, uml:InitialNode e2)
relate mapAction extends mapNode(uml:Action e1, uml:Action e2)
relate mapFinal extends mapNode(
 uml:ActivityFinalNode e1, uml:ActivityFinalNode e2)

abstract relate mapActivityEdge extends mapNamedElement(
 uml:ActivityEdge e1, uml:ActivityEdge e2)
 when ref mapNode(e1.source, e2.source)
 & ref mapNode(e1.target, e2.target)

relate mapControlFlow extends mapActivityEdge(
 uml:ControlFlow e1, uml:ControlFlow e2)

relate mapObjectFlow extends mapActivityEdge(
 uml:ObjectFlow e1, uml:ObjectFlow e2)

 63

UML2JavaFrame.rdl (MTF v 1.1)

import "UMLCopy.rdl"

import jf "http:///JF.ecore"

/*
 * The rules in this transformation extend rules defined in
 * UMLCopy.rdl
 */
abstract relate mapActiveObjectClass extends mapJavaFrameClass(
 uml:Class e1 when util:InstanceOf "uml:StateMachine" (e1)
 | stereotypeByName(match over e1.stereotypes, "Composite") ,
 jf:ActiveObjectClass e2) {
 //createSchedulerProperty [1] (match over e2.ownedAttribute),
 ordered mapMediatorField(over e1.ownedPort, over e2.formalMediator)
}

relate createSchedulerProperty(jf:JavaFrameProperty e1 when equals(e1.name, "sched")) {
 //equals(e1.type, "jf:Scheduler"),
 //equals(e1.name, "sched")
}

/* StateMachine and CompositeState */
relate mapStateMachine extends mapActiveObjectClass(
 uml:StateMachine e1,
 jf:StateMachineClass e2) {
 mapCompositeStateClass [1](over e1.region, over e2.package.ownedMember),
 ref mapCompositeStateClass(over e1.region, e2.compositeState)
}

relate mapCompositeStateClass(uml:Region e1, jf:CompositeStateClass e2)
 when util:MatchString "{0}_{1}" (e1.stateMachine.name, e1.name, e2.name) {
 ref mapStateMachine(e1.stateMachine, e2.stateMachine)
 ,ordered mapState(over e1.subvertex, over e2.state)
 ,ordered mapChoice(over e1.subvertex, over e2.choice)
 ,mapInitialTransition[0..1](over e1.subvertex, e2.initialTransition)
 //,ordered mapTransition(over e1.transition, over e2.transition)
}

/*
relate createCompositeStateClass(
 jf:CompositeStateClass e1,
 uml:Region e3,
 ecore:EString e2)
 when util:MatchString "{0}States" (e2, e1.name) {
 equals(e1.region, e3),
 ref mapStateMachine(e3.stateMachine, e1.stateMachine)
}
*/

 64

abstract relate mapVertex(uml:Vertex e1, jf:JavaFrameVertex e2) {
 //ordered mapTransition(over e1.owner.ownedElement, over e2.outgoing, e1)
 ordered mapTransition(over e1.outgoing, over e2.outgoing)
}

relate mapState extends mapVertex(
 uml:State e1,
 jf:JavaFrameState e2) {
 equals(e2.visibility, "public")
 //,equals(e1.default, e2.default)
 //,equals(e1.isComposite, e2.isComposite)
 ,equals(e2.isStatic, "true")
 //,equals(e2.isUnique, "false")
 ,equals(e2.isLeaf, "false")
 ,equals(e1.name, e2.name)
 //,mapDefaultTransition [0..1](over e1.owner.ownedElement, e2.defaultTransition, e1)
}

relate mapFinalState extends mapState(uml:FinalState e1, jf:JavaFrameFinalState e2) {
 //equals(e2.name, "finalState")
}

relate mapChoice extends mapVertex(
 uml:Pseudostate e1 when equals(e1.kind, "choice"),
 jf:JavaFrameChoice e2) {
 //ordered mapTransition(over e1.owner.ownedElement, over e2.outgoing, e1)
}

relate mapTransition(
 uml:Transition e1, jf:JavaFrameTransition e2) {
 //ref mapVertex(e3, e2.source),
 mapGuard(e1.guard.specification, e2),
 mapActivity(e1.effect, e2.effect),
 mapSignalTrigger(over e1.trigger, e2),
 ref mapVertex(e1.target, e2.target),
 ref mapVertex(e1.source, e2.source)
}

relate mapInitialTransition(
 uml:Pseudostate e1 when equals(e1.kind, "initial"),
 jf:JavaFrameTransition e2) {
 mapTransition[1](over e1.outgoing, e2)
}

/*
relate mapDefaultTransition(
 uml:Transition e1, jf:JavaFrameTransition e2, uml:State e3)
 when !ref checkNotDefaultGuard(e1.guard.specification) {
 mapActivity(e1.effect, e2.effect),
 mapSignalTrigger(over e1.trigger, e2),
 ref mapVertex(e1.target, e2.target)
}

relate checkNotDefaultGuard(uml:OpaqueExpression e1)
 when !(equals(e1.body, "else") | equals(e1.body, ""))

 65

*/

relate mapGuard(uml:OpaqueExpression e1, jf:JavaFrameTransition e2) {
 equals(e1.body, e2.guardPredicate)
}

relate mapSignalTrigger(uml:SignalTrigger e1, jf:JavaFrameTransition e2) {
 mapTrigger(over e1.signal, e2)
}

relate mapTrigger(uml:Signal e1, jf:JavaFrameTransition e2) {
 ref mapSignal(e1, over e2.trigger)
}

/* END StateMachine and CompositeState section */

relate mapMediator extends mapJavaFrameClass(
 uml:Class e1 when stereotypeByName(
 match over e1.stereotypes, "Mediator"),
 jf:MediatorClass e2) {
 //ref mapForwardAcitivity [0..1](e1.activity, e2.forward)
}

relate mapComposite extends mapActiveObjectClass(
 uml:Class e1, jf:CompositeClass e2)
 when stereotypeByName(match over e1.stereotypes,"Composite"){
 //ordered mapActiveObjectField(over e1.ownedAttribute, over e2.activeobjectfield),
 ordered mapConnector(
 over e1.ownedConnector,
 over e2.mediatorconnection)
 ,createMainClass[1](e1, over e2.package.ownedMember)
}

relate createMainClass (uml:Class e1, jf:MainClass e2) {
 util:MatchString "{0}_Main" (e1.name, e2.name),
 createMainActiveObjectField(e1, e2.composite)
}

relate createMainActiveObjectField(uml:Class e1, jf:ActiveObjectField e2) {
 equals(e2.name, "Main"),
 ref mapComposite(e1, e2.type),
 equals(e2.aggregation, "composite"),
 ordered mapMediatorField(over e1.ownedPort, over e2.actualMediator)
}

relate mapSignal extends mapClassifier(uml:Signal e1, jf:SignalClass e2) {
 ordered mapProperty(over e1.ownedAttribute, over e2.ownedAttribute)
}

relate mapActiveObjectField extends mapJavaFrameProperty (
 uml:Property e1 when equals(e1.isComposite, "true"),
 jf:ActiveObjectField e2) {
 mapActualMediatorField(over e1.type, e2, e1)
}

 66

relate mapActualMediatorField(
 uml:Class e1,
 jf:ActiveObjectField e2,
 uml:Property e3) {
 mapActiveObjectMediatorField(
 over e1.ownedPort,
 over e2.actualMediator, e3)
}

relate mapActiveObjectMediatorField(
 uml:Port e1,
 jf:MediatorField e2,
 uml:Property e3)
 when util:MatchString "{0}_{1}" (e3.name, e1.name, e2.name){
 equals(e1.visibility, e2.visibility)
 ,equals(e1.default, e2.default)
 //,equals(e1.isComposite, e2.isComposite)
 ,equals(e1.isStatic, e2.isStatic)
 ,equals(e1.isUnique, e2.isUnique)
 ,equals(e1.isLeaf, e2.isLeaf)
 ,equals(e1.lower, e2.lower)
 ,equals(e1.upper, e2.upper)
 ,mapTypedElementType(e1, e2)
}

relate mapMediatorField extends mapJavaFrameProperty(
 uml:Port e1, jf:MediatorField e2) {
 equals(e1.isBehavior, e2.isInput)
}

relate mapConnector(uml:Connector e1, jf:MediatorConnection e2) {
 ordered mapConnectorEnd(over e1.end, e2)
}

abstract relate mapConnectorEnd(
 uml:ConnectorEnd e1, jf:MediatorConnection e2) {}

relate mapActualPortConnectorEnd extends mapConnectorEnd(
 uml:ConnectorEnd e1, jf:MediatorConnection e2)
 when util:InstanceOf "uml:Property" (e1.partWithPort) {
 ref mapActiveObjectMediatorField (
 e1.role, e2.end, e1.partWithPort)
}

relate mapFormalPortConnectorEnd extends mapConnectorEnd(
 uml:ConnectorEnd e1, jf:MediatorConnection e2)
 when !util:InstanceOf "uml:Property" (e1.partWithPort){
 ref mapMediatorField (over e1.role, over e2.end)
}
/*
 * These to compensate for not being able to access uml element
 * in MOFScript
 */
relate mapJavaFrameModel extends mapModel(
 uml:Model e1, jf:JavaFrameModel e2)

 67

relate mapJavaFramePackage extends mapPackage(
 uml:Package e1, jf:JavaFramePackage e2)

relate mapJavaFrameProperty extends mapProperty(
 uml:Property e1, jf:JavaFrameProperty e2)

relate mapJavaFrameParameter extends mapParameter(
 uml:Parameter e1, jf:JavaFrameParameter e2)

relate mapJavaFrameClass extends mapClass(
 uml:Class e1, jf:JavaFrameClass e2)

relate mapJavaFrameOperation extends mapOperation(
 uml:Operation e1, jf:JavaFrameOperation e2)

relate mapJavaFrameActivity extends mapActivity(
 uml:Activity e1, jf:JavaFrameActivity e2)

JFUml2Java.m2t (MOFScript v 1.1.4)

texttransformation JfUml2Java (in jfuml:"http:///JF.ecore")

property OBJECT = "Object"
property file_extension = ".java"

property targetDir = "gen-src/"

jfuml.JavaFrameModel::main() {
 self.mapModel()
}

jfuml.JavaFrameModel::mapModel() {
 self.ownedMember->forEach(c:jfuml.JavaFramePackage) {
 c.mapPackage()
 }
}

jfuml.JavaFramePackage::mapPackage() {
 self.ownedMember->forEach(c : jfuml.JavaFrameClass) {
 c.mapClass()
 }
 self.ownedMember->forEach(c:jfuml.JavaFramePackage) {
 c.mapPackage()
 }
}

jfuml.JavaFrameClass::mapClass() {
 file (targetDir + self.owner.getFolderName() + "/" + self.name + file_extension)

 self.mapPackageDeclaration()
 nl
 self.mapImportDeclarations()

 68

 nl
 self.mapClassDeclarationStart()
 nl
 self.mapFields()
 nl
 self.mapConstructor()
 nl
 self.ownedOperation->forEach(o:jfuml.JavaFrameOperation) {
 o.mapOperation()
 }
 nl
 self.mapClassDeclarationEnd()
}

jfuml.JavaFrameClass::mapClassDeclarationStart() {
 <%public class %> self.name <% extends %> self.getGeneralLiteral(OBJECT) <% { %>
 nl
}

jfuml.JavaFrameClass::mapClassDeclarationEnd() {
<%}%>nl
}

jfuml.JavaFrameClass::mapPackageDeclaration() {
 println("package "+self.owner.getQualifiedName()+ ";")
}

jfuml.JavaFrameClass::mapImportDeclarations() {
 var imports:Hashtable // use hashtable to avoid duplicates
 self.ownedAttribute->forEach(c:jfuml.JavaFrameProperty) {
 if (c.type != null) {
 if (c.type.oclIsKindOf(jfuml.JavaFrameClass)) {
 if (c.type.owner != self.owner) { // dont import types from same package
 imports.put(c.type, c.type)
 }
 }
 }
 }
 imports->forEach(c : jfuml.JavaFrameClass) {
 println("import " + c.getQualifiedName() + ";")
 }

 self.packageImport->forEach(c) {
 println("import " + c.importedPackage.getQualifiedName() + ".*;")
 }
 self.mapImportDeclarationsMergeExtension()
}

jfuml.JavaFrameClass::mapFields() {
 self.mergesMapFields()
 self.ownedAttribute->forEach(p:jfuml.JavaFrameProperty) {
 p.mapProperty()
 }

}

 69

jfuml.JavaFrameClass::mergesMapFields() {}

jfuml.JavaFrameProperty::mapProperty() {
 tab<%%>self.getVisibilityLiteral() <% %> self.getTypeLiteral() <% %> self.name <%;%>nl
}

jfuml.JavaFrameClass::mapConstructor() {
 self.mapDefaultConstructor()
 nl
 if (!(self.ownedAttribute.isEmpty() && self.inheritedMember.isEmpty()))
 self.mapParameterizedConstructor()
 nl
 self.inheritsMapConstructor()
}

jfuml.JavaFrameClass::inheritsMapConstructor() {}

jfuml.JavaFrameClass::mapParameterizedConstructor() {
<% public %> self.name <%(%> self.getConstructorParameterString() <%) {
 super(%> self.getConstructorSuperArgString() <%);
%>
 self.ownedAttribute->forEach(c) {
 tab(2)<%this.%> c.name <% = %> c.name <%;%>nl
 }
<% }
%>
}

jfuml.JavaFrameClass::mapDefaultConstructor() {
<% public %> self.name <%() {
 super();
 }
%>
}

jfuml.JavaFrameOperation::mapOperation() {
 var return:String
 var parameters:String
 if (self.returnResult.isEmpty()) {
 return = "void"
 } else {
 return = self.returnResult.first().getTypeLiteral()
 }
 self.ownedParameter->forEach(p:jfuml.JavaFrameParameter) {
 parameters += p.getTypeLiteral() + " " + p.name + ", "
 }
 if (parameters.size() > 0) {
 parameters = parameters.substring(0, parameters.size() - 2)
 }
 tab<%%> self.visibility <% %> return <% %> self.name <%(%> parameters <%) {
%>
 self.method->forEach(a:jfuml.JavaFrameActivity) {
 a.mapActivity()
 }
<% }
%>

 70

}

jfuml.JavaFrameActivity::mapActivity() {
 if (self.action.isEmpty()) {
 println(self.name)
 } else {
 self.action->forEach(a) {
 println(a.name)
 }
 }
}

/* HELPERS */
jfuml.JavaFrameProperty::getTypeLiteral() : String {
 if (self.type = null) {
 result = OBJECT
 } else {
 result = self.type.name
 }
}

jfuml.JavaFrameParameter::getTypeLiteral() : String {
 if (self.type = null) {
 result = OBJECT
 } else {
 result = self.type.name
 }
}

jfuml.JavaFrameProperty::getVisibilityLiteral() : String {
 if (self.visibility = "package")
 result = ""
 else
 result = self.visibility
}

jfuml.JavaFrameClass::getGeneralLiteral(default:String) : String {
 result = default
 if (!self.general.isEmpty()) {
 result = self.general.first().name
 }
}

jfuml.JavaFrameClass::getConstructorParameterString() : String {
 var cp:String
 self.ownedAttribute->forEach(c:jfuml.JavaFrameProperty) {
 cp += c.getTypeLiteral() + " " + c.name + ", "
 }
 self.inheritedMember->forEach(c:jfuml.JavaFrameProperty) {
 cp += c.getTypeLiteral() + " " + c.name + ", "
 }
 // Remove trailing comma
 if (cp.size() > 0) { cp = cp.substring(0, cp.size() - 2) }
 result = cp
}

 71

jfuml.JavaFrameClass::getConstructorArgString() : String {
 var args:String
 args = self.mergesGetConstructorArgString()
 self.ownedAttribute->forEach(c:jfuml.JavaFrameProperty) {
 args += c.name + ", "
 }
 self.inheritedMember->forEach(c:jfuml.JavaFrameProperty) {
 args += c.name + ", "
 }
 // Remove trailing comma
 if (args.size() > 0) { args = args.substring(0, args.size() - 2) }
 result = args
}

jfuml.JavaFrameClass::mergesGetConstructorArgString() : String {
 result = ""
}

jfuml.JavaFrameClass::getConstructorSuperArgString() {
 var args:String
 self.inheritedMember->forEach(c:jfuml.JavaFrameProperty) {
 args += c.name + ", "
 }
 // Remove trailing comma
 if (args.size() > 0) { args = args.substring(0, args.size() - 2) }
 result = args
}

jfuml.JavaFramePackage::getQualifiedName() : String {
 result = self.qualifiedName.replace("::", ".")
}

jfuml.JavaFramePackage::getFolderName() : String {
 result = self.qualifiedName.replace("::", "/")
}

jfuml.JavaFrameClass::getQualifiedName() : String {
 if (self.owner.oclIsKindOf(jfuml.JavaFramePackage)) {
 result = self.owner.getQualifiedName() + "." + self.name
 } else {
 result = self.name
 }
}

jfuml.JavaFramePrimitiveType::getQualifiedName() : String {
 result = self.name
}

/* JAVAFRAME SPECIFIC (MOFScript help) */
jfuml.JavaFrameClass::mapImportDeclarationsMergeExtension() {
 println("import se.ericsson.eto.norarc.javaframe.*;")
}

/* ActiveObject */
jfuml.ActiveObjectClass::mergesMapFields() {

 72

<% Scheduler sched = null;

 /* Formal mediators */
%>
 self.formalMediator->forEach(c) {
 c.mapProperty();
 }
}

/* ActiveObjectField */
jfuml.ActiveObjectField::mapProperty() {
nl
<% /* Part %> self.name <% */%>nl
 self.actualMediator->forEach(c) {
 tab<%%> c.getTypeLiteral() <% %> c.name <%;%>nl
 }
 tab<%%> self.getTypeLiteral() <% %> self.name <%;%>nl
}

jfuml.ActiveObjectField::mapInit() {
 self.actualMediator->forEach(c) {
 tab(2)<%%>c.name<% = new %>c.getTypeLiteral()<%(/*DefaultValue*/);%>nl
 }
 tab(2)<%%>self.name<% = new
%>self.getTypeLiteral()<%(%>self.getConstructorArgString()<%);%>nl
}

jfuml.ActiveObjectClass::getConstructorParameterString() {
 var r = "Scheduler sched, "
 self.formalMediator->forEach(c) {
 r += c.getTypeLiteral() + " " + c.name + ", "
 }
 r = r.substring(0, r.size() -2)
 result = r
}

jfuml.ActiveObjectField::getConstructorArgString() {
 var r = "sched, "
 self.actualMediator->forEach(c) {
 r += c.name + ", "
 }
 r = r.substring(0, r.size() -2)
 result = r
}

/* Composite */
jfuml.CompositeClass::mapClassDeclarationStart() {
 <% public class %> self.name <% extends Composite { %>
 nl
}

jfuml.CompositeClass::mapConstructor() {

<% public %>self.name<%(%>self.getConstructorParameterString()<%) {
 this.sched = sched;
%>

 73

 self.formalMediator->forEach(m) {
<% this.%> m.name <% = %> m.name <%;%>nl
 }
 nl
 self.ownedAttribute->forEach(a : jfuml.ActiveObjectField) {
 a.mapInit()
 }
 nl
 self.mediatorconnection->forEach(c) {
<% %>c.end.first().name<%.addAddress(%>c.end.last().name<%);%>nl
 }
<% }
%>
}

/* StateMachine */
jfuml.StateMachineClass::mapClassDeclarationStart() {
<%public class %> self.name <% extends StateMachine {

 static CompositeState states = new %>self.compositeState.name<%("outermostState");
%>
 nl
}

jfuml.StateMachineClass::mapConstructor() { // TODO seperate parameter/attribute for SM
 var cp = self.getConstructorParameterString()
<% public %> self.name <%(%> cp <%) {
 super(sched);
 this.sched = sched;
%>
 self.formalMediator->forEach(c) {
 tab(2)<%this.%> c.name <% = %> c.name <%;%>nl
 }
<% }

%>
 self.mapExecStartTransition()
}

jfuml.StateMachineClass::mapExecStartTransition() {
<%
 protected void execStartTransition() {
 states.enterState(this);
 }
%>
}

/* CompositeStates */
jfuml.CompositeStateClass::mapClassDeclarationStart() {
<%public class %> self.name <% extends CompositeState {
%>
}

jfuml.CompositeStateClass::mergesMapFields() {
<% /* States declared as static fields */%>nl
 self.state->forEach(c) {

 74

 c.mapProperty()
 }
 nl
}

jfuml.CompositeStateClass::mapConstructor() {
<% public %>self.name<%(String name) {
 super(name);
%>
 self.state->forEach(c) {
 tab(2)<%%>c.getName()<%.enclosingState = this;%>nl
 }
<%
 }
%>
 self.inheritsMapConstructor()
}

jfuml.CompositeStateClass::inheritsMapConstructor() {
 self.mapEnterState()
 self.mapExecTrans()
}

jfuml.CompositeStateClass::mapEnterState() {
<%
 public void enterState(StateMachine curfsm) {
 %>self.stateMachine.name<% csm = (%>self.stateMachine.name<%)curfsm;
%>
 self.initialTransition.mapFireTransition("if")
<%
 }
%>
}

jfuml.CompositeStateClass::mapExecTrans() {
<%
 protected boolean execTrans(Message signal, State st, StateMachine curfsm) {
 %>self.stateMachine.name<% csm = (%>self.stateMachine.name<%)curfsm;
%>
 self.state->forEach(s | !s.oclIsKindOf(jfuml.JavaFrameFinalState)) {
<% if (st == %>s.getName()<%) {
%> s.outgoing->forEach(t) {
 t.mapTransition()
 }
<% }
%>
 }
<%
 return false;
 }
%>
}

/* State */
jfuml.JavaFrameState::mapProperty() {
<% static %> self.getTypeLiteral() <% %> self.name <% = new %>

 75

 self.getTypeLiteral() <%("%>self.name<%");%>nl
}

jfuml.JavaFrameFinalState::mapProperty() {
<% static State finalState = new State("finalState");%>nl
}

jfuml.JavaFrameState::getTypeLiteral() : String {
 if (self.type = null)
 result = "State"
 else
 result = self.type.name
}

jfuml.JavaFrameState::mapStateChangeCode() {
 tab(2)<%%>self.getName()<%.enterState(csm);%>nl
}

jfuml.JavaFrameFinalState::mapStateChangeCode() {
<% csm.moveStateMachine(null);
 finalState.enterState(csm);
 csm.owner.removeActiveObject(csm);
%>
}

jfuml.JavaFrameChoice::mapStateChangeCode() {
 var test:String = "if"
<% /* Enter choice */
%>
 self.outgoing->forEach(t | !t.isDefault()) {
 t.mapFireTransition(test)
 test = "else if"
 }
 self.outgoing->forEach(t | t.isDefault()) {
 t.mapFireTransition(test)
 }
}

jfuml.JavaFrameState::getName() : String { result = self.name }
jfuml.JavaFrameFinalState::getName() : String { result = "finalState" }

/* Transition */
jfuml.JavaFrameTransition::isDefault() : Boolean {
 var g:String = self.guardPredicate
 if (self.guardPredicate = null) {
 result = "true"
 }
 if (g.equals("else") or g.equals("")) {
 result = true
 } else {
 result = false
 }
}

jfuml.JavaFrameTransition::getGuardLiteral() : String {
 if (self.guardPredicate = null)

 76

 result = "true"
 else {
 if (self.guardPredicate.equals("") or self.guardPredicate.equals("else"))
 result = "true"
 else
 result = self.guardPredicate
 }
}

jfuml.JavaFrameTransition::mapFireTransition(test:String) {
 tab(2)<%%>test<% (%>self.getGuardLiteral()<%) {
%>
 if (!(self.effect = null)) {
 tab(3)<%%>self.effect.mapActivity() nl
 }
 self.target.mapStateChangeCode()
 tab(2)<%}
%>
}

jfuml.JavaFrameTransition::mapTransition() : String {
 var r:String = "\t\tif ("
 self.trigger->forEach(c) {
 r += "signal instanceof " + c.getQualifiedName() + " || "
 }
 r = r.substring(0, r.size() - 3)
 r += ") {\n"
 if (!self.trigger.size() > 1)
 r += "\t\t\t" + self.trigger.first().getQualifiedName() + " sig = ("
 +self.trigger.first().getQualifiedName()+")signal;\n"
 else
 r += "\t\t\tMessage sig = signal;\n"
 print(r)
 self.mapFireTransition("if") // TODO include opt return stmt in mapFire..
<% return true;
 }
%>
}

/* Mediator */
jfuml.MediatorClass::mapClassDeclarationStart() {
 <% public class %> self.name <% extends %> self.getGeneralLiteral("Mediator") <% { %>
 nl
}

/* Signal */
jfuml.SignalClass::mapClassDeclarationStart() {
 <% public class %> self.name <% extends %> self.getGeneralLiteral("Message") <% { %>
 nl
}

/* Overridden helpers */
jfuml.MediatorField::getTypeLiteral() : String {
 if (self.type = null) {
 result = "Mediator"
 } else {

 77

 result = self.type.name
 }
}

/* Main class */
jfuml.MainClass::mapFields() {
 self.composite.mapProperty()
}

jfuml.MainClass::mapConstructor() {
<% public %>self.name<%(String hostname, int portnumber) {
 Trace trc = null;
 // Create Trace object with socket communication
 // Establish socket communication with JFTrace
 if (hostname.length() != 0) { // JFTrace connection specified?
 try {
 trc = new Trace(true, hostname, portnumber);
 } catch (Exception e) {
 System.err.println("Socket connection to JFTrace failed to establish: "+ e);
 }
 }
 Scheduler sched;
 if (trc != null)
 sched = new Scheduler(trc); // with socket connected Trace object
 else
 sched = new Scheduler(); // with default Trace object

 Thread t1 = new Thread(sched); // associating the Scheduler with a Thread

%>
 self.composite.mapInit()
<%
 // Required: start the JavaFrame machinery when the whole system is initialized
 t1.start();
 System.out.println("*********** JavaFrame starting ***************");
 }

 public static void main(String[] args) {
 // Process command options
 // Necessary if the JavaFrame application will use socket communication
 // with JFTrace
 String hostname = "";
 int portnumber = 0;
 for (int i = 0; i < args.length; i++) {
 String token = args[i];
 if (token.equals("-remote")) {
 if (i == (args.length - 1)) {
 System.out.println("No remote specified.");
 usage();
 System.exit(1);
 }
 int index = args[++i].indexOf(':');
 if (index != -1) {
 hostname = args[i].substring(0, index);
 Integer portnumberInt = new Integer(args[i]
 .substring(index + 1));

 78

 portnumber = portnumberInt.intValue();
 } else {
 usage();
 System.exit(1);
 }
 } // process other options here
 }

 new %>self.name<%(hostname, portnumber);
 }

 private static void usage() {
 // Writes command line options
 System.out.println("Usage: " + "%>self.name<%"
 + " [-remote <hostname>:<port-number>]");
 System.out.println();
 }
%>
}

/***/
/* QoS extension: Add freelist to signals */
jfuml.SignalClass::inheritsMapConstructor() {
 var constructorPars = self.getConstructorParameterString()
 var constructorArgs = self.getConstructorArgString()
 nl
<% private static %>self.name<% %> self.name<%Freelist; // top of the freelist stack
 private %> self.name <% %>self.name<%Next; // the list pointer

 synchronized public static %>self.name<% New%>self.name<%() {
 %>self.name<% returnmessage;
 if (%>self.name<%Freelist != null) {// take a message from the freelist
 returnmessage = %>self.name<%Freelist;
 %>self.name<%Freelist = %>self.name<%Freelist.%>self.name<%Next;

 } else // freelist empty, new message must be generated
 returnmessage = new %>self.name<%();

 returnmessage.%>self.name<%Next = returnmessage; /* designating live object*/
 return returnmessage;
 }

%> if (constructorPars.size() > 0) {<%
 synchronized public static %>self.name<% New%>self.name<%(%>constructorPars<%) {
 %>self.name<% returnmessage;
 if (%>self.name<%Freelist != null) {// take a message from the freelist
 returnmessage = %>self.name<%Freelist;
 %>self.name<%Freelist = %>self.name<%Freelist.%>self.name<%Next;
%>
 self.ownedAttribute->forEach(c) {
 tab(3)<%returnmessage.%>c.name <% = %> c.name <%;%>nl
 }
 self.inheritedMember->forEach(c) {
 tab(3)<%returnmessage.%>c.name <% = %> c.name <%;%>nl
 }
<%

 79

 } else // freelist empty, new message must be generated
 returnmessage = new %>self.name<%(%>constructorArgs<%);

 returnmessage.%>self.name<%Next = returnmessage; /* designating live object*/
 return returnmessage;
 }

%> }<%
 synchronized private static void delMsg(%>self.name<% sig) {
 if (sig.%>self.name<%Next==sig) { // check that it is live
 sig.%>self.name<%Next = %>self.name<%Freelist;
 %>self.name<%Freelist = sig;
 } else {
 System.err.println("**%>self.name<%.del: Object not live");
 }
 }

 public void del() {
 delMsg(this);
 }
%>
}

Appendix B - JfJava Transformations

UML2JavaMetamodel (RSM Transformation)

ClassRule.java
package no.uio.ifi.javaframetransformation.rules;

import jmm.Class;
import jmm.CompilationUnit;
import jmm.JmmFactory;
import jmm.JmmPackage;
import jmm.Package;
import no.uio.ifi.javaframetransformation.tools.ClassBuilder;
import no.uio.ifi.javaframetransformation.tools.JavaNameTool;
import no.uio.ifi.javaframetransformation.tools.References;

import org.eclipse.uml2.Classifier;

import com.ibm.xtools.transform.core.AbstractRule;
import com.ibm.xtools.transform.core.ITransformContext;

public class ClassRule extends AbstractRule {

 public ClassRule() {
 super();
 }

 public ClassRule(String id, String name) {

 80

 super(id, name);
 }

 protected Class createTargetObject() {
 return JmmFactory.eINSTANCE.createClass();
 }

 protected Object createTarget(ITransformContext ruleContext)
 throws Exception {
 Classifier source = (Classifier) ruleContext.getSource();
 CompilationUnit cu = JmmFactory.eINSTANCE.createCompilationUnit();
 Class target = createTargetObject();
 target.setName(JavaNameTool.asClass(source.getName()));
 target.setIsAbstract(source.isAbstract());
 target.setIsPublic(true);
 cu.setName(JavaNameTool.asClass(source.getName()));

 Classifier superClass = ClassBuilder.getSuperType(source);
 if (superClass != null)
 References.setFeatureUnknownValue(target, JmmPackage.eINSTANCE.getClass_SuperClass(),
superClass);

 if (ruleContext.getTargetContainer() instanceof Package) {
 Package owner = (Package) ruleContext.getTargetContainer();
 cu.setPackage(owner);
 /* Add class as type decl to cu */
 target.setCompilationUnit(cu);
 /* Add cu to package */
 cu.setPackage(owner);
 /* Map reference */
 References.mapReference(source, target);
 }
 return target;
 }

 public boolean canAccept(ITransformContext context) {
 Classifier source = (Classifier) context.getSource();
 return source.getAppliedStereotypes().isEmpty();
 }
}

PackageRule.java
package no.uio.ifi.javaframetransformation.rules;

import jmm.JmmFactory;
import jmm.Package;
import no.uio.ifi.javaframetransformation.tools.JavaNameTool;
import no.uio.ifi.javaframetransformation.tools.References;

import com.ibm.xtools.transform.core.AbstractRule;
import com.ibm.xtools.transform.core.ITransformContext;

public class PackageRule extends AbstractRule {

 public PackageRule(String id, String name) {

 81

 super(id, name);
 }

 protected Object createTarget(ITransformContext ruleContext) throws Exception {
 org.eclipse.uml2.Package source = (org.eclipse.uml2.Package)ruleContext.getSource();

 jmm.Package target = JmmFactory.eINSTANCE.createPackage();
 target.setName(JavaNameTool.asPackage(source.getName()));

 if (ruleContext.getTargetContainer() instanceof jmm.Package) {
 Package owner = (jmm.Package)ruleContext.getTargetContainer();
 target.setSuperPackage(owner);
 References.mapReference(source, target);
 return target;
 }
 return null;
 }
}

References.java

package no.uio.ifi.javaframetransformation.tools;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;

import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;
import org.eclipse.emf.ecore.EReference;

public class References {

 protected static HashMap references = new HashMap();

 protected static List unknownTargetDeferedTargets = new ArrayList();
 protected static List unknownTargetDeferedFeatures = new ArrayList();
 protected static List unknownTargetDeferedValues = new ArrayList();

 protected static List unknownValueDeferedTargets = new ArrayList();
 protected static List unknownValueDeferedFeatures = new ArrayList();
 protected static List unknownValueDeferedValue = new ArrayList();

 protected static List unknownBothDeferedTargets = new ArrayList();
 protected static List unknownBothDeferedFeatures = new ArrayList();
 protected static List unknownBothDeferedValue = new ArrayList();

 public static void mapReference(EObject source, EObject target) {
 references.put(source, target);
 }

 protected static EObject getMappedReference(Object source) {
 return (EObject)references.get(source);
 }

 82

 public static void setFeatureUnknownTarget(EObject target, EReference feature, EObject value) {
 EObject ref = getMappedReference(target);
 if (ref != null) {
 setFeature(ref, feature, value);
 } else {
 deferFeatureUnknownTarget(target, feature, value);
 }
 }

 public static void setFeatureUnknownValue(EObject target, EReference feature, EObject value) {
 EObject ref = getMappedReference(value);
 if (ref != null) {
 setFeature(target, feature, ref);
 } else {
 deferFeatureUnknownValue(target, feature, value);
 }
 }

 public static void setFeatureUnknownBoth(EObject target, EReference feature, EObject value) {
 EObject value_ref = getMappedReference(value);
 EObject target_ref = getMappedReference(target);
 if (value_ref != null && target_ref != null) {
 setFeature(target_ref, feature, value_ref);
 } else {
 deferFeatureUnknownBoth(target, feature, value);
 }
 }

 protected static void deferFeatureUnknownTarget(EObject target, EReference feature, EObject value) {
 unknownTargetDeferedTargets.add(target);
 unknownTargetDeferedFeatures.add(feature);
 unknownTargetDeferedValues.add(value);
 }

 protected static void deferFeatureUnknownValue(EObject target, EReference feature, EObject value) {
 unknownValueDeferedTargets.add(target);
 unknownValueDeferedFeatures.add(feature);
 unknownValueDeferedValue.add(value);
 }

 protected static void deferFeatureUnknownBoth(EObject target, EReference feature, EObject value) {
 unknownBothDeferedTargets.add(target);
 unknownBothDeferedFeatures.add(feature);
 unknownBothDeferedValue.add(value);
 }

 public static void setDeferedFeatures() {
 for (int i=0; i<unknownTargetDeferedTargets.size();i++) {
 EObject target = (EObject)unknownTargetDeferedTargets.get(i);
 EReference feature = (EReference)unknownTargetDeferedFeatures.get(i);
 EObject value = (EObject)unknownTargetDeferedValues.get(i);

 EObject refTarget = getMappedReference(target);
 if (refTarget != null)
 setFeature(refTarget, feature, value);

 83

 }
 for (int i=0; i<unknownValueDeferedTargets.size();i++) {
 EObject target = (EObject)unknownValueDeferedTargets.get(i);
 EReference feature = (EReference)unknownValueDeferedFeatures.get(i);
 EObject value = (EObject)unknownValueDeferedValue.get(i);
 setFeature(target, feature, getMappedReference(value));
 }
 for (int i=0; i<unknownBothDeferedTargets.size(); i++) {
 EObject target = (EObject)unknownValueDeferedTargets.get(i);
 EReference feature = (EReference)unknownValueDeferedFeatures.get(i);
 EObject value = (EObject)unknownValueDeferedValue.get(i);
 EObject target_ref = getMappedReference(target);
 EObject value_ref = getMappedReference(value);
 if (target_ref != null && value_ref != null)
 setFeature(target_ref, feature, value_ref);
 // TODO - add warning if null in reference
 }
 }

 public static void setFeature(EObject target, EReference feature, EObject newValue) {
 if (feature.isMany()) {
 EList featureList = (EList)target.eGet(feature);
 featureList.add(newValue);
 //target.eSet(feature, featureList);
 } else {
 target.eSet(feature, newValue);
 }
 }

}

	masterforside.pdf
	Thesis-for-print.pdf

