UNIVERSITY OF OSLO
Department of Informatics

User-defined Code
generation from
UML 2.0

Master thesis

Asbjorn Willersrud

22nd May 2006

Acknowledgments

This thesis is submitted to the Department of Imiatics at the University of Oslo as part
of my Master degree.

| would like to thank my supervisor, @ystein Haugfem his valuable advice and
feedback, and for continuously guiding me in tlggtidirection.

| would also like to thank my family and friends the support they have given me
throughout this challenging period.

Table of Contents

IR 1 01§ o [T o o 6
1.1 TRESIS SIUCLUIE ..uuvetiieee e e e e e e et o ettt s s s e e e e e aeeeeeeeeeeeeeneeeeeeennnnes 6
2 I =o: o1 0] o 1= PSS 8
2.1 Model technologies and standards.......ccccceeeeeeeiiiiiiiieeeii e 8
211 Model Driven Architecture (MDA)ooiicceeeiiiiiiiiee e 8
2.1.2 Meta-Object Facility (MOF)........oouviieeeeiieeeeeeceee e e e e e 8.
2.1.3 Eclipse Modeling Framework (EMF)cccoe oo 9
2.1.4 The Unified Modeling Language (UML)cccceeiiiiiiiiieieeeiieeeeeeeeiiiee 10
2.2 Transformation technologies and standards..............cccceeeeiiiieniieiiiiieeieeinns 11
2.2.1 Properties of transformations.........ccccccceeeeeeee e 11
2.2.2 QN T e e e e e e e e e e e e e aaes 12
2.2.3 AT L et e e e 14
224 IBM Model transformation framework (MTF) ..o 14
2.2.5 Rational Software Modeler transformation feavark............................ 15
2.2.6 1Y (@ TS Yol 1 o OSSR 15
2.2.7 Java Emitter Templates.......ccccoovveiieiiieiiieeeeee e, 15
N - (V= o = 1 [P RPUPR PSRRI 17
3.1 StAtEMACKHINES ... e e e e e e e e e ——————— 17
3.2 (0] 0] 10 15] 1 (=3RS 20
3.3 YT L= 1o PP 22
3.4 Y (STSST= T [PPN 22
4 Modularizing transforMatioNS.........ccccereerenieneerie e e nee s 23
4.1 RUIES @S MOAUIES.......ee e 23
4.2 Transformations as modules and intermediata-medels..............cccccceeue.... 24
5 Case UML2JAVAFTAMEcoiiiiiiiiieeie ettt sttt sae s e e sane e 27
5.1 Intermediate meta-model ChOICE..........ooveeeeeiiiiiii e, 27
5.1.1 A subset of the UML meta-modelcoeeeeiiiiiiiiiiiiiiieiieee, 27
5.1.2 Java meta-modeloovvviiiiiiiiie e 30
5.1.3 JavaFrame meta-modeluvceeeeemeiiiiii e 30
5.2 Transformation architecture and teChnolOgy...ccc.vvvvveiiiiiiiiiiiiiiiiiis 31
5.2.1 Transformation arChiteCture............eeeeeeeeeeeiiiiiiiiee e 31
522 Transformation technology ChOICEceeeeeiiiiiiiiii 32
5.3 Advanced meta-model CONCEPLSuvrceeemmmmuiiiiee e eeeee e e s 33
53.1 REAT-ONIY ... 34
5.3.2 D= €1V =To SRS 34
5.3.3 SUDSELS ..ttt ettt eeeeeee e e e e e e e e e e e e e e e et en—————————_ 34
5.3.4 DT GA V=T U] o USSP 34
5.35 REAETINES. ... it 34
5.3.6 ECOre Profile......ccoo i ————— 35

5.3.7 ECliPSE VS. RSM....ueiiiiiii e 35

5.4 JfJava intermediate meta-model eeeeiiiiiiiiiiie e 35
541 Java meta-Model ..o 36
54.2 JavaFrame meta-model eXIENSION ..o eeeeeeeeeeeeeieiiiriiiiiiieeens 38
5.4.3 JfJava Transformationsooevuueciiiii 41
5.4.4 Generating meta-models from BNF.........cccccco oo 42

5.5 JfUml intermediate meta-modelo 45
55.1 TransSfOrMatiONS ..ottt 47

5.6 Comparing the JfUml to JfJava approaches.................eeeiiiiiiiiieeeeenneeenn. 49

6 Customizingthegenerated COUE.........coouriiriiiiiiiiiereee e 50

6.1 USEI TOIBS ..ttt e e e e e e e e e e e e e e e eeeeeeeeaeeeeeesnnnee 50

6.2 Classification of Changes e e eeeeeeeer e e e e e 50
6.2.1 Supporting More of UML ..o ccceece e 05
6.2.2 Supporting extensions t0 UML..........cooveeeri i 51
6.2.3 Model CheCKING.....ccoviiii e 51
6.2.4 Quality of Service (Q0S) Change ..o, 51
6.2.5 Platform Change ..ot 51
6.2.6 Different semantic variation point implemeima....................ccceeeeeeen. 51

6.3 EXAMPIES ..o e e e 52
6.3.1 Generating Tests for JavaFrame ModelS..ccooooceeeeiiiiiveiiiiii, 52
6.3.2 Generating C# COUE.... oot 52
6.3.3 Adding memory optimization to SignalS.........ccceevvvviiiiiiiiiiiiiiiee e, 53
6.3.4 ReUSING the COIe......ooviiiii e e eeenanns 54

6.4 Y F= T] (=] g =1 [0 PR 55

7 Summary and CONCIUSIONS........ccieiuiiierieeie e seeee e e eeesseesreeeesseesseeaesseesseenseens 56

7.1 FULUIE WOTK ..ottt e e a e 56

ST (. = = o0 57
Appendix A - ITUmI Transformations..........cccooeeveieeiecie e 59
Appendix B - JfJava Transfor Mations..........c.ceeeeeriereneneneseseeee e 79

List of Figures

Figure 1 3-level meta-model architeCture.....ccccccoooeeeieieeiiiii e 9
Figure 2 JavaFrame CONCEPLS....uuuuiiii i eeeeeeeeiiiiiies s e e e e e e e e e e e e ee e aae e nnaaannnnes 17
Figure 3 Tree view of PtnStateMachine from RSM m@d@lorer............cccvvvvvvviinennn. 18
Figure 4 The region of PtnStateMachineuvciiiiiiiiiii e 19
Figure 5 Internal structure of an example COMPASILE..........ccoevvvivviiiiiiiiiinieeeeeeeeenn, 21
Figure 6 UML2Java composite transformation ...cccccc....oooovvviiieiiiiiiiiiiiiee e, 25
Figure 7 Transformation architecture with extenciédrmediate meta-model............... 32
Figure 8 The JfJava meta-model composed of twaEpart.........cccoeeeeeieeeiiiiiiieeeeiiinn, 6.3
Figure 9 Java meta-model Kernel......... ..o 37
Figure 10 CompilationUnit, Class and related eleiien................cccoevvvvveviiiininnnnns 38
Figure 11 The structure of the JavaFrame exterteitimee Java meta-model.................. 39
Figure 12 The CompositeStateClass element andiitiots representing a UML region
... 40
Figure 13 JfJava transformation arChiteCtUr .. uvveeeeiiieii e 41
Figure 14 A simplified model showing the processmfating a meta-model from BNF43
Figure 15 Meta-model produces from BNF......coeeiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeveeee 44
Figure 16 JfUml adaptations of UML 2.0 elementS.............ciiiiiiiniieiiiiiieiceeeiiiiie 46
Figure 17 A JavaFrame meta-model that extendseddssm the UML meta-model.... 46
Figure 18 CompositeStateClass and related elements..........cccocoveeeiiiiiiiiiiiiiiiiiens 47
Figure 19 Transformations using a JavaFrame inteiate meta-model that extends the
UML MEA-MOUEL.......eiiiiiiiiee e e 48
Figure 20 JfUml transformation architecture extehagéth support for UML Testing

o (0] 11U UPPPPUPPPRRRTN 52
Figure 21 C#Frame TransformationS..........cccceeeeiiiiie e e 53
Figure 22 QoS Signal memory OptimiZationo ...eereeeeiiiieeeeeeeeeeeereeeeeesnneeen. 53
Figure 23 GWT extension, reusing the core transédion layer................ccccocvvvvvinnne. 55

1 Introduction

Traditionally compilers for programming languagesdé been written to generate a
specific set of code. The Unified Modeling Languagdifferent in that it does not
specify complete semantics for all its concepts.LUMdesigned to be able to specify
software system in a wide variety of domains. Teeegated code for the different
domains will inevitably be different. For examphete is a very different set of demands
for a real-time system as opposed to a bookkeegyistgm. This was of course true
before UML, but programming languages are at a tdexeel of abstraction and the set of
choices made to implement the concepts of a pragraghlanguage does not change
much from domain to domain. UML on the other haad & higher level of abstraction
and thus require more choices about how to implémesince there is a wide variety of
ways to implement concepts in UML, with differemlvantages and disadvantages, there
is a need for different code generators and a wathe users to customize the generated
code.

This thesis is based on an existing UML compilettem by myself as a plug-in for
Rational Software Modeler. | use a subset this ¢lemps an example scenario
throughout this thesis. This scenario is implemeniging different transformation
technology and a transformation architecture isgmeed that aims at helping users
produce code generators that are customizableamgact and maintenance friendly
way.

1.1 Thesisstructure
Chapter 2 Technologies

This chapter gives an overview of technologies staddards relevant to the thesis. Both
modeling and transformation technologies are caliere

Chapter 3 JavaFrame

This chapter explains the JavaFrame framework Jawad-is the target platform of the
UML compiler and the example scenario.

Chapter 4 Modularizing transformations

This chapter introduces reuse mechanisms for wamsttion rules, explains how
transformations can be used as modules by inheatand composition. In addition the
concept of an intermediate meta-model is introduced

Chapter 5 Case: UML 2JavaFrame

This chapter introduces a general transformatiohitacture and implements it using two
different approaches. The choices made duringnipéementations and differences and
similarities between the approaches are explained.

Chapter 6

Chapter 6 shows how the transformation architeahireduced in chapter 5 can be used
to customize code generation.

Chapter 7 Summary and conclusions
This chapter summarizes the thesis, and explaissiipe future work.

2 Technologies

This chapter gives brief descriptions of relevachinologies and standards. First
modeling and meta-modeling are explained and ttesrstormation technologies and
standards.

2.1 Model technologies and standards

2.1.1 Model Driven Architecture (MDA)

Throughout the history of software development ewcepts and languages have
increased the level of abstraction, from asseniblerocedural languages to object
orientation. Creating models of systems raisesatistraction level another level. Besides
raising the abstraction level, using models hasratlkdvantages:

* Models help visualize the system and it becomeigetsget an overview of the
system.

* Models are documentation of the system in additiospecification.

Model Driven Architecture (MDA) was proposed by &t Management Group (OMG)
in 2002 and is an approach to software developthanis based on formal use of
models. Several models are used to describe ansy$tee process begins with creating a
model of the system on an abstract platform inddeenlevel. Transformations are
defined to transform the platform independent maédel platform specific model. The
idea is to abstract away the platform by createngesal transformations to different
platforms and if a system needs to run on a diffiepéatform than originally intended all
that needs to be done is transform the platforrapeddent model using a different
transformation. In this way implementation detaile separated from application logic.

The final step is to generate code from the platifepecific model [1] and this is the
focus of this thesis. Although code generation frandels may follow the pattern
described by MDA, it does not have to. This thesékes no assumption about what
platform the source model is specified for and Wwhebr not MDA is used.

2.1.2 Meta-Object Facility (MOF)

In order to precisely define a model, for examplghdl. model, a set of concepts and
constraints that define what legal UML models nagkl like is needed. This is achieved
by creating a model of UML, this model is a modiehanodel: a meta-model. All UML
models must conform to this UML meta-model. Howea#émodels must conform to
their meta-model and the UML meta-model is no ekoapa need for a metameta-
model arises. This leads to a problem because evemtttismeta-model needs a meta-

" | will not use the term metameta-model throughoutttrésis. | will only separate between models and
meta-models.

model to conform to, leading to an infinite chaimeeta-models. MOF [2] solves this
problem by defining a meta-model that conformddelf.

MOF is a standard from OMG for meta-modeling. Isveaiginally created in order to
have a meta-model to define UML. MOF may be desdribsing the 3-level architecture
shown in Figure 1. The 3-level architecture cossit3 model levels: M1, M2 and M3.

woonformsTos
M3 MOE cconformsTos
woonformsTos ©
Mz (& UML meta-model (3 Java meta-model
scanforms Tos wConformsTos
M1 {3 UML model {3 Java class

Figure 1 3-level meta-model ar chitecture

At the M1 level there are normal models, at theld2| there are meta-models (e.g., the
UML 2.0 meta-model) and at the M3 level there astameta-models. MOF is at the M3
level and is its own meta-model. Sometimes a Mellevincluded which would
represent the actual system a UML model represents.

2.1.3 Eclipse Modeling Framework (EMF)

EMF [3, 4] is a framework for modeling built on top Eclipse. It was originally based
on MOF, but it only provides a partial implementatiof the MOF standard. EMF was a
big influence on the EMOF (Essential MOF), whiclp&st of the MOF specification.
EMF provides essentially the same functionalitf880F.

Based on an EMF input model EMF can:

* Generate a java implementation of the model

* Generate a simple graphical editor for the moda pkigin for Eclipse.
The input model consists of

* Classes

» Class attributes

* Relationships between classes

* Operations

» Simple constraints (i.e., cardinality)

Essentially it represents a UML class diagram aaltiih it does not have to be specified
using UML. Different supported input formats areatated Java classes, UML model
and XML schema.

EMF converts the input model to an Ecore modelr&tothe meta-model for all EMF
models.

The generated java implementation of the modelohes code for persistence using
XML/XMI. Both serialization and deserializationssipported automatically.

Uses of EMF include, among other things, modelimgdata of an application and meta-
modeling. In this thesis | will use EMF to modeltarenodels. | use UML models as
input models.

2.1.4 The Unified Modeling Language (UML)

OMG’s Unified Modeling Language [5-7] is a languggemarily for designing and
visualizing software systems, though it is not tedito modeling software and is often
used for modeling business processes, organizhstmature and many other kinds of
systems/domains. UML is built upon object orientedcepts like classes and operation,
however non object oriented systems may also besleddising UML.

UML is the OMG’s most used specification and togethith MOF it provides the
foundation for MDA.

The first version of UML was released in 1997 aad kince been expanded and revised
several times. The current version of UML is 2lih@ugh in this thesis all uses of UML
will be of version 2.0 because the tools are nobupelated to version 2.1.

The UML standard is divided in four parts: Supersture, Infrastructure, Diagram
Interchange and Object Constraint Language (OChg. Juperstructure and
infrastructure documents define the UML meta-magghg MOF. The diagram
interchange document defines an extension to thé bidta-model so that diagram
information is also included. OCL is a languagedoerying both MOF and UML
models.

UML specifies 13 different diagram types. Theseaganized in three categories:

Structure Diagrams. Class Diagram, Object Diagram, Component Diag@omposite
Structure Diagram, Package Diagram and DeploymedrBm.

Behavior Diagrams. Use Case Diagram, Activity Diagram and State Maemagram.

I nteraction Diagram: Sequence Diagram, Communication Diagram, TiminggEim
and Interaction Overview Diagram.

The UML specification is very big and in this tresimainly use classes, composite
structures and state machines.

The Eclipse UML2 project provides an implementadithe UML 2.0 meta-model
using EMF.

10

2141 Profiles

UML includes a built in way of extending the langeaThis is done using profiles. A
profile consists of stereotypes, tagged valuescangtraints.

A stereotype is defined as an extension to a metaent and the stereotype may
redefine the semantics of the element. A stereatyge have tagged values which are
properties with name and type (the types of tag@gdues are restricted to primitive

types).
2.2 Transformation technologies and standards

2.2.1 Propertiesof transformations

T. Mens et al [8] and Czarnecki and Helsen [9] dbss several different properties of
transformation approaches. | show a short overview.

2211 Rules

All transformation implementations use rules. Agdintransformation consists of set of
rules. The rules can be defines either for impeeatr declarative
execution/interpretation. Rules can be a compaditgher rules and it is possible to
include object oriented properties such as inhezgaand polymorphism. Rules are
usually described textually, but can also be dbsdrgraphically.

2.2.1.2 Transformation composition

A transformation can be a composition of otherdfarmations and these sub-
transformations can be run either in sequence|lpboa other more advanced control
flow mechanisms.

2.2.1.3 Direction

A transformation can be defined to transform inyaste direction, in other words from
one meta-model to another, or a transformatiorbeadefined in such a way that it can
be run both ways. Even more than 2 directions assiple if more than 2 meta-models
are specified as input/output. Declarative tramsdrons are often suited for defining
transformation in two directions, however for margnsformations it will not be
possible to define more than one direction at @ tim

2214 Trace

A transformation can create trace elements betwesarce and target elements. These
trace elements can be of use for among other tliagagging of the model and
synchronization between models. The trace elen@amde stored in the model itself or
separately.

2.2.1.5 Relation between source and target model

Some transformations may have the same targetamdesmodel (for instance for
refactoring), but the most common scenario is teeleseparate source and target model.

11

Some approaches create a new target model and otiagralso update an existing target
model. The updates can be constrained to only extenthat is elements in the target
model can not be deleted.

222 QVT

Query View Transformation [10] is an upcoming stambfrom OMG, it is currently in
the finalization faze. The QVT language is, asrtame suggest, a language for querying,
transforming and creating views from models.

Queries are expressions that filter or select meldshents, combined with imperative
logic. QVT uses OCL (Object Constraint Language)dfieeries.

A view is a model that is derived from another madel that should not be persisted.
Views are not handled specifically by the QVT stamid

A transformation generates a target model fromuacgomodel. This is the main part of
QVT. Views and queries can be seen as side efdéthe transformation language. The
transformation language is a hybrid declarativeémapive language and actually consists
of three languages: Relational, Core and Operdtimagpings.

Conformance to the QVT standard is defined by aimat language levels and
interoperability levels. The interoperability leselre: Syntax executable, syntax
exportable, XMI executable, XMI exportable and ldweguage levels are Relational, Core
and Operational Mappings. Currently only partiagblementations of the standard exist.

2.2.2.1 Relational language

The Relational language is a declarative langulagespecifies relationships between
elements in MOF models. The example below is tdk@n the QVT standard and it
shows a transformation between UML and a RelatiDadhbase System model.

transformation umIRdbms (uml : SimpleUML, rdbms : SieRDBMS) {

relation PackageToSchema /* map each package to a schema */

{
domain uml p:Package { name = pn }
domain rdbms s:Schema { name = pn }
}
relation ClassToTable /* map each persistent class to table */
{

domain uml c:Class {
namespace = p:Package{},
kind = 'Persistent’,
name =cn
}
domain rdbms t:Table {
schema = s:Schemaf},
name = cn,
column = cl:Column {
name =cn +"'_tid',
type = 'NUMBER'

12

h
primaryKey = k:PrimaryKey {
name =cn +'_pk/,
column = cl
}
}
when {
PackageToSchema(p, s);
}

where {
AttributeToColumn(c, t);
}

This relational transformation may be executedathlalirections. The different
directions are represented by the domain bloclesah rule. If the above transformation
was executed from SimpleUML to SimpleRDBMS, thesSIEoTable rule would first
check if any source class elements match the ‘ciao. In order to match kind =
‘Persistent’ must be true and the package that cevmsust be mapped to a Schema ‘s’.
If these conditions hold there should be a Taldeneht ‘t’ in the target model with ‘s’ as
schema and the same name as ‘c’. If no such eleemesis the it is transformation
engine’s responsibility to create one.

2.2.2.2 Corelanguage

The Core language implements the same semantibe &elational language, but at a
lower level of abstraction. Transformations defimethe Core language are therefore
more verbose than Relational. In the Relationajlage trace elements are automatically
created on execution, in the Core language thid bruspecified manually.

A transformation, defined in the Core languagemftbe Relational language to the Core
language is provided in the QVT specification. Tikiso a transformation engine can
simply implement the Core language and transforynralational language input before
executing it.

2.2.2.3 Operational mappings

The operational mappings part of QVT is an impeeakanguage. It can either be used to
define a completely imperative transformation omplement relations from a relational
transformation.

Below is an example of a package to schema mapping:

mapping Package::packageToSchema() : Schema
when { self.name.startingWith() <>" "}
{

name := self.name;
table := self.ownedElement->map class2table();

13

Operational Mappings provides OCL extensions witlle ffects that allow a more
procedural style. Some problem are not possibtiefme using the declarative constructs
found in the Relational language, the Operationappings language is more expressive.
2.2.2.4 Black box operations

QVT provides a way to ‘plug-in” any MOF Operatios @ implementation of a
Relation. This makes it possible to implement Retest using any programming
language that has a MOF binding (e.g., Java).

This is advantages because some things may beutliffo express using the Relations or
Operational Mappings languages. In addition tHmwa for reuse of existing domain
specific APIs which would be a lot of work to reeodlsing QVT.

223 ATL

The Atlas Transformation Language [11] is developgdNRIA research group located
at the University of Nantes. Like QVT it is a hydbdeclarative and imperative language
and currently ATL is probably the language that tobssely resembles the QVT
standard.

Unlike QVT ATL is unidirectional, that is a transfoation definition can only be
executed in one direction.

Below is an example of a declarative transformatutth only one rule.

module SimpleUML2SimpleRDBMS;
create OUT : UML from IN : RDBMS;

rule Package2Schema {
from p : UML!Package
to
s : RDBMS!Schema(
name <- p.name
)

}

The ‘from’ and ‘to’ statements are the equivalenQVT Relational’'s domain blocks.

2.2.4 1BM Moded transformation framework (MTF)

MTF [12] was developed as a prototype for a tramségion language and it is a
completely declarative language for implementimgp&formations between EMF models.

Below follows a rule that relates a package tohes@:
relate Package2Schema(uml:Package p, rdbms:Schema s) {

equals(p.name, s.name),
Class2Tablafver p.ownedMembemver s.tables)

14

2.2.5 Rational Software Modeder transfor mation framewor k

The Rational Software Modeler (RSM) transformatitmasnework is a Java framework
for transforming EMF models. Like transformationdaiages a RSM transformation
consists of a set of rules. These rules are defisedy Java classes that extend the
framework class AbstractRule. Each rule implemantsethod for creating the target
object (or target code if it is model-to-text). $mule directly manipulates the generated
EMF APIs for the target and source meta-models.

Using this approach is a lot more verbose thangusittansformation language, but given
the low level of maturity for current transformatianguages, it may yet be a good
option.

2.2.6 MOFScript

MOFScript [13] is an extension to QVT for modelttod transformations. It is based on
QVT Operational Mappings, which is the imperatiatpf QVT. MOFScript is
currently under development by SINTEF.

jfuml.JavaFramePackage::mapPackage() {
self.ownedMember->forEach(c : jfuml.JavaFrameClass) {
c.mapClass()

self.ownedMember->forEach(c:jfuml.JavaFramePackage) {
c.mapPackage()
}

}

jfuml.JavaFrameClass::mapPackageDeclaration() {
printin("package "+self.owner.getQualifiedName()+ ;")
}

jfuml.JavaFrameClass::mapClassDeclarationStart() {
<%public class %> self.name <% extends %> self.getGenenadl(DBJECT) <% { %>
nl

}

The above code shows examples of built in OCL esgio|s (the mapPackage rule),
print statements and the template functionality.

2.2.7 Java Emitter Templates

Java Emitter Templates (JET) [14] is a templatetdanguage for text generation. A
JET template consists of pure text with embeddea gode in <% %> markers. An
example is shown below.

<% ClassBuilder ¢ = (ClassBuilder)argument; %>
package <%= c.package %>;

public <%= c.abstract ? “abstract " : “"%>class <%= c.classNameends <% c.superType %> {

15

<% %>

}

Each JET template has a Java object passed taiit asgument; the ClassBuilder object
in the example above. A JET template file is cosypiio a java class. This generated
class has a single method which takes a singlebagea parameter and returns the
generated code as a String.

16

3 JavaFrame

This thesis is based on an existing transformatiotten in Java that generates Java code
from UML 2.0. | will use the same scenario and gglént transformations implemented
using different technologies as an ongoing exartiplaughout this thesis. The generated
Java code is based on JavaFrame. In order to expkse examples | will first explain
how generated JavaFrame code represents the ddMilcenodel.

JavaFrame is a framework for implementing a subSEIML in Java. It consists of a

Java API (Application Programming Interface) fopiementing models in Java and a set
of programming guidelines. The API contains clageesnodel elements like
StateMachine, Composite and Mediator (represemtiodL port). A class diagram for
the JavaFrame concepts is shown in Figure 2. ARfamge system is a Composite which
contains ActiveObjects. These ActiveObjects caritieer other Composites or
StateMachines. The ActiveObjects communicate waitheother by sending
asynchronous messages through Mediators. Howesatetiails of how JavaFrame
systems work are beyond the scope of this thesis.

& ActiveDbject {3 Mediator

{5 Composite {2 StateMachine

Figure 2 JavaFrame concepts

To implement models using JavaFrame new classesxtend the API classes must be
implemented using the programming guidelines/pasteBelow follows examples of
UML 2.0 model elements and the JavaFrame codertipéments those elements.

3.1 StateMachines

A UML Statemachine is implemented by two Java @dasene extends the JavaFrame
StateMachine class and the other extends the Jaw@RCompositeState class.
Respectively they represent UML statemachine agidmneslements. Like UML
statemachine elements a JavaFrame statemachiimaeamports, attributes and
operations, in addition it has a static compostestepresenting its UML region.

17

=& PEnStateMachine
2 Diagraml
o mynkkribute
g myinputmediator
g myoukpukmediakor
=[] Reqgionl
G statel
G2 statez

("L Ptnsignal
("L Ptnsignal

[s By R

Figure 3 Treeview of PtnStateM achine from RSM model explorer

Figure 3 shows a statemachine with two ports amdadinibute (of type String which is
not shown) and below is the code that implemenssstiatemachine in JavaFrame.

public class PtnStateMachine extends StateMachine {
static CompositeState states = new PtnStateMachineStates("ouState)?;

[* Formal ports */
public Mediator myinputmediator;
public Mediator myoutputmediator;

* Attributes */
public String myAttribute;

protected void execStartTransition() {
states.enterState(this);
}

public PtnStateMachine(Scheduler sched, Mediator myinputmediat
Mediator myoutputmediator) {
super(sched);
myinputmediator.addAddress(this);
this.myinputmediator = myinputmediator;
this.myoutputmediator = myoutputmediator;

18

£ PtnStateMachine

astatel

Ptrisignal
2 Print content.of signal

PtrSignal System.out.printli(sig. messageContent ()

0 Set myAttribute
csm.myAttribute = sig.x;

[Math.random() < 0.5]

0 state?
[else]

Figure 4 Theregion of PtnStateM achine

Figure 4 shows a regular UML state machine diagraRtnStateMachine. Note that the
effects of the transitions are represented by UNlivily element. These are used to
represent java code as text. This code is exeoutetdever the transition fires.

The JavaFrame class that implements this regishaa/n below. The states are
implemented as static fields and each statemaahst@nce has a pointer to its own
current state. All the transition logic is impleneah by the execTrans method. This
checks the current state and the received messdd#es any transitions according to
the model.

public class PtnStateMachineStates extends CompositeState {

static State statel = new State("statel");
static State state2 = new State("state2");

public PtnStateMachineStates(String sn) {
super(sn);
statel.enclosingState = this;
state2.enclosingState = this;

}

public void enterState(StateMachine curfsm) {
PtnStateMachine csm = (PtnStateMachine) curfsm;
entry(curfsm);
statel.enterState(curfsm);

19

}

protected boolean execTrans(Message signal, State st, &thte®lcurfsm) {
PtnStateMachine csm = (PtnStateMachine) curfsm;
if (st == statel) {
if (signal instanceof PtnSignal) {
PtnSignal sig = (PtnSignal) signal;
performExit(csm);
//Begin effect code
System.out.printin(sig.messageContent()
//[End effect code
if (Math.random() < 0.5) {
statel.enterState(curfsm);
}else {
state2.enterState(curfsm);

}

return true;

}
} else if (st == state2) {

if (signal instanceof PtnSignal) {
PtnSignal sig = (PtnSignal) signal;
performExit(csm);
//Begin effect code
csm.myAttribute = sig.x;
//[End effect code
statel.enterState(curfsm);
return true;

}
}

return false;

}
}

3.2 Composites

Figure 5 shows the internal structure of the UMassl PtnComposite. It has two parts:
sml and sm2. Both parts are of type PtnStateMachimetree-view to the left shows the
child elements of PtnComposite and PtnStateMacltreComposite has 9 child
elements: 4 connectors, 2 ports, 2 parts (sm1@2) and 1 diagram. The parts are
actually property elements with the isCompositglatte set to true.

Note that in the diagram both the parts are shoitimports. These ports are inferred
from the type of the part, in this case PtnStatdhfae As shown in the tree-view
PtnStateMachine has two ports, myinputmediatormapoutputmediator.

20

El @ #iZormposites PEnComposite -
[Diaarai (3 PtnComposite
e doeml
e dosm2
oo i inputmediator inputrmediatar : PtrRouterMediator myinputrediatar
“ed outpubmediator
+- =ml ! PtnStateMachine
-
e myautputmediatar
-
—-&" PEnStateMachine
: E Diagraml
oo myinputmediator myinputmediator
- & myoutputmediator smi2 ¢ PthStateMachine
+-[IT] Regionl]

rvoutpukmediator
outputmediator

Figure5 Internal structure of an example Composite

The produced JavaFrame code for the PtnComposss & shown below. The ports
owned by PtnComposite (i.e., formal ports) are aked as fields and so are the parts. In
addition the ports of the parts (i.e., actual paate also declared as fields using the
concatenation of the name of the part and the redrtiee port as the name of the field.

public class PthComposite extends Composite {

[* Used internally by JavaFrame */
protected Scheduler sched;

/* Formal ports of PtnComposite */
public PtnRouterMediator inputmediator;
public Mediator outputmediator;

[* Part sm1 */

protected PtnStateMachine sm1;
public Mediator sm1myinputmediator;
public Mediator sm1myoutputmediator;

[* Part sm2 */

protected PtnStateMachine sm2;
public Mediator sm2myoutputmediator;
public Mediator sm2myinputmediator;

public PtnComposite(Scheduler sched, PtnRouterMediatatrirediator, Mediator
outputmediator) {
super();
this.sched = sched;

this.inputmediator = inputmediator;
this.outputmediator = outputmediator;

[* Creating property sm1 */

smlmyinputmediator = new Mediator();
smlmyoutputmediator = new Mediator();

sml = new PtnStateMachine(sched, sm1lmyinputmediator,

21

smlmyoutputmediator);
addActiveObject(sm1l);

[* Creating property sm2 */

sm2myoutputmediator = new Mediator();

sm2myinputmediator = new Mediator();

sm2 = new PtnStateMachine(sched, sm2myinputmediator,
sm2myoutputmediator);

addActiveObject(sm?2);

[* Setting addresses for the mediators based on UMLembors */
inputmediator.addAddress(sml1myinputmediator);
inputmediator.addAddress(sm2myinputmediator);
sm2myoutputmediator.addAddress(outputmediator);
smlmyoutputmediator.addAddress(outputmediator);

The four last lines of addAddress function caljsresent the UML connectors.

3.3 Mediators

Mediators are JavaFrame representations of UMLsp@Qnt rather an instance of a
mediator represents a UML port. A mediator clapsagents the possible type of a port.
The PtnComposite class shown as an example abevgbdormal ports. One of them
has no type the other is of type PtnRouterMedi&borRouterMediator is a UML class
with the Mediator stereotype applied. In the cdus is represented by the fields of the
PtnComposite class.

Custom mediator classes are implemented by extgrndenMediator class from the
JavaFrame API. The Mediator class from the Java&mlaR1 implements the
Addressable interface. This interface containsroathod: public void forward(Message
sig). Any custom mediator class must implementitieshod. In the UML model the
code implementing the forward method is represeasegkgular text by either an
Activity or the Actions of an Activity.

3.4 Messages

Messages are the JavaFrame representations of igials. Each signal element is
transformed to a class that extends the Messags ftlam the JavaFrame API.

In UML signals are sent between ports, and in JewraE message objects are sent
between mediator instances. This is achieved mgusie forward method implemented
by mediator classes. Like UML signals JavaFramesagss also trigger transitions in
statemachines.

22

4 Modularizing transfor mations

Although UML elements like classes and attributas loe directly mapped to
programming language classes and attributes, n@seats in UML do not have any
direct counterpart in programming languages (@gretis no concept of statemachines
and composite structures in Java). When a transfttwombridge abstraction levels it will
inevitably become complicated and the need to 8@itransformation into manageable
modules arises.

This chapter explains how transformations can bdutasized using both rules and entire
transformations as modules. The concept of annm@drate meta-model is introduced.

4.1 Rulesasmodules

A transformation definition consists of a set desi These rules form the basic modular
elements of a transformation. This is discusseteiail by Kurtev et al in [15].

In order to effectively use rules as modules timered to be reuse mechanisms for the
rules. There are several different ways of achgtms, including rule inheritance,
composition, polymorphism and others. | will givearee examples of reuse mechanisms
from different model transformation languages.

In the declarative transformation language MTFswean be reused by inheritance and
composition. The two rules shown below is an exanaplthis. The rules are taken from
a transformation that copies a UML model.

abstract relate mapClassifieextends mapNamedElement(uml:Classifier el, uml:Classifier e2) {
mapGeneralization [0..1pyer el.generalization,ver e2.generalization)
,ordered mapPackagelmponyer el.packagelmportver e2.packagelmport)

}

relate mapClas®xtends mapClassifier(uml:Class el, uml:Class e2) {
ordered mapPropertydver el.ownedAttributepver e2.ownedAttribute)
,ordered mapOperatiorgver el.ownedOperatiomyver e2.ownedOperation)
,ordered mapActivity(over el.ownedBehaviogver e2.ownedBehavior)

The first rule relates Classifier elements in tberse model to Classifier elements in the
target model. This rule extends the mapNamedElendmtvhich is not shown and just
makes sure the elements have the same name. Ti@assifier rule explicitly invokes
two other rules: mapGeneralization and mapPackguiithis is an example of a rule
composed of two other rules.

The second rule, mapClass, inherits from the firse semantics of this is similar to
normal object oriented inheritance. The mapClaksinherits the two rules invoked
from mapClassifier. And the signature of mapClassngthens the constraints of the
mapClassifier signature (Class is a subtype of<{ias).

23

Using this approach if | were to define a mapSigokd that extended mapClassifier
(Signal is a subtype of Classifier, but not of Gldswould not have specify
mapGeneralization and mapPackagelmport again. Ag-medels usually have large
type hierarchies such a mechanism is very useful.

Unfortunately the QVT Relational (declarative) laage does not have such an
inheritance mechanism, however the QVT Operatibtegpings (imperative) language
does. Below is an example of inheritance in ther@pmnal Mappings language.

mapping Classifier::mapClassifier() : Classifiatherits mapNamedElement {
generalization :=elf.generalization-map mapGeneralization();
packagelmport :self.packagelmport-map mapPackagelmport();

}

mapping Class::mapClass() : Clastherits mapClassifier {
ownedAttribute :=self.ownedAttribute-map mapProperty();
ownedOperation :self.ownedOperation+map mapOperation();
ownedBehavior :=ef.ownedBehavior-map mapActivity();

MOFScript is a model-to-text transformation langeiag it is a little different. It does not
have inheritance between rules, but it does halgmmephism. MOFScript rules are
defined with a context element. The two MOFScripés shown below is an example of
polymorphism.

jfuml.JavaFrameClass::mapClassDeclarationStart() {
<%public class %> self.name <% extends %> self.getGenenal(DBJECT) <% { %>
nl

}

jfuml.CompositeClass::mapClassDeclarationStart() {
<% public class %> self.name <% extends Composite { %>
nl

Since CompositeClass is a subtype of JavaFrametblasecond rule overrides the first.
Like normal polymorphism the type of the actualeaibjat run-time specifies which rule
is executed.

4.2 Transformations as modules and inter mediate meta-
models

In addition to rule modularization, transformationay be used as modules as well.
There are two ways to achieve this, either by fangation inheritance or by composite
transformations.

Reuse mechanisms for transformation rules formb#sés for transformations
inheritance. The rules in the sub-transformatioy neaise rule definitions in the super-
transformation.

24

The second way is to introduce an intermediate /metdel and split a transformation in
two parts. Figure 6 shows an example of a transftion that has been split it two
composite parts. In [16] Oldevik discusses compmsibf transformations in more detail.

Legend

Transformation
Meta-model [language definition (M2

Model [Code (M1)

«transformation: «ctransformations:
(3 Model-to-model () Model-to-code
- sourceMetamadel - targetMetamodel - sourceMetamodel - target

«meta-model: «meta-model: (c} Java

& uML e Intermediate definition
meta-model
- conformsTo - conformsTo
- conformsTo
UML : Intermediate Model t d ti afiles
Model to model execution 0del 10 code execution
© model © maodel (3 Java

Figure 6 UML 2Java composite transformation

The use of general intermediate representatiortbeifiorm of data structures and code,
is used by compilers in order to separate the feodtfrom the back end, and for splitting
the code generation in modular parts [17]. The firermediate representation a
compiler uses is usually an abstract syntax trébeosource code. This abstract syntax
tree is then transformed to intermediate code. inabform for the intermediate code is
stack based byte-code, effectively bridging thdaralbton level between the abstract
syntax tree and assembler type code. Examplesashediate code include Java byte-
code and CIL (Microsoft's Common Intermediate Laage). The intermediate code may
be interpreted at run-time or assembler code ®tdhget machine may be generated.

For the same reasons compilers use intermediatesemations it might be a good idea
to use intermediate meta-models for code gener&tom models. The intermediate
meta-model can be any MOF model, optionally witdiadnal constraints. It may for
instance be a UML model with a certain profile gl In [18] Vanhooff and Berbers
suggest using UML profiles to specify input andputtmodel characteristics. Below
follows some alternatives for what an intermedratta-model may be:

» A subset of the UML meta-model that directly mapsade (i.e. no
statemachines and composite structures, just classédutes/operations). A
profile for the programming language will probabky needed. Suggested by
Chauvel and Jézéquel in [19].

* A meta-model of the abstract syntax of the prograrmgrtanguage.

* A dedicated meta-model for the implementation (@glavaFrame meta-model).
These different choices are discussed in detaihapter 5.
An intermediate model should ideally satisfy thesguirements:

25

Simple to generate code from
Simple to generate from the source UML model
Simple to define

Preferably not add any platform restrictions beyamat is already in the source
UML model

26

5 Case: UML 2JavaFrame

In chapter 3 | gave an explanation of JavaFramehamdit relates to UML. The UML
2.0 compiler this thesis is based on implementargstormation from UML to
JavaFrame. | have implemented a subset of thatftnanation using two different
intermediate meta-models and different transforomatéchnologies. This chapter
explains the process and the choices that were mhilie creating both the intermediate
meta-models and the transformations.

First different ways of creating an intermediataanmodel is discussed and two different
approaches are chosen. Then | present a genersfidnaation architecture and discuss
the decision of both model-to-model and model-td-teansformation technologies.
Finally I show and explain the intermediate metadeis and the implemented
transformations.

5.1 Intermediate meta-model choice

In chapter 4 | introduce the concept of an inteniaedmeta-model. In this section |
propose different choices for intermediate meta-@hmdliscuss the advantages and
disadvantages of each choice and choose two ogbangplement.

5.1.1 A subset of the UML meta-model

A subset of the UML meta-model is used as an inteliate meta-model. The subset is a
direct mapping of Java code to UML elements. BeedlL has a lot in common with
object oriented programming languages like Jaisapgbssible to represent a Java
program with UML elements.

Like Java, UML contains concepts like class, irdegf, and package. UML attributes are
very similar to Java fields and UML operations almost equivalent to Java methods.
There are differences though, for instance UML suigomultiple inheritance, but Java
does not. Also UML operations support multiple ratualues, which are not possible in
Java.

The structure of a Java language may be representédL using these previously
described elements, but UML operations really aajyresents the signature of a Java
method (i.e., the name, return value and paranmeidne implementation of an operation
is represented by an activity element. It may besjibe to use a UML activity element to
represent the body of a Java method, but actiwatiesot designed to be a Java action
language. In [20] Rumbaugh et al discusses acaioguages for UML:

27

“The selection of one programming language as th&idfor an action
language would, therefore, have the effect of dismging the others, which
the designers did not want to do. The semantiestidns have therefore
been left low level and free of implementation eons within UML itself.
For many practical uses, such as code generatidl.Whust be augmented
with the action language (often standard prograngrianguage) that is
being used.”[20] page 144

5.1.1.1 Behavior problem

As described above the main problem with usingsestuof UML as an intermediate
meta-model is how to deal with behavior / methodiés. How should a UML activity
element represent Java code? One option is to\simgert the code as text. This is not a
good solution for an intermediate meta-model beedlis model to model transformation
would have to generate this code, something thaeti®r left to the final model to text
transformation.

A way of solving the behavior problem is to useetéyped activity and action elements
to represent the code. The idea would be not taheseontrol flow mechanisms of
regular UML activities, but rely on the orderingedéments. This may be a problem with
certain declarative transformation technologigkéf order of generated model elements
is nondeterministic. A possible stereotype couldCheiceActivity which represents
either switch or if-else statement others couldCh#, Assignment and
VariableDeclaration. This would alter the semantitthe Activity and Action UML
elements and it is probably better to use an agprble one of the two suggested below.

Another option is to use the control flow mecharssmUML activity diagrams and
develop a Java profile for UML which contains steypes for activities and actions.
UML already has different action elements which rbayeused. Examples of these
include Create action, Raise exception action, flRedation, Test identity action and
Write action.

Yet another way of representing behavior is toaipeogramming language independent
UML action language, such as the Kermeta actioguage [21].

5.1.1.2 Fixed code problem

Even if the method body problem were solved the@other problem which remains.
When a single element in the source model is imphged by a large amount of fixed
code, this must be represented by a large numbaewfents in the intermediate meta-
model. For example the JavaFrame Main class isrg@teonce for every JavaFrame
model and large parts of the generated code id fixe., it does not vary from model to
model). One method which is an example of thi®mas below.

public static void main(String[] args) {
String hostname ="";
int portnumber = 0O;
for (inti=0; i< args.length; i++) {
String token = args]i;

28

if (token.equals("-remote™)) {

if (i == (args.length - 1)) {
System.out.printin("No remote specified.");
usage();
System.exit(1);

}

int index = args[++i].indexOf(":");

if (index !'=-1) {
hostname = args]i].substring(0, index);
Integer portnumberint = new Integer(argsi]

.substring(index + 1));

portnumber = porthumberint.intValue();

}else {
usage();
System.exit(1);

}
}
new CompositeNameMain(hostname, portnumber);

}

This code is the same for all models. The only ptoa is the constructor call on the last
line where the name of the composite is used (CaitgldameMain is an example). If
this entire method should be represented by usMg Biction elements or an action
language it would be a very large and complex prtion. The first model-to-model
transformation would have to construct this fixegnesentation from one source
element. This is a very cumbersome approach compargenerating this code in a
model-to-text transformation where the code cahljaswritten as is.

It might be possible to solve this problem by idinoing parameterized template
elements in the intermediate meta-model. Howeveniill leave the responsibility for
generating this fixed code to the model-to-modah$formation. In my opinion it this is
better left to the final model-to-text transfornaeti

5.1.1.3 Existing code problem

Another problem arises when the generated codddheuse existing code. In this case
the generated code is based on an existing JavaF&mn How can the UML model
specify for instance that a class should exteralvaRrame statemachine? One way is to
use a JavaFrame extension to UML as described i8,5nother is to reverse engineer
the JavaFrame source code into a UML model an@usgular UML generalization to
the appropriate class in the reverse engineereeéinalthough this will require that the
transformation is aware of this third model andahhtlasses in it represents which
JavaFrame concepts.

Because of the problems listed above, the behavairiem, the fixed code problem and
the existing code problem, it is my conclusion tising a subset of UML to directly
represent the code leaves too much of the transtaymlogic to the first model-to-
model transformation and | will not implement triorsnations using this intermediate
meta-model. Though if these problems were solveaiild be an interesting experiment
too perform.

29

5.1.2 Java meta-model

The intermediate meta-model is a meta-model of#éva language. Like the previously
described option this intermediate meta-modeldsect representation of the code. As a
consequence of that some of the same problems.apply

The behavior problem is not a problem for a Javeameodel because Java has a well
defined way of representing method bodies usinguarstatement and expression
elements.

The other two problems of directly representingdbde remain; the fixed code problem
and the existing code problem. In addition a Jagtarmodel adds a platform restriction
in the capacity of being specific to Java. It mayplossible to generate other kind of
object oriented code (e.g., C++, C#) from a Javemendel, but it will probably be
more inconvenient than if UML was used.

Creating a meta-model for a programming language nexguire a lot of work. To make
this process a little more automatic the meta-mou®l be generated from BNF using a
tool such asgramm/ mmmwhich is described in [22].

The conclusion for this option is the same asdisedne; | believe this representation is
too close to the code.

5.1.3 JavaFrame meta-model

As explained above both the previously describéerimediate meta-models are basically
another way to represent the actual code. Thigkalmost all the transformation logic
to the first model to model transformation, whiablpably is too much for a single
transformation and much of the problems with getivegacode directly from the original
UML model remain. In addition, the ability for tineodel to text transformation to
customize the generated code is very limited ihsaic intermediate meta-model is
chosen. A way of solving this is introducing Jawahke specific elements in the
intermediate model, either as a stand alone JanaFnaeta-model or as an extension to
one of the previously described intermediate metaets.

Having the JavaFrame meta-model extend either Mk keta-model or a Java meta-
model provides the possibility of modularizing th@nsformations. The transformations
may be split in a core part and an extended pakplsined in section 5.2.1. Because of
this | decided to drop the stand alone versiorefihtermediate meta-model and
implement two intermediate meta-models with tramsttions, one that extends the
UML meta-model and another that extends a Java-metel. These will be called
JfUml and JfJava respectively and are explainestation 5.4 and 5.5.

Defining the intermediate meta-model as an extensidhe UML meta-model provides
both advantages and disadvantages. A disadvargdigatithere is a dependency on
UML. If UML changes from one version to the nexinay effect the intermediate model
and any transformations from it. An advantage ééeding UML is that elements that
exist both in UML and JavaFrame do not need tcedefined (e.g., both UML and
JavaFrame have concepts like class, attribute padhton). This provides advantages
not only in that it is easier to define the metadeipbut also when defining
transformations because these elements can siraplgfied to the target model.

30

If the JavaFrame meta-model is defined as an artens the UML meta-model inter-
model references may also be used. That is, tgettarodel may link to elements in the
source model. This may be useful if creating aeradtive representation of an element
is not needed for code generation. For instancait be decided that UML region
elements are sufficiently easy to generate codwa,femd that creating alternative
intermediate meta-model elements to represent a tdglon is not necessary.

An essential property of the JavaFrame meta-madabw close it is to the code and how
close it is to the UML model. When | modeled theanmodels | tried to create a one to
one mapping between the meta-model and the prodlased-rame code, this turned out
to be a good guideline, although on some occasioveas necessary to deviate from this.

Another question is if any relations between madements be replaced by string
attributes? For instance can a generalization @iweo classes simply be replaced by
the name of the extended class? Certain such sit®rgght make it easier to generate
code, but the meta-model looses navigability. Wasth to note that navigability is very
important in a meta-model and that the code geimerahould be very simplified to
justify such a change. For this reason | decidgédindhis in my intermediate meta-
models.

5.2 Transformation architecture and technology

5.2.1 Transformation architecture

Both of the chosen intermediate meta-models coosstcore part and an extension. The
core parts are UML and Java meta-models and tlemgxin is a JavaFrame meta-model
in both cases. This allows me to create a genenagfiormation architecture that | will

use with slight modifications in both cases.

In chapter 4 | described a composite transformatidmnch consisted of an intermediate
meta-model, a model-to-model transformation, andehto-text transformation. When
an intermediate meta-model extension is introdutveol more transformations need to be
implemented. Both of these extend the originaldfamations. The general architecture
is shown in Figure 7.

UML and Java are used as source and target inligggam, but any meta-model and
programming language could be substituted.

31

Core part

«transformation: «transformation:
(9 Model-to-model (& Model-to-code
- targetMetarnodel - sourceMetarmodel
ameta-model:
(c) Intermediate
meta-model
«transformations: «transformation:
(c) Model-to-model fc) Model-to-code
extension extension
- sourceMetarmodel - target
«mieta-models - targetMetarnadsl ameta-model “farget | oy Java
G uML _ Intermediate - sourceMetamodel L1 O yofinition
- sourceMetarnodel C metf—quel
extension
- confarmsTo Extension - confarmsTo
- conformsTo
@ UML Model to model execution c) Intermediate Model to code execution <files
model model {3 Java

Figure 7 Transformation architecturewith extended inter mediate meta-model

Using this architecture what started out as ondrhigsformation is now divided in four
much smaller parts.

5.2.2 Transformation technology choice

Having chosen the architecture previously describadeded to choose the
transformation languages/technologies to implerti@transformations. The
architecture sets two requirements for the transiion technologies:

1. Transformation extension/inheritance must be suppor

2. The source or target meta-model must be possitdpeoify using two meta-
models in separate files.

The second requirement is needed because whefotraimgy for instance from a
JavaFrame meta-model that extends the UML meta-htloelé¢ransformation rules need
access to not only elements from the JavaFrame medti!, but also elements from the
extended meta-model (i.e., the UML meta-modelpriter to achieve this, the
transformation must specify that the source metdehis actually defined in two files,
one for JavaFrame and one for UML. For model-to-ehoelchnologies it is the target
meta-model that needs to be defined using two, fildle for model-to-text it is the
source.

For model to model transformation the ideal optaould be to use QVT. However there
are no sufficient implementations of QVT availabtehe moment. Borland has
implemented part of the QVT standard, but it isyaar implementation of the
Operational Mappings language, none of the dedlar&nguages (Relational and Core)
are implemented. In addition the implementatiobased on the QVT-Merge [23]

32

submission, not the final adopted specificationwieer the biggest problem is that no
rule reuse functionality is implemented, makingety difficult to use with my
transformation architecture.

The most commonly used model-to-model transformdaoguage today is probably
ATL, but this does not support any of the two reguonents specified.

Two viable options are MTF and using the RSM trarmsftion framework. | decided to
use both of them; MTF for the intermediate meta-ehdlat extends UML and the RSM
framework for the intermediate meta-model that ea$e]ava.

For model to text the alternatives are JET, MTF st@FScript. MTF has a very limited
support for text generation, which is primarily dg®d to create documents like for
instance html. Because of MTF’s limited supporttixt generation and that it only has
declarative rules | chose not to use MTF.

JET is what | used for code generation in the faangation this thesis is based on. It
offers limited modularization and no form of inharice, although extension points may
be defined. JET is not a transformation technolagis own, but a template language.
To create a model-to-text transformation using JEWa would have to be used to
traverse the model and invoke the templates.

MOFScript has good QVT like imperative rules andpecifically designed to transform
models to text. Although MOFScript currently sugpagither of the requirements
specified it is in early stages of development isrikely to implement this at a later
stage.

The final choice for model-to-text technology wa®©WScript because it is very similar
to QVT and once its limitations are overcome itl Wwé a very good text-transformation
language.

The problem that MOFScript does not support trams&tion extension sufficiently in
the current version was solved by creating only toaesformation and marking what
part of it should be a subtransformation.

The problem of MOFScript not supporting source nmatalels in several files was
solved differently by each approach.

5.3 Advanced meta-model concepts

Before | explain the intermediate meta-models atxd | will explain some not so well
known UML constructs, | will explain the semantafthese and how they are shown in
the diagram. | assume the reader is familiar wathcepts like generalization,
composition, visibility and multiplicity. More data about all these concepts can be
found in [4, 6, 20].

Both meta-models are implemented using EMF andfsawadvanced EMF concepts are
also explained.

All these advanced concepts are regarding metaeptiep of property elements.

33

5.3.1 Read-only

The read-only property means just what it saysait only be read. In practice this means
that the EMF code generator will generate a gehatktbut not a set method for the
property. Because read-only and other propertiesotitlave a graphical representation
in class diagrams | use curly braces and list wbidinese properties are applied.

5.3.2 Derived

Derived means that the value of the property ispaaed from other properties. A
derived property does not represent any additiobgdct state. For instance a qualified
name property of a java package is the concatenafiads own name and the names of
its owning packages (with *.” in between). Suchregerty should be derived. Derived is
denoted by a /" in front of the property name. enerated code is unaffected by the
derived property, but when a model object is coplexdved properties are not copied.

5.3.3 Subsets

A property may subset another property. This mélaaisthe collection associated with
an instance of the subsetting property must bésedof the collection associated with
the corresponding instance of the subsetted pypgest instance Class has a ‘field’
property (a containment list of type Field), thisperty subsets ‘ownedElement’ from
Element. This means that all fields owned by asclaidl also be contained in the
‘ownedElement’ property. The fact the a propertg subset of another does not effect
the code generated for the subsetting propertyekienit does effect the generated code
for the property that is subsetted as explainecuddrived union.

5.3.4 Derived union

A property marked as a derived union is derivedheyunion of all properties that subset
it. The ‘ownedElement’ property of Element is amele of this. Continuing the
example from subsets, Class not only has a ‘figtdperty that subsets ‘ownedElement’,
but also a ‘method’ property. This means that tverfedElement’ property will contain
all methods and fields of a class. The effect ofking a property derived union is that
the generated get method will return a list contgjrthe union of the values of all
subsetting properties.

5.3.5 Redefines

A property may redefine another. It can changentimae, multiplicity, type (to a subtype
of the original) and other values. Multiplicity cgiraints can only be strengthened. That
is the lower bound may be increased and the upperdmay be lowered. An example
from the JfJava meta-model is the ‘mediator’ propef MediatorField which redefines
‘type’ from TypedElement, constraining the typebma MediatorClass.

Most EMF properties are generated by a protectdd Folding the actual value of the
property and a get and set method. A redefinedgrtpgenerates a set and get method
like other properties, the difference is that tieédfthat stores the value of the property is

34

shared with the redefined property. In the examplmediator from MediatorField
redefining type from TypedElement, the Mediator&imhplementation has both getType
and getMediator methods, but both return the ptetemediator field.

5.3.6 Ecoreprofile

The previous concepts are all part of UML 2.0. Hegrehe model also includes some
additional EMF specific concepts. This is achietredugh a Ecore profile. The profile
includes eAttribute and eReference stereotypes Bave several tagged values, the
relevant ones are isVolatile and isTransient.

If a property is transient it means that it shaubd be persisted. That is when a model
instance is serialized as XMI (XML Metadata Inteange) any transient properties are
not stored.

Usually EMF generates both getter and setter mestfardproperties. However if a
property is marked as volatile just a method sigreais generated, the implementation
must be written manually.

Usually any derived properties are both volatild transient (e.g., qualifiedName).

5.3.7 Eclipsevs. RSM

Rational Software Modeler is built on Eclipse versB.0. This version includes versions
of EMF and UML2 that do not support subsetting esaefinitions of properties. To
work around this problem | originally planned todebthe meta-model in RSM, export
it and generate code and plug-in from Eclipse wer8i.1. Then | could install the
generated plug-in in RSM. However it turns out #ngn the generated code requires a
newer version of UML2 than the one in RSM.

In the end | had to generate code from RSM andntieians that subsetting and
redefinitions do not currently work as intended.aila newer version of RSM is
released what is needed is only a new code geoerati

Without support for subsetting and redefinitiongha intermediate meta-models the
transformations may have to do some workarounds.

5.4 JfJavainter mediate meta-model

This section first explains the two parts of th#éayh meta-model, and then the
implemented transformations are presented. Fim@&kamine the possibility of using a
tool to generate a Java meta-model from BNF.

The JFJava intermediate meta-model consists ofardata-model and a JavaFrame
extension. Even though they should be two sepanatiels | decided to model them as
one. This is because if they were modeled as sepa@dels, a MOFScript
transformation could only handle elements from ofinem. If this situation changes it
should be very easy to refactor the model into $eparate models.

35

Iflava

srneta-rnodel:
{3 Java

armeta-rmodel:
(=) JavaFrame

Figure 8 The JfJava meta-model composed of two parts

Figure 8 shows the JfJava meta-model and its twis.p@ections 5.4.1 and 5.4.2 describe
the contents of these two meta-model parts.

5.4.1 Java meta-model

The Java meta-model was created partly based dNRefor the Java language, partly
from an existing Java meta-model from Sun whialisisd internally in Netbeans [24] and
partly from my special needs. In addition the UMEetarxmodel was used as inspiration
for more general meta-model features.

Figure 9 show the core parts of the Java meta-mdtel Java meta-model represents
only a subset of Java. The model is very similart@bstract syntax tree representation
used by compilers, however this subset does nhidecany form of behavior. By
behavior in this context | mean detailed expressemd statements, like for instance
MethodInvocation, ForEachStatement and Conditiox@a&ssion. These would have to
be included if the model should be a complete ation of Java. To replace these
elements there is a generic CodeString elementi@ming both Statement and
Expression), which represents any arbitrary codestring attribute. This is used
whenever code is represented as strings in the Bddicce model. For instance the
existing transformation interprets the default eaddi a property as code; this string is
transformed to a CodeString element.

36

(& Statemernt (2 Expressiorn (3 Element i «enurmeration: «enumerations
ﬁgﬂ;ﬁgg’ggﬂgﬂ}t’ .— PrimitiveTy = Visibility
* ~ peKind = 1
01 bool o public
. o boolean o
£ read-only, union * o bite E;i?;?;ted
© Codestring + fowner o char o package
o rode : EString o double
o float
(& QualifiedVamedEement () Namedtlemernt :grtj
o aedttributes [qualfiedMarne | EString o name : EString - shogrt
o ywoid
{2 Package (& FypeDeciaration @ e 0.1 (& fypedtiemernt
+ type
{subzets ownedElernent’ + superPackage
* 4 abPackage D{SLileEtS owher
{3 StringType (& PrimitiveType

o kind : Prirnitive Typekind

Figure 9 Java meta-model kernel

Element is the supertype of all classes in the mddes class has one composition
association to itself. Both association end propgwre derived unions and read-only. All
composition association of subtypes of Element, @k composition associations in the
model) specialize this association and their agsioti end properties subset owner or
ownedElement. This is similar to how it is donghe UML 2.0 meta-model.

Element, NamedElement, TypedElement and Type arergkabstract elements
common to most meta-models.

One option for extension is to include a Model edatras a root element of all models
(like the UML meta-model). This could be used tatain java classes which should be
part of the default (nameless) package. And itatialve contained meta information
about the model, for instance the path on thesfigem and maybe even the contents of
the classpath. In addition a Namespace elementdymobably have been advantages.

The StringType element was needed to represengstrin UML String is a primitive
type, but in Java there is no equivalent such pineiype.

Figure 10 shows the rest of the Java meta-model tWh most central classes are
CompilationUnit and Class. A compilationunit repets a java file and consists of a list
of import statements and type declarations. Inrioslel a type declaration can only be a
class/interface, this could have been expandetstarclude enumeration.

37

{subsets owrer
(3 Package {SUQSEESEEE\;EEBF} +| @ CompilationUnit ¥ com%ﬁl.laimn m%
0.1 + compilationl_nit
Jsubsets ownedElerment -

{subsets ownedElement}
+ typeDec\ara,Eion @ FypeDeclaration

0.1+ {subsets ownert
+ dompilationUnit + impartedType
i ® Type

+ importedPackage| 1 {subsets ownedElement}
* +import

G import
o isStatic : EBodlean (3 Class

o isFinal : EBoolean

o isPublic : EBoolearn
© OnDemandImport © Typelmport o isbstract | EBodlean

o islnterface : EBoalean

{subsets owner} + superClass
D 4,

% 0.1
+ class
0.1/ + class

{subsets owner}

{subsets ownedElement} |, {read-only} {subsets ownedElement}
+ field * + finheritadField o
{subsets ownedElement} fsubsets owner) @ Field & Method
O Expression | 0.1) - 0.1 =T e T pve
+initExpression + owningField o isTransient : EBoolean o isSynchronized : EBoolean
o isAbstract | EBoolean
— 1 0..1 ¢+ method
+ owningtethod fsubsets ownerk
{subsets owner} (3 Parameter
— © ClassMember
© visibsilityEemert o isFinal ; EBoolean * It ho *_+ parameter
© isStatic : EBoolean {subzets owneddE\{ement} Jsubsets ownedElement}
© Statement

Figure 10 CompilationUnit, Class and related elements

When | was designing this meta-model | had a chabmut how to structure the package
and compilationunit elements. | could either useBINF of the Java language as a
starting point or use a more meta-model like apgroa

The BNF rule for compilationunit looks like this:
CompilationUnit := PackageDecl Import* TypeDeclavat

This would be the equivalent of ComilationUnit elmwith three composite
associations to Import, TypeDeclaration and PadRagk PackageDecl would then be a
new element with a reference to a Package element.

The other way, and the way | have chosen, is te laasomposite association from
Package to CompilationUnit. This leaves out thekRgeDecl element and makes sure
that all compilation units are contained withinackage.

The reason the BNF for Java does not handle padktageures very well is because it
only describes the content of a single Java fde@posed to the meta-model that must
describe several files and packages.

Another omission is a Constructor element; thisagsause | let the model to text
transformation generate constructors.

5.4.2 JavaFrame meta-mode extension

The JavaFrame extension to the Java meta-modedreated partly based on the UML
2.0 meta-model and partly from the structure ofX@aeaFrame implementation/code.

38

Figure 11 shows the main structure of the JavaFetension. Each class that has a
special implementation in JavaFrame is represdmjeaiclass that extends the Class
element from the Java meta-model.

(3 Class

{subsets 5'3515} (3 ActiveObjectClass (3 MessageClass (3 MainClass

*

{subsets field} + formaltediator + owningactiveObjectClass
{subsets ownerk: o1
(& MediatorField ; :
+ target : . + owningainClass
& fslnput : EBodlean e} (& MediatorConnection
i o igDynamic : EBoclean

{SL,,I"bSBtS ownedElernent}
P

+ mediatorConnection
+ sOurce *
+ dynaricMediatorConnection

CompositeClass StateMachineClass
{subsets owner 6 B 6

@ Field + owningompLEteClass + stateMichine

feubsets owriedElernent

* + actualMediator 0.1 {subsets class}
© ActiveObjectField + owningCormpositeClass
{redefines type} {subsets gwpert © dynamic : EBoolean
0..1 |+ mediatordlass -

© MediatorClass + owhingActiveObjectField [subsets ownedBiement)

+ composite
0.1

{SL;I“bSBtS figld}

1
+ activeOhject + compositeState

(& CompositeStateClass

{subsets ownerk 0.1
+ owningMediatorClass

(3 Class

{subsets DwnedEIenaerIt} O Statement
+ forward

Figure 11 The structure of the JavaFrame extension to the Java meta-model

The CompositeClass represents a UML class withinatestructure. The composite
association to the ActiveObjectField element repmées UML parts, the composite
association to MediatorField, which is inheritednfr ActiveObjectClass, represents
UML ports and the composite association to Med@tomection represents UML
connector elements.

Both ActiveObjectField and MediatorField extend Eield element from the Java meta-
model. However as ActiveObjectField represents a_Uidrt it also needs to represent
any actual ports on that part. This is achieved lbpmposite association to
MediatorField. The effect of this is that each Ulddrt of a part is represented by a
MediatorField element in this meta-model. In UMbart is only one element, the parts
themselves do not have port elements. This causbtems because connector elements
connect to the ports of specific part not the gaineort of a type. A connector end has a
‘part with port’ property for determining which gahe port belongs to. This is quite
difficult to generate code directly from and thealrame meta-model solves this
problem by having each ActiveObjectField (uml: padntain their own MediatorField
(uml: port) elements. As shown the MediatorConmectilass, which represents a UML
connector, is directly connected to MediatorFielthvsource and target associations, no
‘part with port’ construct is needed.

The JavaFrame meta-model need to represent theibgles well as the structure, of the
implementation, this is done by introducing highdleabstract elements. The behavior

39

that needs to be represented is the region otensé&hine. This is achieved by using the
UML meta-model as a starting point and making ftéresuited for code generation to
JavaFrame. As presented in chapter 3, a UML reigionplemented by fields for states
and a method called execTrans for the transitibhe.execTrans method is a combined
switch on current state and received signal typleth#s is implemented by the
JavaFrame CompositeStateClass which is shown uré-t2 along with other related
elements.

Namedtlement El t Statemert
e {subsets ownedElerment} . RIBRIEE © sta]
) + effect 0.,
. + OUtgoing -,] {subsets ownedslernent
i+ source iti sLbsets cwiner
Tsubsets owner} © Transition = owening T ransition

o guard : EString 0.1

(&) Vertex target a trifger {5} MessageClass
1

(3 StateMachineClass

1 + stateMaching

Teubsets ownedElement I subsetﬁoi\rnm} (3 CompositeStateClass
[vertex + owningCompositeclass
1
+ gompositeState
{read-only}
(3 Pseudostate (® State *

+ fstate

(® Initial | {l reald—unl\,r}
+ finitial
@ choice | _{read-oniy}
+ fchoice

3 FinalState {éeald—onlsf}
+ fﬁﬁalState

Figure 12 The CompositeStateClass element and its contentsrepresentinga UML region

Like in the UML meta-model, an abstract Vertex slasthe supertype of all pseudostates
and states. The CompositeStateClass has a compssdeiation to the Vertex class and
in addition several conveniences association tatimerete subtypes of Vertex. These
are all derived, read-only, transient and volatile.

The UML region class has a composite associatidhedransition class. In this meta-
model this is changed and Vertex is the classawats transitions instead. This fits better
with the execTrans method where first current seatdecked then all outgoing
transitions from that state is checked.

An advantage of keeping the intermediate meta-maul@ relatively high abstraction
level is that there is a choice about how to im@atthese abstract features. In this case
there are at least two different ways to implenteansitions. In the standard JavaFrame
approach the code for transitions (guard, effedtraaw state entered) are inserted in the
execTrans method. Another approach would be torgesma method for each transition.

40

Such a change might have been more difficult ifithermediate meta-model was closer
to the code.

5.4.3 JfJava Transformations

The general transformation architecture used tdampnt the transformations from
UML to JfJava and from JfJava to code. For thisade | chose to use the RSM
transformation framework as model-to-model techggld his allowed me to reuse part
of the original UML compiler, as that was also it using the RSM transformation
framework. The JfJava transformations are showkignre 13.

Core part

«RSM Transformation: «MOFSCrpts
(3 Core UML2Java (3 JavaModel2Code
- targetMetaiModel - sourceMetaMadel
wrneta-models
() Java
«RSM Transformations: «MOFSCripts
(® UML21f)ava (® IlavaZCode
- sourceiMetamModel - target
- target
-sourcelMetalodel - targetMetaModel - sourceMetaMadel
«meta-models «meta-models (c) Java
@umL (® JavaFrame definiton

Extension
Iflava

Figure 13 JfJavatransformation architecture

Because of limited time the MOFScript transformatizas not implemented completely.
The transformation would have been very similaiht®a MOFScript transformation from
JfUml (which is fully implemented). The RSM transfmation was not implemented in
two parts for the same reason, however how to d¥&3M transformations is described
in [25].

As explained in section 2.2.5 the RSM transfornmaframework is a Java framework for
creating transformations. A transformation consi$ta set of rules which is represented
by Java classes that extends the AbstracRule frankeslass. To implement a rule the
code directly manipulates the meta-model API gaedray EMF, in this case this is the
generated UML 2.0 API. This approach is much maese than using a dedicated
transformation language such as MTF, but it alsega larger degree of control and
expressiveness to the transformation. An excegpt fihe rule used to transform a UML
property to a Java field is given below.

protected Object createTarget(ITransformContext ruleCgntext
throws Exception {
Property source = (Property) ruleContext.getSource(
Field target = createTargetObject();
if (ruleContext.getTargetContainer() instanceof Glass
Class owner = (Class) ruleContext.getTargatheer();
setTargetContainer(target, owner);

}

41

if (source.getType() instanceof Classifier) {
/I adding import to owning compilationitun
CompilationUnit cu = getCompilationUnit@at);
Typelmport typelmport = JImmFactory.eINST@®Icreate Typelmport();
typelmport.setCompilationUnit(cu);
References.setFeatureUnknownValue(typelmpontPaokage.eINSTANCE

.getTypelmport_ImportedType(), seugetType());
}

updateTarget(source, target);
References.mapReference(source, target);
return target;

Inheritance between rules is possible and | didement a small inheritance hierarchy of
rules, but this requires much manual preparati@higsmot nearly as convenient as
extending MTF rules.

Some of the central classes in the RSM transfoonaire shown in Appendix B.

5.4.4 Generating meta-modelsfrom BNF

In [22] Fischer et al describes a method for dgvelp meta-models from BNF [26].
Since | was making a meta-model for the Java laggu@xamined the possibility of
using this method to create the Java meta-modéhelend | decided against using this
method for reasons | will explain later.

The method includes two steps. The first step geteerate a primitive meta-model from
the BNF definition. In the second step advancedmabdel concepts like generalization,
structural composition, and general abstract cascae added manually. This manual
step is needed because meta-models are more axpritgs grammars and those
concepts cannot be generated from the BNF defmitio

Two things have to be manually provided for theoselcstep of the process. The firstis a
model of abstract concepts used by the languagéherskecond is information about
which concrete language concept is a refinementhach abstract concept. Figure 14
shows a simplified activity diagram of the process.

42

*BMF=
Java grammar

&2 Application mapping Step 1

«rneta-rnodels srneta-rnodels
Ahstract concepts prirnitive meta-rmodel

e Model transformation Step 2

smeta-models
Java meta-rmodel

Figure 14 A simplified model showing the process of creating a meta-model from BNF

If this process is used on several programmingdaggs, common abstract concepts may
be identified and a shared base of concept defirvitmay be used for related languages.
Such a language alignment would be helpful wheatrg transformations between
different modeling languages and programming laggea

The application mapping (step 1) is done by a ¢taledagrammand the model
transformation is implemented in Java usingrtt,emAPI, which is an API for model
transformation based on JMI

| will present an example of a very small BNF graannthe transformation and the meta-
model produced from it. The grammar is shown beluate that this grammar does not
describe any actual syntax (i.e., there are noitelsiin this grammar).

Name :: TOKEN;

Class_name :: Name;
Import_name :: Name;
Package name :: Name;
Field_name :: Name;

Identifier :: Package_name* Name;
Package _identifier :: Identifier;
Class_identifier :: Identifier;

CompilationUnit :: PackageDecl ImportDecl* ClassDecl;
PackageDecl :: Package_identifier;

ImportDecl :: Package_identifier | Class_identifier;
ClassDecl :: Class_name Field*;

Field :: Class_identifier Field_name;

" Java Metadata Interface. Sun’s implementation of MOF.

43

The BNF is run through thegrammtool and a primitive meta-model is produced, this
completes step 1. For step 2 | need a model ofadistoncepts and | need to implement
a transformation that links the abstract concepthé concrete concepts of my language.
| will reuse the common abstract concepts usedidghEr et al. The transformation was
written manually, and an excerpt from it is preserelow.

// CompilationUnit

compilationUnit.setContainer(structure);
compilationUnit.setMetaSupertype(getAbstractModelEless().getNamespace());
compilationUnit.addContained Type(packageDeclarationagei});
compilationUnit.addContained Type(importDeclaratiofBgeé());
compilationUnit.addContainedType(classDeclaration.getBase(

/I ClassDecl

classDeclaration.setContainer(structure);
classDeclaration.setMetaSupertype(getAbstractModelElefngatslamespace());
classDeclaration.setMetaSupertype(getAbstractModelElefngatslamedElement());
classDeclaration.setlsNamedElement();
classDeclaration.addContainedType(field.getBase());

The final produced meta-model is shown in FigureTte four elements in the Common
package are reused abstract elements.

£ Common
(& ModelElement (5 Namespace (&) NamedElement (3 TypedElement
(& CompilationUnit
(® PackageDec| | + packageDed
0.1
@ ImportDecl | + importDed + dassDed | riassDer + field 5 Field

*
*

Figure 15 Meta-model produces from BNF

*

As | said in the beginning | chose not to use théthod, the first reason for this is that |
would have to modify the existing Java BNF. By nigidig it | loose some of the
advantages of this approach; that it should be motematic and less error prone. There
are several reasons | need to modify the BNF,iteei$ that the structure of the BNF

and the desired structure of the meta-model damatys match. For example the
CompilationUnit production of the grammar statest thhe CompilationUnit element
should have a composite association to PackageBRédtter meta-model structure
would be to have a Package element with a compas#eciation to CompilationUnit.
This problem is explained in section 5.4.1. Twoeotless important reasons | needed to
modify the BNF is that | was only creating a metad®l of a subset of the Java language

44

and | would have needed to remove superfluous patte BNF. And | would have
needed to remove all terminals to make the granwoak with agramm

The second reason is that the coding of the moaestormation would be time
consuming and error prone, partly because the Bddeed to be modified and partly
because another difference between the grammahandeta-model. The grammar
needs to have several identifiers (e.g., Classtifteah because textually this is the only
way to identify elements. These identifiers aremeded in meta-models, direct
associations to the correct element is used instéas change needed to be manually
implemented in the transformation. Fischer et std$s this problem and conclude that
mostly it can be solved by modeling concepts thalas use identifier in the grammar as
abstract concepts, thus removing the problem. HewigvJava some concrete elements
use identifiers, for instance ImportDecl. Note tthet grammar | have shown includes
some identifiers, but these have not been impleadkintthe transformation.

The third reason is that the output meta-modeliwdise form of a MOF model. This
was a problem because no good MOF to EMF transfitmm#ool was found. In addition
the generated MOF meta-model was structured ingggesk the EMF code generator
treats each package as a different meta-modelgkhtiiss is a minor point.

For all those reasons and because | was only dgoiogeate a meta-model of a subset of
the Java language, making the meta-model relatsieiple, | chose to model it using
UML 2.0 and RSM instead. If | was making a meta-eiad the complete Java language
| would not have to modify the BNF as much andlibgeefit of the generation would
have been bigger. In that case this approach rhiaye been worth using.

5.5 JfUml inter mediate meta-model

The JIUml meta-model consists of a subset of thd.IZM) meta-model and a JavaFrame
extension to the UML 2.0 meta-model. In this settiexplain the meta-model and the
transformations implemented.

As explained in section 5.2.2 MOFScript does ngipsuit input meta-models in several
files, this means that no UML 2.0 elements arelalbe from the MOFScript
transformations. The JfJava intermediate meta-msaleed this by simply defining the
two parts of the meta-model as one, but as tmsti@n option for this meta-model |
solved it by creating elements that extend the eg@&tML 2.0 elements. These elements
are shown in Figure 16. The metaclass stereotypessthat the element is from the
UML 2.0 meta-model.

45

wrnetaclasss
{2 Model

= JavaFrame
© Model

 ametaclasss
{3 PrimitiveType

[c) JavaFramePri
mitiveType

wrnetaclasss

wmetaclass»
{3 Class

{3 Package

c) JavaFrame c) JavaFrame

Package Class
srmetadasss «metaclasss
{3 Activity {9 Parameter

[c) JavaFrame

= JavaFrame
Activity ©

Parameter

Figure 16 JfUml adaptations of UML 2.0 elements

wmetaclasss
& Fypedtemernt

c) JavaFrameTy
pedElement

srmetadlasss
{3 Operation

= JavaFrame
© Operation

wrmetaclasss
{3 Property

= JavaFrame
© Property

Figure 17 shows a JavaFrame meta-model that extead$ML meta-model. It is very

similar to the JavaFrame extension of JfJava. Tiferences are partly due to limitations

of the MTF transformation language and partly dugist trying different approaches.

(& MediatorClass

0.1
+ mediator

+ forward
0.1

«metaclass»
(3 Activity

(3 JavaFrameClass

(& MainClass (3 MessageClass

& Activetbjectitass

0.1
+ activeohject

+ formaliediator

(3 MediatorField
isInput : Boolean = true

2 4end

+ Cormposite
1

(® ActiveObjectField

*
+ actualMediator

(& JavaFrameProperty

(® CompositeClass

*

+ activeobjectfield

{3 CompositeStateClass

+ cumpoiitestate

(3 StateMachineClass

*
+ parameter

(® JavaFrameProperty

+ mediatorconnection

(® MediatorConnection

Figure 17 A JavaFrame meta-model that extends classes from the UML meta-model

An example of a difference is the MediatorConnetgtement and its association to
MediatorField called end. This would have beendsettpresented by two associations
called source and target. This was not possiblausecthis is represented as a single
association in the UML meta-model and because Mag-rfo way of distinguishing

between the order of elements in an association.

46

{3 MessageClass + effgcti {5 JavaFrameActivity {3 stateMachineClass
+ trigger* 1 + stateMachine
{3 JavaFrameTransition 0.1+ initialTransition {3 CompositeStateClass

guardPredicate @ String = "else”

* 4 fransition

+ defaultTransition
0.1
+ compositestate
0.1
*
+ outgaing
ol + target
+ source {
(3 Javaframelertex

+ state
*

+ choice *

{3 JavaFrameState {2 JavaFrameChoice

{3 JavaFrameFinalState

Figure 18 CompositeStateClass and related elements

Figure 18 shows the CompositeStateClass and re¢édetkents, this almost the same as
the equivalent diagram in JfJava. The differendbas this meta-model do not have an
InitialState class, instead an initialTransitiomgosite association from
CompositeStateClass to Transition represents this.

5.5.1 Transformations

The general transformation architecture was adaptedplement the transformations
needed for this intermediate meta-model. A diffeeeftom the general scenatrio is that
UML is both the source meta-model and the core gfatte intermediate meta-model.
This has the consequence that the model-to-maaedformations use UML as both
input and output and a UMLCopy transformation wasded. Figure 19 shows the
adapted transformation architecture. For this steM4TF was chosen as model-to-
model transformation technology.

47

Core part

«MTF» «MOFSCripts
(& UMLCopy (® UMLClasses2lavaCode

- targetMetaModel

- sourceMetaModel =soUrceMetamodel

«rmeta-modebs

& UuML
- sourceMetaMiodel
«MTF» «MOFSCripts
(3 UML2JavaFrame (3 UML2JavaFrameCode
: - target
- targetMetabiadel sourceMetahodel - target
«rneta-modebs (c] Java
(3 JavaFrame definiton
Extension

Iuml

Figure 19 Transformations using a JavaFrame inter mediate meta-model that extendsthe UML
meta-model.

The UMLCopy transformation has rules for copyingnoag other things, classes,
attributes and operations. This is not useful bglit but it allows for these rules to be
reused by any transformation that extend UMLCopslo® is an example of a rule from
UMLCopy, it copies UML Property elements. This ridghen reused by extending it in
the UML2JavaFrame transformation.

relate mapPropertyxtends mapTypedElement(uml:Property el, uml:Property e2) {
equals(el.visibility, e2.visibility)
,equals(el.aggregation, e2.aggregation)
equals(el.default, e2.default)
.equals(el.isStatic, e2.isStatic)
.equals(el.isUnique, e2.isUnique)
equals(el.isLeaf, e2.isLeaf)
,mapLiteralSpecificationfer el.lowerValuepver e2.lowerValue)
,mapLiteralSpecificationyer el.upperValuegver e2.upperValue)

}

The next rule is a UML2JavaFrame rule that tramsfoports to mediatorfield elements.
Since both Port and MediatorField are subtypesopé&rty, this rule can extend
mapProperty from UMLCopy.

relate mapMediatorFielaxtends mapProperty(uml:Port el, jf:MediatorField e2) {
equals(el.isBehavior, e2.isInput)
}

The UMLCopy transformation might have been generaiea transformation that takes
any meta-model as input and outputs code for cgpyiat meta-model. Such a
transformation is defined with M3 level meta-modetssource and is run with M2 level
meta-models as input, as opposed to the normalftnanations that are defined with M2
level meta-models as source and are run with Mél levodels as input.

For example | could have created a MOFScript tiamnsation with Ecore meta-models
as source to produce a MTF transformation thatesopny model that conforms to the

48

input meta-model. | would then need to run thesfammation with a UML Ecore meta-
model as input and a MTF transformation that copigd. models would have been
generated. Dennis Wagelaar [27] has created strelmsformation using ATL as a
transformation language and MOF as source metadmbais transformation generates
copy transformations defined in ATL.

As explained in section 5.2.2 MOFScript does notently support transformation
inheritance sufficiently so UMLClasses2JavaCode @kt 2JavaFrameCode was
implemented in one transformation called JlUmI2Jave three transformation files are
shown in Appendix A.

The core transformations may be reused to genamgtdava code, not just code based on
JavaFrame. Also not all code generation scenarawsanwt the use of an intermediate
meta-model, but even if no intermediate meta-ma&desed the UMLClasses2JavaCode
transformation may be useful to extend.

5.6 Comparing the JfUml to JfJava approaches

Even though the JfUml and JfJava intermediate mmetdels started from two different
technologies, one from the Java programming langaagl the other from a subset of
UML, in the end they turned out to be quite similBnis is mostly because the core parts
only used structural concepts common to most olgjeented systems. No behavior was
represented there. That was added in the Javakraesion, and that was going to
represent the same thing in both approaches.

One difference is the use of a CompilationUnit €lesthe JfJava meta-model, UML has
no such concept. Tough this is a minor difference.

The bigger differences in the intermediate meta-@wdere how they were created.
Creating an extension to the UML meta-model, arttdngethe code-generator to
generate correct code proved a technical challéfgereuse of existing UML elements
made JfUml faster to create and gave it accessatoad well thought out elements from
UML meta-model. However if some of those elemengsteetter suited to be represented
differently in the intermediate meta-model, it gaove a problem.

The big difference regarding transformations ig¢ ¢idml can generate the UMLCopy
transformation. This has a potential to save tim#ta create a transformation that is
error free and well suited for extension.

The JIUml and JfJava intermediate meta-modelsiaréas in level of abstraction. It
would be interesting to see how they compared intdgrmediate meta-models that are
closer to the code. Two good candidates for thesaatomplete Java meta-model and a
subset of the UML meta-model with a platform indeghent action language.

49

6 Customizing the generated code

The previous chapter described the architecturaraptémentation of a transformation
from UML to JavaFrame. The transformations werelé@mented using two different
intermediate meta-models. In this chapter | lookaw, given such a transformation, a
user can customize the generated code.

First different user roles involved in implementiaigd using transformations is
identified. Second a classification of customizataternatives is given and examples of
scenarios with partial implementations are showmalfy how the transformation
architecture can benefit maintenance is discussed.

6.1 User roles

The different user roles involved in the implemdiotaof and use of transformations are:
» Transformation designer / implementer
» Expert user / transformation extender
* Transformation user

Transformation designer is the role | have beemesdihg so far in this thesis. The
transformation designer creates the intermediata-medels and implements
transformations. He may also be involved in crepértensions to existing
transformations.

The expert user is a user that not only uses émsformations to generate code, but also
customizes the generated code.

The transformation user creates models and runsahsformation(s). This thesis does
not discuss this user role.

This chapter describes how generated code candbencized and so the relevant user
roles are transformation designer and expert user.

6.2 Classification of changes

This section gives a short description of differmes of possible changes to existing
transformations. A short outline of how the tramsgfation architecture

6.2.1 Supporting more of UML

The existing transformation from UML to JavaFramasforms composite structures,
statemachines and classes to Java code. A wayefdirg this transformation is to
support more of UML. Examples of this can be attidiagrams, deployment diagrams
and interactions.

50

To implement such additions, the added source g@isceust be represented in the
intermediate meta-model. Either the existing inelrate meta-model may be reused or
it must be extended to include the new concepts.

6.2.2 Supporting extensionsto UML

The transformation can be extended to support siies to UML. The UML extensions
are usually in the form of a profile. The effecttbe transformations of this is very
similar to the last point about supporting moréJiL.

6.2.3 Model checking

It may be desirable to not only generate codeunning the model normally, but also to
run model checks. There are several ways to dpithésfor example possible to check a
running statemachine against a sequence diagracifisggon to verify that the
statemachine behaves according to the specification

This would probably require change in the inputspecify which statemachine to verify
against which sequence diagram, and some chartbe generated code, in other words
the intermediate meta-model needs to be extended.

6.2.4 Quality of Service (QoS) change

QoS changes is a large group of changes, someeqaye an intermediate meta-model
change, but a lot will probably only need a modetext extension. In section 6.3.3 |
show an implementation of an example of a QoS aftaadding memory optimization to
signal classes.

6.2.5 Platform change

A possible change is to generate code for a diftgptatform. Depending on the level of
the intermediate meta-model this may require arinédiate meta-model change; if it
does a lot needs to be changed. If not only theetrtodtext transformations need to be
replaced.

6.2.6 Different semantic variation point implementation

One or more semantic variation points may be impletied differently. An example of
this is the choice of which transition to fire whemgoing transitions from a single state
has conflicting triggers. If a state has two outgadiransitions, one triggered by SignalA
and the other triggered by SignalB and SignalBsslatype of SignalA, which transition
should be triggered if a SignalA object is receldthis is a semantic variation point in
UML 2.0 and a conflict resolutions mechanism isdezk The default JavaFrame
behavior is to select a consistent arbitrary tteorsibased on order). Another solution
would be to choose randomly each time such a @bmiticurs. It could be argued that
this is better for fairness purposes, but it i® #ss deterministic. This change could be
implemented by extending the model-to-text transfion. However UML 2.0 has

51

many semantic variation points and some of themlavprobably require an intermediate
meta-model change to implement.

In [19] Chauvel and Jézéquel discusses in detail $@mantic variation points can be
modeled and how different code can be generatedifferent solutions.

6.3 Examples

This section explains some specific examples dioraization of the generated code. |
use the JfUml transformations as a starting poidtshow what changes need to be made
to implement the customizations.

6.3.1 Generating Testsfor JavaFrame models

The UML 2.0 Testing profile is used to specify sefsir the model and JavaFrame
specific tests are generated.

This is an example of adding support for an extangd UML and an extension that
requires a change in the intermediate meta-modhel.changes are shown in Figure 20
where a new extension layer is added to the Jftamkformations. The extension layer
consists of an intermediate meta-model extensidntw&o transformation extensions.

Whenever an extension to the intermediate meta-hi@dequired such an extensions
layer needs to be added.

MTF «MOFSCripts

(& UMLCopy (3 UMLClasses2]avaCode
- targetMetaModel
- sourceMetaModel
- sourcefMetaModel
- sourceMetaMadel «meta-rmodsh
(3 uML
Core part
- sourceMetarmodel

MTF «MOFSCripts

@ UML2fuml (® fuml2lavaFrameCode

- targetietanidel - sourceMetatModel

«meta-modek

(® JavaFrame
JavaFrame Extension

“MTF= «MOFSCripts - target
(& UML2)fTestUml (3 MTestuml2lavaCode - target

- targetMetamodel srmeta-rmodek: S P 2ava
(3 UML Test - sourceMetarnodel definiton

Testing Profile extension HTestUml

Figure 20 JfUml transfor mation ar chitecture extended with support for UML Testing Profile

6.3.2 Generating C# code

If JavaFrame was ported to C#Frame there wouldolsiple to generate C# code. This is
an example of a platform change. The existing meatiate meta-model and model-to-
model transformation could be reused but the mtatétxt transformations would need

52

to be replaced. The modified transformation archite of the JfUml transformations is
shown in Figure 21.

C# Replacement

GMTF= «MOFSCripts
(& UMLCopy (3 UML2C#Code
- targetMetaModel
- soUrceMetaiModel - saurceMetarnodel
«rneta-rodels
3 umL
Core part - sourceMetaModel
~ «MTF») «MOFSCripts
{5 umL22fuml (9 Huml2C#FrameCode
- sourceMetarnodel 1 target
- targetMetarModel - target
«meta-maodel» o #
{39 JavaFrame definition
Extension
Juml

Figure 21 C#Frame Transformations

6.3.3 Adding memory optimization to signals

This change is a Quality of Service (QoS) chanpgoés not require an extension to the
intermediate meta-model. Extending the model totraxsformation is all that is
required.

Figure 22 shows the JfUml transformation architextuith an additional MOFScript
transformation. This transformation specializesdbée generated from signal elements.

_ «MTF» _ «[MOFSCripts
(& UMLCopy (3 UMLClasses2lavaCode
- targetMetaModel
- sourceMetaModel ; ol - sourceMetamodel
«rmeta-modebs
(& UML
Core part - sourceiMetatode]
_ «MTF» : «[MOFSCripts
& uML22fuml (3 Jfuml2JavaFrameCode
- target
- targetMetabiadel - sourceietatadel E
«meta-modep: - target @ Java
{3 JavaFrame definiton
Extension
Huml _ o, e efietarmiodel - target

QoS extension

) «MOFScripts
(3 signal optimization

Figure 22 QoS Signal memory optimization

Methods for creation and destruction of signal otgjés created and added to all signal
classes. If these methods are used instead oatae'dew’ operator a lot of unnecessary
object creation and garbage collection may be a¢bid

To implement this change, four additional methoelsthto be generated for each signal
class.

53

/* QoS extension: Add freelist to signals */
import "UmlJF2JavaFrame.m2t"

texttransformation SignalFreelist(in jf:"http:///JF.ecore™eexts UmlJF2JavaFrame

jf.SignalClass::mapConstructor() {
super.mapConstructor()
var constructorPars = self.getConstructorParameterString()
var constructorArgs = self.getConstructorArgString()

newline
<%
private static %>self.name<% %> self.name<%Freelist; // tdpeofreelist stack
private %> self.name <% %>self.name<%Next; // the listtpoin
synchronized public static %>self.name<% New%>self.name<%() {
// method contents ...
}
synchronized public static %>self.name<%New%>self.name<%(%>ootmtars<%) {
/l method contents ...
}
synchronized private static void %>self.name<%DelMsg (%>selerémsig) {
// method contents ...
}
public void del() {
%>self.name<%DelMsg (this);
}
%>
}

This transformation contains only one rule: map@uusor. This rule overrides a rule
defined in UmlJF2JavaFrame which generates a aanstrfor the class. This have the
effect of replacing the original rule with this grtoeit because 1 still want to generate a
constructor for the class | call super.mapConstnfctvhich will call the original rule.

Note that this extension does not currently work asshown here due to a bug in the
inheritance mechanism of MOFScript. To run thegfarmation | implemented all the
three MOFScript transformations as one transfoiwnairlhis transformation is shown in
Appendix A.

6.3.4 Reusingthecore

If a transformation from UML to Java for somethiihgt is unrelated to JavaFrame needs
to be implemented, the core part of the transfaonarchitecture may still be reused.
Figure 23 shows a transformation were the JavaFextension layer has been replaced
by a GWT extension layer.

" Google Web Toolkit, a framework for developing web-amlons in Java.

54

MR «MOFSCript
(& UMLCopy (3 UMLClasses2?JavaCode
- targetMetaModel

- sourceMetatodel - sourceMetaModel
«rmeta-rmodel»

- sourceMetamodel & UML
Core part

TR «MOFSCript
® UML2GwtUml (® GwtUml2lavaCode

- target

- targetMetamadel etarrodehs - sourceietamodel - target

Java
G GWT (€] d
GWT extension definiton

GwiUml
Figure 23 GWT extension, reusing the coretransfor mation layer

6.4 Maintenance

Change is inevitable and transformations must peefeat it. The reasons for changing
transformations may be new demands, bugs, and ekanghe source or target
language.

By separating the source from the target with é&rmediate meta-model the
consequences of a change in the source or targgidge is limited. In the case of a
change from UML version 2.0 to 2.1, only the mottemodel transformations need
changing. Although the JfUml meta-model uses aeutlSUML this is probably
unlikely to change much, as this subset (classtiydes, etc.) are well established
concepts.

Changes in the transformation that do not requirsnermediate meta-model change can
probably be limited to changing one of the founsf@armations. However if a change of
the intermediate meta-model is needed, at leastramsformations must be changed
(one model-to-model and one model-to-text).

Changes performed in a super-transformation mayireghanges in any sub-
transformations, although if none of the signatufethe rules in the super-
transformations are changed, the change can bedirto only that transformation.

55

/7 Summary and conclusions

The background for this thesis was an existing Uddmpiler producing JavaFrame code
from UML 2.0 models annotated with JavaFrame-spestereotypes. The compiler was
written as a single transformation using Java ardRSM transformation framework.

The main problem was how transformations could bBdarmore user-friendly in the
sense that there would be easier to customizeethergted code.

To answer this | developed a general transformatrchitecture that uses an intermediate
meta-model in two parts: one core meta-model amdeotension. The use of an
intermediate meta-model allowed the transformatiione split in a model-to-model
transformation and a model-to-text transformatimd because the intermediate meta-
model was defined in two parts, both of these faansations could be split in a core and
an extended part.

Different ways of creating intermediate meta-modaedse presented and analyzed, and
two intermediate meta-models were created. Theifitsrmediate meta-model used a
Java meta-model as a core part and the secondaisédaset of the UML meta-model.
Both used a JavaFrame meta-model as an extensien.tBough the two intermediate
meta-models had different starting points theyedraut to be quite similar.

The general transformation architecture was adaptéte specific scenarios and
transformations were implemented using MTF, the R&M¥sformation framework, and
MOFScript.

Using the transformation architecture | showed tlosvgenerated code could be
customized either by extending the transformatiobyoreplacing parts of it. The fact
that the transformation architecture consists vésd small transformation, that
transformation inheritance is used, and that thermmediate meta-model provide a
separation layer between the source and the taliget for these customization and
replacements to be implemented while reusing lpeges of the existing transformation.

7.1 Futurework

When choosing intermediate meta-models | discugsed) a subset of UML or a Java
meta-model as an intermediate meta-model and tifeshproblems with intermediate
meta-models this close to the code. Trying to aweie these problems and
implementing transformations for such an intermiedraeta-model would be an
interesting experiment.

The major obstacle for developing large transforomatis the immaturity of current
transformation languages. The developed transfeomatchitecture had a set of
requirements for model transformation languagessetrequirements were to demanding
for most transformation languages. A lot of workneens implementing transformation
languages that are suited for modular development.

56

8 References

10.
11.

12.

13.

14.

S. SavenkaCombined PIM-PSMin Institute of Informatics2004, University of
Oslo. p. 135.

OMG, Meta Object Facility 1.4, OMG Document (formal/02-03). 2005.

Introducing EMF, Eclipse FoundatiofSlideshow presentation] 2004 [cited
14.3.2006]; Available from:
http://www.awprofessional.com/content/images/01ZuLD/samplechapter/budi
nskych02.pdf.

M. Paternostro and K. Hussé&dvanced Features of the Eclipse Modeling
Framework EclipseCon [Slideshow presentation] 2006 [cit8db.2006];
Available from: http://eclipse.org/emf/docs/presgiuns/EclipseCon.

OMG.Unified Modeling Language (UML)Webpage] [cited 13.5.2006];
Available from: http://www.uml.org/.

OMG,UML Superstructure Specification, OMG Documentr{fall05-07-04)
2005.

Wikipedia.Unified Modeling LanguaggWebpage] [cited 13.5.2006]; Available
from: http://en.wikipedia.org/wiki/Unified_Modelind.anguage.

T. Mens, K. Czarnecki, and P.V. GoApTaxonomy of Model Transformations.
Dagstuhl Seminar on Language Engineering for M@telen Software
Development, 2005.

K. Czarnecki and S. Helsd@lassification of Model Tranformation Approaches.
OOPSLA’03 Workshop on Generative Techniques inGbatext of MDA, 2003.

OMG,MOF QVT Final Adopted Specification (ptc/05-11-@005.

F. Jouault and I. Kurte¥ransforming models with ATin Proceedings of the
Model Transformations in Practice Worksh@®05. Jamaica.

IBM. Model Transformation FramewarkApplication] [cited 21.5.2006];
Available from: http://www.alphaworks.ibm.com/tentif.

MOFScript [Transformation language] [cited 21.5.2006]; Aajle from:
http://www.eclipse.org/gmt/mofscript/.

G.v.E. BoasJemplate Programming for Model-Driven Code Generat2004:
p. 17.

57

15.

16.

17.

18.
19.

20.

21.

22.

23.

24,

25.

26.

27.

I. Kurtev, K.v.d. Berg, and F. Joualyaluation of Rule-based Modularization
in Model Transformation Languages illustrated WAL (preliminary version).
2006.

J. OldevikTransformation Composition Modeling Framewa2k05: p. 7.

K.C. LoudenCompiler Construction: Principles and PracticE997: PWS
Publishing Company.

B. Vanhooff and Y. BerberByeaking Up the Transformation Cha2005: p. 5.

F. Chauvel and J.-M. Jézéquebde generation from UML Models with semantic
variation points.2005: p. 15.

J. Rumbaugh, I. Jacobsen, and G. Boohbk,Unified Modelling Language
Reference Manual, Second editi@d04: Addison-Wesley.

P.-A. Muller, F. Fleurey, and J.-M. JézéqWé&aving Executability into Object-
Oriented Meta-Languages Proceedings of UML MoDEL2005, Springer
Verlag: Jamaica.

J. Fischer, M. Piefel, and M. Scheidgamvietamodel for SDL-2000 in the
Context of Metamodeling ULBth SDL and MSC Workshop, 2004.

QVT-Merge_GroupRevised submission for MOF 2.0
Query/view/Transformation RFP (ad/05-03-02005, OMG.

SunNetBeans SourcéWebpage] [cited 16.5.2006]; Available from:
http://www.netbeans.org/community/sources/.

D. RuestExtending the UML to Java transformation with RatibSoftware
Architect: An example explained|cited 21.5.2006]; Available from: http://www-
128.ibm.com/developerworks/rational/library/05/80&l/.

L.M. GarsholBNF and EBNF: What Are They and How Do They Wofkied
20.5.2006]; Available from: http://www.garshol.pma/download/text/bnf.html.

D. WagelaatMDE Case StudiegWebpage] [cited 15.5.2006]; [Vrije
Universiteit Brusse, System and Software Engingeratb.] Available from:
http://ssel.vub.ac.be/ssel/research:mdd:casestudies

58

Appendix A - JfUml Transfor mations

UMLCopy.rdl (MTF v 1.1)

import um "http:///comibnmntf/um.ecore"

import um "http://ww. eclipse.org/um 2/1.0.0/ UW"
inmport util "http:///comibmntf/util.ecore"

i mport ecore "http://ww. eclipse.org/enf/2002/ Ecore"
import enf "http:///comibm ntf/nodel/enf.ecore”
import ws "http:///conmlibm ntf/nodel/workspace. ecore"

relate File(ws:IFile filel, ws:IFile file2){
mapModel (
over filel.resource.contents,
over file2.resource.contents)

}

rel ate mapModel (um :Mdel ml, um:Mdel m) ({
equal s(ml. nane, n2. nane)
,equal s(over ni.profiles, over nR.profiles)
,ordered nmapEl enent (over mil. ownedMenber, over nR. ownedMenber)

}

rel ate mapEl ement (un : El ement el, unl:El ement e2) {
/I equal s(over el.stereotypes, over e2.stereotypes)
}

abstract relate mapNanmedEl enent extends mapEl enent (
uml : NamedEl ement el
um : NanedEl enent e2)
when equal s(el. nane, e2.nane) {}

rel ate mapPackagel nport (um : Packagel nport el, uni:Packagel nport e2)
{

mapLocal Packagel nport (el, e2),

mapRef er encePackagel nport (el, e2)

}

rel ate mapLocal Packagel nport /*extends
mapPackagel nport*/ (um : Packagel nport el, unl:Packagel nport e2)

when ref mapPackage(el.inportedPackage, eZ2.inportedPackage)
{

}

rel at e mapRef er encePackagel nport /*extends
mapPackagel mport*/ (um : Packagel nport el, unl:Packagel mport e2)
when !equal s(el.inportedPackage. nodel, el. nodel)

ref mapPackage(el.inportedPackage, e2.inportedPackage)

equal s(el. i nportedPackage, e2.inportedPackage)

59

rel ate stereotypeByNane(um : Stereotype el, ecore: EString nane)
when equal s(el. nane, nane)

/*
* Shoul d seperate between types that are part of the nodel and types
t hat
* are inter-nodel references. Types that are part of the nodel should
* link to the new elenment in the target nodel, types that are
* inter-nmodel references should link to the same elenent in the
* referenced nodel .
*
/
abstract rel ate mapTypedEl enent extends mapNamedEl enent (
um : TypedEl enent el,
um : TypedEl enent e2) {
mapTypedEl emrent Type(el, e2)

abstract rel ate mapTypedEl enent Type(
um : TypedEl enent el, um: TypedEl enent e2)

rel ate mapTypedEl enentPrimtiveType extends nmapTypedEl enent Type(
um : TypedEl enent el ,
um : TypedEl enent e2)
when util:lnstanced "um :PrinitiveType" (el.type) {
equal s(el.type, e2.type)
}

rel ate mapTypedEl enent Cl assType ext ends mapTypedEl enent Type(
um : TypedEl enent el when util:InstanceO"um : d ass" (el.type),
um : TypedEl enent e2) {
ref mapd ass(el.type, e2.type)

}

rel ate mapTypedEl enent Nul | Type extends napTypedEl enent Type(
um : TypedEl enent el,
um : TypedEl enent e2) when !util:lInstanceX "uml:Elenent” (el.type)

rel ate mapPackage extends mapNanedEl ement (
um : Package el, unl:Package e2) {
mappedPackage(el),
ordered mapd assifier(over el. ownedMenber, over e2.ownedMenber)
, ordered mapPackage(over el.ownedMenber, over e2.ownedMenber)

}

rel ate mappedPackage(uni : Package el)

abstract relate mapC assifier extends mapNamedEl enent (
unl :Classifier el
um : Classifier e2) {
mapGeneral i zation [0..1](
over el.generalization
over e2.generalization)
, ordered mapPackagel nport (over el.packagel nport, over
e2. packagel nport)
}

60

rel ate mapC ass extends mapC assifier(um:Cass el, um:Cass e2) {

ordered mapProperty(over el.ownedAttribute, over e2.ownedAttribute),

ordered mapQOperati on(
over el.ownedQperation,
over e2.ownedQperati on)
,ordered mapActivity(over el.ownedBehavior, over e2.ownedBehavi or)

}

rel ate mapGeneralization extends mapEl enent (
unl : Generalization el
um : Generalization e2) {
ref mapd assifier [1](over el.general, over e2.general)

}

rel ate mapProperty extends mapTypedEl emrent (um : Property el
um : Property e2) {
equal s(el.visibility, e2.visibility)
,equal s(el. aggregati on, e2.aggregation)
,equal s(el.default, e2.default)
,equal s(el.isStatic, e2.isStatic)
,equal s(el.isUnique, e2.isUnique)
,equal s(el.isLeaf, e2.islLeaf)
, mapLi teral Speci fication(over el.lowerValue, over e2.|owerVal ue)
, mapLi teral Speci fication(over el.upperValue, over e2.upperVal ue)

}

/*
relate mapMul tiplicityEl ement extends mapEl enent (
um :Mul tiplicityElemrent el, um:MiltiplicityE ement e2) {
mapLi t eral Speci fi cati on(
over el.lowerVal ue, over e2.l|owerVal ue)
, mapLit eral Speci fication(
over el.upperVal ue, over e2.upperVal ue)

}
*/

abstract relate mapLiteral Specification extends mapEl enent (
um : Literal Specification el, um:Literal Specification e2)

rel ate mapLiteral | nteger extends maplLiteral Specification(
um : Literallnteger el, um:Literallnteger e2)
{

}

relate mapLiteral UnlintedNatural extends napLiteral Specification(
um :LiteralUnlimtedNatural el, um:LiteralUnlimtedNatural e2)

equal s(el. val ue, e2.val ue)

equal s(el. val ue, e2.val ue)

}

relate mapLiteral String extends nmapLiteral Specification(
um :Literal String el, unm:Literal String e2)
{

}

equal s(el. val ue, e2.val ue)

61

rel ate mapLiteral Bool ean extends mapLiteral Specification(

unl : Li t er al Bool ean

el, unl: Literal Bool ean e2)

equal s(el. val ue, e2.val ue)

rel ate mapQOperati on extends mapTypedEl enent (

um : Operation el,
um : Operation e2) {

equal s(el.islLeaf, e2.islLeaf)
,equal s(el.isStatic, e2.isStatic)
, mapParaneter [0..1] (over el.returnResult, over e2.returnResult)

, order ed mapPar anet
e2. ownedPar anet er)

er (over el.ownedParaneter, over

,ref mapActivity [0..1] (over el.nethod, over e2.nethod)

}

rel ate mapParanet er extends mapTypedEl enent (

unl : Par aneter el,

um : Parameter e2) {
equal s(el.visibilit
,equal s(el. defaul t,

y, e2.visibility)
e2.defaul t)

,equal s(el.isUnique, e2.isUnique)
,equal s(el.l ower, e2.lower)

,equal s(el. upper, e2.upper)

,equal s(el.direction, e2.direction)
,ref mapActivity(el.effect, e2. effect)

}

rel ate mapActivity extends nmapNanedEl erment (

um : Activity el,
um : Activity e2) {

mapAct i vi t yEdge(over el.edge, over e2.edge)
, mapNode(over el.node, over e2.node)

}

abstract rel ate mapNode extends mapNamedEl enent (um : Activi t yNode el
um : Acti vityNode e2) {}

relate maplnitial extends nmapNode(

um : I nitial Node el,

um : I nitial Node e2)

rel ate mapAction extends mapNode(unml : Action el, um:Action e2)
rel ate mapFi nal extends mapNode(
um : Acti vi t yFi nal Node el, uml: ActivityFinal Node e2)

abstract relate nmapActi
um : Acti vit yEdge el
when ref mapNode(el

vi t yEdge ext ends mapNanedEl erment (
, um :ActivityEdge e2)
.source, e2.source)

& ref mapNode(el.target, e2.target)

rel ate mapControl Fl ow ext ends mapActi vit yEdge(

uni : Control Fl ow el,

um : Cont r ol Fl ow e2)

rel ate mapQbj ect Fl ow ext ends mapActi vityEdge(

um : Obj ect Fl ow el,

um : Obj ect Fl ow e2)

62

UML2JavaFrame.rdl (MTF v 1.1)

import "UMLCopy.rdl"
import jf "http:///JF.ecore"

/*

* The rules in this transformation extend rules defiimed

* UMLCopy.rdl

*/

abstract relate mapActiveObjectClassxtends mapJavaFrameClass(
uml:Class elvhen util:InstanceOf'uml:StateMachine((el)
| stereotypeByNamefatch over el.stereotypeSComposite} ,
jf:ActiveObjectClass e2) {
/lcreateSchedulerProperty [1] (match over e2.ownedAttribute),
ordered mapMediatorFieldfver el.ownedPorpver e2.formalMediator)

}

relate createSchedulerProperty(jf:JavaFramePropertyteh equals(el.name’sched?)) {
llequals(el.type, "jf:Scheduler"),
/lequals(el.name, "sched")

}

/* StateMachine and CompositeState */
relate mapStateMachinextends mapActiveObjectClass(
uml:StateMachine e1l,
jf:StateMachineClass e2) {
mapCompositeStateClass [@jér el.regionpver e2.package.ownedMember),
ref mapCompositeStateClaesér el.region, e2.compositeState)

}

relate mapCompositeStateClass(uml:Region el, j:CompositeStategdnss
when util:MatchString"{0} {1}" (el.stateMachine.name, el.name, e2.name) {
ref mapStateMachine(el.stateMachine, e2.stateMachine)
,ordered mapStategver el.subvertexpver e2.state)
,ordered mapChoicedver el.subvertexpver e2.choice)
,maplnitialTransition[0..1}{ver el.subvertex, e2.initialTransition)
/l,ordered mapTransition(over el.transition, overagsition)

/*
relate createCompositeStateClass(
jf:CompositeStateClass el,
uml:Region e3,
ecore:EString e2)
when util:MatchString "{0}States" (e2, el.name) {
equals(el.region, e3),
ref mapStateMachine(e3.stateMachine, el.stateMachine)

63

abstract relate mapVertex(uml:Vertex el, jf:JavaFrameVertex e2) {
/lordered mapTransition(over el.owner.ownedElement, oveuteping, el)
ordered mapTransitiongver el.outgoingpver e2.outgoing)

}

relate mapStatextends mapVertex(

uml:State el,

jf:JavaFrameState e2) {
equals(e2.visibility, "public")
/l,equals(el.default, e2.default)
/l,equals(el.isComposite, e2.isComposite)
equals(e2.isStatic;true"”)
/l,equals(e2.isUnique, "false™)
equals(e2.isLeaf,'false")
,equals(el.name, e2.name)
/l,mapDefaultTransition [0..1](over el.owner.ownedElemehidefaultTransition, el)

relate mapFinalStatextends mapState(uml:FinalState el, jf:JavaFrameFinalState e2) {
llequals(e2.name, "finalState")
}

relate mapChoicextends mapVertex(
uml:Pseudostate ethen equals(el.kind,"choice’),
jf:JavaFrameChoice e2) {
/lordered mapTransition(over el.owner.ownedElement, oveutgping, el)

}

relate mapTransition(
uml:Transition el, jf:JavaFrameTransition e2) {
lIref mapVertex(e3, e2.source),
mapGuard(el.guard.specification, €2),
mapActivity(el.effect, e2.effect),
mapSignalTriggedver el.trigger, e2),
ref mapVertex(el.target, e2.target),
ref mapVertex(el.source, e2.source)

}

relate maplnitial Transition(
uml:Pseudostate athen equals(el.kind,"initial"),
jf:JavaFrameTransition e2) {
mapTransition[1]gver el.outgoing, €2)

}

/*

relate mapDefaultTransition(
uml:Transition el, jf:JavaFrameTransition e2, uml:Staje e3
when Iref checkNotDefaultGuard(el.guard.specification) {
mapActivity(el.effect, e2.effect),
mapSignalTrigger(over el.trigger, e2),
ref mapVertex(el.target, e2.target)

}

relate checkNotDefaultGuard(uml:OpaqueExpression el)
when !(equals(el.body, "else") | equals(el.body, "))

*/

relate mapGuard(uml:OpaqueExpression el, jf:JavaFrameTrans&)dn e
equals(el.body, e2.guardPredicate)
}

relate mapSignalTrigger(uml:SignalTrigger el, jf:JavaFrameTrans#?) {
mapTrigger¢ver el.signal, e2)
}

relate mapTrigger(uml:Signal el, jf:JavaFrameTransition e2) {
ref mapSignal(elover e2.trigger)
}

/* END StateMachine and CompositeState section */

relate mapMediatoextends mapJavaFrameClass(
uml:Class elvhen stereotypeByName(
match over el.stereotypes$Mediator”),
jf:MediatorClass e2) {
/Iref mapForwardAcitivity [0..1](el.activity, e2.forward)

}

relate mapCompositextends mapActiveObjectClass(
uml:Class el, jf:CompositeClass e2)
when stereotypeByNamatfatch over el.stereotype$;omposite’){
/lordered mapActiveObjectField(over el.ownedAttribute, oveaati®eobjectfield),
ordered mapConnector(
over el.ownedConnector,
over e2.mediatorconnection)
,createMainClass[1](ebyer e2.package.ownedMember)

}

relate createMainClass (uml:Class el, jf:MainClass e2) {
util:MatchString"{0}_Main" (el.name, e2.name),
createMainActiveObjectField(el, e2.composite)

}

relate createMainActiveObjectField(uml:Class e1, jf:ActiveObjectFiélil{e
equals(e2.name;Main"),
ref mapComposite(el, e2.type),
equals(e2.aggregatioricomposite,
ordered mapMediatorFieldfver el.ownedPorpver e2.actualMediator)

relate mapSignakxtends mapClassifier(uml:Signal el, jf:SignalClass e2) {
ordered mapPropertydver el.ownedAttributegver e2.ownedAttribute)
}

relate mapActiveObjectFiel@éxtends mapJavaFrameProperty (
uml:Property elvhen equals(el.isComposite'true”),
jf:ActiveObijectField e2) {
mapActualMediatorFielayer el.type, €2, el)

65

relate mapActualMediatorField(
uml:Class el,
jf:ActiveObjectField e2,
uml:Property e3) {
mapActiveObjectMediatorField(
over el.ownedPort,
over e2.actualMediator, e3)

}

relate mapActiveObjectMediatorField(
uml:Port el,
jf:MediatorField e2,
uml:Property e3)
when util:MatchString"{0} {1}" (e3.name, el.name, e2.name){
equals(el.visibility, e2.visibility)
,equals(el.default, e2.default)
/l,equals(el.isComposite, e2.isComposite)
.equals(el.isStatic, e2.isStatic)
.equals(el.isUnique, e2.isUnique)
equals(el.isLeaf, e2.isLeaf)
.equals(el.lower, e2.lower)
.equals(el.upper, e2.upper)
,mapTypedElementType(el, e2)

}

relate mapMediatorFielagxtends mapJavaFrameProperty(
uml:Port el, ji:MediatorField e2) {
equals(el.isBehavior, e2.isInput)

relate mapConnector(uml:Connector el, jf:MediatorConnection e2) {
ordered mapConnectorEndyer el.end, e2)
}

abstract relate mapConnectorEnd(
uml:ConnectorEnd el, jf:MediatorConnection e2) {}

relate mapActualPortConnectorErstends mapConnectorEnd(
uml:ConnectorEnd el, jf:MediatorConnection e2)
when util:InstanceOf'uml:Property"(el.partWithPort) {
ref mapActiveObjectMediatorField (
el.role, e2.end, el.partWithPort)
}

relate mapFormalPortConnectorEegtends mapConnectorEnd(
uml:ConnectorEnd el, jf:MediatorConnection e2)
when !util:InstanceOf'uml:Property"(el.partWithPort)}{
ref mapMediatorFielddver el.roleover e2.end)
}
/*
* These to compensate for not being able to access uml element
* in MOFScript
*/
relate mapJavaFrameModektends mapModel(
uml:Model el, jf:JavaFrameModel e2)

66

relate mapJavaFramePackagdends mapPackage(
uml:Package el, jf:JavaFramePackage e2)

relate mapJavaFrameProperytends mapProperty(
uml:Property e1, jf:JavaFrameProperty e2)

relate mapJavaFrameParameggtends mapParameter(
uml:Parameter el, jf:JavaFrameParameter e2)

relate mapJavaFrameClasstends mapClass(
uml:Class el, jf:JavaFrameClass e2)

relate mapJavaFrameOperatiextends mapOperation(
uml:Operation el, jf:JavaFrameOperation e2)

relate mapJavaFrameActivitgxtends mapActivity(
uml:Activity el, jf:JavaFrameActivity e2)

JFUmI2Java.m2t (MOFScript v 1.1.4)

texttransformation JfUml2Java (in jfuml:"http:///JF.ecore™)

property OBJECT = "Object"
property file_extension = ".java"

property targetDir = "gen-src/"

jfuml.JavaFrameModel::main() {
self.mapModel()
}

jfuml.JavaFrameModel::mapModel() {
self.ownedMember->forEach(c:jfuml.JavaFramePackage) {
c.mapPackage()
}

}

jfuml.JavaFramePackage::mapPackage() {
self.ownedMember->forEach(c : jfuml.JavaFrameClass) {
c.mapClass()

self.ownedMember->forEach(c:jfuml.JavaFramePackage) {
c.mapPackage()
}

}

jfuml.JavaFrameClass::mapClass() {
file (targetDir + self.owner.getFolderName() + "/" + selfrrea+ file_extension)

self.mapPackageDeclaration()
nl
self.maplmportDeclarations()

67

glelf.mapCIassDecIarationStart()

rs“eh‘.mapFieIds()

gclelf.mapConstructor()
S(Ialf.ownedOperation->forEach(o:jfumI.JavaFrameOperation) {
} 0.mapOperation()

nl
self.mapClassDeclarationEnd()

}

jfuml.JavaFrameClass::mapClassDeclarationStart() {
<%public class %> self.name <% extends %> self.getGenenadl(DBJECT) <% { %>
nl

}

jfuml.JavaFrameClass::mapClassDeclarationEnd() {
<%}%>nl

}

jfuml.JavaFrameClass::mapPackageDeclaration() {
printin("package "+self.owner.getQualifiedName()+ ";")
}

jfuml.JavaFrameClass::maplimportDeclarations() {
var imports:Hashtable // use hashtable to avoid duplicates
self.ownedAttribute->forEach(c:jfuml.JavaFramePropdrty)
if (c.type !'=null) {
if (c.type.oclisKindOf(jfuml.JavaFrameClass)) {
if (c.type.owner != self.owner) { // dont impdypes from same package

imports.put(c.type, c.type)
}

}
}
imports->forEach(c : jfuml.JavaFrameClass) {
printin("import " + c.getQualifiedName() + ";")
}

self.packagelmport->forEach(c) {
printin("import " + c.importedPackage.getQualifiedName()*#)

self.maplmportDeclarationsMergeExtension()

}

jfuml.JavaFrameClass::mapFields() {
self.mergesMapFields()
self.ownedAttribute->forEach(p:jfuml.JavaFrameProperty) {

p.mapProperty()
}

68

jfuml.JavaFrameClass::mergesMapFields() {}

jfuml.JavaFrameProperty::mapProperty() {

}

jfuml.JavaFrameClass::mapConstructor() {
self.mapDefaultConstructor()
nl
if (!(self.ownedAttribute.isEmpty() && self.inheritedNeber.isEmpty()))
self.mapParameterizedConstructor()

tab<%%>self.getVisibilityLiteral() <% %> self.getTypeLitéd)a<% %> self.name <%;%>nl

nl
self.inheritsMapConstructor()

}

jfuml.JavaFrameClass::inheritsMapConstructor() {}

jfuml.JavaFrameClass::mapParameterizedConstructor() {
<% public %> self.name <%(%> self.getConstructorParameteg®tr%) {
super(%> self.getConstructorSuperArgString() <%);
%>
self.ownedAttribute->forEach(c) {
tab(2)<%this.%> c.name <% = %> c.name <%;%>nl
}

<% }
%>

}

jfuml.JavaFrameClass::mapDefaultConstructor() {
<% public %> self.name <%() {

super();
}

%>

}

jfuml.JavaFrameOperation::mapOperation() {
var return:String
var parameters:String
if (self.returnResult.isEmpty()) {
return = "void"
} else {
return = self.returnResult.first().getTypeLiteral()

self.ownedParameter->forEach(p:jfuml.JavaFrameParameter) {
parameters += p.getTypeLiteral() + " " mon
}

+ p.name + ",
if (parameters.size() > 0) {
parameters = parameters.substring(0, parameters.size() - 2)

tab<%%> self.visibility <% %> return <% %> self.name €8%(parameters <%) {
%>
self.method->forEach(a:jfuml.JavaFrameActivity) {
a.mapActivity()
}

<% }
%>

69

}

jfuml.JavaFrameActivity::mapActivity() {
if (self.action.isEmpty()) {
printin(self.name)
}else {
self.action->forEach(a) {
printin(a.name)
}

}

/* HELPERS */
jfuml.JavaFrameProperty::getTypeLiteral() : String {
if (self.type = null) {
result = OBJECT
}else {
result = self.type.name
}

}

jfuml.JavaFrameParameter::getTypeLiteral() : String {
if (self.type = null) {
result = OBJECT
}else {
result = self.type.name
}

}

jfuml.JavaFrameProperty::getVisibilityLiteral() : Strifig
if (self.visibility = "package")
result =""
else
result = self.visibility

}

jfuml.JavaFrameClass::getGeneralLiteral(default:String) : &frin
result = default
if (Iself.general.isEmpty()) {
result = self.general.first().name
}

}

jfuml.JavaFrameClass::getConstructorParameterString(Ongdtri
var cp:String
self.ownedAttribute->forEach(c:jfuml.JavaFrameProperty) {
cp += c.getTypelLiteral() +"" + c.name + ", "
self.inheritedMember->forEach(c:jfuml.JavaFrameProperty) {
cp += c.getTypelLiteral() + " " + c.name + ", "
}
/l Remove trailing comma
if (cp.size() > 0) { cp = cp.substring(0, cp.size() }2
result = cp

70

jfuml.JavaFrameClass:.getConstructorArgString() : Stfing
var args:String
args = self.mergesGetConstructorArgString()
self.ownedAttribute->forEach(c:jfuml.JavaFrameProperty) {

args += c.name + ",
self.inheritedMember->forEach(c:jfuml.JavaFrameProperty) {

args +=c.name + ", "
}
/[l Remove trailing comma
if (args.size() > 0) { args = args.substring(0, aigs(s- 2) }
result = args

}

jfuml.JavaFrameClass::mergesGetConstructorArgString)ngst
result =""

}

jfuml.JavaFrameClass::getConstructorSuperArgString() {
var args:String
self.inheritedMember->forEach(c:jfuml.JavaFrameProperty) {

args +=c.name + ", "
}
/ Remove trailing comma
if (args.size() > 0) { args = args.substring(0, aigs(}- 2) }

result = args

}

jfuml.JavaFramePackage::getQualifiedName() : String {
result = self.qualifiedName.replace("::", ".")

}

jfuml.JavaFramePackage::getFolderName() : String {
result = self.qualifiedName.replace("::", "/")
}

jfuml.JavaFrameClass::getQualifiedName() : String {
if (self.owner.ocllsKindOf(jfuml.JavaFramePackage)) {
result = self.owner.getQualifiedName() + "." + self.name
}else {

result = self.name

}

jfuml.JavaFramePrimitive Type::getQualifiedName() : String {
result = self.name
}

/* JAVAFRAME SPECIFIC (MOFScript help) */

jfuml.JavaFrameClass::maplmportDeclarationsMergeExtension() {
printin("import se.ericsson.eto.norarc.javaframe.*;")

}

/* ActiveObject */
jfuml.ActiveObjectClass::mergesMapFields() {

71

<% Scheduler sched = null;

[* Formal mediators */
%>
self.formalMediator->forEach(c) {
c.mapProperty();
}

}

/* ActiveObjectField */
jfuml.ActiveObjectField::mapProperty() {
nl
<% /* Part %> self.name <% */%>nl
self.actualMediator->forEach(c) {
tab<%%> c.getTypeLiteral() <% %> c.name <%;%>nl

tab<%%> self.getTypelLiteral() <% %> self.name <%;%>nl

}

jfuml.ActiveObjectField::maplnit() {
self.actualMediator->forEach(c) {
tab(2)<%%>c.name<% = new %>c.getTypeLiteral()<%(/*Ddféaiue*/);%>nl

tab(2)<%%>self.name<% = new
%>self.getTypeLiteral()<%(%>self.getConstructorArgString6):o>nl

jfuml.ActiveObjectClass::getConstructorParameterString() {
var r = "Scheduler sched, "
self.formalMediator->forEach(c) {

r += c.getTypeliteral() + " " + c.name + ",
}
r = r.substring(0, r.size() -2)
result=r

}

jfuml.ActiveObjectField::getConstructorArgString() {
varr = "sched, "
self.actualMediator->forEach(c) {

r+=c.name + -,

}
r = r.substring(0, r.size() -2)
result =r

}

/* Composite */
jfuml.CompositeClass::mapClassDeclarationStart() {
<% public class %> self.name <% extends Composite { %>
nl

}

jfuml.CompositeClass::mapConstructor() {

<% public %>self.name<%(%>self.getConstructorParameterStittg(}
this.sched = sched,;
%>

72

self.formalMediator->forEach(m) {

<% this.%> m.name <% = %> m.name <%;%>nl
}
nl
self.ownedAttribute->forEach(a : jfuml.ActiveObjectFie{d)
a.maplnit()
nl
self.mediatorconnection->forEach(c) {
<% %>c.end.first().name<%.addAddress(%>c.end.last().name<);%
}
<% }
%>
}

[* StateMachine */
jfuml.StateMachineClass::mapClassDeclarationStart() {
<%public class %> self.name <% extends StateMachine {

static CompositeState states = new %>self.compositeState.ngfoatmostState");
%>

}

jfuml.StateMachineClass::mapConstructor() { // TODO seperatarpeter/attribute for SM
var cp = self.getConstructorParameterString()
<% public %> self.name <%(%> cp <%) {
super(sched);
this.sched = sched;

nl

%>
self.formalMediator->forEach(c) {
tab(2)<%this.%> c.name <% = %> c.name <%;%>nl
}
<% }
%>

}

jfuml.StateMachineClass::mapExecStartTransition() {
<%

self.mapExecStartTransition()

protected void execStartTransition() {
states.enterState(this);
}

%>

}

/* CompositeStates */
jfuml.CompositeStateClass::mapClassDeclarationStart() {
<%public class %> self.name <% extends CompositeState {
%>

}

jfuml.CompositeStateClass::mergesMapFields() {
<% /* States declared as static fields */%>nl
self.state->forEach(c) {

73

c.mapProperty()

}

jfuml.CompositeStateClass::mapConstructor() {
<% public %>self.name<%(String name) {
super(name);
%>
self.state->forEach(c) {
tab(2)<%%>c.getName()<%.enclosingState = this;%>nl
}

}

self.inheritsMapConstructor()

<%
%>

}

jfuml.CompositeStateClass::inheritsMapConstructor() {
self.mapEnterState()
self.mapExecTrans()

}
jfuml.CompositeStateClass::mapEnterState() {
<%
public void enterState(StateMachine curfsm) {
%>self.stateMachine.name<% csm = (%>self.stateMachine.name<%)curfsm
%>
self.initialTransition.mapFireTransition("if")
<%
}
%>
}
jfuml.CompositeStateClass::mapExecTrans() {
<%
protected boolean execTrans(Message signal, State st, StateMactsmy u
%>self.stateMachine.name<% csm = (%>self.stateMachine.name<%)curfsm
%>
self.state->forEach(s | !s.ocllsKindOf(jfuml.JavaFramelStek)) {
<% if (st == %>s.getName()<%) {
%> s.outgoing->forEach(t) {
t.mapTransition()
}
<% }
%>
}
<%
return false;
}
%>
}
[* State */

jfuml.JavaFrameState::mapProperty() {
<% static %> self.getTypeLiteral() <% %> self.name <% = new %

74

self.getTypeLiteral() <%("%>self.name<%");%>nl

}

jfuml.JavaFrameFinalState::mapProperty() {
<% static State finalState = new State("finalState");%>nl

}

jfuml.JavaFrameState::getTypelLiteral() : String {
if (self.type = null)
result = "State"
else
result = self.type.name

}

jfuml.JavaFrameState::mapStateChangeCode() {
tab(2)<%%>self.getName()<%.enterState(csm);%>nl

}

jfuml.JavaFrameFinalState::mapStateChangeCode() {

<% csm.moveStateMachine(null);
finalState.enterState(csm);
csm.owner.removeActiveObject(csm);

%>

}

jfuml.JavaFrameChoice::mapStateChangeCode() {
var test:String = "if"
<% /* Enter choice */
%>
self.outgoing->forEach(t | !t.isDefault()) {
t.mapFireTransition(test)
test = "else if"
}
self.outgoing->forEach(t | t.isDefault()) {
t.mapFireTransition(test)
}

}

jfuml.JavaFrameState::getName() : String { result = self.name }
jfuml.JavaFrameFinalState::getName() : String { result = "fitatS }

[* Transition */
jfuml.JavaFrameTransition::isDefault() : Boolean {
var g:String = self.guardPredicate
if (self.guardPredicate = null) {

result = "true"

}

if (g.equals("else") or g.equals("™)) {
result = true

}else {
result = false

}

}

jfuml.JavaFrameTransition::getGuardLiteral() : String {
if (self.guardPredicate = null)

result = "true"
else {
if (self.guardPredicate.equals(") or self.guardPredicate.€tgials"))
result = "true”
else
result = self.guardPredicate

}

jfuml.JavaFrameTransition::mapFireTransition(test: Str{ng)
tab(2)<%%>test<% (%>self.getGuardLiteral()<%) {
%>
if (I(self.effect = null)) {
tab(3)<%%>self.effect.mapActivity() nl
}

self.target.mapStateChangeCode()
tab(2)<%}
%>

}

jfuml.JavaFrameTransition::mapTransition() : String {
var r:String = "\t\tif ("
self.trigger->forEach(c) {
r += "signal instanceof " + c.getQualifiedName() + " ||

}
r = r.substring(0, r.size() - 3)
r +: Il) {\nll

if ('self.trigger.size() > 1)
r += "\\\t\t" + self.trigger.first().getQualifiedName()"sig = ("
+self.trigger.first().getQualifiedName()+")signal;\n"
else
r += "\t\t\tMessage sig = signal;\n"
print(r)
self.mapFireTransition("if") // TODO include opt return simmapFire..
<% return true;
}

%>

}

/* Mediator */

jfuml.MediatorClass::mapClassDeclarationStart() {
<% public class %> self.name <% extends %> self.getGenanall(iMediator") <% { %>
nl

}

[* Signal */

jfuml.SignalClass::mapClassDeclarationStart() {
<% public class %> self.name <% extends %> self.getGenenall(iMessage™) <% { %>
nl

}

/* Overridden helpers */
jfuml.MediatorField::getTypeLiteral() : String {
if (self.type = null) {
result = "Mediator"
}else {

result = self.type.name

}

/* Main class */
jfuml.MainClass::mapFields() {

self.composite.mapProperty()
}

jfuml.MainClass::mapConstructor() {
<% public %>self.name<%(String hostname, int portnumber) {
Trace trc = null;
/I Create Trace object with socket communication
// Establish socket communication with JFTrace
if (hostname.length() != 0) { // JFTrace connection stk
try {
trc = new Trace(true, hostname, portnumber);
} catch (Exception e) {
System.err.printin("Socket connection to JFTrace fadezbstablish: "+ e);
}

Scheduler sched;
if (trc != null)

sched = new Scheduler(trc); // with socket connected Digjeet
else

sched = new Scheduler(); // with default Trace object

Thread t1 = new Thread(sched); // associating the Slevesliith a Thread

%>
self.composite.maplnit()
<%
/l Required: start the JavaFrame machinery when the \sjstiem is initialized
t1.start();
System.out.printin("*****xkrrrx JayaFrame starting ***xxrtkkkkkrk,
}

public static void main(String[] args) {
/I Process command options
/I Necessary if the JavaFrame application will use socket coration
I/ with JFTrace
String hostname = "";
int portnumber = 0O;
for (inti=0; i< args.length; i++) {
String token = args]i;
if (token.equals("-remote")) {
if (i == (args.length - 1)) {
System.out.printin("No remote specified.");
usage();
System.exit(1);

}
int index = args[++i].indexOf(":");
if (index !=-1) {

hostname = args]i].substring(0, index);
Integer portnumberint = new Integer(argsi]
.substring(index + 1));

77

portnumber = porthumberint.intValue();
}else {

usage();

System.exit(1);

} /I process other options here

}

new %>self.name<%(hostname, porthnumber);

}

private static void usage() {
/I Writes command line options
System.out.printin("Usage: " + "%>self.name<%"
+ " [-remote <hostname>:<port-number> 1");
System.out.printin();
}
%>

}

/***/

/* QoS extension: Add freelist to signals */
jfuml.SignalClass::inheritsMapConstructor() {
var constructorPars = self.getConstructorParameterString()
var constructorArgs = self.getConstructorArgString()
nl
<% private static %>self.name<% %> self.name<%Freelist; bitdipe freelist stack
private %> self.name <% %>self.name<%Next; // the listtpoin

synchronized public static %>self.name<% New%>self.name<%() {
%>self.name<% returnmessage;
if (%>self.name<%Freelist != null) {// take a message froenfteelist
returnmessage = %>self.name<%Freelist;
%>self.name<%Freelist = %>self.name<%Freelist.%>self.name<®Nex

} else // freelist empty, new message must be generated
returnmessage = new %>self.name<%();

returnmessage.%>self.name<%Next = returnmessage; /* desipihaiobject*/
return returnmessage;

}

%> if (constructorPars.size() > 0) {<%
synchronized public static %>self.name<% New%>self.name<%(%traatorPars<%) {
%>self.name<% returnmessage;
if (Y%o>self.name<%Freelist != null) {// take a message frbenfteelist
returnmessage = %>self.name<%Freelist;
%>self.name<%Freelist = %>self.name<%Freelist.%>self.name<®Nex
%>
self.ownedAttribute->forEach(c) {
tab(3)<%returnmessage.%>c.name <% = %> c.name <%;%>nl

self.inheritedMember->forEach(c) {
tab(3)<%returnmessage.%>c.name <% = %> c.name <%;%>nl
}

<%

} else // freelist empty, new message must be generated
returnmessage = new %>self.name<%(%>constructorArgs<%);

returnmessage.%>self.name<%Next = returnmessage; /* desipihaiobject*/
return returnmessage;

}

%> 1<%
synchronized private static void delMsg(%>self.name<% sig) {

if (sig.%>self.name<%Next==sig) { // check that it i&dli
sig.%>self.name<%Next = %>self.name<%Freelist;

%>self.name<%Freelist = sig;

}else {
System.err.printin("**%>self.name<%.del: Object noeliy

}

public void del() {
delMsg(this);
}

%>

Appendix B - JfJava Transformations

UM L 2JavaM etamodel (RSM Transfor mation)

ClassRulejava

package no.uio.ifi.javaframetransformation.rules;

import jmm.Class;

import jmm.CompilationUnit;

import jmm.JmmFactory;

import jmm.JmmPackage;

import jmm.Package;

import no.uio.ifi.javaframetransformation.tools.ClassBeit
import no.uio.ifi.javaframetransformation.tools.JavaNaméToo
import no.uio.ifi.javaframetransformation.tools.References;

import org.eclipse.uml2.Classifier;

import com.ibm.xtools.transform.core.AbstractRule;
import com.ibm.xtools.transform.core.|TransformContext;

public class ClassRule extends AbstractRule {
public ClassRule() {

super();

}

public ClassRule(String id, String name) {

super(id, name);

}

protected Class createTargetObject() {
return JmmFactory.eINSTANCE.createClass();
}

protected Object createTarget(ITransformContext ruleCgntext
throws Exception {

Classifier source = (Classifier) ruleContext.getSeQy
CompilationUnit cu = ImmFactory.eINSTANCE.create@itationUnit();
Class target = createTargetObject();
target.setName(JavaNameTool.asClass(source.getName()));
target.setlsAbstract(source.isAbstract());
target.setlsPublic(true);
cu.setName(JavaNameTool.asClass(source.getName()));

Classifier superClass = ClassBuilder.getSuperTypa@h
if (superClass != null)
References.setFeatureUnknownValue(target, JInmPaaRBEANCE.getClass_SuperClass(),
superClass);

if (ruleContext.getTargetContainer() instanceof Pgekf
Package owner = (Package) ruleContext.getTzogttiner();
cu.setPackage(owner);
/* Add class as type decl to cu */
target.setCompilationUnit(cu);
/* Add cu to package */
cu.setPackage(owner);
/* Map reference */
References.mapReference(source, target);

}

return target;

}

public boolean canAccept(ITransformContext context) {
Classifier source = (Classifier) context.getSource();
return source.getAppliedStereotypes().isEmpty();

}

PackageRulejava

package no.uio.ifi.javaframetransformation.rules;

import jmm.JmmFactory;

import jmm.Package;

import no.uio.ifi.javaframetransformation.tools.JavaNameiT oo
import no.uio.ifi.javaframetransformation.tools.References;

import com.ibm.xtools.transform.core.AbstractRule;
import com.ibm.xtools.transform.core.ITransformContext;

public class PackageRule extends AbstractRule {

public PackageRule(String id, String name) {

80

super(id, name);

}

protected Object createTarget(ITransformContext ruleCqritewivs Exception {
org.eclipse.uml2.Package source = (org.eclipse.uatage)ruleContext.getSource();

jmm.Package target = ImmFactory.eINSTANCE.createPackage();
target.setName(JavaNameTool.asPackage(source.getName()));

if (ruleContext.getTargetContainer() instanceof jRackage) {
Package owner = (jmm.Package)ruleContext.gpti@ontainer();
target.setSuperPackage(owner);
References.mapReference(source, target);

return target;

}

return null;

}
}

References.java

package no.uio.ifi.javaframetransformation.tools;

import java.util. ArrayList;
import java.util. HashMap;
import java.util.List;

import org.eclipse.emf.common.util.EList;
import org.eclipse.emf.ecore.EObject;
import org.eclipse.emf.ecore.EReference;

public class References {
protected static HashMap references = new HashMap();

protected static List unknownTargetDeferedTargets = neayhist();
protected static List unknownTargetDeferedFeatures = neayl4st();
protected static List unknownTargetDeferedValues = neayhrst();

protected static List unknownValueDeferedTargets = neayAist();
protected static List unknownValueDeferedFeatures = neaylist();
protected static List unknownValueDeferedValue = nevawiist();

protected static List unknownBothDeferedTargets = AmayList();
protected static List unknownBothDeferedFeatures =AreayList();
protected static List unknownBothDeferedValue = nevarist();

public static void mapReference(EObject source, EObject tdrget)

references.put(source, target);
}

protected static EObject getMappedReference(Object source) {
return (EObject)references.get(source);
}

public static void setFeatureUnknownTarget(EObject taEdgeference feature, EObject value) {
EObject ref = getMappedReference(target);
if (ref I= null) {
setFeature(ref, feature, value);
}else {
deferFeatureUnknownTarget(target, feature, value);
}

}

public static void setFeatureUnknownValue(EObject tarde¢f&rence feature, EObject value) {
EObject ref = getMappedReference(value);
if (ref I= null) {
setFeature(target, feature, ref);
}else {
deferFeatureUnknownValue(target, feature, value);
}

}

public static void setFeatureUnknownBoth(EObject takfeeference feature, EObject value) {
EObject value_ref = getMappedReference(value);
EObject target_ref = getMappedReference(target);
if (value_ref != null && target_ref I= null) {
setFeature(target_ref, feature, value_ref);
}else {
deferFeatureUnknownBoth(target, feature,ejalu
}

}

protected static void deferFeatureUnknownTarget(EOtgeget, EReference feature, EObject value) {
unknownTargetDeferedTargets.add(target);
unknownTargetDeferedFeatures.add(feature);
unknownTargetDeferedValues.add(value);

}

protected static void deferFeatureUnknownValue(EObgeget, EReference feature, EObject value) {
unknownValueDeferedTargets.add(target);
unknownValueDeferedFeatures.add(feature);
unknownValueDeferedValue.add(value);

}

protected static void deferFeatureUnknownBoth(EObgeget, EReference feature, EObject value) {
unknownBothDeferedTargets.add(target);
unknownBothDeferedFeatures.add(feature);
unknownBothDeferedValue.add(value);

}

public static void setDeferedFeatures() {
for (int i=0; i<unknownTargetDeferedTargets.sizef) {
EObject target = (EObject)unknownTargetDeferegitarget(i);
EReference feature = (EReference)unknownTargetdéfeatures.get(i);
EObject value = (EObject)unknownTargetDefereddéaget(i);

EObject refTarget = getMappedReference(target);

if (refTarget != null)
setFeature(refTarget, feature, value);

82

}

for (int i=0; i<unknownValueDeferedTargets.sizef) {

}

EObject target = (EObject)unknownValueDeferegiiarget(i);
EReference feature = (EReference)unknownValueDEmades.get(i);
EObject value = (EObject)unknownValueDefered¥.gjet(i);
setFeature(target, feature, getMappedReferencejyalue)

for (int i=0; i<unknownBothDeferedTargets.sizet¥) {

}
}

public static void setFeature(EObject target, EReferencede&Object newValue) {

EObject target = (EObject)unknownValueDeferegiiarget(i);
EReference feature = (EReference)unknownValueDE&fmades.get(i);
EObject value = (EObject)unknownValueDefered¥.glet(i);
EObject target_ref = getMappedReference(target);
EObject value_ref = getMappedReference(value);
if (target_ref = null && value_ref I= null
setFeature(target_ref, feature, value_ref);
/I TODO - add warning if null in reference

if (feature.isMany()) {

EList featureList = (EList)target.eGet(feature)
featureList.add(newValue);
/ltarget.eSet(feature, featureList);

}else {

}

target.eSet(feature, newValue);

83

	masterforside.pdf
	Thesis-for-print.pdf

