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ABSTRACT

The purpose of this paper is to investigate properties of self-exciting jump processes

where the intensity is given by an SDE, which is driven by a finite activity stochastic

jump process. The value of the intensity process immediately before a jump may

influence the jump size distribution. We focus on properties of this intensity function,

and show that the scaling limit of the intensity process equals the strong solution of

the square-root diffusion process (Cox–Ingersoll–Ross process) in distribution. As a

particular example, we study the case of a linear intensity process and derive explicit

expressions for the expectation and variance in this case. Based on this, we show

that once an appropriate scaling limit is taken, the resulting process exhibits infinite

activity behaviour in distribution.
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1. Introduction

Self-exciting processes were first studied by Hawkes [7]. Initially, the main application

was in seismology; the modelling of earthquakes and their aftershocks. Over the last
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decade various versions of self-exciting processes have been used in financial applica-

tions (see e.g. Bacry et al. [1] and Embrechts et al. [5]), to model group behaviour in

social media (see Rizoiu et al. [14]), and for predicting crime and terrorist acts (see

Mohler [11] and Lewis et al. [10]). The class of self-exciting stochastic process models

has the advantage of being very versatile in applications

In this paper, we investigate properties of self-exciting jump processes. Our defini-

tion of self-exciting processes, follows Eyjolfsson and Tjøstheim [6]. The self-exciting

process is essentially a counting process, which counts the number of occurred shocks

at any given time. The intensity process of the self-exciting process, denoted by λ(t),

determines the probability of shocks occurring in the infinitesimal interval (t, t + dt)

conditioned on the information at time t. We assume that this intensity process has

Markovian stochastic differential equation (SDE) dynamics. The self-exciting processes

considered in this paper differ from Hawkes processes, see Hawkes [7] and Hawkes and

Oakes [8], because of the stochastic jump size of the self-exciting process may depend

on the current value of the intensity process. As noted in Eyjolfsson and Tjøstheim [6],

this kind of self-exciting process is a generalisation of the exponential Hawkes model.

The self-exciting model we present in this paper is a finite activity jump process

(like the compound Poisson process) in the sense that in bounded time intervals it

only produces a finite amount of jumps. However, as we will discuss in Section 3,

when model parameters are chosen in a suitable way, and then passed to a limit one

obtains an infinite activity process in the limit which can be thought of as an infinite

activity analogue of the self-exciting process. This is similar to how the gamma and

inverse Gaussian processes are infinite activity limits of compound Poisson processes.

We emphasize that the class of self-exciting processes has the ability to produce periods

(clusters) of high activity between periods of low activity, which is something that Lévy

processes can not reproduce.

Jaisson and Rosenbaum [9] derive limit theorems for Hawkes processes which are

nearly unstable. These processes are such that the L1-norm of their kernel is close

to unity. Jaisson and Rosenbaum [9] show that after a rescaling, the nearly unstable

Hawkes counting processes asymptotically behave like integrated Cox–Ingersoll–Ross

models, and the nearly unstable intensity processes asymptotically behave like
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Cox–Ingersoll–Ross models. In the same spirit, we prove limit theorems for the self-

exciting processes. In Theorem 3.3, we show that for a fixed time, t ≥ 0, the scaling

limit of the intensity process of the self-exciting process at time t behaves like the

Cox–Ingersoll–Ross square-root process in distribution. We moreover prove a similar

result for the integrated scaled intensity process, which converges to the integrated

Cox–Ingersoll–Ross square-root process in distribution. We reiterate that our self-

exciting processes differ from the Hawkes processes in that our processes are specified

by a Markovian SDE with stochastic jumps, whereas the Hawkes intensity process has

constant jumps and specified by a kernel function with L1-norm less than one.

The paper is structured as follows: In Section 2 we introduce the framework for self-

exciting stochastic processes and illustrate such processes via a numerical example.

In Section 3, we show that self-exciting processes can exhibit both finite and infinite

activity type behaviour. We also prove that the scaling limit of the intensity process

equals the square-root process in distribution. In Section 4, we study a particular case

where the intensity process of the self-exciting process is assumed to be linear. We

derive the expected value and variance of this linear intensity process, as well as the

moments of the integrated intensity. Finally, in Section 5, we conclude and sketch ideas

on further research.

2. Self-exciting stochastic jump processes

Our definition of self-exciting processes, follows Eyjolfsson and Tjøstheim [6]. Essen-

tially, the self-exciting process is a counting process, which counts the number of shocks

which have occurred at any given time. Let (Ω,F) denote a measurable space, and let

{Tn}n≥1 be a point process taking values in R+. The sequence {Tn}n≥1 is assumed

non-negative and non-decreasing, i.e. 0 ≤ T1 ≤ T2 ≤ · · · holds. The sequence repre-

sents times of successive events. The counting process, N(t), associated to the point

process,

N(t) :=
∑
n≥1

1{Tn≤t}, (1)
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where t ≥ 0, is the counting process which records all the jumps of the point process.

The rate at which the events occur is furthermore dictated by the intensity process,

which we define in what follows. We identify a point process with its counting process

(1) and let

FNt := σ{N(s) : 0 ≤ s ≤ t},

where t ≥ 0. That is, {FNt }t≥0 is the filtration generated by the counting process.

Assume that we are given a point process adapted to some filtration {Ft}t≥0, with

FNt ⊂ Ft for all t ≥ 0. Suppose that N(t) admits a càdlàg {Ft}t≥0-adapted, and thus

predictable, intensity λ(t), such that

E
[∫ ∞

0
f(s)dN(s)

]
= E

[∫ ∞
0

f(s)λ(s)ds

]
,

holds for all predictable f : Ω×R+ → [−∞,∞]. Note that this means the the process

t 7→ N(t) − λ(t) is a martingale, and that the intensity process λ(t) determines the

probability of shocks occurring in the infinitesimal interval (t, t + dt) conditioned on

Ft. Note in particular that if the intensity is constant, λ(t) = λ0 > 0, holds for all

t ≥ 0, then N(t) is a standard homogeneous Poisson process with intensity λ0.

We assume that the intensity process admits Markovian SDE dynamics. Each jump

has a particular size, which feeds into (i.e. excites) the intensity, and typically raises

the intensity immediately after the shock has occurred, although the intensity will then

revert back to some mean level in the absence of further shocks. The size of the shock

can furthermore influence how much the likelihood of of further shocks is increased

(i.e. the level of excitement). Hence, a particularly large shock may for example lead to

a high likelihood of aftershocks, whereas a small shock may be less likely to excite the

intensity and thus cause further aftershocks. Thus, the model class allows the shocks

to vary in size, and the size of each shock determines the level of the corresponding

intensity process excitation. If the intensity becomes high enough, a cluster of shocks

might appear.
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Consider the stochastic jump process, U(t), given by

U(t) =

N(t)∑
k=1

Xk, (2)

where {N(t)}t≥0 is the counting process (1), and {Xk}k∈N is a family of random vari-

ables, Xk has the probability distribution ν(λ(Tk−), ·), for a given family {ν(λ, ·)}λ>0

of probability distributions, and t− := lims↑t s. Thus we allow the value of the inten-

sity process immediately before the jump to influence the jump size distribution. We

introduce the stochastic differential equation (SDE)

dλ(t) = µ(λ(t))dt+ βdU(t), (3)

λ(0) = λ0, where β ∈ R is a constant and we assume that µ : R+ → R, is Lipschitz

continuous.

Definition 2.1. An SDE-driven self-exciting jump process is a stochastic jump pro-

cess (2) with the intensity λ(t), given by the SDE (3), with jump-sizes, Xk, which follow

the probability distribution ν(λ(Tk−), ·). Here, {ν(λ, ·)}λ>0 is a family of probability

distributions, and ν(λ, ·) is supported on [λ0 − λ,∞).

From the above Definition 2.1, we see that the jumps feed into the intensity via the

jump process U(t). Furthermore the value of the intenisty process immediately before

the jump is a parameter in the the jump-size probability distribution. This means that

the intensity level prior to a jump can determine the size of the next jump. To prevent

an explosion happening in finite time the function µ must be negative for high values

of λ(t).

Also note that the self-exciting processes in Definition 2.1 differ from Hawkes pro-

cesses, see Hawkes [7] and Hawkes and Oakes [8], because of the stochastic jump size

modelled via the family {Xk}k∈N of random variables which may depend on the current

value of the intensity process. Actually, this kind of self-exciting process generalises

the exponential Hawkes model (i.e., the exponential Hawkes process is a special case
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of Definition 2.1), see Eyjolfsson and Tjøstheim [6] for more details.

Example 2.2. (Simulation of a self-exciting process U(t))

To illustrate, we simulate two paths of the same self-exciting process and plot the

intensity λ(t) as well as the corresponding self-exciting process U(t). Following Eyjolf-

sson and Tjøstheim [6], we consider a non-linear intensity process λ(t) given as the

solution to the following SDE

dλ(t) = (α+ δ exp(−γλ(t)2))(λ0 − λ(t))dt+ βdU(t),

λ(0) = λ0.
(4)

As mentioned in Eyjolfsson and Tjøstheim [6], the speed of mean reversion in the

SDE (4) varies between α+ δ exp(−γλ20) for λ(t) = λ0 and decreases towards α when

λ(t) increases. The interpretation of this is that in low activity periods, the effect of a

jump fades out faster than in high activity periods.

For the simulation, we choose λ0 = 0.05, α = 0.1233, β = 0.0399 and the jumps are

simulated from an inverse Gaussian distribution with parameters 1.9389 (mean) and

5.4943 (shape). The parameter values were chosen based on Eyjolfsson and Tjøstheim

[6], but the choice of λ0 was modified slightly to better display the particular struc-

ture of the self-exciting process U(t). The simulation was performed using a thinning

algorithm from Ogata [12].

In Figures 1 and 2 we have plotted two different paths of the self-exciting process

U(t) with the corresponding intensity process λ(t). Periods with a lot of jump activity

in the intensity process correspond to a large increases in the self-exciting process.

Periods where there are no jumps in the intensity process correspond to plateaus (i.e.,

no change) in the corresponding self-exciting process.

3. Finite and infinite activity of self-exciting processes

A stochastic jump process is said to have finite activity if it has finitely many jumps in

finite time. In contrast, an infinite activity jump process can have an infinite number
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Figure 1.: A path of the self-exciting process U(t) with the corresponding intensity
λ(t).

Figure 2.: Another path of the self-exciting process U(t) with the corresponding in-
tensity λ(t).

of jumps in finite time. As an example, compound Poisson processes have finite activ-

ity, while gamma processes and generalized inverse Gaussian processes have infinite

activity and jumps that are infinitesimally small (to avoid explosion of the processes).

A natural question is whether the self-exciting process defined in Section 2 is of

finite or infinite activity. In Eyjolfsson and Tjøstheim [6], conditions are provided

which ensure that the counting process N(t) associated with the intensity SDE (3)

does not explode in finite time. This means that the self-exciting process has finitely

many jumps on any compact interval, and is thus of finite activity as we have described

it above. Let

Λ(t) :=

∫ t

0
λ(s)ds.
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Then, a condition for the self-exciting process to be of finite activity is:

Lemma 3.1. Assume that for all times T > 0,

Λ(T ) <∞ holds almost surely. (5)

Then, the SDE-driven self-exciting process (as defined in Section 2) is of finite activity.

Proof. The Lemma follows from Assumption 1, and the comments thereafter, in

Eyjolfsson and Tjøstheim [6] combined with the definition of finite activity above.

If the intensity process λ(t) in equation (3) does not satisfy assumption (5) of

Lemma 3.1, then the counting process N(t) may explode in finite time. In this case, the

self-exciting process may have infinite activity. By choosing a jump size distribution,

ν, with positive jumps, and an appropriate drift term µ which does not drive the

intensity sufficiently fast downwards between jumps in the SDE (3), we can ensure an

explosion of the number of jumps N(t) in finite time. However, for such a model to be

meaningful we must ensure simultaneously that the jump-sizes, Xk, are infinitesimal

like they are in infinite activity Lévy processes. Otherwise, the jump process itself will

explode. In the current section we show that by taking an appropriate scaling limit the

resulting limit of an SDE-driven self-exciting processes is an infinite activity process

in distribution.

3.1. Infinite activity self-exciting processes

In this section we discuss infinite activity self-exciting processes and how they can

be obtained as limits of finite activity self-exciting processes. If the parameters which

govern the dynamics of the SDE intensity are changed in a way such that Λ(t) increases,

while the jump-sizes, X1, X2, . . ., become smaller and smaller simultaneously, then, as

we pass to the limit, we can ensure that in the limit the self-exciting jump process,

U(t), has infinite activity.

Essentially there are two non-trivial possibilities. The first one is that an appro-

priately scaled version of the stochastic intensity, converges in law to a non-random
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positive measure. The second option of interest is that the scaled stochastic intensity

converges in law to a stochastic process. In what follows we study conditions under

which the scaled stochastic intensity process converges in law to a stochastic process.

We study the asymptotic properties of the intensity process as we increase the jump

intensity and decrease the jump size distribution simultaneously. To that end, consider

a self-exciting process which depends on a parameter, k ≥ 1, i.e. a process with an

intensity,

dλk(t) = µk(λk(s))dt+ βkdUk(t), (6)

where λk(0) = λ0k and iid non-negative jump size distribution with (joint) cumula-

tive probability distribution function Fk. Suppose furthermore that {ak}, k ≥ 1 is a

sequence such that ak > 0 for all k ≥ 1 and limk→∞ ak = 0. We study the behaviour

of the scaled intensity process

λ̂k(t) := akλk(t). (7)

Now let mk,n(t) := E[λnk(t)] and m̂k,n(t) := E[λ̂nk(t)]. In what follows we shall make

the following assumption.

Assumption 1. Given the intensity processes (6) and the corresponding scaled pro-

cesses (7), suppose that limk→∞ akλ0k = 0, there is a sequence of non-negative func-

tions {gk} such that akgk(λ) is bounded for each k ≥ 1 and limk→∞ akgk(λ) = c0 ∈ R,

where the convergence is uniform in λ, and it holds that

µk(λ) + βkE[Xk]λ = gk(λ)− c1λ

where c1 > 0 and for each k ≥ 1, the jump sizes are non-negative, independent and
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identically distributed, with finite moments. Suppose furthermore that

lim
k→∞

aj−1k βjkE[Xj
k] =


c2 if j = 2

0 if j > 2,

where the random variable Xk represents a jump in Uk(t).

According to Eyjolfsson and Tjøstheim [6] the generator of the intensity process

λ(t) is given by

(Af)(λ) = µ(λ)f ′(λ) + λ

∫
(f(λ+ βx)− f(λ))ν(λ, dx),

whenever f is in the domain of the generator. Furthermore, if f is in the domain of

the generator, then the Dynkin formula is verified, i.e.,

E[f(λ(t))] = f(λ) + E[

∫ t

0
Af(λ(r))dr],

when it it assumed that the initial value is λ(0) = λ. Letting f(λ) = λn, where n ≥ 1,

and employing the binomial theorem, we obtain that

(Af)(λ) = n(µ(λ) + βE[X]λ)λn−1 +

n−2∑
j=0

(
n

j

)
βn−jE[Xn−j ]λj+1.

So, if mn(t) = E[λn(t)] denotes the nth moment of the intensity λ(t), an application

of Dynkin’s formula and Fubini yields

mn(t) = λn +

∫ t

0
nE[(µ(λ(s)) + βE[X]λ(s))λn−1(s)]ds

+

n−2∑
j=0

(
n

j

)
βn−jE[Xn−j ]

∫ t

0
mj+1(s)ds,

(8)

where the sum is dropped when n = 1.

In the following lemma, we show that the nth moment of the scaled intensity process,
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m̂k,n(t) = E[λ̂nk(t)], is bounded by an nth degree polynomial. Later, this result will be

used to prove that the scaling limit of the intensity equals the square-root process in

distribution.

Lemma 3.2. For each n ≥ 0, the moment m̂k,n(t) is bounded by an nth degree poly-

nomial which is independent of k ≥ 1.

Proof. By (8) it holds that

m̂k,n(t) = ank

(
λn0k +

∫ t

0
nE[(µk(λk(s)) + βkE[Xk]λk(s))λ

n−1
k (s)]ds

+

n−2∑
j=0

(
n

j

)
βn−jk E[Xn−j

k ]

∫ t

0
mk,j+1(s)ds

 .

Notice that since an intensity is always non-negative it holds for any n ≥ 1 that

E[ank(gk(λk(s))− c1λk(s)λn−1k (s)] ≤ E[akgk(λk(s))λ̂
n−1
k (s)]

≤ (‖akgk − c0‖∞ + c0)m̂k,n−1(s),

where ‖f‖∞ = supx |f(x)| denotes the sup norm. Hence, by Assumption 1 it follows

that m̂k,1(t) ≤ (supk ‖akgk − c0‖∞ + c0)t, and by induction it follows that m̂k,n(t) is

bounded by a nth degree polynomial which is independent of k.

We now show that, given our assumption, for each t ≥ 0 the scaling limit of the

intensity process (7) as k →∞ in distribution is the square-root process which is given

by the strong solution of the SDE

dY (t) = (c0 − c1Y (t))dt+
√
c2Y (t)dB(t), (9)

where Y (0) = 0 and B(t) denotes Brownian motion.

Theorem 3.3. For any t ≥ 0, it holds that λ̂k(t)→ Y (t), as k →∞ in distribution,

where Y (t) is given by (9).

Proof. According to Assumption 1 and Lemma 3.2 we may apply (8) and the domi-
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nated convergence theorem to conclude that

lim
k→∞

m̂k,n(t) = lim
k→∞

ank

(
λn0k +

∫ t

0
nE[(µk(λk(s)) + βkE[Xk]λk(s))λ

n−1
k (s)]ds

+

n−2∑
j=0

(
n

j

)
βn−jk E[Xn−j

k ]

∫ t

0
mk,j+1(s)ds


= n

∫ t

0
E[ lim

k→∞

(
akgk(λk(s))− c1λ̂k(s)

)
λ̂n−1k (s)]ds

+
n(n− 1)

2
c2

∫ t

0
lim
k→∞

m̂k,n−1(s)ds.

Hence, by an application of the fundamental theorem of the calculus, it follows that

for each n ≥ 1, the nth moment of the limit of the scaled intensity, limk→∞ λ̂k(t),

solves the ODE

y′n = −nc1yn +

(
nc0 +

n(n− 1)

2
c2

)
yn−1,

where yn(0) = 0.

Now, by applying Itô’s lemma with f(x) = xn to the stochastic process Y (t) it

follows that the nth moment of Y (t) also verifies the above ODE, for every n ≥ 1.

Moreover, Dufresne [4] shows that the series

∞∑
n=0

sn

n!
E[Y n(t)]

converges when s is small enough, so that the moment generating function (MGF) of

Y (t) can be obtained in this way by evaluating the above series. Thus, we have shown

that the MGF of limk→∞ λ̂k(t) equals the MGF of Y (t) in a neighbourhood around 0,

and hence (see e.g. section 30 in Billingsley [2]) they are equal in distribution.

A similar result holds for the integrated intensity process.

Theorem 3.4. For any t ≥ 0, it holds that
∫ t
0 λ̂k(s)ds →

∫ t
0 Y (s)ds, as k → ∞ in

distribution, where Y (t) is given by (9).

Proof. First we show that the moments of the integrated intensity, Λ̂k(t) =
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∫ t
0 λ̂k(s)ds, are finite independently of the parameter k ≥ 1. Note that

Λ̂nk(t) =

(∫ t

0
λ̂k(s)ds

)n
≤ tn

(
sup
s∈[0,t]

λ̂k(s)

)n
.

Since the jumps are non-negative, it follows that the intensity, s 7→ λ̂k(s) (and thus s 7→

λ̂nk(s)) is a.s. upper semi-continuous. A property of upper semi-continuous functions

is that it attains its supremum on a compact set. A consequence of this is that for a

fixed ω ∈ Ω and ε > 0, the set

Aε = {s ∈ [0, t] : λ̂nk(s) ≥ sup
r∈[0,t]

λ̂nk(r)− ε}

is not empty and closed. Hence, since ε > 0 is arbitrary, it must hold

that sups∈[0,t]E[λ̂nk(s)] ≥ E[sups∈[0,t] λ̂
n
k(s)], and conversely it clearly holds that

sups∈[0,t]E[λ̂nk(s)] ≤ E[sups∈[0,t] λ̂
n
k(s)]. Similar arguments can moreover be employed

to show that (sups∈[0,t] λ̂k(s))
n = sups∈[0,t] λ̂

n
k(s). It follows that

E[Λ̂nk(t)] ≤ tnE[

(
sup
s∈[0,t]

λ̂k(s)

)n
] = tn sup

s∈[0,t]
m̂k,n(s),

so, according to Lemma 3.2 it holds that E[Λ̂nk(t)] < C(t) < ∞ where C(t) > 0 is

independent of k.

Suppose that m,n ≥ 0. According to Itô’s formula (see Theorem II.33 in Prot-

ter [13]) applied to the product t 7→ Λ̂mk (t)λ̂nk(t) it holds that

Λ̂mk (t)λ̂nk(t) =

∫ t

0
λ̂nk(s)d(Λ̂mk (s)) +

∫ t

0
Λ̂mk (s)d(λ̂nk(s))

+
∑

0≤s≤t
{Λ̂mk (s)λ̂nk(s)− Λ̂mk (s−)λ̂nk(s−)− λ̂mk (s−)∆Λ̂nk(s)− Λ̂mk (s−)∆λ̂nk(s)}

=

∫ t

0
mΛ̂m−1k (s)λ̂n+1

k (s)ds+

∫ t

0
Λ̂mk (s)nλ̂n−1k (s)akµk(λk(s))ds

+
∑

0≤s≤t
Λ̂mk (s)

(
λ̂nk(s)− λ̂nk(s−)

)
.
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Now, let Mk,m,n(t) := E[Λ̂mk (t)λ̂nk(t)], for m,n ≥ 0. Then, according to the Cauchy-

Schwarz inequality it holds that

Mk,m,n(t) ≤
(
E[Λ̂2m

k (t)]m̂k,2n(t)
)1/2

< C(t),

where the constant C(t) > 0 is independent of k. Note moreover that, since t 7→

Nk(t)− Λk(t) is a martingale, it holds that

E[
∑

0≤s≤t
Λ̂mk (s)

(
λ̂nk(s)− λ̂nk(s−)

)
]

= E[

∫ t

0
Λ̂mk (s)

(∫ (
λ̂k(s−) + akβkx

)n
νk(dx)− λ̂nk(s−)

)
dNk(s)]

= E[

∫ t

0
Λ̂mk (s)

n−1∑
j=0

(
n

j

)
λ̂jk(s−)an−jk βn−jk E[Xn−j

k ]λk(s)ds]

=

n−1∑
j=0

(
n

j

)
an−j−1k βn−jk E[Xn−j

k ]

∫ t

0
E[Λ̂mk (s)λ̂j+1

k (s)]ds,

where we have applied the binomial theorem and Fubini’s theorem. Hence, we may

apply the dominated convergence theorem, together with Assumption 1 to conclude

that

lim
k→∞

Mk,m,n(t) =

∫ t

0
m lim

k→∞
Mk,m−1,n+1(s)ds+

∫ t

0
nc0 lim

k→∞
Mk,m,n−1(s)ds

−
∫ t

0
nc1 lim

k→∞
Mk,m,n(s)ds+

∫ t

0
c2
n(n− 1)

2
lim
k→∞

Mk,m,n−1(s)ds.

An application of the fundamental theorem of the calculus thus yields that for each

m,n ≥ 0 the limit limk→∞Mk,m,n(t) solves the sytem of ODE’s given by

y′m,n = −nc1ym,n + (nc0 +
n(n− 1)

2
c2)ym,n−1 +mym−1,n+1,

with ym,n(0) = 0. By applying Itô’s formula to t 7→ (
∫ t
0 Y (s)ds)mY n(t) one can more-

over show that the moments t 7→ E[(
∫ t
0 Y (s)ds)mY n(t)] verify the same system of

ODE’s. Hence, since the Laplace transform of Z(t) =
∫ t
0 Y (s)ds is known in closed
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form (see [3]) and is finite in a radius around zero as noted by Dufrense [4]. Hence (ac-

cording to section 30 in Billingsley [2]), the moments of Z(t) determine its distribution

and Λ̂k(t)→ Z(t) as k →∞ in distribution.

Example 3.5. (Gamma density) Suppose that dF (x) = f(x)dx, where f(x) is the

PDF of a gamma distribution:

f(x) =
uv

Γ(v)
xv−1e−ux, (10)

where u > 0 and v > 0 are constants. By letting v ↓ 0, the jumps become smaller and

smaller, and if the parameters of the intensity process are adjusted simultaneously so

that the intensity becomes higher and higher, the self-exciting process can be made

into an infinite activity process.

To that end, suppose that {vk}k≥1 is a sequence such that vk > 0 for all k ≥ 1, and

vk → 0 as k → ∞, and let ak := 1/Γ(vk), for k ≥ 1. Furthermore, suppose that for

each k ≥ 1, the stochastic intensity, λk(t), defined in (6), has

λ0k = c0

√
Γ(vk)(1 + vk)

vk
, βk =

√
Γ(vk)

vk(1 + vk)

and that the drift rate is linear,

µk(λ) = (βkE[Xk] + c1) (λ0k − λ) ,

where c0, c1 > 0 are constants (and Xk is gamma distributed with density (10) and

v = vk). Then, since the moments of the gamma distribution are given by

E[Xj
k] =

vk(vk + 1) · · · (vk + j − 1)

uj
,

it follows that

µk(λ) + βkE[Xk]λ = (βkE[Xk] + c1)λ0k − c1λ,
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and clearly it holds that ak(βkE[Xk] + c1)λ0k → c0/u as k →∞. Finally note that

lim
k→∞

aj−1k βjkE[Xj
k] =


u−2 if j = 2

0 if j > 2

So, according to Theorem 3.3 we may conclude that the scaled intensity process tends

to a process Y (t) in distibution, where the dynamics of Y (t) are given by the SDE

dY (t) = (c0 −
c1
u
Y (t))dt+

1

u

√
Y (t)dB(t),

and Y (0) = 0.

4. A particular case: Linear intensity process

We now consider the special case where the intensity process, λ(t), is linear. That is,

dλ(t) = α(λ0 − λ(t))dt+ βdU(t). (11)

In this section, we will study the expected value and variance of the intensity process

in this special case. In this section we also assume that the jump-size distribution

associated to each event is independent of the current value of the intensity process.

4.1. The expected value of the intensity in the linear case

Let m(t) denote the expected value of the intensity process, viewed as a function of

time, so

m(t) := E[λ(t)]. (12)
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Define ρ := βE[X] − α. Eyjolfsson and Tjøstheim [6] (see their equation (13)), use

Dynkin’s formula and Fubini’s theorem to derive that

m′(t) = αλ0 + ρm(t)

m(0) := λ.
(13)

Equation (13) is an ordinary differential equation (ODE) with solution

m(t) = m0 +m1e
ρt, (14)

where m0 = −αλ0ρ−1 and m1 = αλ0ρ
−1 + λ. See Eyjolfsson and Tjøstheim [6] for

the details of this derivation, or the following Section 4.2, for how to apply Dynkin’s

formula to obtain the ODE.

Based on the ordinary differential equation (13), we separate the long term be-

haviour of the expected value, m(t), into three cases:

• If ρ > 0: In this case, E[λ(t)] grows exponentially with time.

• If ρ = 0: In this case, from (13) we get m(t) = λ+αλ0t, so E[λ(t)] grows linearly

with time.

• If ρ < 0: In this case, E[λ(t)] is bounded and E[λ(t)]→ −αλ0ρ−1 as t→∞.

Recall that ρ := βE[X] − α. Hence, ρ > 0 means that E[X] > α
β , where α is the

drift term and β is the diffusion term for the intensity SDE. Hence, the interpretation

is that if the jump sizes are independent and identically distributed, and the expected

jump size is larger than the fraction of the drift term over the diffusion term, then the

expected intensity rate will grow exponentially with time. Similarly, ρ = 0 means that

E[X] = α
β . Hence, if the expected jump size is in perfect balance with the fraction of

the drift term over the diffusion term, then the expected intensity will grow linearly

with time. Finally, ρ < 0 means that E[X] < α
β . So, if the expected jump size is smaller

than the fraction of the drift term over the diffusion term, then the expected intensity
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is bounded (and we know what it converges to).

4.2. The variance of the intensity in the linear case

Let v(t) denote the second order moment of the intensity process, viewed as a function

of time, so

v(t) := E[λ2(t)]. (15)

To determine the second moment, we use the same idea as in Section 4.1, and as in

Eyjolfsson and Tjøstheim [6]: We use Dynkin’s formula and Fubini’s theorem to derive

an ordinary differential equation for v(t). From Dynkin’s formula with f(x) = x2,

E[λ2(t)] = λ2 + E[

∫ t

0
Af(λ(r))dr] (16)

where A(·) is the infinitesimal (or extended) generator of λ(t). Note that according to

(8) it holds that

(Af)(λ) = 2λα(λ0 − λ) + λ
∫

((λ+ βx)2 − λ2)ν(λ, dx)

= λ(2αλ0 + β2E[X2]) + λ2(2βE[X]− 2α)

= Aλ+ 2ρλ2,

where we define A := 2αλ0 +β2E[X2] and ρ = βE[X]−α as before. By inserting this

into the application of Dynkin’s formula above in equation (16), and using Fubini’s

theorem to change the order of integration and expectation, we find

v(t) = λ2 +
∫ t
0 E[Aλ(r) + 2ρλ(r)2]dr

= λ2 +
∫ t
0 (Am(r) + 2ρv(r))dr.
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Hence,

v′(t) = Am(t) + 2ρv(t)

v(0) = λ2.
(17)

Recall that we have an explicit expression for m(t) from equation (14). Hence, equa-

tion (17) is an ordinary differential equation in v(t) which can be solved by standard

techniques by inserting the expression for m(t) from (14).

We now consider the same three cases as in Section 4.1

• If ρ > 0: By observing the ODE (17), we see (as in Section 4.1) that the intensity

process may explode in finite time.

• If ρ = 0: In this case, v′(t) = Aλ, so v(t) = λ2e
A

λ
t. Hence,

V ar(λ(t)) = E[λ(t)2]− (E[λ(t)])2

= v(t)−m(t)2

= λ2(e
A

λ
t − 1).

So when t→∞, V ar(λ(t))→∞ as well, since A > 0 and λ > 0.

• If ρ < 0: In this case, we see from the expression for m(t) in equation (14)

that m(t) → −αλ0ρ−1 (a positive constant) as t → ∞. So, since ρ < 0, we see

from the ODE (17) that v′(t) < 0 for a sufficiently large v(t). That is, for a

second order moment, the derivative of this moment becomes negative. This will

stabilise the intensity process. Hence, for ρ < 0, the intensity process is stable

and will not explode in finite time. Note that in the case where v(t) is small, the

process is already stable, so the sign of the derivative v′(t) is not important.

The interpretations of these items are similar to those of Section 4.1: Since ρ :=

βE[X] − α, ρ > 0 means that E[X] > α
β , where α is the drift term and β is the

diffusion term for the intensity SDE. Hence, the interpretation is that if the jump

sizes are independent and identically distributed, and the expected jump size is larger

than the fraction of the drift term over the diffusion term, then the intensity process

may explode in finite time. Similarly, ρ = 0 means that E[X] = α
β . Hence, even when
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the expected jump size is in perfect balance with the fraction of the drift term over the

diffusion term, the intensity process can explode as time goes to infinity. However, it

will not explode in finite time. Finally, ρ < 0 means that E[X] < α
β . So, if the expected

jump size is smaller than the fraction of the drift term over the diffusion term, the

intensity process is stable, in the sense that it will not explode in finite time.

4.3. The second moment of the integrated intensity in the linear case

The second moment differential equation (17) has the solution

v(t) = v0 + v1e
ρt + v2e

2ρt, (18)

where v0 = Aαλ0(2ρ
2)−1, v1 = −Aρ−1(αλ0ρ−1 +λ), and v2 = A(2ρ2)−1(αλ0 + 2ρλ) +

λ2 are constants. We note that the preceding observations are consistent with the

properties of the solution that were observed in Section 4.2. This solution can in turn

be used to determine the second moment of the integrated intensity, Λ(t). Note that

by an application of Fubini it holds that

E[Λ2(t)] =

∫ t

0

∫ t

0
E[λ(r)λ(s)]drds.

Suppose that s ≥ r. Then, it holds that

E[λ(r)λ(s)] = v(r) + E[λ(r)(λ(s)− λ(r)],

where v(t) = E[λ2(t)]. From what we know about the first moment of a linear intensity,

given an initial value,

E[λ(r)(λ(s)− λ(r)] = E[λ(r)E[(λ(s)− λ(r)|λ(r)]]

= E[λ(r)
(

(αλ0

ρ + λ(r))eρ(s−r) − αλ0

ρ − λ(r)
)

]

=
(
αλ0

ρ m(r) + v(r)
)

eρ(s−r) −
(
αλ0

ρ m(r) + v(r)
)
.
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To simplify notation, suppose that φ(r) := αλ0

ρ m(r) + v(r), for any r > 0, then it

follows that

E[Λ2(t)] =

∫ t

0

(∫ s

0
(v(r) + φ(r)(eρ(s−r) − 1))dr +

∫ t

s
(v(s) + φ(s)(eρ(r−s) − 1))dr

)
ds

= 2

∫ t

0

∫ t

s
(v(s) + φ(s)(eρ(r−s) − 1))drds

= 2

∫ t

0

(
(t− s)(v(s)− φ(s)) +

eρ(t−s) − 1

ρ
φ(s)

)
ds

By writing m(s) = m0 +m1e
ρs, like we do in (14), it holds that

∫ t

0
(t− s)(v(s)− φ(s))ds = m0

∫ t

0
(t− s)(m0 +m1e

ρs)ds

= m0

(
m0

2
t2 +m1

eρt − 1− ρt
ρ2

)
.

Similarly, there exist constants c0, c1 and c2 such that φ(s) = c0 + c1e
ρs + c2e

2ρs, so

∫ t
0

eρ(t−s)−1
ρ φ(s)ds =

∫ t
0

eρ(t−s)−1
ρ

(
c0 + c1e

ρs + c2e
2ρs
)
ds

= 1
ρ

∫ t
0

(
c0e

ρte−ρs + (c1e
tρ − c0) + (c2e

ρt − c1)eρs − c2e2ρs
)
ds

= 1
ρ

(
c0

eρt−1
ρ + (c1e

tρ − c0)t+ (c2e
ρt − c1) e

ρt−1
ρ − c2 e

2ρt−1
2ρ

)
.

Therefore, using that c0 = v0 − m2
0, c1 = v1 − m0m1 and c2 = v2 where

m0,m1, v0, v1, v2 are the constants in the first and second moment functions, (14)

and (18), respectively, we may conclude that

E[Λ2(t)] = k0 + k1t+ k2t
2 + (C0 + C1t)e

ρt + C2e
2ρt,
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where the constants k0, k1, k2, C0, C1, C2 are given by

k0 = 2m0(m0−2m1)−2v0+2v1+v2
ρ2

k1 = 2m0(m0−ρ2m1)−2v0
ρ

k2 = m2
0

C0 = 2(m0(2m1−m0)+v0−v1−v2)
ρ2

C1 = 2(v1−m0m1)
ρ

C2 = v2
ρ2 ,

and m0,m1, v0, v1, v2 are the constants in the first and second moment functions, (14)

and (18), respectively. It follows that if ρ < 0 is close to zero, then the effects of a

jump fade out slower, than if the ρ < 0 is further away from zero.

4.4. Convergence to deterministic intensity

In this subsection, we will study what happens to the intensity process λ(t) if β > 0

and α > 0 both converge towards zero while ρ is kept constant. Note that according

to the definition of ρ

dλ(t) = −αλ(t)dt+ αλ0dt+ βdU(t)

= ρλ(t)dt+ αλ0dt+ βd(U(t)− E[X]t)→ ρλ(t)dt

as α, β → 0 while ρ is kept constant. This means that the stochastic differential

equation which determined the intensity process converges towards an ordinary (de-

terministic) differential equation as α, β → 0 while ρ is kept constant. This ODE is

λ′ = ρλ, which means that λ(t) = λeρt. From this, it follows that the self-exciting

process U(t) converges to a non-homogeneous Poisson process with intensity process

λ(t) = λeρt. Hence, if ρ < 0, then the intensity converges to zero, and no more jumps

occur. If ρ = 0, then the intensity converges to a constant λ(t) = λ, and if ρ > 0, then

the intensity tends to infinity as t→∞.
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5. Conclusions and future work

To conclude, the purpose of this paper has been to investigate properties of self-

exciting processes with intensity processes given by an SDE. The following are the

main contributions of the paper. We have:

• Proved that the scaling limit of the intensity process equals the square root

process in distribution. We have also proved a similar result for the integrated

intensity process.

• Derived explicit expressions for the expectation and variance of the intensity in

the case of an intensity given by a linear SDE.

• Shown that the intensity process may explode in finite time, or be stable (in the

sense that it does not explode in finite time). Hence, SDE driven self-exciting

stochastic processes may have both finite and infinite activity.

• Proved that the intensity process converges to a deterministic intensity as the

drift and diffusion coefficients go to zero, as long at the expected jump size equals

the fraction of the drift and diffusion terms.

There is still much to be done in investigating SDE driven self-exciting processes.

Work in progress is finding the moments of U(t) and deriving scaling limit results.

Furthermore, applications, for instance looking into stochastic optimal control prob-

lems where the state process is given by an SDE driven self-exciting process would be

interesting. This is left for future research.
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