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ABSTRACT
We prove Lieb type convexity and concavity results for trace func-
tionals associated with positive operator monotone (decreasing)
functions and certain monotone concave functions, together with
strictly positive linear maps of matrices. This gives a partial gener-
alization of Hiai’s recent work on trace functionals associated with
power functions, by allowing positive operator monotone decreas-
ing functions instead of power maps.Our proof is based on varia-
tional formula for trace functionals based on the Legendre trans-
form, and a strengthened convexity of positive operator monotone
decreasing functions in a previous work of Kirihata and the second
named author. We also provide the generalization to the framework
of unital tracial C -algebras based on Petz’s work.
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1. Introduction

In a breakthrough paper on concavity of quantum entropy [1], Lieb proved concavity and
convexity properties of functionals of the form

(A,B) �→ Tr(ApKBqK∗)

defined on the space of positive definite matrices. Since then this has been expanded in
many ways, see Refs [2–8] and references therein. One definitive form is given by Hiai [7],
who proved (among other configurations) the joint convexity of functionals of the form

(A,B) �→ Tr h
(
�(A−p)−1/2�(B−q)�(A−p)−1/2) (A,B > 0)

for strictly positive linear maps � : Mm(C) → Mk(C), � : Mn(C) → Mk(C), 0 < p, q ≤
1, and certain nondecreasing concave function h. His proof is based on an elegant use of
the variational formula for trace functionals based on the Legendre transform which can
be traced back to Ref. [4], together with intricate relation between operator majorization
and matrix norms.

In this short note, we prove a variant of this result, where we allow functional calculus
by arbitrary positive operator monotone decreasing functions inside positive maps instead
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of power maps but impose a stronger condition on h. A similar result for the geometric
mean of positive matrices [9] was recently proved by Kian and Seo [10].

Our proof is a combination of the variational method with concave functions, and one-
variate convexity of operator valued maps of the form h(�(f (A))) for operator monotone
h and positive operator monotone decreasing f established by Kirihata and the second
named author in Ref. [11], which was motivated by certain operator log-convexity of such
f due to Ando and Hiai [12].

Besides allowing a bigger class of functions inside the positive linear maps� and� , we
also give analogous results in the framework of C∗-algebras endowed with tracial states.
The overall strategy is essentially the same as the case of matrices, but we rely on Petz’s
work [13, 14] on trace inequalities for tracial von Neumann algebras, and an adaptation of
Hiai’s variational formula to this setting.

2. Preliminaries

We denote the set of positive invertible matrices by Mn(C)++, and the set of selfadjoint
matrices by Mn(C)sa. A linear map � : Mn(C) → Mk(C) is strictly positive if it sends
Mn(C)++ into Mk(C)++. A real function f (x) for x>0 is operator monotone when the
functional calculus f (A) for A ∈ Mn(C)++ with arbitrary n preserves order relation, that
is, A ≤ B in Mn(C)++ implies f (A) ≤ f (B). For details, we refer to standard references
such as in Ref. [15].

For positive numbers a and b, we denote their arithmetic and harmonic means by

a � b = a + b
2

, a ! b = 2
a−1 + b−1 .

These admit obvious generalization to operator transforms for A,B ∈ Mn(C)++.
Let h(x) be a nondecreasing and concave function for x>0, satisfying limx→∞ h(x)

x−1 = 0. Its Legendre transform is given by

ȟ(t) = inf
x>0

tx − h(x).

Then ȟ satisfies the same assumptions as h [7, Lemma A.2].
Now, let us list key ingredients of our proof. First is the variational formula for trace

functionals associated with concave functions.

Proposition 2.1 ([7, Lemma A.2]): Let h be as above. For any positive matrix A ∈
Mn(C)++, we have

Tr h(A) = inf
B∈Mn(C)++

Tr(AB − ȟ(B)).

Next is a stronger form of convexity for positive operator monotone functions, as
follows.

Proposition 2.2 ([11, Theorem 3.1] 1): Let g(x) be an operator monotone function, and
f (x) be a positive operator monotone decreasing function, both for x>0. For any strictly
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positive linear map � : Mn(C) → Mk(C), the map

Mn(C)++ → Mk(C)sa, A �→ g(�(f (A)))

is convex.

We will use the consequence of the above for g(x) = −x−1, in the following form:
�(f (A))−1 is concave in A ∈ Mn(C)++ when f is positive operator monotone decreasing.

We also use the Jensen inequality and monotonicity for trace functionals, which can be
stated as follows.

Proposition 2.3 ([16, Theorem 2.4]): Let f be a convex function defined on some interval J,
and C1, . . . ,Ck be elements of Mn(C) such that

∑
i C

∗
i Ci = In. Then, for any A1, . . . ,Ak ∈

Mn(C)sa such that σ(Ai) ⊂ J, we have

Tr f

(∑
i
C∗
i AiCi

)
≤ Tr

(∑
i
C∗
i f (Ai)Ci

)

We use this in the following form, by taking J = (0,∞) and f = −h: let h(x) be a con-
cave function for x>0. Then A �→ Tr h(A) is concave for A ∈ Mn(C)++. Thus, in fact the
main result of Ref. [14] is enough for us.

Proposition 2.4: Let f (x) be a monotone function with domain J. Suppose that we have
A ≤ B and σ(A), σ(B) ⊂ J for A,B ∈ Mn(C)sa. Then we have

Tr(f (A)) ≤ Tr(f (B)).

Proof: This is well known to experts, but here is a sketch of the proof. From the minimax
principle, we see that the ordered eigenvalues of A and B satisfy λi(A) ≤ λi(B) for i =
1, . . . , n. Collecting the inequalities f (λi(A)) ≤ f (λi(B)), we obtain the claim. �

3. Main result

When h(x) is a real function defined for x>0, put

h̃(x) = −h(x−1).

3.1. Convexity

When h(x) is anmonotone function for x>0 such that h̃ is concave and limx→0 h(x)x = 0,
we put

h̆(t) = inf
x>0

tx − h̃(x) = inf
x>0

tx + h(x−1).

Note that h̆ is well defined as the Legendre transform ˇ̃h.
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Furthermore, we will consider the class of functions h(x) for x>0 satisfying

h(x � y) ≥ h(x) � h(y) ≥ h(x ! y). (1)

The first inequality is the usual concavity condition. The second can be interpreted
as concavity of h̃, hence this class is closed under the transform h �→ h̃. One motivating
example comes from operator monotone functions, as follows.

Proposition 3.1: Suppose that h(x) is operator monotone for x>0. Then it satisfies (1).

Proof: This observation can be traced back to [12], but let us repeat it here for the reader’s
convenience. First, operator monotonicity of h(x) for x>0 implies concavity h(x � y) ≥
h(x) � h(y). Next, as h̃ is also operator monotone, it is again concave. As remarked above,
this can be expressed as h(x ! y) ≤ h(x) � h(y) up to change of variables. �

Remark 3.1: Recall that any operator monotone function h(x) for x>0 can be written as

h(x) = c0 + c1x +
∫

xλ − 1
x + λ

dμ(λ)

for some c1 ≥ 0 and a finite measure μ on [0,∞). If μ does not have atom on 0, we have
limx→0 xh(x) = 0.

We are now ready to state and prove our main result.

Theorem 3.1: Suppose that h(x) is a monotone function for x>0 such that h̃ is concave,
limx→0 h(x)x = 0, and that h̆ satisfies (1). Let f (x) and g(x) be positive operator monotone
decreasing functions for x>0, and let � : Mm(C) → Mk(C) and � : Mn(C) → Mk(C) be
strictly positive linear maps. Then, the map

Mm(C)++ × Mn(C)++ → R, (A,B) → Tr h
(
�(f (A))1/2�(g(B))�(f (A))1/2

)
is jointly convex.

Proof: Let us write A′ = �(f (A)) and B′ = �(g(B)). We have

Tr h
(
�(f (A))1/2�(g(B))�(f (A))1/2

) = −Tr h̃
(
A′−1/2B′−1A′−1/2) .

Thus, it is enough to prove the joint concavity of Tr h̃(A′−1/2B′−1A′−1/2) in A and B.
We closely follow the proof of [7, Theorem 5.2]. We first get

Tr h̃
(
A′−1/2B′−1A′−1/2) = inf

Y∈Mk(C)++
Tr
(
YA′−1/2B′−1A′−1/2 − h̆(Y)

)

from Proposition 2.1. Putting Z = A′−1/2YA′−1/2, we can rewrite this as

inf
Z∈Mk(C)++

Tr
(
Z1/2B′−1Z1/2 − h̆(Z1/2A′Z1/2)

)
. (2)

Given Ai ∈ Mm(C)++ and Bi ∈ Mn(C)++ for i = 1, 2, let us fix Z0 ∈ Mk(C)++ that
almost achieves the infimum (2) for A = A1 � A2 and B = B1 � B2. By Proposition 2.2
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applied to the operator monotone function −x−1, the map

B �→ Z1/2
0 B′−1Z1/2

0 =
(
Z−1/2
0 �(g(B))Z−1/2

0

)−1

is concave, hence we obtain

Z1/2
0 B′−1Z1/2

0 ≥
(
Z1/2
0 B′−1

1 Z1/2
0

)
�
(
Z1/2
0 B′−1

2 Z1/2
0

)
.

As for the term involving A′, by assumption on h the function h′ = ˜̆h is concave and
monotone. Thus C �→ Tr h′(C) is concave and monotone for C ∈ Mk(C)++ by Proposi-
tions 2.3 and 2.4. This observation and the concavity ofA �→ Z−1/2

0 �(f (A))−1Z−1/2
0 imply

that

A �→ −Tr h̆
(
Z1/2
0 A′Z1/2

0

)
= −Tr h̆

(
Z1/2
0 �(f (A))Z1/2

0

)
is concave, hence we obtain

−Tr h̆
(
Z1/2
0 A′Z1/2

0

)
≥
(
−Tr h̆

(
Z1/2
0 A′

1Z
1/2
0

))
�
(
−Tr h̆

(
Z1/2
0 A′

2Z
1/2
0

))
.

Thus we see that (2) is bounded from below by

1
2

(
inf
Z1,Z2

Tr
(
Z1/2
1 B′−1

1 Z1/2
1 − h̆

(
Z1/2
1 A′

1Z
1/2
1

))

+Tr
(
Z1/2
2 B′−1

2 Z1/2
2 − h̆

(
Z1/2
2 A′

2Z
1/2
2

)))
,

where Z1 and Z2 separately run overMk(C)++. We thus obtained

Tr h̃
(
A′−1/2B′−1A′−1/2) ≥ Tr h̃

(
A′−1/2
1 B′−1

1 A′−1/2
1

)
� Tr h̃

(
A′−1/2
2 B′−1

2 A′−1/2
2

)
,

which is what we wanted. �

The above theorem applies for the following cases.

• h(x) = log x; h̆(x) = 1 + log x.
• h(x) = xr for 0< r; h̆(x) = r1/(r+1)(1 + r−1)xr/(r+1). For r = 1 we recover

[11, Theorem 4.2].
• h(x) = −x−r for 0 < r ≤ 1

2 ; h̆(x) = rr/(1−r)(r − 1)xr/(r−1). Put another way,

Tr
(
�(f (A))1/2�(g(B))�(f (A))1/2

)−r

is concave in A and B for such r.

Remark 3.2: If h̆ is operator monotone, we can avoid using Propositions 2.3 and 2.4 as the
map

Mm(C)++ → Mk(C)++, A �→ −h̆(Z1/2
0 �(f (A))Z1/2

0 )

would be operator concave. The above examples all satisfy this additional assumption.
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Remark 3.3: By [7, Theorem 5.2],

Tr h
(
�(A−p)−1/2�(B−q)�(A−p)−1/2)

is convex if h(x) is a nondecreasing function for x>0 such that either of h(x−(1+p)) or
h(x−(1+q)) is convex. The above examples of h fall under this setting. For h(x) = −x−r, the
bound on r is sharp as seen from the case of p = q = 1, A = B, and �(A) = A = �(A),
see also [5] for a more precise condition on h that depends on p and q.

Remark 3.4: The claim of Theorem 3.1 does not hold if one relaxes the assumption on
f and g to be just operator convex (and positive). Indeed, f (x) = x2 is operator convex,
but the formula of the theorem can even fail to be separately convex with a choice like
h(x) = log x.

3.2. Concavity

The concave analogue, which is easier, goes as follows.

Theorem 3.2: Let h(x) be a concave monotone function for x>0 such that limx→∞ h(x)
x−1 = 0, and that ȟ satisfies (1). Let f (x) and g(x) be positive operator monotone functions
for x>0, and let� : Mm(C) → Mk(C) and� : Mn(C) → Mk(C) be strictly positive linear
maps. Then, the map

Mm(C)++ × Mn(C)++ → R, (A,B) → Tr h
(
�(f (A))1/2�(g(B))�(f (A))1/2

)
is jointly concave.

We omit the proof as it is completely analogous to that of Theorem 3.1. The above
theorem applies for the following cases.

• h(x) = log x; ȟ(x) = 1 + log x.
• h(x) = xr for 0 < r ≤ 1

2 ; ȟ(x) = rr/(1−r)(r − 1)xr/(r−1).
• h(x) = −x−r for 0< r; ȟ(x) = r1/(r+1)(1 + r−1)xr/(r+1).

4. C*-Algebraic setting

The above results have straightforward generalization to the setting of unital C∗-algebras
with tracial states. In this section A, B, and C denote unital C∗-algebras, and τ denotes a
tracial state on C. We use notations such as A++ and Asa analogous to the case of matrix
algebras.

First let us establish a generalization of Proposition 2.1 to this setting.

Proposition 4.1: Let h(x) be a concave function for x>0 such that limx→∞ h(x)x−1 = 0.
For any A ∈ C++, we have

τ(h(A)) = inf
B∈C++

τ(AB − ȟ(B)).
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Proof: Let M be the von Neumann algebraic closure of C in the GNS representa-
tion associated with τ . We denote the extension of τ to M again by τ . Let N be the
von Neumann subalgebra of M generated by the image of A. Then there is a (unique)
τ -preserving conditional expectation E : M → N.

As −ȟ(x) is convex for x>0, and E is unital positive map, we have

−τ(ȟ(E(B))) ≤ −τ(E(ȟ(B))) = −τ(ȟ(B))

for any B ∈ M++ by [14, Corollary]. Combined with τ(AB) = τ(AE(B)), we obtain

inf
B∈M++

τ(AB − ȟ(B)) = inf
B∈N++

τ(AB − ȟ(B)).

The right hand side is equal to inf f τ(Af (A) − ȟ(f (A))), where f runs over bounded
nonnegative Borel measurable functions on σ(A), hence it is equal to h(A). By a standard
approximation argument, the same infimum is achieved when f runs over nonnegative
continuous functions on σ(A).

Finally, together with the obvious inequality

inf
B∈M++

τ(AB − ȟ(B)) ≤ inf
B∈C++

τ(AB − ȟ(B)),

we obtain the claim. �

Proposition 2.2 holds in this setting, as [11, Theorem 3.1] was already proved for in such
generality. The rest is quite well known, as follows.

Proposition 4.2 ([17]): Let f be a convex function defined on some interval J, andC1, . . . ,Ck
be elements ofA such that

∑
i C

∗
i Ci = 1. Then, for any A1, . . . ,Ak ∈ Asa such that σ(Ai) ⊂

J, we have

τ

(
f

(∑
i
C∗
i AiCi

))
≤ τ

(∑
i
C∗
i f (Ai)Ci

)

Again the setting of [14] is enough for us, as we only need to deal with convex functions
defined for x>0.

Proposition 4.3 ([13, Theorem 2]): Let f (x) be a monotone function with domain J.
Suppose that we have A ≤ B and σ(A), σ(B) ⊂ J for A,B ∈ Asa. Then we have

τ(f (A)) ≤ τ(f (B)).

With above results at hand, the proof of our main results carry over to C∗-algebraic
setting, and we obtain the following.

Theorem 4.1: Let f (x), g(x), and h(x) be real functions for x>0 as in Theorem 3.1. Let
� : A → C and � : B → C be strictly positive linear maps. Then the map

A++ × B++ → R, (A,B) → τ
(
h
(
�(f (A))1/2�(g(B))�(f (A))1/2

))
(3)

is jointly convex.
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Theorem 4.2: Let f (x), g(x), and h(x) be real functions for x>0 as in Theorem 3.2. Let
� : A → C and � : B → C be strictly positive linear maps. Then, the map

A++ × B++ → R, (A,B) → τ
(
h
(
�(f (A))1/2�(g(B))�(f (A))1/2

))
is jointly concave.

Note

1. We note an unfortunate typo in that paper, B++ in [11, Theorem 3.1] should read Bsa.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

M.Y. is supported by the Norges Forskningsråd (NFR) funded project 300837 ‘Quantum Symmetry’
and JSPS Kakenhi [grant number 18K13421].

ORCID

Makoto Yamashita http://orcid.org/0000-0002-1738-9652

References

[1] Lieb EH. Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv Math.
1973;11:267–288. MR0332080.

[2] Epstein H. Remarks on two theorems of E. Lieb. Commun Math Phys. 1973;31:317–325.
MR0343073.

[3] Carlen EA, Lieb EH. A Minkowski type trace inequality and strong subadditivity of quantum
entropy. Differential operators and spectral theory. Providence (RI): Amer. Math. Soc.; 1999.
p. 59–68. MR1730503.

[4] Carlen EA, Lieb EH. A Minkowski type trace inequality and strong subadditivity of quantum
entropy. II. Convexity and concavity. Lett Math Phys. 2008;83(2):107–126. MR2379699.

[5] Hiai F. Concavity of certain matrix trace and norm functions. Linear Algebra Appl.
2013;439(5):1568–1589. MR3067823.

[6] Carlen EA, Frank RL, Lieb EH. Some operator and trace function convexity theorems. Linear
Algebra Appl. 2016;490:174–185. MR3429039.

[7] Hiai F. Concavity of certain matrix trace and norm functions. II. Linear Algebra Appl.
2016;496:193–220. MR3464069.

[8] ZhangH. FromWigner-Yanase-Dyson conjecture toCarlen-Frank-Lieb conjecture. AdvMath.
2020;365:107053, 18. MR4064777.

[9] Pusz W, Woronowicz SL. Functional calculus for sesquilinear forms and the purification map.
Rep Math Phys. 1975;8(2):159–170. MR0420302.

[10] KianM, SeoY. Jointly convexmappings related to Lieb’s theorem andMinkowski type operator
inequalities. Anal Math Phys. 2021;11(2):1–33. MR4227812.

[11] Kirihata M, Yamashita M. Strengthened convexity of positive operator monotone decreasing
functions. Math Scand. 2020;126(3):559–567. MR4156435.

[12] Ando T, Hiai F. Operator log-convex functions and operator means. Math Ann. 2011;350(3):
611–630. MR2805638.

[13] Petz D. Spectral scale of selfadjoint operators and trace inequalities. J Math Anal Appl.
1985;109(1):74–82. MR796042.

http://orcid.org/0000-0002-1738-9652


LINEAR ANDMULTILINEAR ALGEBRA 9

[14] Petz D. Jensen’s inequality for positive contractions on operator algebras. Proc AmerMath Soc.
1987;99(2):273–277. MR870784.

[15] Bhatia R. Matrix analysis. New York (NY): Springer-Verlag; 1997. (Graduate Texts in Mathe-
matics 169). MR1477662.

[16] Hansen F, PedersenGK. Jensen’s operator inequality. Bull LondMath Soc. 2003;35(4):553–564.
MR1979011.

[17] Harada T, Kosaki H. Trace Jensen inequality and related weak majorization in semi-finite von
Neumann algebras. J Oper Theory. 2010;63(1):129–150. MR2606886.


	1. Introduction
	2. Preliminaries
	3. Main result
	3.1. Convexity
	3.2. Concavity

	4. C*-Algebraic setting
	Note
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


