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Abstract
We develop a theory of finite element systems, for the purpose of discretizing sections
of vector bundles, in particular those arising in the theory of elasticity. In the presence
of curvature, we prove a discrete Bianchi identity. In the flat case, we prove a de Rham
theorem on cohomology groups. We check that some known mixed finite elements for
the stress–displacement formulation of elasticity fit our framework. We also define,
in dimension two, the first conforming finite element spaces of metrics with good
linearized curvature, corresponding to strain tensors with Saint-Venant compatibility
conditions. Cochains with coefficients in rigid motions are given a key role in relating
continuous and discrete elasticity complexes.
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Introduction

In this paper, we first generalize the previously introduced framework of finite element
systems (FES) [26,35] so that it can treat, in particular, elasticity problems, and then
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provide concrete examples of finite element spaces, some old and some new, that fit
the framework.

The general framework provides an approach to finite element discretizations of
sections of vector bundles, and complexes thereof, in particular differential forms with
values in a given vector bundle. We make some comments about curvature, but most
of the paper concerns the case of flat bundles. For applications in elasticity, the fiber
can be identified as the space rigid motions.

In space dimension 2, one can distinguish between two differential complexes
related to elasticity, which are formal adjoints of each other and give priority to stresses
and strains, respectively. For the stress complex (62), we can check that variants of
the spaces defined in [55] and [4] fit the framework. For the strain complex (64), we
introduce, also within the framework, some new finite element spaces. They model
symmetric 2-tensors (metrics) with a good Saint-Venant operator (linearized curva-
ture).

In the obtained finite element complexes, rigid-motion-like degrees of freedom play
a key role, at every index. The FES framework stresses this design principle and relates
it to the interpretation of elasticity in terms of rigid motion valued fields.

Defining discrete spaces of metrics with good curvature in dimension 2 should be
useful, in view of the importance of curved surfaces in several branches of mathe-
matics, both pure and applied, whatever the distinction is. Such applications will be
explored elsewhere. Another motivation for this work was to prepare the way for sim-
ilar constructions in higher dimensions, especially 3 (with classical elasticity in mind)
and 4 (with general relativity in mind).

Previouswork on FES Until now, the FES framework has been formulated in order to
discretize de Rham complexes. It has been used to define finite element complexes of
differential forms on polyhedral meshes [26], accommodate upwinded finite element
complexes containing exponentials [28,33], give new presentations of known elements
[38] and to define elements with minimal dimension [30] under various constraints
(such as containing given polynomials).

The regularity of the differential forms, in the above-mentioned works, was L2 with
exterior derivative in L2, and the defined finite elements were natural generalizations
of, in particular, the Raviart–Thomas–Nédélec (RTN) spaces [63,70]. The continuity
is thus partial, and can be expressed as singlevaluedness of pullbacks to interfaces,
corresponding, for vector fields, to continuity in either tangential or normal directions.

In [35], we extended the FES framework so as to be able to impose stronger interele-
ment continuity. For instance, for a conforming discretization of the Stokes equation,
one would like to have spaces of fully continuous vector fields, satisfying a commut-
ing diagram with respect to the divergence operator. For de Rham sequences of higher
regularity (H1 and, if desired, exterior derivative in H1), the required continuity can
be expressed as singlevaluedness of all components of the differential form and, if
desired, of its exterior derivative too, on interfaces. This led us, in [35], to define FE
complexes starting with the Clough–Tocher element, which is of class C1, instead of,
say, Lagrange elements, which are of class C0. This provided the first conforming
polynomial composite Stokes element in dimension 3 (and higher), with piecewise

123



Foundations of Computational Mathematics

constant divergence and the degrees of freedom of [16]. The latter seem to be the
natural ones for lowest order approximations.

FE, MFE, FEEC, VEM Recall Ciarlet’s definition of a finite element (FE), as a space
equipped with degrees of freedom [41].

For mixed finite element methods (MFE), pairs of finite element spaces that are
compatible in the sense of Brezzi [21] should be identified. A particularly convenient
tool for this purpose has been the so-called commuting diagram property, see for
instance [72] page 552 and 570 and compare with [17] §8.4 and §8.5. It can some-
times be derived from a commutation property of the interpolators associated with the
degrees of freedom. In particular, in [64], finite element grad− curl− div complexes
were presented with degrees of freedom providing commuting diagrams.

Arbitrary order finite element complexes of differential forms were defined in
[52]. Whitney forms [80,81] and the RTN spaces appear as special cases (lowest
order—arbitrary dimension, and arbitrary order—low dimension, respectively). This
connection between numerical methods and differential topology was first pointed
out in [19]. Computational electromagnetics has been one of the main motivations
[20,53,65]. Its interpretation in terms of differential forms is quite clearcut compared
with the case for, say, computational fluid dynamics.

Systematically developing the theory of finite elements in terms of differential
complexes equipped with commuting projections was advocated in [2]. Relating de
Rham complexes to differential complexes appearing in elasticity, and viewing both
as special cases of complexes of Hilbert spaces, has lead to the finite element exterior
calculus (FEEC) [3,7,9].

Stability of numerical methods is, in many cases, equivalent to the existence of pro-
jections onto the finite element spaces, satisfying commuting diagrams, and having
appropriate boundedness or compactness properties [7,40]. Uniformly bounded com-
muting projections can often be obtained from the interpolator associated with degrees
of freedom, by a smoothing procedure [7,25,37,39,73] (in chronological order of sub-
mission).

The FES framework downplays the role of degrees of freedom and stresses that, for
a finite element space on a cell, there are implicit finite element spaces on the subcells.
The claim is that making these spaces explicit has numerous benefits. For instance,
it suggests defining FE spaces recursively, starting with low-dimensional cells, using
some extension procedure, such as harmonic extension [26]. Thus the FES framework
offers more design principles for FE spaces than does FEEC.

The recursive construction technique is also basic to the Virtual Element Method
(VEM) [14]. VEM grad− curl− div complexes are constructed in [15]; for an inter-
pretation as a FES of differential forms, valid in arbitrary dimension, see §2.1 in [30].
Notice that [15] is based on non-homogeneous harmonic extensions, which produces
quite large spaces compared with the minimal ones [30]. Harmonic extensions with
respect to a modified metric are used in [28,33]. In [32], harmonic extensions with
respect to a flat metric but a nonzero connection form are used. This illustrates that
the FES framework can accommodate FE spaces constructed as solutions of certain
PDEs, where it is not necessary to have explicit solution formulas in order to be able
to compute with them.
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FES principles: restrictions, differentials and cochains In FES, spaces are posited on
cells of all dimensions. Interelement continuity is expressed through certain restric-
tion operators, from spaces on cells to spaces on subcells. The spaces on the subcells
can also be arranged in complexes, for certain induced differential operators. The
restriction operators and the induced differential operators must satisfy commutation
relations to define a system. For a given FES, a condition of compatibility (Def-
inition 11), expressed as exactness properties of the restrictions and the induced
differentials, ensures the existence of good degrees of freedom and in particular that
the harmonic interpolator is well defined and commutes with the differential operators.

In [26], concerning de Rham complexes of low regularity (L2 with exterior deriva-
tive in L2), the relevant restriction operators were pullback by inclusion maps, and the
induced differential operators were, again, the exterior derivative. In [35], to ensure H1

regularity, the restriction operators could remember all components of the differential
forms on the subcell, and possibly of the exterior derivative as well (if it is required
to be H1). The induced differential operators now acted on all this information. Thus
appeared some new vector bundles on subcells, linked by differential operators that
were not exactly the exterior derivative on the subcell: they retain additional infor-
mation about the ambient cell. We therefore, for the framework, considered general
complexes of spaces, not just complexes of differential forms.

General degrees of freedom are not essential in FES, but they are certainly accom-
modated and sometimes very convenient. On the other hand certain degrees of freedom
are paramount for the development of the theory. For de Rham complexes, these
degrees of freedom are the integration of k-forms on the k-dimensional cells of the
mesh. This gives rise to the de Rhammap, which maps from differential forms to (real
valued) cellular cochains; it commutes with the differentials.

For elasticity complexes, we contend that cellular cochains with coefficients in
rigid motions are the right analogue. More precisely we introduce, for each cell of
each dimension, a space which is naturally isomorphic to the space of rigid motions.
Cochains with coefficients in these spaces form a complex. A generalized de Rham
map from elasticity fields to such cochains with coefficients is then defined and shown
to commute.

Finite element elasticity complexes In dimension 2, for elasticity problems, the
stress complex is implicitly used in [55] and made explicit in [4]. Since then, many
more discrete stress complexes have been defined, both conforming [11] and non-
conforming [8,12]. See [54] and the references therein for more examples. See also
the Hilbert complexes for elasticity of [1]. Notice that the stress complexes in [55]
and [4] are composite and start with Clough–Tocher elements, whereas those in [11]
are polynomial and start with Argyris elements.

For the systematic design of discrete elasticity complexes, a link between de Rham
complexes and elasticity complexes, known as the BGG construction [45], has been
developed [5,6]. In [6], known finite element de Rham complexes were tensorized
with vectors in order to get vector valued de Rham complexes. Under a surjectivity
condition (see page 58), the diagram chase then yielded new spaces for the elasticity
complexes.
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The finite element complexes defined here behave naturally with respect to the
BGG diagram chase. That is, we can define finite element spaces for some interlinked
vector-valued de Rham complexes, such that the diagram chase at the discrete level
works exactly as at the continuous level: isomorphisms at the continuous level corre-
spond to isomorphisms at the discrete level. One thus needs a large supply of discrete
de Rham sequences, corresponding to different regularities, that match at different
indices. While this can be dispensed of in the presentation of our elasticity elements, it
was an important guiding principle towards their design and we have included remarks
to this effect.

Finite element de Rham complexes of higher regularity have been constructed
[46,66]. See also [50,51] for related Stokes elements. A motivation behind [34,
35] was to have enough such sequences to address elasticity through diagram
chasing.

For elasticity complexes and relatedBGGdiagram chases, the case of C∞ regularity
is well established in the literature, but the choice of Sobolev spaces is often not
explicit. We introduce several Sobolev spaces for our complexes, many of which
are not simple tensor products. There are several possible choices for each smooth
complex. To obtain the stress complex, one can do the chase in (68) or (73). In the
latter, the regularity is expressed with a differential operator that acts on columns,
whereas the differentials of the complex act by rows. For the strain complex, we study
two different regularities, corresponding to two different regularities in the diagram
chase. Here also the regularity is expressed in terms of differential operators acting on
columns as well as rows. A rationale behind our choice of Sobolev spaces is given in
Remark 28.

Another tool we have developed for the purposes of constructing elasticity elements
are Poincaré–Koszul operators for elasticity complexes [36]. TheCesaro–Volterra path
integral is but one example.

It can be pointed out that since this paper was first submitted, polynomial div div
conforming symmetric matrix elements were found in [22]. Their complex, which is
essentially a strain complex in our terminology, startswith a vectorialHermite element,
indicating supersmoothness at vertices. They have lower regularity than us.

Numerical methods for curvature problems For the general framework, the main
novelty here, compared with [35], is that we introduce some generalizations of the
de Rham maps. We are interested in discretizing sections of vector bundles. These
are equipped with a connection. For applications in (linear) elasticity this connec-
tion is flat. We have implicitly linearized around the Euclidean metric, for which the
Levi–Civita connection is flat, as well as other associated connections. But, for the
definition of discrete vector bundles, we have also been mindful of situations where
nonzero curvature is centre stage, and inspired by numerical methods developed for
such problems:

Regge Calculus (RC) [71], a discrete approach to general relativity, can be inter-
preted in a finite element context [24,27,29] and extended to higher orders [60].
One then obtains, in dimension 2, strain complexes of low regularity: they endwith
discrete spaces containingmeasures, typically Dirac deltas at vertices. Here, on the
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contrary, the finite element fields are at least square integrable throughout the com-
plexes. Notice also that, even though the Regge strain complexes are equippedwith
commuting projections, the degrees of freedom do not contain rigid motions. They
are nevertheless natural: Regge metrics are determined by edge lengths (squared),
at lowest order.
A discrete Gauss–Bonnet theorem is valid for RC, as can be proved combinatori-
ally, or by a smoothing technique as introduced in [29]. For the elements presented
here, Gaussian curvature (linearized or not) is well defined by classical formulas,
so that the Gauss–Bonnet theorem is immediate. While the regularity of Regge
elements seems adapted to general relativity theory, higher regularity, as achieved
here, could be important to other PDEs in Riemannian geometry, such as those
treated in [13,23,42].
Lattice Gauge Theory (LGT) [82], as extended to a finite element context [31],
was also at the back of our minds during this work. In LGT, one defines discrete
connections and curvature, as well as a discrete Yang–Mills functional, but it is less
clear what the discrete covariant exterior derivative and Bianchi identity should
be. By contrast, for the discrete theory we develop here, both of these are explicit:
the former is to some extent the basic building block, and the latter is obtained in
Theorem 1.
For the flat case, for which we introduce the FES framework, we prove a variant
of the de Rham theorem (e.g. [69] §V.3.): the de Rhammap induces isomorphisms
on cohomology groups, from the space of global sections to the cochains with
coefficients, see Theorem 2.
Exponential fitting. A role for covariant exterior derivatives in a FES context
was also indicated in [28], defining upwinded complexes of differential forms,
generalizing exponentially fitted methods. Such constructions have applications
to PDEs describing for instance convection diffusion problems or band gaps in
photonic crystals. See Remark 17 for further details.

Sheaves, differential geometry and formal theory of PDEs The FES framework can
be interpreted as a discrete sheaf theory (see Remark 9). For our purposes, sheaf theory
can be summarized as a framework for gluing fields that are defined piecewise. This
is done in Sobolev spaces with the help of, in particular, partitions of unity, and in
finite element spaces, by imposing various forms of continuity through interfaces in a
mesh. Sheaves help express this analogy.

Discrete sheaf theory for various applications is also developed in [43,48]. Sheaf
theory is usually expressed in the language of categories, which also originates in
algebraic topology. It has been suggested that this language, sometimes derided as
”abstract nonsense” (following Steenrod, with more or less affection), could be useful
not only for other branches of mathematics [56], but for sciences in general [78].

What we refer to here as elasticity complexes are sometimes called Calabi com-
plexes in differential geometry, whereas rigid motions correspond to Killing fields.
Sheaf theoretic approaches to such, with applications to linearized gravity, have been
considered, see [57].

Our discrete Bianchi identity, being combinatorially quite elementary, has prece-
dents, of course. In particular, similar identities can be found in synthetic differential
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geometry [59]. This axiomatic approach to geometry grew out of topos theory [56,61],
introduced byGrothendieck to provide the ideal ”double bed” for the espousals of con-
tinuous and discrete theories. It remains to see if it will appeal to numerical analysis.

There is a formal theory of partial differential equations, couched in homological
algebra and developed by, in particular, Spencer [77]. See e.g. [68,75]. Perhaps our
paper can hint towards a corresponding theory for finite element spaces. For instance:
could there bemaster finite elements for the Spencer sequences, fromwhich all specific
examples could be deduced by diagram chases?

Though not necessary in order to express the end product, namely newfinite element
spaces, the above-mentioned philosophies (more specifically: homological approaches
to differential operators and categorical approaches to geometry) were inspiring to us
for developing them, even from a distance.

Outline The paper is organized as follows. In Sect. 1, we develop a theory for discrete
flat vector bundles. Results concerning vector bundles with curvature are relegated to
Sect. 2. In Sect. 3, we detail the framework of finite element systems, for a given
discrete flat vector bundle. In Sect. 4, we provide background on elasticity, including
relevant differential operators, differential complexes, the BGG diagram chase and
Poincaré operators. In Sect. 5, we detail FES for the stress complex, detailing the
main example of the Johnson–Mercier element. In Sect. 6, we detail FES for the
strain complex, with two different regularities, providing the new examples of finite
elements for strain tensors (metrics) with compatible Saint Venant operator (linearized
curvature).

1 Discrete Flat Vector Bundles

1.1 Cellular Complexes and Cochains

Let T be a cellular complex. That is, a regular CW complex, with respect to bi-
Lipschitz homeomorphisms. A cell is a subset with a bi-Lipschitz homeomorphisms
to a unit ball of some finite dimension. A cellular complex is a set of cells (of all
dimensions) such that the boundary of a cell is a union of cells.

If T , T ′ are cells in T we write T ′ �T to signify that T ′ is a subcell of T . Each cell
of dimension at least one is supposed oriented. Given two cells T and T ′ in T , their
relative orientation is denoted o(T , T ′). It is 0 unless T ′ is a codimension one subcell
of T , in which case it is ±1. The subset of T consisting of k-dimensional cells is
denoted T k . The space of k-cochains is denoted Ck(T ) and consists of the maps from
T k to R. In other words, a k-cochain assigns a real number to each cell of dimension
k. Notice that Ck(T ) has a canonical basis indexed by T k .

The cellular cochain complex is denoted C•(T ). Its differential, also called the
coboundary map, is denoted δ : Ck(T ) → Ck+1(T ). Its matrix in the canonical basis
is given by relative orientations.

All complexes considered in this paper are cochain complexes, in the sense that the
differential increases the index.
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1.2 Discrete Vector Bundles with Connection

Definition 1 (Discrete vector bundle with connection) A discrete vector bundle with
connection L consists of the following data.

– For each T ∈ T we suppose that we have a vector space L(T ). We call this a
discrete vector bundle. We call L(T ) the fiber of L at T .

– Moreover, when T ′ is a codimension 1 face of T , we suppose that we have an
isomorphism tT T ′ : L(T ′) → L(T ), called the transport map from T ′ to T . We
call this a discrete connection.

Remark 1 (comparison with Lattice Gauge Theory) This setup is at variance with the
choices made in Lattice Gauge Theory (LGT). LGT was initially defined for cubical
complexes [82]. An analogue for simplicial complexes was developed in [31]. There,
a discrete vector bundle corresponds to a choice of vector space attached to vertices
only, whereas we here associate a vector space to each cell, of every dimension, in
T . Moreover, in LGT, a discrete connection is defined only on edges, as a choice of
isomorphism between the vector spaces attached to its two vertices; here the discrete
connection has many more variables.

Definition 2 (Flatness of discrete connections) Let T ∈ T have dimension at least 2.
Whenever T ′′ is a codimension 2 face of T , if we let T ′

0 and T
′
1 be the two codimension

1 faces of T which have T ′′ as a common codimension 1 face, we require that the
following diagram commutes:

L(T ′′)
tT ′
1T

′′

tT ′
0T

′′

L(T ′
1)

tT T ′
1

L(T ′
0)

tT T ′
0

L(T ).

(1)

Or, if one prefers:

tT T ′
0
tT ′

0T
′′ = tT T ′

1
tT ′

1T
′′ . (2)

For reasons that will appear later, we say that a discrete connection having this property
is flat.

For instance, we can choose a fixed vector space V and let tT T ′ = idV . This defines
a discrete vector bundle with a flat discrete connection. Discrete vector bundles of this
form, for a choice of vector space V , will be called trivial discrete vector bundles. We
may speak of the trivial discrete vector bundle modelled on V , to make the choice of
V explicit.

In this setting, one defines a cochain complex with coefficients in L , denoted
C•(T , L), as follows:

Definition 3 (Cochains with coefficients)
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– The space Ck(T , L) is nothing but ΠT∈T k L(T ), whose elements will be families
(u(T ))T∈T k such that for each T ∈ T k , u(T ) ∈ L(T ). Such a u will be called a
k-cochain with coefficients in L .

– The differential δkt : Ck(T , L) → Ck+1(T , L) is defined by:

(δkt u)(T ) =
∑

T ′�T

o(T , T ′)tT T ′u(T ′). (3)

The operator δ•
t will be called the discrete covariant exterior derivative.

We notice that we do indeed have a complex:

Lemma 1 The operators δ•
t on C•(T , L), satisfy:

δk+1
t δkt = 0. (4)

Proof This is a direct consequence of the commutativity (1), given what we know
about relative orientations. ��

This definition can be used in particular when a vector space V has been chosen
and we let L(T ) = V for all T ∈ T and tT T ′ = idV for all T , T ′. This cochain
complex will be denoted C•(T , V ). With this notation, we have in particular that
C•(T ,R) = C•(T ), the standard cellular cochain complex introduced previously.

Remark 2 (on invertibility of transport operators) In Definition 1, we could allow
tT T ′ : L(T ′) → L(T ) to be just a morphism (not necessarily an isomorphism), and
still get at complex C•(T , L) from (3). However, we have in mind situations where the
transport operators tT T ′ mimick the parallel transport associated with a connection on
a vector bundle, and these are isomorphisms. Compare with [47] §I.4.7.

1.3 Transport Along Some PathsWithin a Cell

Wenotice that when the discrete connection is flat, transport along paths within a given
cell just depends on the endpoints. We will use the following more precise statement:

Lemma 2 Suppose T , T ′ ∈ T , and that T ′ is a codimension k face of T , for some
k ≥ 2. Then all sequences T ′ �T0 � · · ·�Tk−1�T , where each term in this sequence
is a codimension 1 subcell of the next, give the same map tT Tk−1 · · · tT0T ′ from L(T ′)
to L(T ). This map will be denoted tT T ′ .

We could therefore make the following alternative description of a discrete vector
bundle with connection:

Definition 4 (equivalent definition of flat discrete vector bundles) For each T ∈ T ,
we suppose that we have, as before, a vector space L(T ). Moreover, when T ′ � T , we
supposewe have an isomorphism tT T ′ : L(T ′) → L(T ).We require that tT T = idL(T )

and also that whenever T ′′ � T ′ � T we have tT T ′′ = tT T ′ tT ′T ′′ .
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1.4 Discrete Gauge Transformations

Suppose we have, for each T ∈ T , two choices of vector spaces denoted L(T ) and
L ′(T ). For T ′ a codimension 1 face of T , we suppose that we have transport maps
tT T ′ : L(T ′) → L(T ) as well as t′T T ′ : L ′(T ′) → L ′(T ). Under these circumstances
we define an isomorphism from (L, t) to (L ′, t′) to be a family of isomorphims θT :
L(T ) → L ′(T ), one for each T ∈ T , such that:

θT tT T ′ = t′T T ′θT ′ . (5)

Lemma 3 Under the above circumstances, θ induces an isomorphism of complexes
C•(T , L) → C•(T , L ′), defined simply by:

θ : (u(T ))T∈T k 	→ (θT u(T ))T∈T k . (6)

Proof Bijectivity is obvious. We prove that θ is a cochain morphism (i.e. commutes
with the differentials). We let δ•

t′ be the cochain-map of C•(T , L ′), while δ•
t denotes

that of C•(T , L). We have, for u ∈ Ck(T , L):

(δkt′θu)(T ) =
∑

T ′�T

o(T , T ′)t′T T ′θT ′u(T ′), (7)

=
∑

T ′�T

o(T , T ′)θT tT T ′u(T ′), (8)

= (θδkt u)(T ), (9)

as required. ��
A family of isomorphisms θ as above may also be referred to as a discrete gauge

transformation. This terminology is used in particular when we have one discrete
vector bundle L , but with two different choices of discrete connections t and t′; in this
case θT will be an automorphism of L(T ), for each T .

For T ∈ T , Cl(T ) denotes the cellular complex consisting of all the subcells of T
in T .

Lemma 4 For each cell T in T , the complex C•(Cl(T ), L) (with coefficients) is iso-
morphic to C•(Cl(T ), L(T )) (with constant fiber). Explicitly, for each subcell S � T ,
we let θS : L(S) → L(T ) be the map tT S. Then θ gives a gauge transformation from
(L, t) to (L(T ), id).

Proof The requirement is that the following commutation relation holds for subcells
S, S′ of T such that S′ � S:

θStSS′ = t′SS′θS′ . (10)

This can also be written:

tT StSS′ = idL(T )tT S′ . (11)
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This identity holds according to Lemma 2. ��
As a consequence we obtain:

Corollary 1 The sequence C•(Cl(T ), L) is exact, except at index 0, where the kernel
is isomorphic to L(T ).

The preceding corrollary is local, in that it concerns a single cell T ∈ T . The
cohomology of the global space C•(T , L) could be different from that of C•(T , L(T ))

(for any choice of a fixed T ∈ T ).

Remark 3 (classification of flat discrete vector bundles) Flat vector bundles over a
manifold M , modulo gauge transformations, correspond to representations of the fun-
damental group of M , modulo conjugacy. For a precise statement, see for instance
Theorem 13.2 in [79] (in the context of principal bundles). This seems to carry over to
the discrete setting. The fundamental group of a cellular complex can be replaced by
the so-called edgepath group (described in Chapter 3 in [76] for the case of simplicial
complexes).

2 Discrete Vector Bundles with Curvature

We now make some comments on a generalization of the previous notion of vector
bundle to the non-flat case. It is then useful to introduce a notion of curvature, which
lives naturally on a cubical refinement of the original cellular complex. The discrete
curvature turns out to satisfy a discrete Bianchi identity.

2.1 Cubes in the Barycentric Refinement

Consider now an n-dimensional cube. For definiteness, we consider the unit cube
[0, 1]n in Rn and denote it as S. We let (ei )i∈[[1,n]] be the canonical basis of Rn .

The vertices of S can be indexed by the subsets of [[1, n]]. For any subset U of
[[1, n]], we let pU be the vertex of S defined by:

pU =
∑

i∈U
ei . (12)

Any face S′ of S is uniquely determined by two vertices pU and pV , with U ⊆ V ,
such that the vertices of S′ are exactly those of the form pW for U ⊆ W ⊆ V . Then
we also have:

S′ = {pU +
∑

i∈V \U
ξi ei : ∀i ∈ V \U ξi ∈ [0, 1]}. (13)

Subsets of [[1, n]] are partially ordered by inclusion, and this uniquely determines a
partial ordering of the vertices. Then pU is the smallest vertex of S′ and pV the largest.
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Fig. 1 A combinatorial cube
inside a tetrahedron

Let T be a simplex. For each face T ′ of T we let bT ′ be the isobarycenter of T ′
or, more generally, a point in the interior of T ′ (so a barycenter with respect to some
strictly positive weights), referred to as the inpoint of T ′. Recall that the barycentric
refinement of T is the simplicial complex whose k-dimensional simplices are those of
the form [bT0 , bT1 , . . . , bTk ] such that the Ti are two by two distinct subsimplices of T
satisfying T0 � T1 � · · · � Tk . We call such subsimplices of T barycentric simplices.

The barycentric refinement may be coarsened as follows: for any two subsimplices
T ′′ and T ′ of T such that T ′′ � T ′, we consider the cell S(T ′′, T ′) which is the union
of all the barycentric simplices [bT0 , bT1 , . . . , bTk ] such that T ′′ � T0 and Tk � T ′.

When we start with a simplex T , the cells of the form S(T ′′, T ′) form a cellular
complex, where each cell is, combinatorially, a cube. The same holds true if the cell T
we start with is a cube. We may consider that bT ′′ is the smallest vertex of S(T ′′, T ′)
and that bT ′ is the largest. The vector bT ′ − bT ′′ points towards the center of T . When
T is an n-dimensional simplex, this procedure will divide it into (n + 1) cubes of
dimension n, each one of the form S(T ′, T ), where T ′ is a vertex of T . We call this
the cubical refinement of T . An illustration is provided in Fig. 1.

2.2 Discrete Curvature and Bianchi Identity

If we relax condition (1), we model the parallel transport associated with connections
with curvature, as opposed to flat connections. We still define the discrete covariant
exterior derivative by (3). We no longer have δk+1

t δkt = 0, as in Lemma 1. When we
compute δk+1

t δkt , we get an operator Ck(T , L) → Ck+2(T , L), which one would like
to interpret in terms of a curvature.

Definition 5 (Discrete curvature) We suppose that T ′′ and T are two cells of T , such
that T ′′ is a codimension 2 face of T , and we let T ′

0 and T ′
1 be the two codimension

1 faces of T which have T ′′ as a common codimension 1 face. The curvature of t is
then ct defined by:

ct(T , T ′′) = ±(tT T ′
0
tT ′

0T
′′ − tT T ′

1
tT ′

1T
′′), (14)

which is a linearmap L(T ′′) → L(T ) associatedwith the square S(T ′′, T ) (element of
the cubical refinement of T ), whose set of vertices is associated with {T ′′, T ′

0, T
′
1, T }.

123



Foundations of Computational Mathematics

The sign in this definition is given by the orientation of the square, which is chosen
such that the orientations of the two transverse cells T ′′ and S(T ′′, T ) induce the
orientation of T .

The definitions were chosen so as to have the trivial:

Lemma 5 A discrete connection is flat according to Definition 2 iff its curvature
according to Definition 5 is 0.

Definition 5 also gives:

Proposition 1 (Curvature and the discrete covariant derivative) With the notations of
the Definition 5 we have, for T ∈ T of dimension k + 2:

(δk+1
t δkt u)(T ) =

∑

T ′′
±ct(T , T ′′)u(T ′′), (15)

where the sum is over k-faces of T .

We have a Bianchi identity in this setting, which we now detail. Recall that the
usual Bianchi identity says that the covariant exterior derivative of the curvature 2-
form, which is a priori a certain endomorphism valued 3-form, is 0. In this identity, the
relevant covariant exterior derivative is the one associated with the induced connection
on the bundle of endomorphisms. The discrete identity will assert that certain linear
operators attached to the 3-dimensional cubes, in the cubical refinement, is 0.

Definition 6 (Discrete bundle of endomorphisms and its connection)

– For T ∈ T we consider the previously introduced cubical refinement of T , whose
k-dimensional cells are (combinatorial) cubes of the form S(T ′′, T ′), for subcells
T ′′ and T ′ of T , where T ′′ has codimension k in T ′. We let S denote the cubical
refinement of T . We then define End(L) to be the discrete vector bundle on S,
whose fiber at the cube S(T ′′, T ′) is the space of linear maps from L(T ′′) to L(T ′).

– The discrete vector bundle End(L) on S inherits a discrete connection from the
discrete connection of L on T , as follows.
Consider a k-dimensional cube S = S(T ′′, T ′), where we say that bT ′′ is the
smallest vertex and bT ′ is the largest. When S′ is a codimension 1 face of S there
are two possibilities: either bT ′′ is the smallest vertex of S′ and then we let bT0 be
the largest, or bT ′ is the largest vertex of S′ and then we let bT0 be the smallest.
We define the transport operator on End(L) through:

⎧
⎨

⎩

End(L)(S′) → End(L)(S)

u 	→
{
tT ′T0 ◦ u if bT ′′ ∈ S′
u ◦ tT0T ′′ if bT ′ ∈ S′

(16)

The spaces C•(S,End(L)) are defined as before, and the discrete covariant exterior
derivative linking these spaces is defined as in (3) from the given induced discrete
connection on End(L).
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Remark 4 A discrete connection for the discrete bundle L over T is thus an element of
C1(S,End(L)), where the element of End(L) attached to each edge of S is bijective.
Compare with the fact that, in the continuous setting, the difference between two
connections is an endomorphism valued 1-form.

Theorem 1 (discrete Bianchi identity) The curvature of (L, t), which is defined as
an element of C2(S,End(L)) by (14), has a covariant exterior derivative (element of
C3(S,End(L))) which is zero.

Proof That the discrete covariant exterior derivative of the curvature is zero expresses
that for each 3-dimensional cube S(T ′′, T ′) a certain linear map from L(T ′′) to L(T ′)
is zero. This linear map is a sum of maps of the form:

± tT ′T1 tT1T0 tT0T ′′ , (17)

where the cells T ′′ � T0 � T1 � T ′ represent vertices of the cube, in increasing order.
The sum consists of two such contributions from the curvature of each of the six faces
of the cube. We thus get twelve maps of the form (17). They cancel two by two; in
fact each map tT ′T1 tT1T0 tT0T ′′ appears twice in the sum, with different signs. ��
Remark 5 The type of cancellation appearing in the above proof is also considered on
p. 372 in [62].

Remark 6 (consistency) One would like the discrete covariant exterior derivative to be
in some sense consistent with a continuous one. Recall that the coboundary operator
acting on (real valued) simplicial cochains is isomorphic to the exterior derivative
acting onWhitney form, via the de Rhammap. One would like a similar interpretation
of the discrete covariant exterior derivative.

For cellular complexes, an analogue of Whitney forms was provided in [26], by
solving recursively, the PDE system d�du = 0 and d�u = 0, or a discrete analogue.
Onemotivation for identifying induced operators on subcells is to extend this construc-
tion to other differential complexes, where one wants to find preimages of cochains
with coefficients. This connects with a broader theme of defining finite elements as
solutions of local PDEs (possibly discretized at a subgrid scale).

This also raises the question of, to which extent, from a discrete vector bundle, one
can reconstruct a continuous vector bundle. In the flat case this seems unproblematic.
In the presence of curvature, a condition of small curvature might be necessary, to
mimick that fibers vary continuously in the continuous setting. For instance, one could
require that the maps in Lemma 2 should be close to each other, in some sense. As
interesting and perhaps simpler special cases, one could consider the reconstruction
of line bundles, and bundles over two-dimensional manifolds.

See [58] for similar considerations.

Remark 7 (gauge transformations and curvature) Discrete gauge transformations are
defined as in Sect. 1.4, also in the presence of curvature.

Notice that the discrete curvature transforms naturally under discrete gauge tran-
formations. Indeed, consider a discrete connection t for L and a discrete connection
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t′ for L ′, as well as gauge transformations θ : L → L ′ such that (5) holds. Then we
have:

θT ct(T , T ′′) = ct′(T , T ′′)θT ′′ . (18)

Also, given agauge transformation θ from (L, t) to (L ′, t′), there is an inducedgauge
transformation fromEnd(L) to End(L ′), equippedwith their induced connections. For
a cube S(T ′′, T ′) it maps u : L(T ′′) → L(T ′) to θT ′uθ−1

T ′′ : L ′(T ′′) → L ′(T ′). The
above transformation of curvature can be seen as a special case.

Remark 8 (Chern classes) A motivation for developing a discrete Bianchi identity is
to develop a corresponding notion of Chern classes. A first Chern class is defined in
this spirit in [67]. The topic is discussed in Chapter 7 of [74].

3 Finite Element Systems

Definition 7 We fix a flat discrete vector bundle L on T in the above sense. A finite
element system on T consists of the following data, which includes both spaces and
operators:

– We suppose that for each T ∈ T , and each k ∈ Z we are given a vector space
Ak(T ). For k < 0 we suppose Ak(T ) = 0.

– For every T ∈ T and k ∈ Z, we have an operator dkT : Ak(T ) → Ak+1(T ) called
differential. Often we will denote it just as d. We require dk+1

T ◦ dkT = 0. This
makes A•(T ) into a complex.

– Given T , T ′ in T with T ′ � T we suppose we have restriction maps:

rkT ′T : Ak(T ) → Ak(T ′), (19)

subject to the commutation relations (when T ′′ � T ′ � T ):

– rT ′Td
k
T = dkT ′ rT ′T ,

– rT ′′T = rT ′′T ′ rT ′T .

– For any k-dimensional cell T in T , we suppose we have an evaluation map e :
Ak(T ) → L(T ). We suppose that the following formula holds, for u ∈ Ak−1(T ):

eTdT u =
∑

T ′∈∂T

o(T , T ′)tT T ′eT ′ rT ′T u. (20)

SeeRemarks 11 and 14 below, for the interpretation of this identity as a generalized
Stokes’ identity.

Remark 9 (presheaf interpretation) The first three points in the definition can be
rephrased in terms of categories and sheaves. First, the cellular complex T may be
considered as a category, where the objects are the cells and the morphisms are the
inclusion maps. Complexes of vector spaces also constitute a category. The first three
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points then say that the family A•(T ), indexed by T ∈ T , equipped with restric-
tion operators associated with inclusions maps, is a contravariant functor from T to
the category of complexes of vector spaces. It is therefore a presheaf of complexes
(according to the definition in [56] Chapter 17).

Remark 10 (inverse system interpretation) The cellular complex T can also be inter-
preted as a partially ordered set, the order being the inclusion relation. Then the family
A•(T ), indexed by T ∈ T , equipped with restriction operators, constitutes an inverse
system (also called a projective system) of complexes. See for instance [56] §2.1.

Remark 11 (Stokes’ theorem) Identity (20) is a generalization of Stokes’ theorem.
Indeed Stokes’ theorem may be regarded as the special case where the spaces Ak(T )

consist of smooth enough real valued k-forms on T , the discrete vector bundle is given
simply by L(T ) = R and tT T ′ = idR, rT ′T is pullback of differential forms by the
canonical injection and the evaluation map eT : Ak(T ) → R is integration of a k-form
on a k-dimensional cell.

Definition 8 (gluing spaces) If T ′ is a cellular subcomplex of T , we define:

Ak(T ′) = {(uT )T∈T ′ ∈
⊕

T∈T ′
Ak(T ) : T ′ � T ⇒ uT ′ = rT ′T uT }. (21)

We notice that, in the special case where T is a cell and Cl(T ) denotes the cellular
complex consisting of all the subcells of T in T , then the restriction maps provide an
isomorphism:

r : A•(T ) → A•(Cl(T )). (22)

In what follows we will usually not distinguish between A•(T ) and A•(Cl(T )).

Remark 12 (continuity) The condition that, for T ′ � T we have uT ′ = rT ′T uT , for
elements u of Ak(T ′), can be interpreted as a continuity condition. Indeed when two
cells have a common face, the condition enforces the two restrictions to the common
face to be equal.

Remark 13 (glued spaces are inverse limits) If T ′ is a cellular subcomplex of T , the
spaces Ak(T )with T ∈ T ′ constitute an inverse system, see Remark 10. Then Ak(T ′)
is an inverse limit, and this defines it up to unique isomorphism. See for instance [56]
Equation (2.1.2) p. 36.

The notation (21) will be used in particular in the following two cases:

– T ′ = T . The spaces of the form Ak(T ) are those typically used in a Galerkin
method to solve a PDE on the set covered by T . Such spaces will be referred to
as the global spaces, as opposed to the local spaces Ak(T ) for T ∈ T .

– T ′ = ∂T for a given T ∈ T . By that we mean the set of cells in T included in
the boundary of a given cell T ∈ T . That is, ∂T denotes the cellular complex
consisting of the strict subcells of T .
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Remark 14 (reformulation of Stokes’ identity as a commutation relation) Another
way of formulating (20) is that for any cellular subcomplex T ′ of T , the evaluations
eT : Ak(T ) → L(T ) (for T ∈ T ′k) provide a morphism of complexes:

e : A•(T ′) → C•(T ′, L). (23)

We will later provide conditions under which the evaluation morphism (23) induces
isomorphisms on cohomology groups. This would be an analogue of de Rham’s the-
orem which asserts that the de Rham map, from real valued differential forms to real
valued cellular cochains, gives isomorphisms between the respective cohomologies.
We therefore refer to the map in (23) as the de Rham map.

We denote by Ak
0(T ) the kernel of the induced map r : Ak(T ) → Ak(∂T ). We

consider that the boundary of a point is empty, so that if T is a point Ak
0(T ) = Ak(T ).

Definition 9 (Soft finite element systems)We say that A admits extensions on T ∈ T ,
if the restriction map induces a surjection:

r : A•(T ) → Ak(∂T ). (24)

We say that A admit extensions on T or is soft, if it admits extensions on each T ∈ T .

This notion corresponds to that of soft sheaves (faisceaux mous in French [49]),
due to the following result:

Proposition 2 The FES A admits extensions on T if and only if, for any cellular
complexes T ′′, T ′ such that T ′′ ⊆ T ′ ⊆ T , the restriction A•(T ′) → A•(T ′′) is onto.

Proof If one can extend from the boundary of a cell to the cell, then one can extend
from subcomplexes to complexes, step by step, incrementing dimension by one each
time. ��
Remark 15 (surjectivity of restrictions) In particular if A admits extensions, then,
when T ′ is a subcell of T , the restriction A•(T ) → A•(T ′) is onto. However this
is, in general, a strictly weaker condition than the extension property. To see this,
consider for instance the finite element spaces A0(T ) consisting of P1 functions on a
quadrilateral S, on its edges E and on its vertices V . Then the restriction from A0(S)

to each edge A0(E) is onto, as are the other restrictions from faces to subfaces, but the
restriction from A0(S) to A0(∂S) is not onto, since the latter has dimension 4 but the
former had dimension only 3. In practice therefore, finite element spaces on a square
therefore include, in addition to the affine functions, a bilinear function.

Remark 16 (kernels of differentials) We define K (T ) = H0(A•(T )) ≈ ker d : A0(T ).
We notice that we have induced maps rT ′T : K (T ) → K (T ′), whenever T ′ � T .
We also notice that we have a well defined map jT : K (T ) ≈ H0(A•(T )) →
H0(C•(T , L)) ≈ L(T ): starting with an element in K (T ), restrict it to a vertex T ′ to
get an element of K (T ′), evaluate it to get an element of L(T ′) and parallel transport it
to get an element of L(T ) (the composition of these steps is independent of the choice
of vertex and path from the vertex to T ).
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Definition 10 (Exactness of a FES)

– We say that A• is exact on a cell T ∈ T when the following, equivalent, conditions
hold:

– The following sequence is exact:

A0(T )
d

A1(T )
d

. . . (25)

and moreover the map jT : K (T ) → L(T ) defined in Remark 16 is an
isomorphism.

– The de Rham map A•(T ) → C•(Cl(T ), L) induces isomorphisms on coho-
mology.

– We say that A• is locally exact on T when A• is exact on each T ∈ T .

Proof The equivalence holds by Lemma 4. ��

Definition 11 We say that A is compatible when it is soft and is locally exact.

Remark 17 (The flat connections of upwinding and band gap computations) Some
PDEs, such as convection diffusion equations, can be expressed with covariant deriva-
tives [28], see also [83].

Consider the space of real valued differential k-forms on a domain U , denoted
Ωk(U ). Choose A ∈ Ω1(U ), called the connection 1-form. Define the covariant
exterior derivative dA by:

dAu = du + A ∧ u. (26)

Then we have:

dAdAu = (dA) ∧ u. (27)

Then dA ∈ Ω2(U ) is identified as the curvature of A. We suppose dA = 0, so that the
operators dA constitute a complex. For any contractible subdomain T of U we may
choose φ ∈ Ω0(T ) such that dφ = A. Then we have, for u ∈ Ωk(T ):

dAu = exp(−φ)d(exp(φ)u). (28)

Furthermore φ is uniquely determined, if we impose, in addition, the value of φ(xT )

for some point xT ∈ T .
For every cell T ∈ T , choose an interior point xT ∈ T . Let φT : T → R be

the unique function such that φT (xT ) = 0 and dφT = A. For u ∈ Ωk−1(T ) with
k = dim T , we notice:
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∫

T
exp(φT )dAu =

∫

T
d exp(φT )u, (29)

=
∑

T ′�T

o(T , T ′)
∫

T ′
exp(φT )u|T ′ , (30)

=
∑

T ′�T

o(T , T ′) exp(φT (xT ′))
∫

T ′
exp(φT ′)u|T ′ . (31)

When T is k-dimensional, we let eT : Ωk(T ) → R be the map:

eT : u 	→
∫

T
exp(φT )u. (32)

And, when T ′ is a codimension 1 face of T , we put:

tT T ′ = exp(φT (xT ′)). (33)

Then the preceding identity becomes:

eT (dAu) =
∑

T ′�T

o(T , T ′)tT T ′eT ′u|T ′ , (34)

as required in (20).
As a slight variant, consider complex-valued differential forms (but A still real

valued), and let:

dAu = du + i A ∧ u, (35)

with comparable consequences. One can even restrict attention to A constant. On a
torus, A is not in general globally of the formdφ, but of course locally this still holds and
can be used in particular on individual cells. Such observations were made in [18,44]
in the context of band gap computations for photonic crystals. The corresponding
numerical methods are variants of exponential fitting.

3.1 de RhamType Theorems

The following theorem extends Proposition 5.16 in [37]:

Theorem 2 Suppose that the element system A is compatible. Then the evaluation
maps e : A•(T ) → C•(T , L) induce isomorphisms on cohomology groups.

Proof Exactness gives that the map A•(T ) → C•(Cl(T ), L) induces isomorphims on
cohomology groups.

From there the proof proceeds as in [37]. ��
We also have the following extension of Proposition 5.17 in [37]:
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Theorem 3 Suppose that A has extensions. Then A is compatible if and only if the
following condition holds:

For each T ∈ T the sequence A•
0(T ) has nontrivial cohomology only at index

k = dim T , and there the induced map:

e : Hk A•
0(T ) → L(T ), (36)

is an isomorphism (it is well defined by (20)).

Proof (i) For cellular complexes consisting only of vertices, the equivalence trivially
holds because, when T is a point, A•

0(T ) = A•(T ).
(ii)We suppose now thatm > 0 and that the equivalence has been proved for cellular

complexes consisting of cells of dimension atmost n < m. Consider a cellular complex
consisting of cells of dimension at most m.

Let T ∈ T be a cell of dimension m. We suppose that the finite element system
A is compatible on the boundary of T . Since the boundary is (m − 1)-dimensional,
we may apply the de Rham theorem 2 there. In other words A•(∂T ) → C•(∂T , L)

induces isomorphisms on cohomology.
We write the following diagram:

0 A•
0(T )

e

A•(T )

e

A•(∂T )

e

0

0 C•
0(Cl(T ), L) C•(Cl(T ), L) C•(∂T , L) 0

(37)

Comments:

– The complex C•
0(Cl(T ), L) is rather trivial. The terms consist of cochains that are

zero on the boundary of T . In other words, the only nonzero space in the complex
is at index k = dim T , where it is L(T ).

– On the rows, the second map is inclusion and the third arrow restriction. Both rows
are short exact sequences of complexes.

– The vertical maps are the de Rham map.
– The diagram commutes.

We write the two long exact sequences corresponding to the two rows, and connect
them by the map induced by the de Rham map.

Hk−1A•(T ) Hk−1A•(∂T ) Hk A•
0(T ) Hk A•(T ) Hk A•(∂T )

Hk−1C•(Cl(T ), L) Hk−1C•(∂T , L) HkC•
0 (Cl(T ), L) HkC•(Cl(T ), L) HkC•(∂T , L)

The equivalence is now proved in two steps:

– Suppose that (25) is exact. Then thefirst and fourth verticalmaps are isomorphisms.
By the induction hypothesis the second and fifth are isomorphisms. By the five
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lemma, the third one is an isomorphism. This can be stated by the condition
formulated in the theorem.

– Suppose that the stated condition holds. One applies again the five lemma to the
long exact sequence, and obtains now that A•(T ) has the same cohomology as
C•(Cl(T ), L).

��

3.2 Extensions, Dimension Counts and Harmonic Interpolation

The following proposition almost exactly reproduces Proposition 2.2 in [38].

Proposition 3 Suppose that A is an element system and that T ∈ T . We are interested
only in a fixed index k ∈ N. Suppose that, for each cell U ∈ ∂T , each element v of
Ak
0(U ) can be extended to an element u of Ak(T ) in such a way that, rUT u = v and

for each cell U ′ ∈ ∂T with the same dimension as U, but different from U, we have
rU ′T u = 0. Then Ak admits extensions on T .

Proof In the situation described in the proposition, we denote by extU v = u a chosen
extension of v (from U to T ).

Pick v ∈ Ak(∂T ). Define u−1 = 0 ∈ Ak(T ).
Pick l ≥ −1 and suppose that we have a ul ∈ Ak(T ) such that v and ul have the

same restrictions on all l-dimensional cells in ∂T . Put wl = v − r∂T T ul ∈ Ak(∂T ).
For each (l + 1)-dimensional cell U in ∂T , remark that rU∂Twl ∈ Ak

0(U ), so we may
extend it to the element extU rU∂Twl ∈ Ak(T ). Then put:

ul+1 = ul +
∑

U : dimU=l+1

extU rU∂Twl . (38)

Then v and ul+1 have the same restrictions on all (l + 1)-dimensional cells in ∂T .
We may repeat until l + 1 = dim T and then ul+1 is the required extension of v. ��

Proposition 4 (softness vs dimension counts) Let A be a FES on a cellular complex
T . Then:

– We have:

dim Ak(T ) ≤
∑

T∈T
dim Ak

0(T ). (39)

– Equality holds in (39) if and only if Ak admits extensions on each T ∈ T .

Proof The proof in [38] works verbatim. ��
Definition 12 Given a FES A on a cellular complex T , a system of degrees of freedom
is a choice of subspace Fk(T ) ⊆ Ak(T )�, for each k ∈ N and T ∈ T . In that situation,
we can define maps Φk(T ) : Ak(T ) → ⊕

T ′�T Fk(T ′)� by, for u ∈ Ak(T ):

Φk(T )u = (〈·, rT ′T u〉)T ′�T (40)
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where the brackets denote the canonical bilinear pairing Fk(T ′) × Ak(T ′) → R. We
say that the system F is unisolvent on A if Φk(T ) is an isomorphism for each T ∈ T .

We will use the following result:

Proposition 5 (unisolvence of degrees of freedom and softness) Suppose that A is a
FES on a cellular complex T . Suppose that F is a system of degrees of freedom for
A. Suppose that for each T ∈ T , the canonical map Ak

0(T ) → Fk(T )� is injective.
Suppose that T ∈ T is such that:

dim Ak(T ) ≥
∑

T ′�T

dim Fk(T ). (41)

Then F is unisolvent on A on the cellular complex Cl(T ), A is soft on Cl(T ) and
equality holds in (41).

Proof See Propositions 2.1 and 2.5 in [38]. ��
Example 1 For each cell T ∈ T , equip Ak(T ) with a continuous scalar product 〈·|·〉,
typically a variant of the L2 product. We define a system of degrees of freedom
Fk(T ) ⊆ Ak(T )� as follows. For each k, we consider the following space of linear
forms on Ak(T ):

Fk(T ) = {〈·|v〉 : v ∈ dAk−1
0 (T )} ⊕ {〈d · |v〉 : v ∈ dAk

0(T )} (42)

⊕ {l ◦ eT : l ∈ L(T )�}, (43)

where the last space in the direct sum should be included only for k = dim T .
We call these the harmonic degrees of freedom. For compatible finite element sys-

tems, these degrees of freedom are unisolvent.
If one considers that the linear forms in Fk(T ) are defined on more general fields,

these DoFs yield a commuting interpolator onto A•(T ), which we call the harmonic
interpolator. For more on this topic see §2.4 of [38], in particular Proposition 2.8 of
that paper.

Remark 18 (minimal spaces and harmonicity) If the degrees of freedom consisting
only of the spaces Fk(T ) = {l ◦ eT : l ∈ L(T )�} are unisolvent, then the FES is
minimal, and the fields provide an analogue of Whitney forms. One can obtain such a
FES inside any compatible FES by imposing the degrees of freedom (42) to be zero,
while (43) are kept free. This generalizes the construction ofWhitney forms on cellular
complexes given in [26].

3.3 Discrete Vector Bundles: A Dual Picture

Notice that the degrees of freedom l ◦eT for l ∈ L(T )� appearing in (42) play a special
role. In practice they often appear in a slightly different way, namely as integration
against certain fields, forming a space M(T ) which is more tangible than L(T ) (the
parallel transport operators acting on M(T ) can be more natural for instance).
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We now make some remarks on this alternative point of view.
We suppose that we have for each T a vector space M(T ) and a bilinear form 〈·, ·〉T

on A(T ) × M(T ). Moreover, when T ′ has codimension 1 in T we suppose we have a
bijective (linear) restriction map sT ′T : M(T ) → M(T ′), subject to the condition that
sT T ′

0
sT ′

0T
′′ = sT T ′

1
sT ′

1T
′′ . The generalized Stokes theorem takes the form, forφ ∈ M(T )

and u ∈ Ak−1(T ):

〈du, φ〉T =
∑

T ′
o(T , T ′)〈rT ′T u, sT ′Tφ〉T ′ . (44)

In practice, this formula often arises as follows. The bilinear form 〈·, ·〉T on A(T )×
M(T ) is the L2 scalar product (with respect to, say, the standard Euclidean metric).
The space M(T ) is the kernel of the formal adjoint of d. Identity (44) is obtained
by integration by parts, m times when d is a differential operator of order m. Only
boundary terms remain, by definition of the kernel of the formal adjoint. For boundary
cells T ′, the space M(T ′) could be obtained as the kernel of a formal adjoint, or could
appear as natural restrictions to T ′ of elements of M(T ).

For instance, one integrates the divergence of a vector field against the constants,
which constitute the kernel of the gradient. Then the restriction operator on the con-
stants is the usual trace, and the restriction operator on the vector field is the trace of
the normal component.

We will be interested in more complicated examples, for instance, integration of
vector fields against the kernel of the deformation operator (i.e. rigid motions) which
is the formal adjoint of the divergence operator acting on symmetric matrices, and
integration of functions against the kernel of the Airy operator (i.e. affine functions),
which is the formal adjoint of the Saint-Venant compatibility operator.

These data provide the discrete vector bundle defined by L(T ) = M(T )� and
tT T ′ = s�

T ′T . Moreover, it gives evaluation maps eT : Ak(T ) → L(T ) defined by
u 	→ 〈u, ·〉T .

Conversely, given the data L , t and e, one can define M(T ) = L(T )�, 〈u, φ〉T =
φ(eT (u)) for φ ∈ M(T ) and u ∈ Ak(T ) and sT ′T = t�T T ′ , so the two points of view
are equivalent.

4 Elasticity

4.1 Spaces

We work in dimension 2.

– We denote by V = R
2 the space of column vectors and by V

t the space of row
vectors,

– We denote byM = R
2×2 the space of matrices.

– We denote by S = R
2×2
sym the space of symmetric 2×2 matrices and byK = R

2×2
skew

the space of skewsymmetric 2 × 2-matrices.
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If T is a subset of R2 (typically a simplex of dimension 0, 1 or 2, or an open subset
of R2), and E is a vector space (such as one of R,V,Vt ,M,S,K, or a product of
such spaces), we denote by Γ (T ,E) the set of maps from T to E.

These maps should be smooth enough that differential operators and traces (in the
sense of restrictions to subsets of the boundary) make sense, so that one can define
a suitable finite element system as subspaces. To get softness, the regularity of the
spaces should not be too big. Exactness under the differentials is also a regularity
dependent issue. We will get back to the problem of getting the regularity of the fields
right, to accommodate these constraints.

4.2 Differential Operators

We will use the following differential operators, on scalar, vector and matrix fields,
defined on some connected domain in R2.

– The gradient and curl of a scalar field are (row) vectorfields defined by:

grad[u] = [∂1u, ∂2u], (45)

curl[u] = [∂2u,−∂1u]. (46)

– The divergence and curl of (row) vectorfields are defined by:

div[u1, u2] = ∂1u1 + ∂2u2, (47)

curl[u1, u2] = ∂1u2 − ∂2u1. (48)

– The gradient of a (column) vectorfield is defined by:

grad

[
u1
u2

]
=

[
∂1u1 ∂2u1
∂1u2 ∂2u2

]
(49)

– The deformation of a (column) vectorfield is the symmetric part of its gradient:

def

[
u1
u2

]
=

[
∂1u1 1/2(∂2u1 + ∂1u2)

1/2(∂1u2 + ∂2u1) ∂2u2

]
(50)

– The divergence of a matrix field is the (column) vectorfield defined by:

div

[
u11 u12
u21 u22

]
=

[
∂1u11 + ∂2u12
∂1u21 + ∂2u22

]
. (51)

– The Airy operator acts as follows on a scalar field u:

airy[u] =
[

∂22u −∂21u
−∂12u ∂11u

]
(52)
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– The Saint Venant operator is the formal adjoint of the Airy operator:

sven

[
u11 u12
u21 u22

]
= ∂22u11 + ∂11u22 − ∂12u21 − ∂21u12. (53)

It encodes the Saint-Venant compatibility conditions for being a deformation
tensor. The sven operator may also by interpreted as the linearization of scalar
curvature around the standard metric.

Remark 19 We point out that, when T denotes transposition:

airy u = curl t curl u, (54)

sven u = curl t curl u. (55)

Remark 20 (Hessian) The Hessian of a scalar field u is:

hess(u) =
[

∂11u ∂12u
∂21u ∂22u

]
(56)

– We define the matrix J as:

J =
[
0 −1
1 0

]
(57)

It encodes a direct rotation around the origin by π/2. Then the Hessian and the
Airy operator are linked by:

airy(u) = J t hess(u)J , (58)

where J t denotes the transpose of J .
– We can also introduce the operator on matrices:

Ku = ut − tr(u)I2. (59)

Then the Hessian and the Airy operator are related by:

airy(u) = −K hess(u). (60)

Remark 21 (Formulas in different bases) We will often work with an additional
orthonormal oriented basis (τ, ν) of V. Well-known formulas will be used without
further ado. For instance, for a scalar field u, curl u = ∂νuτ − ∂τuν. For a column
vector field, one would write curl u = ∂τu · ν − ∂νu · τ . Notice, however, that we
have chosen to use differential operators only row wise. For a row vector field u, the
formula thus becomes curl u = ∂τuν − ∂νuτ , given that τ and ν are column vectors.
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Remark 22 (Differential operators act on rows) We let all differential operators act
row wise. To account for differential operators acting column wise, we combine with
transposition, denoted t : u 	→ ut .

Remark 23 We let the curl operator act on matrices row wise. Then we have the
formula:

curl u = −J div(Ku), (61)

where J and K were introduced in (57) and (59). This can be used to prove invariance
properties of the curl of matrices under orthogonal basis change.

4.3 Elasticity Complexes and Diagram Chasing

The preceding operators may be arranged into sequences as follows. Notice that we
now use the letter H to denote Sobolev spaces (rather than cohomology groups).

Proposition 6 (Elasticity stress complex) We have a sequence:

H2(U ,R)
airy

H0
div(U ,S)

div H0(U ,V). (62)

Here:

H0
div(U ,S) = {u ∈ H0(U ,S) : div u ∈ H0(U ,V)}. (63)

The kernel of the Airy operator consists of the affine functions. The divergence
operator is surjective. If U is contractible the sequence is exact.

Proposition 7 (Elasticity strain complex) We have a sequence:

H2(U ,V)
def H1

sven(U ,S)
sven H0(U ,R). (64)

Here:

H1
sven(U ,S) = {u ∈ H1(U ,S) : sven u ∈ H0(U ,R)}. (65)

The kernel of the deformation operator consists of the rigid motions (vector fields
of the form x 	→ a + bJ x with a ∈ R

2 and b ∈ R). The sven operator is surjective. If
U is contractible, the sequence is exact.

These complexes can be deduced from vector-valued de Rham sequences by a
diagram chase of the following type [10]:
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Proposition 8 Suppose we have two complexes linked in a commuting diagram

X0 d X1 d
. . .

d Xi d Xi+1 d
. . . ,

Y 0 d

φ0

Y 1 d

φ1

. . .
d

φi−1

Y i d

φi

Y i+1 d

φi+1

. . .

(66)

Suppose furthermore that we have an index i such that:

– for j < i , φ j is injective,
– φi is bijective,
– for j > i , φ j is surjective.

Then we get a sequence, with D = dΨ d and Ψ = (φi )−1:

. . .
d coker φi d coker φi−1 D ker φi+1 d ker φi+2 d

. . .

(67)

Furthermore, if X • and Y • are exact, then this new sequence is also exact.

Proposition 9 We have the commuting diagram:

H2(U ,R)
curl H1(U ,Vt )

div H0(U ,R),

H1(U ,V)
curl

t

H0
div(U ,M)

div

skew

H0(U ,V).

(68)

Here t denotes transposition and:

skew

[
u11 u12
u21 u22

]
= u21 − u12. (69)

The elasticity stress complex (62) comes from (68) by Proposition 8.

Proposition 10 We have a commuting diagram:

H2(U ,V)
grad

H1
sven(U ,M)

curl H0
curl t (U ,V),

H1(U ,R)
grad

skew

H0
curl(U ,Vt )

curl

t

H0(U ,R).

(70)

Here:

H1
sven(U ,M) = {u ∈ H1(U ,M) : sven u ∈ H0(U ,R)}. (71)
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Moreover t denotes transposition and:

skew[u] =
[

0 u
−u 0

]
. (72)

The elasticity strain complex (64) comes from (70) by Proposition 8.

Remark 24 (a variant with modified regularity) On the bottom row of diagram (68),
the differential operators act row-wise and the Sobolev spaces are defined row-wise.
The middle space in the bottom row is not stable under taking the transpose. One
could achieve that by enforcing conditions on the vertical divergence throughout the
complex:

H2(U ,R)
curl H1

div(U ,Vt )
div H1(U ,R),

H1
div t (U ,V)

curl

t

H0
div,div t (U ,M)

div

skew

H0(U ,V).

(73)

Here:

H1
div t (U ,V) = {u ∈ H1(U ,V) : div ut ∈ H1(U ,R)}, (74)

H0
div,div t (U ,M) = {u ∈ H0(U ,M) : div u ∈ H0(U ,V) and div ut ∈ H0(U ,V)}.

(75)

The diagram chase applied to (73) yields the same elasticity complex as (68), namely
(62).

Remark 25 (regularity couples rows) On the top-row of diagram (70), the differential
operators act row-wise, but the Sobolev spaces have a regularity whose definition
couples the rows. The middle space is stable under taking the transpose.

Remark 26 (Boundary conditions in the strain complex) Here we lower the regularity
throughout the complex by 1, so that we consider in particular the space:

H0
sven(U ,S) = {u ∈ H0(U ,S) : sven u ∈ H−1(U ,R)}. (76)

We are interested in finding the natural boundary conditions for this space. For u in
this space, the ττ component on the boundary makes sense. Indeed, there is u′ ∈
H1(U ,S) such that sven u′ = sven u and v ∈ H1(U ,V) such that def v = u − u′
(on noncontractible domains use the regular decomposition). Now u′ has well defined
traces on the boundary, in particular ττ traces, say in L2(∂U ). Moreover:

((def v)τ) · τ = ((grad v)τ) · τ, (77)

and the trace of (grad v)τ is well defined inH−1/2(∂U ). But then, taking scalar product
with τ is problematic. The components of τ are not in H1/2(∂U ) on non-smooth
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domains, due to possible discontinuities. On a triangle, one can still conclude that
the trace of ((def v)τ) · τ is well defined in the dual of H1/2

00 of each face. But it is
problematic that this not enough to define ττ traces in, say, the dual of Lipschitz
functions on the whole boundary.

Characterizing the space of traces seems simpler for smooth boundaries. The diffi-
culties with triangles can then be expressed as being related to the presence of infinite
extrinsic curvature at vertices.

One should also prove that an element of H0
sven(U ,S) has zero ττ traces iff it is the

limit of elements of C∞
c (U ,S).

Remark 27 (Strain complex with lower regularity) As an alternative to the elasticity
strain complex (64), we can consider:

H1
curl t (U ,V)

def H0
curl,sven(U ,S)

sven H0(U ,R). (78)

Here:

H1
curl t (U ,V) = {u ∈ H1(U ,V) : curl ut ∈ H1(U )}, (79)

H0
curl,sven(U ,S) = {u ∈ H0(U ,S) : curl u ∈ H0(U ,V) and sven u ∈ H0(U ,R)}.

(80)

This complex can be deduced from the following diagram:

H1
curl t (U ,V)

grad
H0

curl,curl t
sven

(U ,M)
curl H0

curl t (U ,V),

H1(U ,R)
grad

skew

H0
curl(U ,Vt )

curl

t

H0(U ,R).

(81)

Here:

H0
curl,curl t

sven
(U ,M) ={u ∈ H0(U ,M) : curl u ∈ H0(U ,V)∧ (82)

curl ut ∈ H0(U ,V) ∧ sven u ∈ H0(U ,R)}. (83)

One may check that the skew operator on H1(U ,R) maps onto the antisymmetric
elements of this space.

Remark 28 (regularity and partitions of unity) The spaces defined in (65) and (80) are
stable under multiplication by smooth functions. Thus, partition of unity techniques
apply to them, enabling one to glue together smooth enough fields. The regularity in
(65) and (80) seems quite adapted to FES techniques, which is about gluing together
finite element fields.
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Notice that, on the other hand, the L2-based graph norm space:

{u ∈ H0(U ,S) : sven u ∈ H0(U ,R)}, (84)

is not stable under multiplication by smooth functions. It seems less amenable to FES
techniques.

We see that we have several choices of Sobolev norms in the strain complex. In the
stress complex (62), on the other hand, the situation is simpler. The last two spaces
are dictated by the Hellinger–Reissner principle, and this fixes the first space.

In dimension 3, this suggests the following two choices of norms, in the elasticity
complex. For higher regularity:

H2(U ,V)
def X 1 curl t curl H0

div(U ,S)
div H0(U ,V), (85)

with:

X 1 = {u ∈ H1(U ,S) : curl t curl u ∈ H0(U ,S)}. (86)

For lower regularity:

H1
curl t (U ,V)

def Y1 curl t curl H0
div(U ,S)

div H0(U ,V). (87)

with:

Y1 = {u ∈ H0(U ,S) : curl u ∈ H0(U ,M) and curl t curl u ∈ H0(U ,S)}. (88)

On the other hand, the complex:

H1(U ,V)
def Z1 curl t curl H0

div(U ,S)
div H0(U ,V), (89)

constructed on the L2 based graph norm space:

Z1 = {u ∈ H0(U ,S) : curl t curl u ∈ H0(U ,S)}, (90)

is avoided, as it is not stable under multiplication by smooth functions.
For Regge calculus, the functional framework of [27] was based on:

{u ∈ H0(U ,S) : curl t curl u ∈ H−1(U ,S)}, (91)

which corresponds to lowering the regularity by 1 throughout the complex (85).
Exactness properties of all these sequences can be deduced from results in [10].
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4.4 Poincaré Operators

Poincaré and Koszul operators are central to the construction of the finite element
de Rham complexes of [7,52,63]. They were also essential to the construction of
the smooth finite element de Rham complexes in [35]. In [36] we provided similar
operators for elasticity complexes.Wedetail themhere, for the twodifferent complexes
we have in dimension 2. They will also be used for the construction of finite element
elasticity complexes.

Stress elasticity complex We suppose that the domain U is starshaped with respect
to the origin 0.

For x = (x1, x2) ∈ R
2 we define xr = (−x2, x1). Both are identified with column

vectors.
We define Poincaré operators for elasticity as follows.

Definition 13 We define p1 : Γ (U ,S) → Γ (U ,R) by:

(p1 u)(x) =
∫ 1

0
(1 − t)xrt u(t x)xrdt . (92)

We define p2 : Γ (U ,V) → Γ (U ,S) by:

(p2 u)(x) = sym

(∫ 1

0
tu(t x)xt + curl(

∫ 1

0
t(1 − t)xrt u(t x)xdt)

)
, (93)

where the curl acts rowwise to produce a matrix.

Proposition 11 We have the following identities.

– Null-homotopy:

p1 airy u = u − j(u), (94)

p2 div v + airy p1 v = v, (95)

div p2 w = w. (96)

where j(u) is the affine function x 	→ u(0) + grad u(0)x.
– Sequence property:

p1 p2 = 0. (97)

– These operators preserve polynomials, moreover:
– p1 increases polynomial degree by 2 (at most).
– p2 increases polynomial degree by 1 (at most).

We may then define two Koszul operators.
Remark that on constant fields u these operators reduce to:

p1 u(x) = 1/2xruxr, (98)
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and:

p2 u(x) = 2/3

[
x1u1 1/2(x2u1 + x1u2)

1/2(x1u2 + x2u1) x2u2

]
(99)

More generally we let the Koszul operators Kr
i be the restrictions of pi to homoge-

neous polynomials of degree r . We then have:

Kr
1 u(x) = 1

(r + 1)(r + 2)
xrt u(x)xr, (100)

Kr
2 u(x) = sym

(
1

r + 2
u(x)xt − 1

(r + 2)(r + 3)
curl(xrt u(x)x)

)
. (101)

Strain elasticity complex For the strain elasticity complex, we also have Poincaré
operators (we use the same notation). We suppose that the domain U is starshaped
with respect to the origin 0. In practice, we will use these operators with respect to
other base points, namely the central vertex of the Clough–Tocher split.

Definition 14 We define p1 : Γ (U ,S) → Γ (U ,V) by:

p1 u =
∫ 1

0
u(t x)t xdt +

∫ 1

0
(1 − t)xr(curl u(t x))t xdt, (102)

and p2 : Γ (U ,R) → Γ (U ,S) by:

p2 u = xr
(∫ 1

0
t(1 − t)u(t x)dt

)
xrt . (103)

Proposition 12 The Poincaré operators have the following properties:

– Null-homotopy: We have, for u ∈ Γ (U ,V), v ∈ Γ (U ,S) and w ∈ Γ (U ,R):

p1 def u = u − j(u), (104)

p2 sven v + def p1 v = v, (105)

sven p2 w = w, (106)

where j(u) is the rigid motion x 	→ u(0) + 1/2 curl t u(0)xr.
– Sequence property:

p1 p2 = 0. (107)

– These operators preserve polynomials, moreover:
– p1 increases polynomial degree by 1 (at most).
– p2 increases polynomial degree by 2 (at most).
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Definition 15 (Koszul operators) Taking the Poincaré operators on homogeneous
polynomials of degree r , we obtain the Koszul operators. More generally, we let
the operator Kr

1 : Γ (U ,S) 	→ Γ (U ,V) be given by:

Kr
1 u = 1

r + 1
ux + 1

(r + 1)(r + 2)
xr(curl u)t x, (108)

whereas the operator Kr
2 : Γ (U ,R) → Γ (U ,S) is given by:

Kr
2 u = 1

(r + 2)(r + 3)
xruxrt . (109)

The next lemma shows some regularity of these operators.

Lemma 6 For w piecewise smooth on the Clough–Tocher splitR(T ), we have p2 w ∈
H0
curl(T ,S).

Proof By straightforward calculations, (xrxrt )x = 0 and t curl(xrxrt )x = 0. This
implies that wxrt xr and w curl(xrt xr) have continuous tangential components even
if w is discontinuous across the interior edges of the Clough–Tocher split. ��

5 FES for the Stress Complex

5.1 Induced Operators and Discrete Vector Bundle

We consider a vertex V , in an edge E , in a triangle T . The oriented unit tangent on
E is denoted τ , and the normal is denoted ν, so that (τ, ν) is an oriented orthonormal
basis of V.

Spaces and operators for the stress complex (62) may be arranged in the following
commuting diagram:

Remark 29 With the preceding notations we have that, for the kernels of the initial
differentials:

– K (T ) consists of affine functions.
– K (E) consists of pairs (u, v) of real valued functions on E such that v is constant
and u is affine.

– K (V ) = R × V.

To complete the picture we need to define a discrete vector bundle. We take the
dual point of view developed in Sect. 3.3 page 21.

– We let M(T ) denote the space of rigid motions. The rigid motions appear as the
kernel of the formal adjoint of div : Γ (T ,S) → Γ (T ,V), acting on symmetric
matrices, namely the deformation operator def.

– We let M(E) be the kernel of the (formal) adjoint of d0E : Γ (E,R × R) →
Γ (E,R × R), which is:

(u, v) 	→ (∂2τ v, ∂τu). (110)
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Fig. 2 Stress complex, restrictions and induced operators

Therefore M(E) consists of pairs (u, v) of functions on E , where u is constant
and v is affine.

– We let M(V ) = R × V.

We define bijective restriction operators M(T ) → M(E) and M(E) → M(V ) as
follows.

– We define M(T ) → M(E) as the map sending a rigid motion φ to the pair
(φ · τ, φ · ν), where restriction to E is implied. Indeed the tangent component of
φ on E is constant and the normal component on E is affine.

– We define M(E) → M(V ) as the map sending (φ,ψ) ∈ M(E) to the pair
(−∂τψ,ψτ − φν), evaluated at V , which is in M(V ).

– There is one commuting diagram to check, when V is the common vertex of two
edges E and E ′, of T , namely that the two compositions M(T ) → M(E) →
M(V ) and M(T ) → M(E ′) → M(V ) are equal. But, the composed restriction
M(T ) → M(E) → M(V ) is:

φ 	→ (−∂τ (φ · ν), (φ · ν)τ − (φ · τ)ν) = (1/2 curl φ(V ),−Jφ(V )),

(111)

which is independent of E .

We need bilinear pairings.

– On Γ (T ,V) × M(T ) we define 〈u, φ〉T = ∫
T u · φ.

– On Γ (E,R × R) × M(E) we define 〈(u, v), (φ, ψ)〉E = ∫
E uφ + vψ .

– On Γ (V ,R × V) × M(V ) we define 〈(u, v), (φ, ψ)〉V = uφ + v · ψ .

We also need two Stokes-like identities. They are:
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– If u ∈ Γ (T ,S) and φ ∈ M(T ), we write:

∫

T
div u · φ =

∫

∂T
uν · φ, (112)

=
∫

∂T
(uν · τ)(φ · τ) + (uν · ν)(φ · ν). (113)

– If (u, v) ∈ Γ (E,R × R) and (φ,ψ) ∈ M(E), we have:

∫

E
d0E (u, v) · (φ,ψ) =

∫

E
(−∂τ v)φ + (∂2τ u)ψ, (114)

=
[
∂τuψ − u∂τψ − vφ

]
, (115)

=
[
u(−∂τψ) + (∂τuτ + vν) · (ψτ − φν)

]
. (116)

The brackets denote taking the difference of the values at endpoints. We state:

Proposition 13 The above data consisting of spaces M(·) and restriction maps, pro-
vide, by dualization (as in Sect. 3.3), a discrete vector bundle with (flat) connection,
where the fibers are all isomorphic to rigid motions. The provided bilinear pairings
and the Stokes like identities are what is furthermore required for the definition of a
FES.

Lemma 7 – For any triangle T , the complex C•(Cl(T ), M�) is exact except at index
0 where the kernel can be characterized as follows. For u ∈ C0(Cl(T ), M�) we
have δtu = 0 iff u represents the degrees of freedom of an affine function—i.e.
there exists an affine function v on T , such that u and v evaluate similarly against
M(V ) for each vertex V of T .

– For any edge E, the complex C•(Cl(E), M�) is exact except at index 0 where the
kernel can be characterized as follows. For u ∈ C0(Cl(E), M�) we have δtu = 0
iff u represents the degrees of freedom of the restriction of an affine function—i.e.
there exists an affine v on R2, such that u and v evaluate similarly against M(V )

for each vertex V of E.

Proof FromCorollary 1. At index 0 the kernel of the discrete covariant exterior deriva-
tive has dimension 3. On the other hand, the affine functions naturally inject into this
kernel. Surjectivity then follows from dimension equality. ��

5.2 Discrete Spaces

We now define finite element spaces for the stress complex, following [55]. Our main
novelty is that by highlighting degrees of freedom involving the M(T ) spaces, we
are led to a natural reduction of this space (where stresses have dimension 9 on an
element, reduced from 15), see Remark 32. Notice that in [55], the displacement is
chosen in the finite element space P1(T ,V) rather than P0(R(T ),V). Thus their finite
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Fig. 3 Johnson Mercier stress complex

element pair is not part of a complex. A point of view emphasizing discrete complexes
is developed in [4].

For a triangle T , we denote by R(T ) the Clough–Tocher split of T .

Definition 16 (FE for the stress complex)

– We define:

A0(T ) = C1P3(R(T ),R), (117)

A0(T ) is thus the Clough–Tocher space. The degrees of freedom are: values at
vertices (3), values of the gradient at vertices (3×2), integral of normal derivative
on edges (3).

– We define, following [55]:

A1(T ) = H0
divP

1(R(T ),S), (118)

bywhichwemean symmetricmatrix fields that are piecewise polynomial of degree
at most 1, with continuous normal components on interior edges. The degrees of
freedom are: on edges E,

∫
E uν · v for v ∈ P1(E,V) (3× 4), and on T , integration

against P0(T ,S) (3).
– We define:

A2(T ) = P0(R(T ),V), (119)

that is the space of piecewise constant vector fields. The degrees of freedom are
integration against P1(T ,V) (6).

These finite element spaces are represented in Fig. 3.

Remark 30 Notice that:

– for A0(T ), pairings of restrictions with M(V ) at vertices V can be recovered from
the DoFs.

– for A1(T ), pairings of restrictions with M(E) at edges E can be recovered from
the DoFs.

– for A2(T ), pairings with M(T ) can be recovered from the DoFs.

Theorem 4 (FE for the stress complex)
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– A0(T ) has dimension 12, and the provided DoFs are unisolvent.
– A1(T ) has dimension 15, and the provided DoFs are unisolvent.
– A2(T ) has dimension 6, and the provided DoFs are unisolvent.
– The complex A•(T ) is a resolution of the affine functions.

Proof (i) For A0(T ) this is well known.
(ii) For A2(T ) one can consider the scalar analogue, and go via the dual result, that
any u ∈ P1(T ) is uniquely determined by the integrals on the three small triangles in
R(T ), since their isobarycentres are not colinear.
(iii) For A1(T ), this is proved in [55], also via the Clough–Tocher element.We provide
a slight modification of that proof, exploiting the M DoFs (see Remark 30).

The space P1(R(T ),S) has dimension 3× 3× 3 = 27. Imposing continuity of the
normal component on interior edges can be expressed with 3×2×2 = 12 constraints,
so dim A1(T ) ≥ 27 − 12 = 15.

Now let u ∈ A1(T ) and suppose that its DoFs are 0. It then follows that div u ∈
A2(T ) hasDoFs 0, by integration by parts. So div u = 0 and hence u = airy v for some
v ∈ H2(T ). The second-order derivatives of v are in P1(R(T )), hence v ∈ A0(T ).
Now the M(E)-DoFs of airy v are 0, so there exists w ∈ P1(T ) such that v and w

have the same M(V )-DoFs (see Lemma 7). We have u = airy(v − w). On a given
edge ∂τ ∂ν(v − w) = 0 from the DoFs of u, so ∂ν(v − w) is affine, in fact constant.
Therefore, since the vertex DoFs are zero, v − w = 0 so u = 0.
(iv) Exactness of A•(T ) at index 1, was just proved. At index 0 the kernel is the space
of affine functions. Exactness at index 2 then follows by dimension count. ��
Remark 31 For each edge E , let χE be a nonzero affine map E → R such that∫

χE = 0.
In A1(T ), we may think of the provided DoFs attached to an edge E as

– Integrals of uν · ν against P1(E) and of uν · τ against P0(E), which together
constitute pairings with M(E).

– Integral of uν · τ against χE .

From this point of view it seems natural to replace the edge DoF in A0(T ) (namely
u 	→ ∫

E ∂νu) by u 	→ ∫
(∂τ ∂νu)χE . In particular

∫
(∂τ ∂νu)χE = 0 iff ∂νu is affine,

which appeared as a step in the proof of Theorem 4.

Definition 17 (FES for the stress complex) We get a finite element system by append-
ing the following spaces:

A0(E) = P3(E) × P2(E), (120)

A1(E) = P1(E) × P1(E), (121)

A0(V ) = R × V. (122)

A system of degrees of freedom is defined by:

F0(T ) = 0, (123)

F0(E) = R{A0(E) � (u, v) 	→
∫

E
(∂τ v)χE }, (124)
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F0(V ) = {〈·, φ〉V : φ ∈ M(V )}, (125)

F1(T ) = {A1(T ) � u 	→
∫

T
u · v : v ∈ P0(T ,S)}, (126)

F1(E) = {〈·, φ〉E : φ ∈ M(E)}⊕ (127)

R{A1(E) � (u, v) 	→
∫

E
uχE }, (128)

F2(T ) = {A2(T ) � u 	→
∫

T
u · v : v ∈ P1(T ,V)}. (129)

Proposition 14 The above finite element system is compatible and the system of
degrees of freedom unisolvent.

Proof The essential points were already proved in Theorem 4. The main addition is
the unisolvence of the degrees of freedom on A1(E), which is straigthforward. ��
Remark 32 (Minimal spaces) The preceding FE complex may be reduced as follows:

– Ã0(T ) is the reduced Clough–Tocher element where ∂νu is affine on edges. The
DoFs are now only pairings with M(V ) at vertices. The dimension is 9.

– Ã2(T ) consists of divergence free elements of P0(R(T ),V), i.e. the elements that
are continuous in the normal direction on interior edges. It can also be characterized
as curl C0P1(R(T ),R). The dimension is 3 and the degrees of freedom are now
pairings with M(T ) only.

– Ã1(T ) is the subspace of H0
divP

1(R(T ),S), consisting of elements u such that
div u ∈ Ã2(T ) and, on any edge, uν · τ ∈ P0(E). The dimension is 9, and the
degrees of freedom are pairings with M(E) on edges, only.

A compatible FES is obtained by appending

A0(E) = P3(E) × P1(E), (130)

A1(E) = P0(E) × P1(E), (131)

A0(V ) = R × V. (132)

As already asserted, natural degrees of freedom are:

F̃0(T ) = 0, (133)

F̃0(E) = 0, (134)

F̃0(V ) = {〈·, φ〉V : φ ∈ M(V )}, (135)

F̃1(T ) = 0, (136)

F̃1(E) = {〈·, φ〉E : φ ∈ M(E)} (137)

F̃2(T ) = {〈·, φ〉E : φ ∈ M(T )}. (138)

Remark 33 The Johnson Mercier stress complex can be obtained from standard finite
element de Rham complexes by a discrete BGG diagram chase. See Fig. 4.

One could also exhibit an alternative diagram chase, based on Remark 24.
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Fig. 4 Diagram chase for the Johnson Mercier element

Remark 34 High order finite element stress complexes are provided in [4]. They
seem to fit in our framework too. Their lowest order complex starts with the space
C1P4(R(T ),R) and ends in P1(T ,V). Themiddle space of stresses augments P2(T ,S)

with a 3-dimensional space, so has dimension 21.

6 FES for the Strain Complex

6.1 Induced Operators and Discrete Vector Bundle

We here consider now the strain complex (64). We identify induced spaces and opera-
tors on edges and vertices. They are summarized in the commuting diagram depicted
in Fig. 5.

Again we consider a vertex V , in an edge E , in a triangle T . The oriented unit
tangent on E is denoted τ , and the normal is denoted ν, so that (τ, ν) is an oriented
orthonormal basis of V.

If we consider instead the complex of lower regularity, as in (78), the corresponding
diagram is depicted in Fig. 6.

Remark 35 Notice that for continuous symmetric matrix fields u, sven u is square
integrable iff on edges ∂νuτ · τ is continuous. This is checked by integration by parts.
Recall also that in Regge calculus the matrix field is not required to be continuous,
but uτ · τ is, guaranteeing that the sven is measure valued.

The discrete vector bundle is defined as follows:
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Fig. 5 Straincomplex, restrictions and induced operators: high regularity

Fig. 6 Straincomplex, restrictions and induced operators: low regularity

– We let M(T ) be the kernel of the Airy operator, namely the space of affine func-
tions.

– We let M(E) the space of pairs (u, v) where u is an affine function on E and v is
constant.

– We let M(V ) be the space V × R.

We define restriction operators:
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– M(T ) → M(E) : φ 	→ (φ|E , ∂νφ|E ).
– M(E) → M(V ) : (φ,ψ) 	→ (ψ(V )τ − ∂τφ(V )ν, φ(V )).
– The composition M(T ) → M(E) → M(V ) is then φ 	→ (curl φ(V ), φ(V )),
which is independent of E .

The pairings are:

– on Γ (T ,R) × M(T ) : 〈u, φ〉 = ∫
uφ.

– on Γ (E,R2 × R) × M(E):

〈(u, v, u′), (φ, ψ)〉 =
∫

E
uψ + ∂τ vφ − v∂τφ − u′φ. (139)

– on Γ (V ,V × R) × M(V ): 〈(u, v), (φ, ψ)〉 = u · φ + vψ .

The Stokes-like identities are:

– For u ∈ Γ (T ,S) and φ ∈ M(T ), we have:

∫

T
sven u φ =

∫

∂T
curl u · τφ +

∫

∂T
uτ · t curl φ, (140)

=
∫

∂T
(∂τuτ · ν − ∂νuτ · τ)φ + uτ · (∂νφτ − ∂τφν), (141)

=
∫

∂T
uτ · τ∂νφ + ∂τuτ · νφ − uτ · ν∂τφ − ∂νuτ · τφ, (142)

=
∑

E

〈(uτ · τ, uτ · ν, ∂νuτ · τ), (φ, ∂νφ)〉E . (143)

– For (u, v, u′) ∈ Γ (E,R2 × R) and (φ,ψ) ∈ M(E):

〈(∂τu,
1

2
(u′ + ∂τ v), ∂τu

′), (φ, ψ)〉 (144)

=
∫

E
∂τuψ + ∂τ

1

2
(u′ + ∂τ v)φ − 1

2
(u′ + ∂τ v)∂τφ − ∂τu

′φ, (145)

=
[
uψ

]
+

[1
2
(u′ + ∂τ v)φ

]
−

∫
(u′ + ∂τ v)∂τφ −

[
u′φ

]
+

∫
u′∂τφ, (146)

=
[
uψ

]
+

[1
2
(u′ + ∂τ v)φ

]
−

[
v∂τφ

]
−

[
u′φ

]
, (147)

=
[
uψ

]
+

[1
2
(∂τ v − u′)φ

]
−

[
v∂τφ

]
, (148)

=
[
〈(uτ + vν,

1

2
(∂τ v − u′)), (ψτ − ∂τφν, φ)〉V

]
. (149)

Here the brackets denote differences between values at the two vertices of E .

We state:
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Proposition 15 The above data consisting of spaces M(·) and restriction maps, pro-
vide, by dualization (as in Sect. 3.3), a discrete vector bundle with (flat) connection,
where the fibers are all isomorphic to affine functions. The provided bilinear pairings
and the Stokes like identities are what is furthermore required for the definition of a
FES.

Lemma 8 – For any triangle T , the complex C•(Cl(T ), M�) is exact except at index
0 where the kernel can be characterized as follows. For u ∈ C0(Cl(T ), M�) we
have δtu = 0 iff u represents the degrees of freedom of a rigid motion—i.e. there
exists a rigid motion v on T , such that u and v evaluate similarly against M(V )

for each vertex V of T .
– For any edge E, the complex C•(Cl(E), M�) is exact except at index 0 where the
kernel can be characterized as follows. For u ∈ C0(Cl(E), M�) we have δtu = 0
iff u represents the degrees of freedom of the restriction of of rigid motion—i.e.
there exists a rigid motion v on R

2, such that u and v evaluate similarly against
M(V ) for each vertex V of E.

Proof FromCorollary 1. At index 0 the kernel of the discrete covariant exterior deriva-
tive has dimension 3. On the other hand, the rigid motions naturally inject into this
kernel. Surjectivity then follows from dimension equality. ��

6.2 Discrete Spaces: Higher Regularity

For a triangle T , we denote by R(T ) the Clough Tocher split of T .

Definition 18 (FE for the strain complex: definition à la Ciarlet)

– We define:

A0(T ) = C1P3(R(T ),V), (150)

A0(T ) is thus the vector-valued variant of the Clough Tocher space. The degrees
of freedom are: values at vertices (3×2), values of the gradient at vertices (3×4),
integral of normal derivative on edges (3 × 2).

– We define:

A1(T ) = C0
svenP

2(R(T ),S), (151)

bywhichwemean symmetricmatrix fields that are piecewise polynomial of degree
at most 2, are continuous, and have an integrable sven. The degrees of freedom
are: values at vertices (3 × 3), pairings of edge restrictions with M(E) for each
edge E (3 × 3), integral against normal vector on edges (3 × 2).

– We define:

A2(T ) = P0(R(T ),R), (152)

that is the space of piecewise constants. The degrees of freedom are pairings with
M(T ), namely integration against affine functions.
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Fig. 7 Strain complex with high continuity

Remark 36 On A0(T ), pairings of restrictions to vertices, with M(V ) at vertices V ,
providing the vertex values and vertex values of the curl, constitute a subspace of the
provided vertex DoFs.

On A1(T ), the edge DoFs involve normal derivatives through the restriction oper-
ators and tangential derivatives through the pairing with M(E).

The finite element spaces of Definition 18 are represented in Fig. 7.

Proposition 16 The provided DoFs give interpolators commuting with the differential
operators.

The preceding finite element spaces can be regarded as a finite element system, as
follows.

Definition 19 (FES for the strain complex)

– Differential operators and restrictions are defined according to Fig. 5.
– The spaces A0(T ), A1(T ) and A2(T ) are defined as in Definition 18.
– Spaces on edges E and vertices V are defined by:

A0(E) = P3(E) × P3(E) × P2(E) × P2(E), (153)

A1(E) = P2(E) × P2(E) × P2(E) × P1(E), (154)

A0(V ) = V × M, (155)

A1(V ) = S. (156)

– A system of degrees of freedom F on A is defined by:

F0(T ) = 0, (157)

F0(E) = R{A0(E) � (u, v, u′, v′) 	→ ∫
E u′}⊕ (158)

R{A0(E) � (u, v, u′, v′) 	→ ∫
E v′}, (159)

F0(V ) = A0(V )� ≈ V
� ⊕ M

�, (160)

F1(T ) = 0, (161)

F1(E) = {〈·, φ〉E : φ ∈ M(E)}⊕ (162)

R{A1(E) � (u, v, w, u′) 	→ ∫
E v}⊕ (163)
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R{A1(E) � (u, v, w, u′) 	→ ∫
E w}, (164)

F1(V ) = A1(V ) = S
�, (165)

F2(T ) = {〈·, φ〉T : φ ∈ M(T )}. (166)

(other spaces are set to 0).

Theorem 5 (FE for the strain complex)

– A0(T ) has dimension 24, and the provided DoFs are unisolvent.
– A1(T ) has dimension 24, and the provided DoFs are unisolvent.
– A2(T ) has dimension 3, and the provided DoFs are unisolvent.
– The sequence A•(T ) is a resolution of the space RM of rigid motions.

Proof (i) For A0(T ), the dimension count and the unisolvence of the degrees of free-
dom are standard. We also remark that the degrees of freedom corresponding to an
edge E are unisolvent on A0(E). At vertices, the corresponding result is trivial.
(ii) For A2(T ), the dimension count is trivial and the unisolvence of the DoFs is
straightforward.
(iii) The space C0P2(R(T ),S) has dimension 10 × 3 = 30. For u ∈ C0P2(R(T ),S),
in order to impose that sven u is integrable we impose that ∂νuτ · τ is continuous
on the three interior edges. Since these fields are linear, this can be expressed as 6
constraints. This shows that dim A1(T ) ≥ 24.
(iv) We now prove unisolvence of the degrees of freedom for A1(T ). Let u ∈ A1(T )

and suppose that the DoFs are all 0. Then sven u ∈ A2(T ) has 0 degrees of freedom, so
it is 0. Sowe can choose v ∈ H2(T ,V) so that def v = u. The second-order derivatives
of v can be recovered from the first order derivatives of u and therefore turn out to be
linear. Therefore v ∈ A0(T ).

Since the M(E)-dofs of def v are 0, there exists a rigid motion w, which has the
same M(V )-dofs as v (ie value and value of curl), by Lemma 8. We notice that
def(v − w) = u and proceed to show that v − w = 0, by showing that its degrees of
freedom, as defined in A0(T ), are 0.

We have that v − w is 0 at vertices and that grad(v − w) is 0 at vertices (the
symmetric part is def v = u and antisymmetric parts is essentially curl(v − w)).

It remains to prove that the integral of the normal derivative of v −w on edges is 0:
– We have that

∫
E ∂ν(v − w) · ν = 0 since this is one of the DOFs of u.

–Wehave that
∫
E ∂τ (v−w)·ν = 0 by integration of a derivative. Since

∫
E uτ ·ν = 0,

it follows that
∫
E ∂ν(v − w) · τ = 0.

(v) This shows that dim A1(T ) = 24. We have also showed that the sequence A•(T ) is
exact at index 1. It follows that the range of sven on A1(T ) has dimension dim A1(T )−
dim A0(T ) + dim RM = 24 − 24 + 3 = 3. Therefore sven : A1(T ) → A2(T ) is
surjective. ��
Remark 37 Theprecedingproof of unisolvence for A1(T )waswritten from thepoint of
view of Definition 18. From the point of view of FES, as in the extended Definition 19,
onewould go via Proposition 5, with similar arguments. That way yields the additional
important information that degrees of freedom attached to edges are unisolvent on the
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Fig. 8 Diagram chase for the strain element with high regularity

space of restrictions to the edge, which guarantees the appropriate global continuity
of the finite element fields defined piecewise by their DoFs.

Remark 38 The finite element strain complex with high regularity can be obtained
from finite element de Rham complexes by a discrete BGG diagram chase. See Fig. 8.

In the next section, we will use the following consequence of Theorem 5:

Proposition 17 For any v ∈ A2(T ), there is a unique u ∈ A1(T ) such that sven u = v,
the restriction of u to ∂T is zero and ∂νuτ · τ is constant on each edge.

Proof Indeed if we choose a constant cE for each edge E , the data (0, 0, 0, cE ) ∈
A1(E) is compatible at vertices, so can be extended to an element u of A1(T ), which
is unique since there are no interior degrees of freedom. The Stokes identity then takes
the form, for any affine φ on T :

∫
sven uφ = −

∑

E

cE

∫

E
φ. (167)

For any desired v = sven u ∈ A2(T ), this uniquely determines the coefficients cE of
u. ��
Remark 39 (Minimal finite element strain complex with high regularity) One can get
a minimal complex as follows.

We start with the modified reduced Clough Tocher space for A0(T ). Recall that
one usually requires the normal derivative on edges to be affine. Instead we take the
subspace of vectorfields u such that def u applied to the normal vector on edges is
affine. The degrees of freedom are just vertex values and vertex values of the gradient.
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Fig. 9 Strain complex with low continuity

For A1(T ), one takes the sum of the space def A0(T ) and the space defined in the
preceding proposition, so that normal components on edges are affine. The degrees of
freedom consisting of vertex values and pairing with M(E) for each edge E are then
unisolvent. Then A1(T ) = P2(E) × P1(E) × P1(E) × P1(E).

The space A2(T ) is unchanged.
The canonical DoFs give interpolators that commute with the differential operators.

6.3 Discrete Spaces: Lower Regularity

In the following, for each edge E we let χE be a nonzero affine map E → R such that∫
χE = 0. Notice that if u : E → R is affine and

∫
E uχE = 0 then u is constant. We

let C0
curl t P

2(R(T ),V) denote the space of continuous P2 vector fields with integrable
curl t .

Definition 20 (FE for the strain complex: low regularity)

– A0(T ) = C0
curl t P

2(R(T ),V). The degrees of freedom are:
– at vertices, pairings of restrictions to vertices with M(V ), in other words, vertex
values (3 × 2) and vertex values of the curl (3 × 1),
– at edges, u 	→ ∫

E def uτ · τχE and u 	→ ∫
E def uτ · νχE (3 × 2).

– A1(T ) = def A0(T )⊕W (T ), whereW (T ) is the space defined in Proposition 17.
The degrees of freedom are, for each edge E , pairings of restrictions with M(E)

(3 × 3), and u 	→ ∫
E uτ · τχE and u 	→ ∫

E uτ · νχE (3 × 2).
– A2(T ) = P0(R(T ),R), the space of piecewise constants. The degrees of freedom
are pairings with M(T ), namely integration against affine functions (3).

The finite element spaces of Definition 20 are represented in Fig. 9.

Theorem 6 – A0(T ) has dimension 15, and the provided degrees of freedom are
unisolvent.

– A1(T ) has dimension 15, and the provided degrees of freedom are unisolvent.
– A2(T ) has dimension 3, and the provided degrees of freedom are unisolvent.
– The sequence A•(T ) resolves the rigid motions.

Proof (i) We introduced this space in [35] (Proposition 3), but there we had different
edge degrees of freedom (in particular, we had u 	→ ∫

E u · τ ). In any case, this gives
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the dimension. We now check unisolvence. Let u ∈ A0(T ) have 0 DoFs. In particular,
u is 0 at vertices as well as curl u. Given preceding results it remains to be proved that
u is 0 on each edge.

– We have that def uτ · τ = ∂τ (u · τ) is affine and orthogonal to χE hence constant.
So u · τ is linear on each edge, hence 0.

– We have that def uτ · ν = (1/2)(∂τ (u · ν) + ∂ν(u · τ)) is affine and orthogonal
to χE , hence constant. Also ∂τ (u · ν) − ∂ν(u · τ) = curl t u = 0 on E , so ∂τ (u · ν) is
constant so u · ν = 0 on each edge.
(ii) The dimension of A1(T ) is (15 − 3) + 3 = 15 by construction.
(iii) Unisolvence on A1(T ). Choose u ∈ A1(T ) with 0 degrees of freedom. We then
get sven u = 0 from the Stokes identity, since the M(E) DoFs are zero. So we may
choose v ∈ A0(T ) such that u = def v. We may find a rigid motion such that v and w

have the same M(V ) degrees of freedom. Then def(v − w) = u moreover the vertex
degrees of freedom of v − w are 0. The remaining edge degrees of freedom of v − w,
are edge degrees of freedom of u, hence 0, so v − w = 0. Hence u = 0. ��
Proposition 18 We get a compatible FES by appending the spaces:

A0(E) = P2(E) × P2(E) × P1(E), (168)

A1(E) = P1(E) × P1(E) × P0(E), (169)

A0(V ) = V × R. (170)

The degrees of freedom are now described as:

F0(V ) = {A0(V ) � (u, v) 	→ u · φ + vψ : (φ,ψ) ∈ M(V )}, (171)

F0(E) = R{A1(E) � (u, v, u′) 	→ ∫
E ∂τuχE }⊕ (172)

R{A1(E) � (u, v, u′) 	→ ∫
E

1
2 (u

′ + ∂τ v)χE }, (173)

F1(E) = {A1(E) � u 	→ 〈u, φ〉E : φ ∈ M1(E)}⊕ (174)

R{A1(E) � (u, v, u′) 	→ ∫
uχE }⊕ (175)

R{A1(E) � (u, v, u′) 	→ ∫
vχE }, (176)

F2(T ) = {A2(T ) � u 	→ ∫
T uφ : φ ∈ M(T )}. (177)

Proof Unisolvence of the edge DoFs on the edge spaces can be checked by similar
arguments. ��
Remark 40 (Alternative definition of W (T )) One can replace the space W (T ) in Def-
inition 20 by a construction with the Poincaré - Koszul operators. Indeed let xr be the
identity vector field, rotated by π/2, with respect to an origin located at the central
vertex ofR(T ). Consider the matrix field ω = xr(xr)t .

For any internal edge E , connecting the central vertex of R(T ) with one of the
vertices of T , with tangent vector τ and normal vector ν, the matrix field ω has the
property that, on the edge, ωτ = 0 and ∂νωτ · τ = 0. See Lemma 6. Furthermore on
any (external) edge E of T , ωτ · τ ∈ P0(E), ωτ · ν ∈ P1(E) and ∂νωτ · τ ∈ P0(E).
Finally svenω is constant.
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Fig. 10 Diagram chase for the strain complex with lower regularity

We can defineW (T ) = {uω : u ∈ P0(R(T ),R)}. Indeed such uωwill have restric-
tion 0 to internal edges, so the sven can be computed classically and is proportional
to u.

Remark 41 The finite element strain complex with lower regularity can be obtained
fromfinite element de Rham complexes by a discrete BGGdiagram chase. See Fig. 10.

Remark 42 (minimal finite element strain complex with low regularity) We get a min-
imal complex by imposing all DoFs of the type, on edges E , integral against χE to be
zero. The dimensions are then 9 for the vector fields, 9 for the strain tensors and 3 for
the scalars.

Notice that then A1(E) = P0(E) × P0(E) × P0(E). We also have:

A0(E) = {(u, v, u′) ∈ P1(E) × P2(E) × P1(E) : u′ + ∂τ v is constant}. (178)
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