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A B S T R A C T

This paper presents an approach to solve the 2019/2020 NASA Langley UQ challenge problem
on optimization under uncertainty. We define an uncertainty model (UM) as a pair

⟨

𝑓𝑎|𝑒, 𝐸
⟩

,
where 𝑓𝑎|𝑒 is a probability density over 𝑎 for each 𝑒 ∈ 𝐸, and proceed to infer 𝑓𝑎|𝑒 in a
Bayesian fashion. Special attention is given to dimensionality reduction of the functional (time-
series) data, to obtain a finite dimensional representation suitable for robust Bayesian inversion.
Reliability analysis is performed using 𝑓𝑎|𝑒, whereas for design optimization we approximate
𝑓𝑎|𝑒 using truncated Gaussians and a Gaussian copula. We apply an unscented transform (UT)
in the standard normal space to estimate moments of the limit state, which is numerically
very efficient. Design optimization is performed with this procedure to obtain negligible failure
probability in 𝑔1 and 𝑔3 and acceptable failure probability and severity in 𝑔2.

. Introduction and notation

This paper2 presents an approach to solve the NASA Langley UQ challenge problem on optimization under uncertainty [2]. We
ecall just the main problem setup and notation herein, and refer to [2] for a complete description.

In the first part of the problem, the goal is to establish a probability distribution for an aleatory random variable 𝑎 ∈ 𝐴 = [0, 2]5,
hat will depend on another variable 𝑒 ∈ 𝐸0 = [0, 2]4 with epistemic uncertainty. Inference is based on a set of time series,
= {𝑦𝑖(𝑡)}𝑁𝑖=1, that are the result of a functional mapping 𝑌 ∶ 𝐴 × 𝐸0 → 𝑦(𝑡) where 𝑦(𝑡) ∶ [0, 5] → R. The time series data 𝐷

orrespond to 𝑦𝑖(𝑡) = 𝑌 (𝑎𝑖, 𝑒𝑡𝑟𝑢𝑒)(𝑡) for some fixed (but unknown) 𝑒𝑡𝑟𝑢𝑒 ∈ 𝐸0 and 𝑁 = 100 i.i.d. samples 𝑎𝑖 of 𝑎 ∈ 𝐴.
We assume that the random variable 𝑎 can be represented by a joint density 𝑓𝑎, that we wish to infer given the set of observations

. A numerical model of the data generating process, 𝑌 (𝑎, 𝑒) ≈ 𝑌 (𝑎, 𝑒), is provided, and will be the basis for inference on the aleatory
andom variable 𝑎, as well as finding plausible values of the epistemic variable 𝑒. As we do not know the true value 𝑒𝑡𝑟𝑢𝑒 used to
enerate the data, we will find a set 𝐸 ⊆ 𝐸0 of possible candidates for 𝑒, together with a family of probability distributions {𝑓𝑎|𝑒},
arametrized by 𝑒 ∈ 𝐸 (see Tables 1–3).
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Table 1
Variables.

Variable Domain Description

𝑎 𝐴 = [0, 2]5 Aleatory input variable
𝑢 R5 Standard normal variable
𝑒 𝐸0 = [0, 2]4 Epistemic input variable
𝜃 R9 Control variable

Table 2
Physical system.
𝑦(𝑡) = 𝑌 (𝑎, 𝑒)(𝑡) Subsystem
�̂�(𝑡) = 𝑌 (𝑎, 𝑒)(𝑡) Numerical model

𝑧(𝑡) = (𝑧1 , 𝑧2)(𝑡) = 𝑍(𝑎, 𝑒, 𝜃)(𝑡) Integrated system
�̂�(𝑡) = �̂�(𝑎, 𝑒, 𝜃)(𝑡) Numerical model

𝑔(𝑎, 𝑒, 𝜃) = (𝑔1 , 𝑔2 , 𝑔3)(𝑎, 𝑒, 𝜃) Limit-state
𝑤(𝑎, 𝑒, 𝜃) = max𝑖=1,2,3 𝑔𝑖(𝑎, 𝑒, 𝜃) Limit-state

Table 3
Uncertainty model.
⟨

𝑓𝑎|𝑒 , 𝐸
⟩

Uncertainty model
𝑓𝑎|𝑒 Probability density of 𝑎 given (fixed) 𝑒
𝑓 𝛼
𝑎|𝑒 Parametric approximation of 𝑓𝑎|𝑒 with parameter 𝛼

𝐸 Hyper-rectangular set
𝜁 (𝑎, 𝑒) Parameter mapping
𝑓𝜁 Probability density of 𝜁

The pair
⟨

𝑓𝑎|𝑒, 𝐸
⟩

is referred to as the uncertainty model (UM) of (𝑎, 𝑒). Once
⟨

𝑓𝑎|𝑒, 𝐸
⟩

has been established, the remaining
asks are related to structural reliability analysis (SRA) of a larger physical system, where the mechanics given by 𝑌 (𝑎, 𝑒) is a sub-
omponent. This includes estimation of failure probabilities for a set of provided limit-state functions, sensitivity analysis and design
ptimization. We leave further details on the specific tasks to the relevant subsections below.

Our notation is aligned with the problem description, with some few additions. In particular, we may write 𝑦(𝑎, 𝑒, 𝑡) as 𝑌 (𝑎, 𝑒)(𝑡)
o clarify when we are working with the functional mapping 𝑌 vs a given function of time 𝑦. We also write 𝑌 and �̂� to emphasize
hen 𝑌 and 𝑦 are computed using the provided numerical model, and similarly for the integrated system 𝑧(𝑎, 𝑒, 𝜃, 𝑡). An overview
f the notation used is given below, and the following sections, Section 2 to Section 7, correspond to respective subproblems in the
Q challenge. The final results are collected in Section 8, and we end with some concluding remarks in Section 9.

. (A) model calibration & uncertainty quantification of a subsystem

Given a numerical model of the physical subsystem, 𝑌 (𝑎, 𝑒) ≈ 𝑌 (𝑎, 𝑒), we seek to characterize the parameters (𝑎, 𝑒) from a limited
et of observations {𝑦𝑖(𝑡)}. An observation 𝑦𝑖 corresponds to 𝑌 (𝑎𝑖, 𝑒𝑡𝑟𝑢𝑒) where 𝑒𝑡𝑟𝑢𝑒 is fixed (but unknown) and 𝑎𝑖 are i.i.d. samples
rom some (unknown) distribution 𝑓𝑎. Our approach here is based on fitting a distribution to the observations, 𝑦1(𝑡),… , 𝑦100(𝑡), from
hich the conditional distribution 𝑓𝑎|𝑒 can be determined.

.1. Dimensionality reduction

As we wish to fit a density to the observations, we first need to compress the functional data to a finite-dimensional (preferably
ow-dimensional) representation. Various alternatives were considered, from the naive approach of evaluating 𝑦(𝑡) at a finite set of
imes {𝑡1,… , 𝑡𝑁}, to more sophisticated function approximation techniques. The Karhunen–Loéve transform as used in functional
rincipal component analysis [3] was first considered. This approach is based on finding an orthonormal eigenbasis of 𝐿2 (all square
ntegrable functions) from the estimated covariance function corresponding to the observations. By projecting each observation 𝑦𝑖(𝑡)
nto the subspace spanned by the first 10 eigenfunctions, we observed that the residual (the projection onto the complement space),
ad negligible 𝐿2 norm.

As both observations 𝑦𝑖(𝑡) and samples from 𝑌 (𝑎, 𝑒)(𝑡) consistently showed two or three distinct frequency components when
erforming a Fast Fourier Transform (FFT), it was also deemed appropriate to consider damped complex exponentials as the function
asis. With this approach we write

𝑦𝑒𝑥𝑝(𝑡) =
𝑘
∑

𝑖=1
𝐵𝑖 cos(𝜔𝑖𝑡 + 𝜙𝑖)𝑒𝑑𝑖𝑡, (1)

here the coefficients (𝐵𝑖, 𝜔𝑖, 𝜙𝑖, 𝑑𝑖) can be estimated efficiently using Prony’s method (see for instance [4]). Unlike the eigenfunc-
2

ions used in the Karhunen–Loéve transform, the damped complex exponentials do not form an orthonormal basis. But we noticed
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that any of the observations 𝑦𝑡(𝑡), as well as any function �̂�(𝑡) computed using the numerical model 𝑌 (𝑎, 𝑒) for some (𝑎, 𝑒) ∈ 𝐴 × 𝐸0,
could be represented as the sum of 𝑘 = 3 damped complex exponentials, up to machine precision.

Given some parametric function approximation, we define the parameter mapping

𝜁 (𝑎, 𝑒) ∶ 𝐴 × 𝐸0 → R𝑛𝜁 . (2)

We will write 𝜁 (𝑎, 𝑒) or 𝜁 (𝑦) interchangeably, depending on whether we consider a specific function 𝑦(𝑡) or variables (𝑎, 𝑒), for which
(𝑎, 𝑒) = 𝜁 (𝑌 (𝑎, 𝑒)). If 𝜁 (𝑎, 𝑒) is the parameter vector corresponding to the damped complex exponentials, then 𝜁 (𝑎, 𝑒) is given by
some of) the 4𝑘 parameters needed in Eq. (1). In the case where the Karhunen–Loéve transform is used to represent 𝑌 (𝑎, 𝑒)(𝑡), we

could let 𝜁 (𝑎, 𝑒) correspond to the projection coefficients (FPCA scores) of the first 𝑛𝜁 eigenfunctions with the largest eigenvalues.
The reason for introducing 𝜁 (𝑎, 𝑒) is that, if we can fit a probability density 𝑓𝜁 (𝜁 ) to 𝜁 , then we can establish a distribution 𝑓𝑎|𝑒(𝑎)

as

𝑓𝑎|𝑒(𝑎) =
1
𝐶
𝑓𝜁 (𝜁 (𝑎, 𝑒)), (3)

where 𝐶 is a normalizing constant that assures that 𝑓𝑎|𝑒 integrates to 1. Eq. (3) comes from a Bayesian formulation, assuming that
𝑒 = 𝑒𝑡𝑟𝑢𝑒 and a uniform prior on 𝑎 (with constant density that goes into 𝐶), and where for a fixed 𝑒, the density 𝑓𝜁 defines a (improper)
likelihood for any 𝜁 (𝑎, 𝑒) which we assign to 𝑎.

The reason why we define 𝑓𝑎|𝑒(𝑎) as in (3), by first fitting a probability density 𝑓𝜁 (𝜁 ) to the (transformed) observations, is because
we find it easier to determine the appropriate amount of regularization needed to avoid overfitting. Note that this approach to
inversion is not the same as computing the distribution corresponding to a transformation of 𝑓𝜁 through 𝜁−1 (if 𝜁 was bijective),
which would include the Jacobian of 𝜁 in the right hand side of (3).

Because of this, together with the fact that the number of observations is limited, we need some means of ensuring that the
distribution 𝑓𝑎|𝑒(𝑎) is conservative, in the sense that it does not assign negligible probability to values of (𝑎, 𝑒) that could be plausible.
For this, some qualitative judgment is usually needed. With our approach, we address this by fitting a high-entropy distribution
to 𝑓𝜁 .

We observed that both the eigenfunction approximation and the damped complex exponentials could provide a reasonable
dimensionality reduction, from the relevant space of functions 𝑦(𝑡) to a set of 10-12 parameters. We chose to go with the damped
complex exponentials, as it turned out to provide lossless compression of the functional data. We also found that it was more
straightforward to fit a density 𝑓𝜁 to 𝜁 (𝑎, 𝑒) using this approach.

2.2. Model discrepancy

The problem of assessing model discrepancy without controlled experiments, i.e. when only observed output of the physical
system is available, is generally ill-posed. This is due to problems with identifiability, and additional assumptions on the accuracy
of the numerical model, as well as other sources of uncertainty in the true physical process, are generally needed. See for instance [5]
and the discussions therein.

We will assume that there are no other sources of uncertainty in the physical subsystem besides input uncertainty. That is,
variability in the observed 𝑦′𝑖𝑠 is due to variability in aleatory input 𝑎 alone. Similarly, we would like to assume zero model
discrepancy as well.3 i.e. 𝑌 (𝑎, 𝑒) = 𝑌 (𝑎, 𝑒) for all (𝑎, 𝑒) ∈ 𝐴×𝐸0. However, we found that we needed to assume some model discrepancy
in order for inference on (𝑎, 𝑒) to be possible.

If we want to fit a probability density to 𝜁 , and use this to create a distribution on the input 𝑎 assuming zero error in 𝑌 (𝑎, 𝑒),
then we must first verify that the parameter vector of the observations, 𝜁 (𝑦𝑖), are within the range of 𝜁 (𝑎, 𝑒) (i.e. each 𝑦𝑖 can be
reproduced from 𝑌 ). Otherwise, the resulting distribution 𝑓𝑎|𝑒 could assign zero probability to almost all 𝑎 ∈ 𝐴.

In practice, we will not make use of all components of 𝜁 when fitting a distribution, in order to impose some regularization. But
before we do this, it is useful to use the complete 𝜁 to investigate if there is any model discrepancy. As noted in Section 2.1, if we
let the parameter mapping be defined as 𝜁 (𝑎, 𝑒) = [𝜁1, 𝜁2, 𝜁3], where 𝜁𝑖 = [𝐵𝑖, 𝜔𝑖, 𝜙𝑖, 𝑑𝑖] are the parameters of the 𝑖th wave component
in Eq. (1), then 𝜁 provides a bijection between the range of the numerical model, 𝑌 (𝐴,𝐸0), and a subset of R12. We can therefore
investigate whether the observations 𝑦𝑖 are within the range of 𝑌 through 𝜁 . We found that this was not the case, as it turns out that
𝜁 (𝑦𝑖) falls outside 𝜁 (𝐴,𝐸0) in the subspace spanned by (𝑑1, 𝜔1), see Fig. 1. If we exclude the parameter 𝑑1 from 𝜁 , the set 𝜁 (𝐴,𝐸0) will
include all transformed observations 𝜁 (𝑦𝑖). In practice, the exclusion of 𝑑1 corresponds to the assumption that the response from the
true physical subsystem, 𝑦 = 𝑌 (𝑎, 𝑒), is a bit less ‘‘damped’’, compared to what would be expected were the response to agree with
the numerical model 𝑌 (𝑎, 𝑒). Of course, this may be an assumption that is not appropriate, and generally one would assess such an
assumption based on knowledge related to the physical phenomenon and information regarding what kind of model discrepancy
(or observational noise/error) to expect.

Fig. 2 shows effectively what the assumed model discrepancy looks like under this assumption. Here, to give one example, one
of the observations (# 71) was fitted using (1), and we vary 𝑑1 within the relevant range from Fig. 1. Any amount of damping that
keeps the time series within the blue shaded area is considered negligible in terms of model discrepancy. In Fig. 3 we see some
examples of functions �̂�(𝑡) that are not equivalent with this observation, which illustrates that the assumed model discrepancy is
rather small. We note that the assumed model discrepancy is probably negligible for all practical purposes, but it is necessary for
inference on the model input (𝑎, 𝑒) to be possible.

3 In reality it would be natural to make use of some model uncertainty, either estimated or assumed, when the UM we aim to establish will be used for
3

RA of a safety-critical system.
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Fig. 1. Frequency (𝜔1) vs damping (𝑑1) coefficients of the first wave component in Eq. (1), corresponding to observations (𝑦𝑖) and output from the numerical
model (�̂�).

Fig. 2. Example of assumed model discrepancy. Any function �̂�(𝑡) is interpreted as equivalent to the observation 𝑦𝑖=71 (red) if it is more damped (compressed
in the 𝑦-direction) than 𝑦𝑖=71, as long as �̂�(𝑡) falls within the blue shaded area.

Fig. 3. Examples of functions �̂�(𝑡) that do not agree with the observation 𝑦𝑖=71 (red), with respect to the assumed model discrepancy. There are relevant features
of the time series that make the samples and the observation significantly different.

Remark 2.1. The results presented in this paper may be sensitive to the assumed model discrepancy. If the criterion illustrated
in Figs. 2 and 3 is too strict, i.e. larger deviations between the data generating process 𝑌 (𝑎, 𝑒) and the computer model 𝑌 (𝑎, 𝑒) is
expected, the resulting UM may be overly optimistic. That is, as inputs (𝑎, 𝑒) are deemed less plausible, the volume of 𝐸 and the
entropy of 𝑓𝑎|𝑒 are reduced.

This assumed model discrepancy is based on: (1) no model error has been specified for 𝑌 (𝑎, 𝑒), and (2) with the relaxed assumption
on damping of the time series data, it is for each observation 𝑦𝑖 possible to find inputs (𝑎, 𝑒) such that 𝑌 (𝑎, 𝑒) agrees with 𝑦𝑖.

2.3. The uncertainty model
⟨

𝑓𝑎|𝑒, 𝐸
⟩

We will establish an uncertainty model
⟨

𝑓𝑎|𝑒, 𝐸
⟩

based on the parameter mapping (𝜁) given by the damped complex exponentials
with 𝑘 = 3. As discussed in Section 2.2, the component 𝑑 is excluded to account for some model discrepancy, and 3 other parameters
4

1
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Fig. 4. Marginal of two components of 𝜁 , where 𝑓𝜁 is obtained from the 100 observations 𝑦𝑖 (left), and a subset of 50 observations (right).

Fig. 5. Marginal of 𝑓𝑎|𝑒 in the (𝑎2 , 𝑎3)-subspace for 9 different values of 𝑒.

are excluded after principal component analysis (PCA) where we found that 99% of the variance could be described by the final 8
parameters. From the final parameter vector 𝜁 ∶ 𝐴 × 𝐸0 → R8, we fit a mixture of two Gaussians to the 100 observations 𝑦𝑖 under
the transformation 𝜁 (𝑦𝑖).

Fig. 4 shows the marginal distribution corresponding to two of the components of 𝜁 . Some conservatism was included by
increasing the variance of the fitted distribution, in order to account for the limited number of observations. Starting from a
maximum likelihood fit, the variance was increased by a constant to produce a more conservative (higher entropy) distribution.
Hence, the corresponding distribution 𝑓𝑎|𝑒 will likely underfit the data, which is intentional. The method used to fit a distribution
to 𝜁 is fairly robust to the number of observations. By sampling subsets of size 50 out of the total 100 observations, we find that the
resulting distributions fitted to {𝜁 (𝑦 )} are fairly consistent as illustrated in Fig. 4.
5

𝑖
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Fig. 6. Parametric distributions fitted to marginals of 𝑓𝑎|𝑒. The dotted curve shows a mixture of two truncated normal distributions versus the one single truncated
normal.

Using the distribution 𝑓𝜁 , we can assess the likelihood 𝑓𝜁 (𝜁 (𝑎, 𝑒)) for any (𝑎, 𝑒) ∈ 𝐴 × 𝐸0. For a point 𝑒 ∈ 𝐸0 to be plausible, it
should be possible to find some 𝑎 ∈ 𝐴 such that 𝑓𝜁 (𝜁 (𝑎, 𝑒)) is large. That is, there must exist some 𝑎 ∈ 𝐴 such that 𝜁 (𝑎, 𝑒) lies within
the main bulk of the distribution shown in Fig. 4. In fact, there must exist some 𝑎𝑖 ∈ 𝐴 such that 𝜁 (𝑎𝑖, 𝑒) corresponds with 𝜁 (𝑦𝑖), for
all observations 𝑦𝑖, in order for 𝑒 to be plausible. However, such a strategy for finding the set 𝐸 would require computing 𝜁 (𝑎, 𝑒) for
all 𝑎 ∈ 𝐴. As a practical alternative, we generate a large set of samples (𝑎, 𝑒)𝑖 ∈ 𝐴×𝐸0, and filter out all samples with likelihood ≈ 0.
We then estimate the set �̂� of plausible 𝑒-values from the remaining samples, and determine 𝐸 as the smallest hyper-rectangular
set containing �̂�. This is the initial strategy we use when 𝐸 is determined for the first time. For further uncertainty reduction we
will use a refined strategy discussed in Section 3.1.

From the fitted distribution 𝑓𝜁 , we obtain the non-parametric distribution 𝑓𝑎|𝑒 as in Eq. (3). An illustration is given in Fig. 5 where
some 2d marginals of 𝑓𝑎|𝑒 are plotted for a few different values of 𝑒. It will also be useful to establish a parametric approximation
to 𝑓𝑎|𝑒, and for this we use a multivariate truncated Gaussian over (𝑎1, 𝑎2, 𝑎3, 𝑎5), with 𝑎4 uniform on the interval [0, 2]. We write the
parametric approximation as

𝑓 𝛼
𝑎|𝑒 ≈ 𝑓𝑎|𝑒, (4)

with distribution parameter 𝛼. We define the parametric approximation in terms of the marginals

𝑎𝑖 ∼ 𝑇𝑁(𝜇𝑖, 𝜎𝑖, 0, 2) for 𝑖 = 1, 2, 3, 5,

𝑎4 ∼ 𝑈 ([0, 2]),
(5)

and a Gaussian copula specified by a 5 × 5 correlation matrix 𝑅 = [𝜌𝑖,𝑗 ], where 𝜌𝑖,𝑗 is the Spearman rank correlation coefficient
between 𝑎𝑖 and 𝑎𝑗 . Here 𝑎𝑖 ∼ 𝑇𝑁(⋅) denotes that 𝑎𝑖 has a univariate normal distribution, conditioned on the event 𝑎𝑖 ∈ [0, 2], and
𝛼 is the vector of all parameters, 𝜇𝑖, 𝜎𝑖 and 𝜌𝑖,𝑗 . Note that all of these parameters depend on 𝑒, i.e. 𝛼 = 𝛼(𝑒), and we will estimate 𝛼
based on samples (MCMC) from 𝑓𝑎|𝑒.

Fig. 6 shows an example of the parametric distribution for a given value of 𝑒, using a maximum likelihood estimate of 𝛼. It
turns out that for many values of 𝑒 ∈ 𝐸, a mixture of two truncated Gaussians would provide a better fit. Other alternatives for
the marginals could also be considered. However, we only intend to use the parametric distribution for initial estimates of failure
probabilities, to help with importance sampling, and to approximate moments of 𝑔(𝑎, 𝑒, 𝜃) (in particular, as a crude approximation
of how the variability of 𝑔 changes with 𝑒 and 𝜃). And for this purpose, this simple model seems sufficient.

From the correlation matrix 𝑅 we observe that there is usually some correlation between 𝑎1, 𝑎2 and 𝑎3. Fig. 7 shows 2D marginals
of some of these pairs (𝑎𝑖, 𝑎𝑗 ). Note that the value of 𝑒 used to generate the plots in Figs. 6 and 7 may be far from the correct one,
but cannot be ruled out by the observations {𝑦𝑖} alone.

In reliability analysis, it is often useful to work with the random variables in the standard normal space. From the selected
parametric distribution, we can perform the Nataf-type of transformation

𝑎
𝑇𝑒
←←←←←←←←←←→ 𝑢 ∼ 𝑁(0, 𝐼),
6
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Fig. 7. 2D marginal distributions of (𝑎1 , 𝑎2) and (𝑎1 , 𝑎3), from the non-parametric distribution 𝑓𝑎|𝑒 (left) and parametric approximation (right), for a fixed value
of 𝑒.

which has the property that, for any 𝑒 ∈ 𝐸0 and 𝑎 ∼ 𝑓 𝛼
𝑎|𝑒, 𝑢 = 𝑇𝑒(𝑎) is 𝑛𝑎-dimensional standard normal. The transformation is obtained

by first letting 𝑧𝑖 = 𝛷−1(𝐹𝑖(𝑎𝑖)) where 𝛷 is the standard normal CDF and 𝐹𝑖 is the CDF of 𝑎𝑖. Then 𝑧 = (𝑧1,… , 𝑧𝑛𝑎 ) ∼ 𝑁(0, 𝑅0) with
covariance matrix

[𝑅0]𝑖,𝑗 = 2 sin
(𝜋𝜌𝑖,𝑗

6

)

.

See for instance [6] for details. The standard normal variable is then obtained by 𝑢 = 𝐿−1
0 𝑧 where 𝐿0𝐿𝑇

0 = 𝑅0.

Remark 2.2. Different values of 𝑒 have been used to generate the plots in Fig. 5, Fig. 6 and Fig. 7, in order to illustrate some
different versions of 𝑓𝑎|𝑒 and 𝑓 𝛼

𝑎|𝑒. These are not necessarily plausible values of 𝑒.

3. (B) uncertainty reduction

3.1. Ranking of epistemic parameters

To rank the epistemic parameters according to their ability to improve the predictive ability of 𝑌 , we study how 𝑓𝑎|𝑒 changes
with respect to 𝑒 ∈ 𝐸. To measure the effect of one component of 𝑒 = (𝑒1, 𝑒2, 𝑒3, 𝑒4), say 𝑒1, we estimate the expected Kullback–Leibler
divergence

E[(𝑓𝑎|𝑒 ∥ 𝑓𝑎|𝑒′ )] = E
[

∫𝐴
𝑓𝑎|𝑒(𝑎) log

𝑓𝑎|𝑒(𝑎)
𝑓𝑎|𝑒′ (𝑎)

𝑑𝑎
]

.

Here 𝑒′ represents a small perturbation of 𝑒1, 𝑒′1 = 𝑒1 + 0.1, and the expectation is taken over the other parameters (𝑒2, 𝑒3, 𝑒4) that
are assumed uniform within the bounds set by 𝐸.

From Fig. 8 we conclude that 𝑒3 is more influential than 𝑒2 and 𝑒4, in the sense that small perturbations of 𝑒3 has a larger effect
on the related distribution 𝑓𝑎|𝑒. The same is true for 𝑒1, if 𝑒1 is large in the first place. When deciding on the uncertainty reductions
to make, we must also take into account that we may only request to increase or decrease the bounds of the initial set 𝐸0 = [0, 2]4.
We observed that 𝑒 ∈ 𝐸 ⇒ 𝑒1 ≪ 2, and so decreasing the upper bound on 𝑒1 might not provide any new information. Hence, we
combine the information from Fig. 8 with the initial uncertainty reduction described in Section 2.3, where we assess the plausability
of 𝑒. When also considering which 𝑒𝑖 is close to the border of 𝐸0, we decided to request uncertainty reduction on the lower bound
on 𝑒3 and 𝑒4 ({𝑒−3 , 𝑒

−
4 }).

3.2. First UM update

Our initial method for defining a set 𝐸 of plausible 𝑒-values was based on the simple procedure described in Section 2.3, where
we generate samples in 𝐴×𝐸0 and filter out those with negligible likelihood. Now, when the bounding intervals have been reduced
by this method, together with additional refinement provided by the request {𝑒−3 , 𝑒

−
4 }, we switch to a more detailed method for

further refinement of 𝐸 → 𝐸1. The first updated UM is then
⟨

𝑓𝑎|𝑒, 𝐸1
⟩

.
We may assess whether any 𝑒 ∈ 𝐸 is plausible by generating samples {𝑎(𝑗)} from 𝑓𝑎|𝑒, computing 𝑦𝑗 = 𝑌 (𝑎(𝑗), 𝑒), and comparing the

set {𝑦 } with the provided observations {𝑦 }. In practice we will work in the reduced space, comparing 𝜁 (𝑎(𝑗), 𝑒) against {𝜁 } = {𝜁 (𝑦 )}.
7
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Fig. 8. Kullback–Leibler divergence between respective distributions 𝑓𝑎|𝑒 for 𝑒 ∈ 𝐸, when component 𝑒𝑖 is perturbed by 𝑒𝑖 → 𝑒𝑖 + 0.1. The figure shows mean
and mean ± 1 standard deviation, when the remaining components, 𝑒𝑗 for 𝑗 ≠ 𝑖, are uniform within 𝐸.

There are different ways of defining plausability of 𝑒, and we decided to go with a simple approach, where we compare the median
of the probability density of 103 samples of 𝜁 (𝑎(𝑗), 𝑒), with the density of the observations {𝜁𝑖} given by (3). We use this approach,
because of its simplicity, and because it was easy to find a suitable threshold that could be used to determine when a value of 𝑒
was implausible. This procedure is more refined than the one presented in Section 2.3, where we filtered out the values of 𝑒 with
likelihood ≈ 0. But we note that the initial filtering was necessary, as there would be numerical issues with sampling from 𝑓𝑎|𝑒 for
the extremely unlikely values of 𝑒.

Our strategy for reducing the size of 𝐸 is based on this procedure, where we check whether 𝑒(𝑘) is plausible for a representative
set {𝑒(𝑘)} ⊂ 𝐸, and let 𝐸1 be the smallest hyper-rectangular set containing all plausible 𝑒(𝑘). The representative set {𝑒(𝑘)} is given as
the union of the following two sets:

• a Latin Hypercube (LHS) sample within 𝐸,
• samples gathered form a Bayesian Optimization (BO) targeted at finding the most plausible 𝑒 ∈ 𝐸.

Bayesian optimization (see for instance [7]) is a method for finding the maximum of a function using a small number of function
evaluations, and we use it here as a technique to locate the most plausible candidates in 𝐸. We use this procedure as evaluating the
plausability of a single value of 𝑒 is based on sampling from 𝑓𝑎|𝑒 and many computations of 𝜁 (⋅), which takes a bit of time.

Remark 3.1. The updated set 𝐸 is determined from a threshold on the likelihood of the epistemic variable 𝑒. Initially we consider
a threshold that is not overly conservative when we perform the model calibration. This makes it easier to find a design 𝜃 which
is both acceptable with respect to improbable values of 𝑒, and closer to optimal with respect to the more realistic values of 𝑒. In
Section 7 we discuss this in more detail, and we will also verify that the final design is acceptable even for a more conservative
(larger) set 𝐸.

4. (C) reliability analysis of baseline design

The reliability analysis is performed for multiple designs, 𝜃baseline, 𝜃new, 𝜃final and 𝜃�̂�%risk, and the final results are collected in
Section 8.

4.1. Numerical procedure for estimation of failure probabilities

To estimate failure probabilities, we will work with the density 𝑓𝑎|𝑒 given in Eq. (3). For some of the subproblems we address,
it is not necessary to compute the normalizing constant 𝐶, and we define the proportional density

̇𝑓𝑎|𝑒(𝑎) = 𝑓𝜁 (𝜁 (𝑎, 𝑒)), (6)

such that 𝑓𝑎|𝑒(𝑎) = ̇𝑓𝑎|𝑒(𝑎)∕𝐶. In particular, from ̇𝑓𝑎|𝑒(𝑎) we may estimate moments of 𝑓𝑎|𝑒(𝑎) using importance sampling, or generate
samples using Markov chain Monte Carlo (MCMC).

Given a limit state function 𝑔𝑖(𝑎, 𝑒, 𝜃), the simplest way to estimate the failure probability 𝑝𝑓 is by crude Monte Carlo (MC)
sampling,

�̂�𝑓,𝑀𝐶 = 1
𝑛

𝑛
∑

1{

𝑔𝑖(𝑎𝑗 ,𝑒,𝜃)≥0
}, (7)
8
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where 𝑎1,… , 𝑎𝑛 are i.i.d. samples from 𝑓𝑎|𝑒. The unbiased sample variance can be estimated by

𝑣𝑎𝑟(�̂�𝑓,𝑀𝐶 ) =
�̂�𝑓,𝑀𝐶 (1 − �̂�𝑓,𝑀𝐶 )

𝑛
. (8)

A common technique to reduce the sample variance is by importance sampling, where we make use of some importance distribution
𝑞(𝑎), with the property that 𝑞(𝑎) ≠ 0 whenever 𝑓𝑎|𝑒(𝑎) ≠ 0. The importance sampling estimate and the estimated sample variance are
given by

�̂�𝑓,𝐼𝑆 = 1
𝐶𝑛

𝑛
∑

𝑗=1
1{

𝑔𝑖(𝑎𝑗 ,𝑒,𝜃)≥0
}

̇𝑓𝑎|𝑒(𝑎𝑗 )
𝑞(𝑎𝑗 )

,

𝑣𝑎𝑟(�̂�𝑓,𝐼𝑆 ) =
1

𝐶2𝑛
⋅

𝑛
∑

𝑗=1

(

1{

𝑔𝑖(𝑎𝑗 ,𝑒,𝜃)≥0
}

̇𝑓𝑎|𝑒(𝑎𝑗 )
𝑞(𝑎𝑗 )

− 𝐶�̂�𝑓,𝐼𝑆

)2

,

(9)

where 𝑎𝑗 are sampled from 𝑞(𝑎).
We will use two different strategies for failure probability estimation, depending on whether the failure probability is large

(> 0.01) or small (< 0.01). For large failure probabilities, we will rely on the MC estimate Eq. (7), where 𝑛 is chosen such that the
relative error is acceptable. To generate the samples 𝑎𝑗 we make use of the Affine Invariant Markov chain Monte Carlo (MCMC)
Ensemble sampler provided by [8].

For smaller failure probabilities, sampling directly from 𝑓𝑎|𝑒 will be inefficient. Here we use the importance sampling estimate
Eq. (9), where we select 𝑞(𝑎) from the design point of a FORM analysis. This is achieved by first running a FORM analysis using
the parametric approximation 𝑓 𝛼

𝑎|𝑒. FORM is based on obtaining a linear approximation to the limit-state at a point 𝑎∗ called the
design point. The design point is the point on the limit state, 𝑔𝑖 = 0, with largest probability density. See for instance [9] for further
details. We define 𝑞(𝑎) as a modified version of 𝑓 𝛼

𝑎|𝑒, where the distribution is shifted such that E[𝑞] = 𝑎∗ (it may also be useful to
increase the variance slightly). The distribution 𝑞(𝑎) obtained in this way should then be able to produce samples 𝑎𝑗 where both
𝑔𝑖(𝑎𝑗 , 𝑒, 𝜃) ≥ 0 and 𝑓𝑎|𝑒(𝑎𝑗 ) is large, which is needed to reduce the variance of the estimated failure probability. When the failure
probability for 𝑔1, 𝑔2 and 𝑔3 have been estimated, the samples used for each individual limit state can also be used for 𝑤 in order
to reduce the total number of function evaluations of 𝑔(⋅).

To estimate the range of the failure probability for 𝑒 in some set 𝐸, we compute the failure probability for a finite subset
{𝑒(𝑘)} ⊂ 𝐸 as described in Section 3.2. In order to capture the relevant ranges of failure probabilities, we found that around 100
𝑒-values, |{𝑒(𝑘)}| ≈ 100, seemed sufficient.

4.2. Ranking of epistemic uncertainties

To rank the epistemic uncertainties according to the contraction of the failure probability 𝑝𝑓,𝑤(𝑒, 𝜃) = P(𝑤(𝑎, 𝑒, 𝜃) ≥ 0), we estimate
the change in the minimum and maximum of {𝑝𝑓,𝑤(𝑒, 𝜃)}𝑒∈𝐸 when we replace 𝐸 with a reduced set 𝐸′. Again we make use of the
finite subset {𝑒(𝑘)} ⊂ 𝐸 for which 𝑝𝑓,𝑤(𝑒, 𝜃) is already available. The results are given in Section 8, where we let 𝐸′ be the set given
by increasing the lower bounds and decreasing the upper bounds of 𝐸 with 25%.

5. (D) reliability-based design

5.1. Optimality criterion

As we do not have any information on the criticality of each failure mode, i.e. whether some limit state 𝑔𝑖 should be seen as
more important than the others, we will seek a design 𝜃 where 𝑔𝑖(𝑎, 𝑒, 𝜃) is as ‘‘small as possible’’ for all 𝑖 = 1, 2, 3. Our optimality
criterion will be based on the characteristic values

𝑐𝑖(𝑒, 𝜃) = E
[

𝑔𝑖(𝑎, 𝑒, 𝜃)
]

+ 2 Std(𝑔𝑖(𝑎, 𝑒, 𝜃)), (10)

where the expectation and standard deviation (Std) are taken with respect to 𝑎 ∼ 𝑓𝑎|𝑒. From the characteristic values 𝑐𝑖, we define
the following loss function:

𝐿(𝑒, 𝜃) =
3
∑

𝑖=1
exp[𝛾𝑖𝑐𝑖(𝑒, 𝜃)]. (11)

Here 𝛾𝑖 > 0 are constants needed to bring each 𝑐𝑖 to the same scale, as the output of each 𝑔𝑖 are of different orders of magnitude. In
our implementation we have used 𝛾1 = 10, 𝛾2 = 200 and 𝛾3 = 1.

Given some set 𝐸 of plausible 𝑒-values, we define the reliability-optimal design as a solution 𝜃∗ of the optimization problem

𝜃∗ ∈ arg min
𝜃

{max
𝑒∈𝐸

𝐿(𝑒, 𝜃)}. (12)
9

We will make use of an approximation to Eq. (11) described below, and the final results are collected in Section 8.
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Fig. 9. UT approximation of the loss function Eq. (11) vs estimated (MCMC) loss.

5.2. Numerical UT approximation

For numerical efficiency, we introduce an approximation of the loss function Eq. (11) based on the Unscented Transform (UT).
UT is an efficient method for estimating the mean and covariance of a random variable after nonlinear transformation. In short,
given some random variable 𝑥 we define a set of weighted sigma-points ({𝑤𝑖, 𝑥𝑖}), such that if ({𝑤𝑖, 𝑥𝑖}) were considered as a discrete
probability distribution, then its mean and covariance would coincide with 𝑥. For any nonlinear transformation 𝑦 = ℎ(𝑥), if 𝑥 is
discrete we may compute the mean and covariance of 𝑦 exactly. The UT approximation is the result of such computation, when we
approximate 𝑥 with ({𝑤𝑖, 𝑥𝑖}). For details see e.g. [10].

To select the set of sigma-points in UT, we make use of the method developed by [11], which produces a set of 2𝑛𝑎 + 1 sigma-
points and weights in R𝑛𝑎 . These points are generated under the assumption that 𝑥 follows a 𝑛𝑎-dimensional standard normal
distribution. The sigma-points corresponding to the parametric distribution 𝑓 𝛼

𝑎|𝑒 can then be obtained by the transformation discussed
in Section 2.3. From here, the characteristic values 𝑐𝑖 in Eq. (10) can then be estimated by just 11 evaluations of the limit state.

Fig. 9 shows the UT approximation of the loss 𝐿(𝑒, 𝜃) for some different values of 𝜃 and 𝑒. With the goal of minimizing the loss
estimated using samples from 𝑓𝑎|𝑒, the UT approximation seems like a viable proxy, and the optimization problem in Eq. (12) can
then be solved by standard tools for numerical optimization.

6. (E) model update and design tuning

Here we rely on the same procedure for dimensionality reduction as discussed in Section 2.1, in order to refine the UM based
on samples from the integrated system

{

𝑧(𝑖)
}

, together with the numerical model �̂�(𝑎, 𝑒, 𝜃). Hence, we obtain an updated density 𝜁
fitted to two sets of parameter vectors, corresponding to the complex exponential representation of the two datasets

{

𝑦(𝑖)
}

and
{

𝑧(𝑖)
}

.
We found it difficult to assess potential model discrepancy in �̂�(𝑎, 𝑒, 𝜃). We suspect that there is more discrepancy in �̂�(𝑎, 𝑒, 𝜃) than
in 𝑌 (𝑎, 𝑒), but chose to update the UM under the assumption that �̂�(𝑎, 𝑒, 𝜃) still provides an accurate model of the data generating
process. However, if this is not the case then our second refined UM may be too optimistic (see Remark 2.1). Based on the same
type of assessment as in Section 3.1, we decided to again request the uncertainty reduction {𝑒−3 , 𝑒

−
4 }.

We refer to the second updated UM as
⟨

𝑓𝑎|𝑒, 𝐸2
⟩

, where 𝐸2 ⊂ 𝐸1 and 𝑓𝑎|𝑒 is given by Eq. (3) where 𝑓𝜁 is the updated based
on

{

𝑧(𝑖)
}

.

7. (F) risk-based design

As discussed in Remark 3.1, the set 𝐸2 used to find 𝜃final is based on a threshold on the likelihood of the epistemic variable
𝑒 which is not overly conservative. Now, we will introduce a set 𝐸0%risk where 𝑒 ∉ 𝐸0%risk is assumed impossible. We say that
𝑒 ∉ 𝐸0%risk if there is at least one observation 𝑦𝑖 which cannot be explained by 𝑌 (𝑎, 𝑒), for any 𝑎 ∈ 𝐴. (But note that the comments
in Remark 2.1 still apply).

When we define smaller sets 𝐸𝑟%risk ⊂ 𝐸0%risk, corresponding to neglecting a portion of ‘‘𝑟% risk’’, we let 𝐸𝑟%risk be the set
containing the (1 − 𝑟)% values of 𝑒 with largest likelihood. In practice we use a finite sets of points {𝑒𝑖} to represent these sets, and
so the shape of 𝐸𝑟%risk is not necessarily rectangular. But we can still associate to each set 𝐸𝑟%risk the smallest hyper-rectangular
set containing it, as illustrated in Fig. 10. The set 𝐸 defined in Section 6, which is used in the optimization of 𝜃 , is the set
10
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Fig. 10. Illustration of the risk-based sets 𝐸𝑟%risk. The set 𝐸2 used in the optimization of 𝜃final is 𝐸2 = 𝐸50%risk. The projection onto 𝑒3–𝑒4 is the same for all three
sets.

Fig. 11. The gain (13) for 𝜃final and 𝜃�̂�%risk.

corresponding to 𝑟 = 50% risk. Now we will also find an optimal design 𝜃�̂�%risk for �̂� = 5%, corresponding to 𝐸5%risk. Both 𝜃final and
𝜃�̂�%risk will then be evaluated with respect to the conservative scenario 𝐸0%risk and the more optimistic scenario 𝐸50%risk in Section 8.

To quantify the gain 𝑙(𝑟, 𝜃) resulting from taking the risk 𝑟, we let

𝑙(𝑟, 𝜃) = max
𝑒∈𝐸0%

𝐿(𝑒, 𝜃) − max
𝑒∈𝐸𝑟%

𝐿(𝑒, 𝜃), (13)

where 𝐿(𝑒, 𝜃) is the loss function defined in (11). The evaluation of the design 𝜃�̂�%risk that maximizes 𝑙(�̂�, 𝜃) for �̂� = 5% is presented
in Section 8, Table 6, and the gain 𝑙(𝑟, 𝜃) for both 𝜃final and 𝜃�̂�%risk is shown for a range of values 𝑟 in Fig. 11.

Here we note that a 5% reduction of the epistemic space has very little effect, and optimization over 𝐸5%risk is practically the
same as optimization over 𝐸0%risk. We may therefore consider 𝜃�̂�%risk as the design optimized for the worst-case scenario, which we
can compare against the more optimistic 𝜃final corresponding to 𝑟 = 50%. In Fig. 11 we would expect that the curve for 𝜃final had
the steepest slope, i.e. that there is more to be gained by reducing the epistemic set 𝐸 for 𝜃final than 𝜃�̂�%risk, but in practice it is
difficult to determine if there is any significant difference in the two designs at all. This is also reflected in the evaluation of failure
probabilities in Section 8.

8. Final results

8.1. Failure probability and severity

We planned to make use of crude MC for initial computation of failure probabilities that are not too small, and switch to
importance sampling after UM refinement and design optimization where more accurate estimation is needed. However, after the
optimization and UM refinement, the failure probabilities are no longer computable. This happens when it is not possible to find
any (𝑎, 𝑒) ∈ 𝐴 ×𝐸 where 𝑔𝑖 ≥ 0. And this seems to be the case for the second refined UM and 𝜃final, as we were not able to find any
(𝑎, 𝑒) ∈ 𝐴×𝐸 where 𝑔 (𝑎, 𝑒) ≥ 0 for 𝑖 = 1 and 𝑖 = 3 through numerical global optimization (maximization). We could of course tune
11
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Table 4
Failure probability — First refined UM.
𝜃 Limit-state 𝑝𝑓 min 𝑝𝑓 max Severity

𝜃 b
as

el
in

e
𝑔1 – 0.145 0.030
𝑔2 0.010 0.715 0.003
𝑔3 – 0.507 0.246
𝑤 0.048 0.727 NA

𝜃 n
ew

𝑔1 – 0.045 1.8 ⋅ 10−4

𝑔2 – 0.522 1.1 ⋅ 10−3

𝑔3 – – –
𝑤 – 0.522 NA

*MC estimates. Missing 𝑝𝑓 values (–) can be assumed < 10−3.

Table 5
Failure probability — Second refined UM.
𝜃 Limit-state 𝑝𝑓 min 𝑝𝑓 max Severity

𝜃 b
as

el
in

e

𝑔1 – 0.224 2.1 ⋅ 10−2

𝑔2 0.019 0.162 4.5 ⋅ 10−4

𝑔3 – 0.021 1.1 ⋅ 10−2

𝑤 0.026 0.341 NA

𝜃 n
ew

𝑔1 – 0.001 3.9 ⋅ 10−6

𝑔2 0.006 0.030 2.9 ⋅ 10−5

𝑔3 – – –
𝑤 0.006 0.030 NA

𝜃 f
in

al

𝑔1 0 0 0
𝑔2 – 0.008 1.6 ⋅ 10−5

𝑔3 0 0 0
𝑤 – 0.008 NA

*MC estimates. Missing 𝑝𝑓 values (–) can be assumed < 10−3, and 0 indicates that max𝑎∈𝐴,𝑒∈𝐸2
𝑔𝑖 < 0.

Table 6
Failure probability — Risk-based evaluation.
𝜃 Limit-state Full 𝐸 Reduced 𝐸

𝑝𝑓 max Severity 𝑝𝑓 max Severity

𝜃 𝑟
%

ris
k

𝑔1 – – – –
𝑔2 0.055 1.2 ⋅ 10−4 0.021 3.8 ⋅ 10−5

𝑔3 – – – –
𝑤 0.055 NA 0.021 NA

𝜃 f
in

al

𝑔1 – – 0 0
𝑔2 0.061 1.6 ⋅ 10−4 0.008 1.6 ⋅ 10−5

𝑔3 – – 0 0
𝑤 0.061 NA 0.008 NA

*MC estimates. Missing 𝑝𝑓 values (–) can be assumed < 10−3, and 0 indicates that max𝑎∈𝐴,𝑒∈𝐸 𝑔𝑖 < 0. Full 𝐸 and reduced 𝐸
correspond to 𝐸0% and 𝐸50% in Fig. 10.

he optimization of 𝜃final further, putting less wight on 𝑔1 and 𝑔3, but chose to with the current alternative under the assumption
hat 𝑔1 and 𝑔3 are the most critical failure modes.

The range of the failure probability, 𝑝𝑓 (𝑒, 𝜃), for each of the limit-states 𝑔1, 𝑔2, 𝑔3 and 𝑤, is shown in Tables 4 and 5 for the first
nd second refined UM’s respectively. The tables also include the severity of each individual requirement violation.

.2. Ranking of epistemic uncertainties

The resulting ranking as described in Section 4.2 is given in Table 7.

.3. Transition to failure

Based on a set of plausible 𝑒 ∈ 𝐸1, the design point 𝑎∗ (most probable point on 𝑔𝑖 = 0) has been estimated based on MCMC.
ig. 12(a) shows an example of the failure regions for 𝑎1, 𝑎3. The black lines represent the transition boundary 𝑔1 = 0 for plausible
’s, while the shaded area represent the failure regions where 𝑔1 > 0. 𝑎1 and 𝑎3 has been varied across the entire possible range
0, 2] while 𝑎2, 𝑎4, 𝑎5 has been kept fixed at each 𝑒’s design point 𝑎∗ plotted as red dots. The blue dots are samples from 𝑓𝑎|𝑒 for
ifferent values of 𝑒. Note that, even though some of the blue dots are located inside the failure domains, this does not necessarily
12
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Table 7
𝑒-ranking — First refined UM.
𝜃 #1 #2 #3 #4

First refined UM
𝜃baseline 𝑒3 𝑒4 𝑒1 𝑒2
𝜃new 𝑒3 𝑒1 𝑒2 𝑒4

Second refined UM
𝜃baseline 𝑒1 𝑒2 𝑒4 𝑒3
𝜃new 𝑒3 𝑒4 𝑒1 𝑒2
𝜃final 𝑒4 𝑒3 𝑒1 𝑒2

Fig. 12. Transition to failure.

Fig. 13. �̂�(𝑎∗ , 𝑒, 𝜃final) for 𝑒 ∈ 𝐸2.

mean that these are failure points, it is just their projection down in 𝑎1, 𝑎3. But it gives an indication of where the main mass of the
distribution lies with respect to the failure regions.

The failure boundaries in Fig. 12(a) are quite co-located in the 𝑎1, 𝑎3 space, which shows that for the e-box 𝐸1 the failure region
is reasonably stable in this parameter space. Other parameter spaces do not have a similar clear failure region.

Fig. 12(b) shows a similar plot of the 𝑔2 failure region and transition boundary for plausible 𝑒 ∈ 𝐸2 in the 𝑎1, 𝑎3 parameter space,
and Fig. 13 shows the corresponding time responses of the integrated system.

9. Concluding remarks

We conclude by summing up some of the key lessons learned through the challenge. A central part of the problem is dealing
with functional (time-series) data, which makes inference challenging, especially without underlying knowledge about what the data
represents. In particular, the nonparametric route can give challenges with MCMC, and ensuring that this works as correctly can
13
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o
i

be time consuming. With some assumptions regarding the input distribution (if correct), we could make use of a more numerically
stable alternative.

The combination of epistemic and aleatory uncertainty also makes the Bayesian inference challenging. Especially with a set of
bservations that is relatively small, combined with a nonlinear mapping that makes the true input distribution unidentifiable. That
s, there could be different values of the epistemic variable 𝑒, combined with quite different distributions over the aleatory variable
𝑎, that could explain the data equally well. But for the objectives posed in this challenge, inferring the correct distribution of 𝑎 is
not really important, as long as we can find designs that are robust to any of the plausible distributions 𝑓𝑎|𝑒.

Our initial attempt was to try an entropy-based approach based on information geometry. Here we would let the aleatory
distribution be the distribution with maximum entropy that satisfies some constraints set by the data. This is possible, but numerically
challenging, and we did not find a way to develop a numerically stable method that could handle time-series data. As discussed
in Section 2.1, we did FPCA (Functional Principal Component Analysis) on the time-series data, which gives a set of uncorrelated
features that can be used for dimensionality reduction. Interestingly, these features still had a very complicated dependency structure,
and the theoretical motivation for using FPCA was then not so relevant.

We define the different epistemic sets 𝐸 using a threshold on the likelihood (plausibility) of the epistemic variable 𝑒, and this
threshold value is something that we set manually. We chose a non-conservative set (𝜃50%risk in Section 7) to use in the initial
design optimization, followed by a verification of the design using a larger conservative set (𝜃0%risk) of epistemic values. The idea
behind this, is that there may be many designs that are acceptable with respect to a large set 𝐸, and out of these we want to
select one that has good performance with respect to the most likely values of 𝑒. We considered a more generic methodology, by
establishing an criterion that gives a suitable balance between acceptable performance in the worst-case scenario and optimality in
the high-likelihood scenarios. Alternatively by considering Pareto optimality with respect to a criterion for acceptable worst-case
performance. But we found it difficult to come up with a meaningful criterion, especially without knowledge about the true physical
system.

As discussed in Section 2.2, it is important that model discrepancy is handled appropriately. For inference to be possible, we need
to decide when two time series are ‘‘basically the same’’. The choice of metric will have to be made based on some assumptions,
which could have a large effect on subsequent analysis. Since we assume noiseless observations, we did not want to impose too
much regularization, as this might ‘‘wash out’’ the information given in the relatively small set of observations. As a result, we
had to spend some time investigating model discrepancy. In the end, in order to assume zero observational error, we needed to
assume a small model discrepancy in order for any form of inference to be possible. As we comment in Section 6 and Remark 2.1 in
Section 2.2, our final results may be sensitive to this assumption. But in a real-world scenario, involving either observational noise,
model discrepancy, or both, this part of the challenge would of course be treated quite differently.
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