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Abstract
This paper deals with the specification of probability dis-
tributions expressing ignorance concerning annual or
otherwise discretized failure or mortality rates, when
these rates can safely be assumed to be increasing and
convex, but are completely unknown otherwise. Such
distributions can be used as noninformative priors for
Bayesian analysis of failure data. We demonstrate why
a uniform distribution used in earlier work is unsatis-
factory, especially from the point of view of insensitivity
with respect to the time scale that is chosen for the
problem at hand. We suggest alternative distributions
based on Dirichlet distributed weights for the extreme
points of relevant convex sets, and discuss which con-
sequences a requirement for scale neutrality has for the
choice of Dirichlet parameters.
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1 INTRODUCTION

Determination of annual mortality rates is an important task for actuarial science. Models for
death or failure rates per time unit also arise in biological and technological contexts as well,
with relevant time units changing from application to application. Since the main motivating
example for this paper is taken from life insurance, we will mostly use the term “mortality
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rate.” Various parametric distributions have been used in different applications, such as the
Gompertz–Makeham distribution (Bowers et al., 1986) customarily used in the insurance indus-
try. A common flexible framework for the various applications can be built on considering
each of the mortality or failure rates as a parameter, and to introduce dependence between
these parameters by restrictions on the parameter space. Such a model is introduced in Gelman
et al. (1996), where in accordance with the increasing convexity of the hazard rate function of
the Gompertz–Makeham distribution, the constraint is that the mortality rate curve should be
increasing and convex. This would seem to be a natural restriction in many cases. Considering
a data set from life insurance, Gelman et al. (1996) perform both a maximum likelihood and a
Bayesian analysis based on this model. The Bayesian analysis requires a prior distribution, which
is updated by the likelihood according to Bayes’ theorem to form the posterior, which is the basis
for the inference. But the analysis can be made “objective” by choosing a noninformative prior,
expressing ignorance about the mortality rates. How to do this is not at all obvious, however. In
the present paper, we examine how a distribution expressing ignorance for a vector of increasing,
convex mortality rates can be specified.

Since the mortality rate is the probability of dying within a given time interval for a randomly
chosen individual from a given age class, the choice of a noninformative prior distribution for the
parameter p of a binomial distribution is particularly relevant in our context. The conjugate prior
is the beta distribution beta(p; 𝛼, 𝛽) with density proportional to p𝛼−1(1 − p)𝛽−1. With 𝛼 = 𝛽 = 𝜖

close to 0, the posterior expectation of p based on a data set with y successes among N trials is
(𝛼 + y)∕(𝛼 + 𝛽 + N), which approximates the maximum likelihood estimate y∕N. Note that, if we
change the time scale by, for example, considering monthly rather than annual mortality rates,
the posterior estimate based on this noninformative prior is on average scaled appropriately down
in accordance with the smaller number of deaths over the shorter intervals. This is in accordance
with the desired goal expressed in Gelman (1996) “that as the scale of discretization changes with
fixed data the strength of the prior distribution, the Bayesian analysis would remain roughly con-
stant.” In other words, we seek a prior that is approximately neutral with respect to the time scale
that is chosen for the given problem. However, even though we may lack useful prior information
about the level of each mortality rate individually, it would be unreasonable to use the nonin-
formative beta prior to estimating the mortality rate for each age class separately. The constraint
introduced in Gelman et al. (1996) of an increasing and convex mortality rate curve is a natural
way of formalizing prior beliefs about the shape of this curve. With such a model constraint the
specification of a noninformative and scale neutral prior distribution is not so straightforward.
Also, it may be difficult to verify for a particular distribution that “the Bayesian analysis would
remain roughly constant” under changes of scale. We cannot expect to find a conjugate prior for
which the posterior expectations can be analytically computed, such as in the beta-binomial case,
nor is there necessarily an obvious target such as y∕N to aim for. If, for a particular prior, we are
nevertheless able to analyze the effect a change in scale would have on the inference. Such an
analytic examination can save us from performing numerical computations with an unreasonable
prior.

It is natural to consider the uniform distribution as a candidate for a noninformative and
scale neutral prior for the convex and increasing mortality rate model, since in general, the uni-
form distribution is a common choice for a prior distribution intended to be noninformative. A
major disadvantage of this choice is that the prior changes under reparameterization, but at least
it has the virtue that maximization of the posterior density is equivalent to maximizing the like-
lihood. Accordingly, the maximum likelihood analysis in Gelman et al. (1996) is followed up by
a Bayesian analysis based on a uniform prior on the restricted parameter space. Comparison of



GÅSEMYR and HUBIN 3

draws from the posterior distribution of the mortality rates with the data, especially concerning
the higher age classes, suggests that this may not be a good choice. In Theorem 1 of the present
paper, we provide a mathematical explanation why the mortality rate of the highest age class, in
particular, seems to be overestimated by using the uniform distribution as a prior. An explana-
tion involving the whole vector of mortality rates is given in Gelman (1996), Section 3.3, which
attributes the apparent lack of fit to the prior expectation of the mortality rate curve climbing
too steeply for higher age classes, as well as to the marginal variances of the prior distribution
converging to 0 as the scale of discretization becomes finer, implies that a fixed set of data is
eventually unable to move the posterior distribution away from the prior expectation. Such behav-
ior of the marginal prior variances is certainly unsatisfactory. Since we find the argument to be
somewhat inaccurate, we provide a more detailed derivation of the limiting behavior under the
uniform prior distribution of the expected shape of the mortality rate curve and the marginal
mortality rate variances under scale refinement, see Proposition 2, respectively, Corollary 1 in
Section 5 of the present paper. A new framework developed in Section 4 of this paper provides the
basis for the analysis, and gives rise to a class of prior distributions that according to Theorem 5,
with a suitable choice of parameters, contains distributions for which the marginal variances stay
bounded away from 0 regardless of the scale of discretization. Hence, these distributions should
have a potential for overcoming the difficulties reported in Gelman (1996) and therefore accom-
plishing the desired goal of approximate insensitivity to change in the scale of discretization. The
good properties of these distributions are demonstrated numerically on the insurance dataset in
Section 6.

The rest of the paper is organized as follows: Section 2 provides the insurance data and
presents formally the model for convex, increasing mortality rates and the uniform prior on this
set. In Section 3, we provide new explanations why the uniform prior is problematic, based on
establishing the distributions of the initial and final mortality rates, that is, the mortality rates
for the lowest and highest age class, respectively, which essentially determine the location of the
mortality rate curve. In order to examine whether uniformity can nevertheless be part of a sensi-
ble noninformative modeling for this problem, we introduce distributions involving such uniform
modeling in Section 4. Motivated by alternative characterizations of these distributions given in
Theorems 3 and 4, we suggest in Definition 1 and Definition 2 new classes of prior distributions
for convex and increasing mortality rate functions. In Section 5, we analyze the limiting behavior
under scale refinement of the prior expectation and variance of the mortality rates under some of
these priors. With the uniform prior being a special case, this provides an additional explanation
why the uniform prior is unsatisfactory, not only for the location, but also for the shape of the mor-
tality rate curve. This analysis is also the basis for suggesting distributions that have a potential
for dealing more satisfactorily with the requirement for scale neutrality. Numerical experiments
presented in Section 6 confirm the good behavior of these distributions. Some conclusions are
given in Section 7.

2 THE MODEL AND THE UNIFORM PRIOR FOR CONVEX,
INCREASING MORTALITY RATES

In a Bayesian model evaluation context, Gelman et al. (1996) reanalyzes a dataset from life insur-
ance originally studied in Broffitt (1988), containing the number Nt of insured and the number
yt of deaths (t = 1, 2, … , 30) in 30 consecutive age classes, ranging from 35 to 64, under a cer-
tain life insurance policy. The data are displayed in Table 1 and are henceforth referred to as
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T A B L E 1 Mortality rate data (LIN) from Broffitt (1988)

Age, t Nt yt A age, t Nt yt

35 1771.5 3 50 1516.0 4

36 2126.5 1 51 1371.5 7

37 2743.5 3 52 1343.0 4

38 2766.0 2 53 1304.0 4

39 2463.0 2 54 1232.5 11

40 2368.0 4 55 1204.5 11

41 2310.0 4 56 1113.5 13

42 2306.5 7 57 1048.0 12

43 2059.5 5 58 1155.0 12

44 1917.0 2 59 1018.5 19

45 1931.0 8 60 945.0 12

46 1746.5 13 61 853.0 16

47 1580.0 8 62 750.0 12

48 1580.0 2 63 693.0 6

49 1467.5 7 64 594.0 10

the LIN dataset. Bayesian models for analysing these data were also discussed in Carlin (1993).
For this dataset, the observed mortality rates yt∕Nt show a generally increasing trend, but jump
quite irregularly with occasional downward jumps from one age class to the next. Attributing this
irregular pattern to random fluctuations, Gelman et al. (1996) want to build into their prior for
the underlying mortality rates 𝜃t the constraint that these rates are increasing and convex. Hav-
ing also performed a maximum likelihood analysis, it is stated in Gelman (1996) that “since we
were willing to use the maximum likelihood estimate, it seems reasonable to use a uniform prior
distribution on 𝜽.” Being uniform, this prior distribution might naively be perceived as nonin-
formative, although it is not portrayed as such in Gelman et al. (1996) or Gelman (1996). In the
next section, we investigate the potential for the uniform distribution on the set of an arbitrary
number n increasing and convex mortality rates for being noninformative, by analyzing the con-
sequences of this choice for the marginal prior distribution of 𝜃1 and 𝜃n, that is, the initial (first)
and final (last) mortality rates, respectively, and hence for the location of the mortality rate curve
under the uniform prior. Some possible consequences for the posterior distribution of these mor-
tality rates in general and in particular with the LIN data are discussed. In Section 6, a numerical
investigation of the posterior distribution for these data under the uniform and other priors is
provided.

We phrase the problem in somewhat more general terms. The data are assumed to arise from
recording failures of objects or deaths of individuals belonging to a certain homogeneous pop-
ulation, occurring at ages contained in an interval (T0,Tn]. In a laboratory experiment studying
for example, the effect of exposure to some chemical substance, “age” may refer to the time since
onset of exposure rather than physical age. Also, age could be replaced by some relevant mea-
sure of accumulated load such as, for example, total mileage of a car. The data are discretized by
counting the number of deaths occurring at ages in intervals (Tt−1,Tt] , t = 1, 2, … ,n, with an
arbitrary number n (to be chosen by researchers or decision-makers) of equidistant measuring
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points T1, … ,Tn in the interval (T0,Tn], the common distance Tt − Tt−1 = (Tn − T0)∕N between
consecutive measuring points hence also being arbitrary. We denote by Nt the number of indi-
viduals at risk at age Tt−1 and by Yt the number of deaths at ages in (Tt−1,Tt]. Some adjustments
of Nt may be made due to individuals joining the population or leaving the population without
dying during the age interval (Tt−1,Tt]. In the LIN dataset (Table 1), such individuals are counted
as 0.5. These adjustments are assumed not to depend on the underlying mortality rates. An arbi-
trary degree of right censoring may take place also due to individuals surviving the age Tn or not
reaching this age before the collection of data is completed.

The probability of a random individual having survived age Tt−1 of dying before Tt is denoted
by 𝜃t, t = 1, 2, … ,n. Hence, Yt is binomially distributed with parameters Nt, and 𝜃t. These mor-
tality rates are collected in the vector 𝜽. The mortality rates 𝜃1 and 𝜃n are referred to as the initial
and the final mortality rates, respectively. Since under the assumption of increasing mortality
rates all the rates must lie between 𝜃1 and 𝜃n, the value of these parameters essentially determine
the location of the mortality rate curve, and they are the focus of the next section. The remain-
ing rates describe the shape of the curve. This aspect of the model will be discussed in Section 5.
Assuming that Y1, … ,Yn are independent and binomially distributed given N1, … ,Nn and 𝜽,
the likelihood for a dataset with observed number of deaths given by y = (y1, … , yn) is

p (y|𝜽,N1, … ,Nn) =
n∏

t=1
𝜃

yt
t (1 − 𝜃t)Nt−yt .

For any integer p we denote by mp the Lebesgue measure on Rp. Let Jn be the set of convex,
increasing 𝜽, that is,

Jn = {𝜽 ∈ Rn ∶ 0 ≤ 𝜃1 ≤ · · · ≤ 𝜃n ≤ 1 and 𝜃t+1 + 𝜃t−1 ≥ 2𝜃t for t = 2, … ,n − 1}. (1)

Denoting by I the indicator function, the uniform prior distribution used in Gelman et al. (1996)
is hence

𝜋GMS(𝜽) = Ijn(𝜽)∕mn(Jn). (2)

3 THE MARGINAL DISTRIBUTIONS OF 𝜽1 AND 𝜽n UNDER
THE UNIFORM PRIOR

3.1 The marginal prior for the final mortality rate 𝜽n

Using 𝜋GMS(𝜽) as a prior, based on simulation experiments it was observed in Gelman et al. (1996)
that “posterior predictive data sets were mostly higher than the observed data for the later ages.”
One possible explanation mentioned by the authors is that this could be a selection effect destroy-
ing the convexity, due to the insurance company having “screened out some high risk older
people.” As also indicated by Gelman (1996), it is reasonable to ask if this could instead be related
to the behavior of the prior for higher age classes. It is therefore natural to examine, in particu-
lar, the marginal distribution for the final mortality rate 𝜃n under the uniform prior on Jn. The
following theorem suggests that the problem is indeed due to the inherent mathematical prop-
erties of this distribution linked to the geometry of the set Jn. Essentially, as reflected in the
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proof, the problem is that the (n − 1)-dimensional volume of the set of 𝜽 ∈ Jn such that 𝜃n = x is
proportional to xn−1, resulting in increased probability weight being put on higher values of 𝜃n as
n increases.

Theorem 1. Under 𝜋GMS the rate 𝜃n has the marginal density beta(𝜃n;n, 1), that is, is
beta-distributed with parameters n and 1.

Proof. For any vector 𝜽 = (𝜃1, … , 𝜃n)T ∈ Rn, denote by 𝜽1∶n−1 the vector (𝜃1, … , 𝜃n−1)T ∈ Rn−1.
Define

Kn = {𝜽1∶n−1 ∈ Rn−1 ∶ (𝜽T
1∶n−1, 1)

T ∈ Jn}. (3)

Then 𝜽 ∈ Jn if and only if 𝜽 = 0n = (0, … , 0)t or 0 < 𝜃n ≤ 1 and (1∕𝜃n)(𝜽1∶n−1) ∈ Kn, or equiva-
lently, 0 ≤ 𝜃n ≤ 1 and 𝜽1∶n−1 ∈ 𝜃nKn. Hence, calculating the volume of the set of 𝜽 ∈ Jn such that
𝜃n ≤ x by integrating along the 𝜃n-axis, we obtain

mn({𝜽 ∈ Jn ∶ 𝜃n ≤ x}) = ∫
x

0
mn−1({𝜽1∶n−1 ∶ (𝜽T

1∶n−1, 𝜃n)T ∈ Jn})d𝜃n

= ∫
x

0
mn−1(𝜃nKn)d𝜃n = mn−1(Kn)∫

x

0
𝜃n−1

n d𝜃n

= (mn−1(Kn)∕n)xn.

By the uniformity assumption, the probability under (2) that 𝜃n ≤ x is proportional to this vol-
ume, it follows that the density for 𝜃n under (2) is proportional to 𝜃n−1

n , that is, equals (Γ(n + 1)∕
Γ(n)Γ(1))𝜃n−1

n (1 − 𝜃n)1−1 = beta(𝜃n;n, 1). ▪

Remark: According to Gelman (1996), Section 3.1, the beta distribution also characterizes
the marginal distributions for the parameters of a discrete approximation to an increasing but not
necessarily convex function under a uniform prior.

An immediate consequence of Theorem 1 is that the expected mortality rate for the highest
age class under 𝜋GMS is n∕(n + 1), hence increases with n. This is quite unsatisfactory, since all the
mortality rates ought to decrease rather than increase if the interval length Tt − Tt−1 decreases,
and as a result n increases. Moreover, since we want a prior distribution suitable also with an
arbitrary degree of right censoring at the final measuring time Tn, the highest mortality rate 𝜃n
may be small and hence the prior expectation n∕(n + 1) unreasonably large even for small values
of n. This is relevant for the special case analyzed in Gelman et al. (1996), with n = 30 repre-
senting age 64. According to 𝜋GMS(𝜽), a person being lucky enough to have survived to the age
of 64 will have only a 3% chance of surviving another year. We think this is a rather disturbing
consequence, considering that we believe the data to come from a 20th century western human
population which is not known to have been exposed to any kind of exceptionally high-risk fac-
tors. This is in accordance with Hjort et al. (2006), section 9, which mentions some other gloomy
facts facing persons whose survival distributions follow the uniform prior. However, despite its
peculiar properties when taken literally as a joint distribution for the vector of mortality rates,
Hjort et al. (2006) consider it as a reasonable choice of a vague prior leading to an “objective anal-
ysis of the data,” and discards it only in the context of prior predictive model evaluation. We note,
however, that the marginal variance of 𝜃n is n∕((n + 1)2(n + 2)). In the context of the LIN data,
with n = 30, the resulting small SD of 0.03 could hardly be considered as an indication of nonin-
formativity. Since the marginal variance is of order 1∕n2, a change in scale and a corresponding
increase of n, for instance, considering monthly mortality rates, would aggravate this problem.
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At the same time, due to the reduced size of the basic time intervals, the true value of 𝜃n would
decrease with such a change in scale, and hence become more and more out of reach for a pos-
terior distribution based on a fixed dataset. This behavior under a change of time scale indicates
that the desired scale neutrality is not achieved by the prior (2).

It is worth noting that with the binomial likelihood 𝜃
yn
n (1 − 𝜃n)Nn−yn for 𝜃n, the marginal

prior for 𝜃n would be updated to a beta distribution with parameters n + Yn and Nn − yn +
1, if we were to use only data from age class n. For the LIN data with n = 30, yn = 10 and
Nn = 594, this would yield the posterior expectation E(𝜃n|yn) = (yn + n)∕(Nn − yn + 1) = (10 +
30)∕625. This is almost four times higher than the posterior expectation when using a stan-
dard noninformative beta prior, which is approximately 10∕594. The numerical results given
in Section 6 indicate that the consequences may not be quite that bad when taking data for
all age groups into consideration, but confirm the predicted overestimation of the mortality
rate for the highest age class. Hence it is reasonable to conclude from Theorem 1 that prior
(2) is not as neutral as might naively be thought, and is a bad choice of a non-informative
prior.

3.2 Can the problem be remedied by restricting the support of 𝜽n?

The mortality rate model of Gelman et al. (1996) is also considered in Johnson (2007) in the con-
text of Model evaluation. In order to obtain a sensible prior predictive sample, Johnson (2007)
suggests limiting the support of the mortality rates to the interval [0, 0.05]. A similar suggestion
appears in Hjort et al. (2006). Forcing the posterior distribution of the mortality rates down-
ward by restricting the support in this way could conceivably remedy the problems with the
uniform prior demonstrated above. We can, however, show that the pressure toward higher val-
ues for 𝜃n remains. Updating the marginal prior density, which under the restricted support is
proportional to I[0,0.05](𝜃n)𝜃n−1

n , only with data yn from the nth age group, we can show that the
posterior expectation of 𝜃n given yn is close to the support limit of 0.05. To see this, define inte-
gers k, r such that k − 1 + r = n − 1 + yn and r is minimal with respect to satisfying the inequality
r ≥ 0.05(Nn − yn + r). Then the posterior density for 𝜃n can be written as I[0,0.05](𝜃n)𝜃k−1

n g(𝜃n),
where g(𝜃n) is proportional to 𝜃r

n(1 − 𝜃n)Nn−yn . The function g(𝜃n) is increasing on [0, 0.05] and by
the proposition given below it follows that the posterior expectation is at least 0.05k∕(k + 1). For
the LIN data n = 30, yn = 10 and Nn = 594, so we can take r = 31, giving k = 9. Consequently,
the posterior expectation is at least 0.045, which is well above the observed mortality rates for the
highest age classes.

Proposition 1. Suppose 𝜃 ∈ [0, a] has density of the form f (𝜃) = 𝜃k−1g(𝜃), where g(0) = 0 and g(𝜃)
is increasing on [0, a]. Then E(𝜃) ≥ ka∕(k + 1).

Proof. Using first integration by parts, then the inequality 𝜃k+1 ≤ a𝜃k, and finally integration by
parts again, we obtain

E(𝜃) = ∫
a

0
𝜃kg(𝜃)d𝜃 = (ak+1∕(k + 1))g(a) − ∫

a

0
(𝜃k+1∕(k + 1))g′(𝜃)d𝜃

≥ (ka∕(k + 1))[(ak∕k)g(a) − ∫
a

0
(𝜃k∕k)g′(𝜃)d𝜃]

= (ka∕(k + 1))∫
a

0
𝜃k−1g(𝜃)d𝜃 = ka∕(k + 1).

▪
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The support [0, 1] for 𝜃n implied by the prior distribution 𝜋GMS(𝜽) is needed to cover any pos-
sible application of the convex and increasing mortality rate model, although it is unreasonably
wide in the insurance application. But even if the support is drastically shortened, this proposi-
tion indicates that the uniform distribution with the restricted support [0, a] for 𝜃n is still not a
satisfactory choice of a noninformative prior distribution. An increase in the number n of mea-
suring points would aggravate the effect, provided that the number of deaths yn in the highest
age class decreases more slowly than the increase in n. Indeed, writing n − 1 + yn as k − 1 + r and
g(𝜃n) ∝ 𝜃r

n(1 − 𝜃n)Nn−yn as above, we see that with a nonincreasing population size Nn, the condi-
tions of the proposition are satisfied with an increasing value of k when n increases. This pushes
the lower bound ak∕(k + 1) for the posterior expectation of 𝜃n toward the support limit a when n
increases, whereas in order to be scale neutral it ought to decrease when n increases.

The suggestion to restrict the support of 𝜃n is also not entirely satisfactory from a puristic
Bayesian point of view, since it seems to be based on an initial inspection of the data revealing that
the maximum observed mortality rate is less than 0.02. In fact, Carlin (1993) uses the extremely
data-based prior support [0, 0.02]. On the other hand, restricting the support of the prior without
information of this sort, there is a risk of the support not containing the true value. Ironically,
while Hjort et al. (2006) warn against such a risk, this is the case for its rather casual suggestion
of [0.03, 0.07] as support.

3.3 The marginal prior for the initial mortality rate 𝜽1

Before turning to the introduction of alternative priors, it is natural to consider the possibility that
the prior (2) could lead to biased estimation also for the initial mortality rate 𝜃1. The following
counterpart to Theorem 1 indicates that this could happen in some cases.

Theorem 2. Under 𝜋GMS the rate 𝜃1 has the marginal density beta(𝜃1; 1,n), that is, is
beta-distributed with parameters 1 and n.

The proof is similar to the proof of Theorem 1. Parallel to the set Kn of (3) it builds on the set

Ln =
{
𝜽2∶n ∈ Rn−1 ∶ (0,𝜽T

2∶n)
T ∈ Jn

}
. (4)

The proof is a little more complex and is given in the Appendix.
It follows from Theorem 2 that the marginal expectation of the uniform distribution on Jn

is 1∕N, and hence decreases at a pace that matches the decrease in the mortality rates that we
would expect as the basic time intervals become shorter. This should indicate a less problem-
atic prior modeling under (2) for the initial than for the final mortality rate. However, if we
were to update the prior with data only from age group 1, the posterior expectation would be
E(𝜃1|y1) = (y1 + 1)∕(N1 + n + 1). If 𝜃1 is very close to 0 and as a result y1 is very small, and if
not only absolute but also relative error is important, the extra 1 added to y1 could lead to an
undesirable relative overestimation of 𝜃1 when combining 𝜋GMS(𝜽) with the likelihood. When
n increases, relatively more weight is put on this extra 1 in this posterior conditional expec-
tation, since, for a fixed data set, the value of y1 decreases with decreasing the length of the
basic time interval. Depending on the true shape of the mortality rate curve, this could to some
extent be compensated for by data from the next age classes. Nevertheless, it seems reasonable
to conclude that also for the initial mortality rate the desired scale neutrality is not achieved in
general.
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4 ALTERNATIVE NONINFORMATIVE PRIORS

Our desired goal is to create a scale neutral noninformative prior or family of priors, equally well
suited for arbitrary populations including nonhuman ones, as well as arbitrary time intervals
between measuring points. Consider, for example, a laboratory experiment testing the toxicity
of a certain chemical substance to a population of some animal species, measured on a suit-
able time scale (e.g., hours, days, or weeks). In some of such cases, one might very well be in
a state of complete ignorance prior to the experiment, and a scale neutral noninformative prior
distribution is called for. In view of the problems demonstrated in the previous section, we pro-
pose in general to first specify a noninformative marginal prior distribution for the final and/or
initial mortality rates, enabling the data to locate the curve in the correct region. Thereafter a
joint conditional distribution is specified for the remaining mortality rates, aimed at enabling
the data to determine the correct shape of the curve. In particular, we will examine to what
extent the uniform prior distribution, found inappropriate when applied to the entire 𝜽-vector,
can be more successfully applied for this more restricted task. This examination is performed
both theoretically and numerically, and is reported in Sections 5 and 6, respectively. Both the the-
oretical analysis and the Monte Carlo simulation needed for the numerical investigation built
on alternative characterizations of the relevant distributions given in Theorems 3 and 4. More
flexible alternative suggestions presented in Definitions 1 and 2 are also motivated by these
characterizations.

In the following subsection, we focus specifically on the problems discussed in Section 3.1
concerning the final mortality rate. By choosing a noninformative prior for 𝜃n the magnitude
of this parameter is determined within a Bayesian framework, and we avoid the non-Bayesian,
data-based specification of an upper bound for the support used by Carlin (1993).

4.1 Modifying the marginal prior for the final mortality rate

As a marginal prior for 𝜃n, it is natural to choose a beta distribution, which is a conjugate prior
for the factor 𝜃yn

n (1 − 𝜃n)Nn−yn of the binomial likelihood. As a start, we combine it with a uniform
conditional distribution for the rest of the parameters. Recalling the definition of Kn in (3), We
thus introduce the prior (the superscript F indicating “final”):

𝜋F
𝛼,𝛽

(𝜽) = beta(𝜃n; 𝛼, 𝛽)I𝜃nKn(𝜽1∶n−1)∕mn−1(𝜃nKn). (5)

Various degrees of weaker or stronger informativity based on subjective knowledge can be accom-
modated for by different choices of the parameters 𝛼 and 𝛽. The uniform distribution on Jn is
obtained as the special case 𝛼 = n, 𝛽 = 1, since then (5) is proportional to

𝜃n−1
n I(𝜃n ≤ 1)I𝜃nKn (𝜽1∶n−1)∕mn−1(𝜃nKn) = IJn(𝜽)∕mn−1(Kn) ∝ 𝜋GMS(𝜽).

From the point of view of scale neutrality and noninformativity, as indicated in the introduction,
the choice 𝛼 = 𝛽 = 𝜖 close to 0 is preferable. If the sample size Nn is not too small, and the time
scale is sufficiently coarse, data yn from the nth age group alone should then suffice to locate the
marginal posterior distribution of 𝜃n adequately. If the number n of measuring points is drastically
increased, and as a result, the true value of 𝜃n and the observed yn become very small, data from
lower age classes should still contribute to a sensible location of this distribution.
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However, we also want the prior to be noninformative with respect to the shape of the mortal-
ity rate curve, which is determined by the other parameters. In Section 5, we will discuss whether
the conditional uniform distribution on these parameters is a satisfactory prior choice from this
point of view. The basis for this discussion is Theorem 3 below, expressing the prior distribution
(5) in terms of familiar random variables. This builds on the following lemma:

Lemma 1. Denote by Kn the set of convex and increasing functions f on {1, 2, … ,n}satisfying
0 ≤ f (1) ≤ f (n) = 1. Then Kn is a convex set spanned by n extreme points. Identifying f with the
vector (f (1), … , f (n))T, the extreme points are

w1 = 1n = (1, 1, … , 1)T , w2 = 1
n − 1

(0, 1, 2, … ,n − 1)T ,

w3 = 1
n − 2

(0, 0, 1, 2, … ,n − 2)T , … ,

wi = 1
n − i + 1

(0, … , 0, 1, 2, … ,n − i + 1)T , … ,wn = (0, 0, … , 0, 1)T .

Proof. It is straightforward to verify that the set Kn is convex. Clearly w1 = 1n is an extreme point,
since, for all t, ut ≤ 1 for every u ∈ Kn. Consider wi for i ≥ 2. If wi = au1 + (1 − a)u2 with u1 and
u2 ∈ Kn and 0 < a < 1, then clearly uj

t = 0 for 1 ≤ t ≤ i − 1, j = 1, 2. Since the graph of the func-
tion represented by wi is a straight line from (i − 1, 0) to (n, 1), the convexity assumption implies
that u1 and u2 have to follow this straight line as well. Hence, u1 = u2 = wi, and it follows that
wi is an extreme point. Now let u ∈ Kn be arbitrary. Note that the n × n matrix W n formed by the
column vectors w1, … ,wn is lower triangular with non-zero values on the diagonal. Hence, its
determinant is positive, and it follows that w1, … ,wn are linearly independent. We may there-
fore write u uniquely as a linear combination u = a1w1 + · · · + anwn. Since un = 1 and wi

n = 1
for i = 1, … ,n, it follows that a1 + · · · + an = 1. It remains to prove that ai ≥ 0 for i = 1, … ,n.
Clearly, a1 = u1 ≥ 0. Since u2 − u1 = a2∕(n − 1) and u is increasing, it follows that a2 ≥ 0. It is not
too hard to see more generally that for i ≥ 2 we have

ui − ui−1 = a2∕(n − 1) + · · · + ai∕(n − i + 1).

Consequently, for i ≥ 3 we have ai∕(n − i + 1) = (ui − ui−1) − (ui−1 − ui−2), which is nonnegative
by the convexity assumption. Hence, u is a convex combination of w1, … ,wn. ▪

We denote by Dir(n; 𝛾1, 𝛾2, … , 𝛾n) the Dirichlet distribution for the vector (X1,X2, … ,Xn−1)T

whose density is given by

(Γ(𝛾1 + · · · + 𝛾n)∕(Γ(𝛾1) · · · Γ(𝛾n)))X
𝛾1−1
1 · · ·X𝛾n−1−1

n−1 (1 − X1 − · · · − Xn−1)𝛾n−1.

Using Lemma 1, the distribution 𝜋F
𝛼,𝛽

can now be characterized as follows:

Theorem 3. A variable 𝜽 distributed according to 𝜋F
𝛼,𝛽

has the distribution of 𝜃n(X1w1 + · · · +
Xnwn), where 𝜃n ∼ beta(⋅; 𝛼, 𝛽), Xn = 1 − X1 − · · · − Xn−1 and (X1, … ,Xn−1)T is Dirichlet dis-
tributed Dir(n; 1, 1, … , 1), independently of 𝜃n.

Proof. Note that the Dir(n; 1, 1, … , 1) distributed vector (X1, … ,Xn−1)T is uniformly distributed
on the set

Sn = {(x1, x2, … , xn−1)T ∶ 0 ≤ xi ≤ 1 for i = 1, … ,n − 1; x1 + · · · + xn−1 ≤ 1}.
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Recall that W n is the matrix formed by the column vectors w1, … ,wn of Lemma 1. Let W n
−n;−n

be the matrix obtained from W n by deleting the last row, consisting of 1s, and the last column,
consisting of 0s except for the last entry. Define the n − 1-dimensional vector variable

𝝓 = W n
−n;−n(X1, … ,Xn−1)T = X1w1

1∶n−1 + · · · + Xn−1wn−1
1∶n−1. (6)

Since the first n − 1 entries of the last column of W n are 0, it follows that 𝝓 consists of the first
n − 1 entries of W n(X1, … ,Xn)T = X1w1 + · · · + Xnwn. The last entry of this vector is 1, and con-
sequently X1w1 + · · · + Xnwn = (𝝓T , 1)T . By Lemma 1, the set Kn is spanned by such vectors, and
accordingly the set Kn of (3) is spanned by the vectors 𝝓. By (6), the variable 𝝓 is the image of
(X1, … ,Xn−1)T under the linear transformation defined by the matrix W n

−n;−n. Since this transfor-
mation has a constant Jacobian determinant, and since (X1, … ,Xn−1)T is uniformly distributed
on Sn, it follows that the distribution of 𝝓 on Kn is uniform as well. Scaling 𝝓 down by multiply-
ing with 𝜃n distributed according to beta(⋅; 𝛼, 𝛽) results in a uniform distribution for 𝜽1∶n−1 given
𝜃n on 𝜃nKn, in accordance with (5). ▪

In view of Theorem 3, it seems natural to introduce the following generalization of (5):

Definition 1. Let 𝜸 = (𝛾1, … , 𝛾n)T be an n-dimensional vector of positive, real numbers.
We define 𝜋F

𝛼,𝛽,𝜸
(𝜽) to be the density for a variable of the form 𝜃n(X1w1 + · · · + Xnwn),

where 𝜃n ∼ beta(⋅; 𝛼, 𝛽), Xn = 1 − X1 − · · · − Xn−1 and (X1, … ,Xn−1)T is Dirichlet distributed
Dir(n; 𝛾1, 𝛾2, … , 𝛾n), independently of 𝜃n.

The posterior distribution resulting from updating this prior with the likelihood is propor-
tional to

𝜋F
𝛼,𝛽,𝜸

(𝜽)
n∏

t=1
𝜃

yt
t (1 − 𝜃t)Nt−yt .

the resulting posterior does not belong to the same class of distributions as the prior, but can
be obtained using MCMC. In Section 6, we use Stan (Carpenter et al., 2017) for the analysis of
the LIN data. The results show that using Definition 1 allows significant improvements over the
uniform distribution on Jn and even over (5) with 𝛼 = 𝛽 close to 0. The choice of parameters is
motivated by the theoretical analysis of Section 5, where it is demonstrated that it is possible to
choose Dirichlet parameters for 𝜋F

𝛼,𝛽,𝜸
(𝜽) in such a way that the marginal prior variances for the

mortality rate parameters are bounded away from 0, regardless of the number n of measuring
points. This should allow data to adjust the prior, which indicates that this generalisation of (5)
is useful from the point of view of scale neutrality. However, for completeness, we first consider
parallels to (5) where either 𝜃1 or both 𝜃1 and 𝜃n follow noninformative beta priors, and define
variants of these distributions corresponding to the prior distributions of Definition 1.

4.2 Modified priors involving the initial mortality rate

The discussion at the end of Section 3.3 suggests that the possibility of overestimation of a very
small 𝜃1 could be a matter of concern. This could be handled by an approach parallel to that used
in the previous subsection. Recalling Equation (4), which defines the set Ln, the idea leading to
(5) suggests the prior (the superscript I indicating “initial”):

𝜋I
𝛼,𝛽

(𝜽) = beta(𝜃1; 𝛼, 𝛽)I𝜃11n−1+(1−𝜃1)Ln(𝜽2∶n)∕mn−1((1 − 𝜃1)Ln). (7)
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To avoid the possible disadvantage of the 𝜋GMS(𝜽) prior discussed at the end of Section 3.3, we
suggest to choose 𝛼, 𝛽 close to 0.

The concerns raised with respect to the marginal distributions for 𝜃1 and 𝜃n under the
𝜋GMS(𝜽) prior can be handled simultaneously by combining (5) and (7) by specifying a joint
prior for these parameters, and a uniform conditional distribution for 𝜽2∶n−1 given 𝜃1 and
𝜃n. Define Mn = {𝜽2∶n−1 ∈ Rn−2 ∶ (0,𝜽T

2∶n−1, 1)T ∈ Jn}. Similarly to the proofs of Theorems 1
and 2, it can be seen that 𝜽 ∈ Jn if and only if 0 ≤ 𝜃1 ≤ 𝜃n ≤ 1 and 𝜽2∶n−1 ∈ 𝜃11n−2 + (𝜃n −
𝜃1)Mn. This leads to the following definition, (the superscript IF indicating “initial and
final”):

𝜋
I,F
𝛼1,𝛽1,𝛼n,𝛽n

(𝜽) ∝ I𝜃1≤𝜃n ((𝜃1, 𝜃n)T)beta(𝜃1; 𝛼1, 𝛽1)beta(𝜃n; 𝛼n, 𝛽n)

I𝜃11n−2+(𝜃n−𝜃1)Mn(𝜽2∶n−1)∕mn−2((𝜃n − 𝜃1)Mn). (8)

The following lemma describes the sets of extreme points needed to characterize the distribu-
tions (7) and (8) analogously to the characterization of (5) in Theorem 3.

Lemma 2.

(i) The set Ln of convex, increasing functions on {1, 2, … ,n} satisfying 0 = f (1) ≤ f (n) ≤
1 is a convex set spanned by n extreme points. the extreme points are w0 = 0n =
(0, 0, … , 0)T and the n − 1 vectors w2, … ,wn given in Lemma 1.

(ii) The set Mn of convex, increasing functions on {1, 2, … ,n} satisfying 0 = f (1) ≤ f (n) =
1 is a convex set spanned by the n − 1 extreme points w2,w3, … ,wn.

The proof is given in the Appendix.
We can now give the following characterization of the distributions (7) and (8):

Theorem 4.

(i) a variable 𝜽 distributed according to 𝜋I
𝛼,𝛽

has the distribution of 𝜃11n + (1 −
𝜃1)(X2w2 + · · · + Xnwn), where 𝜃1 ∼ beta(⋅; 𝛼, 𝛽), and (X2, … ,Xn)T is Dirichlet dis-
tributed Dir(n; 1, 1, … , 1).

(ii) a variable 𝜽 distributed according to 𝜋
I,F
𝛼1,𝛽1,𝛼2,𝛽2

has the distribution of 𝜃11n +
(𝜃n − 𝜃1)(X2w2 + · · · + Xnwn), where (𝜃1, 𝜃n)T has marginal density proportional
to I𝜃1≤𝜃n((𝜃1, 𝜃n)T)beta(𝜃1; 𝛼1, 𝛽1)beta(𝜃n; 𝛼n, 𝛽n), Xn = 1 − X2 − · · · − Xn−1 and
(X2, … ,Xn−1)T is Dirichlet distributed Dir(n − 1; 1, 1, … , 1).

The proof is given in the Appendix.
Based on Theorem 4, and in analogy with Definition 1, it is natural to introduce the following

generalizations of (7) and (8):

Definition 2.

(i) Let 𝜸 = (𝛾2, 𝛾3, … , 𝛾n, 𝛾0)T be an n-dimensional vector of positive, real numbers. We
define 𝜋I

𝛼,𝛽,𝜸
(𝜽) to be the density for a variable of the form 𝜃11n + (1 − 𝜃1)(X2w2 +

· · · + Xnwn), where 𝜃1 ∼ beta(⋅; 𝛼, 𝛽), and vector (X2, … ,Xn)T is Dirichlet distributed
Dir(n; 𝛾2, 𝛾3, … , 𝛾n, 𝛾0), independently of 𝜃1.
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(ii) Let 𝜸 = (𝛾2, 𝛾3, … , 𝛾n)T be an n − 1-dimensional vector of positive, real numbers.
We define 𝜋

I,F
𝛼1,𝛽1,𝛼n,𝛽n,𝜸

(𝜽) to be the density for a variable of the form 𝜃11n + (𝜃n −
𝜃1)(X2w2 + · · · + Xnwn), where the joint density for (𝜃1, 𝜃n)T is proportional to
I𝜃1≤𝜃n((𝜃1, 𝜃n)T)beta(𝜃1; 𝛼1, 𝛽1)beta(𝜃n; 𝛼n, 𝛽n), Xn = 1 − X2 − · · · − Xn−1 and (X2, … ,Xn−1)T

is Dirichlet distributed Dir(n − 1; 𝛾2, 𝛾3, … , 𝛾n), independently of 𝜃1 and 𝜃n.

5 MARGINAL PRIOR EXPECTATIONS AND VARIANCES
FOR MORTALITY RATE PARAMETERS

We think it is fair to claim that the wish for scale neutrality for the initial and final mortality rates
are met by choosing the respective 𝛼 and 𝛽-parameters of Definitions 1 and 2 close to 0. In this
section, we will discuss how the parameters 𝛾i of these definitions, describing the conditional dis-
tributions for the remaining mortality rates, should be chosen in order to obtain a noninformative
and approximately scale neutral modeling also for the shape of the mortality rate curve. For sim-
plicity, we will limit attention to the priors discussed in Section 4.1. As a byproduct, we will also
derive the limiting behavior of the uniform distribution on Jn, see Proposition 2 and Corollary 1.
These results confirm that this distribution is far from scale neutral. We start by considering the
expected shape of the mortality rate curve.

5.1 Prior expectation of the mortality rate curve

For convenience, we first assume that the prior distribution (5) is chosen. By Theorem 3, this
means that each 𝛾i of Definition 1 equals 1. We are interested in the effect on the expected shape
of the mortality rate curve of changing the scale by increasing n. A standardized representation of
the mortality rate curve is given by the vector 𝝓 defined in (6), shown in Theorem 3 to follow the
required uniform distribution on Kn when the vector (X1, … ,Xn−1)T follows the Dir(n; 1, … , 1)
distribution. This standardization simplifies the comparison of the curves for different values of n.
To emphasize the dependence on the number n of measuring points, we denote the components
𝜙t of 𝝓 defined in (6) by 𝜙n

t , t = 1, … ,n − 1. In addition, we define 𝜙n
n = 1.

Now, for any positive real number r, let [r] be the smallest integer for which [r] ≥ r. Then 𝜙n
[n𝜏]

is the standardized mortality rate 𝜙n
t for an index t which approximately satisfies t∕n = 𝜏. For any

integer n define the step function fn(𝜏) = E
(
𝜙n
[n𝜏]

)
, 𝜏 ∈ (0, 1]. Note that by Lemma 1 the tth row

of the matrix W n is given by

(wt,1,wt,2,wt,3, … ,wt,t,wt,t+1, … ,wt,n)
= (1, (t − 1)∕(n − 1), (t − 2)∕(n − 2), … , 1∕(n − t + 1), 0, … , 0). (9)

Hence, it follows from (6), (9) and the fact that E(Xi) = 1∕n for every i, that

fn(𝜏) = (1∕n)(1 +
[n𝜏]−1∑

i=1
([n𝜏] − i)∕(n − i))

= (1∕n) +
[n𝜏]−1∑

i=1
(1∕n)(([n𝜏]∕n) − (i∕n))∕(1 − (i∕n)). (10)
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The sum in (10) is an approximation to the integral

∫
𝜏

0
(𝜏 − x)∕(1 − x)dx = (𝜏 − 1)∫

𝜏

0
1∕(1 − x)dx + ∫

𝜏

0
dx = (1 − 𝜏) log(1 − 𝜏) + 𝜏.

Hence, as n increases the step functions fn(𝜏) concentrate around the curve

lim
n→∞

fn(𝜏) = f (𝜏)
def
= (1 − 𝜏) log(1 − 𝜏) + 𝜏. (11)

We may define the random vector 𝝓n through (6) with (X1, … ,Xn−1) Dirichlet distributed
with any Dirichlet parameter vector 𝜸 used in Definition 1. Since E(Xi) = 1∕n also under the
Dir(n; 𝛾, … , 𝛾)-distribution for any value of 𝛾 > 0, the argument leading to (11) also applies
to the prior distributions of Definition 1, if all components of 𝜸 are identical. Hence, rescal-
ing essentially does not influence this part of the prior modeling significantly. The result is
also valid for the original uniform prior on 𝜽 of Gelman et al. (1996). This can be proved by a
slightly modified argument involving the extra extreme point vector 0, as well as a Dirichlet dis-
tribution with marginal expectations 1∕(n + 1) rather than 1∕n. Hence, we have the following
proposition:

Proposition 2. Under the uniform prior distribution on Jn, it holds that for any 𝜏 ∈ (0, 1] we have
limn→∞ E(𝜃[n𝜏]) = f (𝜏) = (1 − 𝜏) log(1 − 𝜏) + 𝜏.

Interestingly, Gelman (1996) claims that, in our notation, the limiting curve is instead the
quadratic 𝜏2. The argument is that under convexity, the differences 𝜙n

t − 𝜙n
t−1 form a positive

increasing sequence, and under the uniformity assumption such sequences approach linearity as
n increases. Hence, the sequence 𝜙n

t itself should approach a quadratic. The reason that this argu-
ment is not valid is that the restriction (𝜙n

2 − 𝜙n
1) + · · · + (𝜙n

n − 𝜙n
n−1) = 1 − 𝜙n

1 ≤ 1 is not taken into
consideration. The vector (𝜙n

1 , (𝜙
n
2 − 𝜙n

1), … , (𝜙n
n − 𝜙n

n−1)) is a one-to-one linear transformation of
(𝜙n

1 , … , 𝜙n
n) and is hence uniformly distributed if this latter vector is assumed to have a uniform

distribution. But since the sum of the components is bounded by 1, this distribution is restricted
to a proper subset of the set of increasing functions. Hence, the models for this vector and a
general uniformly distributed increasing vector are not identical, as asserted in Gelman (1996).
In particular, the curve does not necessarily become concentrated around a straight line in
the limit.

The perceived quadratic form of the mortality rate curve in Gelman (1996) is taken as a partial
explanation for the apparent overestimation of the mortality rates for higher age classes; the form
of the curve forcing these mortality rates upwards. To the extent that such an effect is important,
it is even stronger because of the logarithmic shape of f (𝜏), having the derivative − log(1 − 𝜏) and
the second derivative 1∕(1 − 𝜏). However, we doubt that there exists a “neutral” shape, ideal for
being updated by data toward a true mortality rate curve irrespective of the true shape of this
curve. But if such a shape is believed to exist, one could obtain an a priori expected curve of this
shape by changing the parameters of the Dirichlet distribution for the Xi. The parameters should
be chosen such that the weights E(Xi) are equal to (or proportional to) the components of the
vector obtained by applying the inverse of W n to a vector of discrete approximations to the desired
curve. This strategy could also be followed if it is desirable to build into the prior an informative
preference for a certain shape, such as the shape of the failure rate of a Gompertz–Makeham
distribution.
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The overestimation for higher age classes is also partially attributed by Gelman (1996) to
small marginal prior variances for the mortality rates with the rather large (n = 30) number of
measuring points. Undoubtedly, this is a very significant point, and we think choosing Dirichlet
parameters giving large enough variances for each 𝜙n

t to allow the data to determine the shape of
the posterior expected mortality rate curve, irrespective of the shape of the prior expectation, is
likely to be more important than this shape. The limiting behavior of the marginal variances with
increasing n is analyzed in the next subsection. How to choose such parameters is discussed in
Section 5.3.

5.2 Prior variances of the standardized mortality rates

In an example discussed in sections 3.1 and 3.2 of Gelman (1996), it is shown that under a uniform
prior the marginal variances of parameters representing a gridded approximation to a continu-
ous increasing curve converges to 0 as the distance between the grid points converges to 0. This
is undesirable behavior, since it may imply that a fixed data set is unable to pull the curve which
has a linear expectation under the uniform prior, toward the true shape if a too fine grid is cho-
sen. In the words of Gelman (1996): “The strength of the prior distribution thus depends on the
discretization, with potentially grave consequences.” Based on considering the increasing and
convex mortality rate model “as a slight variant of the example of sections 3.1–3.2,” Gelman (1996)
in Section 3.3 argues that this model is subject to the same problem. Part of the argument is based
on the incorrect expected linear shape of the curve of mortality rate differences mentioned in the
previous subsection, but the result is confirmed in Corollary 1 below. The corollary follows from
a special case of Theorem 5 below.

Under the prior distributions 𝜋F
𝛼,𝛽,𝛾,… ,𝛾

of Definition 1, the standardized mortality rate vari-

ances vn(𝜏)
def
= var

(
𝜙n
[n𝜏]

)
, 𝜏 ∈ (0, 1], can be computed using (6) and (9) in a similar way as

in the computation of the expectations fn(𝜏) in (10) of the previous subsection. After carry-
ing out this calculation and going to the limit as n → ∞, we arrive at the following theorem,
where the main point is the existence of a limiting curve rather than its exact analytic
form:

Theorem 5. Under the prior distributions 𝜋F
𝛼,𝛽,𝛾,… ,𝛾

of Definition 1, the standardized mortality rate
variances satisfy

lim
n→∞

(n𝛾 + 1)vn(𝜏) = 2𝜏(1 − 𝜏) + 2(1 − 𝜏)2 log(1 − 𝜏) − (1 − 𝜏)2(log (1 − 𝜏))2.

Proof. Noting that var(Xi) = (n − 1)∕(n2(n𝛾 + 1)) and, for i ≠ j, cov(Xi,Xj) = −1∕(n2(n𝛾 + 1)) we
obtain from (6)

vn(𝜏) = ((n − 1)∕(n2(n𝛾 + 1)))

{ n∑
i=1

w2
[n𝜏],i

}

+ (−1∕(n2(n𝛾 + 1)))

{ n∑
i,j=1,i≠j

w[n𝜏],iw[n𝜏],j

}
.

For convenience we add the sum
∑n

i=1w2
[n𝜏],i∕(n

2(n𝛾 + 1)) to the first summand and subtract it
from the second. Using (9) and then (10), this yields
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vn(𝜏) = (1∕(n(n𝛾 + 1)))

{
1 +

[n𝜏]−1∑
i=1

(([n𝜏] − i)∕(n − i))2

}

+ (−1∕(n2(n𝛾 + 1)))

{
1 +

[n𝜏]−1∑
i=1

([n𝜏] − i)∕(n − i)

}

⋅

{
1 +

[n𝜏]−1∑
j=1

([n𝜏] − j)∕(n − j)

}

= (1∕(n𝛾 + 1))

{
(1∕n) +

[n𝜏]−1∑
i=1

(1∕n)((([n𝜏]∕n) − (i∕n))∕(1 − (i∕n)))2

}
− (1∕(n𝛾 + 1))fn(𝜏)2, (12)

where we have used (10) in the last step. The sum in (12) is an approximation to the integral

∫
𝜏

0
(𝜏 − x)2∕(1 − x)2dx = 2𝜏 − 𝜏2 + 2(1 − 𝜏) log(1 − 𝜏).

Since the limit of fn(𝜏) as n → ∞ is f (𝜏) given by (11), it follows that

lim
n→∞

(n𝛾 + 1)vn(𝜏) = 2𝜏 − 𝜏2 + 2(1 − 𝜏) log(1 − 𝜏) − f (𝜏)2

= 2𝜏 − 𝜏2 + 2(1 − 𝜏) log(1 − 𝜏) − ((1 − 𝜏) log(1 − 𝜏) + 𝜏)2

= 2𝜏(1 − 𝜏) + 2(1 − 𝜏)2 log(1 − 𝜏) − (1 − 𝜏)2(log (1 − 𝜏))2. (13)
▪

It follows from Theorem 5 that for a fixed 𝛾 > 0 the standardized mortality rate vari-
ance vn(𝜏) converges to 0 as n → ∞. Hence, using a common fixed 𝛾 regardless of n is sub-
ject to the above-mentioned concern expressed in Gelman (1996). This applies also to the
marginal variances for the mortality rate vector 𝜽 when distributed according to the uniform
distribution on Jn:

Corollary 1. Let 𝜏 ∈ (0, 1) be arbitrary. Then under the uniform prior on Jn we have

lim
n→∞

var(𝜃[n𝜏]) = 0.

Proof. It is noted just after (5) that 𝜋GMS(𝜽) = 𝜋F
𝛼,𝛽

(𝜽) with 𝛼 = n, 𝛽 = 1. By Theorem 3 and
Definition 1, this is the same distribution as𝜋F

𝛼,𝛽,𝜸
(𝜽)with 𝛼 = n, 𝛽 = 1 and 𝜸 = (1, 1, … , 1). Under

this distribution, we have 𝜃[n𝜏] = 𝜃n𝜙
n
[n𝜏], and hence

var
(
𝜃[n𝜏]

)
= var

(
𝜃n𝜙

N
[n𝜏]

)
.

Since by Theorem 3 𝜃n and 𝜙n
[n𝜏] are independent, we obtain by conditioning on 𝜃n

var
(
𝜃n𝜙

n
[n𝜏]

)
= E(𝜃2

n)var
(
𝜙n
[n𝜏]

)
+
(

E(𝜙n
[n𝜏])

)2
var(𝜃n) ≤ var

(
𝜙n
[n𝜏]

)
+ var(𝜃n).

The first summand approaches 0 as n → ∞ by Theorem 5, while the second summand equals
n∕((n + 1)2(n + 2)) by Theorem 1. This proves the corollary. ▪
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5.3 Consequences for the choice of Dirichlet parameters

We knew already from Theorem 1 and the subsequent discussion that the uniform distribution
is not satisfactory as a noninformative prior on Jn. The main lesson to learn from Theorem 5 is
therefore to guide us in choosing Dirichlet parameters in Definition 1. Consider for instance 𝜋F

𝛼,𝛽

defined in (5), which is a special case of Definition 1 with (𝛾1, … , 𝛾n) = (1, … , 1). The conclusion
of Corollary 1 does not hold when choosing 𝛼 = 𝛽 = 𝜖 close to 0, since by (10), (11) and the above
proof we then in the limit have var(𝜃[n𝜏]) ≈ (1∕4)f (𝜏)2 for large n. But for the shape of the curve,
the distribution (5) becomes increasingly problematic when n increases, regardless of the choice
of 𝛼 and 𝛽, due to Theorem 5. Hence, it seems unlikely that uniformity can play a useful role
in non-informative prior modeling of convex, increasing mortality rates. By Theorem 5, the only
choice of 𝛾 for which vn(𝜏) stays bounded away from 0 for every value of n is 𝛾 = 0, corresponding
to the improper Dirichlet density proportional to x−1

1 x−1
2 · · · x−1

n . But for a given value of n we may
approximate this arbitrarily well by choosing 𝛾 sufficiently small. It would seem natural from the
point of view of scale neutrality to choose 𝛾 inversely proportional to n. The standardized variance
vn(𝜏) then approaches a limit proportional to (13), and is of the same order of magnitude as this
limit. Hence, the desired stability of the prior variances of the standardized mortality rates under
rescaling can be achieved.

Because the limit of (13) as 𝜏 → 0 is 0, implying that, under the conditions of Theorem 5 with
a fixed value of 𝛾 , we have limn→∞ var(𝜙n

1) = 0, it might be a good idea to choose a parameter
vector for the Dirichlet distribution of (X1, … ,Xn−1)T of the form (𝛾, 𝛾∕n, … , 𝛾∕n) instead of
(𝛾, 𝛾, … , 𝛾). Since by (6) 𝜙n

1 = X1, this choice would give a beta distribution with parameters 𝛾

and (n − 1)𝛾∕n for 𝜙n
1 . This will ensure var(𝜙n

1) ≈ 1∕4 if 𝛾 is small enough, allowing data to adjust
the distribution of 𝜙n

1 .
If another limiting shape for the prior expectation of the mortality rate curve than (11) is pre-

ferred, this can be achieved in our framework by choosing a non-constant vector of Dirichlet
parameters, as explained in Section 5.1. Also in this case sensible scaling is important. For-
tunately, the argument leading to (13) can be generalized to the situation when the Dirichlet
parameters 𝛾1, 𝛾2, … , 𝛾n are allowed to be unequal. We conclude this section with a sketch of
the proof. Assume that these parameters under different scalings are derived from a common
continuous bounded function g(𝜏) on the interval [0, 1]. For a given value of n, define accord-
ingly scaled parameters 𝛾i = (1∕n)g(i∕n), i = 1, … ,n. If we require ∫ 1

0 g(𝜏)d𝜏 = 1, we obtain that

Γ
def
=

∑n
i=1𝛾i ≈ 1. The case treated in Theorem 5, combined with the requirement that the Dirich-

let parameters add up to 1, independently of n, corresponds to g(𝜏) = 1. We now have var(Xi) =
𝛾i(Γ − 𝛾i)∕(Γ2(Γ + 1)) and cov(Xi,Xj) = −𝛾i𝛾j∕(Γ2(Γ + 1)). These quantities can be incorporated in
the expansion of var

(
𝜙n
[n𝜏]

)
as in (12). When adapting the proof to this situation, the sums corre-

sponding to the sums in (12) converge to integrals involving g(𝜏), and the sum Γ corresponds to
the quantity n𝛾 appearing in Theorem 5. Since requiring g to have unit integral implies that 𝛾 is
close to 1, the required stability under rescaling of the marginal prior variances of the standardized
mortality rates can be obtained also in this case.

6 APPLICATION TO THE LIFE INSURANCE DATASET

In this paper, we first address a LIN dataset (Broffitt, 1988) on the graduation of mortalities from
Table 1. Additionally, this dataset was extended to monthly observed data (LINM) through a
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uniform upsampling procedure to allow for monthly data over ages from 35 to 64 resulting in
360 observed time points in LINM instead of 30 in LIN. LINM dataset is available in Table 2 in
the Appendix. For LIN and LINM data, we follow Gelman (1996) in assuming that the observed
deaths yt at each age t follow independent binomial distributions with rates equal to the unknown
mortality rates 𝜃t and known population sizes Nt. Further, consistently following Gelman (1996)
due to the large population sizes for each age group and due to low empirical death rates, we
use the Poisson approximation for mathematical convenience. Thus, the following model is
assumed:

p (y|𝜽,N1, … ,Nn) ∝
n∏

t=1
𝜃

yt
t exp (−Nt𝜃t) . (14)

Then, we performed inference with the uniform 𝜋GMS(𝜽) prior (Gelman, 1996) specified in
Equation (2), as well as the suggested in this paper 𝜋F

𝛼,𝛽
(𝜽), 𝜋I

𝛼,𝛽
(𝜽), and 𝜋

I,F
𝛼1,𝛽1,𝛼n,𝛽n

(𝜽) priors from
Equations (5), (7), and (8), respectively.

We used Stan (Carpenter et al., 2017) for Bayesian inference. In all of the experiments, 20 par-
allel chains were run for 100,000 iterations each with a warm-up of 10,000 iterations. Otherwise,
the default tuning parameters from Stan (Carpenter et al., 2017) were used.

In Figure 1, we present extensions of figure 2 from Gelman et al. (1996) and figures 2 and
3 from Gelman (1996). Figure 1 presents posterior means under the studied priors as well as
95% credible intervals obtained within the same settings. These figures show that replacing the
marginal prior beta(𝜃30; 30, 1) with a noninformative beta prior while retaining the uniform prior
for the rest of the parameters results in a drastic improvement of the posterior distribution. On
the other hand, a corresponding change in the marginal prior for 𝜃1 seems to have a negligible
effect. The same conclusions with an even stronger improvement are valid for the LINM data as
shown in Figure 2.

Further, for both of the addressed datasets, we performed inference with a 𝜋
I,F
𝛼1,𝛽1,𝛼n,𝛽n

(𝜽)
prior and different values of 𝛾2, … , 𝛾n for the Dirichlet distribution of (X2, … ,Xn−1)T . More

F I G U R E 1 Posterior means (left) and credible intervals (right) for the mortality graduation data (LIN)
from Broffitt (1988) under 𝜋GMS(𝜽) (U-prior), 𝜋F

𝛼,𝛽
(𝜽) (F-prior), 𝜋I

𝛼,𝛽
(𝜽) (I-prior), and 𝜋

I,F
𝛼1 ,𝛽1 ,𝛼n ,𝛽n

(𝜽) (IF-prior) priors
as well as MLE (dots) and constrained MLE (C-MLE) estimates of mortality rates from Gelman et al. (1996)
[Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 2 Posterior means (left) and credible intervals (right) for the simulated mortality graduation data
(LINM) based on Broffitt (1988) under 𝜋GMS(𝜽) (U-prior), 𝜋F

𝛼,𝛽
(𝜽) (F-prior), 𝜋I

𝛼,𝛽
(𝜽) (I-prior), and 𝜋

I,F
𝛼1 ,𝛽1 ,𝛼n ,𝛽n

(𝜽)
(IF-prior) priors as well as MLE (dots) estimates of mortality rates [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 3 Posterior means for the mortality graduation data (LIN) from Broffitt (1988) (left) and the
simulated mortality graduation data (LINM) based on Broffitt (1988) (right) under 𝜋I,F

𝛼1 ,𝛽1 ,𝛼n ,𝛽n
(𝜽) (IF-prior) priors

for different values of 𝛾 (i) [Colour figure can be viewed at wileyonlinelibrary.com]

specifically, we varied the values of all 𝛾 ’s within 𝜋
I,F
𝛼1,𝛽1,𝛼n,𝛽n

(𝜽) using the following sequence
𝛾 (i) = (1 − exp(−1))i. For LIN, we allowed i ∈ {1, … , 20}. For LINM, for computational reasons
we decided to only use i ∈ {1, 4, 7, 11, 14, 17, 20}. The results for different values of 𝛾 (i) are shown
in the left and right panels of Figure 3 for LIN and LINM datasets, respectively. For the LIN dataset
from Broffitt (1988), we clearly see three clusters for three ranges of 𝛾 (i). The general tendency as
expected is that for the smaller values of 𝛾 (i) we are shifting the mortality rates closer to zero. The
same conclusions are overall valid for LINM data. Thus, as expected, for both datasets the overall
tendency is that the curve becomes flatter and seems to fit the observed data better with smaller
values of 𝛾 (i).

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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7 CONCLUSIONS

Results from the analysis of a specific life insurance dataset in Gelman et al. (1996) indicate that
a uniform prior on the set of increasing, convex mortality rates is not a satisfactory choice of a
noninformative prior distribution on this set. Theorems 1 and 2 of the present paper provide
theoretical support for this empirical evidence, and together with Proposition 2 and Corollary 1
indicate an underlying mathematical explanation. By establishing the marginal distributions for
the final and the initial mortality rates, and the marginal expectations and variances for parame-
ters characterizing the shape of the mortality rate curve, these results also show that the uniform
prior falls short of a requirement for scale neutrality, which is an attractive goal to pursue nonin-
formative priors. Our results are in line with the explanation given in section 3.3 in Gelman (1996),
which is that the “prior distribution becomes ever stronger as the scale of the time intervals
becomes smaller.” Defining noninformative marginal distributions for the initial and/or final
mortality rates directly, uniformity could still potentially be used in the conditional distribution
for the rest of the mortality rates. Alternative characterizations of such distributions given in The-
orems 3 and 4 motivate a whole new class of priors described in Definitions 1 and 2 through the
choice of parameters for Dirichlet distributions. The uniform distribution corresponds to all the
Dirichlet parameters being 1 and as a consequence their sum equals the number n of measuring
points. Theorem 5, as well as the numerical results from Section 6, indicate that such a uniform
conditional distribution on 𝜃1∶n−1 given 𝜃n is still not satisfactory from the point of view of scale
neutrality. The subsequent discussion suggests that the desired scale neutrality may be obtained
by instead requiring the sum of the Dirichlet parameters to stay constant, regardless of the num-
ber of measuring points. Hence, the prior distribution has to be changed according to the number
of measuring points. This is in accordance with the goal expressed in Gelman (1996), Section 5:
“Instead of requiring that a single probability model be invariant under scaling …we demand
a family of models, indexed by scale, that are mutually consistent.” Alternatively, the improper
Dirichlet distribution with all parameters equal to 0 might serve as a single default option suitable
for any number of measuring points.
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APPENDIX

Proof of Theorem 2. Similarly to (3), define

Ln =
{
𝜽2∶n ∈ Rn−1 ∶

(
0,𝜽T

2∶n
)T ∈ Jn

}
.

Using that 𝜃1 ≤ 𝜃t ≤ 1 implies that 0 ≤ 𝜃t − 𝜃1 ≤ 1 − 𝜃1, t = 2, … ,n, it is not too hard to see that
𝜽 ∈ Jn if and only if 𝜽 = 1n or 0 ≤ 𝜃1 < 1 and (1∕(1 − 𝜃1))(𝜽2∶n − 𝜃11n−1) ∈ Ln, or equivalently,
0 ≤ 𝜃1 ≤ 1 and 𝜽2∶n ∈ (𝜃11n−1) + (1 − 𝜃1)Ln. Hence, calculating the volume of the set of 𝜽 ∈ Jn
such that 𝜃1 ≤ x by integrating along the 𝜃1-axis, we obtain

mn({𝜽 ∈ Jn ∶ 𝜃1 ≤ x}) = ∫
x

0
mn−1({𝜽2∶n ∶ (𝜃1,𝜽

T
2∶n)

T ∈ Jn})d𝜃1

= ∫
x

0
mn−1((1 − 𝜃1)Ln)d𝜃1

= mn−1(Ln)∫
x

0
(1 − 𝜃1)n−1d𝜃1

= (mn−1(Ln)∕n)(1 − (1 − x)n).

By the uniformity assumption, the probability under (2) that 𝜃1 ≤ x is proportional to this vol-
ume, and it follows that the density for 𝜃1 under (2) is proportional to (1 − 𝜃1)n−1, proving the
theorem. ▪

Proof of Lemma 2. For both sets, the fact that the given vectors are extreme points are proved by
the same argument as in the proof of Lemma 1. Let u = (u1, … ,un)T be an arbitrary element of
Ln. By adding 1 − un to each coordinate of u we obtain a vector belonging to the set Kn of Lemma 1.
Formally, u + (1 − un)1n ∈ Kn. This vector can be written uniquely as a convex combination of
the extreme points given in Lemma 1, that is,

u + (1 − un)1n = a1w1 + · · · + anwn.

Since w1 = 1n, this implies u = (a1 − 1 + un)1n + a2w2 + · · · + anwn. Since u1 = 0, we must
have a1 = 1 − un, and hence u = a2w2 + · · · + anwn = a0w0 + a2w2 + · · · + anwn, where a0 =
1 − (a2 + · · · + an) ≥ 0. This proves the first part of Lemma 2. Now suppose instead that u ∈ Mn.
Then u is also a member of Kn, and has a unique expression as a convex combination u =
a1w1 + · · · + anwn by Lemma 1. Since u is also a member of Ln, and since w1 = 1n, we must have
a1 = 0, and the assertion follows. ▪

https://doi.org/10.1111/sjos.12588
https://doi.org/10.1111/sjos.12588
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Proof of Theorem 4. By Lemma 2, part (i), vectors of the form X2w2 + · · · + Xnwn span the set
Ln. Let W n

−1;−1 be the matrix formed by deleting the first row and first column of the matrix W n .
Define the n − 1-dimensional vector variable

𝝓 = W n
−1;−1(X2, … , xn)T = X2w2

2∶n + · · · + Xnwn
2∶n. (A1)

Since all vectors w2, … ,wn have 0 as their first entry, it follows that X2w2 + · · · + Xnwn =
(0,𝝓T)T . Consequently, by Lemma 2, part (i), vectors of the form (0,𝝓T)T span the set Ln, and
hence the vectors 𝝓 of (14) span Ln. It follows as in the proof of Theorem 3 that 𝝓 is uniformly
distributed on Ln. Hence, scaling and translating 𝝓, part (i) follows from (7). To prove part (ii), we
first note that by Lemma 2, part (ii), the set Mn is spanned by vectors of the form

X2w2 + · · · + Xnwn = (X2(w2 − wn) + · · · + Xn−1(wn−1 − wn)) + wn.

Recall that wn = (0, … , 0, 1)T and that all the vectors w2, … ,wn−1 have 0 as their first and 1
as their last entry. Hence, for every i = 2, … ,n − 1 we have that wi − wn = (0, (wi

2∶n−1)
T , 0)T .

Let W n
−1,−n;−1,−n be the matrix formed by deleting the first and last row and the first and last

column from W n, that is, the matrix formed by the vectors wi
2∶n−1, i = 2, … ,n − 1. Define the

n − 2-dimensional vector variable

𝝓 = W n
−1,−n;−1,−n(X2, … ,Xn−1)T = X2w2

2∶n−1 + · · · + Xn−1wn−1
2∶n−1. (A2)

From the above, it follows that X2w2 + · · · + Xnwn = ((0,𝝓)T , 0)T + wn = ((0,𝝓)T , 1)T . Since vec-
tors of this form span Mn, it follows that vectors 𝝓 of the form (A1) span the set Mn. Uniformity
of 𝝓 on this set is proved as before, and the proof is completed by scaling and translation as in the
proof of part (i). ▪
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