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Abstract We prove the crepant resolution conjecture for Donaldson–Thomas
invariants of hard Lefschetz 3-Calabi–Yau (CY3) orbifolds, formulated by
Bryan–Cadman–Young, interpreting the statement as an equality of rational
functions. In order to do so, we show that the generating series of stable pair
invariants on any CY3 orbifold is the expansion of a rational function. As
a corollary, we deduce a symmetry of this function induced by the derived
dualising functor. Our methods also yield a proof of the orbifold DT/PT cor-
respondence for multi-regular curve classes on hard Lefschetz CY3 orbifolds.
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1 Introduction

Donaldson–Thomas (DT) invariants, introduced in [43], are deformation-
invariant numbers that virtually enumerate stable objects in the derived
category of coherent sheaves on a smooth projective threefold. A particularly
interesting case is that of DT invariants of curve-like objects, such as ideal
sheaves of curves or the stable pairs of [36], on a Calabi–Yau threefold.

The crepant resolution conjecture for Donaldson–Thomas invariants, origi-
nally conjectured by Bryan, Cadman, andYoung in [11], is a comparison result
that predicts a relation between these curve-type DT invariants of two differ-
ent Calabi–Yau threefolds. The first threefold is an orbifold, and the second
threefold is a crepant resolution of singularities of the coarse moduli space of
the first.

In this paper, we prove the crepant resolution conjecture for Donaldson–
Thomas invariants, interpreting the conjecture of [11] as an equality of rational
functions, rather than an equality of generating series. In “Appendix A”, we
provide a simple example demonstrating the necessity of the rational function
interpretation.

Theorem C. The crepant resolution conjecture for Donaldson–Thomas invari-
ants holds as an equality of rational functions.

Let X denote the CY3 orbifold, and D(X ) its bounded coherent derived
category. Our proof goes via wall-crossing in the motivic Hall algebra. This
strategy has previously been applied to establish comparison theorems for DT
invariants, see e.g. [8,14,18,34,45,46,48].

However, our arguments are novel in at least two ways:

1. The Euler pairing is non-trivial. A key component of Joyce’s wall-crossing
formula is the Euler pairing χ(E, F) of the objects E, F ∈ D(X) whose
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slopes cross. Previous results have made essential use of the fact that on
a 3-dimensional variety X , the Euler pairing between two sheaves with
1-dimensional support vanishes. The corresponding statement fails on the
orbifold X , and this significantly complicates the application of the wall-
crossing formula.
This non-vanishing is related to the fact that the derived equivalence
D(Y ) ∼= D(X ) of the McKay correspondence does not preserve dimen-
sions of supports, e.g. curve-like objects on X can be sent to surface-like
objects on the crepant resolution Y .
From this perspective, the novelty of our argument is that we compute a
wall-crossing involving surface-like objects.

2. Rationality of the generating series is crucial. The comparison result
between our DT-type generating functions only holds after a re-expansion
of a rational generating function, analogous to the analytic continuation
for the Gromov–Witten crepant resolution conjectures; see [13,21]. This
means that for a fixed numerical class (β, c), the conjecture does not state
a relation between the DT invariants of class (β, c) onX and Y , but rather
between the collection of all DT invariants with fixed curve class β.
This phenomenon is analogous to the q ↔ q−1 symmetry of the stable pairs
generating function on a variety, which is a symmetry of rational functions,
not of generating series. Again, the non-triviality of the Euler pairingmakes
proving these relations more complicated in our case.

1.1 Statement of results

Throughout, letX be a 3-dimensional Calabi–Yau orbifold, bywhichwemean
a smooth Deligne–Mumford stack with ωX

∼= OX , H1(X ,OX ) = 0, and
projective coarse moduli space g : X → X .

1.1.1 Rationality of stable pair invariants

The numerical Grothendieck group N (X ) is the Grothendieck group of
D(X ) modulo the radical of the Euler pairing:

χ(E, F) =
∑

i

(−1)i dim ExtiX (E, F)

where E, F ∈ D(X ). This is a free abelian group of finite rank. We
write N0(X ) and N≤1(X ) for the saturations of the subgroups gener-
ated by sheaves supported in dimension 0 and ≤ 1 respectively, and write
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N1(X ) = N≤1(X )/N0(X ). It is convenient to pick1 a splitting of the natu-
ral inclusion N0(X ) ↪→ N≤1(X ),

N≤1(X ) = N1(X ) ⊕ N0(X ), (1)

and so we denote a class in N≤1(X ) by (β, c), with β ∈ N1(X ) and c ∈
N0(X ).2

In [4], Behrend defines for any finite type scheme M a constructible function
ν : M → Z, and shows that if M is proper and carries a symmetric perfect
obstruction theory, with associated virtual fundamental class [M]vir, then

∫

[M]vir
1 = eB(M) :=

∑

n∈Z

n · e(ν−1(n)),

where e denotes the topological Euler characteristic. Given (β, c) ∈ N≤1(X ),
one defines the corresponding DT curve count as

DT (X )(β,c) := eB
(
QuotX (OX , (β, c))

) ∈ Z. (2)

Here QuotX (OX , (β, c)) is the projective scheme parametrising quotients
OX � OZ of class [OZ ] = (β, c) in N≤1(X ).

Given a curve class β ∈ N1(X ), define the generating functions

DT (X )β =
∑

c∈N0(X )

DT (X )(β,c)q
c,

DT (X )0 =
∑

c∈N0(X )

DT (X )(0,c)q
c.

(3)

In [36], Pandharipande and Thomas introduced new curve-counting invariants
by considering stable pairs in the derived category. A stable pair is a two-term
complex, concentrated in degrees −1 and 0, of the form

E = (OX
s→ F) ∈ D(X )

such that F is pure of dimension 1 and coker(s) = H0(E) is at most 0-
dimensional. There is a fine moduli space PilbX (β, c) parametrising stable

1 In contrast to the case of varieties,where theholomorphicEuler characteristic gives a canonical
splitting, there need not exist a canonical choice of splitting in the case of orbifolds.
2 When M is a smooth, proper and irreducible variety, N0(M) ∼= Z is generated by the class of
a point. However, when M is a Deligne–Mumford stack with non-trivial isotropy group at some
point, then N0(M) has higher rank, since skyscraper sheaves at a stacky point with different
equivariant structures in general have different numerical classes.
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pairs (OX → F) of class [F] = (β, c). The corresponding PT curve count is
defined as

PT (X )(β,c) := eB (PilbX (β, c)) ∈ Z. (4)

The associated generating function for a fixed curve class β ∈ N1(X ) is

PT (X )β :=
∑

c∈N0(X )

PT (X )(β,c)q
c.

Note that in the case of the empty curve class β = 0 this yields PT (X )0 = 1.

Remark 1.1 The generating functions above, and all others we consider in this
paper, lie in certain completions of the ring Q[N0(X )]. We introduce some
terminology to describe these completions. Let L : N0(X ) → R be a linear
function. We say that an infinite formal sum

∑
c∈N0(X ) acqc, is Laurent with

respect to L if for any x ∈ R, the set of c such that ac �= 0 and L(c) ≤ x
is finite. We write Q[N0(X )]L for the ring of formal expressions which are
Laurent with respect to L .

Given a rational function f ∈ Q(N0(X )), it is represented by at most one
series in Q[N0(X )]L , which we denote by fL and call the Laurent expansion
of f with respect to L .

In particular, in Sect. 2 we define a linear function deg : N0(X ) → Z such
that for any effective class c ∈ N0(X ) we have deg(c) > 0. The generating
functions DT (X )β and PT (X )β are both Laurent with respect to deg.

Our first theorem is the orbifold analogue of the rationality statement for
stable pairs theory of varieties proved in [8,45].

Theorem B. Let X be a CY3 orbifold, and let β ∈ N1(X ). Then PT (X )β
is the Laurent expansion with respect to deg of a rational function fβ ∈
Q(N0(X )).

Moreover, we may write fβ(q) = g/h with g, h ∈ Z[N0(X )] in such a
way that h is of the form

h = (1 − q2β·A)n

for some ample divisor A on X and some positive integer n.

1.1.2 Symmetry of PT (X )

The derived dualising functor D(−) := RH om(−,OX )[2] induces an invo-
lution on N≤1(X ) which preserves N0(X ), and so induces an involution
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on N1(X ). Note that the splitting N≤1(X ) = N1(X ) ⊕ N0(X ) cannot
always be chosen compatibly with this duality, so that in general D(β, c) �=
(D(β), D(c)).

There is an induced involution on Q(N≤1(X )), which we also denote by
D.
Proposition 7.18. We have an equality of rational functions

D
(
zβ fβ(q)

) = zD(β) fD(β)(q).

Equivalently, summing the above over all β ∈ N1(X ), the function

PT (X ) =
∑

β∈N1(X )

∑

c∈N0(X )

PT (X )(β,c)z
βqc

is invariant under D,when considered as an element of Q(N0(X ))[[N eff
1 (X )]].

Here N eff
1 (X ) denotes the cone in N1(X ) spanned by effective classes; see

Sect. 2.2.3.
This result generalises the q ↔ q−1 symmetry of the PTgenerating function

on non-orbifold smooth projective Calabi–Yau 3-folds, as proven in [8].

1.1.3 The McKay correspondence

By theMcKay correspondence [10,20], the coarse space X has a distinguished
crepant resolution f : Y → X given étale-locally on X by Nakamura’s G-
Hilbert scheme. Moreover, Y andX are derived equivalent. Concretely, Y =
Quot(OX , [Ox ])where x ∈ X is a non-stacky point andOx is the skyscraper
sheaf at x . The universal quotient sheaf on Y ×X is the kernel of the Fourier–
Mukai equivalence Φ : D(Y ) → D(X ).

The geometric setup is summarised in the following diagram:

X Y

X

g f (5)

From now onwe impose the additional restriction thatX be hard Lefschetz.
This means that the fibres of f are at most 1-dimensional, and it restricts the
possible stabiliser groups of stacky points; see [12, Lem. 24].

Note that the functor Φ identifies the numerical groups Φ : N (Y )
∼→

N (X ), but that it does not preserve the filtration by dimension. This dis-
crepancy induces a series of new subgroups of N≤1(X ) and N≤1(Y ), which
we now describe.
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Let f∗ : N (Y ) → N (X) denote the pushforward of numerical classes, and
let

Nexc(Y ) = ( f∗)−1(N0(X)
) ∩ N≤1(Y ) ⊂ N≤1(Y )

denote the exceptional classes, consisting of curve classes supported on the
fibres of f and point classes. The natural inclusion Z = N0(Y ) ↪→ Nexc(Y ) is
canonically split by the holomorphic Euler characteristic Nexc(Y ) = N0(Y )⊕
N1,exc(Y ), where N1,exc(Y ) denotes the exceptional curve classes. We write
Nn-exc(Y ) = N≤1(Y )/Nexc(Y ) for the non-exceptional classes.
TheMcKay equivalence induces an inclusionΦ : N≤1(Y ) → N≤1(X ) that

identifies Φ(Nexc(Y )) = N0(X ). Thus the splitting (1) induces a splitting

N≤1(Y ) = Nn-exc(Y ) ⊕ Nexc(Y ). (6)

The group of multi-regular classes is defined as Nmr(X ) = Φ(N≤1(Y )) ⊂
N≤1(X ). The following diagram summarises the relations between these sub-
groups.

N0(Y ) N0(Y ) ⊕ N1,exc(Y ) N≤1(Y )

N0(X ) Nmr(X ) N≤1(X )

(7)

We write N1,mr(X ) = Φ(Nn-exc(Y )). By (6) we obtain an induced splitting

Nmr(X ) = N1,mr(X ) ⊕ N0(X ). (8)

We refer to elements in N1,mr(X ) as multi-regular curve classes.
With this notation in place, our second theorem is the following.

Theorem A (Orbifold DT/PT correspondence) Let X be a CY3 orbifold sat-
isfying the hard Lefschetz condition, and let β ∈ N1,mr(X ). The equality

PT (X )β = DT (X )β

DT (X )0
(9)

of generating series holds in the ring Z[N0(X )]deg.

1.1.4 The crepant resolution conjecture

We now define generating series of the types of DT invariants that appear in
the formulation of the crepant resolution conjecture (CRC).
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Note that we tacitly use the identification of numerical groups Nexc(Y ) =
N0(X ) and Nn-exc(Y ) = N1,mr(X ) induced by Φ. The exceptional generat-
ing series is

DTexc(Y ) :=
∑

c∈N0(X )

DT (Y )(0,c)q
c. (10)

In [14], Bryan and Steinberg show that for any β ∈ Nn-exc(Y ), we have

BS(Y/X)β = DT (Y )β

DTexc(Y )
(11)

in Z[N0(X )]deg where BS(Y/X)β denotes the generating series of f -relative
stable pair invariants of class β. These are stable pair invariants on Y relative
to the crepant resolution f : Y → X ; see Sect. 9 for their definition.

Pick a general ample class ω ∈ N 1(Y )R, a real number γ > 0, and define
the linear function Lγ : N0(X ) → R by

Lγ (c) = deg(c) + γ −1 degY (ch2(Ψ (c)) · ω).

See Sect. 2.2.2 for the definition of the linear function deg : N0(X ) → R.
Here

Ψ : D(X ) → D(Y )

denotes the inverse to the McKay equivalence Φ.
We are now in a position to state our third and main theorem.

Theorem C. (Crepant resolution conjecture) Let X be a CY3 orbifold satis-
fying the hard Lefschetz condition and let β ∈ N1,mr(X ). The equality

PT (X )β = BS(Y/X)β

holds as rational functions. More precisely, if fβ ∈ Q(N0(X )) is the rational
function of Theorem B, then

1. the Laurent expansion of fβ with respect to deg is PT (X )β , and
2. the Laurent expansion of fβ with respect to Lγ is BS(Y/X)β if 0 < γ � 1.

Remark 1.2 The formulation of the CRC in [11, Conj. 1] is the claim

DT (X )β

DT (X )0
= DT (Y )β

DTexc(Y )
, (12)

where the meaning of the equality sign is left unspecified. We provide an
example in “Appendix A” which shows that (12) is not in general true as an
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equality of generating functions, and so a rational function interpretation is
necessary.

Remark 1.3 A second conjecture [11, Conj. 2] states that

DT (X )0 = DT (Y )+excDT (Y )−exc
DT0(Y )

,

where

DT ±(Y )exc =
∑

β∈N1,exc(Y )

DT (Y )β z±β.

This conjecture has been proved by the second-named author in [19, Cor. 2.8];
in contrast to equation (12), this holds as an equality of generating functions
so a rational function interpretation is not necessarsy.

1.2 Outline of proofs

Wework in the category A = 〈OX [1],Coh≤1(X )〉ex ⊂ D(X ), a Noetherian
abelian category introduced by Toda in [45]. For any torsion pair (T,F) on
Coh≤1(X ), we define a (T,F)-pair to be an object E ∈ A of rank −1 such
that

Hom(T, E) = 0 = Hom(E, F) (13)

for all objects T ∈ T and F ∈ F. This notion generalises the usual curve
objects we are interested in counting. For example, (T,F)-pairs are precisely
ideal sheaves of curves (shifted by [1]) if we choose TDT = 0 and FDT =
Coh≤1(X ), whereas taking TPT = Coh0(X ) and FPT = Coh1(X ) yields
PT stable pairs (Lemma 3.11).

Remark 1.4 Whenever C is a category, we denote the corresponding moduli
stack of objects in C by C, provided it exists.

WewritePair(T,F) ⊂ A for the subcategory of (T,F)-pairs andPair(T,F)

for the moduli stack of (T,F)-pairs. We show that the latter defines an open
substack of the algebraic stack of all complexes (Prop. 4.6) under mild con-
ditions on the subcategories (T,F). We produce families of torsion pairs by
considering a stability condition μ : N eff≤1(X ) → S,3 where S is a totally

3 Concretely, we either take μ = ν (see Sect. 2.3.1) or μ = ζ (see Sect. 8.1).
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ordered set, and a varying element s ∈ S. For any such s, we define a torsion
pair (Tμ,s,Fμ,s) on Coh≤1(X ) via

Tμ,s = {T ∈ Coh≤1(X ) | T � G �= 0 ⇒ μ(G) ≥ s}
Fμ,s = {F ∈ Coh≤1(X ) | 0 �= E ↪→ F ⇒ μ(E) < s}.

We then define the DT invariant DT μ,s(X )(β,c) ∈ Z as the Behrend-weighted
Euler characteristic of the stack Pair(Tμ,s,Fμ,s)(β,c) parametrising pairs of
class (β, c).

For s ∈ S, letM ss
μ(s) be the stack ofμ-semistable objects F withμ(F) = s

in Coh≤1(X ). Assuming M ss
μ(s) satisfies a certain boundedness condition

which we call being log-able (Definition 6.7), one can define the generalised
DT invariant Jμ

(β,c) ∈ Q counting μ-semistable objects of class (β, c), see
Sect. 7.4.

These invariants enter into a wall-crossing formula phrased in terms of the
Poisson torus Q[N (X )]. This is a Poisson algebra with linear basis tα for
α ∈ N (X ), commutative multiplication4 tα1 � tα2 = (−1)χ(α1,α2)tα1+α2 , and
Poisson bracket given by {tα1, tα2} = (−1)χ(α1,α2)χ(α1, α2)tα1+α2 .

We are interested in elements of class α = (r, β, c) ∈ Z ⊕ N≤1(X ), where
r encodes the rank of a class, and so we use the convention tα = tr [OX ]zβqc

for these. More precisely, we consider the set of classes

Sβ = {α = (r, β ′, c) | r ∈ {0, −1}, 0 ≤ β ′ ≤ β} ⊂ Z ⊕ N≤1(X ),

and define Q[N eff
1 (X )]≤β to be the set of all finite sums

∑
α∈Sβ

aαtα with
aα ∈ Q. The product and Poisson bracket on Q[N (X )] induce a product and
Poisson bracket on Q[N eff

1 (X )]≤β , where we let tα1 tα2 = 0 if α1 + α2 /∈ Sβ .
We then “complete” and defineQ{N eff

1 (X )}≤β to be the set of possibly infinite
sums

∑
α∈Sβ

aαtα , which then inherits a partially defined product and Poisson
bracket.

1.2.1 Rationality and self-duality of PT (X )

The first stability condition we consider is Nironi’s extension of slope sta-
bility to Deligne–Mumford stacks [32]. It is given by a slope function
ν : N eff≤1(X ) → R ∪ {+∞} and depends on the choice of an ample class
on X and an auxiliary generating vector bundle (see Sect. 2.2.2).

To get a varying notion of (Tν,δ,Fν,δ)-pair, we collapse the Harder–
Narasimhan filtration of ν into a torsion pair at a varying cut-off slope δ ∈ R.
For a fixed class (β, c) ∈ N≤1(X ), the notion of (Tν,δ,Fν,δ)-pair is indepen-

4 In fact, the � product will play no role in our arguments; see Remark 5.6.
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dent of δ for δ � 0, and in the limit as δ → ∞, it agrees with the notion of PT
pair. Applying Joyce’s wall-crossing formula now gives the following identity
in Q{N eff

1 (X )}≤β :

PT (X )≤β t−[OX ] = DT ν,∞(X )≤β t−[OX ]

=
∏

δ∈Wβ∩[δ0,∞)

exp{J ν(δ), −}DT ν,δ0(X )≤β t−[OX ].

(14)

Here Wβ = 1
l(β)!Z. This is the set of potential walls for δ, in the sense that the

notion of (Tν,δ,Fν,δ)-pair of class ≤ β may only change when δ crosses an
element of Wβ . The product in equation (14) is taken in increasing δ, and we
define

J ν(δ) =
∑

(β ′,c)∈N≤1(X )

ν(β ′,c)=δ

J ν
(β ′,c)z

β ′
qc.

Theoperator exp{J ν(δ), −} acts as the identity in equation (14) if the numerical
wall δ ∈ Wβ ∩ [δ0, ∞) is not an actual wall where objects become (un)stable.

IfX were a variety, the Euler pairing would vanish on N≤1(X ) and equa-
tion (14) would simplify to a product formula, as in [8, Thm. 7.4] and [46],

PT (X ) = exp

(∑

δ≥δ0

∑

(β,c)∈N≤1(X )
ν(β,c)=δ

χ(β, c)J ν
(β,c)z

βqc
)

DT ν,δ0(X ).

In particular, the rationality statement could then be deduced from this expres-
sion.

Since X is an orbifold in our setting, no such simplification holds. We
instead prove rationality of PT (X )β in the following way. Expanding the
right hand side of equation (14) yields an infinite sum of terms of the form

C · {J ν
(βr ,cr )

zβr qcr ,−} ◦ . . . ◦ {J ν
(β1,c1)

zβ1qc1 ,−}DT ν,δ0(X )(β ′,c′)z
β ′

qc′
t−[OX ],

where C is a constant of the form
∏

(nk !)−1 arising from expanding the expo-
nential.

We thengroup the termswith the samecurve classesβi , the same inequalities
between the slopes ν(βi , ci ), and the same values for ci (mod βi · A). Twisting
by the ample line bundle A induces an equality J ν

(β,c) = J ν
(β,c+β·A), and so we

may define J ν
(β,[c]) := J ν

(β,c) for any [c] ∈ N0(X )/β · A.
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The sum of the terms in such a group has the form

∑

k1,...,kr

C · P(k1, . . . , kr )

r∏

i=1

J ν
βi ,[ci ]DT ν,δ0(X )β ′,c′zβqc+∑r

i=1 ki βi ·At−[OX ],

where the sum is over ki ∈ Z≥0 satisfying a prescribed set of relations ki <

ki+1 or ki = ki+1 for each i . The constant C arises from the exponential
as before, and the term P is the coefficient arising from the formula for the
Poisson bracket.

Crucially, since thePoissonbracket {tα1, tα2}=(−1)χ(α1,α2)χ(α1, α2)tα1+α2

is bilinear up to sign in the exponents, the function P is a quasi-polynomial.
It follows formally that the above sum is a rational function of the shape we
claim; see Sect. 2.5.2. Through various boundedness results proved in Sect. 7,
we show that there are only finitely many such groups. Thus PT (X )β is a
sum of these finitelymany rational functions and hence, in particular, a rational
function.

Examining this rational function further, we show that the degree of

DT ν,∞(X )β − DT ν,δ0(X )β

tends to −∞ as δ0 → −∞, and so we find DT ν,−∞(X )β = DT ν,∞(X )β
as rational functions. This leads to the symmetry D(PT (X )) = PT (X ) as
rational functions.

1.2.2 Comparing PT (X ) and BS(Y/X) – an intermediate stability
condition

As a first approximation to the stability condition we need, it is helpful to
consider a stability condition ζ1 : N eff

1 (X ) → R ∪ {+∞} defined as follows.
Let A and ω be ample divisor classes on X and Y respectively. For F ∈
Coh≤1(X ), let

ζ1(F) = −degY (ω · f ∗ A · [Ψ (F)])
deg(g∗ A · [F]) ∈ Q, (15)

if F /∈ Coh0(X ), and let

ζ1(F) = ∞

if F ∈ Coh0(X ). The stability condition ζ1 allows us to interpolate between
PT pairs and BS pairs in the followingway: For a fixed class (β, c) ∈ N≤1(X )

with β multiregular, the notion of a (Tζ1,γ ,Fζ1,γ )-pair of class (β, c) reduces
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to the notion of PT pair as γ → ∞ and to (the Fourier–Mukai transform of)
a BS pair as γ → 0+.

In the limit as γ → ∞, the precise value of ζ1(F) is immaterial,
and we essentially only need that it is finite for F ∈ Coh1(X ) and
equal to infinity for F ∈ Coh0(X ). It follows that in the limit the
torsion pair (Tζ1,γ ,Fζ1,γ ) becomes equivalent (in a precise sense) to the
torsion pair (Coh0(X ),Coh1(X )). Standard arguments then show that a
(Coh0(X ),Coh1(X ))-pair is the same thing as a PT pair.

The definition of ζ1 is mainly motivated by the limit as γ → 0+, where we
want the Fourier–Mukai-transform of any (Tζ1,γ ,Fζ1,γ )-pair to be a BS pair.
A BS pair on Y (see Definition 9.1) is a special kind of complex of the form
E = (OY → F), concentrated in degrees [−1, 0], where F ∈ Coh≤1(Y ), so
that in particular H−1(E) is of rank 1 and torsion free, and H0(E) is supported
in dimension 1.

Identifying BS pairs with Fourier–Mukai transforms of (T,F)-pairs for
some (T,F) is made difficult by the fact that for a (T,F)-pair E , the trans-
form Ψ (E) is not generally a complex of the same form as a BS pair. The
object Ψ (E) is built out of perverse sheaves on Y (see Sec. 2.4.1), which can
have 2-dimensional support, and Ψ (E) can be different from a BS pair in
two striking ways: There can be torsion in H−1(Ψ (E)) (with support in the
exceptional locus of f ), and the support of H0(Ψ (E)) can be 2-dimensional
(contained in the exceptional locus of f ). The definition of ζ1 is chosen with
a view to ruling out both of these pathologies: The Fourier–Mukai transform
of a (Tζ1,0+,Fζ1,0+)-pair E should have no torsion in H−1(Ψ (E)) and no
2-dimensional component in H0(Ψ (E)).

The torsion pair (Tζ1,0+,Fζ1,0+) depends only on the sign that ζ1 takes for
various F ∈ Coh≤1(X ), since an object G lies in Tζ1,0+ if it has no quotient
object F with ζ1(F) ≤ 0, while it lies in Fζ1,0+ if it has no subobject F with
ζ1(F) > 0. The sign of ζ1(F) equals the sign of

−ω · f ∗ A · [Ψ (F)],

and so only depends on c1(Ψ (F)). In particular it is positive (resp. negative)
when c1(Ψ (F)) is strictly effective (resp. strictly anti-effective).

From this it is quite easy to see that if Ψ (F) ∈ Ψ (Coh(X )) = Per(Y/X)

is a pure 2-dimensional sheaf, then F ∈ Fζ1,0+ , while if Ψ (F) is concentrated
in degree −1, then F ∈ Tζ1,0+ . This implies directly that the Fourier–Mukai
transformof a (Tζ1,0+,Fζ1,0+)-pair has no torsion in H−1 andno2-dimensional
component in H0. Thus (Tζ1,0+,Fζ1,0+)-pairs at least stand a reasonable
chance of being identified with BS pairs – the full argument can be found
in Sect. 9.
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1.3 Comparing PT(X ) and BS(Y/X) – the wall crossing

Fix a curve class β ∈ N1(X ). Our goal is then to show that for 0 < γ � 1,
the series DT ζ1,γ (X )β is rational and equal to DT ζ1,∞(X )β as rational
functions.

For 0 ≤ β ′ ≤ β, there are only finitely many possible values for ζ1(β
′, c),

and so the set of walls Vβ between 0 and ∞ is finite. However, the stack
M ss

ζ1
(γ ) is not log-able, because in general the stacks M ss

ζ1
(γ )(β,c) are not of

finite type. In conclusion, the wall-crossing formula is not directly applicable.
Wemust therefore refine the stability condition ζ1 and introduce the stability

condition ζ = (ζ1, ν) : N eff
1 (X ) → R2 ∪ {+∞}, where R2 is given the

lexicographical ordering: (a, b) ≥ (a′, b′) if and only if a > a′ or (a =
a′, b ≥ b′).

The series5 DT ζ,(γ,η)
≤β has a wall-crossing behaviour described as follows.

Away from the set of γ -walls Vβ , the corresponding notion of pair is indepen-
dent of η ∈ R so (Tζ,(γ,η),Fζ,(γ,η)) = (Tζ1,γ ,Fζ1,γ ). As a consequence, the

series DT ζ,(γ,η)
≤β is locally constant as a function of (γ, η), and it is independent

of η when γ /∈ Vβ .

Fixing a wall γ ∈ Vβ , and varying η, the series DT ζ,(γ,η)
≤β has the samewalls

as the series DT ν,δ
≤β . Moreover, taking the limit as η → ±∞ makes sense, and

we find

DT ζ,(γ,±∞)
≤β = DT ζ,(γ±ε,η)

≤β ,

for 0 < ε � 1 and for any η ∈ R, allowing us to slide off the γ -wall.
By an argument similar to the one showing DT ν,∞

β = DT ν,−∞
β , we deduce

that DT ζ,(γ,∞)
β = DT ζ,(γ,−∞)

β as rational functions, thus completing the re-
expansion at the wall γ .

Labeling the γ -walls Vβ = {γ1, . . . , γr } with γi < γi+1, we prove that
PT (X )≤β and BS(Y/X)≤β are expansions of the same rational function in
the following way:

PT (X )≤β = DT ζ,(γr +ε,0)
≤β = DT ζ,(γr ,∞)

≤β � DT ζ,(γr ,−∞)
≤β = DT ζ,(γr−1,∞)

≤β

� DT ζ,(γr−1,−∞)

≤β = DT ζ,(γr−2,∞) � . . .

� DT ζ,(γ1,−∞)
≤β = DT ζ,(ε,0)

≤β = BS(Y/X)≤β,

where the � indicate a re-expansion of a rational function; see Fig. 1. This
then completes the proof of the crepant resolution conjecture as in Theorem C.

5 For now, we omit the orbifoldX from the notation, so DT ζ,(γ,η)(X )≤β = DT ζ,(γ,η)
≤β .
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Fig. 1 A schematic of the (γ, η)-wall-crossing. The notion of γ -pair is constant between
two consecutive γ -walls, for example in the blue region of (γ, η) with γ2 < γ < γ3. Here
0 < γ1 � 1 for Bryan–Steinberg invariants

1.4 Variants

We discuss three variants of the crepant resolution conjecture.

1.4.1 Euler characteristics

The methods of this paper also prove exactly the same results for Euler–DT
invariants, i.e., those defined by taking the topological Euler characteristic
instead of the one weighted by the Behrend function eB .

1.4.2 The quasi-projective case

In order to connect these results with various computations for toric CY3s,
let us explain how our arguments generalise to the setting of quasi-projective
CY3s. LetX be a 3-dimensional orbifold with quasi-projective coarse moduli
space X such that ωX

∼= OX and Pic(X ) is finitely generated. As before, let
Y denote the crepant resolution of X of the McKay correspondence.

The notion of DT invariants and PT invariants of X can be defined as
follows.Choose a smooth compactificationX ofX and consider thoseDT/PT
objects onX which restrict toOX [1] onX \X (more intrinsic constructions
are possible, but require a longer explanation). As our arguments are motivic
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in nature and do not rely on properness of the moduli stacks involved, they
transpose well to this setting.

One can argue as follows. Define the category A = 〈OX [1],Coh≤1(X )〉ex
as before. We say that an object in A of rank −1 is supported on X if its
restriction toX \X isOX [1]. Then the objects of rank 0 and −1 in Awhich
are supported on X define open substacks of A ⊂ MumX , analogous to the
stacks that appear in our proof in the projective case.

Note that if E, F ∈ A are such that E has rank 0, F has rank 0 or −1, and
both are supported on X , then χ(E, F) = −χ(F, E) and any extension of
E by F or of F by E is supported on X . This is enough to ensure that the
wall-crossing arguments of our proof go through in the Euler characteristic
case. Running our proof with minor modifications thus gives the Euler charac-
teristic, quasi-projective versions of our main results: “rationality of PT (X )”
(Theorem B) and equality as rational functions “PT (X ) = BS(Y/X) if X
is hard Lefschetz” (Theorem C).

In the actual DT (Behrend-weighted) case, we do not know the Behrend
function identities on our open moduli substacks. Toda’s argument in the pro-
jective case [48, Thm. 2.7] relies on the existence of (−1)-shifted symplectic
structures on the relevant moduli stacks. While it seems reasonable to expect
that (−1)-shifted symplectic structures also exist in the more general quasi-
projective setting, cf. [15,37], a full exploration of this issue is beyond the
scope of this paper.

1.4.3 Beyond multi-regular curve classes

The multi-regularity assumption on the curve class β is used in two places:
To prove the equality PT (X )β = DT (X )β/DT0(X ) and the equality
DT ζ,(ε,0)(X )β = BS(Y/X)β . In particular, the re-expansion argument does
not require β to be multi-regular, and we still have the equality of rational
functions PT (X )β = DT ζ,(ε,0)(X )β in the non-multi-regular case.

In the non-multi-regular case, both of the missing steps pose poten-
tially interesting problems: determining the relation between PT (X )β and
DT (X )β for general β, and relating DT ζ,(ε,0)(X )β to “curve-counting-like”
invariants on Y .

1.5 Previous work

Our techniques, using wall-crossing to relate counting invariants via the
motivic Hall algebra, are to a large extent refinements of those pioneered
by Joyce, Bridgeland, and Toda, see [8,25,45,47].

Our approach makes essential use of the work of Bryan and Steinberg [14],
who introduced the notion of f -stable pairs associated to a crepant resolution
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f . Their counting invariants play the role of the PT generating function on
the Y -side and, in particular, give a geometric interpretation of the fraction
DT (Y )/DT (Y )exc.
In [38], Ross proved the quasi-projective version of the crepant resolution

conjecture for all toric CY3 orbifolds with An-singularities, by analysing the
orbifold topological vertexof [11] in that case.Asour results and the example in
“Appendix A” indicate, the generating function equalities in [38], in particular
[38, Thm. 2.2], must be interpreted as equalities of rational functions.

1.6 Conventions

We work over C. All rings, schemes, and stacks will be assumed to be locally
of finite type over C, unless specified otherwise. All categories and functors
will be C-linear. If M is a scheme (or stack) we write D(M) for the bounded
coherent derived category of M . We write Cohi (M) (resp. Coh≤i (M)) for
the full subcategory of coherent sheaves on M pure of dimension i (resp. of
dimension at most i). If C denotes a category we denote the corresponding
moduli stack of objects in C by C, provided it exists. When denoting counting
invariants, we omit the orbifold or variety from the notation if no confusion
can occur, e.g. DT ζ,(γ,η)

≤β := DT ζ,(γ,η)(X )≤β .

2 Preliminaries

2.1 Numerical Grothendieck group

Let M be a projective variety, ormore generally aDeligne–Mumford stackwith
projective coarse moduli space. We write Coh(M) for its category of coherent
sheaves, and D(M) = Db(Coh(M)) for its bounded coherent derived cate-
gory. This category contains Perf(M), the subcategory of perfect complexes,
which by definition are those locally isomorphic to a bounded complex of
locally free sheaves. When M is smooth and hence satisfies the resolution
property [49], Perf(M) = D(M).

For E ∈ D(M), and P ∈ Perf(M), the Euler pairing

χ(P, E) :=
∑

i

(−1)i dimHomM(P, E[i])

is well defined. We call E numerically trivial if χ(P, E) = 0 for all P ∈
Perf(M).

We write K (M) = K (D(M)) = K (Coh(M)) for the Grothendieck group
of M .Wewrite N (M) for the numerical Grothendieck group,which is the quo-
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tient of K (M) by the subgroup generated by all numerically trivial complexes.
For E ∈ D(M), we write [E] ∈ N (M) for its numerical class.

Assume M is irreducible, with generically trivial stabiliser groups. The
rank of a sheaf F ∈ Coh(M) equals (−1)dim Mχ(Op, F), where p ∈ M is a
non-stacky point, and the rank defines a homomorphism rk : N (M) → Z.

2.1.1 The dimensional filtration

The group N (M) has a filtration by dimension of support. We write
Coh≤d(M) ⊂ Coh(M) for the subcategory of sheaves supported in dimen-
sion at most d. We define N≤d(M) ⊂ N (M) as the saturation of the
subgroup generated by classes of sheaves F ∈ Coh≤d(M). We write
Nd(M) := N≤d(M)/N≤d−1(M) for the associated graded pieces. The groups
N≤d(M) and Nd(M) are free abelian of finite rank. Note that in general
rk N0(M) ≥ 2 for a Deligne–Mumford stack M which is not an algebraic
space; see Footnote 2.

Remark 2.1 Including the taking of the saturation in the definition of the sub-
groups N≤d(M) ensures that Nd(M) is torsion free, and so there exists a
non-canonical group isomorphism N (M) ∼= ⊕d Nd(M), which is convenient
notation-wise, see Sec. 2.2.1.

We thank the referee for the observation that N≤d(M) is not necessarily
saturated. For a simple example of this, consider the action of Z/2 on P1 × P1

given by ([x1 : y1], [x2 : y2]) �→ ([x1 : −y1], [x2 : −y2]), and let M =
P1 × P1/(Z/2). Define

α = [O{0}×P1] − [O{∞}×P1] ∈ N (M).

The class α cannot be written as a sum of 0-dimensional sheaves, since
χ(α,O(0,0)) = 1 and all zero-dimensional sheaves F have χ(F,O(0,0)) ∈ 2Z.
But we also have

2α = [O(0,0)] + [O(0,∞)] + [O(∞,0)] + [O(∞,∞)],

hence the groupgenerated by sheaves supported in dimension0 is not saturated.

2.2 Geometric setup

Let now X be a CY3 orbifold, which we take to mean that X is a smooth,
irreducible, 3-dimensional Deligne–Mumford (DM) stack such that

– the stabilizer groups of X are generically trivial,
– we have ωX

∼= OX ,
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– H1(X ,OX ) = 0, and
– the coarse moduli space X of X is projective.

The coarse moduli space X and the associated canonical morphism g : X →
X exist by the Keel–Mori theorem [27]. Our assumptions moreover imply that
the coarse space X is Gorenstein, that ωX = OX , and that X has at worst
quotient singularities.

2.2.1 Splitting

We choose a splitting of the inclusion N0(X ) ↪→ N≤1(X ), so

N≤1(X ) ∼= N1(X ) ⊕ N0(X ). (16)

Thus we will denote classes in N≤1(X ) by (β, c) with β ∈ N1(X ) and
c ∈ N0(X ). For F ∈ Coh≤1(X ), we define βF and cF by [F] = (βF , cF ).

In contrast with the case of CY3 varieties, where ch3 defines a canonical
splitting of N0(X ) ↪→ N≤1(X ), there need not exist a canonical splitting
in the orbifold case. This seems a necessary evil. In particular, we emphasize
that the splitting cannot always be chosen compatibly with duality, so that in
general D(β, c) �= (D(β), D(c)) where D(−) = RH om(−,OX )[2] is the
derived dualising functor (shifted by two).

2.2.2 The modified Hilbert polynomial and degree

We choose a vector bundle V on X which is generating in the sense of [35].
This means that every coherent sheaf on X is locally a quotient of V ⊕n

for some n. Equivalently, V is generating if, for every point x of X with
isotropy group Gx , the Gx -representation V |x contains every irreducible Gx -
representation as a summand ( [35, Thm. 5.2]). Replacing V with V ⊕ V ∨,
we may (and will) assume that V ∼= V ∨.

Example 2.2 If G is a finite group acting on a scheme M , then OM ⊗ C[G] is
a generating vector bundle on the global quotient stack [M/G], where C[G]
denotes the regular representation of G.

We fix an ample line bundle A on X , and abuse notation by writing A for g∗ A
where g : X → X . For F ∈ Coh(X ), we let F(k) = F ⊗ A⊗k . Following
Nironi [32], we define the modified Hilbert polynomial pF and the integers
l(F), deg(F) by

pF (k) :=χ(X , V ∨ ⊗ F(k)) = l(F)k + deg(F). (17)
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The polynomial pF depends only on the numerical class of F , and so
pα(k), l(α), deg(α) is well defined for any class α ∈ N≤1(X ). More-
over l(N0(X )) = 0, so the number l(β) is well defined for curve classes
β ∈ N1(X ).

Remark 2.3 In general we do not have deg(β, c) = deg(c). Indeed, given a
generating vector bundle V there may not be a way of choosing the splitting of
the inclusion N0(X ) ↪→ N≤1(X ) in such a way as to have deg be compatible
with the splitting.

2.2.3 The effective cone

Wesay thatβ ∈ N1(X ) is effective ifβ = βF for some sheaf F ∈ Coh≤1(X ),
and we write β ′ ≤ β if β − β ′ is effective. We let N eff(X ) ⊂ N (X ) be the
cone spanned by effective classes, and similarly define N eff≤d(X ) and N eff

d (X ).

Lemma 2.4 For every n ∈ Z, the set {β ∈ N eff
1 (X ) | l(β) = n} is finite.

Proof Let β ∈ N eff
1 (X )with l(β) = n, so β = βF for some F ∈ Coh≤1(X ).

The Harder–Narasimhan filtration [32, Thm. 3.22], [40, Lem. 3.1] with respect
to the slope function ν described below has at most n pieces. Thus we reduce
the problem to proving that there are finitely many choices for β = βF under
the assumption that F is ν-semistable. After twisting by some power of A, we
may further assume that deg(F) ∈ {0, 1, . . . , n −1}. Then [32, Thm. 4.27] (or
[40, Cor. 3.4]) shows that F lies in a bounded set, leaving only finitely many
possibilities for βF . ��
Corollary 2.5 If β ∈ N eff

1 (X ), there are finitely many β ′ ∈ N eff
1 (X ) with

β ′ ≤ β.

2.3 Stability conditions

Werecall the particular notion of stability conditionwe require, see e.g.[25,39].

Definition 2.6 A stability condition onCoh≤1(X ) consists of a slope function
μ : N≤1(X ) → S where (S, ≤) is a totally ordered set, such that

1. the slope μ satisfies the see-saw property, i.e., given an exact sequence
0 → A → B → C → 0 in Coh≤1(X ) we have either

μ(A) < μ(B) < μ(C) or μ(A) = μ(B) = μ(C) or

μ(A) > μ(B) > μ(C);
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2. the category Coh≤1(X ) has theHarder–Narasimhan property with respect
to μ, i.e., any sheaf F ∈ Coh≤1(X ) admits a filtration in Coh≤1(X ),

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = F,

called the Harder–Narasimhan (HN) filtration, such that each factor Qi =
Fi/Fi−1 is semistable of descending slope μ(Q1) > μ(Q2) > · · · >

μ(Qn). The semistable factors Qi are called the HN factors of F .

A sheaf F ∈ Coh≤1(X ) is stable if for all non-trivial proper subsheaves
0 �= E ⊂ F

μ(E) < μ(F),

or, equivalently by the see-saw property, μ(F) < μ(F/E) or μ(E) <

μ(F/E). To obtain the notion of semistability, replace each strict inequal-
ity < by a weak one ≤.

Remark 2.7 Let μ be a slope function on Coh≤1(X ). Since the category
Coh≤1(X ) is Noetherian, it has the Harder–Narasimhan property with respect
to μ whenever Coh≤1(X ) is μ-Artinian, i.e., when any chain of subobjects
F0 ⊃ F1 ⊃ F2 ⊃ . . . in Coh≤1(X ) such that μ(Fi ) ≥ μ(Fi−1) stabilizes;
see [25, Thm. 4.4].

2.3.1 Nironi slope stability

The usual notion of stability of sheaves on a variety has a useful generalisation
to DM stacks. The foundational results of this theory have been worked out
by Nironi [32].6

6 Nironi’s preprint [32] is adapted from his 2008 PhD thesis [33] and has not been published
in a journal. While we have no doubts about his results, let us nevertheless mention that an
alternative path to them (at least under hypotheses good enough for our purpose) passes through
Simpson’s paper [40], which investigates moduli spaces of modules over a non-commutative
algebra on a scheme. One connects [40] to our setting through the following trick: With V the
chosen generating vector bundle on X , define a sheaf of non-commutative algebras Λ on X
by

Λ = g∗(H om(V, V )).

LetCoh(X, Λ)be the abelian category of coherent rightΛ-modules, anddefine functors between
Coh(X ) and Coh(X, Λ) by

E �→ g∗(H om(V, E)) E ∈ Coh(X )

M �→ g∗M ⊗g∗Λ V M ∈ Coh(X,Λ)

These functors give an equivalence of categories Coh(X ) ∼= Coh(X, Λ) (see e.g. [2,
Thm. 3.0.12]). The functors generalise to families of sheaves on X and X in such a way
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Given F ∈ Coh≤1(X ), the Nironi slope is

ν(F) := deg(F)

l(F)
∈ Q (18)

if F /∈ Coh0(X ), and it is ν(F) = ∞ if F ∈ Coh0(X ).

Proposition 2.8 The slope function ν defines a stability condition on
Coh≤1(X ).

Proof For a pure 1-dimensional sheaf, the existence of Harder–Narasimhan
filtrations follows from [32, Thm. 3.22] or [40, Lem. 3.1]. Otherwise, combine
this result with the usual torsion filtration; see [32, Cor. 3.7]. The see-saw
property is easily verified. ��
2.3.2 Nironi moduli

Let CohX denote themoduli stack of coherent sheaves onX . It is an algebraic
stack that is locally of finite type by [32, Cor. 2.27] (see also [40, Thm 4.7]).

We write F+ (resp. F−) for the HN factor of F with the biggest (resp. small-
est) slope and we write ν+(F) = ν(F+), ν−(F) = ν(F−). Let I ⊂ (−∞, ∞]
be an interval, and let

Mν(I ) ⊂ CohX

denote the substack parametrising sheaves F such that the ν-slopes of all its
HN factors lie in I , which is equivalent to ν−(F), ν+(F) ∈ I . The moduli
stack of ν-semistable sheaves with ν(F) = s, is the special case of I = [s, s];
in this case we writeM ss

ν (s) instead. For β ∈ N1(X ), we writeMν(I, β) for
the open substack of Mν(I ) consisting of sheaves F with βF = β.

Theorem 2.9 (Nironi) Let I ⊆ R be an interval and β ∈ N1(X ). Then the
substackMν(I, β) ⊂ CohX is open. If the interval is of finite length, the stack
is of finite type. In particular, M ss

ν (s, β) is of finite type for any s ∈ R.

Proof These results follow by the Grothendieck lemma for stacks [32,
Lem. 4.13], and applying the same proof as in [32, Prop. 4.15] and [23,
Prop. 2.3.1]. See also [40, Lem. 3.7].

��

(footnote 6 continued)
that the two natural notions of flat family agree, and so we get an isomorphism between the
moduli stack of coherent sheaves on X and that of coherent Λ-modules on X . The notions of
slope and stability defined in [32] and [40] agree under this correspondence, and so the results
of [40] give alternative proofs of many statements in [32].
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If p ∈ Q[x], let QuotX (F, p) denote the functor of quotients E of F ∈
Coh(X ) with modified Hilbert polynomial pE = p. The following result is
a combination of [32, Thm. 4.20] and [35, Thm. 6.1].

Theorem 2.10 For p ∈ Q[x], the functor QuotX (F, p) is represented by a
projective scheme, which we also denote by QuotX (F, p).

The following two lemmas will be used repeatedly in Sect. 7.

Lemma 2.11 Let F ∈ Coh1(X ) be a non-zero pure 1-dimensional sheaf.
Then

ν+(F) ≤ deg(F) − [l(F) − 1]ν−(F),

ν−(F) ≥ deg(F) − [l(F) − 1]ν+(F).

Proof Consider the exact sequence

0 → F+ → F → F ′ → 0.

Note that l(F+) ≥ 1 and l(F) − l(F+) ≥ 0. We deduce that

deg(F) = ν(F)l(F) = ν(F+)l(F+) + ν(F ′)l(F ′)
= ν(F+)l(F+) + ν(F ′)[l(F) − l(F+)]
≥ ν(F+)l(F+) + ν(F−)[l(F) − l(F+)]
≥ ν+(F) + ν−(F)[l(F) − 1].

The second claim is proven similarly. ��
As a consequence, there is the following boundedness result.

Lemma 2.12 Let d, δ ∈ R and β ∈ N1(X ). The substacks of sheaves

1. F ∈ M ν([δ, ∞), β) with deg(F) ≤ d, and
2. F ∈ M ν((−∞, δ]) with deg(F) ≥ d

are both of finite type.

Proof Anypure 1-dimensional sheaf F of classβF = β satisfying deg(F) ≤ d
and ν−(F) ≥ δ, defines an element in Mν([δ, d − (l(β) − 1)δ], β). The first
claim now follows from Theorem 2.9. The second claim is proven similarly.

��

2.4 The crepant resolution

Let p ∈ X be a non-stacky point, and letOp be the corresponding skyscraper
sheaf. We let Y = Hilb1(X ) = QuotX (OX , [Op]) (see Thm. 2.10). This

123



S. V. Beentjes et al.

space is étale-locally on X the moduli space of G-clusters (i.e. Nakamura’s
G-Hilbert scheme [31]), and comes with a map f : Y → X . By [10,20], Y is a
smooth projective CY3 variety, and f is a crepant resolution, i.e., f ∗ωX = ωY .

The universal quotient sheaf OZ ∈ D(Y × X ) is the kernel of a Fourier–
Mukai equivalence, which we refer to as the McKay correspondence, and
denote by

Φ : D(Y )
∼−→ D(X ). (19)

Note that Φ(OY ) = OX , and that g∗ ◦ Φ = R f∗. We denote Ψ = Φ−1.

2.4.1 The hard Lefschetz condition

For where we deal with stable pair invariants onX , i.e., rationality of PT (X )

and the symmetry of PT (X ), the variety Y will not play any role, and the
assumptions listed at the start of Sect. 2.2 suffice.When it comes to the orbifold
DT/PT correspondence and the crepant resolution conjecture, we will impose
the following extra condition on X .

Definition 2.13 LetX be a CY3 orbifold as defined in Sect. 2.2. We say that
X is hard Lefschetz if the fibres of the resolution f : Y → X have dimension
≤ 1.

With this assumption, the map f : Y → X induces a t-structure on D(Y ),
first introduced by Bridgeland in [7]. By definition, its heart Per(Y/X) is the
category of perverse coherent sheaves,7 consisting of those E ∈ D(Y ) such
that:

– R f∗(E) ∈ Coh(X), and
– for any C ∈ Coh(Y ) with R f∗C = 0, we have Hom(C[1], E) = 0.

This abelian category is a left tilt of Coh(Y ) at a torsion pair [50]. Furthermore,
it admits a description in terms of sheaves onX .

Proposition 2.14 [19, Thm 1.4] The equivalence Φ : D(Y ) → D(X )

restricts to an equivalence Per(Y/X) � Coh(X ) of abelian categories.

We record the following two lemmas for use in Sect. 8.

Lemma 2.15 Assume that X satisfies the hard Lefschetz condition. Then the
map g∗ : N1,mr(X ) → N1(X) is injective.

Proof The McKay equivalence commutes with g∗ and f∗, and so identi-
fies the kernels of g∗ : N1,mr(X ) → N1(X) and f∗ : Ψ (N1,mr(X )) =
N≤1(Y )/Nexc(Y ) → N1(X). But the latter kernel is 0. ��
7 Strictly speaking, there is an instance of this category pPer(Y/X) for each p ∈ Z. In this
paper we deal with the p = 0 version only, so we suppress this choice of perversity throughout.
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Recall that A is a fixed ample line bundle on X . If α ∈ N (Y ) is a class, then we
define α · A as follows. Any class in N (Y ) can be written as the difference of
two effective classes, in the sense of Sect. 2.2.3. Ifα = [E] for some E ∈ D(Y )

is effective, then we define E · A := [E] · A as the class [E] − [E(−A)] in
N (Y ).

Lemma 2.16 Assume that X satisfies the hard Lefschetz condition. Let
D1, . . . , Dn ⊂ Y be the irreducible components of the exceptional locus of
f : Y → X. The classes D1 · A, . . . , Dn · A are linearly independent in N1(Y ).

Proof Suppose for a contradiction that D = ∑
ai Di is such that not all ai = 0,

but D·A = 0. Pick a surface S of class A such that f −1(S) is smooth (replacing
A with somemultiple if necessary). By the Negativity Lemma [28, Lem. 3.40],
we have D · D · A = (D| f −1(S), D| f −1(S)) f −1(S) < 0, which is a contradiction.

��

2.5 Rational functions

Thegenerating seriesweencounter, formal sumsof the form
∑

c∈N0(X ) a(c)qc,
are often expansions of rational functions. It will be convenient to have a lan-
guage for describing such expansions.

2.5.1 Laurent expansions

To have well-defined expansions in multiple variables, restrictions must be
imposed on the sets {c ∈ N0(X ) | a(c) �= 0} appearing. These can be phrased
in terms of various notions of boundedness of subsets of N0(X ).

Definition 2.17 Let L : N0(X ) → R be a group homomorphism. We say
that a set S ⊂ N0(X ) is L-bounded if S ∩ {c ∈ N0(X ) | L(c) ≤ M} is finite
for every M ∈ R.

Lemma 2.18 Let S and T be L-bounded sets in N0(X ).

1. The union S ∪ T is again L-bounded.
2. The sum S + T = {s + t | s ∈ S, t ∈ T } is again L-bounded.

Definition 2.19 Let Z{N0(X )} be the additive group of all infinite formal
sums of terms a(c)qc with a(c) ∈ Z, and Z[N0(X )] the additive group of
all finite such sums. We define Z[N0(X )]L ⊂ Z{N0(X )} to be the subset of
those formal sums for which {c ∈ N0(X ) | a(c) �= 0} is L-bounded.

By Lemma 2.18, Z[N0(X )]L is a ring under the obvious operations.

Definition 2.20 Given a rational function f = g/h with g, h ∈ Z[N0(X )],
we say that a series s ∈ Z[N0(X )]L is the expansion of f in Z[N0(X )]L if
sh = g holds in the ring Z[N0(X )]L .
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Note that such an expansion s may not exist for given f and L , but if it does,
it is unique, and we will denote it by fL .

2.5.2 Quasi-polynomials

Let sp : Zr → (Z/p)r be the standard surjection.

Definition 2.21 A function a : Zr → C is said to be a quasi-polynomial of
quasi-period p if a|s−1

p (x)
is a polynomial function for every x ∈ (Z/pZ)r . For

i = 1, . . . , r , we define the degree degi a as the supremum of the i-degrees of
the polynomials a|s−1

p (x)
over all x ∈ (Z/p)r .

As motivation for this definition, let us recall the connection between quasi-
polynomials and rational functions in the single variable case.

Lemma 2.22 [41, Prop. 4.4.1]The following conditions on a function a : Z →
C and an integer N > 0 are equivalent:

1. a is a quasi-polynomial of quasi-period p, and
2. there exist g(q), h(q) ∈ C[q] such that gcd(g, h) = 1 and

∑

n≥0

a(n)qn = g(q)

h(q)
,

where every zero x of h(q) satisfies x p = 1, and deg(g) < deg(h).

We give two generalisations of this result to the multi-variable case. Let
q1, . . . qr be variables, and pick a grading onZ[q1, . . . , qr ] such that deg(qi ) >

0 for every i .8 Given a rational function f = g/h with g, h ∈ Q[q1, . . . qr ],
its degree is defined as deg( f ) = deg(g) − deg(h); this is independent of the
presentation of f as a fraction. Moreover, if f admits an expansion with each
coefficient qn1

1 · · · qnr
r of degree ≤ d, then deg( f ) ≤ d.

Lemma 2.23 Let p, r ∈ Z≥1, and let a : Zr → C be a quasi-polynomial in r
variables of quasi-period p. Consider the generating series

f (q1, . . . , qr ) =
∑

n1,...,nr ≥0

a(n1, . . . , nr )q
n1
1 · · · qnr

r . (20)

8 In our applications, qi = qci where {ci } is an effective basis of N0(X ) and
deg(qi ) := deg(ci ).
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Then f is the Laurent expansion in Q[q1, . . . , qr ]deg of a rational function
g/h, where g ∈ Q[q1, . . . , qr ] and

h =
r∏

i=1

(
1 − q p

i

)1+degi a
. (21)

Moreover, deg(g/h) < 0.

Proof Let f ′ = (q−p
r − 1)1+degr (a) · f . Directly examining the expression

shows that

f ′ =
−1∑

nr =−p(1+degr a)

∑

n1,...,nr−1≥0

anr (n1, . . . , nr−1)q
n1
1 · · · qnr

r

where theak are quasi-polynomials of period p in r−1variableswith degi ak ≤
degi a for i = 1, . . . , r − 1. The claim then follows by induction on r . ��
Lemma 2.24 Let p, r ∈ Z≥1, let E ⊂ {1, . . . , r − 1}, and let a : Zr → C be
a quasi-polynomial in r variables of quasi-period p. Consider the generating
series

f (q1, . . . , qr ) =
∑

n1,...,nr

a(n1, . . . , nr )q
n1
1 · · · qnr

r , (22)

where the sum runs over all sequences of integers

{(n1, . . . , nr ) ∈ Zr | 0 ≤ n1 ≤ · · · ≤ nr , and ni = ni+1 iff i ∈ E}.
Then f is the Laurent expansion in Q[q1, . . . , qr ]deg of a rational function
g/h, where g ∈ Q[q1, . . . , qr ] and

h =
∏

i∈{0,...,r−1}\E

⎛

⎝1 −
r∏

j=i+1

q p
j

⎞

⎠
1+∑r

j=i+1 degqi
a

. (23)

Moreover, deg(g/h) < 0.

Proof Set n0 = 0. Let ki = ni − ni−1 and rewrite the claim in terms of the ki .
So

f =
∑

i /∈E :ki ≥0

a(k1, k1 + k2, . . . , k1 + · · · + kr )

r∏

j=1

(q j . . . qr )
k j ,
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where we read ki+1 = 0 if i ∈ E . Setting

a′(k1, . . . , kr ) = a(k1, k1 + k2, . . . , k1 + . . . + kr ), q ′
i =

r∏

j=i

qi

and applying Lemma 2.23 to a′ completes the proof. ��
The following result, used in Sect. 8, allows us to detectwhen two generating

series are different Laurent expansions of the same rational function.

Lemma 2.25 Let c0 ∈ N0(X ), and let L−, L+ : N0(X ) → R be linear
functions such that L−(c0) < 0 and L+(c0) > 0. Let f be a rational function
admitting an expansion fL− in Z[N0(X )]L− , and let f ′ ∈ Z[N0(X )]L+ be
a series such that for any c ∈ N0(X ), the coefficient of qc+kc0 in fL− − f ′ is
a quasi-polynomial in k ∈ Z.

Then f ′ = fL+ in Z[N0(X )]L+ .

Proof Write f = g/h for polynomials g, h ∈ Z[N0(X )]. Consider the
expression ( fL− − f ′)h. This has the property that the coefficient of qc+kc0 is
quasi-polynomial in k for any c ∈ N0(X ), since fL− − f ′ has this property
and h is a polynomial.

On the one hand, if we let k → −∞ the coefficient of qc+kc0 in f ′h is 0
since f ′ ∈ Z[N0(X )]L+ and L+(c0) > 0. On the other hand, the coefficient
of qc+kc0 in fL−h is 0 since fL−h = g and g is a polynomial. By quasi-
polynomiality of the coefficients of the difference ( fL− − f ′)h, it follows that
each quasi-polynomial coefficient is 0. Thus ( fL− − f ′)h = 0 in Z{N0(X )},
and the claim follows. ��

We illustrate the above formalism and in particular Lemma 2.25 in two
examples.

Example 2.26 Consider the rational function f (q) = q/(1 + q)2. There are
essentially two choices for the linear function L , namely L± : Z → R where
L±(k) = ±k. We have

fL+(q) =
∞∑

n=0

(−1)n−1nqn

since (1 + q2) fL+(q) = q in Z[q]L+ . Alternatively, we may re-expand f
with respect to L− : Z → R, L−(k) = −k. Because of the symmetry f (q) =
f (q−1), our educated guess for the expansion of f in Z[q]L− is

f ′(q) =
∞∑

n=0

(−1)n−1nq−n. (24)
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Fig. 2 Coefficients of two expansions of (1 − q21 )−1(1 − q1q2)
−2

Indeed, f ′ ∈ Z[q]L− . To apply the previous lemma take c0 = 1, so L+(c0) > 0
and L−(c0) < 0. The coefficient of the term qc+kc0 in the difference

fL+(q) − f ′(q) =
∞∑

n=−∞
(−1)n−1nqn (25)

is equal to (−1)c+kc0−1(c + kc0) = (−1)c+k−1(c + k) for all c, k ∈ Z since
c0 = 1. This is a quasi-polynomial of quasi-period p = 2. Hence

f ′(q)(1 + q)2 =
( ∞∑

n=0

(−1)n−1q−n

)
(1 + q)2 = q in Z[q]L−

as the reader easily verifies, and wemay conclude that f ′ = fL− . Note that the
choice of homomorphism L− means we are expanding the rational function f
around q = ∞. The root α = −1 of the denominator of the rational function
f indeed satisfies α p = 1.

Example 2.27 Take f = (1− q2
1 )

−1(1− q1q2)−2, where we have N0(X ) =
Z2. The natural expansion of f in positive powers of q1 and q1q2 corresponds
to choosing some L− such that L−(1, 0), L−(1, 1) > 0, and we find the series

fL− =
∑

n1,n2

a0(n1, n2)q
n1
1 qn2

2 ,

where (see Fig. 2)
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a(n1, n2) =
{

n2 if n1 + n2 is even and n1 ≥ n2 ≥ 0

0 otherwise

Consider now the series

f ′ =
∑

n1,n2

b(n1, n2)q
n1
1 qn2

2

with

b(n1, n2) =
{

−n2 if n1 + n2 is even and − 1 ≥ n1 ≥ n2

0 otherwise

Letting L+(n1, n2) = −n2, note that f ′ lies in Z[N0(X )]L+ , and with c0 =
(−1, −1) we have L−(c0) < 0 < L+(c0). We may then apply Lemma 2.25
to conclude that f ′ is the re-expansion fL+ of f , since for any n1, n2, the
function a(n1 + k, n2 + k) − b(n1 + k, n2 + k) is a quasi-polynomial (in fact,
polynomial) in k.

3 Categories and pairs

For the remainder of this paper, we let X be a CY3 orbifold in the sense of
Sect. 2.2. Here, we recall the abelian category A = 〈OX [1],Coh≤1(X )〉ex,
which contains all the objects we count. It is the heart of the category
of D0-D2-D6 bound states constructed in [45]. We discuss torsion pairs
(T,F) on Coh≤1(X ), and introduce the notion of (T,F)-pairs. These are
rank −1 objects in A which should be though of as stable with respect
to (T,F). Choosing (T,F) suitably, this notion specialises to ideal sheaves,
Pandharipande–Thomas pairs, or Bryan–Steinberg pairs.

3.1 Torsion pairs and tilting

If B is an abelian category, a torsion pair (see e.g. [22]) consists of a pair of
full subcategories (T,F) such that

1. Hom(T, F) = 0, for all T ∈ T, F ∈ F,
2. every object E ∈ B fits into a short exact sequence

0 → TE → E → FE → 0

with TE ∈ T and FE ∈ F.

123



A proof of the DT crepant resolution conjecture

We write B = 〈T, F〉. Note that the first condition implies that the sequence
in the second condition is unique. In our applications, B will be Coh≤1(X ),
and pairs will be induced by various stability conditions.

The following result provides a simplymethod of constructing torsion pairs.

Lemma 3.1 [47, Lem. 2.15] Let B be a Noetherian abelian category and let
T be a full subcategory that is closed under extensions and quotients. Let

F = T⊥ = {F ∈ B | Hom(T, F) = 0 for all T ∈ T}.
Then (T,F) is a torsion pair on B.

Example 3.2 Consider the full subcategoryT = Coh≤d(X ) ⊂ B := Coh(X ).
Then F = Coh≥d+1(X ), i.e. the full subcategory of sheaves that admit no
subsheaves of dimension ≤ d. By the previous lemma, we obtain a torsion
pair

Coh(X ) = 〈Coh≤d(X ),Coh≥d+1(X )〉. (26)

Example 3.3 All the torsion pairs on Coh≤1(X ) that appear in this paper are
constructed as follows. Let S be a totally ordered set, and letμ : N eff≤1(X ) → S
be a stability condition on Coh≤1(X ). A choice of element s ∈ S defines a
torsion pair on Coh≤1(X )

Tμ,s = {T ∈ Coh≤1(X ) | T � Q �= 0 �⇒ μ(Q) ≥ s}
Fμ,s = {F ∈ Coh≤1(X ) | 0 �= E ↪→ F �⇒ μ(E) < s}

by collapsing the Harder–Narasimhan filtration of μ-stability at slope s.

The abelian category B defines the standard t-structure on D(B). In the
presence of a torsion pair, one obtains a different t-structure via the process of
tilting.

Proposition 3.4 Let (T,F) be a torsion pair on the abelian category B. Then

B� = {E ∈ D(B) | H−1(E) ∈ F, H0(E) ∈ T, Hi (E) = 0 if i �= −1, 0}
defines the heart of a bounded t-structure on D(B). In particular, B� is abelian
and closed under extensions.

Example 3.5 Tilting at the torsion pair of Example 3.2 for d = 1 yields the
heart

Coh�(X ) = 〈Coh≥2(X )[1],Coh≤1(X )〉 ⊂ D[−1,0](X ).
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3.2 The category A

The objects underlying DT invariants are elements of Coh�(X ). However,
Coh�(X ) is not Noetherian, and so in view of Lemma 3.1, we instead work
with a certain Noetherian subcategory of Coh�(X ), cf. [45].

Given full subcategories C1, . . . ,Cn ⊂ D(X ), let 〈C1, . . . ,Cn〉ex ⊂
D(X ) be the smallest extension-closed subcategory of D(X ) containing
each Ci .

Definition 3.6 The category A is the full subcategory of Coh�(X ) defined as

A = 〈OX [1],Coh≤1(X )〉ex ⊂ Coh�(X ) ⊂ D(X ). (27)

Note that Hom(OX [1], E) = 0 = Hom(E,OX [1]) for all E ∈ Coh≤1(X ).

Lemma 3.7 The category A satisfies the following properties:

1. A is a Noetherian abelian category with exact inclusion A ⊂ D(X ), which
is to say that given E ′, E, E ′′ ∈ A, a sequence of morphisms

E ′ → E → E ′′

is a short exact sequence in A if and only if it is an exact triangle in D(X ).
2. If E ∈ A, then H−1(E) is torsion free or 0, H0(E) ∈ Coh≤1(X ), and

Hi (E) = 0 for i �= −1, 0.
3. The subcategory Coh≤1(X ) ⊂ A is closed under extensions, quotients,

and subobjects, and the inclusion Coh≤1(X ) ⊂ A is exact.
4. A contains the shifted structure sheaf OX [1], the shifted ideal sheaf IC [1]

of any curve C ⊂ X , and stable pairs in the sense of Pandharipande–
Thomas.

5. A contains all Bryan–Steinberg pairs in the sense of Definition 9.1

Proof The first item is proven in [45, Lem. 3.5, 3.8], and claims two to four
are easily verified. The final claim is proven in Lemma 9.2. ��

Remark 3.8 Let N (A) ⊂ N (X ) denote the subgroup generated by objects
in A. The inclusion Coh≤1(X ) ⊂ A induces an injection of abelian groups
i : N≤1(X ) ↪→ N (A). The image of a class α ∈ N (A) in the cokernel of
i equals rk(α), and n �→ −n[OX [1]] defines a splitting of this map, so we
have a canonical splitting N (A) = Z ⊕ N≤1(X ). For E ∈ A with [E] =
rk(E)[OX ] + [E ′], we write [E] = (rk(E), βE ′, cE ′).
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3.3 Pairs

We now define the objects which we aim to count. Note that in the following
definition, (T,F) need not be a torsion pair, and this extra generality is used
in the wall-crossing arguments of Sect. 6.

Definition 3.9 Let T and F be full subcategories of Coh≤1(X ). A (T,F)-pair
is an object E ∈ A such that

1. rk(E) = −1,
2. Hom(T, E) = 0 for all T ∈ T,
3. Hom(E, F) = 0 for all F ∈ F.

We write Pair(T,F) ⊂ A for the corresponding full subcategory of (T,F)-
pairs.

Remark 3.10 Assuming that (T,F) is a torsion pair, two things follow. The
third condition is equivalent to H0(E) ∈ T. Moreover, if E is of the form
OX → G with G ∈ Coh≤1(X ), then the second condition is equivalent to
G ∈ F.

Under a cohomological criterion on T, all pairs are of a standard form.

Lemma 3.11 Let (T,F) be a torsion pair onCoh≤1(X ) such that every T ∈ T
satisfies Hi (X , T ) = 0 for all i �= 0. Then an object E ∈ A of rank −1 is a
(T,F)-pair if and only if it is isomorphic to a two-term complex

E = (OX
s→ G)

with H0(E) = coker(s) ∈ T and G ∈ F.

Proof The proof of [45, Lem. 3.11(ii)] goes through verbatim. ��
Remark 3.12 This cohomological criterion implies that if TPT = Coh0(X )

and FPT = Coh1(X ), then a (TPT ,FPT )-pair is the same thing as a stable
pair in the sense of Pandharipande–Thomas [36].

The conclusion of Lemma 3.11 can fail if the condition on T is not satisfied.
For example, this happens for the perverse torsion pair induced on Coh≤1(X )

via the equivalence of Proposition 2.14; see [50, Lem. 3.1.1].

3.3.1 A wall-crossing formula

Recall the following natural generalisation of the notion of torsion pair [48].

Definition 3.13 Let (A1,A2, . . . ,An) be a sequence of full subcategories
of an abelian category B. These form a torsion n-tuple, notation B =
〈A1,A2, . . . ,An〉, if
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1. we have Hom(Ei , E j ) = 0 for Ei ∈ Ai , E j ∈ A j , i < j ,
2. for every object E ∈ B there is a filtration

0 = E0 ⊂ E1 ⊂ . . . ⊂ En = E

in B such that Qi = Ei/Ei−1 ∈ Ai for all i = 1, 2, . . . , n.

The first condition implies that the filtration in the second condition is unique.

Remark 3.14 Note that for any 1 ≤ i ≤ n − 1 we obtain a torsion pair

B = 〈〈A1, . . . ,Ai 〉ex, 〈Ai+1 . . . ,An〉ex〉

by collapsing the filtration of E to 0 → Ei → E → E/Ei → 0 in B.

Let (T,F) be a pair of full subcategories of Coh≤1(X ). Define the full sub-
category

V(T,F) = {E ∈ A | Hom(T, E) = Hom(E,F) = 0} ⊂ A. (28)

A (T,F)-pair is the same thing as a rank −1 object of V(T,F).

Proposition 3.15 Let (T,F) and (T̃, F̃) be torsion pairs on Coh≤1(X ) with
T ⊂ T̃, and hence F ⊃ F̃. There is an induced torsion triple on A,

A = 〈T,V(T, F̃), F̃〉. (29)

Proof The semi-orthogonality relations are clear, so it suffices to construct a
filtration of every object with factors in T,V(T, F̃), and F̃.

Let E ∈ A. Since T is closed under quotients and extensions and A is
Noetherian, Lemma 3.1 shows that there exist a unique exact sequence

0 → ET → E → ET⊥ → 0

with ET ∈ T, ET⊥ ∈ T⊥. Defining EF̃ as the projection of H0(E) to F̃ induced
by the torsion pair (T̃, F̃), we obtain the unique short exact sequence

0 → E⊥F̃ → E → EF̃ → 0

with E⊥F̃ ∈ ⊥F̃ and EF̃ ∈ F̃. The desired filtration is 0 ↪→ ET ↪→ E⊥F̃ ↪→ E .
��
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3.3.2 Objects of small rank

The rank of an object E ∈ Coh�(X ) is non-positive since rk(E) =
− rk H−1(E). In this paper we are exclusively interested in objects of rank
−1 and 0, which admit the following explicit description.

Proposition 3.16 Let E ∈ Coh�(X ).

1. If rk(E) = 0, then E ∈ A if and only if H−1(E) = 0;
2. If rk(E) = −1, then E ∈ A if and only if H−1(E) is torsion free and

det(E) = OX .

Proof If E ∈ A there exists a filtration 0 = E0 ⊂ · · · ⊂ En = E , with each
Ei/Ei−1 either lying in Coh≤1(X ), or else isomorphic to OX [1]. The rank
of E is the negative of the number of subquotients isomorphic to OX [1].

Thus if rk E = 0, then each subquotient is a sheaf, and so H−1(E) = 0.
Conversely, if H−1(E) = 0, then E ∈ Coh(X )∩Coh�(X ) = Coh≤1(X ) ⊂
A.

If E ∈ A, and F ↪→ E ′ � E is a short exact sequence in A with F ∈
Coh≤1(X ), then H−1(E ′) ↪→ H−1(E). If F ∼= OX [1], then we get a short
exact sequence of sheaves OX ↪→ H−1(E ′) � H−1(E). In both cases,
H−1(E ′) is torsion free if H−1(E) is and det(E ′) = det(E). By induction on
the number of extensions needed to construct an object, every E ∈ A is such
that H−1(E) torsion free and det(E) = OX .

Conversely, if rk(E) = −1 and det(E) = OX , then H−1(E) is torsion
free of trivial determinant, hence equal to IC for some curve C ⊂ X . Since
IC [1] = (OX → OC) ∈ A and H0(E) ∈ Coh≤1(X ) ∈ A, we conclude that
E ∈ A. ��
We denote the subcategory of objects in A of rank −1 (resp. ≥ −1) by Ark=−1
(resp. Ark≥−1).

Corollary 3.17 Let E ∈ Ark≥−1. Then H−1(E) is either 0 or the ideal sheaf
of a curve C ⊂ X of class βC = βOC , and βE = βC + βH0(E). In particular,
βE ≥ 0.

Corollary 3.18 Let E ∈ Ark≥−1, and let F ∈ Ark≥−1 be a subobject or
quotient of E. Then βF ≤ βE .

Proof Given any exact sequence 0 → F → E → F ′ → 0, we have
βF , βF ′ ≥ 0 and βF + βF ′ = βE . ��

4 Moduli stacks

In this section we gather some results on various moduli stacks of objects in
D(X ), beginning with Lieblich’s stackMumX of gluable objects in D(X ).
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The main result of this section is Proposition 4.6, which states that the stack of
(T,F)-pairs defines an open substack ofMumX , provided that T and F define
open substacks of MumX and certain mild hypotheses are met.

4.1 The mother of all moduli

Let Y be a smooth projective variety. In [29], Lieblich constructs a stack
MumY parametrising objects E ∈ D(Y ) which are gluable, i.e., such that
Ext<0(E, E) = 0. He shows that MumY is an Artin stack, locally of finite
type. Via the McKay equivalence D(Y ) � D(X ) of Sect. 2.4, which is a
Fourier–Mukai transform and hence behaves well in families, one deduces the
existence of the corresponding stackMumX with the same properties.

The stackMumX splits as a disjoint union of open and closed substacks

MumX =
⊔

α∈N (X )

MumX ,α (30)

whereMumX ,α parametrises objects of class α ∈ N (X ).
Let C ⊂ D(X ) be a full subcategory whose objects have no negative self-

extensions, andwhose objects define an open subset ofMumX (C) in the sense
that for every finite type C-scheme T with a morphism f : T → MumX , the
set {x ∈ T (C) | f (x) ∈ C} ⊂ T (C) is Zariski open. In this case we say that C
is an open subcategory and we write C ⊂ MumX for the corresponding open
substack; cf. Remark 1.4.

For any interval [a, b], there is an open substack Mum
[a,b]
X ⊂ MumX ,

parametrising complexes E ∈ D(X ) with vanishing negative self-extensions
and whose cohomology is concentrated in cohomological degrees [a, b]; see
for example [18, App. A]. In particular, the stack of coherent sheaves

CohX = Mum
[0,0]
X ⊂ MumX

is an open substack.

Lemma 4.1 Let T and F be full, open subcategories of Coh(X ) such that T is
closed under quotients and F is closed under subobjects. Each of the following
conditions on an object E ∈ D(X ) defines an open substack of MumX :

1. H0(E) ∈ T and Hi (E) = 0 for i �= −1, 0.
2. H−1(E) ∈ F and Hi (E) = 0 for i �= −1, 0.

In particular, if (T,F) is an open torsion pair, then the objects of the tilt of
Coh(X ) at (T,F) form an open substack of MumX .

Proof The claim about the tilt of Coh(X ) is shown in [3, Thm. A.3], and the
proof given there also establishes the other two statements in this lemma. ��
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Recall the abelian category Coh�(X ) = 〈Coh≥2(X )[1],Coh≤1(X )〉ex
from Example 3.5. It is an open subcategory by the above lemma.

Lemma 4.2 The category Ark≥−1 ⊂ Coh�(X ) is open. In particular, Ark≥−1
is an Artin stack locally of finite type.

Proof The set of objects in Ark≥−1 splits as a disjoint union according to their
rank. The rk = 0 component is Coh≤1(X ), which is open.

By Proposition 3.16, an object E ∈ Coh�(X ) of rank −1 lies in A if and
only if H−1(E) is torsion free and det(E) = OX . The former condition is
open byLemma4.1,whereas the latter condition is open because H1(X ,OX )

= 0. ��

4.2 Openness of pairs

We are now in a position to prove that the moduli stack of pairs Pair(T,F)

is an open substack of MumX under some mild assumptions on (T,F), and
as a consequence that Pair(T,F) is an Artin stack, locally of finite type.

For the wall-crossing arguments in Sect. 6, wewant to comparePair(T,F)

to Pair(T̃, F̃) for a second torsion pair (T̃, F̃). We therefore need to work in
slightly bigger generality, and show that the “auxilliary” moduli stack of pairs
Pair(T, F̃) is also open.

In the wall-crossing setting, we take T ⊂ T̃, which implies that F̃ ⊂ F. Thus
the condition of being a (T, F̃)-pair is less restrictive than being either a (T,F)-
pair or a (T̃, F̃)-pair, and we have open inclusions Pair(T,F),Pair(T̃, F̃) ⊂
Pair(T, F̃).

Definition 4.3 A torsion pair (T,F) on Coh≤1(X ) is called open if the sub-
categories T,F ⊂ Coh≤1(X ) are open.

Let (T,F) be an open torsion pair on Coh≤1(X ). Note that an object E ∈
Ark=−1 is a (T,F)-pair precisely when

1. H0(E) ∈ T, and
2. Hom(T, E) = 0 for all T ∈ T.

Condition (1) is open by Lemma 4.1. To show that condition (2) is also open,
we reformulate it in terms of a condition on the derived dual of E , that is open.

By derived dual we mean the anti-equivalence of D(X ) given by

D(−) = RH om(−,OX )[2]. (31)

Note that D(Coh1(X )) = Coh1(X ) and D(Coh0(X )) = Coh0(X )[−1]. In
particular, the abelian category D(Coh≤1(X )) has a torsion pair given by

D(Coh≤1(X )) = 〈Coh1(X ),Coh0(X )[−1]〉. (32)
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Lemma 4.4 If E ∈ A, then Hi (D(E)) = 0 if i �= −1, 0, 1, and H1(D(E)) ∈
Coh0(X ).

Proof If E ∈ Coh≤1(X ), the claim follows from the above discussion. If
E = OX [1], then D(E) = E . Since the conclusion of the lemma is a property
preserved by extensions, the claim now follows for all E ∈ A. ��

We wish to compare notions of pair with respect to different torsion pairs.

Lemma 4.5 Let (T,F) and (T̃, F̃) be two torsion pairs onCoh≤1(X ). Assume
that Coh0(X ) ⊂ T, so F ⊂ Coh1(X ). An object E ∈ Ark=−1 is a (T, F̃)-pair
if and only if the following two conditions hold:

1. H0(E) ∈ T̃,
2. H1(D(E)) = 0 and H0(D(E)) ∈ 〈Coh0(X ), D(F)〉ex.

Proof Let E ∈ Ark=−1. Then Hom(E, F̃) = 0 is equivalent to H0(E) ∈ T̃.
Let T1 = T ∩ Coh1(X ). Since Coh0(X ) ⊂ T, we have T =

〈Coh0(X ),T1〉ex. Thus E ∈ T⊥ is equivalent to E ∈ Coh0(X )⊥ ∩ T⊥
1 ,

which is equivalent to

D(E) ∈ ⊥ Coh0(X )[−1] ∩ ⊥D(T1).

By Lemma 4.4, D(E) ∈ ⊥ Coh0(X )[−1] if and only if H1(D(E)) = 0,
and if this holds then E ∈ ⊥D(T1) if and only if H0(D(E)) ∈ ⊥D(T1) =
〈Coh0(X ), D(F)〉ex. ��
Proposition 4.6 Let (T,F) and (T̃, F̃) be open torsion pairs on Coh≤1(X ).
Assume that Coh0(X ) ⊂ T, so F ⊂ Coh1(X ). The substack Pair(T, F̃) ⊂
MumX parametrising (T, F̃)-pairs is open. In particular, it is an algebraic
stack locally of finite type.

Proof Note that the duality functor D induces an automorphism of the
stack MumX . In particular, if G ∈ MumX (S) is a family of univer-
sally gluable complexes over some base S, then so is its dual D(G) =
RH om(G,OS×X )[2] ∈ MumX (S).

Lemma 4.5 shows that E ∈ Ark=−1 is a (T, F̃)-pair if and only if three
properties hold: (i) H0(E) ∈ T̃, (ii) H1(D(E)) = 0, and (iii) H0(D(E)) ∈
G := 〈Coh0(X ), D(F)〉ex. By Lemma 4.1, the first condition is open. As
D(E) ∈ D[−1,1](X ) by Lemma 4.4, the second condition is open as well.

Set T1 = T∩Coh1(X ). Applying D to the torsion triple 〈Coh0(X ),T1,F〉
yields a refinement to a torsion triple of the torsion pair in equation (32). Tilting
at this torsion pair, we obtain the torsion triple

Coh≤1(X ) = 〈Coh0(X ), D(F), D(T1)〉.
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Thus G is closed under extensions and quotients. We now claim that G is open,
which is equivalent to D(G) = 〈Coh0(X )[−1], F〉ex being open. But

D(G) = 〈Coh1(X ),Coh0(X )[1]〉 ∩ 〈F,T[−1]〉
since Coh0(X ) ⊂ T, and both of which are open by Lemma 4.1. ��

5 Hall algebras

In this section we define the motivic Hall algebra of the heart of a bounded
t-structure C ⊂ D(X ) and recall some of its properties. For a more detailed
discussion, we refer to [6,8,9,18,48].

5.1 Grothendieck rings

The Grothendieck ring K (St /C) is the Q-vector space generated by symbols
[X ],where X is a finite typeArtin stack overCwith affine geometric stabilisers.

These symbols are subject to the following relations:

1. [X � Y ] = [X ] + [Y ].
2. If f : X → Y is a geometric bijection, i.e., f induces an equivalence of

groupoids X (C) → Y (C), then [X ] = [Y ].
3. If X1, X2 → Y are Zariski fibrations9 with the same fibres, then [X1] =

[X2].
One may multiply classes by taking products: [X ] · [Y ] := [X × Y ]. This turns
K (St /C) into a commutative Q-algebra, with unit given by [SpecC].
Let S be an Artin stack locally of finite type with affine geometric sta-

bilizers. We have a relative version K (St /S ), which is the Q-vector space
generated by symbols [X → S ], where X is a finite type Artin stack over
C with affine geometric stabilisers, and where these symbols are subject to
relative versions of the three relations above. The vector space K (St /S ) is a
K (St /C)-module, where the module structure is given by setting

[X ] · [Y → S ] = [X × Y → Y → S ],
and the first map X × Y → Y is the projection onto Y .

For the remainder of this section we fix an open substack C ⊂ MumX

satisfying the hypotheses of “Appendix B”. In our applications, we take C =
Coh�(X ) as before.

9 See [9] for the definition of this term, which will not be used in this paper.
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5.2 The motivic Hall algebra

There exists a stack C(2) of short exact sequences in the category C. It comes
with three distinguished maps πi : C(2) → C, i = 1, 2, 3. The map πi corre-
sponds to sending a short exact sequence 0 → E1 → E2 → E3 → 0 to the
object Ei . The following proposition is shown in “Appendix B”.

Proposition 5.1 The stack C(2) is an Artin stack, locally of finite type. The
morphism (π1, π3) : C(2) → C × C is of finite type.

Given two elements [X1 → C], [X2 → C] of K (St /C), take their fibre
product

X1 ∗ X2 C(2) C

X1 × X2 C × C

�

π2

(π1,π3)
(33)

Note that X1 ∗ X2 is again a finite-type stack over C with affine geometric
stabilizers. Thus the class of the top horizontal line of the diagram [X1∗ X2 →
C] is again an element of K (St /C).

Proposition 5.2 The operation ([X1 → C], [X2 → C]) �→ [X1 ∗ X2 →
C] defines an associative product on K (St /C) with unit 10 = [pt → C]
corresponding to the stack of zero objects in C.

Proof Analogous to [9, Thm. 4.3], see also [30, Thm. 6.3]. ��
Definition 5.3 The motivic Hall algebra of C is H(C) := (K (St /C), ∗, 10).

Taking Cartesian products make H(C) into an algebra over K (St /C). Ele-
ments of the Hall algebra are naturally graded by the numerical Grothendieck
group N (X ), where an element [ f : X → C] is homogeneous of degree α if
f factors through the substack Cα . The K (St /C)-algebra structure respects
this grading.

5.3 The integration map

Let L = [A1
C]. Let

KL(Var /C) := K (Var /C)(L−1)

KL(St /C) := K (St /C)(L−1)

HL(C) := H(C)(L−1),
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the localisations in the ideal (L − 1) ⊂ K (Var /C).10 There is a natural
map of commutative rings KL(Var /C) → KL(St /C). Recall that H(C) is
a K (St /C)-module. Note that the element (L − 1)−1 = [BC∗] lies in the
ring K (St /C) but not in the ring KL(Var /C). We define the subalgebra of
DM-regular elements HDM-reg(C) ⊂ HL(C) as the module over KL(Var /C)

generated by those elements [Z → C] of H(C) for which Z is a Deligne–
Mumford stack.11

Proposition 5.4 The submodule HDM-reg(C) is closed under the Hall alge-
bra product. Furthermore, the quotient HDM-sc(C) = HDM-reg(C)/(L −
1)HDM-reg(C) is commutative and has a Poisson bracket given by

{ f, g} = f ∗ g − g ∗ f

L − 1
. (34)

The commutative Poisson algebra HDM-sc(C) is the semi-classical Hall algebra
of C. This proposition is similar to [9, Thm. 5.1], and the proof goes along
similar lines. Because weworkwith Deligne–Mumford stacks rather thanwith
varieties, there are some complications, and we give the details of the proof in
“Appendix C”.

Wenowfix aσ ∈ {±1}, where+1 corresponds to the topological Euler char-
acteristic e and −1 corresponds to the Behrend-weighted Euler characteristic
eB . Recall that χ is the Euler form on N (X ). The Poisson torus Q[N (X )]
is the Q-vector space with basis {tα | α ∈ N (X )} and commutative product
tα1 � tα2 = σχ(α1,α2)tα1+α2 . It is a Poisson algebra when endowed with the
Poisson bracket defined by

{tα, tβ} = σχ(α,β)χ(α, β)tα+β. (35)

There is a homomorphismofPoisson algebras Iσ : HDM-sc(C) → Q[N (X )]
which is uniquely determined by the following condition. Let Y be a DM stack
and let Y → Cα be a morphism. For σ = 1, we have

I1[Y → Cα ⊂ C] = e(Y )tα ∈ Q[N (X )]. (36)

10 In order to match up with [6], we diverge here from [8,9], which localises in the smaller mul-
tiplicative system generated by L and Ln−1

L−1 . Since we only invert elements with non-vanishing
Euler charateristics, the integration map remains well-defined on this bigger localisation.
11 In [9] and other places, one instead considers the subalgebra Hreg(C) of regular elements,
where one requires Z to be a variety rather than aDM stack. Our reliance on [6] forces us towork
with the bigger algebra of DM-regular elements (see “Appendix C”). It seems plausible that
every DM-regular element is in fact regular, but we have not been able to prove this, so instead
we show that the key foundational results that hold for Hreg(C) also hold for HDM-reg(C).
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For σ = −1, we have

I−1[Y → Cα ⊂ C] = eB(Y → C)tα ∈ Q[N (X )], (37)

where we define

eB

(
Y

s→ C
)

=
∑

k∈Z

k · e
(
(ν ◦ s)−1(k)

)
(38)

and where ν : C → Z is Behrend’s constructible function [4]. Details on
our notion of Euler characteristic for Deligne–Mumford stacks are given in
“Appendix C”, along with the proof of the following theorem.

Theorem 5.5 The integration map Iσ is a map of Poisson algebras.

We work with σ = −1 for the rest of this paper; however, see Sect. 1.4.2
for a discussion of the case σ = 1.

Remark 5.6 If we equip Q[N (X )] with the naive product tα1 tα2 = tα1+α2

thenQ[N (X )] is only aLie algebra and I−1 is only amorphismofLie algebras,
not of Poisson algebras; this issue only occurs for the Behrend weighted case
σ = −1.

Henceforth we equip Q[N (X )] with the naive product. The wall-crossing
only involves the bracket {−, −}, so this distinction is of no consequence to
the validity of our arguments. However, it does mean that the Leibniz rule
does not hold in Q[N (X )]. In keeping with the literature, we opt to write our
variables as tα = zβqc.

5.4 The graded Hall algebra

It is convenient to be able to talk about infinite graded sums in the Hall algebra,
and we therefore consider the following variant.

Definition 5.7 The graded Hall pre-algebra Hgr(C) is the Q-vector space
generated by symbols [X → C], where X is an Artin stack locally of finite
type over C with affine geometric stabilizers, but such that the restriction of
X to Cα is of finite type for each α ∈ N (X ). The graded Hall pre-algebra We
impose the same relations as before.

Remark 5.8 As the name suggests, the graded Hall pre-algebra is not quite an
algebra, for the same reason that the set of all formal expressions

∑
n∈Z anqn

is not a ring. Indeed, the product of two elements in Hgr(C) may not lie in
Hgr(C), since the product may not be of finite type over each Cα .
On the other hand, suppose C = ∑

α Cα , D = ∑
α Dα are two elements

of Hgr(C) with Cα and Dα homogeneous of degree α. If we assume that for
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every α ∈ N (X ),

{
α1 + α2 = α | Cα1 �= 0 �= Dα2

}

is a finite set, then the product of C and D exists in Hgr(C).

We define graded versions of the DM-regular subalgebra Hgr,DM-reg(C) ⊂
Hgr(C), and the semi-classical quotient Hgr,DM-sc(C), as before. The latter
comes equipped with a partially defined Lie bracket and integration mor-
phisms Iσ : Hgr,DM-sc(C) → Q{N (X )}, where Q{N (X )} is the group of
all formal expressions

∑
α∈N (X ) nαtα with nα ∈ Q. By Theorem 5.5, the map

Iσ preserves the Lie bracket between any two elements for which it is defined.

Remark 5.9 Wepoint out that in this paper, we are only concernedwith objects
of rank 0 and −1. Indeed, we only make use of the (graded versions of) the
Hall algebra H(Coh≤1(X )) and the Lie-bimodule structure of H(Ark=−1) ⊂
H(Coh�(X )) over H(Coh≤1(X )) given by takingLie bracketswith elements
in H(Coh≤1(X )).

6 Wall-crossing

In this section we establish a general wall-crossing formula for (T,F)-pairs.
As an application, we prove the DT/PT correspondence for hard Lefschetz
orbifolds.

We always work in the Hall algebras associated to the abelian category
Coh�(X ), and suppress this category from the notation. For example, Hgr

denotes Hgr(Coh�(X )).
We call a torsion pair (T,F) on Coh≤1(X ) numerical if [T ] = [F] in

N (X ), for T ∈ T, F ∈ F, implies T = F = 0. Any torsion pair induced
from a stability condition on N≤1(X ) is numerical. In particular, all the torsion
pairs we consider are numerical.

Lemma 6.1 Let (T,F) be a numerical torsion pair on Coh≤1(X ). Let E be
a (T,F)-pair in the sense of Definition 3.9. Then Aut(E) = C∗.

Proof Let φ : E → E be an endomorphism of E ∈ Pair(T,F). If im φ

has rank 0, then by definition im φ ∈ F ∩ T = 0. If im φ has rank -1, then
ker φ ∈ F, and coker φ ∈ T. But since [coker φ] = [ker φ] in N (X ), we
have ker φ = coker φ = 0. Thus every non-zero endomorphism of E is
an automorphism. It follows that End(E) is a finite-dimensional associative
division algebra over C, and so Aut(E) = C∗. ��
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Corollary 6.2 Let (T,F) be a numerical, open torsion pair on Coh≤1(X ),
and let M ⊂ Pair(T,F) be an open and finite type substack. Then (L −
1)[M ] ∈ HDM-reg.

Proof By [1, Thm. 5.1.5], the moduli stack of pairs Pair(T,F) has a coarse
moduli space, over which it is a C∗-gerbe by Lemma 6.1. The result follows.

��
Definition 6.3 We say that a full subcategory C ⊂ Coh�(X ) defines an ele-
ment in the graded Hall pre-algebra Hgr if it is an open subcategory and Cα is
of finite type for every α ∈ N (X ).

Remark 6.4 If a subcategoryC ⊂ Coh�(X )defines an element of Hgr, thenwe
omit the natural inclusion and simply write [C] for the corresponding element.

Let (T±,F±) be two open, numerical torsion pairs on Coh≤1(X ) with T+ ⊂
T−. We think of these torsion pairs as lying on either side of a wall, and
we write W = T− ∩ F+ for the category of objects that change from being
torsion to being free when the wall is crossed. We obtain an open torsion triple
Coh≤1(X ) = 〈T+,W,F−〉.
Lemma 6.5 Assume the categories Pair(T−,F−), Pair(T+,F+), W define
elements of Hgr(Coh�(X )), and let α ∈ N (A) ∈ Z⊕ N≤1(X ). The following
are equivalent:

1. The stack Pair(T+,F−)α is of finite type.
2. The stack (Pair(T+,F+) ∗ W)α is of finite type.
3. The stack (W ∗ Pair(T−,F−))α is of finite type.

Proof Proposition 3.15 yields the following torsion tuple decompositions of
A:

A = 〈T+,V(T+,F−),F−〉 = 〈T−,W,V(T−,F−),F−〉
= 〈T+,V(T+,F+),W,F+〉.

Restricting to V(T+,F−) ∩ Ark=−1 = Pair(T+,F−), we find that every
(T+,F−)-pair E admits unique decompositions

0 → W− → E → E− → 0

0 → E+ → E → W+ → 0

in A, with W± ∈ W, E± ∈ Pair(T±,F±). Conversely every exact
sequence as above with W± ∈ W, E± ∈ Pair(T±,F±) defines an E ∈
Pair(T+,F−). Thuswe have natural geometrically bijectivemorphisms from
(Pair(T+,F+) ∗ W)α and (W ∗ Pair(T−,F−))α to Pair(T−,F+), proving
the implications (2) ⇒ (1) and (3) ⇒ (1).
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Conversely, if (Pair(T+,F+)∗W)α is not of finite type, then it is a countably
infinite union of finite type stacks, which cannot be in geometric bijection with
a finite type stack. Thus (1) ⇒ (2), and in the same way (1) ⇒ (3). ��
Lemma 6.6 Assume thatW,Pair(T−,F−),Pair(T+,F+)andPair(T+,F−)

each define an element of the graded Hall pre-algebra. Then we have in Hgr

[W] ∗ [Pair(T−,F−)] = [Pair(T+,F−)]
= [Pair(T+,F+)] ∗ [W]. (39)

Proof See the proof of Lemma 6.5, and argue as in [8, Lem. 4.1]. ��

6.1 The no-poles theorem

We now introduce a further smallness assumption on the subcategory W, taken
from [6], which may be thought of as saying that the torsion pairs (T±,F±)

are close enough for the wall W = T− ∩ F+ to be crossed.

Definition 6.7 A full subcategory W ⊂ Coh≤1(X ) is log-able if:

– W is closed under direct sums and summands.
– W defines an element of Hgr.
– if α ∈ N (X ), there are only finitely many ways of writing α = α1 +· · ·+

αn , with each αi the class of a non-zero element in W.

The terminology is explained by the fact that for a log-able subcategory W, we
may define a Hall algebra logarithm by the formula

log([W]) =
∞∑

n=1

(−1)n−1 ([W] − 1)∗n

n
∈ Hgr,

In fact, log([W]) is not only well defined, but (up to a constant factor) DM-
regular:

Theorem 6.8 If W is log-able, then

(L − 1) log([W]) ∈ Hgr,DM-reg(Coh
�(X )).

The first incarnation of this kind of theorem is Joyce’s [25, Thm. 8.7]; our for-
mulation here is filtered through [8, Sec. 6]. In Joyce’s theorem it is assumed
that W is the stack of semistables of a given slope with respect to some weak
stability condition on an abelian category. This deep theorem is the key to
Joyce–Song’s definition of generalised DT invariants counting semistable
objects [26], because it says that (L − 1) log([W]) is precisely the kind of
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motivic class for which we have a well-defined notion of (Behrend-weighted)
Euler characteristic. More formally, the integration map Iσ from Sect. 5.3 is
defined on (L − 1) log([W]), and the generating function of generalised DT
invariants in the sense of Joyce–Song is (up to slightly varying conventions of
sign)

Iσ ((L − 1) log([W])) ∈ Q{N≤1(X )}.

While it is possible that we can get Joyce’s theorem to apply to the cases of
interest in this paper, we instead rely on a similar statement [6, Thm. 4.3]
shown by Behrend–Ronagh. Behrend–Ronagh’s result is more flexible in that
it abstracts away the assumption that W is defined by a weak stability condi-
tion, and replaces it with an assumption equivalent to our “log-able”. While
the assumptions of Behrend–Ronagh’s result are weaker than Joyce’s, the con-
clusions are also weaker, showing roughly speaking only that (L−1) log([W])
is represented by DM stacks rather than varieties. We therefore have to modify
Bridgeland’s work in [8,9] somewhat, and we postpone the proof of Theo-
rem 6.8 to “Appendix C”.

6.2 The numerical wall-crossing formula

We apply the integration map.

Definition 6.9 Let (T±,F±) be open torsion pairs on Coh≤1(X ) with T+ ⊂
T−, and let W = T− ∩ F+. We say that these torsion pairs are wall-crossing
material if

1. W is log-able
2. the categories Pair(T+,F+), Pair(T−,F−) and Pair(T+,F−) define

elements of the graded Hall algebra.

Theorem 6.10 Let (T±,F±) be open torsion pairs on Coh≤1(X ), with T+ ⊂
T−, which are wall-crossing material. Then w := I

(
(L − 1) log[W]) is well

defined, and

I
(
(L − 1)[Pair(T+,F+)])

= exp ({w, −}) I
(
(L − 1)[Pair(T−,F−)]) . (40)

Proof Since W is log-able (L − 1) log([W]) ∈ Hgr,DM-reg(Coh�(X )) by The-
orem 6.8. By Corollary 6.2, we have (L − 1)Pair(T±,F±) ∈ Hgr,DM-reg

(Coh�(X )) as well. The result then follows by the arguments of [8, Cor. 6.4]
and equation (39). ��
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6.3 The DT/PT correspondence

Asafirst application of thewall-crossing formula,weprove the orbifoldDT/PT
correspondence. Recall that stable pairs onX in the sense of Pandharipande–
Thomas are precisely (TPT ,FPT )-pairs, where TPT = Coh0(X ) and FPT =
Coh1(X ).

Lemma 6.11 Let TDT = 0,W = Coh0(X ), and FPT = Coh1(X ). Then
(TDT ,W,FPT ) is an open numerical torsion triple on Coh≤1(X ) that is wall-
crossing material.

Proof Clearly W is log-able.
A (TDT ,FDT )-pair is an object of the form I [1], where I is a torsion free

sheaf of rank 1. Fixing the numerical class of the pair, the stack of such
is an open substack of MumX , which is moreover of finite type. Hence,
Pair(TDT ,FDT ) defines an element of Hgr(Coh�(X )).

If X is a variety, it is well-known that Pair(TPT ,FPT )α is an open
substack of finite type for every α ∈ N≤1(X ); for a proof in our setting,
combine part 2 of Proposition 7.6 and Lemma 7.10. Hence, Pair(TPT ,FPT )

defines an element of Hgr(Coh�(X )). Moreover, it is shown there that for each
β ∈ N1(X ), the set of classes {c ∈ N0(X ) | Pair(TPT ,FPT )(β,c) �= ∅} is
deg-bounded. Consequently, it follows that [W] ∗ [Pair(TPT ,FPT )] defines
an element of Hgr(Coh�(X )). ��

For a class (β, c) ∈ N≤1(X ), we write PT (X )(β,c) for the Behrend-
weighted Euler characteristic of the corresponding coarse moduli space. In
terms of the integration morphism of (37), we have12

I
(
(L − 1)[Pair(TPT ,FPT )](β,c)

) = −PT (X )(β,c)t
(−1,β,c) (41)

in the Poisson torus Q[N (X )]. We collect these invariants in a generating
function

PT (X )β =
∑

c∈N0(X )

PT (X )(β,c)q
c (42)

Similarly, there is a generating function for the Donaldson–Thomas invariants.
We prove the orbifold DT/PT correspondence for multi-regular curve

classes.

12 The minus sign here is necessary because the Behrend function on Pair(TPT ,FPT ) is −1
times that on the coarse moduli space.
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Theorem A Let X be a CY3 orbifold satisfying the hard Lefschetz condition,
and let β ∈ N1,mr(X ). Then we have

PT (X )β = DT (X )β

DT (X )0
(43)

as generating series in Z[N0(X )]deg.

Proof We apply the numerical wall-crossing formula of Theorem 6.10 to
the open numerical torsion triple T+ = TDT = 0, W = Coh0(X ), and
F− = FPT = Coh1(X ). The triple (T+,W,F−) is wall-crossing material by
Lemma 6.11.

We compute both sides of the wall-crossing formula. The left hand side
of (40) yields I

(
(L − 1)[Pair(TDT ,FDT )]β

) = DT (X )βzβ t−[OX ]. We
define the element w = I ((L − 1) log[W]), which lies in Hgr,DM-reg(C). The
right hand side of (40) yields

exp({w, −})I
(
(L − 1)[Pair(TPT ,FPT )]β

)

= exp({w, −})PT (X )βzβ t−[OX ]. (44)

Let now c ∈ N0(X ). Applying theMcKay homomorphism, we getΨ (c) ∈
N≤1(Y ). Since β is multi-regular, we also have Ψ (β, c′) ∈ N≤1(Y ) for every
c′ ∈ N0(X ). The Euler pairing on Y is trivial on the subspace N≤1(Y ), and
so

χ(c, (β, c′)) = χ(Ψ (c), Ψ (β, c′)) = 0.

We can write w = ∑
c∈N0(X ) wcqc, and it follows that {w, zβqc′ } = 0. But

then

exp({w, −})PT (X )βzβ t−[OX ] = PT (X )βzβ exp({w, −})t−[OX ].

Combining the left and right hand sides of equation (40) now yields

DT (X )β

PT (X )β
= t [OX ] exp({w, −})t−[OX ]

for all β ∈ N1,mr(X ). Choosing β = 0, we recall that PT (X )0 = 1, and
hence

DT (X )β

PT (X )β
= DT (X )0

PT (X )0
= DT (X )0,

because E = OX [1] is the only stable pair with βE = 0. ��
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7 Rationality of stable pair invariants

In this section we prove the rationality of the series PT (X )β in Theorem B,
and a certain symmetry of PT (X ) in Proposition 7.18.

Let δ ∈ R. Recall the Nironi slope function ν and the constants ν±(F) from
Sect. 2.3.1. Define a torsion pair (Tν,δ,Fν,δ) on Coh≤1(X ) by

Tν,δ := {
T ∈ Coh≤1(X ) | ν−(T ) ≥ δ

}

= {T ∈ Coh≤1(X ) | T � Q �= 0 ⇒ ν(Q) ≥ δ}
Fν,δ := {

F ∈ Coh≤1(X ) | ν+(F) < δ
}

= {F ∈ Coh≤1(X ) | 0 �= S ↪→ F ⇒ ν(S) < δ}
We write Pν,δ for the category of (Tν,δ,Fν,δ)-pairs in the sense of Defini-
tion 3.9.

Recall thatwehavefixed a self-dual generatingbundleV onX and an ample
line bundle A on X , that pF (k) = l(βF )k + deg(F) denotes the modified
Hilbert polynomial of F ∈ Coh≤1(X ), and that F(k) = F ⊗ A⊗k ; see
Sect. 2.2.2.

We write C := Coh�(X ) and work in the associated Hall algebra Hgr(C)

throughout.

7.1 Openness and finiteness results of Nironi-semistable sheaves

Let I ⊂ R ∪{+∞} be an interval. Recall thatMν(I ) denotes the full subcate-
gory of sheaves F ∈ Coh≤1(X ) such that the slopes of all semistable factors
in the Harder–Narasimhan filtration of F lie in I . The corresponding moduli
stack is denoted byM ν(I ).

Proposition 7.1 Let δ ∈ R.

1. The torsion pair (Tν,δ,Fν,δ) is open.
2. For any bounded interval I ⊂ R, the stack M ν(I ) is open in Coh(X ),

and the category Mν(I ) is log-able.
3. For β ∈ N1(X ), let

Lβ = {
c ∈ N0(X )

∣∣M ss
ν (β, c) �= ∅} ⊂ N0(X ).

The image of Lβ in N0(X )/Z(A · β) is finite.

Proof The openness statements and the fact thatMν(I ) defines an element of
Hgr(C) follow from Theorem 2.9. Let (β, c) ∈ N≤1(X ) and suppose we can
decompose (β, c) = (β ′, c′) + (β ′′, c′′) such that

M ss
ν (β ′, c′) �= ∅ �= M ss

ν (β ′′, c′′)
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and ν(β ′, c′) = δ = ν(β ′′, c′′). By Lemma 2.5, there are only finitely many
effective classes β ′, β ′′ ≥ 0 such that β = β ′+β ′′. And given β ′, Theorem 2.9
shows that there are only finitely many choices for c′ such thatM ss

ν (β ′, c′) �=
∅ and ν(β ′, c′) = δ. Furthermore, M ss

ν (δ) is closed under direct sums and
summands, hence is log-able.

For the third claim, note that a sheaf F ∈ Coh≤1(X ) such that βF =
β satisfies ν(F) = deg(F)/ l(β) ∈ 1

l(β)
Z. Replacing F by F(−#ν(F)$) if

necessary, which does not change the image of cF in N0(X )/Z(A · β), we
may assume that ν(F) ∈ [0, 1). Thus the image of cF lies in the set.

l(β)−1⋃

a=0

{
c + Z(A · β)

∣∣M ss
ν (β, c) �= ∅ and ν(β, c) = a

l(β)

}

⊂ N0(X )/Z(A · β).

But each of the sets in this union is finite since the stackM ss
ν (a/ l(β), β) is of

finite type for every a ∈ Z. This completes the proof. ��

7.2 Openness and finiteness for (Tν,δ,Fν,δ)-pairs

In this section we show a similar openness and boundedness result for the
moduli stacks of (Tν,δ,Fν,δ)-pairs; this is Proposition 7.6. We first collect a
number of lemmas.

Recall fromThm.2.10 that given apolynomial p ∈ Z[k], there is a projective
moduli schemeQuotX (OX , p) parametrising quotientsOX � F with pF =
p. If (β, c) ∈ N≤1(X ),

QuotX (OX )(β,c) ⊂ QuotX (OX , p(β,c))

denotes the component parametrising quotients of numerical class [F] =
(β, c).

Lemma 7.2 Let β ∈ N1(X ). The set

⋃

β ′≤β

{c ∈ N0(X ) | QuotX (OX )(β ′,c) �= ∅}

is deg-bounded.

Proof By Lemma 2.5, it is enough to prove that the set

Qβ := {c ∈ N0(X ) | QuotX (OX )(β,c) �= ∅}.
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is deg-bounded for every β ∈ N1(X ). Given r ∈ R, the projectivity of the
Quot scheme implies that the subscheme

⋃

c∈deg−1(r)

QuotX (OX )(β,c) ⊆ QuotX (OX , l(β)k + deg(β, 0) + r)

is projective, and so Qβ ∩ deg−1(r) is a finite set.
Let d = deg([OX ,x ]), where x ∈ X is a non-stacky point. Since

deg(Qβ) ⊆ Z, and so is discrete, we have for any e ∈ Z that the scheme

He =
⋃

c∈deg−1([e,e+d])
QuotX (OX )(β,c)

is projective, which means that Qβ ∩ deg−1([e, e + d]) is finite. By adding on
floating points, see e.g.[44, Lem. 3.10],wededuce that dim He−d+3 ≤ dim He
for any e ∈ Z. We conclude that He = ∅ for e � 0, and thus that Qβ is deg-
bounded. ��

Recall the shifted derived dualising functor D(−) = RH om(−,OX )[2].
Lemma 7.3 If F ∈ Coh≤1(X ), then pD(F)(k) = −pF (−k) and ν(D(F)) =
−ν(F).

Proof This is straightforward, but requires the assumption that the generating
vector bundle V in the definition of the modified Hilbert polynomial be self-
dual. ��
The following is a duality result for the moduli stack Pν,δ of (Tν,δ,Fν,δ)-pairs.

Lemma 7.4 Let δ ∈ R \ Q. Then D(Pν,δ) = Pν,−δ .

Proof As δ /∈ Q and ν(F) ∈ Q for any F ∈ Coh≤1(X ), the condition ν(F) ≥
δ holds if and only if ν(F) > δ. It follows that D(Fν,δ) = Tν,−δ ∩ Coh1(X ).

Let E ∈ Pν,δ be a pair. SincePν,δ ⊂ A = 〈OX [1],Coh0(X ),Coh1(X )〉ex,
we have

D(E) ∈ D(A) = 〈OX [1],Coh1(X ),Coh0(X )[−1]〉ex.
Since Coh0(X ) ⊂ Tν,δ , we have E ∈ Coh0(X )⊥ and so D(E) ∈⊥
Coh0(X )[−1]This impliesD(E) ∈ 〈OX [1],Coh1(X )〉ex andhenceD(E) ∈
A.

Since E ∈ (Tν,δ ∩ Coh1(X ))⊥ we have D(E) ∈⊥ Fν,−δ , and E ∈
⊥Fν,δ ∩⊥Coh0(X )[−1] impliesD(E) ∈ (Tν,−δ∩Coh1(X ))⊥∩Coh0(X )⊥ =
T⊥

ν,−δ . Thus D(E) ∈ Pν,−δ . ��

123



S. V. Beentjes et al.

Lemma 7.5 Let β ∈ N1(X ) and δ ∈ R. The set

{c ∈ N0(X ) | Mν([δ, ∞))(β,c) �= ∅}. (45)

is deg-bounded.

Proof Let r ∈ R. We have to show that the set

{c ∈ N0(X ) | deg(c) ≤ r and Mν([δ, ∞))(β,c) �= ∅}.

is finite. So let F be a pure 1-dimensional sheaf with βF = β, deg(cF ) ≤ r ,
and ν−(F) ≥ δ. By Lemma 2.11, we have

ν+(F) ≤ deg(F) − [l(β) − 1]ν−(F)

= deg(β, 0) + deg(cF ) − [l(β) − 1]ν−(F)

≤ deg(β, 0) + r + [l(β) − 1]δ.

By Theorem 2.9, there are then only finitely many possible values for cF . ��
Proposition 7.6 Let δ ∈ R.

1. For any class β ∈ N1(X ), the set {c ∈ N0(X ) | Pν,δ(β, c) �= ∅} is finite.
2. For any class (β, c) ∈ N≤1(X ), the moduli stack Pν,δ(β, c) is an open

and finite type substack of MumX .
3. There are only finitely many ways of decomposing a class (β, c) ∈ N≤1(X )

as (β, c) = (β ′, c′) + (β ′′, c′′) with both Pν,δ(β
′, c′) �= ∅ and β ′′ ∈

N eff
1 (X ).

Proof We may assume that δ /∈ Q by replacing δ with δ − ε for 0 < ε � 1 if
necessary, since for a fixed β, this does not change the notion of (Tν,δ,Fν,δ)-
pairs of class ≤ β.

For the first part, let E be a (Tν,δ,Fν,δ)-pair of class (−1, β, c). Note that
H−1(E) = IC is the ideal sheaf of an at most 1-dimensional closed substack
C ⊂ X . Let H0(E) = T , so T ∈ Tν,δ .We have deg(E) = deg(OC )+deg(T ).
The set of possible values for cOC and cT are both deg-bounded, byLemmas 7.2
and 7.5, hence the set of possible values for cE is deg-bounded.

By Lemma 7.4, the set of possible values for cD(E) = −cE is deg-bounded
as well. It follows that the set of possible values for cE is in fact finite.

For part (2), openness follows from Propositions 4.6 and 7.1. For the finite
type claim, note that the above shows that there are finitely many choices
for [OC ] and [T ]. For each such choice, the relevant moduli stacks (i.e. the
stack of ideal sheaves IC of a given class and Mν([δ, ∞), [T ])) are of finite
type. The stack of extensions of objects in Mν([δ, ∞), [T ]) by an object in
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Quot(OX , [OC ]) is of finite type, by Proposition 5.1. This proves that the
stack Pν,δ(β, c) is of finite type.

The third claim follows from the first claim and Lemma 2.5. ��

7.3 δ-Walls

Let β ∈ N1(X ). We now study the set of δ ∈ R where the notion of
(Tν,δ,Fν,δ)-pair may change for objects of class (−1, β ′, c′) with β ′ ≤ β.

Let Wβ = 1
l(β)!Z ⊂ R, the set of potential walls for β.

Lemma 7.7 The notion of (Tν,δ,Fν,δ)-pair of class β ′ ≤ β is locally constant
for δ ∈ R \ Wβ .

Proof Let E ∈ A be of class (−1, β, c). The object E is a δ-pair if and only if
there are no surjections E � F with F ∈ Fν,δ and no injections T ↪→ E with
T ∈ Tν,δ . By Lemma 3.18, for any quotient F and any subobject T we must
have l(F), l(T ) ≤ l(E) = l(β), and so ν(F), ν(T ) ∈ 1

l(β)!Z. This proves the
claim. ��
Proposition 7.8 Let β ∈ N1(X ), let δ ∈ Wβ , and let 0 < ε < 1

l(β)! . The
triple

(Tν,δ+ε,Mν([δ − ε, δ + ε)),Fν,δ−ε)

is a torsion triple that is wall-crossing material in the sense of Definition 6.9.

Proof It is a torsion triple by Lemma 7.7, which is open by Proposition 7.1.
The categoryMν([δ − ε, δ + ε)) is log-able by part (2) of Proposition 7.1.

Part (2) of Proposition 7.6 states that the subcategories Pν,δ±ε define ele-
ments of Hgr(C). Part (3) of Proposition 7.6 now proves that (Tν,δ+ε,M

ss
ν (δ),

Fν,δ−ε) is wall-crossing material. ��

7.4 DT invariants

We are now in a position to apply the integration map to define DT-type
invariants counting Nironi-semistable sheaves and (Tν,δ,Fν,δ)-pairs.

7.4.1 Rank 0

Let a ∈ R. By Lemma 7.1, the stack M ss
ν (a) defines an element [M ss

ν (a)] ∈
Hgr(C), which is moreover log-able. Thus we obtain an element

ην,a := (L − 1) log([M ss
ν (a)]) ∈ Hgr,DM-reg(C)
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by Theorem 6.8. Projecting this element to the semi-classical quotient
Hgr,DM-sc(C), we define DT-type invariants J ν

(β,c) ∈ Q by the formula

∑

ν(β,c)=a

J ν
(β,c)z

βqc := I
(
ην,a

) ∈ Q{N (X )}. (46)

These are the Joyce–Song orbifold-analogues of Toda’s N -invariants; see [45].
These invariants count Nironi-semistable objects of slope a.

7.4.2 Rank −1

Let (β, c) ∈ N≤1(X ), and let δ ∈ R. By Corollary 6.2, we similarly obtain an
element (L−1)[Pν,δ(β, c)] ∈ HDM-reg(C). Projecting this element to the semi-
classical quotient and applying the integration morphism, we define DT-type
invariants

DT ν,δ
(β,c)z

βqct−[OX ] := − I
(
(L − 1)[Pν,δ(β, c)]). (47)

Crucially, the J -invariants do not depend on δ, whereas the invariants DT ν,δ

do.

7.5 The limit as δ → ∞
Fix a class (β, c) ∈ N≤1(X ). We now show that the invariant DT ν,δ

(β,c) sta-
bilises as δ tends to infinity, and that its limit equals the stable pair invariant
PT (X )(β,c). By Proposition 7.6, we may define numbers

M+
≤β = max

0≤β ′≤β
c∈N0(X )

{deg(β ′, c) | Pν,0(β
′, c) �= ∅},

M−
≤β = min

0≤β ′≤β
c∈N0(X )

{deg(β ′, c) | Pν,0(β
′, c) �= ∅}.

Lemma 7.9 Let 0 ≤ β ′ ≤ β, and let c ∈ N0(X ).

1. If δ ≤ 0 and deg(β ′, c) > M+
≤β then Pν,δ(β

′, c) = ∅.

2. If δ ≥ 0 and deg(β ′, c) < M−
≤β , then Pν,δ(β

′, c) = ∅.

Proof We only treat the claim for δ ≤ 0, the other one is similar.
The claim is clear for δ = 0. We argue by contradiction, and assume the

claim false. By Lemma 7.7, there then exists a maximal δ ∈ Wβ such that the
claim holds for δ + ε and fails for δ − ε. Thus there is a class (β ′, c) with

123



A proof of the DT crepant resolution conjecture

deg(β ′, c) > M+
≤β such that Pν,δ−ε(β

′, c) �= ∅ = Pν,δ+ε(β
′, c). This implies

that we can find (β ′′, c′′) such that Pν,δ+ε(β
′′, c′′) �= ∅, and a ν-semistable

object F of class (β ′ − β ′′, c − c′′) such that ν(F) = δ ≤ 0. Then

deg(β ′′, c′′) ≤ M+
≤β

deg(β ′ − β ′′, c − c′′) = ν(F)l(F) ≤ 0

and so deg(β ′, c) ≤ M+
≤β . This is a contradiction. ��

Lemma 7.10 Let E ∈ A be an object of class (−1, β, c), let

δ(β,c) = max{0, deg(β, c) − M−
≤β},

and let δ > δ(β,c). Then the following are equivalent:

1. E is a (Tν,δ,Fν,δ)-pair.
2. E is a PT pair.

Proof We first show that condition (1) is independent of the precise value of
δ > δ(β,c). ByLemma7.7, it is enough to show that for any δ ∈ Wβ∩(δ(β,c), ∞)

we have Pν,δ−ε(β, c) = Pν,δ+ε(β, c) for 0 < ε � 1, i.e., every such wall-
crossing is trivial.

By the wall-crossing formula, the moduli stack Pν,δ+ε(β, c) can only differ
from Pν,δ(β, c) = Pν,δ−ε(β, c) if there exists an object in Pν,δ+ε(β, c) that
is destabilised when the wall δ is crossed. This happens precisely if we can
decompose the class (β, c) = (β ′, c′) + (β ′′, c′′) with ν(β ′′, c′′) = δ and

Pν,δ(β
′, c′) �= ∅ �= M ss

ν (β ′′, c′′).

Suppose for a contradiction that there exists such adecomposition. Since δ ≥ 0,
we have deg(β ′, c′) ≥ M−

≤β . Applying Lemma 7.9, we find

deg(β, c) = deg(β ′, c′) + deg(β ′′, c′′) = deg(β ′, c′) + δl(β ′′)
> M−

≤β + δβ,c > deg(β, c),

which is a contradiction.
Suppose that E is a PT pair, so E = (OX

s−→ F)with coker(s) ∈ Coh0(X )

and F ∈ Coh1(X ). If S ∈ Coh≤1(X ) is a subobject of E , then the inclusion
factors through an inclusion S ↪→ F by Lemma 7.11. Hence ν+(S) ≤ ν+(F).
Taking δ ≥ ν+(F), we find S ∈ Fν,δ . Furthermore, if Q ∈ Coh≤1(X ) is a
quotient object of E , it is a quotient of coker(s). Hence, Q ∈ Coh0(X ) ⊂ Tν,δ

and E is a (Tν,δ,Fν,δ)-pair.
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Conversely, suppose that E is a (Tν,δ,Fν,δ)-pair. Set TPT = Coh0(X ) and
FPT = Coh1(X ). By Lemma 3.11, it suffices to show that E is a (TPT ,FPT )-
pair.

If S ∈ Coh≤1(X ) is a subobject of E , then S is a pure 1-dimensional
sheaf. Hence S ∈ FPT . Furthermore, let G be the pure 1-dimensional part of
H0(E), which is a quotient of E in A. If G �= 0, then taking δ > ν(G) implies
G /∈ Tν,δ , which contradicts E being a (Tν,δ,Fν,δ)-pair. Hence G = 0, and so
H0(E) ∈ Coh0(X ) = TPT . ��
Lemma 7.11 Let E ∈ D(X ) be an object of the form E = (OX → G), and
let C ∈ Coh≤1(X ). Any morphism C → E factors through G → E.

Proof We have an exact triangle G → E → OX [1], and for reasons of
dimension and Serre duality Hom(C,OX [1]) ∼= H2(X , C)∨ = 0. ��
Corollary 7.12 Let (β, c) ∈ N≤1(X ). If δ > max(0, deg(β, c)−M−

≤β), then

DT ν,δ
(β,c) = PT (X )(β,c).

7.6 The proof of rationality

With all the boundedness results in place, we now apply the numerical wall-
crossing formula to prove the rationality of the generating series of stable pair
invariants on a general CY3 orbifoldX . Our approach is to compare the full
series DT ν,δ(X ) with DT ν,∞(X ) = PT (X ).

Applying the wall-crossing formula directly is problematic, because the δ-
walls are dense in R. However, fixing a β ∈ N1(X ), we may instead focus
on the sub-series DT ν,δ(X )β , and more generally the series

DT ν,δ
≤β := DT ν,δ(X )≤β :=

∑

β ′≤β

∑

c∈N0(X )

DT ν,δ
(β ′,c)z

β ′
qc, (48)

J ν(δ)≤β :=
∑

β ′≤β

∑

c∈N0(X )
ν(β ′,c)=δ

J ν
(β ′,c)z

β ′
qc. (49)

By Lemma 7.7, the notion of (Tν,δ,Fν,δ)-pair of class (−1, β ′, c)with β ′ ≤ β

can only change when δ ∈ Wβ . Consequently, the same holds for the above
series. In particular, the walls Wβ are discrete and one can write the wall-
crossing formula comparing DT ν,δ(X )≤β to DT ν,∞(X )≤β as a countably
infinite product.

Given that we restrict our attention to DT ν,δ(X )≤β , we now introduce a
suitable truncation Q[N eff(X )]≤β of the Poisson torus Q[N (X )].
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Definition 7.13 Define Q[N eff(X )] ⊂ Q[N (X )] as the vector space with
Q-basis
{

zβqct−k[OX ] ∈ Q[N (X )]
∣∣∣ β ∈ N eff

1 (X ), c ∈ N0(X ), k ∈ Z≥0

}

The subspace Q[N eff(X )] is a Poisson subalgebra of Q[N (X )].
Consider the ideal Iβ ⊂ Q[N eff(X )] generated by {zβ ′

, t−2[OX ] | β ′
� β},

and let Q[N eff(X )]≤β = Q[N eff(X )]/Iβ denote the quotient. It is again a
Poisson algebra.

Proposition 7.14 Let β ∈ N1(X ), let δ ∈ Wβ , and let 0 < ε < 1
l(β)! . The

identity

DT ν,δ+ε
≤β t−[OX ] = exp({J ν(δ)≤β, −})DT ν,δ−ε

≤β t−[OX ]

holds in Q[N eff(X )]≤β , where the term J ν(δ)≤β is defined in equation (49).

Proof The assumption on ε implies that for any E ∈ Coh≤1(X )with βE ≤ β

and ν(E) ∈ [δ − ε, δ + ε), we have ν(E) = δ. In particular, this implies
that for β ′ ≤ β, we have Mν([δ − ε, δ + ε)) = M ss

ν (δ). After projecting to
Q[N eff(X )]≤β , we then have

I ((L − 1) log([M ν([δ − ε, δ + ε))]) = I ((L − 1) log([M ss
ν (δ)])

=
∑

β ′≤β

∑

c∈N0(X )
ν(β ′,c)=δ

J ν
(β ′,c)z

β ′
qc

which is equal to J ν(δ)≤β . The torsion triple (Tν,δ−ε,Mν([δ − ε, δ +
ε)),Fν,δ+ε) is wall-crossing material by Proposition 7.8. Projecting equa-
tion (40) of Theorem 6.10 to Q[N eff(X )]≤β , we obtain the identity

I
(
(L − 1)[Pν,δ+ε]

)
= exp({J ν(δ)≤β, −})I

(
(L − 1)[Pν,δ−ε]

)
.

Evaluating the integrals by Eq. (47) completes the proof. ��
We prove the rationality of the generating series of stable pair invariants.

Theorem B For each class β ∈ N1(X ), there exists a unique rational func-
tion fβ(q) such that the series

PT (X )β =
∑

c∈N0(X )

PT (X )(β,c)q
c (50)

is the expansion in Q[N0(X )]deg of fβ(q).
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More precisely, we can write fβ(q) as a sum of functions gD/hD, where D is
a decomposition β = ∑r

i=1 βi into effective classes, where gD ∈ Z[N0(X )],
and where

hD =
r∏

i=1

⎛

⎝1 −
i∏

j=1

q2β j ·A
⎞

⎠
2i

. (51)

Proof Let δ0 ∈ R. Iterating the wall-crossing formula from Proposition 7.14,

DT ν,∞
≤β t−[OX ] =

∏

δ∈Wβ∩[δ0,∞)

exp({J (δ)≤β, −})(DT ν,δ0≤β t−[OX ]),

where the product is taken in increasing order of δ. Substituting in the definition
of J ν(δ)≤β in equation (49) and expanding the exponential, the zβ t−[OX ]-
coefficient of the right hand side becomes an infinite sum. The terms of this
sum are described as follows. Fix an integer r ∈ Z≥1, a sequence (αi )

r
i=1 =

(βi , ci )
r
i=1 ⊂ N≤1(X ), and a class α′ = (β ′, c′) ∈ N≤1(X ), satisfying

– β = β ′ +∑βi ,
– δ0 ≤ ν(α1) ≤ ν(α2) ≤ · · · ≤ ν(αr ),
– J ν

αi
�= 0 for all 1 ≤ i ≤ r ,

– DT ν,δ
α′ �= 0.

The non-zero term in the infinite sum associated with this data is

T ((αi ), α
′)zβqc′+∑ ci t−[OX ]

= A(αi ){J ν
αr

zβr qcr , −} ◦ · · · ◦ {J ν
α1

zβ1qc1, −}(DT ν,δ0
α′ zβ ′

qc′
t−[OX ]),

where A(αi ) is a factor arising from the exponential:

A(αi ) :=
∏

δ∈Wβ

1

|{i | ν(αi ) = δ}|! .

Putting all these terms together gives

DT ν,∞
β =

∑

(αi ),α
′
T ((αi ), α

′)zβqc′+∑ ci .

We now claim that this is the expansion of a rational function with respect to
deg. To see this, we write out the formula for the Poisson bracket. This yields

T ((αi ), α
′) = A(αi )B(αi ),α

′

(
r∏

i=1

J ν
αi

)
DT 0

α′
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where

B(αi ),α
′ = σ

∑
i< j χ(α j ,αi )+∑i χ(αi ,α

′−[O X ])
r∏

i=1

χ

⎛

⎝αi ,−[OX ] + α′ +
i−1∑

j=1

α j

⎞

⎠ . (52)

We emphasize that for the proof of rationality, the precise formula for B(αi ),α
′

is only important in that it depends quasi-polynomially on the classes αi .
We partition these T -terms in groups as follows. A group consists of the

data of a class α′ = (β ′, c′), a sequence (βi )
r
i=1, a sequence (κi )

r
i=1 where

κi ∈ N0(X )/Z(A ·βi ), and a subset E ⊆ {1, . . . , r −1}. This data is required
to satisfy the conditions

– β = β ′ +∑r
i=1 βi , and

– J ν
(βi ,ci )

�= 0 for ci ∈ κi and i = 1, 2, . . . , r .

Note that for any class (β ′′, c′′) ∈ N≤1(X ), tensoring by A induces an iso-
morphism M ss

ν (β ′′, c′′) ∼= M ss
ν (β ′′, c′′ + A · β ′′). The invariant J ν

(βi ,ci )
is

thus independent of the choice of representative ci ∈ κi , and we may write
J ν
(βi ,κi )

:= J ν
(βi ,ci )

.
Collecting all terms belonging to the group (α′, (βi ), (κi ), E), we obtain

C(α′, (βi ), (κi ), E) =
∑

ci

T (r, ((βi , ci )), α
′)qc′+∑ ci ,

where the sum is over all ci ∈ N0(X ) such that

ci ∈ κi , (53)

δ0 ≤ ν(β1, c1) ≤ ν(β2, c2) ≤ · · · ≤ ν(βr , cr ), (54)

ν(βi , ci ) = ν(βi+1, ci+1) ⇔ i ∈ E . (55)

Note that for such a choice of ci , the factor A((βi ,ci )) defined above depends
only on E . Indeed, set {ni } = {1, . . . , r} \ E with n1 < n2 < . . . < nr−|E |.
Then

AE :=
∏ 1

(ni − ni−1)! = A((βi ,ci )).

We find that the contribution of the group (α′, (βi ), (κi ), E) is

C(α′, (βi ), (κi ), E) = AE

r∏

i=1

J ν
βi ,κi

DT ν,δ0
α′

(
∑

ci

B(βi ,ci ),α
′qc′+∑ ci

)

where the sum runs over the ci ∈ N0(X ) satisfying the above conditions.
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Now, for every choice of (βi ), (κi ), and E , there exists a sequence (c0i )with
c0i ∈ κi which is minimal in the sense that replacing any c0i with c0i − A · βi
would violate one of (54) and (55). We find

C(α′, (βi ), (κi ), E)

= AE

r∏

i=1

J ν
βi ,κi

DT 0
α′

(
∑

ai

B(βi ,c0i +ai βi ·A),α′qc′+∑ c0i +ai βi ·A
)

where the sum is over the set SE = {0 ≤ a1 ≤ a2 ≤ . . . ≤ ar | ai ∈ Z, ai =
ai+1 ⇔ i ∈ E}.

Since theEuler form is bilinear,we concludeby equation (52) that B depends
quasi-polynomially on the ai with quasi-period 2 (because of σ ). Lemma 2.24
shows

C(α′, (βi ), (κi ), E) = p
∏

i∈[r ]\E (1 −∏i
j=1 q2β j ·A)2i

(56)

holds in Q[N0(X )]deg for some Laurent polynomial p ∈ Q[N0(X )]. More-
over, it shows that the exponent is 2i because

∑
j≥r−i+1 dega j

B ≤ 2i − 1.
Finally, we claim that there are only finitely many such groups, i.e., there

are only finitely many non-trivial choices for the data of (α′, (βi ), (κi ), E).
The sum of those rational functions is then fβ(q). For the choice of (βi ) and
E , this is obvious. The claim for α′ follows from part (1) of Proposition 7.6,
and the claim for (κi ) follows from part (3) of Proposition 7.1. ��

7.7 Duality properties of PT(X )

We establish a symmetry of PT (X ) induced by the derived dualising functor
D(−) = R H om(−,OX )[2], analogous to the q ↔ q−1 symmetry of
PT (Z)γ (q) if Z is a variety. We fix a curve class β ∈ N1(X ). Recall that if
F ∈ Coh≤1(X ) is of class [F] = β, then

pF (k) = l(F)k + deg(F)

denotes itsmodifiedHilbert polynomial,where l(F) = l(β) since l(N0(X )) =
0.

Lemma 7.15 Let (β, c) ∈ N≤1(X ) and δ ≤ 0. If δ ≤ deg(β, c)+ M−
≤β , then

we have DT ν,δ
(β,c) = PT (X )D(β,c).
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Proof Combining Lemmas 7.4 and 7.10 yields

DT ν,δ
(β,c) = DT ν,−δ

D(β,c) = PT (X )D(β,c)

as required. ��
As a consequence, we may define DT ν,−∞

(β,c) = DT ν,δ
(β,c) for δ � 0.

We now put a grading on Q[N0(X )] by deg(qc) = deg(c), and extend this
to give a notion of degree on Q(N0(X )) as in Sect. 2.5.2.

Lemma 7.16 Let β ∈ N1(X ) and assume that δ ≤ −l(β). Then

deg
(

DT ν,δ
β − DT ν,∞

β

)
≤ M+

≤β + δl(β) + l(β)2.

Proof We use the notation as in the proof of Theorem B, so δ = δ0. The
function DT ν,δ0

β − DT ν,∞
β is a finite sum of rational functions of the form of

equation (56). By Lemma 2.24, the degree of these rational functions is less
than deg(β, c′ +∑r

i=1 c0i ).
By Lemma 7.9, it thus suffices to show that

r∑

i=1

deg(βi , c0i ) < δ0l(β) + l(β)2.

We argue as follows. By minimality of the classes c0i ∈ N0(X ) satisfying
condition (53), (54), (55), we have inequalities

ν(β1, c01) < δ0 + 1

ν(βi , c0i ) ≤ ν(βi−1, c0i−1) + 1 for i > 1,

for if not one could replace some c0i by c0i − βi · A. Thus ν(βi , c0i ) ≤ δ0 + i ,
and so

deg(βi , c0i ) < (δ0 + i)l(βi ) ≤ (δ0 + r)l(βi ) ≤ δ0 + r

since δ0 + r < 0. As β = β1 + . . . + βr implies that r ≤ l(β), the claim
follows. ��

Recall the notion of expansion of a rational function inQ[N0(X )]L , relative
to a group homomorphism L : N0(X ) → R, from Sect. 2.5.1.

Lemma 7.17 For each class β ∈ N1(X ), the series

DT ν,−∞
β =

∑

c∈N0(X )

DT ν,−∞
β,c qc
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is the expansion in Q[N0(X )]− deg of the rational function PT (X )β .

Proof Lemma 7.15 together with Theorem B shows that DT ν,−∞(X )β is the
expansion in Q[N0(X )]− deg of a rational function, and so it suffices to show
that DT ν,∞

β − DT ν,−∞
β = 0 in Q(N0(X )).

Now let δ � 0. On the one hand, Lemma 7.15 shows that DT ν,δ
(β,c) =

DT ν,−∞
(β,c) if deg(β, c) ≥ −M−

≤β + δ. It follows that

deg
(

DT ν,δ
β − DT ν,−∞

β

)
≤ −M−

≤β + δ − deg(β, 0).

On the other hand, by taking δ < −l(β) smaller if necessary, Lemma 7.16
yields

deg
(

DT ν,δ
β − DT ν,∞

β

)
≤ M+

≤β + δl(β) + l(β)2.

Combining these two bounds, we obtain

deg
(

DT ν,∞
β − DT ν,−∞

β

)

≤ max{−M−
≤β + δ − deg(β, 0), M+

≤β + δl(β) + l(β)2}.

Letting δ → −∞ now implies that DT ν,∞
β = DT ν,−∞

β in Q(N0(X )). ��

Proposition 7.18 We have an equality of rational functions

D(zβ fβ(q)) = zD(β) fD(β)(q).

Equivalently, the function

PT (X ) =
∑

β∈N1(X )

∑

c∈N0(X )

PT (X )(β,c)z
βqc

is invariant under the involution D(−), when the q-parts of the series are
thought of as the rational functions fβ(q).

Proof ByLemma 7.15, we haveD(PT (X )) = DT ν,−∞, and byLemma 7.17
the equality of rational functions DT ν,∞

β = DT ν,−∞
β holds for every β ∈

N1(X ). ��
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8 The crepant resolution conjecture

In the final two sections, we prove the crepant resolution conjecture, in the
form stated in Theorem C. Recall that X is a CY3 orbifold in the sense of
Sect. 2.2, and that f : Y → X denotes the distinguished crepant resolution
of its coarse moduli space. From this point on, we moreover assume that X
satisfies the hard Lefschetz condition of Sect. 2.4.1.

We define a stability condition ζ on Coh≤1(X ) whose stability function
takes values in (−∞, ∞]2. Associated with ζ , we obtain a two-parameter
family of torsion pairs (Tζ,(γ,η),Fζ,(γ,η)) with γ ∈ R>0 and η ∈ R. The
associated (Tζ,(γ,η),Fζ,(γ,η))-pairs interpolate between PT pairs on X for
γ � 0, and Bryan–Steinberg pairs relative to f for 0 < γ � 1.

Let β ∈ N1(X ). The series DT ζ,(γ,η)
≤β has a wall-crossing behaviour as

described in Sect. 1.2.2 and illustrated by its diagram. The key step consists in
controlling the series as a γ -wall is crossed. This involves crossing countably
infinitely many η-walls, and relates DT ζ,(γ,∞)

β to DT ζ,(γ,−∞)
β via the wall-

crossing formula in a way which is similar to the passage from DT ν,∞ to
DT ν,−∞ in Sect. 7. However, the required boundedness results aremore subtle
as compared to DT ν,δ. In particular, the series DT ζ,(γ,η)

≤β is in general not a
Laurent polynomial.

We argue as follows. In Lemma 8.18, we describe a set Vβ ⊂ R of walls for
the parameter γ . Given a γ ∈ Vβ , we show that there is a unique curve class

βγ ≤ β for which J ζ

(βγ ,c) can contribute to the wall-crossing formula relating

DT ζ,(γ,∞)
≤β to DT ζ,(γ,−∞)

≤β . Setting cγ = βγ · A, we organise the wall-crossing

in sub-series DT ζ,(γ,η)

β,c+Zcγ
of DT ζ,(γ,η)

β for each class c ∈ N0(X )/Zcγ , defined
by

DT ζ,(γ,η)

β,c+Zcγ
=
∑

k∈Z

DT ζ,(γ,η)

(β,c+kcγ )z
βqc+kcγ .

Through various boundedness results, we then show that DT ζ,(γ,η)

β,c+Zcγ
is a Lau-

rent polynomial for any η ∈ R. An argument similar to that of Sect. 7 shows
that the limits DT ζ,(γ,∞)

β,c+Zcγ
and DT ζ,(γ,−∞)

β,c+Zcγ
exist and are equal as rational func-

tions. An application of Lemma 2.25 then shows DT ζ,(γ,∞)
β and DT ζ,(γ,−∞)

β

are also equal as rational functions. Finally, we slide off the γ -wall and show
that

DT ζ,(γ,±∞)
β = DT ζ,(γ±ε,η)

β

for 0 < ε � 1 and arbitrary η ∈ R, thus completing the γ -wall-crossing.
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8.1 ζ -Stability

For the remainder of the paper, we fix a generic ample class ω ∈ N 1(Y )R.
Recall that Ψ : D(X ) → D(Y ) is the inverse of the McKay correspondence.
We write degY for the usual degree of zero-cycles on Y , and degX for the
degree of a class onX , previously denoted deg.

We now define a stability condition ζ on Coh≤1(X ).

Definition 8.1 Define ζ : N eff≤1(X ) \ {0} → (−∞, +∞]2 by

ζ(β, c) =
(

−degY (ω · A · Ψ (β))

degX (A · β)
, ν(β, c)

)
∈ (−∞, +∞]2 (57)

if β �= 0, and let

ζ(0, c) = (∞, ∞).

We think of (∞, ∞]2 as a totally ordered set via the lexicographical ordering,
so (a, b) ≤ (a′, b′) if a < a′, or if a = a′ and b ≤ b′.

Lemma 8.2 The category Coh≤1(X ) is ζ -Artinian.

Proof Let F ∈ Coh≤1(X ), and assume for a contradiction that F = F0 ⊃
F1 ⊃ . . . is an infinite chain of subobjects with ζ(Fi ) ≥ ζ(Fi−1) for all i .
Now, as βFi ≤ βFi−1 and the set {β | 0 ≤ β ≤ βF } is finite, we may reduce
to the case where βFi = βF for all i . But then ζ(Fi ) ≥ ζ(Fi−1) implies that
ν(Fi ) ≥ ν(Fi−1) for all i , which is impossible by the existence of Harder–
Narasimhan filtrations for ν. ��
It is easy to see that ζ satisfies the see-saw property, and so we deduce

Corollary 8.3 The function ζ defines a stability condition on Coh≤1(X ).

Let (γ, η) ∈ R>0 × R. We obtain a family of torsion pairs on Coh≤1(X )

by collapsing the Harder–Narasimhan filtration of ζ -stability:

Tζ,(γ,η) := {T ∈ Coh≤1(X ) | T � Q �= 0 ⇒ ζ(Q) ≥ (γ, η)}
Fζ,(γ,η) := {F ∈ Coh≤1(X ) | 0 �= S ↪→ F ⇒ ζ(S) < (γ, η)}. (58)

We write Pζ,(γ,η) ⊂ A for the full subcategory of (Tζ,(γ,η),Fζ,(γ,η))-pairs in
the sense of Definition 3.9.

For any γ > 0, we define the linear function Lγ : N0(X ) → R by

Lγ (c) = deg(c) + γ −1 degY (ch2(Ψ (c)) · ω). (59)
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Remark 8.4 The function Lγ controls the series expansion, in the sense of
Definition 2.20, of the rational functions fβ(q) ∈ Q(N0(X )) of Theorem B.
Roughly speaking, this means that a class c ∈ N0(X ) is thought of as “effec-
tive” in the expansion of fβ(q) at (γ, η) if Lγ (c) > 0.

It is easy to see that when γ � 0, which corresponds to PT pairs on X ,
we have Lγ (c) > 0 if c is effective. Similarly, when 0 < γ � 1, which
corresponds to BS pairs on Y , we have Lγ (c) > 0 if Ψ (c) is effective.

Remark 8.5 For β �= 0, writing ζ(β, c) = (ζ1(β), ν(β, c)), then γ − ζ1(β)

has the same sign as Lγ (β · A). So the torsion pair (Tζ,(γ,η),Fζ,(γ,η)) can
equivalently be described as

Tζ,(γ,η) := {T ∈ Coh≤1(X ) | T � Q �= 0 ⇒ Lγ (Q · A) < 0

or Lγ (Q · A) = 0, ν(Q) ≥ η}
Fζ,(γ,η) := {F ∈ Coh≤1(X ) | 0 �= S ↪→ F ⇒ Lγ (S · A) > 0

or Lγ (S · A) = 0, ν(S) < η}. (60)

8.2 Openness of (Tζ,(γ,η),Fζ,(γ,η))

Let (γ, η) ∈ R>0 × R. In this section we prove that the torsion pair
(Tζ,(γ,η),Fζ,(γ,η)) is open.

The idea in the T case is this (the F case is similar). By Remark 8.5, a
sheaf E ∈ Coh≤1(X ) lies in Tζ,(γ,η) if it satisfies two conditions: It can not
surject onto a sheaf Q with Lγ (Q · A) > 0, and it can not surject onto a Q
with Lγ (Q · A) = 0 and ν(Q) < η. The second condition is similar to the
condition for E to lie in Tν,δ , and is shown to be open in the same way. For
proving openness of the first condition, the idea is that the number Lγ (Q · A)

depends only on the restriction of Q to D, where D is a general divisor of class
n A for some large A. From this we prove that E satisfies the first condition
if and only if E |D ∈ Coh0(X ) lies in Tθ,γ , where θ is a certain stability
condition on Coh0(X ). Openness of Tθ,γ then gives the openness of the first
condition.

Definition 8.6 Define a stability function θ : Neff
0 (X ) \ {0} → R by setting

θ(c) = −degY (Ψ (c) · ω)

deg(c)
. (61)

The function θ satisfies the see-saw property, and hence defines a stability
condition on Coh0(X ), since this category is Artinian. In particular, objects
in Coh0(X ) have Harder–Narasimhan filtrations with respect to θ .
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Thus we may define a torsion pair (Tθ,γ ,Fθ,γ ) on Coh0(X ) by setting

Tθ,γ := {T ∈ Coh0(X ) | T � Q �= 0 ⇒ θ(Q) ≥ γ }
Fθ,γ := {F ∈ Coh0(X ) | 0 �= S ↪→ F ⇒ θ(S) < γ }. (62)

Lemma 8.7 The torsion pair (Tθ,γ ,Fθ,γ ) is open.

Proof We must show that the substacks Tθ and Fθ , parametrising objects
in Tθ,γ and Fθ,γ respectively, are open in CohX ,0. This follows from the
arguments of [23, Thm. 2.3.1], since there are at most finitely many classes
of potentially destabilising quotients. In turn, this follows because the set
{0 ≤ c′ ≤ c | c′ ∈ N0(X )} is finite for every c ∈ N0(X ), since Coh0(X ) is
Artinian. ��
Definition 8.8 Let E ∈ Coh≤1(X ), and let n ∈ Z>0. We say that a pencil
L = P1 ⊂ |n A| is a good pencil for E if the following conditions hold:

1. the base locus of L intersects neither supp(E) nor the singular locus of X ,
2. no member of L contains a 1-dimensional component of supp(E).

For a point p ∈ L we denote the associated divisor substack by Dp ↪→ X .
LetXL denote the blow-up ofX in the base locus of L , and let b : XL → L
denote the natural morphism.

By Bertini’s theorem, there exists a good pencil for every E ∈ Coh≤1(X ).

Lemma 8.9 Let E ∈ Coh≤1(X ), and let L be a good pencil for E. Then
E ∈ Tζ,(γ,η) if and only if it satisfies conditions T1 and T2:

(T1) There exists a p ∈ L such that the restriction E |Dp lies in Tθ,γ .
(T2) The sheaf E admits no quotient sheaf Q with

Lγ (A · βQ) = 0 (63)

and ν(Q) < η.

We have E ∈ Fζ,(γ,η) if and only if it satisfies conditions F1 and F2:

(F1) There exists a p ∈ L such that the restriction E |Dp lies in Fθ,γ

(F2) The sheaf E admits no subsheaf S with

Lγ (A · βS) = 0 (64)

and ν(S) ≥ η.
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Proof We only treat the characterisation of membership of Tζ,(γ,η) since the
arguments for membership of Fζ,(γ,η) are similar.

A sheaf E fails to lie in Tζ,(γ,η) if and only if there is a surjection E � Q
with Lγ (A · βQ) > 0 or with Q as in T2. Thus it suffices to show that E
violates condition T1 if and only if there exists a surjection E � Q with
Lγ (A · βQ) > 0.
First assume that such a quotient E � Q exists. For a general point p ∈ L ,

its restriction Q|Dp is a quotient of E |Dp since L is a good pencil for E . This
shows that E |Dp /∈ Tθ,γ .

Conversely, suppose that condition T1 does not hold. Since the support of
E is disjoint from the base locus of L , we may think of E as a sheaf on the
blow-up b : XL → L .

There exists an open subset U ⊆ L such that E |U is flat over U .
An easy modification of the argument of [23, Thm. 2.3.2] shows that there

exists a filtration of E |U ∈ Coh(XL |U ),

0 ⊂ E1 ⊂ · · · ⊂ En = E |U ,

such that for a generic point p ∈ U , the induced filtration of E |p is the θ -
HN-filtration. In particular, since T1 fails, we have θ((En/En−1)|p) < γ . Let
j : XL |U → X denote the natural map, and consider the composition

E → j∗ j∗(E) = j∗(E |U ) → j∗(E |U /En).

Letting Q be the image of E under this map, we obtain a surjection E → Q.
For a general p ∈ U , we have θ(Q|Dp) < γ , and so Lγ (βQ · A) > 0 as
required. ��
We now prove that the torsion pair (Tζ,(γ,η),Fζ,(γ,η)) is open.

Lemma 8.10 Conditions T1, T2, F1 and F2 are open in flat families in
Coh≤1(X ).

Proof We first prove openness of T1. Let S be the base scheme of a flat family
of sheaves in Coh≤1(X ), and let Es be the sheaf corresponding to some point
s ∈ S. There exists a good pencil L ⊂ |n A| for Es . Suppose that Es satisfies
condition T1, and let p ∈ L be a point for which the restriction (Es)|Dp lies in
Tθ,γ . Picking a suitable open neighbourhood s ∈ U ⊂ S, the pencil L remains
good for all sheaves in the neighbourhood. Since Tθ,γ is open, (Eu)|Dp lies in
Tθ,γ for all u ∈ U . Openness of condition F1 follows by the same argument.

Openness of T2 is shown in the same way as the openness part of The-
orem 2.9: Given a family of sheaves E over a finite type base scheme S,
then for any s ∈ S and surjection Es � F with ν(F) < η, we must have
(βF , cF ) ⊂ {(βi , ci )}r

i=1. Imposing the extra condition Lγ (β ′ · A) = 0, we are
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left with a finite set of classes {(β ′
i , c′

i )}, and the set of s ∈ S where T2 holds
is the complement of the image of

⋃

i

Quot(E, (β ′
i , c′

i ))

in S. But this set is closed since the Quot scheme is projective over S. This
proves openness of F1. The case of F2 is similar. ��
Corollary 8.11 The torsion pair (Tζ,(γ,η),Fζ,(γ,η)) is open for all (γ, η) ∈
R>0 × R.

Proposition 4.6 then gives the following result.

Corollary 8.12 The category Pζ,(γ,η) is open for all (γ, η) ∈ R>0 × R.

8.3 Boundedness results

We now prove a number of boundedness properties of the moduli stacks of
ζ -semistable sheaves and of (Tζ,(γ,η),Fζ,(γ,η))-pairs.

Consider the following ‘limit’ subcategories of Coh≤1(X ).

Tζ,(γ,−∞) =
⋃

η∈R

Tζ,(γ,η) and Fζ,(γ,∞) =
⋃

η∈R

Fζ,(γ,η). (65)

Definition 8.13 Let S ⊂ N0(X ), and let L : N0(X ) → R be a homomor-
phism. We say that S is weakly L-bounded if the image of S in N0(X )/ ker L
is L-bounded in the sense of Definition 2.17.

Lemma 8.14 Let γ ∈ R>0, let η, η1, η2 ∈ R, and let β ∈ N1(X ). The sets

{cF ∈ N0(X ) | ∃F ∈ Tν,η1 ∩ Fζ,(γ,η2) with βF ≤ β}, (66)

{cF ∈ N0(X ) | ∃F ∈ Fν,η1 ∩ Tζ,(γ,η2) with βF ≤ β} (67)

are each Lγ -bounded. The sets

{cF ∈ N0(X ) | ∃F ∈ Tν,η ∩ Fζ,(γ,∞) with βF ≤ β}, (68)

{cF ∈ N0(X ) | ∃F ∈ Fν,η ∩ Tζ,(γ,−∞) with βF ≤ β} (69)

are each weakly Lγ -bounded.

Proof We only prove the claims for the sets in equations (66) and (68), as the
other two sets can be dealt with by a similar argument.
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Define

S := {F ∈ Coh≤1(X ) | F ∈ Tν,η1 ∩ Fζ,(γ,η2) with βF ≤ β},
and let x ∈ R. We have to prove that c(S) ∩ {c ∈ N0(X ) | Lγ (c) ≤ x} is a
finite set.

Wefirst assume thatη1 = η2 = η. Let F ∈ S. Then F is pure 1-dimensional,
and so there exists a k ∈ Z≥0 such that we may coarsen the ν-HN-filtration of
F to get

F[η,η+1), F[η+1,η+2), . . . , F[η+k,η+k+1), (70)

with each FI ∈ Mν(I ); note that some FI may be zero.
Let Sm ⊆ S denote the set of F with at mostm non-zero pieces in this coarse

filtration, and let S′
m ⊆ Sm be the subset of those for which F[η,η+1) �= 0. Note

that S′
1 is a subset of

R := {F ∈ Coh1(X ) | βF ≤ β, F ∈ Mν([η, η + 1))}. (71)

Hence, it follows that c(S′
1) ⊆ c(R) is finite by Theorem 2.9.

The set Q = Z>0{β ′ · A | β ′ ≤ β and Lγ (β ′ · A) > 0} is Lγ -bounded.
Twisting by A, we find c(Sm) ⊆ c(S′

m) + Q, and so c(Sm) is Lγ -bounded if
c(S′

m) is.
Now take an object F ∈ S′

m , and decompose F as

0 → F[η+1,∞) → F → F[η,η+1) → 0

with FI ∈ Mν(I ). Then F[η,η+1) ∈ R, and since Fζ,(γ,η) is closed under
subobjects, F[η+1,∞) ∈ Sm−1. Hence c(S′

m) ⊆ c(Sm−1) + c(R), and so c(S′
m)

is Lγ -bounded if c(Sm−1) is. Since Sm = S when m ≥ l(β), a finite induction
then gives the claim.

Now let η1, η2 ∈ R be arbitrary. Without loss of generality we may assume
η1 < η2 for otherwise we reduce to the known claim. For F ∈ S, consider the
ν-HN filtration

0 → F[η2,∞) → F → F[η1,η2) → 0. (72)

The set of possible values for cF[η1,η2)
is finite by Theorem 2.9. Since Fζ,(γ,η2)

is closed under subobjects, we have F[η2,∞) ∈ Tν,η2 ∩ Fζ,(γ,η2). Thus by the
previously treated case of η1 = η2, the set of possible classes for F[η2,∞) is
Lγ -bounded. This completes the claim for the first mentioned set.
For the set (68), define Q = Z>0{β ′ · A | β ′ ≤ β and Lγ (β · A) ≥ 0}

and note that this set is only weakly Lγ -bounded. We conclude by the same
argument. ��
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Let M ss
ζ (a, b) ⊂ Coh≤1(X ) denote the full subcategory of ζ -semistable

sheaves of slopes (a, b) ∈ R2.

Proposition 8.15 Let (β, c) ∈ N≤1(X ) be a class and let (a, b) ∈ R2 be a
slope.

1. The moduli stack M ss
ζ (a, b) ⊂ Coh≤1,X is open and, in particular, it is

an algebraic stack locally of finite type.
2. The set

{c ∈ N0(X ) | M ss
ζ (a, b) �= ∅}

is Lγ -bounded.
3. The category M ss

ζ (a, b) is log-able as in Definition 6.7.

Proof For the first claim, note that for any (β, c) ∈ N≤1(X ), there exists an
ε > 0 such that if [F] = (β, c), then

F ∈ M ss
ζ (a, b) ⇔ F ∈ Tγ,(a,b) ∩ Fγ,(a,b+ε).

Openness of M ss
ζ (a, b) then follows by Corollary 8.11.

For the second part, the categoryM ss
ζ (a, b) is obviously closed under direct

sums anddirect summands.Let E ∈ M ss
ζ (a, b), anddecompose E with respect

to the ν-HN filtration

0 → E≥η → E → E<η → 0 (73)

where E≥η ∈ Tν,η and E<η ∈ Fν,η. We deduce E≥η ∈ Fγ,(a,b+ε) and E<η ∈
Tγ,(a,b). Thus by Lemma 8.14, the set of possible values for cE≥η and cE<η are
each Lγ -bounded. Since cE≥η + cE<η = cE , it follows that there are finitely
many choices for each one.

Applying Corollary 2.12, we find that the moduli of possibilities for E≥η

and E<η are of finite type. By Proposition 5.1, then, the stackM ss
ζ (a, b) is of

finite type.
The decomposition cE = cE≥η + cE<η also shows that the set of possible

values for cE is Lγ -bounded, which implies that (βE , cE ) can be written as a
sum of classes (βEi , cEi ) with Ei ∈ M ss

ζ (a, b) in at most finitely many ways.
��

Proposition 8.16 For any (γ, η) ∈ R>0 × R, the set

{c ∈ N0(X) | Pζ,(γ,η)(β, c) �= ∅} (74)

is Lγ -bounded. Moreover, the stack Pζ,(γ,η)(β, c) is of finite type.
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Proof Let E ∈ Pζ,(γ,η). By Proposition 3.15, it has a three-term filtration
induced by the torsion triple (Tν,η, V (Tν,η,Fν,η),Fν,η) on A. Thus we have
an inclusion and a surjection

E≥η ↪→ E, and E � E<η, (75)

where E≥η ∈ Tν,η, E<η ∈ Fν,η, and the middle filtration quotient

EPν,η := ker(E � E<η)/E≥η ∈ Pν,η.

Since E ∈ Pζ,(γ,η), we have E≥η ∈ Fγ,η and E<η ∈ Tγ,η. By Lemma 8.14,
it follows that the sets of possible values for c(E≥η) and c(E<η) are both Lγ -
bounded. Moreover, the set of possible values for c(EPν,η ) is finite, by part 1
of Lemma 7.6. Thus, the set (74) is Lγ -bounded.

Arguing as in the proof of Proposition 8.14, the moduli for E≥η, E<η,
and EPν,η are each of finite type, by Corollary 2.12 and Lemma 7.6. Hence
Pζ,(γ,η)(βE , cE ) is of finite type. ��
Corollary 8.17 Let (γ, η) ∈ R>0×R. The categoryPζ,(γ,η) defines an element
in Hgr(C).

8.4 The walls for (Tζ,(γ,η),Fζ,(γ,η))-pairs

Let β ∈ N1(X ) be a class. First, we locate the walls for (γ, η) ∈ R>0 × R
where the notion of (Tζ,(γ,η),Fζ,(γ,η))-pair of class (−1, β ′, c′) with β ′ ≤ β

could change. Recall that Wβ = (1/ l(β)!)Z ⊂ R.
Let Coh≤1(X )≤β ⊂ Coh≤1(X ) be the subcategory consisting of sheaves

F with βF ≤ β.

Lemma 8.18 Let β ∈ N1(X ). The categories Tζ,(γ,η) ∩ Coh≤1(X )≤β and
Fζ,(γ,η) ∩Coh≤1(X )≤β are constant on the connected components of (R>0×
R) \ (Vβ × R), where

Vβ =
{
−degY (Ψ (A · β ′) · ω)

deg(A · β ′)
: 0 < β ′ ≤ β

}
∩ R>0. (76)

Moreover, for each γ ∈ Vβ , the parts Tζ,(γ,η) ∩ Coh≤1(X )≤β and
Fζ,(γ,η) ∩ Coh≤1(X )≤β of the torsion pair (Tζ,(γ,η),Fζ,(γ,η)) are locally
constant on {γ } × R \ Wβ .

Proof Argue as in Lemma 7.7.
��
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8.5 Counting invariants for ζ -stability

Using the above results, we define DT-type invariants virtually counting ζ -
semistable sheaves and (Tζ,(γ,η),Fζ,(γ,η))-pairs.

8.5.1 Rank 0

Let (a, b) ∈ R2. Consider the subcategory M ss
ζ (a, b) ⊂ Coh≤1(X ) of ζ -

semistable sheaves of slope (a, b). By Proposition 8.15, it defines a log-able
element [M ss

ζ (a, b)] in Hgr(C). Thus we obtain a regular element

ηζ,(a,b) = (L − 1) log[M ss
ζ (a, b)] ∈ Hgr,DM-reg(C)

by Theorem 6.8. Projecting this element to the semi-classical quotient
Hgr,DM-sc(C) and applying the integrationmorphism,wedefineDT-type invari-

ants J ζ

(β,c) ∈ Q by the formula

∑

ζ(β,c)=(a,b)

J ζ

(β,c)z
βqc := I

(
ηζ,(a,b)

) ∈ Q{N (X )}.

8.5.2 Rank −1

Let (β, c) ∈ N≤1(X ), and let (γ, η) ∈ R>0 × R be away from any
wall. By Lemmas 6.1 and 8.16, we obtain a DM-regular element (L −
1)[Pζ,(γ,η)(β, c)] ∈ HDM-reg(C). Again, projecting to the semi-classical quo-
tient HDM-sc(C) and applying the integration morphism, we define integer
DT-type invariants

DT ζ,(γ,η)

(β,c) zβqct−[OX ] := − I
(
(L − 1)[Pζ,(γ,η)(β, c)]).

Finally, we assemble these invariants into generating series

DT ζ,(γ,η)
β :=

∑

c∈N0(X )

DT ζ,(γ,η)

(β,c) qc, (77)

J ζ (a, b)β :=
∑

c∈N0(X )
ζ(β,c)=(a,b)

J ζ

(β,c)q
c. (78)

These series are elements in smaller subrings of Q{N (X )}.
Lemma 8.19 We have DT ζ,(γ,η)

β ∈ Z[N0(X )]Lγ and J ζ (γ, η)β ∈
Q[N0(X )]Lγ .
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Proof The first claim follows fromProposition 8.16. The second claim follows
from part 2 of Proposition 8.15. ��

8.6 The limit as γ → ∞
We describe the limit invariants as γ ∈ R>0 becomes large.

Lemma 8.20 Let β ∈ N1(X ), and let γ > maxγ ′∈Vβ
γ ′. An object E ∈ A of

class (−1, β, c) is a (Tζ,(γ,η),Fζ,(γ,η))-pair if and only if it is a stable pair. In
particular,

DT ζ,(M,η)

(β,c) = PT (X )(β,c) (79)

for all η ∈ R and for all M large enough.

Proof Recall that TPT = Coh0(X ), that FPT = Coh1(X ), and that
(TPT ,FPT )-pairs are precisely stable pairs. If γ > maxγ ′∈Vβ

γ ′ and E ∈
Coh≤1(X )withβE ≤ β, then ζ(E) ≥ (γ, η) if and only if E ∈ Coh0(T ). This
implies that Tζ,(γ,η) ∩ Coh≤1(X )≤β = TPT and Fζ,(γ,η) ∩ Coh≤1(X )≤β =
FPT ∩ Coh≤1(X )≤β , which gives the claim. ��

8.7 Crossing the γ -wall

Let β ∈ N1(X ) be a curve class. We analyse what happens to the generating
series DT ζ,(γ,η)

≤β ∈ Z[N (X )]Lγ of (Tζ,(γ,η),Fζ,(γ,η))-pair invariants when
γ ∈ R>0 crosses a wall in Vβ .

To describe this wall-crossing, we first show that by choosing the ample
classes (A, ω) ∈ N1(X)× N1(Y )R to be sufficiently general, there is a unique
curve class βγ for which the invariants J ζ

(βγ ,c) contribute to the wall-crossing
formula.

Recall the function Lγ (c) = deg(c)+γ −1 degY (Ψ (c) ·ω) for c ∈ N0(X ).

Lemma 8.21 If A ∈ N 1(X) is general and ω ∈ N 1(Y )R is very general, then
for each γ ∈ Vβ there is, up to scaling, a unique class βγ ∈ N1(X ) with
0 < βγ ≤ β such that

Lγ (A · βγ ) = 0.

The class cγ := A · βγ ∈ N0(X ) is, up to scaling, the unique class such that
Lγ (cγ ) = 0.
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Proof We first prove that if ω is very general, then there is up to scaling at
most one class 0 �= c ∈ N0(X ) such that Lγ (c) = 0. Note that if Lγ (c) = 0,
then c ∈ T := {c ∈ N0(X ) | Ψ (c) /∈ N0(Y ) and deg(c) �= 0}. For if
Ψ (c) ∈ N0(Y ), then c is some multiple of the class of an unstacky point, and
so Lγ (c) = deg(c) is 0 if and only if c = 0. If deg(c) = 0 and Ψ (c) /∈ N0(Y ),
then Lγ (c) = γ −1 degY (Ψ (c) · ω) �= 0, since ω is very general.

Define for any c ∈ T the number

γc(ω) = −degY (Ψ (c) · ω)

deg(c)
,

which is the unique number such that Lγc(ω)(c) = 0. If c, c′ ∈ T are not
proportional, then after rescaling we may assume deg(c) = deg(c′) and
ch2(Ψ (c)) �= ch2(Ψ (c′)). It then follows that the ω satisfying γc(ω) �= γc′(ω)

form a non-empty Zariski open subset of N 1(Y )R. Taking ω to lie in the inter-
section of the countably many such subsets gives the claim.

We now prove the uniqueness of βγ . If β ′ ∈ N1,mr(X ) \ 0, then A · β ′ ∈
Ψ −1(N0(Y )), and as shown above, then Lγ (A · β ′) �= 0. Thus the candidates
for βγ are the elements of the set S = {β ′ | 0 < β ′ ≤ β, β ′ /∈ N1,mr(X )}.
For β ′ ∈ S, define

γβ ′(A, ω) = γβ ′·A(ω) = −degY (Ψ (β ′) · A · ω)

deg(β ′ · A)
∈ R.

Given a pair of classes (A, ω), the number γβ ′(A, ω) is the unique number for
which Lγβ′ (β ′ · A) = 0.

Take β ′, β ′′ ∈ S and assume that β ′ is not proportional to β ′′. Fix a very
general ω ∈ N 1(Y )R. The locus of A ∈ N 1(X) for which γβ ′(A, ω) �=
γβ ′′(A, ω) is an open algebraic subset of N 1(X). We claim that it is non-
empty, and then since S is a finite set, taking A to be an ample class in the
intersection of these finitely many open subsets we get uniqueness of βγ .

So assume for a contradiction that γβ ′(A, ω) = γβ ′′(A, ω) for all (A, ω).
If c1(Ψ (β ′)) is proportional to c1(Ψ (β ′′)), then rescaling β ′ (which does not
change γβ ′) we may assume that c1(Ψ (β ′)) = c1(Ψ (β ′′)), and so β ′ − β ′′ ∈
N1,mr(X ) \ 0. For a general A, by Lemma 2.15, we then have (β ′ −β ′′) · A ∈
Ψ −1(N0(Y )) \ 0. Then as argued above

deg((β ′ − β ′′) · A) �= 0,

which shows that γβ ′(A, ω) �= γβ ′′(A, ω).
If c1(Ψ (β ′)) is not proportional to c1(Ψ (β ′′)), then by Lemma 2.16 we may

find A such that ch2(Ψ (β ′) · A) is not proportional to ch2(Ψ (β ′′) · A), which
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implies that β ′ · A and β ′′ · A are not proportional. The first part of the proof
then shows that γβ ′(A, ω) = γβ ′·A(ω) �= γβ ′′·A(ω) = γβ ′′(A, ω). ��
Remark 8.22 Henceforth, we write βγ ∈ N1(X ) for the minimal effective
class satisfying the conditions of Lemma 8.21.

8.8 Vanishing and changing bounds

We collect further boundedness results allowing us to apply the wall-crossing
formula. Let γ ∈ Vβ , let η ∈ R, and let x ∈ R. By Proposition 8.16, the set

S =
⋃

β ′≤β

{(β ′, c) | Lγ (c) ≤ x and Pζ,(γ,0)(β
′, c) �= ∅}

is finite. Thus we may define

M+
β,γ,x = max

(β ′,c)∈S
deg(β ′, c) and M−

β,γ,x = min
(β ′,c)∈S

deg(β ′, c).

Lemma 8.23 Let β ′ ≤ β, and let c ∈ N0(X ).

1. If η ≤ 0 and deg(β ′, c) > M+
β,γ,Lγ (c), then Pζ,(γ,η)(β

′, c) = ∅.

2. If η ≥ 0 and deg(β ′, c) < M−
β,γ,Lγ (c), then Pζ,(γ,η)(β

′, c) = ∅.

Proof This follows from the argument of Lemma 7.9. ��
Lemma 8.24 Let γ ∈ Vβ . The set

⋃

d≥1
dβγ ≤β

{c ∈ N0(X ) | M ss
ζ (dβγ , c) �= ∅}

is weakly Lγ -bounded.

Proof Let F ∈ M ss
ζ (dβγ , c).Wehave ζ(F) = (γ, ν(F)) and so F ∈ Fζ,(γ,∞).

Note that ζ(F(n)) = (γ, ν(F) + n), thus for n � 0 we have F(n) ∈ T0 ∩
Fζ,(γ,∞). An application of Lemma 8.14 completes the proof. ��

As a consequence of Lemma 8.24, we may define the number

Kγ = min{Lγ (c) | ∃d such that dβγ ≤ β andM ss
ζ (dβγ , c) �= ∅}

because A · dβγ = dcγ and so Lγ (cγ ) = 0. This allows us to slide off the
γ -wall.
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Lemma 8.25 Let γ ∈ Vβ , let E ∈ A be of class (−1, β, c), and let

η+
γ,(β,c) = max{0, deg(β, c) − M−

β,γ,Lγ (c)−Kγ
},

η−
γ,(β,c) = min{0, deg(β, c) − M+

β,γ,Lγ (c)−Kγ
}

If η > η+
γ,(β,c), then the following are equivalent:

1. E is a (Tζ,(γ,η),Fζ,(γ,η))-pair,
2. E is a (Tζ,(γ+ε,η),Fζ,(γ+ε,η))-pair.

If η < η−
γ,(β,c), then the following are equivalent:

1. E is a (Tζ,(γ,η),Fζ,(γ,η))-pair,
2. E is a (Tζ,(γ−ε,η),Fζ,(γ−ε,η))-pair.

Proof We treat the claim for η > η+
γ,(β,c), the other one is handled similarly.

We first show that condition (1) is independent of the precise value of η >

η+
γ,(β,c). The argument is a slightly refined version of that of Lemma 7.10. By

Lemma 8.18, it is enough to show that for any η ∈ Wβ ∩ (η(β,c), ∞) we have

Pζ,(γ,η−ε)(β, c) = Pζ,(γ,η+ε)(β, c).

By the wall-crossing formula, these two moduli stacks can only differ if there
exists a decomposition (β, c) = (β ′, c′) + (β ′′, c′′) with ζ(β ′′, c′′) = (γ, η)

and

Pζ,(γ,η)(β
′, c′) �= ∅ �= M ss

ζ (β ′′, c′′).

Suppose for a contradiction that there exists such a decomposition of (β, c). It
follows that Lγ (c′′) ≥ Kγ , hence Lγ (c′) ≤ Lγ (c)− Kγ , and so deg(β ′, c′) ≥
M−

β,γ,Lγ (c)−Kγ
. But then

deg(β, c) = deg(β ′, c′) + deg(β ′′, c′′)
≥ M−

β,γ,Lγ (c)−Kγ
+ l(β ′′)ν((β ′′, c′′))

> M−
β,γ,Lγ (c)−Kγ

+ η+
γ,(β,c) = deg(β, c)

which is a contradiction.
Assume that E is a (Tζ,(γ+ε,η),Fζ,(γ+ε,η))-pair. If S is a subobject of E , then

Lγ+ε(S · A) > 0, and hence by continuity Lγ (S · A) ≥ 0. Taking η ≥ ν(S), it
follows that S ∈ Fζ,(γ,η). If Q is a quotient object, then Lγ+ε(Q · A) ≤ 0, so

degY (ch2(Ψ (Q · A) · ω)) ≤ −(γ + ε) deg(Q · A).
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Now either deg(Q · A) = 0, in which case Q · A = 0 and so Q ∈ Coh0(X ), or
else deg(Q · A) > 0, which implies Lγ (Q · A) < 0. In either case Q ∈ Tζ,(γ,η),
and so E is a (Tζ,(γ,η),Fζ,(γ,η))-pair as claimed.

Conversely, suppose that E is a (Tζ,(γ,η),Fζ,(γ,η))-pair and let S ∈
Coh≤1(X ) be a subobject of E . Then either Lγ (A · S) > 0, in which case
Lγ+ε(A · S) > 0 as well, or Lγ (A · S) = 0 and so, as deg(S · A) > 0, we find

degY (ch2(Ψ (S) · A) · ω) < 0,

which implies Lγ+ε(S · A) > 0. If Q ∈ Coh≤1(X ) is a quotient object of
E , then either Q ∈ Coh0(X ) ⊂ Tζ,(γ+ε,η), or else taking η > ν(Q), we
find Lγ (A · Q) < 0, and so Lγ+ε(A · Q) < 0. We conclude that E is a
(Tζ,(γ+ε,η),Fζ,(γ+ε,η))-pair. ��

With all the relevant lemmas in place, we obtain a wall-crossing formula
relating the DT-type invariants of (γ, η) ∈ R>0×R before and after an η-wall
on a γ -wall.

Proposition 8.26 Let β ∈ N1(X ), let γ ∈ Vβ , and let η ∈ Wβ . The identity

DT ζ,(γ,η+ε)
≤β t [−OX ] = exp({J ζ (γ, η)≤β, −})DT ζ,(γ,η−ε)

≤β t−[OX ] (80)

holds in Q[N eff
1 (X )]≤β .

Proof This follows exactly as Proposition 7.14. ��
Now, we establish rationality as a γ -wall is crossed. Define the series

DT ζ,(γ,η)

β,c0+Zcγ
:=
∑

k∈Z

DT ζ,(γ,η)

β,c0+kcγ
qc0+kcγ .

As in Sect. 7, we equipQ[N0(X )]with a grading by setting deg(qc) = deg(c).
This extends naturally to a grading on Q(N0(X )).

Lemma 8.27 Let β ∈ N1(X ), let c0 ∈ N0(X ), let γ ∈ Vβ , and let η0 ≤
−l(β). Then the series

DT ζ,(γ,η0)

(β,c0+Zcγ ) − DT ζ,(γ,∞)

(β,c0+Zcγ )

is rational of degree < deg(β, 0) + M+
β,γ,Lγ (c0)

+ η0l(β) + l(β)2.

Proof Since γ ∈ Vβ , the walls for (Tζ,(γ,η),Fζ,(γ,η))-pairs of class (−1, β ′, c)
with β ′ ≤ β are given by the η-walls Wβ for Nironi stability by Corollary 8.18.
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By Proposition 8.26, we have a wall-crossing formula, which when iterated
yields

DT ζ,(γ,∞)
≤β t−[OX ] =

∏

η∈Wβ∩[η0,∞)

exp({J ζ
βγ

(η), −})DT ζ,(γ,η0)
≤β t−[OX ],

where

J ζ
βγ

(η) =
∑

d∈Z≥1,c∈N0(X )
dβγ ≤β

ν(dβγ ,c)=η

J ζ

(dβγ ,c)z
dβγ qc.

Expanding the exponential, substituting the expression from equation (77),
we collect all terms contributing to the coefficient of zβqc0+kcγ t−[OX ] on
the right hand side. The terms of this sum are described as follows. Fix an
r ≥ 1, a sequence (di )

r
i=1 in Z≥1, a sequence (ci )

r
i=1 in N0(X ), and a class

α′ = (β ′, c′) ∈ N≤1(X ), satisfying

– β = β ′ +∑r
i=1 diβγ ,

– c′ +∑r
i=1 ci ≡ c0 (mod cγ ),

– η0 ≤ ν(d1βγ , c1) ≤ · · · ≤ ν(drβγ , cr ),

– J ζ

(di βγ ,ci )
�= 0 for all 1 ≤ i ≤ r ,

– DT ζ,(γ,η0)

α′ �= 0.

The non-zero term in the coefficients of zβqc0+kcγ t−[OX ] associated with this
data is

T (r, (di ), (ci ), α
′)zβqc′+∑ ci s = A(di ),(ci ){J ζ

(dr βγ ,cr )
zdr βγ qcr , −}◦

· · · ◦ {J ζ

(d1βγ ,c1)
zd1βγ qc1, −}

(
DT ζ,(γ,η0)

(β ′,c′) zβ ′
qc′

t−[OX ])

where A(di ),(ci ) is a factor arising from the exponential:

A(di ),(ci ) =
∏

ν∈Wβ

1

|{i | ν(diβγ , ci ) = ν}|! .

Putting all these terms together, we have

∑

k∈Z

(
DT ζ,(γ,η)

(β,c0+kcγ ) − DT ζ,(γ,−∞)

(β,c0+kcγ )

)
qc0+kcγ

=
∑

r,(di ),(ci ),α
′
T (r, (di ), (ci ), α

′)qc′+∑ ci .
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We now analyse the T -terms. Expanding the Poisson brackets yields

T (r, (di ), (ci ), α
′) = A(di ),(ci )B(di ),(ci ),α

′
r∏

i=1

J ζ

(di βγ ,ci )
DT ζ,(γ,η0)

α′

where, letting αi = (diβγ , ci ) and α′ = (β ′, c′), we have

B(di ),(ci ),α
′ = σ

∑
i< j χ(α j ,αi )+∑i χ(αi ,α

′−[OX ])

×
r∏

i=1

χ

⎛

⎝αi , −[OX ] + α′ +
i−1∑

j=1

α j

⎞

⎠

where σ ∈ {±1} depending on the integration morphism chosen; see Sect. 5.3.
We partition these T -terms in groups as follows. A group consists of

the data of a class α′ = (β ′, c′) ∈ N≤1(X ) and a sequence of posi-
tive integers (di )

r
i=1 satisfying the same conditions as above, a sequence

(κi )
r
i=1 ∈ N0(X )/Z(diβγ · A), and a subset E ⊆ {1, . . . , r − 1}. The κi

are required to satisfy

J ζ

(di βγ ,ci )
�= 0 for ci ∈ κi and all i = 1, 2, . . . , r. (81)

Tensoring by the line bundle A induces an isomorphism M ss
ζ (γ, d) ∼=

M ss
ζ (γ, d + γ · A). It follows that the invariant J ζ

(di βγ ,ci )
is independent of

the choice of representative ci ∈ κi , thus we may define

J ζ

(di βγ ,κi )
:= J ζ

(di βγ ,ci )
.

Collecting all terms belonging to the group (α′, (di ), (κi ), E), we obtain

C(α′, (di ), (κi ), E) =
∑

(ci )

T (r, (di ), (ci ), α
′)qc′+∑ ci ,

where the sum is over all ci ∈ N0(X ) such that

ci ∈ κi , (82)

η0 ≤ ν(d1βγ , c1) ≤ · · · ≤ ν(drβγ , cr ), (83)

ν(diβγ , ci ) = ν(di+1βγ , ci+1) ⇔ i ∈ E . (84)
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Note that for such a choice of ci , the factor A(di ),(ci ) defined above depends
only on E . Indeed, set {ni } = {1, . . . , r} \ E with n1 < · · · < nr−|E |. Then

AE :=
∏ 1

(ni − ni−1)! = A(di ),(ci ).

We find that the contribution of the group (α′, (di ), (κi ), E) is

C(α′, (di ), (κi ), E) = AE

r∏

i=1

J ζ

(di βγ ,κi )
DT ζ,(γ,η0)

α′

(
∑

ci

B(di ),(ci ),α
′qc′+∑ ci

)
,

where the sum runs over all ci ∈ N0(X ) as above. Now, for every choice of
(di ), (κi ), and E , there exists a sequence (c0i ) with c0i ∈ κi which is minimal
in the sense that replacing any c0i with c0i −di cγ would violate one of (83) and
(84). We find

C(α′, (di ), (κi ), E) = AE

r∏

i=1

J ζ

(di βγ ,κi )
DT ζ,(γ,η0)

α′

×
(
∑

ai

B(di ),(c0i +ai di cγ ),α′qc′+∑ c0i +ai di cγ

)

where the sum is over the set SE = {0 ≤ a1 ≤ a2 ≤ . . . ≤ ar | ai ∈
Z, ai = ai+1 ⇔ i ∈ E}. Note that the coefficients of this expression depend
quasi-polynomially on the ai .

Now observe by Lemma 2.24 that this C is a rational function. Moreover
if deg(C) denotes the degree of C as a rational function, Lemma 2.24 also
implies that

deg(C) < deg(β, 0) + deg
(

c′ +
∑

c0i

)
.

We have deg(c′) ≤ M+
β,γ,Lγ (c′), and arguing as in Sect. 7.7 we find that

deg
(∑

c0i

)
≤ l(β)η0 + l(β)2,

and thus

deg(C) < deg(β, 0) + M+
≤β,Lγ (c′) + l(β)η0 + l(β)2.

This completes the proof. ��
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Combining Lemmas 8.25 and 8.27, and letting η0 go to −∞, we obtain

Corollary 8.28 Let β ∈ N1(X ), let c0 ∈ N0(X ), and let γ ∈ Vβ be a

wall for β. The functions DT ζ,(γ,∞)

β,c0+Zcγ
and DT ζ,(γ,−∞)

(β,c0+Zcγ ) are equal as rational
functions.

Proof Argue as in Lemma 7.17, using Lemmas 8.25 and 8.27. ��
Theorem 8.29 Let β ∈ N1(X ), let γ ∈ R>0 \ Vβ , and let η ∈ R. Then

DT ζ,(γ,η)
β is the expansion of the rational function fβ(q) in Z[N0(X )]Lγ .

Proof The set of walls is finite by Lemma 8.18, so we may write Vβ = {γi }n
i=1

where

0 < γ1 < γ2 < · · · < γn. (85)

By Lemma 8.19, we know that DT ζ,(γ,η)
β ∈ Z[N0(X )]Lγ . What remains to be

shown is that it is an expansion of the rational function fβ(q) of Theorem B.
Lemmas 7.12, 8.18, and 8.20 prove the claim when γ > γn . Moreover, by

Lemma 8.18 it suffices to prove the claim for γ− = γi −ε under the assumption
that the claim is true for γ+ = γi + ε. By Lemma 8.21 then, there is up to
scale a unique class cγi ∈ N0(X ) such that Lγi (cγi ) = 0, Lγ−(cγi ) > 0, and
Lγ+(cγi ) < 0.

By induction, the series DT ζ,(γ+,η)

β is the expansionof fβ(q) inZ[N0(X )]Lγ+ .
By Proposition 8.25, we have the equality of coefficients

DT ζ,(γ±,η)

(β,c0+kcγi )
= DT ζ,(γi ,±∞)

(β,c0+kcγi )
. (86)

Thus it follows by Corollary 8.28 that the difference

DT ζ,(γ+,η)

(β,c0+kcγi )
− DT ζ,(γ−,η)

(β,c0+kcγi )
(87)

is quasi-polynomial in k. Finally, by Lemma 2.25 we may conclude that the
series DT ζ,(γ−,η)

β is the re-expansion of DT ζ,(γ+,η)

β in Z[N0(X )]Lγ− . ��

9 Recovering Bryan–Steinberg invariants

In this section, we relate the end product of the γ -wall-crossing, namely the
notion of (Tζ,(γ,η),Fζ,(γ,η))-pair as γ → 0, to stable pairs relative to the
crepant resolution f : Y → X , which we briefly recall. By Theorem 8.29, this
completes the proof of the crepant resolution conjecture.

As before X denotes a CY3 orbifold that satisfies the hard Lefschetz
condition. By the McKay correspondence, its coarse moduli space X has a
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distinguished crepant resolution f : Y → X , and dim f −1(x) ≤ 1 for all
x ∈ X ; see Sect. 2.4.

We denote the inverse to theMcKay equivalenceΦ : D(Y ) → D(X ) byΨ .
It commutes with the natural pushforwards g∗ ◦ Φ = R f∗, where g : X →
X , and sends Φ(OY ) = OX . Recall that Ψ (Coh(X )) = Per(Y/X) by
[19, Thm 1.4], see Sect. 2.4. Finally, we write Per(Y ) :=Per(Y/X) and
Per≤1(Y ) := Ψ (Coh≤1(X )).

9.1 Bryan–Steinberg pairs

We recall the notion of f -stable pair from [14]. Let (T f ,F f ) be the torsion
pair on Coh≤1(Y ) defined by

T f = {F ∈ Coh≤1(Y ) | R f∗F ∈ Coh0(X)}, (88)

where F f = T⊥
f denotes the orthogonal complement.

Definition 9.1 An f -stable pair or Bryan–Steinberg pair (F, s) consists of
F ∈ Coh≤1(Y ) and a section s ∈ H0(Y, F). This data satisfies two stability
requirements:

(i) coker(s) pushes down to a zero-dimensional sheaf, i.e., coker(s) ∈ T f ,
and

(ii) G admits no maps from such sheaves, i.e., Hom(T f , F) = 0,

Two f -stable pairs (F, s) and (F ′, s′) are isomorphic if there exists an iso-
morphism φ : F → F ′ such that φ ◦ s = s′.

By Proposition 3.11, the f -stable pair (F, s) corresponds to the (T f ,F f )-
pair (s : OY → F) in the abelian category AY = 〈OY [1],Coh≤1(Y )〉ex. For
a numerical class (β, n) ∈ N≤1(Y ) = N1(Y ) ⊕ Z, let PBS(β, n) denote the
moduli stack of f -stable pairs of class (−1, β, n) ∈ Z ⊕ N≤1(Y ). It is a C∗-
gerbe over its coarse space by Propositions 4.6 and 6.1, and of finite type by the
boundedness results of [14]. The BS invariant of class (β, n) is then defined
as

BS(Y/X)(β,n) = −eB(PBS(β, n))

and this definition agrees with that of the original invariants of [14].
The McKay equivalence sends f -stable pairs into the full subcategory A ⊂

D(X ).

Lemma 9.2 If E = (OY
s−→ F) is a (T f ,F f )-pair in AY , then Φ(E) ∈ A.
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Proof The pair E fits into an exact triangle OY
s−→ F → E → OY [1] in

D(Y ), which Φ sends to an exact triangleOX → Φ(F) → Φ(E) → OX [1]
in D(X ). The claim follows by extension-closure of A, since Φ(F) ∈
Coh≤1(X ) by [14, Prop. 18]. ��

9.2 The crepant resolution conjecture

The remainder of this section concerns the proof of the following comparison
result, and thus establishes Theorem C.

Proposition 9.3 Let (β, n) ∈ N≤1(Y ). Restriction induces an isomorphism

Φ : PBS(β, n) ∼= Pζ,(γ,η)(Φ(β, n)) (89)

provided that 0 < γ < minγ ′∈Vβ
γ ′.

We begin by introducing a torsion pair on Coh≤1(X ) which is the limit of the
torsion pairs (Tζ,(γ,η),Fζ,(γ,η)) as γ → 0+.

Definition 9.4 Let Tζ,0 ⊂ Coh≤1(X ) denote the subcategory of sheaves T
such that if T � Q �= 0 is a surjection in Coh≤1(X ), then either Q ∈
Coh0(X ) or

degY (ch2(Ψ (Q) · A) · ω) < 0.

Let Fζ,0 ⊂ Coh≤1(X ) denote the subcategory of sheaves F such that if
0 �= S ↪→ F is an injection in Coh≤1(X ), then S is pure of dimension 1 and
we have the inequality degY (ch2(Ψ (S) · A) · ω) ≥ 0.

Lemma 9.5 The pair (Tζ,0,Fζ,0) defines a torsion pair on Coh≤1(X ).

Proof It is easy to see that Tζ,0 is closed under extensions and quotients. Since
Coh≤1(X ) is Noetherian, the claim follows by Lemma 3.1. ��
The following straightforward result shows that (Tζ,0,Fζ,0) is indeed a limit.

Lemma 9.6 Let β ∈ N1(X ). If 0 < γ < minγ ′∈Vβ
γ ′, then an object E ∈ A

of class (−1, β, c) is a (Tζ,0,Fζ,0)-pair if and only if it is a (Tζ,(γ,η),Fζ,(γ,η))-
pair.

Lemma 9.7 Let G ∈ Coh(X ). The sequence

0 → Φ(H−1(Ψ G)[1]) → G → Φ(H0(Ψ G)) → 0 (90)

is exact in Coh(X ).
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Proof The abelian category Per(Y ) has an induced torsion pair

(Coh(Y )[1] ∩ Per(Y ),Coh(Y ) ∩ Per(Y )).

The sequence is the image underΦ of the torsion pair decomposition ofΨ (G).
��

The following result relates the torsion pairs (Tζ,0,Fζ,0) on Coh≤1(X ) and
(T f ,F f ) on Coh≤1(Y ) under the McKay equivalence.

Lemma 9.8 We have

T f = Ψ (Coh0(X )) ∩ Coh(Y ). (91)

Moreover, we have

Tζ,0 =
〈
Φ
(
Per≤1(Y ) ∩ Coh(Y )[1]), Φ(T f )

〉

ex
(92)

Fζ,0 = Φ
(
Per≤1(Y ) ∩ Coh(Y ) ∩ T⊥

f

)
. (93)

Proof The inclusionT f ⊇ Ψ (Coh0(X ))∩Coh(Y ) follows from the definition
of T f . For the reverse inclusion, let T ∈ T f . Since T f ⊂ Per(Y ), we have
Φ(T ) ∈ Coh(X ). Every 1-dimensional component of the support of T is
contracted to a point by f , since otherwise its image under f would be a 1-
dimensional component in the support ofR f∗(T ). It follows that T is supported
over finitely many points of X , and so Φ(T ) ∈ Coh0(X ). This proves (91).

Let T ∈ Per≤1(Y )∩ (Coh(Y )[1]). If T � T ′ is a surjection in Per≤1(Y ),
then T ′ ∈ Coh(Y )[1]. Hence degY (ch2(T ′ · A) · ω) ≤ 0, and equality occurs
if and only if T ′ ∈ Coh≤1(Y ). In that case, since T ′ ∈ Per≤1(Y ), the support
of f∗(T ′)must be 0-dimensional, and soΦ(T ′) ∈ Coh0(X ). This proves that
T ∈ Tζ,0, and sowe findΦ(Per(Y )∩Coh(Y )[1]) ⊂ Tζ,0. Thus 〈Φ(Per(Y )∩
Coh(Y )[1]), Φ(T f )〉 ⊆ Tζ,0.

For the reverse inclusion, let G ∈ Tζ,0, and let F0 = H0(Ψ G) and F−1 =
H−1(Ψ G). By Lemma 9.7, we have the short exact sequence

0 → ΦF−1[1] → G → ΦF0 → 0 (94)

in Coh(X ).
The surjection G � ΦF0 implies that ΦF0 ∈ Tζ,0. Thus either ΦF0 ∈

Coh0(X ) or degY (ch1(F0) · A · ω) < 0. But ch1(F0) is effective, forcing
degY (ch1(F0) · A ·ω) ≥ 0, and thus ΦF0 ∈ Coh0(X ). By (91) then F0 ∈ T f ,
and so the decomposition of G in (94) is an extension as in (92).

For (93), let G ∈ Fζ,0 and write F = H−1(Ψ G). By definition of Fζ,0, we
have ΦF ∈ Coh1(X )[−1] and ch1(F) · ω · A ≤ 0. But ch1(F) is effec-
tive, hence F ∈ Coh≤1(Y ). Again it follows that F is contracted, hence
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ΦF ∈ Coh0(X )[−1]. But then as F[1] ↪→ G and G ∈ Fζ,0, we get F = 0,
and thus Ψ G ∈ Coh(Y ). Finally, equation (91) implies that Hom(T f , F) =
Hom(Φ(T f ), Φ(F)) = 0 and so G ∈ Φ(Per(Y ) ∩ Coh(Y ) ∩ T⊥

f ).

Conversely, if G ∈ Per≤1(Y ) ∩ Coh(Y ) ∩ T⊥
f , then by (92)

G ∈ Per≤1(Y ) ∩ (Per≤1(Y ) ∩ Coh(Y )[1])⊥ ∩ T⊥
f

= Per≤1(Y ) ∩ Ψ (Tζ,0)
⊥,

and so ΦG ∈ T⊥
ζ,0 ∩ Coh≤1(X ) = Fζ,0 as was to be shown. ��

Finally, we identify multi-regular (Tζ,0,Fζ,0)-pairs on X with f -stable
pairs on Y under the McKay equivalence. We prove each implication sepa-
rately.

Lemma 9.9 If E is a (Tζ,0,Fζ,0)-pair with βE ∈ N1,mr(X ), then Ψ (E) is an
f -stable pair.

Proof Writing E as an iterated extension of objects OX [1] and E1, . . . , En
with Ei ∈ Coh≤1(X ) shows that H−1(Ψ E) has rank one, that H0(Ψ E) ∈
Coh≤2(Y ), and that all other cohomology sheaves of Ψ E vanish.

We claim that H−1(Ψ E) is torsion free. Let T ↪→ H−1(Ψ E) be the torsion
part of the sheaf H−1(Ψ E), then T [1] ∈ Per(Y ). By Lemma 9.8, we find
Φ(T [1]) ∈ Tζ,0. Since E is a (Tζ,0,Fζ,0)-pair, it satisfies Hom(ΦT [1], E) =
0 by definition. But we have a chain of inclusions

Hom(T, T ) ↪→ Hom(T, H−1(Ψ E)) ↪→ Hom(T [1], Ψ E)

= Hom(ΦT [1], E) = 0 (95)

forcing T = 0. We conclude that H−1(Ψ E) is torsion free.
It follows that H−1(Ψ E) is of the form IC (D) for some 1-dimensional

scheme C ⊂ Y and some divisor D. But since βE is multi-regular we have
c1(Ψ E) = 0, and so c1(H0(Ψ E)) = [D].

Wehave H0(Ψ E) ∈ Per≤1(Y ). Since E is a (Tζ,0,Fζ,0)-pair,wemust have
Φ(H0(Ψ E)) ∈ Tζ,0. By Lemma 9.8, this implies H0(Ψ E)) ∈ T f , and so in
particular D = 0 and H>0(Y, H0(Ψ E)) = 0. The criterion of Lemma 3.11
then implies that Ψ E has the form (OY → F) for some 1-dimensional sheaf
F on Y . For any T ∈ T f ,

Hom(T, F) = Hom(T, Ψ E) = Hom(ΦT, E) = 0,

using Lemma 9.8, and so F ∈ F f . This proves that Ψ E is an f -stable pair. ��
Lemma 9.10 If E = (OY → F) is an f -stable pair, then ΦE is a (Tζ,0,Fζ,0)-
pair.
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Proof By the proof of Lemma 9.2, ΦE is the cone of the map OX → ΦF
where ΦF ∈ Coh≤1(X ). By Lemma 9.8, if T ∈ Tζ,0, then H0(Ψ T ) ∈ T f .
By Lemma 7.11

Hom(T, ΦE) = Hom(T, ΦF) = Hom(Ψ T, F) = Hom(H0(Ψ T ), F) = 0,

because F ∈ F f .
Let G ∈ Fζ,0, then by Lemma 9.8, we have Ψ G ∈ Coh(Y ) ∩ T⊥

f . This
implies that

Hom(ΦE, G) = Hom(E, Ψ G) = Hom(H0(E), Ψ G) = 0,

because H0(E) ∈ T f . We conclude that ΦE is a (Tζ,0,Fζ,0)-pair. ��
Proof of Proposition 9.3 Collecting the above ingredients yields the result. ��
As a consequence, we may define the generating function of f -stable pair
invariants of class β ∈ N1,mr(X ) as the generating function of (Tζ,0,Fζ,0)-
pairs of class β. In turn, this is nothing but the generating function of ζ -pairs
of class β for which (γ, η) ∈ R>0 × R satisfy 0 < γ < minγ ′∈Vβ

γ ′.
Collecting our previous results, we prove the crepant resolution conjecture.

Theorem C Let X be a 3-dimensional Calabi–Yau orbifold satisfying the
hard Lefschetz condition with projective coarse moduli space, and let β ∈
N1,mr(X ) be a multi-regular curve class. The equality

PT (X )β = BS(Y/X)β

holds as rational functions in Q(N0(X )). More precisely, there exists a unique
rational function fβ ∈ Q(N0(X )) such that

1. the Laurent expansion of fβ with respect to deg is the series PT (X )β ,
2. the Laurent expansion of fβ with respect to Lγ is the series BS(Y/X)β ,

where 0 < γ < minγ ′∈Vβ
γ ′.

Proof This follows from Theorem 8.29 and Proposition 9.3. ��

10 Index of notation

In the following table, we collect brief descriptions of the various notations
used (in order of appearance) together with the page of their definitions.
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Nomenclature

χ(−, −) The Euler pairing on D(X )/D(Y )

N (−) The numerical Grothendieck group
rk The rank of an object in D(X )/D(Y )

Coh≤d(−) The abelian category of coherent sheaves supported in
dimension ≤ d

N≤d(−) The saturation of the subgroup of N (−) generated by
sheaves supported in dimension ≤ d

Nd(−) The group N≤d(−)/N≤d−1(−)

X A 3-dimensional Calabi–Yau orbifold
g : X → X The coarse moduli space of X
βF The N1(X )-component of [F] for an F ∈ Coh≤1(X)

cF The N0(X )-component of [F] for an F ∈ Coh≤1(X)

D The functor D(−) = RH om(−,OX )[2]
V A generating vector bundle on X
A An ample line bundle on X
pF The modified Hilbert polynomial
l(F) The linear coefficient of pF
deg(F), degX (F) The constant coefficient of pF
N eff(X ) The cone of effective classes
ν The Nironi slope function
CohX The moduli stack of coherent sheaves onX
F± ν-Harder–Narasimhanpieceof F withmaximal/minimal

value of ν

ν±(F) ν(F±)

Mν(I ) Moduli stackof coherent sheaveswithν+(F), ν−(F) ∈
I

M ss
ν (s) Moduli stack of ν-semistable sheaves with ν(F) = s

Mν(I, β) Substack of Mν(I ) of sheaves F with βF = β

M ss
ν (s, β) Substack of M ss

ν (s) of sheaves F with βF = β

QuotX (F, p) Functor of quotients of F with modified Hilbert poly-
nomial p

f : Y → X The Hilbert scheme crepant resolution of X
Φ The McKay correspondence D(Y ) → D(X )

Ψ The inverse of Φ

Per(Y/X) The category of perverse coherent sheaves
Nmr(X ) The group of multi-regular classes
N1,mr(X ) The group of multi-regular curve classes
Z{N0(X )} The group of formal Laurent series in variables qc

Z[N0(X )]L The ring of L-bounded Laurent series in variables qc

fL The expansion of f in Z[N0(X )]L
A The abelian category 〈OX [1],Coh≤1(X )〉ex
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(Tμ,s,Fμ,s) The torsion pair associated with a stability condition
μ and slope s

Coh�(X ) The tilt of Coh(X ) in (Coh≤1(X ),Coh≥2(X ))

〈C1, . . . ,Cn〉ex The extension closure of categories C1, . . .Cn
A The category 〈OX [1],Coh≤1(X )〉ex ⊂ Coh�(X )

Pair(T,F) The category of (T,F)-pairs for subcategories T,F of
Coh≤1(X )

(TPT ,FPT ) The torsion pair TPT = Coh0(X ),FPT = Coh1(X )

V(T,F) The subcategory T⊥ ∩⊥ F of A
Ark=−1 The category of objects in A of rank = −1
Ark≥−1 The category of objects in A of rank ≥ −1
MumX The moduli stack of gluable objects in D(X)

MumX ,α The moduli stack of objects of class α

C The substack of MumX associated with a category
C ⊂ D(X )

K (St /C) The Grothendieck ring of stacks
K (St /S ) The Grothendieck group of stacks relative toS
C(2) The stack of short exact sequences in C
∗ The Hall algebra product
H(C) The motivic Hall algebra of C
L The element [A1

C] ∈ K (St /C)

KL(Var /C) Localisation in (L − 1)
KL(St /C) Localisation in (L − 1)
HL(C) Localisation in (L − 1)
HDM-sc(C) The semi-classical Hall algebra
e The topological Euler characteristic
eB The Behrend-weighted Euler characteristic
σ ±1 depending onwhether we take Euler characteristic

or Behrend-weighted Euler characteristic
Iσ The integration map
Hgr(C) The graded Hall pre-algebra
PT (X )(β,c) The stable pairs invariant of class (β, c)
PT (X )β, DT (X )β Generating functions of stable pairs/ideal sheaf invari-

ants
Wβ The set of potential ν-walls for a fixed β

Pν,δ The category of (Tν,δ,Fν,δ)-pairs
J ν
(β,c) Invariants counting rank 0 ν-semistable sheaves

DT ν,δ
(β,c) Invariants counting (Tν,δ,Fν,δ)-pairs

M±
≤β Max./min. degree of a (β ′, c) for which there is a

(Tν,0,Fν,0)-pair of class (β ′, c), β ′ ≤ β

DT ν,δ
≤β The truncated generating function of DT ν,δ-invariants

123



A proof of the DT crepant resolution conjecture

J ν≤β The truncated generating function of J ν-invariants

Q[N eff(X )] The subalgebra of Q[N (X )] corresponding to effec-
tive curve classes

Q[N eff(X )]≤β A quotient of Q[N eff(X )] containing curve classes
≤ β

degY The degree of a 0-cycle on Y
(γ, η) A slope for ζ

ω A generic ample class in N 1(Y )R
ζ A stability condition on Coh≤1(X ) with value in

(−∞, ∞]2
(γ, η) The stability parameters of ζ

Pζ,(γ,η) The category of (Tζ,(γ,η),Fζ,(γ,η))-pairs
Lγ A linear function on N0(X )

θ A stability condition on Coh0(X )

M ss
ζ (a, b) The category of ζ -semistable sheaves F with ζ(F) =

(a, b)

Tζ,(γ,−∞),Fζ,(γ,∞) The union of Tζ,(γ,η) resp. Fζ,(γ,η) over all η
Vβ The set of γ -walls for the stability condition ζ

J ζ

(β,c) DT-type invariants counting ζ -stable sheaves

DT ζ,(γ,η)

(β,c) DT-type invariants for (Tζ,(γ,η),Fζ,(γ,η)-pairs

DT ζ,(γ,η)
β , J ζ (a, b)β Generating functions for DT ζ,(γ,η)

(β,c) and J ζ

(β,c)
βγ The minimal effective curve class such that invariants

J ζ

(βγ ,c) contribute to wall-crossing at γ

M±
β,γ,x A constant

Kγ A constant
(T f ,F f ) The torsion pair defining f -stable pairs
AY The category 〈OY [1],Coh≤1(Y )〉ex
PBS(β, n) The moduli stack of f -stable pairs
BS(Y/X)(β,n) The BS invariant
(Tζ,0,Fζ,0) The limit of (Tζ,(γ,η),Fζ,(γ,η)) as γ → 0+
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A An example

We present a simple example of a CY3 orbifoldX to which our main theorem
applies.We first explicitly compute enough terms of both sides of the equation

DTmr(X )

DT0(X )
= DT (Y )

DTexc(Y )
(96)

to show that equality does not hold at the level of formal series, and so the
equation must be interpreted as an equality of rational functions. We then
analyse a specific multi-regular curve class on X and explain how our proof
of the equality works in this case.

Remark A.1 For this example, the terms we compute are essentially computed
both in [11] and [38, Thm. 2.2] – see in particular [11, Sec. 4.4] for an explicit
determination of low-degree terms of the left hand side as a rational function.
We include it not to claim fault in these works, but to demonstrate that even
for the very simplest of examples, the equalities in the crepant resolution
conjecture must be interpreted as being between rational functions rather than
generating series.

The geometry of our example is a quasi-projective CY3 orbifold with trans-
verse A1-singularities, which we now describe. Consider the vector bundle
Z = OP1(−1)⊕2 → P1, and let Z/2 act on Z via multiplication by−1 in each
fibre. Let X = [Z/(Z/2)]. Since X is non-compact, we work with com-
pactly supported K -theory, and we write N (X ) for the numerical compactly
supported K -group.

Let ρ be the non-trivial character of Z/2, and letOX (ρ) be the correspond-
ing line bundle onX . Let C ⊂ Z be the zero-section. If F is the push-forward
of a line bundle on C to X , there are two lifts F± of F to X , that is to
say there are two lifts of F to Z/2-equivariant sheaves on X . These satisfy
F± ∼= O(ρ) ⊗ F∓, and we label them so that F+ locally has Z/2-invariant
sections and F− does not. Similarly, if p ∈ C , then the skyscraper sheaf Op
has two lifts O±

p to sheaves on X .
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A natural basis for the numerical K-group N (X ), is then given by the four
classes

[O+
C (−1)], [O−

C (−1)], [O+
p ], [O−

p ].

We use the notation

(d+, d−, n+, n−) = d+[O+
C (−1)] + d−[O−

C (−1)]
+n+[O+

p ] + n−[O−
p ] ∈ N (X ),

the group Nmr(X ) is spanned by classes satisfying d+ = d−. The ele-
ments of Z[N≤1(X )] corresponding to class (d+, d−, n+, n−) is denoted by
zd++ zd−− qn++ qn−− .

The coarse moduli space X ofX is a family of singular quadric cones over
P1. The distinguished crepant resolution Y , given by the McKay correspon-
dence, is the blow up of X in the singular locus P1, so that Y is the total space
of the line bundle OP1×P1(−2, −2) → P1 × P1.

We let Ch and Cv be orthogonal lines in P1 × P1 ⊂ Y such that Cv is
contracted by f : Y → X and Ch is not. We denote their numerical classes by
[OCh (−1)], [OCv (−1)]. Under theMcKay equivalence, we have [OCh (−1)] =
(1, 1, 0, 1), [OCv (−1)] = (0, 0, 0, 1) and [Op] = (0, 0, 1, 1), where p ∈ Y is
a point.

A.1 Explicit computation of invariants

In the following result, we collect some DT invariants ofX and Y .

Proposition A.2 We have

– DT (Y )(0,0,n+,n−) = 0 if n ≤ 0.
–
∑

n+∈Z DT (X )(0,0,n+,0)q
n++ = ∑

n+≥0(−1)m+1(n+)qn++ = (1 + q+)−2.
– DT (Y )(2,2,n+,n−) = DT (X )(2,2,n+,n−) = 0 if n− < 4.

Setting n = 4, we have

∑

n+∈Z

DT (Y )(2,2,n+,4)q
n++ q4− =

∑

n+≤2

(−1)n++1(3n+ − 9)qn++ q4−

= 3q4+q4−
(1 + q+)2

∑

n+∈Z

DT (X )(2,2,n+,4))q
n++ q4− = 3

∑

n+≥4

(
n+ + 3

3

)
qn++ q4− = 3q4+q4−

(1 + q+)4
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Proof There is a natural action of T = (C∗)3 on both X and Y , and the
computation of DT invariants thus reduces to counting the T -fixed points with
their Behrend weights. By [5, Thm. 3.4], these are computable as

νM(p) = (−1)dim TM,p .

We omit the details of this fixed-point counting. However, we remark that
the Behrend weight calculation is particularly simple in the cases we consider
since the moduli spaces involved are in fact smooth, and so νM ≡ (−1)dim M .

To see smoothness on the side of the resolution Y , one shows that objects in
Quot(Y,OY )(2,2,n+,4) correspond to divisors on P1 × P1 of class 2Ch + (2 −
n+)Cv . In particular,

Quot(Y )(2,2,n+,4)
∼= P2 × P2−n+ .

To see smoothness on the side of the orbifold X , we remark that
Quot(OX )(0,0,n+,0)

∼= Symn+ P1 = Pn+ , while one can show that the ker-
nel IC ′ of an object (OX � OC ′) ∈ Quot(X ,OX )(2,2,n+,4) must satisfy
I 3

C ⊂ IC ′ ⊂ I 2
C . This induces isomorphisms

Quot(X ,OX )(2,2n+,4)
∼= Quot(X ,I 2

C/I 3
C )(2,2,n+,4)

∼= Quot(P1,OP1(2)⊕3)[OP1 (n+−2)],

and the latter scheme is non-singular. ��
Corollary A.3 The z2+z2−qn++ q4−-coefficient of DT (X )/DT0(X ) is 0 if n+ ≤
3, and it is (−1)n+(3n+ − 9) otherwise.

The z2+z2−qn++ q4−-coefficient of DT (Y )/DTexc(Y ) is 0 if n+ ≥ 3, and it is
(−1)n++1(3n+ − 9) otherwise.

Remark A.4 Note that the difference between the generating series collecting,
for all n+ ∈ Z, the z2+z2−qn++ q4−-terms on X and the series collecting those
terms on Y , is

∑

n+∈Z

(−1)n+(3n+ − 9)z2+z2−qn++ q4−.

In particular, the coefficient (−1)m(3m − 9) of the difference is quasi-
polynomial, and the two functions are different expansions of the rational
function

z2+z2−q4−q4+
(1 + q+)2

.
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A.2 Wall-crossing

We now sketch how the wall-crossing computation goes in this case. We fix
the following data, introduced in Sects. 2.2.2 and 8.1:

– Let the generating vector bundle V on X be OX ⊕ OX (ρ).
– Let the line bundle A on X be the ample generator of Pic(X).
– Let the class ω ∈ N 1(Y )R be the one such that ω · Ch = ω · Cv = 1.

The stability function ζ is then computed to be

ζ(d+, d−, n+, n−) =
(

d+ − d−
d+ + d−

,
n+ + n−
d+ + d−

)
if (d+, d−) �= (0, 0)

ζ(0, 0, n+, n−) = (∞, ∞).

Fix β = (2, 2) ∈ N1(X ). We analyse how the function DT ζ,(γ,η)
β changes

when (γ, η) varies from the PT case γ � 0 to the BS case γ ≈ 0. From the
torus localisation computation of [11, Sec. 4.4], we have the following formula

PT (X )β = 2q4+q6−
(1 − q2+q2−)2(1 + q+q2−)2(1 + q+q−)2(1 − q1)2

+ 2q4+q4−
(1 − q2+q2−)2(1 + q+q−)2(1 + q+)2(1 − q−)2

+ q4+q4−
(1 + q+q2−)2(1 + q+q−)4(1 + q+)2

. (97)

The set of classes β ′ ∈ N1(X ) with 0 < β ′ ≤ (2, 2) is

{(2, 1), (2, 0), (1, 2), (1, 1), (1, 0), (0, 1)},
and so the set of γ -walls (Lemma 8.18) is

Vβ =
{
1

3
, 1

}
.

The function Lγ (Sec. 8.1) is here given by

Lγ (n+, n−) = n+ + n− + γ −1(n− − n+).

Theorem 8.29 states that for γ /∈ Vβ , the function DT ζ,(γ,η)(X )β is the
expansion of (97) in the ring Z[N0(X )]Lγ . Explicitly, this means that a factor
of the denominator of the form (1 ± qa+qb−) should be expanded in positive

123



S. V. Beentjes et al.

(resp. negative) powers of qa+qb− if Lγ (a, b) > 0 (resp. Lγ (a, b) < 0). Exam-
ining (97), this gives only two distinct expansions of the rational function: If
γ > 1, we expand (1 + q+)−2 in positive powers of q+, while if γ < 1, we
expand in negative powers of q+, and all other factors (1±qa+qb−) are expanded
in positive powers of qa+qb−.

We now examine the wall at γ = 1. The class βγ , defined in Sec. 8.7,
is then βγ = (1, 0). Geometrically, the distinction between being a
(Tζ,(γ,η),Fζ,(γ,η))-pair for γ = 1 + ε and γ = 1 − ε reduces to the rela-
tion to sheaves O+

C (k): For γ = 1 + ε, we disallow morphisms to O+
C (k) for

all k, while for γ = 1− ε we disallow morphisms fromO+
C (k) for all k. When

γ = 1, we disallow morphisms from O+
C (η + k) with k ≥ −1 and disallow

morphisms to O+
C (η + k) with k < −1.

To apply the wall-crossing formula, let us first record the following invari-
ants.

Lemma A.5 1. J ζ

(1,0,n+,n−) =
{

−1 if n− = 0

0 if n− �= 0
.

2. J ζ

(2,0,n+,n−) = 0 if n− �= 0.

3. PT(0,d−,n+,n−) = 0 = DT ζ,(γ,η)

(0,d−,n+,n−) for d− > 0, all n+, n− and all γ > 0

Proof 1. A ζ -semistable 1-dimensional sheaf of class (1, 0, n+, n−) must
be pure 1-dimensional, hence must be a line bundle on C . This implies
it is of the form O+

C (k), which has class (1, 0, k + 1, 0). As the moduli
stack M ss

ζ,(1,0,k+1,0) = pt /C∗ with Behrend function equal to −1, we get

J ζ

(1,0,k+1,0) = −1.
2. Similar to point 1.
3. The curve underlying a non-trivial PT pair must contain C , hence must

have d+ ≥ 1. There are no γ -walls for objects of curve class (0, d−) with
d− > d+, so the invariants remain unchanged as we vary (γ, η).

��
We know that DT ζ,(1,∞)(X )β = DT ζ,(1+ε,η)(X )β , and apply the

wall-crossing formula to compare DT ζ,(1,η0)(X )β and DT ζ,(1,∞)
β as in

Lemma 8.27. For a given η0 ∈ R, we have

DT ζ,(1,∞)
≤β t−[OX ] =

∏

η∈ 1
2 Z∩[η0,∞)

exp({J ζ

(1,0)(η),−})DT ζ,(γ,η0)
≤β t−[OX ], (98)

Here J ζ

(1,0)(η) is defined in the proof of Lemma 8.27 as the generating function
of the J -invariants of curve class proportional to (1, 0), and ν-slope η. In our
case, fromLemmaA.5we see thatmost of the terms of this generating function
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vanish, and we get

J ζ

(1,0)(η) = J ζ

(1,0,η−1,0)z+qη−1
+ + J ζ

(2,0,2η−2,0)z
2+q2η−2

+ .

Applying the results of Lemma A.5, we can expand (98) to find
∑

n+,n−∈Z

DT ζ,(1,∞)

(2,2,n+,n−)z
2+z2−qn++ qn−− t−[O X ]

=
∑

n+,n−∈Z

DT ζ,(1,η0)
(2,2,n+,n−)z

2+z2−qn++ qn−− t−[O X ]

+
∑

η∈Z∩[η0,∞)

{J ζ

(1,0,η−1,0)z+qη−1
+ , DT ζ,(1,η0)

(1,2,n+,n−)z
1+z2−qn++ q−n−t−[O X ]}

=
∑

n+,n−∈Z

DT ζ,(1,η0)
(2,2,n+,n−)z

2+z2−qn++ qn−− t−[O X ]

+
∑

η∈Z∩[η0,∞)
n+,n−∈Z

(−1)η−1(2n+ − 2n− + 3(η − 1))

× DT ζ,(1,η0)
(1,2,n+,n−)z

2+z2−qn++η−1
+ qn−− t−[O X ] (99)

Fix now an integer m−. The boundedness result of Proposition 8.16 gives
that there are only finitely many n+ such that DT ζ,(1,η0)

(1,2,n+,m−) �= 0. More-
over, from Lemma 8.23, we can find some number N such that n+ ≤ N if
DT ζ,(1,η0)

(1,2,n+,m−) �= 0 and η0 ≤ 0. It follows then from (99) that

DT ζ,(1,∞)

(2,2,n+,m−) − DT ζ,(1,η0)
(2,2,n+,m−)

is given by a linear quasi-polynomial in n+ for n+ � 0, and moreover that
as η0 → −∞, the range of n+ for which the difference is described by this
quasi-polynomial grows. In the limit we get that

DT ζ,(1,∞)

(2,2,n+,m−) − DT ζ,(1,−∞)

(2,2,n+,m−)

is quasi-polynomial for all n+. Lemma 2.25 then gives that

∑

n+,n−∈Z

DT ζ,(1,−∞)

(2,2,n+,n−)q
n++ qn−−

is the re-expansion of

∑

n+,n−∈Z

DT ζ,(1,∞)

(2,2,n+,n−)q
n++ qn−−

in Z[N0(X )]L1−ε .
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For the wall at γ = 1
3 , the interesting class is βγ = (2, 1), but as

DT ζ,(γ,η)

(0,1,n+,n−) = 0 for all n+, n−, γ, η, the invariants remain unchanged as
we cross this wall. We thus get

BS(X/Y )β = DT ζ,(1−ε,η)(X )β.

B Open hearts give exact linear algebraic stacks

All our schemes are defined overC. LetY be a smooth, projective variety (these
hypotheses are likely far stronger than necessary). Recall that MumY is the
stack such that objects ofMumY (S) correspond to perfect objectsE ∈ Db(S×
Y ) which are universally gluable, i.e. for any scheme morphism f : S′ → S,
we have Hom( f ∗E , f ∗E [i]) = 0 if i ≤ −1. Here, we write f ∗ for the more
correct ( f × 1Y )∗.

We want to show that a reasonable substack A ↪→ MumY satisfies the
axioms used in [6] to analyse its Hall algebra. Our definition of reasonable
is that A is open as a substack, and as a category is closed under extensions,
sums and summands, with all negative degree Ext-groups vanishing. More
precisely:

Assumption B.1 Assume that A ↪→ MumY is an open substack such that
for any scheme S, the full subcategory of Db(S × Y ) whose objects are A(S)

is closed under extensions, sums and summands, and if E1,E2 ∈ A(S), then
Hom(E1,E2[i]) = 0 for i ≤ −1.

Remark B.2 There is some redundancy in the assumptions above. In fact, it is
enough to require that A(S) be closed under extensions and summands. Being
closed under sums then follows from being closed under extensions, by the
trivial extension E1 → E1 ⊕ E2 → E2. Moreover, A(S) being closed under
sums implies that the sum of any two objects of A(S) is universally gluable,
which implies the condition of vanishing of Ext-groups of negative degree.

Remark B.3 Assumption B.1 implies that direct sum defines a morphism
⊕: A × A → A. There is no such morphism on the bigger stack MumY ,
because the sum of two universally gluable complexes is not in general uni-
versally gluable.

We wish to apply the results of [6] to the Hall algebra of A. In order to do
so, we must show that we can give A the structure of an “exact linear algebraic
stack”. For precise definitions of this and related termswe refer to [6]. Roughly
speaking, the data of a linear algebraic stack consists of the following:

– a stack A, which is algebraic locally of finite type,
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– a stack

Hom(−, −) → A × A,

along with certain composition maps defining an OS-linear category with
the same objects as A(S), and whose underlying groupoid is A(S). We
require that locally on A × A the functor Hom(−, −) is coherent repre-
sentable, i.e., equal to the kernel of a homomorphism of finite rank locally
free sheaves.

To say that A is moreover exact linear algebraic [6, Sec. 3] means that we
have a substack A(2) of the stack of all 3-term sequences in A, with morphisms
a1, a2, a3 : A(2) → A taking a sequence to its first, second and third term, such
that

– for every scheme S, the objects of A(2)(S) define the structure of Quillen
exact category on A(S),

– the stack A(2) is linear algebraic,
– the morphism a2 : A(2) → A is representable as a morphism of algebroids
in the sense of [6, Def. 1.49],

– the morphism a1 × a3 : A(2) → A × A is of finite type, and
– for every scheme S, the category A(S) is Karoubian.

The main result of this appendix is the following.

Proposition B.4 If A satisfies Assumption B.1, then the data of Hom-spaces
and exact triangles in the full subcategory A(S) ⊂ Db(S × Y ) give A the
structure of an exact linear algebraic stack.

The proof is the combination of Lemmas B.10, B.11, B.14, B.15, B.16 and
Corollary B.13. These results generalise those for the category A(C) =
Coh(Y ), in which case the verification of the hard parts can be found in [9].

B.1 Preliminaries on Hom-spaces

If f : S → MumY is a morphism from a scheme S, we will write f ∗U for
the corresponding object in Db(S × Y ). To avoid getting into the definition
of derived categories on general algebraic stacks, we think of this as strictly
formal notation, and avoid positing the existence of a universal object U in
some derived category of MumY × Y .

Let S be a scheme, and let E1,E2 be perfect objects in Db(S × Y ). Let
π : S × Y → S be the projection, and define the complex

CHom(E1,E2) := Rπ∗ RH om(E1,E2),

which lies in Db(S).
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Lemma B.5 Let S be a scheme, and let E1,E2 ∈ Db(S × Y ) be perfect. The
objectCHom(E1,E2) is perfect. For any scheme morphism f : S′ → S, we
have

CHom( f ∗E1, f ∗E2) ∼= f ∗CHom(E1,E2)

and

Hom( f ∗E1, f ∗E2[i]) = Hi (S′, f ∗CHom(E1,E2))

Proof Since E1 and E2 are perfect, so is RH om(E1,E2). The claims now
follow from [42, Lemma 0DJT]. ��
Lemma B.6 Let S be a scheme, and let E ∈ Db(S) be a perfect complex. The
following conditions are equivalent:

1. Locally on S, we can find a finite locally free complex K • representing E
with K i = 0 if i ≤ −1.

2. For every scheme morphism f : S′ → S, we have Hi ( f ∗E) = 0 if i ≤ −1.
3. For every affine scheme morphism f : S′ → S, we have Hi ( f ∗E) = 0 if

i ≤ −1.
4. For every field k and every morphism f : Spec k → S, we have

Hi ( f ∗E) = 0 if i ≤ −1.
5. For every x ∈ S with quotient field k(x) and inclusion ix : Spec k(x) → S,

we have Hi (i∗x E) = 0 if i ≤ −1. If S is affine, then these conditions are
equivalent to

(5*) For every closed point x ∈ S with quotient field k(x) and corresponding
inclusion ix : Spec k(x) → S, we have Hi (i∗x E) = 0 if i ≤ −1.

Proof The implications (i) ⇒ (i + 1) are all obvious, so we need to show
(5) ⇒ (1). This follows from [42, Lem. 0BCD], which shows that if x ∈ S
satisfies (5), then E satisfies (1) in an open neighbourhood of x .

Finally, if S is affine, then the closure of any point x contains a closed point
y. If condition (5) holds for y, then by [42, Lem. 0BDI] it also holds for x ,
and so (5*) implies (5). This completes the proof. ��
If any (hence all) of the conditions above are satisfied, we say that E has
tor-amplitude in [0, ∞).

Lemma B.7 Let S be a scheme, and let E ∈ Db(S × Y ) be perfect. The
object E is universally gluable if and only ifCHom(E ,E ) has tor-amplitude
in [0, ∞). There exists an open subset U ⊂ S such that for any scheme
morphism f : S′ → S, the object f ∗E is universally gluable if and only if f
factors through U.
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Proof The object E being universally gluable obviously implies condition (3).
Conversely, condition (2) implies that E is universally gluable.

Let V ⊂ S be an open affine. ThenCHom(E ,E ) can be represented by a
finite complex of finite rank projectives on V . The set Vj of points x ∈ V for
which H j (i∗xCHom(E ,E )) = 0 is open for any i , by [42, Lem. 0BDI]. The
set of points x ∈ V for which (5) holds, is the intersection of finitely many Vi ,
hence is itself open. Thus the set of points in S for which (5) holds is an open
subscheme U ⊂ S, and f ∗E is universally gluable if and only if f factors
through U . ��

B.2 Checking the assumption on closed points

Before giving the proof of Proposition B.4, let us show that Assumption B.1
can be checked on C-points.

Lemma B.8 Let A ↪→ MumY be an open substack such that the full subcat-
egory of Db(Y ) whose objects are A(C) is closed under sums, summands and
extension, and moreover Hom(E1, E2[i]) = 0 if E1, E2 ∈ A(C) and i ≤ −1.

Then A satisfies Assumption B.1.

Proof Let S be a scheme, and let E1,E2 ∈ Db(S × Y ) be perfect complexes.
By Remark B.2, it suffices to show the following two conditions:

1. if E1 ⊕ E2 ∈ A(S), then E1 ∈ A(S) and E2 ∈ A(S), and
2. if E1 → E → E2 is an exact triangle and E1,E2 ∈ A(S), then E ∈ A(S).

First, assume that S is a finite type C-scheme. Since the property of being
universally gluable is open and A is open inMumY , an object E ∈ Db(S ×Y )

lies in A(S) if and only if i∗xE ∈ A(C) for every C-point x ∈ S. We thus obtain
property (1) by observing that for every C-point x ∈ S, we have

E1 ⊕ E2 ∈ A(S) ⇒ i∗xE1 ⊕ i∗xE2 ∈ A(C) ⇒ i∗xE1, i∗xE2 ∈ A(C).

As for property (2), observe that i∗xE ∈ A(C) for all x ∈ S by extension-closure
of A(C). It then follows that E ∈ A(S).

Second, assume that S is any affine scheme.Toprove (1)we argue as follows.
Since E1 ⊕ E2 is universally gluable, so are E1 and E2. So let f1, f2 : S →
MumY be such that Ei

∼= f ∗
i U . By [42, Prop. 0CMY] and the fact thatMumY

is locally of finite type, there exists a finite type affine S′ such that the fi factor
as

S
g→ S′ f ′

i→ MumY .

Let U ⊂ S′ be the open subset on which ( f ′
1)

∗U ⊕ ( f ′
2)

∗U lies in A(U ),
which exists by openness of universal gluability and A. Then g factors through
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U . By the finite type case above, we then have ( f ′
1)

∗U |U , ( f ′
2)

∗U |U ∈ A(U ),
and so f ∗

1 U , f ∗
2 U ∈ A(S).

To prove (2), note that the exact triangle corresponds to a class in

Hom(E2,E1[1]) = H1(S,CHom(E1,E2)).

SinceCHom(E2,E1) is perfect, it is representable by a finite complex of finitely
generated projectives K •, and the extension class defining E comes from an
element of K 1. We can find a finitely generated subring R′ ⊂ R = Γ (S,OS)

such that E1, E2 and this Ext-class are all defined over R′, which means that
the triangle is pulled back from S′ = Spec R′. Applying property (2) from the
finite type case above then proves the claim.

Finally, the openness of universal gluability and of A shows that a complex
E ∈ Db(S × Y ) lies in A(S) if and only i∗xE ∈ A(Spec k(x)) for every x ∈ S.
We may then argue as in the finite type case, replacing C by the fields k(x),
where we have just shown that (1) and (2) hold. ��
Corollary B.9 If A is an open substack such that the objects of A(C) define the
heart of a t-structure on Db(Y ), thenA satisfies the assumptions of Lemma B.8.

B.3 Proof of main proposition

We now assume that A satisfies Assumption B.1. Let S be a scheme, and let
f1, f2 : S → A be morphisms. Let

CHom( f1, f2) =CHom( f ∗
1 U , f ∗

2 U ).

The algebraic stack A admits an obvious refinement to a linear algebraic
stack, in the sense of [6, Def. 1.9]. Explicitly, given schemes T1, T2 with
morphisms g : T1 → T2 and f1, f2 : Ti → A corresponding to objects E1,E2,
we set

Homg( f1, f2) = Hom(E1, g∗(E2)),

where this Hom-space has the obvious O-linear structure.

Lemma B.10 The stack A is a linear algebraic stack.

Proof The stack A is algebraic in the usual sense (as a category fibred in
groupoids) because it is an open substack of an algebraic stack.

Given two scheme morphisms f1, f2 : S → A, we get a presheaf
Hom( f1, f2) on (Sch/S). This presheaf takes g : S′ → S to H0(S′, g∗
CHom( f1, f2)). SinceCHom( f1, f2) has tor-amplitude in [0, ∞), it is locally

on S of the form 0 → K 0 d→ K 1 → . . . with the K i locally free of finite
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rank. The presheaf Hom( f1, f2) is thus locally on S given by ker d, and hence
is locally coherent representable. See [42, Lem. 08JX], which gives a similar
argument in the case A = Coh(Y ). ��

B.4 Exact algebraic stack

The linear stack A is naturally equipped with a structure of an exact algebraic
stack, in the sense of [6]. We define SeqA to be the stack of all sequences
E ′ → E → E ′′ inA(S), andwe letA(2) denote the substack of those sequences
which are exact in D(S × Y ). Both of these stacks have natural structures of
linear stacks, by letting Hom-spaces be the component-wise maps commuting
with the morphisms in the sequence.

Since A is linear algebraic, there exists an algebraic stack HomA(−, −) →
A × A, and this morphism is representable in affine schemes.

Lemma B.11 The stacks SeqA and A(2) are linear algebraic stacks.

Proof Asordinary stacks, SeqA is equivalent toHomA(−, −)×AHomA(−, −),
and hence is algebraic. Let S be a scheme and let f1, f2 : S → SeqA be

morphisms. For j = 1, 2, let E •
j = (E 1

j

i j→ E 2
j

p j→ E 3
j ) in Db(S × Y )

denote the corresponding sequence. On a morphism g : S′ → S, the presheaf
Hom( f1, f2) evaluates to

Hom(g∗E •
1 , g∗E •

2 ) = ker

( 3⊕

k=1

Hom( f ∗E k
1 , f ∗E k

2 )
q→ Hom( f ∗E 1

1 , f ∗E 2
2 )

⊕ Hom( f ∗E 2
1 , f ∗E 3

2 )

)
,

where

q =
(

i2 ◦ (−) (−) ◦ −i1 0
0 p2 ◦ (−) (−) ◦ −p1

)

is the map representing the commutativity constraints. Let K q be the corre-
sponding map of complexes on S, so

K q : ker

⎛

⎝
3⊕

j=1

CHom(E
j
1 ,E

j
2 )

Cq→CHom(E 1
1 ,E 2

2 ) ⊕CHom(E 2
1 ,E 3

2 )

⎞

⎠ .
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Since eachCHom(E k
1 ,E k′

2 ) has tor-amplitude in [0, ∞), so does C(K q)[−1].
Hence

Hom(g∗E •
1 , g∗E •

2 ) = H0(S′, g∗C(K q)[−1]),

which as in Lemma B.10 shows that the Hom-functor is locally coherent
representable.

To show that A(2) is linear algebraic, it is enough to show that A(2) is a
locally closed substack of SeqA. Let S be a scheme and let f : S → SeqA
be a morphism corresponding to a sequence E1

i→ E2
p→ E3 of objects in

Db(S × Y ). The morphism f factors through A(2) if and only if this sequence
is an exact triangle. This firstly requires p ◦ i = 0, which defines a closed
subscheme of S, since Hom(E1,E3) is affine over S.

Replacing S by this subscheme, wemay assume that p◦i = 0. Let h : E2 →
C(i) be the canonical map to the cone C(i) of i . Since Hom(E1[1],E3) = 0,
there is a unique map j : C(i) → E3 such that p = j ◦ h. The given sequence
is exact if and only if j is an isomorphism. Let Z be the support of C( j),
which is a closed subset of S × Y . If π : S × Y → S is the projection, then
S\π(Z) is open, and equals S×SeqA A

(2). This shows that A(2) is locally closed
in SeqA. ��
Lemma B.12 If D is a triangulated category and C is a subcategory closed
under extensions such that Hom(E, F[−1]) = 0 for E, F ∈ C , then the class
of exact triangles with objects in C give C the structure of a Quillen exact
category.

Proof We refer to [17] for the axioms of a Quillen exact category.
Using the long exact sequence of shifted Hom-spaces associated to an exact

triangle and the vanishing of negative extensions, we find that the set of exact
triangles define a set of cokernel-kernel pairs on C . Axioms [E0] and [E0op]
follow.

For [E1], suppose f1 and f2 are composable admissible monics, which
means thatC( f1) andC( f2) are objects ofC . By the octahedral axiom,C( f2◦
f1) is an extension of C( f2) by C( f1), and sinceC is closed under extensions,
it follows that C( f2 ◦ f1) ∈ C , hence f2 ◦ f1 is an admissible monic. Axiom
[E1op] is similar.

For [E2op], let A → B be an admissible epic in C , and let B ′ → B
be an arbitrary morphism of C . Define A′ as C(A ⊕ B ′ → B)[−1], and
let f : A → B ′ be the natural map. Applying the octahedral axiom to the
sequence of morphisms A′ → B ′ → B ′ ⊕ A we find that C( f ) equals the
cone of the map A → B, and this shows both that A′ ∈ C and that A′ → B ′ is
an admissible epic. Finally, for every E ∈ C , we have a long exact sequence
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beginning with

0 → Hom(E, A′) → Hom(E, A ⊕ B ′) → Hom(E, B),

which shows that A′ is the pullback of A → B along B ′ → B. ��
Corollary B.13 For any scheme S, the objects of the category A(2)(S) define
the structure of a Quillen exact category on the category A(S).

Lemma B.14 For any scheme S, the category A(S) is Karoubian.

Proof By Assumption B.1, the category has finite direct sums. It remains to
show that it is idempotent complete. By [16, Sec. 3], the unbounded derived
category DQCoh(S×Y ) is idempotent complete, so any idempotent p : E → E
with E ∈ A(S) induces a splitting E = E1 ⊕ E2 in DQCoh(S × Y ), and then
both E1 and E2 must be perfect. By our assumptions on A, this implies that
E1,E2 ∈ A(S). ��

Let ai : A(2) → A denote themorphism taking the sequence E1 → E2 → E3
to Ei .

Lemma B.15 The morphism a2 : A(2) → A is representable in the sense of
[6, Def. 1.49]

Proof Any endomorphism of an exact sequence E1 → E2 → E3 is determined
by the induced endomorphism of E2, and the claim follows. ��
Lemma B.16 The morphism a1 × a3 : A(2) → A × A is of finite type.

Proof Let S be an affine scheme, and let f1, f2 : S → A be morphisms. We
must show that the fibre product stackX := S ×A2 A

(2) is of finite type over
S. The stack X parametrises exact sequences f ∗

1 U → E → f ∗
2 U , and the

automorphisms are those that are the identity on f ∗
1 U and f ∗

2 U . The complex
CHom( f2, f1) is represented by a finite complex of finite rank projectives 0 →
K 0 → K 1 d1→ K 2 → . . .. Let Y → S be the affine scheme defined by ker d1,

i.e. for any morphism g : S′ → S, we have Y (S′) = H0(S′, ker(g∗K 1 g∗d1→
g∗K 2)). There is a homomorphism

H0(S′, ker(g∗K 1 g∗d1→ g∗K 2)) → H1(S′, g∗K •)
= Ext1(g∗ f ∗

2 U , g∗ f ∗
1 U ), (100)
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which defines a morphism Y → X . If S′ is affine, then (100) is an isomor-
phism, which implies that the functor Y (S) → X (S′) is essentially surjective.
Thus the morphism Y → X is surjective, and since Y is of finite type over S,
so isX . ��
Remark B.17 One can show that the stackX in the proof above is equivalent
to the quotient stack [ker d1/K 0], where K 0 acts additively on ker d1 via d0.

C Hall algebra results

In this section we prove some technical results concerning the Hall algebra
and the integration map, Theorems 5.4, 5.5 and 6.8.

Our proof of Theorem 6.8 relies on Behrend–Ronagh’s “no poles” result
[6, Thm. 4.3]. In contrast to Joyce’s result from [24], used in [8, Thm. 6.3],
Behrend–Ronagh’s result only shows that the logarithm of certain Hall algebra
elements can be written in terms of Deligne–Mumford stacks, rather than
varieties. While Theorems 5.4 and 5.5 are directly analogous to theorems in
[9], we must work with DM stacks throughout and so the proofs require a little
extra care.

C.1 The DM-regular Hall algebra

Let C ⊂ MumX be an open substack satisfying the hypotheses of
“Appendix B”.

Recall fromSect. 5.3 that the subalgebra ofDM-regular elements HDM-reg(C)

⊂ H(C) is themodule over KL(Var /C) generated by those elements [Z → C]
of H(C) for which Z is a Deligne–Mumford stack.

Definition C.1 We say an algebraic stack is quasi-DM if it has finite stabiliser
group at each point.

We say an algebraic stack is unipotent if the stabiliser group at each geo-
metric point is affine and the connected component of the identity is unipotent.

We have implications

X DM ⇒ X quasi-DM ⇒ X unipotent.

Lemma C.2 If X is a unipotent stack and X → C a morphism, then [X → C]
lies in HDM-reg(C). Any element of HDM-reg(C) can be written as a KL(Var /C)-
linear combination of elements of the form

[Z → C],
where Z is DM, has finite abelian stabiliser groups and a coarse moduli space.
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Proof Both claims follow if we can show that for a unipotent stack X → C,
the element [X → C] can be written as a KL(Var /C)-linear combination of
elements [Z → C] with Z DM, having finite abelian stabilisers and a coarse
moduli space. By [9, Prop. 3.5], there exists a variety Y with an action of GLn
and a geometric bijection Y/GLn → X . Let T be the maximal torus of GLn .
We then have a Zariski GLn/T -fibration Y/T → Y/GLn , so that

[Y/GLn → C] = [GLn/T ]−1[Y/T → C].

The stabilisers of Y/T are all contained in T , and since X is unipotent, they
must have unipotent connected component. Since T contains no nontrivial
unipotent group, the stabilisers of Y/T must all be finite, hence they are finite
abelian groups. Stratifying the stack Y/T , we can ensure that it is DM and has
a coarse moduli space, and this completes the proof. ��
Proposition C.3 (Prop. 5.4) The submodule HDM-reg(C) ⊂ H(C) is closed
under the Hall algebra product.

The quotient HDM-sc(C) = HDM-reg(C)/(L − 1)HDM-reg(C) is commutative
and has a Poisson bracket given by

{ f, g} = f ∗ g − g ∗ f

L − 1
.

Proof To show that HDM-reg(C) is closed under the Hall algebra product, let
f = [X → C] and g = [Y → C] where X and Y are DM stacks. Let U → X
and V → Y be étale covers withU and V schemes. We then get an étale cover
of the Hall products U ∗ V → X ∗ Y . The stabiliser groups of U ∗ V are
vector spaces by [9, Prop. 6.2], hence the stabiliser groups of X ∗ Y contain
vector spaces as finite index subgroups. Hence X ∗ Y is unipotent, and so
f ∗ g ∈ HDM-reg(C), by Lemma C.2.
For the second part, we follow the proof of [9, Thm. 5.1]withminor changes.

The fibres of X ∗Y → X ×Y are stacks of the form Ext1(E, F)/Hom(E, F).
There is a C∗-scaling action on X ∗Y which on fibres is the standard scaling of
Ext1(E, F), and such that the morphism X ∗ Y → C descends to the quotient
X ∗Y/C∗. We may split X ∗Y into the zero section X ×Y and its complement
UX,Y , and so we get

X ∗ Y − Y ∗ X = X × Y + UX,Y − (Y × X + UY,X )

= (L − 1)(UX,Y /C∗ − UY,X/C∗).

It is easy to check that UX,Y /C∗ and UY,X/C∗ are unipotent stacks, and so the
Poisson bracket is well defined. ��

123



S. V. Beentjes et al.

C.2 Euler characteristics of unipotent stacks

By [6, Lemma 4.2] and Lemma C.2, if the stack X is unipotent, the class [X ]
lies in the image of the map

KL(Var /C) → K (St /C).

Wedefine the Euler characteristic e(X) of a unipotent stack by taking the Euler
characteristic of its class in KL(Var /C). The Euler characteristic so defined
satisfies the following properties

– For a stratification X = X1 � X2, we have e(X) = e(X1) + e(X2).
– For a Zariski fibration Y → X with fibres Z , where X, Y, Z are unipotent
stacks, we have e(Y ) = e(X)e(Z).

This multiplicativity property for Zariski fibrations does not extend to étale
fibrations. For instance, given a finite group G, we have an étale fibration
pt → BG with fibre G, but e(BG) = e(pt) = 1 and so e(pt) �= e(G)e(BG).

Lemma C.4 Let f : X → Y be a morphism where X is a unipotent stack and
Y is a scheme. Then there exists an n ≥ 1 and a morphism g : X ′ → Y , with
X ′ a variety, such that we have

e(X ′) = n!e(X),

and for every y ∈ Y , we have

e(g−1(y)) = n!e( f −1(y)).

Proof By [9, Prop. 3.5], there exists a variety Y with an action of GLn and a
geometric bijection Y/GLn → X . Let T ⊂ GLn be the diagonal subtorus,
and let X̃ = Y/T . Since X is unipotent, the stabiliser groups of the T -action
are finite. We can stratify Y into locally closed subschemes Yi such that T acts
with constant finite stabiliser Gi on each Yi . We get an algebraic space

X ′ =
⊔

i

Zi/(Ti/Gi ),

which has a natural morphism g : X ′ → Y with the properties we want, using
the fact that e(GLn/T ) = n!. Stratifying X ′ we can assume X ′ is a variety
rather than an algebraic space. ��
Lemma C.5 Let f : X → Y be a morphism where X is a unipotent stack and
Y is a scheme. Then the function e f on Y defined by

e f (y) = e( f −1(y))
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is constructible, and

e(X) =
∑

k∈Z

ke(e−1
f (k)).

Proof Replacing X by X ′ as in LemmaC.4, wemay assume that X is a variety,
in which case this is well known. ��
Lemma C.6 Let f1 : X1 → Y and f2 : X2 → Y be morphisms where the Xi
are unipotent and Y is quasi-DM. Assume that for every closed point y ∈ |Y |
with isotropy group G y, we have

e(X1 ×Y BG y) = e(X2 ×Y BG y).

Then

e(X1) = e(X2).

Proof Since Y is quasi-DM, the inertia stack IY → Y is quasi-finite. By
stratifying Y , we may assume that the inertia stack IY → Y is finite. By the
Keel–Mori theorem [27], there is then a coarse moduli algebraic space Z of
Y . Since Y → Z gives a bijection on closed points, the assumptions of the
lemma hold also for the morphisms X1 → Y → Z and X2 → Y → Z .

Hence, replacing Y by Z , we may assume that Y is an algebraic space,
and further after stratification that Y is a variety. The result then follows from
Lemma C.5. ��

C.3 The integration map

Lemma C.7 Let A be a finite-dimensional algebra, and let G ⊂ A× be a
finite abelian subgroup. Then there is a torus T ⊂ A× containing G.

Proof The inclusionG ↪→ A× induces a ring homomorphismψ : C[G] → A.
The group C[G]× is a torus, and so we can take T = ψ(C[G]×). ��
Note that this lemma fails if we try to replace A× with a general algebraic

group. A counterexample is provided by the group generated by

(
1 0
0 −1

)
and

(
0 1
1 0

)
in PGL(2, C).

Lemma C.8 Let G be a finite abelian group, and let φ : BG → C be a
morphism. Then

[BG → C] = [pt → BG → C] ∈ H(C).
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Proof Let x ∈ |C| be the image of φ, and let H be the isotropy group of x .
Then the morphism φ is described by a group homomorphism G → H . Since
H = A× for some algebra A, the previous lemma implies that we can factor
G → H as G

α→ T → H for some torus T . Enlarging T , we can assume that
α is injective. Then Bα : BG → BT is a Zariski T/G-fibration, and pt → BT
is a Zariski T -fibration. Since T ∼= T/G, the equality

[pt → BT → C] = [BG → BT → C]

in H(C) follows. ��
Recall from Sect. 5.3 the integration maps Iσ : HDM-sc(C) → Q[N (X )].

Theorem C.9 (Thm. 5.5)The integration map Iσ is a map of Poisson algebras.

Proof For the case of the algebra of regular elements Hreg(C) and the quotient
Hreg(C)/(L − 1)Hreg(C), Bridgeland proves this in the case of σ = 1, and
conditionally on a certain assumption on the Behrend function in the case of
σ = −1 [9, Thm. 5.2]. As shown by Toda in [48, Thm. 2.9], this assumption
holds true in our setting. In particular the integration map is Poisson when
applied to elements of the form [X → C] with X a variety.

In our slightly different setting, working with DM-regular elements, the
proof that the integration map exists, is unique and is an algebra homomor-
phism is the same as for [9, Thm 5.2].

We now show that Iσ is Poisson. We stick to the case of σ = −1, the case
of σ = 1 being similar and simpler. By Lemma C.2, it’s enough to consider
elements f = [X → C] and g = [Y → C], where X and Y are DM stacks
with finite abelian stabilisers. Stratfying X and Y furher, we may assume that
f and g are homogeneous of degrees α, β ∈ N (X ), and that the Behrend
function ν takes constant values a and b on X and Y , respectively.

As shown in the proof of Proposition C.3, the element { f, g} is represented
by

[UX,Y /C∗ → C] − [UY,X/C∗ → C]

where both stacks UX,Y /C∗ and UY,X/C∗ are unipotent and equipped with
morphisms to X × Y . We must show that

eB(UX,Y /C∗ − UY,X/C∗) = (−1)χ(α,β)eB(X)eB(Y )

= (−1)χ(α,β)abe(X × Y ).

By Lemma C.6, it is enough to prove that for every point (x, y) ∈ |X × Y |,
we have that
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eB((UX,Y /C∗) ×X×Y BG(x,y) − (UY,X/C∗) ×X×Y BG(x,y))

= (−1)χ(α,β)ab.

This last equality holds if and only if the integrationmap preserves the Poisson
bracket when applied to [BGx → C] and [BG y → C]. By Lemma C.8, these
elements are equivalent to [pt → BGx → C] and [pt → BG y → C], for
which we know that the Poisson bracket is preserved by the integration map.

��

C.4 No poles

We prove Theorem 6.8 via results of [6]. That paper works with a slightly dif-
ferent notion ofHall algebra, which they denote by K (C), andwhichwe denote
by K B R(C). There is a natural homomorphism

∫ : K B R(C) → K (St /C) and
a natural Hall algebra morphism

∫
C : K B R(C) → H(C).

Lemma C.10 If f ∈ K B R(C) is virtually indecomposable [6, Def. 3.10], then
(L − 1)

∫
C f ∈ HDM-reg(C).

Proof By [6, Thm. 4.3], it is shown that for any element f ∈ K B R(C), we
have

∫
I ◦,ss( f ) ∈ KL(Var /C),

where I ◦,ss : K B R(C) → K B R(C) is the connected semisimple inertia operator
[6, Sec. 2.2]. However, all the constructions of the proof work relative to C,
proving the stronger statement that

∫

C
I ◦,ss( f ) ∈ HDM-reg(C).

Now assume that f is virtually indecomposable. It can then be written as a
sum of eigenvectors fi of I ◦,ss , where the eigenvalue of fi is Li − 1. Thus we
have

(L − 1)
∫

C
f =

k∑

i=1

(L − 1)
∫

C
fi =

k∑

i=1

1

1 + · · · + Li−1 I ◦,ss fi ,

which lies in HDM-reg(C). ��
Theorem C.11 (Thm. 6.8) If W is log-able, then

(L − 1) log([W]) ∈ Hgr,DM-reg(Coh
�(X )).
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Proof The category W defines an element [W] ∈ K B R(Coh�(X )). Since W is
log-able, it is “small enough” so that [6, Thm. 4] applies to give that log([W]) ∈
K B R(Coh�(X )) is virtually indecomposable. By Lemma C.10, we therefore
have that

(L − 1) log([W]) = (L − 1)
∫

Coh�(X )

log([W])

is DM-regular. ��
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