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Abstract
Administrative data may suffer from delays or mistakes
in reporting. To adjust for the resulting measurement
errors, it is often necessary to combine data from related
sources, such as sample survey, administrative or ‘big’
data. However, the additional measure variable usually
has a different definition and errors of its own, and the
available joint data set may not have a completely known
sampling distribution. We develop a modelling approach
which capitalizes on one’s knowledge and experience
with the data source where they exist, and apply it
to register- and survey-based Employed status. Com-
parisons are made to adjustments by hidden Markov
models. Our approach is applicable to similar situations
involving big data sources.
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1 INTRODUCTION

Making greater use of data originated from administrative sources for statistical purposes has
become an increasingly important topic for many National Statistical Offices (NSO). Adminis-
trative data are not perfect, and combination of data from multiple sources is often needed to
overcome various known deficiencies, such as when capture–recapture methods are applied to
multiple registers to adjust for their combined under-coverage, or when latent class analysis is
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applied to adjust for the discrepancies among similarly defined variables from different sources.
See Zhang (2012), di Zio et al. (2017) and Hand (2018) for broad discussions of the relevant
statistical topics, methods and challenges.

In our motivating application later, we have a register-based Employed status, denoted by X ,
which is known for everyone in the population, based on an administrative source that delivers
to Statistics Norway on a monthly basis. Due to delays and misreporting, X may be erroneous
for the true register status, denoted by Y , for a considerable period after the reference month,
although the two will eventually reach agreement over time. A concurrent Employed status is
also available from the continuous Labour Force Survey (LFS), denoted by Z, which follows a
different definition of employment, so that Z and Y can differ regardless if Z is a true measure of
its own definition. The setting is generically summarized in Table 1, where R = 1 if a unit is in the
joint sample and 0 otherwise.

We shall develop and apply a modelling approach for adjusting the misclassification of X by
making use of the second classifier Z that is also subject to misclassification. We assume that,
based on the knowledge and experience about the source of X , it is possible to define the part
of the population where one is confident that X is either correct or nearly so, denoted by B = 1,
and the errors of X are only much more likely in the rest population, denoted by B = 2. We call
B a discriminant. As Table 2 shows, the discriminant creates a validation sample of (Z, Y ) in the
subpopulation of B = 1 so that Pr(Z|Y , B = 1) can be estimated. Our model allows one to apply
the estimated Pr(Z|Y , B = 1) to the subpopulation of B = 2, in order to estimate Pr(Y |X , B = 2)
and then Pr(Y |B = 2).

The discriminant provides a previously unexplored possibility to make use of one’s knowledge
and experience of the source. This is often possible with administrative data. For the aforemen-
tioned register Employed status X , many indicators in the administrative sources can be used for
the construction of the discriminant, such as the type of job or position, the length of employ-
ment history, the level of income and so on. Register-based highest level of education is another
example, where for example, native borns with a completed education history in the relevant
registers can be reliably classified. As a third example, registered address of a person (or family)
may be mistaken due to lack of updating or misreporting. Provided it is possible to obtain various
‘signs of life’ addresses via licence registration, social or health services, utility bills, etc. one may
be able to distinguish which registered addresses are most likely to be correct from the rest. As

T A B L E 1 The presence (✓) of two fallible classifiers

Classifier Joint sample (R = 1) Rest of population (R = 0)

X ✓ ✓

Z ✓ —

T A B L E 2 The presence (✓) of two fallible classifiers given discriminant B

Joint sample (R = 1) Rest of population (R = 0)

X = Y Pr(X ≠ Y)>0 X = Y Pr(X ≠ Y)>0

Classifier B = 1 B = 2 B = 1 B = 2

X ✓ ✓ ✓ ✓

Z ✓ ✓ — —



SCHENKEL and ZHANG 3

a final example here, dwelling addresses registered for primary residence or recreation uses may
be mistaken or not-in-use in reality. Provided it is possible to obtain relevant activity data of elec-
tricity smart metre, mobile phone signal or airborne laser scanning, one may be able to identify
those most likely to have correctly classified uses.

In all such or similar situations, the discriminant creates a validation sample for a second falli-
ble classifier Z, which is external to the subpopulation where adjustment of X is needed. As will be
demonstrated later, in practice, X only needs to be nearly always correct for the tacit assumption
of validation sample to lead to useful adjustments for the rest population, even if the assumption
is not completely true. The remaining task of modelling is to enable one to usefully apply Pr(Z|Y ,
B = 1) estimated in the validation sample.

There exists a large body of literature on categorical data analysis in the presence of misclassi-
fication. See the excellent reviews of Kuha and Skinner (1997) and Kuha et al. (1998), who note in
particular a strong tradition in medical studies. Bross (1954) shows how conclusions drawn from
2 × 2 tables can be affected by misclassification. Tenenbein (1970) introduces the double sam-
pling methodology for binary classifiers. It is assumed that a (simple) random sample is classified
by a cheap, but fallible classifier. A subsample is taken, from which a more costly true classifier is
obtained. The subsample, from which we can learn the misclassification mechanism is a valida-
tion sample. It is shown that making use of the fallible classifier observed outside the validation
sample is more efficient than using only the true classifier in the validation sample.

The basic double sampling method can be extended to allow for multinomial variables
(Tenenbein, 1971, 1972). Hochberg (1977) consider hypothesis testing for multidimensional
jointly observed data. Hochbeg and Tenenbein (1983) and Chen et al. (1984) extend double sam-
pling to triple sampling, where only the true classifier is observed in one sample, only the fallible
in another and both jointly in a third sample. See also Chen (1989) for a review of the related
methods. Swensen (1988) considers the setting, where register-based measure variables are falli-
ble and survey variables are true. Haitovsky and Rapp (1992) study efficient sampling design of
the validation sample beyond simple random sampling.

Chen (1979) introduces the framework of log-linear models to the double sampling method-
ology, where one specifies a log-linear model of the misclassification probability matrix, as well
as another log-linear model of the true classifications. The log-linear model framework facilitates
maximum likelihood estimation (MLE) using the EM-algorithm (Dempster et al., 1977). See for
example Chen (1979, 1989) and Espeland and Odoroff (1985) for applications of the EM algorithm
to misclassification problems.

For situations involving two fallible classifiers without a true classifier, identifiability of model
parameters requires additional assumptions. Hui and Walter (1980) assume the misclassification
mechanisms of two diagnostic tests are the same for all the units in the population. A partition of
the population is introduced, where the case prevalence varies across the subpopulations and the
number of subpopulations is such that there are enough degrees of freedom to allow for parameter
identification. Lie et al. (1994) study binary variables from two different health registers, both of
which are subject to misclassification errors, under the assumption that the positive cases missed
by either classifier will all be correctly classified by the other. Qiu et al. (2018) propose two models
for confidence interval procedures of the population proportion. Under both the models, they
assume there are no false positives for both classifiers.

Meanwhile, multiple fallible classifiers have been studied in situations involving repeated
measures. For instance, for estimating gross labour flows, misclassification models of reinterview
data have been considered by Abowd and Zellner (1985), Poterba and Summers (1986), Chua and
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Fuller (1987) and Singh and Rao (1995). Zhang (2005) proposes a special sparse misclassification
model, which does not require reinterviews.

There is a huge body of literature on latent class analysis or structural equation models of
multiple fallible classifiers, provided there are enough degrees of freedom in the observed data,
which usually requires a longitudinal setting. Hidden Markov models (HMMs) are often applied
for misclassification adjustment (e.g. Biemer & Bushery, 2000; Magidson et al., 2009; Van de Pol
& Langeheine, 1997; Vermunt, 2010; Vermunt et al., 2007). See for example Yoon (2009) for a
review for biological sequence analysis. In particular, Pavlopoulos and Vermunt (2015) apply an
extended HMM to survey and administrative register data on temporary employment. We will
apply the HMM in an off-the-shelf manner to provide a comparison to the method developed in
this paper.

The rest of the paper is organized as follows. The model we propose is developed in Section 2,
together with the estimation methods. The HMM model for comparison is also briefly described.
The application is presented in Section 3. Finally, Section 4 contains a summary and an outline
of some topics for future research.

2 MODELS

Denote by U = {1, … , N} the population that the variables (X , Y ) are associated with, denoted
by (Xi, Yi) for i ∈ U. Let X and Y both take values 1, … , K. Under the setting of Table 1, we
observe two fallible classifiers X and Z (of the true Y ) jointly in a sample s, but only X outside s.
Let R be the binary observation indicator, where Ri = 1 if i ∈ s and 0 if i ∈ U ⧵ s. The selection
mechanism of R may be unknown generally.

To focus on the central issues, we assume {Xi ∶ i ∈ U} to be known for the whole popula-
tion, which is the case in our application later. But the modelling approach developed below is
also applicable in the case of double sampling, where the joint sample s is a subset of a larger
probability sample of X from U.

2.1 Modelling given discriminant

We introduce our model for the setting of Table 2 in two steps. First, we introduce the discriminant
B and the simplest assumptions of Z and R, so that Pr(Y |X , B = 2) is identifiable in the joint
subsample where (B, R) = (2, 1), and Pr(Y |B = 2) can be estimated. This leads to two simple
models, which contain some strong assumptions of the sample observation and misclassification
mechanisms. Next, additional covariates are introduced to relax these assumptions, yielding the
model that is more generally applicable.

For the classifier X , we assume there exists a known binary discriminant, denoted by B = 1 or
2, such that we have, in the population,

Pr(Y = X|B = 1) = 1 (1a)

Pr(Y = y|X = x,B = 2) = 𝜂yx. (1b)

The idea is simple. Given that X = Y conditional on B = 1, the joint subsample of (Z, X) is a
validation sample of (Z, Y ) where (B, R) = (1, 1). Provided suitable assumptions of R, so that
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F I G U R E 1 Independence graphs of model M0 (left) and model MB (right): true variable Y , fallible
classifiers (X , Z), joint sample observation indicator R, discriminant B

Pr(Z|Y ) is transportable from those with B = 1 to the others with B = 2, one would be able to
disentangle the conditional distribution Pr(Y |X , B = 2) from the joint distribution Pr(Z, X|B = 2)
in the subsample where (B, R) = (2, 1).

Figure 1 gives the independence graphs (Edwards, 2012) of two models of (Y , X , Z, B, R), where
two groups of variables are independent of each other if they are unconnected in the graph, and
two (groups of) variables are conditionally independent given the variables that separate them in
the graph. In the terminology of Rubin (1976), R is missing completely at random (MCAR) under
the first model M0, and it is missing at random (MAR) given (X , B) under the second model MB.
Under either model, Z is independent of (X , B, R) conditional on Y , denoted by

Pr(Z = z|Y = y,R = 1,B,X) = Pr(Z = z|Y = y) ≡ 𝜆zy. (2)

In the terminology of Kuha and Skinner (1997), misclassification by Z is nondifferential with
respect to (X , B, R) under (2).

Moreover, under either model, (Z,Y ) are conditionally independent of R given (X , B), that is,
Pr(Z, Y |X , B, R = 1) = Pr(Z, Y |X , B), such that we obtain

𝜓zx ≡ Pr(Z = z|X = x,B = 2,R = 1) =
K∑

y=1
𝜆zy𝜂yx (3)

by integrating out Y from Pr(Z, Y |X , B). The misclassification probabilities 𝜆zy are said to be trans-
portable (Kuha & Skinner, 1997) from B = 1 to B = 2 by virtue of (2). The probabilities Pr(Y |X ,
B = 2) are referred to as the calibration probabilities, denoted by

𝜂yx ≡ Pr(Y = y|X = x,B = 2).

The conditional probabilities Pr(Z|X , B, R = 1) by (2) or (3) for the two subsamples given B = 1
or 2 are summarized in Table 3. Neither of the two classifiers is necessarily more accurate than
the other in the subpopulation of B = 2.

MCAR for R is a strong assumption that may be unrealistic in many applications. When it
comes to MAR for R in Figure 1, allowing B in addition to X is unlikely to be a useful relaxation
of using only X to control for R, since the discriminant B is defined with respect to misclassifi-
cation by X . Whereas the fact that X is a known ‘proxy’ of Y is usually favourable to the MAR
assumption. In the extreme case, if X = Y , then R must be independent of Y given X . Or, heuris-
tically speaking, whatever the effect Y has on R, it would be largely controlled for given X if X
contains much information about Y . Still, a reasonable approach is to introduce additional covari-
ates, as it is common in the literature of modelling survey nonresponse or nonprobability sample
selection in the absence of misclassification, not least because this would also enable one to relax
the assumptions that Pr(Z|Y ) is the same for everyone in the population and Pr(Y |X) is the same
for everyone in the subpopulation of B = 2.
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T A B L E 3 Subsample conditional probabilities Pr(Z|X , B, R = 1)

B = 1 B = 2

Z X = 1 … X = x … X = K X = 1 … X = x … X = K

1 𝜆11 … 𝜆1x … 𝜆1K 𝜓11 … 𝜓1x … 𝜓1K

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

z 𝜆z1 … 𝜆zx … 𝜆zK 𝜓z1 …
∑K

y=1𝜆zy𝜂yx … 𝜓zK

⋮ ⋮ ⋱ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋱ ⋮

K 𝜆K1 … 𝜆Kx … 𝜆KK 𝜓K1 … 𝜓Kx … 𝜓KK

F I G U R E 2 Independence graph of model MAB: true variable Y , fallible classifiers (X , Z), joint sample
observation indicator R, discriminant B, other covariates A

First, for the population calibration probabilities Pr(Y |X), we modify the discriminant
assumption (1) to include the additional known covariates, denoted by A,

Pr(Y = X|B = 1,A) = 1 (4a)

Pr(Y = y|X = x,B = 2,A = a) = 𝜂yx|a. (4b)

Next, denote by MAB the model whose independence graph is given in Figure 2, where we allow
A to be connected to all the other variables in the graph. Under MAB, misclassification by Z is
nondifferential with respect to (X , B, R) conditional on A, that is,

Pr(Z = z|Y = y,A = a,X ,B,R) = Pr(Z = z|Y = y,A = a) ≡ 𝜆zy|a. (5)

Note that (5) is similar to (2), albeit with conditioning on A in addition. Moreover, similarly as for
𝜓zx by (3) under MB, (Z, Y ) are conditionally independent of R given (X , A, B), that is, Pr(Z, Y |X ,
A, B, R = 1) = Pr(Z, Y |X , A, B), such that

𝜓zx|a ≡ Pr(Z = z|X = x,A = a,B = 2,R = 1) =
Y∑

y=1
𝜆zy|a𝜂yx|a. (6)

The model MAB defined by (4), (5) and (6) thus encompasses the model MB defined by
Equations (1)–(3). Of course, these assumptions of MAB may still not hold completely in applica-
tions. The sensitivity of the resulting estimator of the target proportions will be investigated later
in the application as well as by a simulation study.
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2.2 Estimation

Provided the sample size accommodates it, one may let A be a population stratification vari-
able based on the relevant covariates. A so-called matrix method (Kuha & Skinner, 1997) follows
immediately. For A = a, let 𝚲a be the matrix of probabilities 𝜆zy|a and 𝚿a that of 𝜓zx|a and Ha that
of 𝜂yx|a. Given (B, R) = (2, 1), we have

𝚿a = 𝚲aHa

under the model MAB. Provided the inverse matrix exists, an estimator of Ha is given by

Ĥa = 𝚲̂−1
a 𝚽̂a,

where 𝚲̂a is estimated from the subsample of (Z, X) = (Z, Y ) given (A, B) = (a, 1), and 𝚿̂a from
the subsample of (Z, X) given (A, B) = (a, 2).

Next, let 𝝁X|ab be the vector of subpopulation proportions of X given (A, B) = (a, b). Similarly
for 𝝁Y |ab, where 𝝁Y |a1 = 𝝁X|a1 by (4a), and an estimator of 𝝁Y |a2 is given by

𝝁̂Y |a2 = Ĥa 𝝁X|a2.

The estimator 𝝁̂Y |a2 is easily consistent, as all the stratum sample sizes tend to infinity asymptot-
ically. An estimator of the overall proportions is then given by

𝝁̂Y = 1
N
∑

a
(Na1𝝁X|a1 + Na2𝝁̂Y |a2)

where Nab is the stratum subpopulation size with (A, B) = (a, b).
We adopt model-based inference in this paper, where the possibly complex sampling design

of s is ignorable conditional on the model covariates. Under the model MAB, we treat the real-
ized stratum sample sizes nx|ab as fixed, which is the number of units with (X , A, B, R) = (x, a,
b, 1), for which we treat the associated Z as random given B = 1 and the associated (Z, Y ) as
random given B = 2. This is justifiable, because R is conditionally independent of (Y , Z) given
(X , A, B) and X is known for the population. From each subsample (x, a, b, 1), we draw nx|ab units
with the associated Z randomly and with replacement, to obtain a corresponding bootstrap repli-
cate subsample. Repeating this separately for each combination of (x, a, b) yields then an entire
bootstrap replicate sample, based on which we obtain a corresponding bootstrap replicate esti-
mate of 𝝁Y |+2 for the subpopulation with B = 2. The bootstrap variance estimator of 𝝁̂Y |+2 can be
obtained based on a sufficient number of repetitions of the procedure.

One can also consider MLE, using the stratum-specific misclassification probabilities𝚲a given
A = a and 𝚯a of Pr(X|Y , B = 2) given A = a. The stratum likelihood is

La(𝚲a,𝚯a,𝝁Y |a2) ∝

( K∏
x=1

K∏
z=1
𝜆

nzx|a1

zx|a
){ K∏

x=1

K∏
z=1

( K∑
y=1
𝜃xy|a𝜆zy|a𝜇y|a2

)nzx|a2}

×

{ K∏
x

( K∑
y=1
𝜃xy|a𝜇y|a2

)mx|a2}
,
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where nzx|ab is the sample cell count given (A, B) = (a, b), and mx|a2 is the corresponding
out-of-sample total of X = x. As shown in Appendix A, the MLE of 𝜇y|a2 is the same as the matrix
method estimator above. However, the MLE is also applicable given more parsimonious specifi-
cations of 𝜆zy|a and 𝜃xy|a in terms of the covariates A when A is not a stratification variable, say,
𝚲a = 𝚲(a,𝝀) and 𝚯a = 𝚯(a,𝜽) with respective parameter vectors 𝝀 and 𝜽. The likelihood is then
given by

L(𝝀,𝜽,𝝁Y |a2) =
∏

a
La(𝚲a,𝚯a,𝝁Y |a2).

2.3 Estimation using hidden Markov models

Here we briefly outline the HMM considered by Pavlopoulos and Vermunt (2015) and Pankowska
et al. (2018), which we will later apply in an off-the-shelf manner to provide a comparison to the
model MAB developed above.

The discrete time variable sequence Y = (Y1, … , YT) is a Markov chain, where T denotes the
current time point of interest. This true sequence is unobserved, or hidden. At each time point
one observes one or more fallible classifiers (or measure variables) that are dependent on the true
variable. It is common to assume that the true and measure variables are independent for different
units.

For the setting of two fallible classifiers in Table 1, we observe Xt for everyone in the popu-
lation at time t, as well as Zt for anyone in the sample at time t. Let Rt = 1 if Zt is observed or 0
otherwise. We assume MAR for Rt given the observed data, and the indicators R = (R1, … ,RT)
can be omitted in the HMM path diagrams.

Consider the path diagram of HMM0 in Figure 3, where Xt is conditionally independent of all
the other variables given (Yt,A), and similarly for Zt. Notice that A is omitted in Figure 3 to avoid
cluttering the diagrams, as it would be connected to all the variables. In the literature this is often
referred to as the assumption of independent classification errors (ICE). The joint probability of
(X , Z, Y) given A and R can be written as

P(X = x,Z = z,Y = y|A,R = r) = Pr(Y1 = y1|A)
T∏

t=2
Pr(Yt = yt|Yt−1 = yt−1,A)

T∏
t=1

Pr (Zt = zt|Yt = yt,A)rt Pr(Xt = xt|Yt = yt,A).

Notice that, given the time points t = 1, … , T, the term involving Z varies according to r, that
is, the times anyone is actually in the sample over time.

However, the ICE assumption is most likely too simplistic for our application later. In particu-
lar, delay or mistake of reporting is the cause of misclassification by X , so that whether an error has
already occurred at t − 1 is likely to affect the misclassification probability of Xt, whether the error
is repeated or corrected at t. Consider instead the path diagram of HMM in Figure 3, where Xt is
conditionally independent of the other variables given (Yt−1,Xt−1) in addition to (Yt,A). This type
of HMM has been considered by Pavlopoulos and Vermunt (2015) and Pankowska et al. (2018).
Here we use a simple specification for Xt given (Yt,Yt−1,Xt−1), where the misclassification of Xt
differs according to whether Xt−1 = Yt−1 or not, indicated by I(Xt−1 = Yt−1). The joint probability
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F I G U R E 3 Path diagrams for HMM0 (left) and HMM (right) conditional on A

of (X , Z, Y) given A and R can then be written as

P(X = x,Z = z,Y = y|A,R = r) = Pr(Y1 = y1|A)Pr(X1 = x1|Y1 = y1,A)
T∏

t=2
Pr(Yt|Yt−1,A)Pr (Xt|Yt = yt, I(Xt−1 = Yt−1),A)

T∏
t=1

Pr (Zt = zt|Yt = yt,A)rt . (7)

For estimation, Pavlopoulos and Vermunt (2015) apply pseudo MLE which incorporates the
sampling design weights. We adopt model-based inference in this paper. For parameter estimation
under the HMM, we use the Baum–Welch algorithm (Baum et al., 1970; Vermunt et al., 2007); see
Appendix B. We can incorporate the discriminant B where, at each iteration of the Baum–Welch
algorithm, we simply set Pr(XT = YT|B = 1,A) = 1 in the subpopulation of B = 1, in which case
the model is denoted by HMMB.

For variance estimation, we use basically the same bootstrap procedure described in
Section 2.2. The only difference is that for each group of respondents in the last quarter with given
(xT , a, b), there is also a group of nonrespondents with the same (xT , a, b), who have responded
previously and contribute to the likelihood. Separate bootstrap resampling is applied to these
last-quarter nonrespondents.

3 APPLICATION

3.1 Data and setting

Statistics Norway publishes monthly register-based employment statistics, the chief source of
which is an administrative service coordinated by the Norwegian Labour and Welfare Adminis-
tration, the Norwegian Tax Administration and Statistics Norway. Since its introduction in 2015,
all employers are legally obliged to report all the contractual employer–employee relationships
and various related payments every month. However, each month a certain amount of reports is
actually corrections of reports in earlier months, which may be due to delays or mistakes. Conse-
quently, an erroneous employment relationship in the data, say, at time t may be removed later at
some time point, whereas a missing employment relationship at time t may appear at some time
point later.

Take the binary variable of Employed or not, denoted by 1 or 0. The left half of Table 4
illustrates the measurement errors in the register Employed status. The reference time point is
November 2018, where X is the Employed status based on the data that are available 2 weeks after,
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T A B L E 4 Register Employed status for November 2018, 2 weeks after November (X) or 6 weeks after
November (Ỹ ). LFS Employed status Z, September–November 2018

All R = 1

Ỹ = 0 Ỹ = 1 Total Z = 0 Z = 1 Total

X = 0 1,429,974 5226 1,435,200 5577 1178 6755

X = 1 38,191 2,583,254 2,621,445 554 13,318 13,872

Total 1,468,165 2,588,480 4,056,645 6131 14,496 20,627

and Ỹ is that after 6 weeks and the basis of monthly publication. The proportion of Employed is
changed from 0.646 by X to 0.638 by Ỹ , given the corrections during the month between them.
To provide a context, the difference is about four times the standard error of the Norwegian LFS
estimator of the proportion of Employed.

Note that progressive sources as such is the case for many administrative data on tax, benefits,
migration, etc. The difference from one situation to another is merely the extent of the resulting
measurement errors rather than their existence. For instance, Zhang and Fosen (2012) examine
the administrative sources for employment statistics, which existed before the current service was
introduced in 2015, where progressive measurement errors are noticeable even years after the
reference time point.

A binary Employed status Z is available from the LFS. The Norwegian LFS sample is a quar-
terly rotating panel consisting of eight rotation groups, where close to 20,000 persons are surveyed
every quarter. The design at the time of these data is geographically stratified single-stage cluster
sampling, where the clusters are families in the Central Population Register. The LFS Employed
status follows the ILO definition, which differs from the register Employed status based on
contractual employer–employee relationships.

The register and the LFS sample can be linked at the individual level using the unique person
identification number, which exists in many register-rich countries including Norway. The dis-
crepancies between Z and X can be seen in the right half of Table 4. Clearly, discrepancies are also
unavoidable between Z and the true register Employed status Y . Notice that we do not require Z
to measure the same construct as X (and Y ) in our approach, but simply model the misclassifi-
cation error of Z statistically where misclassification error is the case if Z ≠ Y . However, because
Z has a different definition to X (and Y ), assuming the same Pr(Z|Y ) for the whole population
is unlikely to be realistic, which is why additional covariates A are needed as remarked earlier in
Section 2.

Since X and Z are available at about the same time, the question arises whether one can adjust
the errors of X given the additional information provided by Z, even though Z is also subject to
misclassification. Notice that, since Z is treated as fallible, the fact that those collected in the LFS
September or October are not entirely concurrent with X for November is not a principle obstacle,
compared to the more important variance reduction by using quarterly instead of monthly LFS
sample in this context.

Finally, the Norwegian LFS does suffer from survey nonresponse (e.g. Hamre & Heldal, 2013;
Thomsen & Villund, 2011). Previous studies by Zhang (1999) and Zhang et al. (2013) suggest that
nonresponse in the LFS is not MCAR, for example, the proportion of Z = 1 is most likely to be
lower among the nonrespondents. This makes it necessary to model the selection mechanism of
R, in addition to the misclassification mechanisms.
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Below we shall first introduce (B, A) and then apply the model MAB to these data, to esti-
mate the true proportion of register Employed Y . Provided this is possible, one may, for example,
consider producing monthly flash estimates at an earlier time point than the current practice,
whereas the completely register-based quarterly or yearly statistics can be published at a later
time point, allowing more time for the progressive source to settle.

To apply the HMM for comparison, we use two successive quarterly LFS samples. This is the
option requiring the least amount of extra data compared to applying the model MAB. Let T = 6 be
the month of interest, such as November 2018 in Table 4. Instead of a separate misclassification
mechanism for X1, we simply set X0 ≡ Y0, which allows one to use the same model for Xt given
Yt and I(Xt−1 = Yt−1), for all t = 1, … , T, under a model with fewer parameters. Pankowska et al.
(2018) use the same approach. Finally, we shall let A be the same population stratification variable
as for the model MAB.

3.2 Choice of (B, A)

For this study we have access to the (X , Ỹ ,Z) for June–November 2018. To define the discriminant
based on the available data, we let B = 1 if an individual’s register Employed status has no change
at all in terms of Ỹ for July–October and X for November, and B = 2 otherwise, where X for
November and Ỹ for October both become available 2 weeks after November. The intuition is that
the true status Y is less likely to change in November, for someone with a stable status leading to
November, in which case the observed status X for November is also less likely to be erroneous.

The population Pr(X|Ỹ ,B) for B = 1 or B = 2 are shown in Table 5. It can be seen that the
agreement between X and Ỹ is much better given B= 1 than B= 2. Since the variable Ỹ is naturally
closer to the true Y , we take this to indicate that the misclassification errors of X are indeed much
lower given B = 1 than B = 2.

It is unnecessary to be overly concerned with the chosen length of register history when defin-
ing B above, since making greater use of the relevant administrative data such as those mentioned
in Section 1 is likely more effective for further reducing the errors of X given B = 1. However, such
data are not available to this study. Moreover, should Statistics Norway decide to produce monthly
flash estimates, it would surely involve many other details that we will not be able to cover here.
Thus, we consider the definition of B here to be acceptable for demonstrating the potentials of the
proposed methodology.

When it comes to the choice of additional covariates A with respect to nonresponse, Nguyen
and Zhang (2020) evaluate empirically reweighting methods for nonresponse adjustment in the
Norwegian LFS. The register Employed status is the most effective covariate in this respect. In
addition, age, gender, level of education, county, income and nationality are found to be among
the most relevant ones. Many of these variables are commonly mentioned in household survey

T A B L E 5 Population Pr(X|Ỹ ,B) by discriminant B

B = 1 B = 2

Ỹ = 0 Ỹ = 1 Ỹ = 0 Ỹ = 1

X = 0 0.9856 0.0005 0.9067 0.0181

X = 1 0.0144 0.9995 0.0933 0.9819

Total 1,252,700 2,359,329 215,465 229,151
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T A B L E 6 Conditional Pr(X|Ỹ ) and Pr(Z|Ỹ ) given A and B

Population Sample

X = 0 X = 1 Total Z = 0 Z = 1 Total

A= 1 B = 1 Ỹ = 0 0.9692 0.0308 216,043 0.9167 0.0833 1045

Ỹ = 1 0.0010 0.9990 250,213 0.0696 0.9304 1408

B = 2 Ỹ = 0 0.9164 0.0836 98,441 0.8042 0.1958 521

Ỹ = 1 0.0121 0.9879 77,649 0.2864 0.7136 419

A= 2 B = 1 Ỹ = 0 0.9759 0.0241 270,405 0.6877 0.3123 999

Ỹ = 1 0.0004 0.9996 1,056,768 0.0100 0.9900 5377

B = 2 Ỹ = 0 0.8993 0.1007 61,148 0.5348 0.4652 230

Ỹ = 1 0.0197 0.9803 93,857 0.1050 0.8950 419

A= 3 B = 1 Ỹ = 0 0.9936 0.0064 766,252 0.8595 0.1405 3836

Ỹ = 1 0.0004 0.9996 1,052,348 0.0143 0.9857 5811

B = 2 Ỹ = 0 0.8975 0.1025 55876 0.6231 0.3769 268

Ỹ = 1 0.0237 0.9763 57645 0.2755 0.7245 294

nonresponse studies. After some experimentation with the available variables, we find including
age (in addition to X) to be nearly as effective as other more elaborated choices. Notice that age
is also an important aspect of the definitional difference between Z and Y . A parsimonious strat-
ification by age is chosen as A, where A = 1 for age 15 to 24, A = 2 for age 25 to 49 and A = 3 for
age 50 to 74.

The left half of Table 6 gives the conditional distribution of X given Ỹ in the population accord-
ing to the chosen A and B. The agreement between X and Y remains much better given B = 1 in
each stratum defined by A. The right half of Table 6 shows the conditional distribution of Z given
Ỹ in the sample. Under the assumption (5), Pr(Z|Y , A = a) should be the same in each stratum
by A whether B = 1 or B = 2. However, in light of Table 6, this assumption is unlikely to hold in
reality. Indeed, comparing (Ỹ , X) to (Ỹ , Z) within each stratum of A, one can notice that (a) the
observed probabilities of Z given Ỹ differ more between B = 1 and B = 2 compared to those of X
given Ỹ , and (b) misclassification errors by Z are greater than by X .

Thus, it is intriguing to see whether useful adjustments, for the misclassification errors of X
given B = 2, can nevertheless be achieved by incorporating a second classifier Z that is less accu-
rate (or weaker) than X itself, when the assumption that makes the misclassification mechanism
of Z fully transportable from B = 1 to B = 2 is not quite true.

3.3 Results

Table 7 gives the data for the application of the model MAB, where the indicator R = 1 associated
with the sample is suppressed to save space. Outside of the sample, where R = 0, we have the
population counts of X given (A, B). In addition, to apply the HMM and HMMB, we need one
quarterly LFS sample June–August 2018, and the corresponding monthly X for June–October
2018.
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T A B L E 7 Data for adjustments by model MAB, November 2018

X = 0 X = 1 X = 0 X = 1

A = 1 B = 1 Z = 0 944 112 A = 2 B = 1 Z = 0 681 60

Z = 1 76 1321 Z = 1 289 5346

R = 0 208,622 255,181 R = 0 263,327 1,057,470

B = 2 Z = 0 393 146 B = 2 Z = 0 117 50

Z = 1 90 311 Z = 1 104 378

R = 0 90,672 84,478 R = 0 56623 97,733

A = 3 B = 1 Z = 0 3293 87 All B = 1 Z = 0 4918 259

Z = 1 518 5749 Z = 1 883 12416

R = 0 757937 1,051,016 R = 0 1,229,886 2,363,667

B = 2 Z = 0 149 99 B = 2 Z = 0 659 295

Z = 1 101 213 Z = 1 295 902

R = 0 51,264 61,695 R = 0 198,559 243,906

T A B L E 8 Estimated proportion of Y = 1 by Ỹ , X , model MAB, HMM and HMMB, given (A, B) = (a, b), with
population size Nab. Estimated standard errors in parentheses

(A, B) Na2 Ỹ X MAB HMM HMMB

(1, 2) 176090 0.441 0.482 0.413 (0.017) 0.265 (0.003) 0.468 (0.002)

(2, 2) 155005 0.606 0.633 0.628 (0.023) 0.608 (0.002) 0.655 (0.001)

(3, 2) 113521 0.508 0.546 0.495 (0.023) 0.533 (0.002) 0.517 (0.002)

(+, 2) 444616 0.515 0.551 0.509 (0.013) 0.453 (0.002) 0.546 (0.001)

(+, +) 4056645 0.638 0.646 0.642 (0.001) 0.635 (0.001) 0.646 (0.000)

The sub-population with B = 2 constitutes about 11% of the population for employment statis-
tics. For simplicity, denote by 𝜇2 the true proportion of register Employed (Y = 1) given B = 2,
and by 𝜇̂method

2 its estimate using a given method. The estimates by Ỹ , X , model MAB, HMM and
HMMB are shown in the last row of Table 8, where (A, B) = (+, 2) refers to the subpopulation of
B = 2 and (A, B) = (+, +) refers to the whole population. Applying the model of Hui and Walter
(1980) with the 3 subpopulations by A given B = 2 does not yield plausible adjustments of 𝜇̂X

2 ,
which are omitted here.

The difference of 𝜇̂X
2 and 𝜇̂Ỹ

2 is 3.6%. It is reduced to 0.6% between the MAB-estimate 𝜇̂MAB
2 and

𝜇̂
Ỹ
2 . The MAB-estimate is closer to Ỹ than X in all the strata. If we treat the estimate 𝜇̂Ỹ

2 as the target
parameter 𝜇2, then (𝜇̂2 − 𝜇̂Ỹ

2 )2 for a given estimator 𝜇̂2 is by definition an unbiased estimator of
MSE(𝜇̂2). Thus, if |𝜇̂MAB

2 − 𝜇̂Ỹ
2 | < |𝜇̂X

2 − 𝜇̂Ỹ
2 |, then the estimate of MSE(𝜇̂MAB

2 ) is smaller than that
of MSE(𝜇̂X

2 ).
The difference 𝜇̂MAB

2 − 𝜇̂Ỹ
2 = 0.6% given B = 2 is comparable to 𝜇̂X

1 − 𝜇̂Ỹ
1 = 0.5% given B = 1

which can be obtained from Table 5, and the estimate of the overall proportion 𝜇 using the model
MAB (Table 8) is about as precise as 𝜇̂X

1 for 𝜇1 in the subpopulation of B = 1. Since the discrimi-
nant and transportability assumptions are not fully satisfied in this application, as noted before,
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these results suggest that the exact assumptions (4), (5) and (6) can potentially be replaced by the
approximate conditions

Pr(X ≠ Y |B = 1, A)≪ Pr(X ≠ Y |B = 2, A) (8a)

Pr(Z|Y , A, B = 1) ≈ Pr(Z|Y , A, B = 2) (8b)

Pr(Z,Y |X , A, B, R = 1) ≈ Pr(Z, Y |X , A, B). (8c)

Given (8) one can apply the model MAB with a classifier Z that could be weaker than X , and obtain
useful adjustments where X is worst according to the discriminant B.

The results of HMM differ quite much from those of HMMB, overall as well as within each
stratum by A, where HMMB incorporating the discriminant B does seem to be an improvement
over HMM. Although it seems not straightforward to obtain good results here using these mod-
els, it does not mean that it is impossible to achieve better adjustments using other HMMs. Notice
that the HMMs tend to place relatively strong assumptions on the ‘time homogeneity’ of the latent
Markov transition and both the misclassification mechanisms. Another concern, common to all
latent class analysis, is that the model itself cannot tell which of the two estimated latent classes
corresponds to Y = 1. We simply assume that, within each stratum, the total of misclassifica-
tions must be lower than that of correct classifications, in order to assigned one latent class to
Employed.

Finally, the estimated standard errors shown in the parentheses (Table 8) are computed from
200 bootstrap replicate samples. It is clear that the estimated standard errors of either HMM
are dominated by their respective biases, so that the associated uncertainty is under-estimated,
without taking into account the bias. Meanwhile, the estimated standard errors under the model
MAB are much larger, because it uses a much smaller amount of data compared to the HMMs.
Although the estimators under the model MAB here cannot be unbiased in truth, the confi-
dence intervals based on the estimated standard errors are not unreasonable. For instance,
the nominal 95% interval (0.509 ± 1.96⋅0.013) = (0.483, 0.535) seems quite likely to cover
the true 𝜇2.

3.4 A simulation study

We include here a small simulation study with set-ups that are close to the application above. The
aim is to explore the sensitivity of the MAB-estimator against departures from the discriminant
and transportability assumptions, as well as to check the performance of the associated bootstrap
variance estimator.

Let the population and sample be those in stratum A = 1, as shown in Table 7, with the target
proportions (𝜇1, 𝜇2) = (0.537, 0.441) given B = 1 or 2. Based on the observed sample of (Z, Ỹ )
and the subsamples given B = 1 or 2, we obtain

(𝜆11, 𝜆00) = (0.879, 0.881), (𝜆B=1
11 , 𝜆B=1

00 ) = (0.930, 0.917) and (𝜆B=2
11 , 𝜆B=2

00 ) = (0.804, 0.714).

We have (𝜃B=1
11 , 𝜃B=1

00 ) = (0.999, 0.969) for the actual subpopulation Pr(X = Ỹ |Ỹ ,B = 1). In terms of
these values, let three simulation set-ups be as given below.



SCHENKEL and ZHANG 15

0.75 0.8 0.85 0.9 0.95

0.70.7
5 0.80.8

5 0.90.9
5 0.70.7

5 0.80.8
5 0.90.9

5 0.70.7
5 0.80.8

5 0.90.9
5 0.70.7

5 0.80.8
5 0.90.9

5 0.70.7
5 0.80.8

5 0.90.9
5

0.7
0.8
0.9
1.0
1.1
1.2
1.3

F I G U R E 4 Set-up (a), box plots of 𝜇̂MAB
2 ∕𝜇2 for different combinations of 𝜆11|2 (x-axis of each panel) and

𝜆00|2 (top of each panel), 10,000 simulations for each combination

1. Set X = Y in the subpopulation of B = 1. Fix the subsample of Z given B = 1 as observed.
Simulate Z in the subsample given B = 2 using the probabilities (𝜆11|2, 𝜆00|2), where 𝜆11|2 = 0.7,
0.75, 0.8, 0.85, 0.9, 0.95 and 𝜆00|2 = 0.75, 0.8, 0.85, 0.9, 0.95.

2. Simulate X in the entire subpopulation of B = 1 using the probabilities (𝜃11, 𝜃00), where
𝜃11, 𝜃00 = 0.95, 0.975, 0.99, 1. Simulate the sample of Z using the probabilities (𝜆11, 𝜆00) given
above regardless B = 1 or 2.

3. Simulate X in the entire subpopulation of B = 1 using (𝜃11, 𝜃00), where 𝜃11 = 0.95, 0.98, 0.995
and 𝜃00 = 0.95, 0.97, 0.98, 0.99. Simulate Z in the subsample given B = 2 using (𝜆11|2, 𝜆00|2),
where 𝜆11|2, 𝜆00|2 = 0.7, 0.75, 0.8, 0.85, 0.9, 0.95.

The set-up (a) explores departures from the transportability assumption. The results are given
in Figure 4, as box plots of the ratio 𝜇̂MAB

2 ∕𝜇2 for different combinations of (𝜆11|2, 𝜆00|2) based on
10,000 simulations for each combination. The horizontal dashed lines mark the region where an
estimate is closer to 𝜇2 than 𝜇̂X

2 is. We notice the following.

1. The combination (𝜆11|2, 𝜆00|2) = (𝜆B=2
11 , 𝜆B=2

00 ) is sandwiched between the first two box plots
in the second panel from the left, according to which it is more likely than not that the
model MAB would yield an improvement to 𝜇̂X

2 in the application, provided the discriminant
assumption holds exactly. Despite a small departure from the discriminant assumption where
(𝜃B=1

11 , 𝜃B=1
00 ) = (0.999, 0.969) instead of (1, 1), the actual 𝜇̂MAB

2 is most likely closer to 𝜇̂2 than 𝜇̂X
2

to 𝜇̂2, as discussed in Section 3.3.
2. The combination (𝜆11|2, 𝜆00|2) = (𝜆B=1

11 , 𝜆B=1
00 ) is sandwiched between the last two box plots in

the second panel from the right, according to which it is most likely that the model MAB would
yield an improvement over 𝜇̂X

2 , under a true model MAB that is close to the assumed one in the
application. For instance, the results obtained for (𝜆11|2, 𝜆00|2) = (0.9, 0.9) suggest MSE(𝜇̂MAB

2 ) <
MSE(𝜇̂X

2 ) under this model MAB; and similarly for (𝜆11|2, 𝜆00|2) = (0.85, 0.85) or (0.95,0.95).
3. The estimator 𝜇̂MAB

2 performs better than 𝜇̂X
2 when 𝜆11|2 ≈ 𝜆00|2 in all the panels. The likely rea-

son is that 𝜆B=1
11 ≈ 𝜆B=1

00 in this simulation study. This suggests that the model MAB is likely more
robust against the departure from the transportability assumption, as long as 𝜆11|2∕𝜆11|1 ≈
𝜆00|2∕𝜆00|1.
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F I G U R E 5 Set-up (b), box plots of 𝜇̂MAB
2 ∕𝜇2 for different combinations of 𝜃11 (x-axis of each panel) and 𝜃00

(top of each panel), 10,000 simulations for each combination

The set-up (b) explores departures from the discriminant assumption. The results from 10,000
simulations are given in Figure 5, as box plots of 𝜇̂MAB

2 ∕𝜇2 for different combinations of (𝜃11, 𝜃00) in
the subpopulation of B = 1, where the horizontal dashed lines mark the region where an estimate
is closer to 𝜇2 than 𝜇̂X

2 is. Clearly, provided the transportability assumption, the improvements
of the estimator 𝜇̂MAB

2 over 𝜇̂X
2 , both in terms of bias and MSE, are quite robust against small

departures from the discriminant assumption.
Indeed, one only needs to be concerned with the results where |𝜇̂X

1 − 𝜇1| is sufficiently small.
For instance, the deteriorating results for 𝜃11 = 𝜃00 = 0.95 in the leftmost panel are not a wor-
risome issue in practice, because it implies Pr(X ≠ Y |B = 1) = 0.05 which is unlikely to be
acceptable for a definition of the discriminant. Recall that in the application earlier, we have|𝜇̂X

1 − 𝜇1| = 0.005, which is a property of the discriminant B that can be tracked and verified
retrospectively over time.

The set-up (c) explores departures from both the discriminant and the transportability
assumptions at the same time. For each combination of (𝜃11, 𝜃00, 𝜆11|2, 𝜆00|2), the proportion over
10,000 simulations where |𝜇̂MAB

2 − 𝜇2| < |𝜇̂X
2 − 𝜇2| is indicated in Figure 6. The separate conclu-

sions above remain largely the same under both types of departure at the same time. In particular,
for the panels in the bottom-right corner, where the violation of the discriminant assumption is
the least, the estimator 𝜇̂MAB

2 outperforms 𝜇̂X
2 when the transportability assumption holds exactly,

and the improvement is quite robust against departures from the transportability assumption as
long as 𝜆11|2∕𝜆11|1 ≈ 𝜆00|2∕𝜆00|1.

Lastly, we use double bootstrap to investigate the performance of the proposed bootstrap vari-
ance estimator. At the outer level, the replicate sample of Z is simulated by parametric bootstrap;
at the inner level, the bootstrap variance procedure described in Section 2. 2 is applied to the sim-
ulated sample to yield an estimate of V(𝜇̂MAB

2 ), denoted by 𝜎̂2 here. We consider two scenarios for
the outer level. In scenario I, all the model assumptions are satisfied, where Y has a Bernoulli
probability 𝜇1 given B = 1 or 𝜇2 given B = 2, and Z is generated from the Bernoulli distributions
with (𝜆11, 𝜆00), and X = Y if B = 1 and X is generated using (𝜃B=2

11 , 𝜃B=2
00 ) if B = 2. Scenario II is cre-

ated in an ad hoc manner, where the transportability assumption is not satisfied. We fix Y to be
the observed Ỹ in the population. We set X = Y if B = 1 and fix X as observed if B = 2. We generate
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F I G U R E 6 Set-up (c), proportions of results where |𝜇̂MAB
2 − 𝜇2| < |𝜇̂X

2 − 𝜇2| for different combinations of
𝜃11 (right of each panel), 𝜃00 (top of each panel), 𝜆11|2 (x-axis of each panel) and 𝜆00|2 (y-axis of each panel), 10,000
simulations for each combination

T A B L E 9 Simulation results of bootstrap variance estimator 𝜎̂2 for 𝜇̂MAB
2

Scenario Min Q1 Q2 Mean Q3 Max 𝝈2

I 0.00020 0.00030 0.00032 0.00032 0.00035 0.00048 0.00033

II 0.00027 0.00039 0.00042 0.00042 0.00045 0.00062 0.00042

Z from the Bernoulli distributions with (𝜆11, 𝜆00) given B = 1, whereas given B = 2 we generate Z
using (𝜓B=2

11 , 𝜓B=2
00 ) which are the observed conditional probabilities Pr(Z|X , B = 2).

For each scenario we have 10,000 repetitions at the outer level, whereas the variance estimate
𝜎̂

2 at the inner level is based on 200 resamples as in the application reported above. The results
of this double bootstrap are given in Table 9, which summarize the distribution of 𝜎̂2 compared
to 𝜎2 = V(𝜇̂MAB

2 ). We note that 𝜎̂2 = 0.00029 in the stratum of A = 1 in the application reported
earlier. In scenario I, the model assumptions are satisfied and 𝜎2 is the unconditional variance of
𝜇̂

MAB
2 . The conditional bootstrap variance estimator is essentially unbiased in these simulations,

where 9477/10,000 of the intervals 𝜇̂MAB
2 ± 1.96𝜎̂ contain the target parameter value 𝜇2. Scenario

II violates the transportability assumption; neither is MAB exactly the data generation model oth-
erwise. Nevertheless, the bootstrap variance estimator remains essentially unbiased for the actual
V(𝜇̂MAB

2 ). We conclude that the potential bias due to model misspecification is a more critical
element of the proposed adjustment method than the bootstrap variance estimator.
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4 SUMMARY

In the above we have developed a modelling approach for adjusting two fallible classifiers jointly
observed in a nonprobability sample. A key innovation is the introduction of the discriminant
B, which allows one to separate out the part of the population where the first classifier X is
much worse than in the rest population, where misclassification adjustments is most effective for
improving the estimation of the true classification. The bias caused by misclassification of X can
be removed, if a second classifier Z together with X satisfy the assumptions (4), (5) and (6) exactly.
Admittedly, this may not be the case in reality, as is common with any treatment of non-sampling
errors. The application demonstrates that useful adjustment can nevertheless be achieved, when
these assumptions are relaxed to (8), such that the proposed approach may potentially be helpful
in many situations.

To implement the approach to produce official flash estimates, which accounts for the errors
of X arising from the progressive nature of the administrative source, the model MAB applied in
Section 3 may be refined in two respects. First, we believe it is possible to improve the definition
of the discriminant, by incorporating more extensively the relevant information available in the
statistical data infrastructure at the NSO. Next, a more thorough process may be implemented to
select the covariates A, in order to improve the transportability of the estimated misclassification
mechanism of the second classifier Z. At the same time, one may look for a more parsimonious
model specification, which can improve the trade-off between bias adjustment and associated
variance.

Two issues are then worth attention in practice. First, to obtain a more truthful assessment
of the uncertainty of the adjusted flash estimator, it will be useful to examine retrospectively the
errors given by et = 𝜇̂

MAB
2t − 𝜇̂Ẏ

2t, where Ẏ is the Employed status based on a sufficiently mature
version of the register data, say, 3–6 months later than t. Analysis of et over time may also suggest
other possibilities for improving the flash estimator.

Next, while normally the Norwegian labour market is by no means volatile, shocks do occur
from time to time due to global events such as financial crisis or pandemic. In particular, we
plan to apply the model MAB to the data in 2020, where the labour market is subjected to con-
siderable dynamics due to Covid-19. It would be interesting to study both the level and change
estimates given by the flash-estimation methodology, in comparison with the LFS-based employ-
ment statistics which are traditionally considered as the leading indicator for changes in the
labour market.
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APPENDIX A. MLE UNDER MAB WITH STRATIFICATION VARIABLE A

Since A is a stratification variable, the likelihood can be maximized separately within each stratum
by A, where we need to show that the MLE of 𝜇y|2a is given by the matrix method in Section 2.2.
Thus, we can conveniently drop a in the notation, that is, as if the population consisted of a single
stratum. The likelihood can then be given as

L(𝚲,𝚯,𝝁Y |2) ∝
K∏

x=1

K∏
z=1
𝜆

nzx|1
zx ⋅

K∏
x=1

K∏
z=1

( K∑
y=1
𝜃xy𝜆zy𝜇y|2

)nzx|2
⋅

K∏
x

( K∑
y=1
𝜃xy𝜇y|2

)mx|2
.

Similarly to Tenenbein (1972), re-parameterization and the invariance property of the MLE lead to
the result. Since 𝜃xy𝜇y|2 = 𝜂yx𝜇x|2, we have

∑K
y=1𝜃xy𝜇y|2 =

(∑K
y=1𝜂yx

)
𝜇x|2 = 𝜇x|2 for the third term

above, and
∑K

y=1𝜆zy𝜃xy𝜇y|2 =
(∑K

y=1𝜆zy𝜂yx

)
𝜇x|2 = 𝜓zx𝜇x|2 for the second term. Since the first two

terms of the likelihood refers to B = 1 and B = 2 separately, the MLEs of the parameters (𝚲, 𝚿) are
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given by the corresponding subsample proportions of (Z, X), that is, the matrix method estimator
of (𝚲, 𝚿). Next, by the invariance of the MLE, the matrix method estimator Ĥ = 𝚲̂−1𝚿̂ is the MLE
of the matrix of 𝜂, and 𝝁̂Y |2 = Ĥ𝝁X|2 is the MLE of 𝝁Y |2. This completes the proof. ■

APPENDIX B. BAUM–WELCH ALGORITHM FOR HMM

The Baum–Welch algorithm is a special case of the EM algorithm, which uses the
forward–backward algorithm in the E-step. Below we outline the algorithm in terms of the sam-
ple units, the notation of which is simpler. In practice, the different units are grouped by distinct
paths, which constitute the sufficient statistic. Given sample unit i at time t, let

𝛼i,t(k) = Pr(Xi,1∶t,Zi,1∶t,Yi,t|Ai)
𝛽i,t(k) = Pr(Xi,t+1∶T ,Zi,t+1∶T|Yi,t,Xi,t,Ai)

be the parameters in the forward–backward algorithm respectively. The forward sequence 𝛼i,1∶T
is given by

𝛼i,1(k) = Pr(Yi,1 = k|Ai)Pr(Xi,1 = xi,1|Yi,1 = k,Ai)Pr (Zi,1 = zi,1|Yi,1 = k,Ai)𝛿i,1

for t = 1, and the recursive formula

𝛼i,t(k) =
K∑

j=1
𝛼i,t−1(j)Pr(Yi,t = k|Yi,t−1 = j,Ai)

Pr(Xi,t = xi,t|Yi,t = k,Yi,t−1 = j,Xi,t−1 = xi,t−1,Ai)
Pr (Zi,t = zi,t|Yi,t = k,Ai)𝛿i,t

for 2 ≤ t ≤ T. The backward sequence is given by

𝛽i,T(k) = 1

𝛽i,t(k) =
K∑

l=1
𝛽i,t+1(l)Pr(Yi,t+1 = l|Yi,t = k,Ai)

Pr(Xi,t+1 = xt+1|Yi,t+1 = l,Yi,t = k,Xi,t = xi,t,Ai)
Pr(Zi,t+1 = zi,t+1|Yi,t+1 = l,Ai).

For all i ∈ U, t = 1,… ,T and k, l = 1,… ,K, one obtains the estimated probabilities

Pr(Yi,t = k|Ai,Xi,1∶T ,Zi,1∶T) =
𝛼i,t(k)𝛽i,t(k)

Pr(Xi,1∶T ,Zi,1∶T)
Pr(Yi,t−1 = k,Yi,t = l|Xi,1∶T ,Zi,1∶T ,Ai) = 𝛼i,t−1(k)Pr(Yi,t = l|Yi,t−1 = l,Ai)
Pr(Xi,t|Yi,t = l,Yi,t−1 = k,Xi,t−1,Ai)

Pr (Zi,t|Yi,t = l,Ai)𝛿i,t𝛽i,t(l) ×
(
Pr(Xi,1∶T ,Zi,1∶T|Ai)

)−1
.
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