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a b s t r a c t

In this paper we study the linear mean-field backward stochastic differential equations (mean-field
BSDE) of the form⎧⎪⎪⎨⎪⎪⎩

dY (t) = −[α1(t)Y (t) + β1(t)Z(t) +
∫
R0
η1(t, ζ )K (t, ζ )ν(dζ ) + α2(t)E[Y (t)]

+β2(t)E[Z(t)] +
∫
R0
η2(t, ζ )E[K (t, ζ )]ν(dζ ) + γ (t)]dt

+Z(t)dB(t) +
∫
R0

K (t, ζ )Ñ(dt, dζ ), t ∈ [0, T ] ,
Y (T ) = ξ .

(0.1)

where (Y , Z, K ) is the unknown solution triplet, B is a Brownian motion, Ñ is a compensated Poisson
random measure, independent of B. We prove the existence and uniqueness of the solution triplet
(Y , Z, K ) of such systems. Then we give an explicit formula for the first component Y (t) by using
partial Malliavin derivatives. To illustrate our result we apply them to study a mean-field recursive
utility optimization problem in finance.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In this paper, we are interested in the following linear mean-
ield BSDE in the unknown triplet (Y , Z, K ) ∈ S2 × L2 × H2

ν :

dY (t) = −[α1(t)Y (t) + β1(t)Z(t) +
∫
R0
η1(t, ζ )K (t, ζ )ν(dζ )

+α2(t)E[Y (t)]
+β2(t)E[Z(t)] +

∫
R0
η2(t, ζ )E[K (t, ζ )]ν(dζ ) + γ (t)]dt

+ Z(t)dB(t) +
∫
R0
K (t, ζ )Ñ(dt, dζ ), t ∈ [0, T ] ,

Y (T ) = ξ .

(1.1)

ere B(t) = B(t, ω) and Ñ(dt, dζ ) = N(dt, dζ ) − ν(dζ )dt are
Brownian motion and compensated Poisson random measure,
respectively, on a filtered probability space (Ω,F,F = {Ft}t≥0,P)
and ν is the Lévy measure of N . We assume that B(t) and N(dt, dζ )
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are independent and that
∫
R0
ζ 2ν(dζ ) < ∞. The spaces S2, L2,H2

ν ,
he random variable ξ and the coefficients (αi, βi, ηi)i=1,2 and γ
ill be specified later. We obtain the explicit representation for
he solution triplet (Y , Z, K ). To this end, we introduce the con-
ept of partial Malliavin derivatives with respect to the Brownian
otion B and with respect to the Poisson random measure N .
This explicit solution representation is then applied to solve an

ptimal consumption rate problem for the following mean-field
dditive recursive utility described by the following mean-field
inear BSDE

dY (t) = −[α1(t)Y (t) + β1(t)Z(t) +
∫
R0
η1(t, ζ )K (t, ζ )ν(dζ )

+α2(t)E[Y (t)]
+β2(t)E[Z(t)] +

∫
R0
η2(t, ζ )E[K (t, ζ )]ν(dζ ) − c(t)]dt

+ Z(t)dB(t) +
∫
R0
K (t, ζ )Ñ(dt, dζ ),

Y (T ) = ξ .

n important idea to solve the optimization problem is to rewrite
he above equation as

(t) = EFt [ξΓ (t, T ) +
∫ T
t Γ (t, s){(α2(s), β2(s), η2(s, ζ ))V (s, ζ )

− c(s)}ds], t ∈ [0, T ] , P-a.s.,
here Γ and V will be specified later.

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Here are some motivation and background for our study. The
system (1.1) can be considered as the limit of the following
systems of interacting particles⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dY i,n(t) = −[α1(t)Y i,n(t) + β1(t)Z i,n(t)
+
∫
R0
η1(t, ζ )K i,n(t, ζ )ν(dζ )

+α2(t) 1n
∑n

l=1 Y
j,n(t) + β2(t) 1n

∑n
l=1 Z

j,n(t)+∫
R0
η2(t, ζ ) 1n

∑n
l=1 K

j,n(t, ζ )ν(dζ ) + γ (t)]dt

+ Z i,n(t)dBi(t) +
∫
R0
K i,n(t, ζ )Ñ i(dt, dζ ), t ∈ [0, T ] ,

1 ≤ i ≤ n,

Y i,n(T ) = ξ,

as the number of particles n goes to infinity assuming that all Bi

and Ñ i, i = 1, 2, . . ., are independent.
Let us mention that the general well-posedness of mean-field

BSDE in the triple (Y , Z, K ) ∈ S2 × L2 × H2
ν of the form

Y (t) = ξ +

∫ T

t
E′

[f (s, Y ′(s), Z ′(s), K ′(s, ·), Y (s), Z(s), K (s, ·))]ds

−

∫ T

t
Z(s)dB(s) −

∫ T

t

∫
R0

K (s, ζ )Ñ(dt, dζ ),

where

E′
[f (s, Y ′(s), Z ′(s), K ′(s, ·), Y (s), Z(s), K (s, ·))](ω)

= E′
[f (s, Y ′(s), Z ′(s), K ′(s, ·), Y (s, ω), Z(s, ω), K (s, ω, ·))]

=

∫
Ω

f (s, ω′, ω, Y (s, ω′), Z(s, ω′), K (s, ω′, ·), Y (s, ω), Z(s, ω),

K (s, ω, ·))P(dω′),

was studied by Li and Min [1]. We refer also to Buckdahn et al. [2]
for mean-field BSDE without jumps.

Mean-field BSDE’s also represent interesting models in fi-
nance, for example models of risk measures and recursive util-
ities. For example let us consider a class of recursive utilities by
means of mean-field BSDE with jumps, for a concave driver f , as
follows⎧⎪⎨⎪⎩
dY (t) = −f (t, Y (t), Z(t), K (t, ·),E[Y (t)],E[Z(t)],E[K (t, ·)], c(t))dt

+Z(t)dB(t) +
∫
R0

K (t, ζ )Ñ(dt, dζ ),

Y (T ) = ξ .

(1.2)

The process c(t) ≥ 0 is the consumption rate. Then the
corresponding recursive utility Uf (c) of the consumption c is the
value Y (0) at t = 0

Y (0) = ξ +
∫ T
0 f (s, Y (s), Z(s), K (s, ·),E[Y (s)],E[Z(s)],

E[K (s, ·)], c(s))ds

−
∫ T
0 Z(s)dB(s) −

∫ T
0

∫
R0
K (s, ζ )Ñ(ds, dζ ).

It is interesting to find the consumption rate ĉ which maximizes
the mean-field recursive utility Uf (c) = Y (0), which will be done
in this work.

This problem of finding the optimal consumption rate in the
above context can be viewed as a generalization to mean-field
(and jumps) of the classical recursive utility of Duffie and Ep-
stein [3]. See also Duffie and Zin [4] and Kreps and Parteus [5].
Standard BSDE’s (without mean-field terms) were first introduced
in their linear form by Bismut [6] in connection with a stochastic
version of the Pontryagin maximum principle. Subsequently, this
theory was extended by Pardoux and Peng [7] to the nonlinear
case. The first work applying BSDE to finance was the paper by

El Karoui et al. [8] where they studied several applications to

2

option pricing and recursive utilities. All the above mentioned
works are in the Brownian motion framework (continuous case).
The discontinuous case is more involved, especially concerning
the comparison principle which requires additional assumptions.
Tang and Li [9] proved an existence and uniqueness result in the
case of a natural filtration associated with a Brownian motion and
a Poisson random measure.

Here is the organization of the paper. In Section 2, we intro-
duce the partial Malliavin derivatives with respect to the Brow-
nian motion B and with respect to Poisson random measure N .
Section 3 establishes existence and uniqueness of a solution to a
mean-field BSDE with jumps. Moreover, we give a closed formula
for linear mean-field BSDE with jumps. Finally, in Section 4 we
solve a mean-field recursive utility optimization problem.

2. Partial malliavin derivatives

In this section we give a brief account of the partial Malli-
avin derivatives with respect to the Brownian motion B and
with respect to compensated Poisson random measures N . These
derivatives will be used when we obtain the explicit solution
formula in the linear case.

Let (Ω,F,P) be a probability space equipped with a filtration
{Ft}0≤t≤T . The expectation on this probability space is denoted by
E and the conditional expectation E(·|Ft ) is denoted by EFt (·) =

E(·|Ft ). Let (B(t), 0 ≤ t ≤ T ) be a Brownian motion. Let
(N([0, t]),B), 0 ≤ t ≤ T ,B ⊆ R0 = R − {0} ∈ B(R) be a Poisson
random measure. Denote by ν(B) its associated Lévy measure so
that E[N([0, t]),B] = ν(B)t . Let Ñ(·) denote the compensated
Poisson measure of N defined by Ñ(dt, dζ ) := N(dt, dζ )−ν(dζ )dt .
We assume that Ft = σ (B(s),N([0, s]),B) , 0 ≤ s ≤ t ,B ∈ B(R0).
Any square integrable functional F ∈ L2(Ω,F,P) = L2(P) can be
written as

F =

∞∑
m,n=0

Im,n(fm,n) , (2.1)

where fm,n(s, t, ζ ) = fm,n(s1, . . . , sm; t1, ζ1, . . . , tn , ζn) is a func-
tion of m+n variables which is symmetric in the first m variables
s = (s1, . . . , sn) and the last n-variables (t, ζ ) = ((t1, ζ1), . . . ,
(tn, ζn)) satisfying∫

[0,T ]m+n×Rn |fm,n(s, t, ζ )|2ds1 · · · dsmdt1 · · · dtnν(dζ1) · · · ν(dζn) < ∞

(2.2)

and

Im,n(fm,n) =
∫

[0,T ]m+n×Rn fm,n(s, t, ζ )dB(s1)

· · · dB(sm)Ñ(dt1, dζ1) · · · Ñ(dtn, dζn) (2.3)

is the mixed multiple integral. It is easy to see that

E(F 2) =

∞∑
m,n=1

m!n!
∫

[0,T ]m+n×Rn |fm,n(s, t, ζ )|2ds1 · · · dsmdt1

· · · dtnν(dζ1) · · · ν(dζn) . (2.4)

We define the Malliavin derivative as D = (Dt ,Dt,ζ ) (where
Dt denotes the partial Malliavin derivative with respect to the
Brownian motion and Dt,ζ denotes the partialMalliavin derivative
with respect to the compensated Poisson process) as follows

Definition 2.1. We say that F is in D1,2 if
∞∑

m,n=1

(m + n)m!n!
∫

[0,T ]m+n×Rn
|f (s, t, ζ )|2ds1 · · · dsmdt1
· · · dtnν(dζ1) · · · ν(dζn) < ∞ . (2.5)
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r Im,n(fm,n) = mIm−1,n(fm,n(r, ·, ·, ·))
=
∫

[0,T ]m+n−1×Rn fm,n(s1, . . . , sm−1, r; t, ζ )

dB(s1) · · · dB(sm−1)Ñ(dt1, dζ1) · · · Ñ(dtn, dζn) ; (2.6)

nd

t,ζ Im,n(fm,n) = nIm,n−1(fm,n(·, ·, (t, ζ )))
= n

∫
[0,T ]m+n−1×Rn−1 fm,n(s1, . . . , sm; t1, ζ1, . . . , tn−1, ζn−1, t, ζ )

dB(s1) · · · dB(sm)Ñ(dt1, dζ1) · · · Ñ(dtn−1, dζn−1) . (2.7)

or more details we refer to Di Nunno et al. [10], Section 3.1,
ection 12.1 and Section 12.5.

The (classical) Malliavin derivative Dt was originally intro-
uced by Malliavin as a stochastic calculus of variation used
o prove results about smoothness of densities of solutions of
tochastic differential equations in Rn driven by Brownian mo-
ion. The domain of definition of the Malliavin derivative is
he subspace D1,2 of L2(P). We refer to Nualart [11], Di Nunno
t al. [10], and to Hu [12] for information about the Malliavin
erivative Dt for Brownian motion and, more generally, for Lévy
rocesses.
We give some properties of the Malliavin derivative, referring

o Di Nunno et al. [10] Chapters 3, 12, for proofs and more details:

(i) (Chain rule I) If F ∈ L2(FT ,P) and ϕ ∈ C1(R), then

Dt (ϕ(F )) = ϕ′(F )DtF , t ∈ [0, T ]. (2.8)

(ii) (Chain rule II) If G ∈ L2(FT ,P) and ϕ ∈ C1(R), then

Dt,ζ (ϕ(G)) = ϕ(G + Dt,ζG) − ϕ(G), (t, ζ ) ∈ [0, T ] × R0.

(2.9)

In particular, note the product rule for jumps:

Dt,ζ (FG) = FDt,ζG + GDt,ζ F + (Dt,ζ F )(Dt,ζG). (2.10)

(iii) Suppose that F ∈ L2(Ft ,P). Then DrF = Dr,ζ F = 0 for all
r < t, ζ ∈ R0.

(iv) Suppose ϕ ∈ L2(λ×P) is adapted and that ψ ∈ L2(λ×ν×P)
is predictable. Then

Dr (
∫ T

0
ϕ(t)dt) =

∫ T

r
Drϕ(t)dt

Dr (
∫ T

0
ϕ(t)dB(t)) =

∫ T

r
Drϕ(t)dB(t) + ϕ(r)

Dr,z (
∫ T

0

∫
R0

ψ(t, ζ )ν(dζ )dt) =

∫ T

r

∫
R0

Dr,zψ(t, ζ )ν(dζ )dt

Dr,z (
∫ T

0

∫
R0

ψ(t, ζ )Ñ(dt, dζ )) =

∫ T

r

∫
R0

Dr,zψ(t, ζ )Ñ(dt, dζ ) + ψ(r, z).

(v) Representation of BSDE solution:
Suppose that (p(t), q(t), r(t, ζ )) solves a BSDE of the form⎧⎪⎨⎪⎩
dp(t) = −g(t, p(t), q(t), r(t, ·))dt + q(t)dB(t)

+
∫
R0

r(t, ζ )Ñ(dt, dζ ), 0 ≤ t ≤ T ,

p(T ) = F ∈ L2(FT , P).

Then

q(t) = Dt−p(t) (:= lim
ϵ→0

Dt−ϵp(t))

and

r(t, ζ ) = D − p(t).
t ,ζ

3

3. Mean-field BSDE’s

3.1. Existence and uniqueness of the solution

We define the following spaces for the solution triplet:

• S2 consists of the F-adapted càdlàg processes Y : Ω ×

[0, T ] → R, equipped with the norm

∥ Y ∥
2
S2 := E[ sup

t∈[0,T ]

|Y (t)|2] < ∞.

• L2 consists of the F-predictable processes Z : Ω × [0, T ] →

R, with

∥ Z ∥
2
L2 := E[

∫ T
0 |Z(t)|2 dt] < ∞.

• L2ν consists of Borel functions K : R0 → R, such that

∥ K ∥
2
L2ν

:=
∫
R0

|K (ζ )|2ν(dζ ) < ∞.

• H2
ν consists of F-predictable processes K : Ω×[0, T ]×R0 →

R, such that for any fixed t ∈ [0, T ], K (t, ζ ) is any element
in L2ν and

∥ K ∥
2
H2
ν
:= E[

∫ T
0

∫
R0
K (t, ζ )2ν(dζ )dt] < ∞.

• L2(Ω,FT ) is the set of square integrable random variables
which are FT -measurable.

Let d be a natural number and let

f : Ω × [0, T ] × R2
× L2ν × Rd

→ R,

be a Ft-progressively measurable function. We consider the fol-
lowing mean-field BSDE⎧⎪⎪⎪⎨⎪⎪⎪⎩
dY (t) = −f (t, Y (t), Z(t), K (t, ·),E[ϕ(Y (t), Z(t), K (t, ·))])dt

+Z(t)dB(t)

+
∫
R0
K (t, ζ )Ñ(dt, dζ ),

Y (T ) = ξ .

(3.1)

Definition 3.1. A process

(Y , Z, K ) ∈ S2 × L2 × H2
ν

is said to be a solution triplet to the mean-field BSDE (3.1) with
terminal condition Y (T ) = ξ if∫ T
0 |f (s, Y (s), Z(s), K (s, ·),E[ϕ(Y (s), Z(s), K (s, ·))])| ds < +∞ P-a.s.,

and

Y (t) = ξ +
∫ T
t f (s, Y (s), Z(s), K (s, ·),E[ϕ(Y (t), Z(t), K (t, ·))])ds

−
∫ T
t Z(s)dB(s) −

∫ T
t

∫
R0
K (s, ζ )Ñ(ds, dζ ), t ∈ [0, T ] .

(3.2)

where ξ ∈ L2(Ω,FT ) is called the terminal condition and f is the
generator.

To obtain the existence and uniqueness of a solution we make
the following set of assumptions.

Assumption 3.2. For the driver f we assume

(a) f is square integrable with respect to t:

E[
∫ T

|f (t, 0, 0, 0, 0)|2dt] < ∞.
0
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(b) There exists a constant C > 0, such that for all t ∈ [0, T ]
and for all y1, y2, z1, z2 ∈ R, k1, k2 ∈ L2(ν) and µ1, µ2 ∈ Rd,

|f (t, y1, z1, k1, µ1) − f (t, y2, z2, k2, µ2)|
≤ C(|y1 − y2| + |z1 − z2| + ∥k1 − k2∥L2(ν) + |µ1 − µ2|),

P-a.s.

For the mean functional, we assume

(c) For each t ∈ [0, T ], the (vector valued) function ϕ : Ω ×

[0, T ] × R2
× L2ν → Rd is assumed to be continuously

differentiable with bounded partial derivatives, such that

|
∂ϕ

∂y (y, z, k)| + |
∂ϕ

∂z (y, z, k)| + ∥∇kϕ(y, z, k)∥L2ν
≤ C ′,

for a given constant C ′ > 0 and ∇kϕ(y, z, k) is the Fréchet
derivative of ϕ with respect to k.

The following result is slightly different from what is known
in the literature:

Theorem 3.3. Under Assumption 3.2, the mean-field BSDE (3.2)
as a unique solution.

The proof is given in Appendix.

emark 3.4. In the above theorem if we take d = 3, ϕi(x1, x2,
x3) = xi for i = 1, 2, 3, we see that the following mean-field
BSDE has a unique solution⎧⎪⎨⎪⎩
dY (t) = −f (t, Y (t), Z(t), K (t, ·),E[Y (t)],E[Z(t)],E[K (t, ·)])dt

+ Z(t)dB(t) +
∫
R0
K (t, ζ )Ñ(dt, dζ ), t ∈ [0, T ] ,

Y (T ) = ξ,

where f : Ω×[0, T ]×R2
×L2ν×R3

→ R satisfies Assumption 3.2.

3.2. Linear mean-field BSDE

In this section, we shall find the closed formula corresponding
to the linear mean-field BSDE of the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dY (t) = −[α1(t)Y (t) + β1(t)Z(t) +
∫
R0
η1(t, ζ )K (t, ζ )ν(dζ )

+α2(t)E[Y (t)]
+β2(t)E[Z(t)] +

∫
R0
η2(t, ζ )E[K (t, ζ )]ν(dζ ) + γ (t)]dt

+ Z(t)dB(t) +
∫
R0
K (t, ζ )Ñ(dt, dζ ), t ∈ [0, T ] ,

Y (T ) = ξ,

(3.3)

where the coefficients α1(t), α2(t), β1(t), β2(t), η1(t, ·) > −1,
η2(t, ·) are given deterministic functions; γ (t) is a given F-adapted
process and ξ ∈ L2 (Ω,FT ) is a given FT -measurable random
variable. By the solution formula for standard linear BSDE, the
solution of the above linear mean-field BSDE (3.3) can be written
as follows.

Y (t) = EFt [ξΓ (t, T ) +
∫ T
t Γ (t, s){α2(s)E[Y (s)] + β2(s)E[Z(s)]

+
∫
R0
η2(s, ζ )E[K (s, ζ )]ν(dζ ) + γ (s)}ds], t ∈ [0, T ] ,

(3.4)

where Γ (t, s) is the solution of the following linear SDE⎧⎪⎨⎪⎩
dΓ (t, s) = Γ (t, s)[α1(t)dt + β1(t)dB(t) +

∫
R0
η1(t, ζ )Ñ(dt, dζ )],

s ∈ [t, T ] ,

Γ (t, t) = 1 .

(3.5)
4

Since we are in one dimension, Eq. (3.5) can be solved explicitly
and the solution is given by

Γ (t, s) = exp {
∫ s
t β1(r)dB(r) +

∫ s
t (α1(r) −

1
2 (β1(r))2)dr

+
∫ s
t

∫
R0
(ln(1 + η1(r, ζ )) − η1(r, ζ ))ν(dζ )dr

+
∫ s
t

∫
R0

ln(1 + η1(r, ζ ))Ñ(dr, dζ )}.

otice that

Γ (t, s) = exp{
∫ s
t α1(r)dr} . (3.6)

o solve (3.4) we take the expectation on both sides of (3.4). De-
oting Y (t) := E[Y (t)], Z(t) := E[Z(t)], and K (t, ζ ) := E[K (t, ζ )],

we obtain

Y (t) = E[ξΓ (t, T ) +
∫ T
t Γ (t, s){α2(s)Y (s) + β2(s)Z(s)

+
∫
R0
η2(s, ζ )K (s, ζ )ν(dζ ) + γ (s)}ds], t ∈ [0, T ] .

(3.7)

o find equations for Z(t) and K (t, ζ ) we write the original
Eq. (3.3) as a forward one:

Y (t) = Y (0) +
∫ t
0 [α1(s)Y (s) + α2(s)Y (s) + β1(s)Z(s) + β2(s)Z(s)

+
∫
R0
(η1(s, ζ )K (s, ζ ) + η2(s, ζ )K (s, ζ ))ν(dζ ) + γ (s)]ds

+
∫ t
0 Z(s)dB(s) +

∫ t
0

∫
R0
K (s, ζ )Ñ(ds, dζ ), t ∈ [0, T ] ,

for some deterministic initial value Y (0). We compute the Malli-
avin derivative of Y (t) for all r < t as follows:

DrY (t) =
∫ t
r Dr [α1(s)Y (s) + α2(s)Y (s) + β1(s)Z(s) + β2(s)Z(s)

+
∫
R0
(η1(s, ζ )K (s, ζ ) + η2(s, ζ )K (s, ζ ))ν(dζ ) + γ (s)]ds

+
∫ t
r DrZ(s)dB(s) + Z(r).

etting r → t−, we get that Z(t) = Dt−Y (t), which we will
enote by DtY (t) for simplicity. Thus, to find Z(t) we only need
o compute DtY (t). We shall use the expression (3.4) for Y (t) and
he identity

tEFt [F ] = EFt [DtF ].

We also note by the chain rule that DtΓ (t, T ) = Γ (t, T )β1(t).
Then

Z(t) = EFt [DtξΓ (t, T ) + ξΓ (t, T )β1(t) +
∫ T
t Γ (t, s)β1(t){α2(s)Y (s)

+ β2(s)Z(s) +
∫
R0
η2(s, ζ )K (s, ζ )ν(dζ ) + γ (s)}ds] .

Taking the expectation, we have

Z(t) = E[DtξΓ (t, T ) + β1(t)E(ξΓ (t, T )) +
∫ T
t E(Γ (t, s))β1(t){α2(s)Y (s)

+ β2(s)Z(s) +
∫
R0
η2(s, ζ )K (s, ζ )ν(dζ ) + γ (s)}ds]. (3.8)

Similarly, we have K (t, ζ ) = Dt,ζY (t) and (again by the chain rule)
Dt,ζΓ (t, s) = η1(t, s)Γ (t, s), and this yields (keeping in mind the
roduct rule for jumps (2.10))

(t, ζ ) = EFt [Dt,ζ ξΓ (t, T ) + ξΓ (t, T )η1(t, ζ )
+ Dt,ζ ξΓ (t, T )η1(t, ζ )

+
∫ T
t Γ (t, s)η1(t, ζ ){α2(s)Y (s) + β2(s)Z(s)

+
∫
R0
η2(s, ζ )K (s, ζ )ν(dζ ) + γ (s)}ds] .

aking the expectation yields

K (t, ζ ) =E[Dt,ζ ξΓ (t, T ) + ξΓ (t, T )η1(t, ζ ) + Dt,ζ ξΓ (t, T )η1(t, ζ )

+
∫ T
t Γ (t, s)η1(t, ζ ){α2(s)Y (s)

+
∫
R0
η2(s, ζ )K (s, ζ )ν(dζ ) + γ (s)}ds] . (3.9)
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qs. (3.7), (3.8) and (3.9) can be used to obtain Ȳ , Z̄, K̄ . In fact, we
et

=

⎛⎝ V1(t)
V2(t)

V3(t, ζ )

⎞⎠ =

⎛⎜⎝ Y (t)

Z(t)

K (t, ζ )

⎞⎟⎠ ∈ L2 × L2 × H2
ν ,

and (denoting A(t, s) = exp
{∫ s

t α1(u)du
}
)

A0(t, s, ζ ) =
(
A0
ij(t, s, ζ )

)
1≤i,j≤3

(3.10)

=

⎛⎝ A(t, s)α2(s) A(t, s)β2(s) A(t, s)η2(s, ζ )
A(t, s)β1(t)α2(s) A(t, s)β1(t)β2(s) A(t, s)β1(t)η2(s, ζ )

A(t, s)η1(t, ζ )α2(s) A(t, s)η1(t, ζ )β2(s) A(t, s)η1(t, ζ )η2(s, ζ )

⎞⎠ .

Define a mapping A from V = (V1, V2, V3)T ∈ L2 ×L2 ×H2
ν to itself

by

(AV )i(t, ζ ) =
∑2

j=1

∫ T
t A0

ij(t, s)Vj(s)ds+
∫ T
t

∫
R0
A0
i3(t, s, ζ )V3(s, ζ )ν(dζ ) ds.

(3.11)

Then (3.7), (3.8) and (3.9) can be written as

V = F + AV , (3.12)

where

F = F (t, ζ )

=

⎛⎜⎝ E(ξΓ (t, T )) +
∫ T
t γ (s)ds

E[DtξΓ (t, T ) + β1(t)ξΓ (t, T )] +
∫ T
t γ (s)ds

E[Dt,ζ ξΓ (t, T ) + ξΓ (t, T )η1(t, ζ ) + Dt,ζ ξΓ (t, T )η1(t, ζ )] +
∫ T
t γ (s)ds

⎞⎟⎠ .

(3.13)

Note that the operator norm of A, ∥A∥, is less than 1 if t is close
enough to T . Therefore there exists δ > 0 such that ∥A∥ < 1 if
we restrict the operator to the interval [T − δ, T ] for some δ > 0
small enough. In this case the linear equation (3.12) can now be
solved easily as follows:

(I − A)V = F ,

or

V = (I − A)−1F =
∑

∞

n=0A
nF ; t ∈ [T − δ, T ]. (3.14)

Next, using V (T − δ) as the terminal value of the corresponding
BSDE in the interval [T − 2δ, T − δ] and repeating the argument
above, we find that there exists a solution V of the BSDE in this
interval, given by the equation

V (t, ζ ) = V (T − δ, ζ ) + AT−δ(t, ·, ζ )V (·); T − 2δ ≤ t ≤ T − δ.

(3.15)

Proceeding by induction we end up with a solution on the whole
interval [0, T ]. We summarize this as follows:

Theorem 3.5 (Closed Formula). Assume that α1(t), α2(t), β1(t),
β2(t), η1(t, ·), η2(t, ·) are given bounded deterministic functions and
that γ (t) is F-adapted and ξ ∈ L2 (Ω,FT ).

• Then the first component Y (t) of the solution triplet (Y , Z, K )
of the linear mean-field BSDE (3.3) can be written on its closed
formula as follows

Y (t)=EFt [ξΓ (t, T )+
∫ T
t Γ (t, s){(α2(s), β2(s), η2(s, ζ ))V (s, ζ )

+ γ (s)}ds], t ∈ [0, T ] , P-a.s., (3.16)

where
Γ (t, s) = exp {

∫ s
t β1(r)dB(r) +

∫ s
t (α1(r) −

1
2 (β1(r))2)dr

+
∫ s
t

∫
R0
(ln(1 + η1(r, ζ )) − η1(r, ζ ))ν(dζ )dr∫ s∫ ˜
+ t R0

ln(1 + η1(r, ζ ))N(dr, dζ )}.

5

and, inductively,

V (t, ζ ) = V (T − kδ, ζ ) + AT−kδ(t, ·, ζ )V (·),
T − (k + 1)δ ≤ t ≤ T − kδ, k = 0, 1, 2, . . .

(3.17)

Or, equivalently,

V (t, ζ ) =
∑

∞

n=0(A
T−kδ(t, ·, ζ ))nV (T − kδ, ·),

T − (k + 1)δ ≤ t ≤ T − kδ, k = 0, 1, 2, . . .

(3.18)

where AS, S > 0 is given by (3.10) and V (T , ζ ) = F (T , ζ ).
• The second component Z(t) = DtY (t) is given by

Z(t) = EFt [DtξΓ (t, T ) + β1(t)ξΓ (t.T )ξΓ (t, T )

+ β1(t)
∫ T
t Γ (t, s){(α2(s), β2(s), η2(s, ζ ))V (s, ζ )+γ (s)}ds],

t ∈ [0, T ] , P-a.s., (3.19)

• The third component K (t, ζ ) = Dt,ζY (t) is given by

K (t, ζ ) = EFt [Γ (t, ζ ){η1(t, ζ )ξ + Dt,ζ ξ + η1(t)Dt,ζ ξ}

+ η1(t)
∫ T
t Γ (t, s){(α2(s), β2(s), η2(s, ζ ))V (s, ζ ) + γ (s)}ds],

t ∈ [0, T ] , P-a.s., (3.20)

. Optimization of mean-field recursive utility

We consider in this section a mean-field recursive utility pro-
ess Y (t), defined as a part of the solution of the following
ean-field BSDE

dY (t) = −g(t, Y (t), Z(t), K (t, ·),E[Y (t)],E[Z(t)],E[K (t, ·)], C(t))dt

+ Z(t)dB(t) +
∫
R0

K (t, ζ )Ñ(dt, dζ ), t ∈ [0, T ] ,

Y (T ) = ξ .

We denote by U , the set of all consumption processes. For
ach C(t) ∈ U , the driver g : Ω × [0, T ] × R2

× L2ν × R2
×

L2ν × U → R and the terminal value ξ ∈ L2(Ω,FT ). Suppose
hat (y, z, k, y, z, k, C) ↦→ g(t, y, z, k, ȳ, z, k, C) is concave for each
t ∈ [0, T ]. The driver

(t, Y (t), Z(t), K (t, ·),E[Y (t)],E[Z(t)],E[K (t, ·)], C(t))

represents the instantaneous utility at time t of the consumption
rate C(t) ≥ 0, such that

E[
∫ T
0 |g(t, 0, 0, 0, 0, 0, 0, C(t))|2dt] < ∞, for all t ∈ [0, T ] .

We call a process C(t) a consumption rate process if C(t) is
predictable and C(t) ≥ 0 for each t P-a.s. Then Y (t) = Yg (0) is
called a mean-field recursive utility process of the consumption
C(·), and the number U(C) = Yg (0) is called the total mean-
field recursive utility of C(·). This is an extension to mean-field
(and jumps) of the classical recursive utility concept of Duffie and
Epstein [3]. See also Duffie and Zin [4], Kreps and Parteus [5], El
Karoui et al. [8]. Finding the consumption rate Ĉ which maximizes
its total mean-field recursive utility is an interesting application
to finance of mean-field stochastic control theory.

4.1. Optimization problem

We discuss now the optimization problem related to the re-
cursive utility. The wealth process X(t) = XC(t) is given by the
following linear SDE⎧⎨⎩
dX(t) = [b0(t) − C(t)]X(t)dt + σ0(t)X(t)dB(t)

+
∫
R0
γ0(t, ζ )X(t)Ñ(dt, dζ ), t ∈ [0, T ], (4.1)
X(0) = x0,
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here the initial value x0 > 0, and the functions b0, σ0, γ0 are
assumed to be deterministic functions, C is our relative consump-
tion rate at time t , assumed to be a càdlàg F-adapted process. We
ssume that

∫ T
0 C(t)dt < ∞ P-a.s. This implies that our wealth

rocess X(t) > 0 for all t P-a.s. Define the recursive utility process
(t) = YC(t) by the linear mean-field BSDE in the unknown
riplet (Y , Z, K ) = (YC, ZC, KC) ∈ S2 × L2 × H2

ν , by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dY (t) = −[α0(t)Y (t) + α1(t)E[Y (t)] + β0(t)Z(t)
+β1(t)E[Z(t)]

+
∫
R0

{η0(t, ζ )K (t, ζ ) + η1(t, ζ )E[K (t, ζ )]}ν(dζ )
+ ln(C(t)X(t))]dt

+ Z(t)dB(t) +
∫
R0
K (t, ζ )Ñ(dt, dζ ), t ∈ [0, T ] ,

Y (T ) = θX(T ),

(4.2)

where θ = θ (ω) > 0 is in L2(Ω,FT ) and α0, α1, β0, β1, η0, η1 are
given deterministic functions with η0(t, ζ ), η1(t, ζ ) > −1.

From the closed formula (3.20), the first component Y (t) of the
solution triplet of Eq. (4.2) can be written as

Y (t) = EFt [θX(T )Γ (t, T )

+

∫ T

t
Γ (t, s){(α1(s), β1(s), η1(s, ζ ))V (s, ζ )

+ ln(C(s)X(s))}ds], t ∈ [0, T ] ,

where

Γ (t, s) = exp {
∫ s
t β0(r)dB(r) +

∫ s
t (α0(r) −

1
2 (β0(r))2)dr

+
∫ s
t

∫
R0
(ln(1 + η0(r, ζ )) − η0(r, ζ ))ν(dζ )dr

+
∫ s
t

∫
R0

ln(1 + η0(r, ζ ))Ñ(dr, dζ )}.

nd

=

∞∑
n=0

AnF .

Wewant to maximize the recursive utility of the consumption,
hich is given by

(0) = E[Y (0)]

= E[θX(T )Γ (0, T ) +

∫ T

0
Γ (0, s){(α1(s), β1(s), η1(s, ζ ))V (s, ζ )

+ ln(C(s)X(s))}ds]. (4.3)

Note that we can write

= F (t, ζ ) = F0 + (
∫ T

t
γ (s)ds)F1,

here

0 =

⎛⎝ E[ξΓ (t, T )]
E[DtξΓ (t, T ) + β1(t)ξΓ (t, T )]

E[Dt,ζ ξΓ (t, T ) + ξΓ (t, T )η1(t, ζ ) + Dt,ζ ξΓ (t, T )η1(t, ζ )]

⎞⎠ ,
nd

1 =

(1
1
1

)
.

his gives

=

∞∑
n=0

AnF = V0 + (
∫ T

t
γ (s)ds)G,

here

0 =

∞∑
AnF0 and G =

∞∑
AnF1.
n=0 n=0

6

ence

α1, β1, η1)V = (α1, β1, η1)V0 + (
∫ T

t
γ (s)ds)(α1, β1, η1)G,

nd∫ T

0
Γ (0, s)(α1(s), β1(s), η1(s, ζ ))V (s, ζ )ds

=

∫ T

0
Γ (0, s)(α1(s), β1(s), η1(s, ζ ))V0(s)ds

+

∫ T

0
Γ (0, s)(α1(s), β1(s), η1(s, ζ ))(

∫ T

s
γ (r)dr)G(s)ds.

y change of variables, we get∫ T

0
Γ (0, s)(α1(s), β1(s), η1(s, ζ ))V (s, ζ )ds

= V 0 +

∫ T

0
(
∫ r

0
Γ (0, s)(α1(s), β1(s), η1(s, ζ ))G(s)ds)γ (r)dr

= V 0 +

∫ T

0
Γ (0, t)γ (t)dt,

where

V 0 =

∫ T

0
Γ (0, s)(α1(s), β1(s), η1(s, ζ ))V0(s)ds

nd

Γ (0, t) =

∫ t

0
Γ (0, s)(α1(s), β1(s), η1(s, ζ ))Gds.

oes not depend on γ .
We conclude that Y (0) = E[Y (0)] can be written, with γ (s) =

n(C(s)X(s)),

(0) = J(C) + E[V 0],

here

(C) = E[θX(T )Γ (0, T ) +

∫ T

0
Γ (0, s) ln(C(s)X(s))ds]. (4.4)

ince E[V 0] does not depend on C on X , it suffices to maximize
J(C).

Since this performance functional does not involve Y , but
only X and C and otherwise known coefficients, we see that the
roblem is reduced to a standard optimal control problem for
he system described by (4.1) and the performance functional
(C). Hence, we can approach the problem by applying a standard
ersion of the stochastic maximum principle for optimal control
f jump diffusion, as presented in e.g. Framstad et al. [13], as
ollows:

The Hamiltonian to this optimization problem,
H : [0, T ] × R3

× L2(ν) × R3
× U × R2

× L2(ν) × R → R, is
efined by

H(t, x, C, p, q, r(·))

= (b0(t) − C)xp + σ0(t)xq +
∫
R0
γ0(t, ζ )xr(ζ )ν(dζ ) + Γ (0, t) ln(Cx),

nd the adjoint processes p, q, r , are defined by the BSDE⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dp(t) = −

[
(b0(t) − C(t))p(t) + σ0(t)q(t)

+
∫
R0
γ0(t, ζ )r(t, ζ )ν(dζ ) +

Γ (0,t)
X(t)

]
dt

+ q(t)dB(t) +
∫
R0
r(t, ζ )Ñ(dt, dζ ), t ∈ [0, T ] ,

p(T ) = θΓ (0, T ).

(4.5)

Differentiating H with respect to C, we obtain
∂ H(t) =

Γ (0,t)
− X(t)p(t).
∂C C(t)
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he first order necessary condition of optimality of H yields:

Ĉ(t) =
Γ (0,t)
X̂(t )̂p(t)

, (4.6)

here X̂(t) and p̂(t) are the solutions of Eqs. (4.1) and (4.5)
respectively, corresponding to the optimal control Ĉ(t).

Substituting this into the BSDE (4.5), we get⎧⎪⎪⎪⎨⎪⎪⎪⎩
d̂p(t) = −

[
b0(t )̂p(t) + σ0(t )̂q(t) +

∫
R0
γ0(t, ζ )̂r(t, ζ )ν(dζ )

]
dt

+ q(t)dB(t) +
∫
R0
r(t, ζ )Ñ(dt, dζ ), t ∈ [0, T ] ,

p̂(T ) = θΓ (0, T ).

(4.7)

This equation for p is a standard linear BSDE, with the following
solution

p̂(t) = EFt [θΓ (0, T )Λ(t, T )], t ∈ [0, T ] , (4.8)

where Λ(t, s) is the solution of the following linear SDE⎧⎪⎨⎪⎩
dΛ(t, s) = Λ(t, s)[b0(t)dt + σ0(t)dB(t)

+
∫
R0
γ0(t, ζ )Ñ(dt, dζ )], s ∈ [t, T ] ,

Λ(t, t) = 1 .
(4.9)

We summarize what we have proved as follows:

Theorem 4.1. The optimal control Ĉ (t) of the optimal recursive
consumption problem (4.4) is given in feedback form by

Ĉ(t) =
Γ (0,t)
X̂(t )̂p(t)

, (4.10)

where X̂(t) and p̂(t) are given by (4.1) and (4.8)–(4.9), respectively.

CRediT authorship contribution statement

Nacira Agram: Writing, Reduction and also on Reviewing and
Editing. Yaozhong Hu: Writing, Reduction and also on Reviewing
and Editing. Bernt Øksendal: Writing, Reduction and also on
Reviewing and Editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix. Proof of Theorem 3.3

For t ∈ [0, T ] and all β > 0, we introduce the norm

∥(Y , Z, K )∥2
Hβ := E[

∫ T
0 eβt{|Y (t)|2+|Z(t)|2+

∫
R0

|K (t, ζ )|2ν(dζ )}dt].

The space Hβ equipped with this norm is an Hilbert space. Define
the mapping Φ : Hβ → Hβ by Φ(y, z, k) = (Y , Z, K ) where
Y , Z, K ) ∈ S2 × L2 × H2

ν (⊂ L2 × L2 × H2
ν ) is defined by
7

⎧⎪⎨⎪⎩
dY (t) = −f (t, y(t), z(t), k(t, ·),E[ϕ(y(t), z(t), k(t, ·))])dt

+ Z(t)dB(t) +
∫
R0
K (t, ζ )Ñ(dt, dζ ), t ∈ [0, T ] ,

Y (T ) = ξ .

To prove the theorem it suffices to prove that Φ is contraction
mapping in Hβ under the norm ∥ · ∥β for sufficiently small β .
For two arbitrary triplet (y1, z1, k1), (y2, z2, k2) and (Y 1, Z1, K 1),
(Y 2, Z2, K 2), we denote their difference by ỹ = y1 − y2 and
Y = Y 1

−Y 2 and similarly for z, k, Z and K . Applying Itô’s formula
to eβt |̃Y (t)|

2

E[
∫ T
0 eβt{β |̃Y (t)|

2
+ |̃Z(t)|

2
+
∫
R0

|̃K (t, ζ )|
2
ν(dζ )}dt]

= 2E[
∫ T
t eβt Ỹ (t){f (t, y1(t), z1(t), k1(t, ·),E[ϕ(y1(t), z1(t), k1(t, ·))])

− f (t, y2(t), z2(t), k2(t, ·),E[ϕ(y2(t), z2(t), k2(t, ·))])}dt] .

By the Lipschitz property of the map f , the mean value theorem,
standard majorization and by choosing β = 1+12C

2
(C depends

nly on C and C ′), it follows that

[
∫ T
0 eβt{|̃Y (t)|

2
+ |̃Z(t)|

2
+
∫
R0

|̃K (t, ζ )|
2
ν(dζ )}dt]

≤
1
2E[

∫ T
0 eβt{|̃y(t)|2 + |̃z(t)|2 +

∫
R0

|̃k(t, ζ )|
2
ν(dζ )}dt],

onsequently, we get

(̃Y , Z̃, K̃ )∥2
β ≤

1
2∥(̃y, z̃, k̃)∥

2
β ,

and Φ is then a contraction mapping. The theorem now follows
by a standard fixed point theorem.
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