
University of Oslo

Department of Informatics

Executing Large

Scale Colored Petri
Nets by Using

Maude

Simulating Railroad
Systems

Joakim Bjørk

Cand. Scient. Thesis

May 8, 2006

Preface

This thesis is submitted to the Department of Informatics at the University
of Oslo as part of the Candidata scientiarum (Cand. scient.) degree. The
work is carries out at the Precise modeling and analysis (PMA) research
group.

First I would like to thank my tutor on this thesis, Anders Moen Hagalisletto,
for priceless advises and discussions. Without him there would not be any
thesis.

I would also like to thank Pål Enger for a good collaboration on the software
development, and Ingrid Chieh Yu for giving me full access, and an intro-
duction, to the source code of RWSEditor. Further I would like to thank
Thor Georg Sælid and Trygve Kaasa from Oslo Sporveier for sharing their
knowledge on the subway system of Oslo. I would also like to thank Johan
Dovland for valuable comments and advises in the final state of the process.

Finally I would like to thank Silje N. Berglund for her patience.

Joakim Bjørk

May 8, 2006

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Technical preliminaries . 5
2.2 Petri nets . 9

2.2.1 Timed models . 11
2.3 Rewriting Logic and Maude 14
2.4 Railway systems . 16
2.5 Oslo Sporveier . 17

3 Railroad specification languages 19

3.1 The general specification language 20
3.2 Composition of specification graphs 22
3.3 The specification language used to model the Oslo subway

system . 28
3.3.1 Directions and types 29
3.3.2 Rules and exceptions 29
3.3.3 Template components 30

4 Railroad nets 37

4.1 Introduction . 37
4.2 Atomic railroad nets . 38

4.2.1 Track segment . 39
4.2.2 End segment . 39
4.2.3 Rigid crossing . 40
4.2.4 Turnout . 41
4.2.5 Direction converters 42
4.2.6 Singles . 42
4.2.7 Scissors . 44

I

4.3 Composition of railroad nets 44

5 Refinement of railroad nets 51

5.1 Safety . 51
5.2 Train routes and train controlled turnouts 52
5.3 How to implement time in a railway system 56
5.4 Sensitive tracks with separate signals 56

5.4.1 The signals . 59
5.4.2 The updated point machine 62
5.4.3 Calculation of speed and delays 63

6 Saturation and translation 67

6.1 Saturation . 67
6.2 Colored Petri nets as Maude modules 70

6.2.1 Set-marking . 70
6.2.2 List-marking . 71

7 Software 73

7.1 The main tool . 73
7.2 The translation module . 75
7.3 The automatic refinement tool 75
7.4 The control script . 75
7.5 How to set up a simulation 77

8 Simulation 79

8.1 Computational complexity . 79
8.2 Numbers and statistics . 81

9 Conclusion 85

9.1 Related work . 87
9.2 Future work . 87

II

List of Figures

2.1 Firing of a transition. 9
2.2 Order of firing . 12
2.3 Railroad track . 16
2.4 Oslo subway system . 17
2.5 The downtown fragment of the subway of Oslo. 18

3.1 Specification of a railroad net. 19
3.2 Direction trap. 20
3.3 Composition by joining two interface nodes. 22
3.4 Creating a loop specification. 25
3.5 The track segment . 30
3.6 The end segment . 31
3.7 The rigid crossing . 31
3.8 The turnout . 32
3.9 The right slip . 33
3.10 The left slip . 33
3.11 The scissors . 34
3.12 Re-routing by using scissors 34
3.13 Direction converters . 35
3.14 Solution to the direction trap 35
3.15 Different solutions to the direction trap 36

4.1 The track segment . 39
4.2 The end segment . 39
4.3 The rigid crossing . 40
4.4 The turnout . 41
4.5 The negative converter . 42
4.6 The positive converter . 42
4.7 The single right . 43
4.8 The scissors . 45

III

5.1 The safe track segment . 52
5.2 The safe track after firing . 52
5.3 The turnout with train routes 53
5.4 The live-lock situation . 55
5.5 The track segment with constant time 56
5.6 The track segment with separate signals 57
5.7 The turnout with separate signals 58
5.8 Free block sections . 61
5.9 Driving pattern of the trains 64

6.1 Atomic saturation. 67
6.2 Saturation of a library . 69
6.3 The safe turnout . 70

7.1 Screen-shot of the RWSEditor 74
7.2 The overview of a simulation 76

IV

Chapter 1

Introduction

This thesis is part of a larger study of the advantages of using colored Petri
nets as a modeling language for railway systems. The experiences from this
study are presented several papers ([11], [7], [6]). The papers have focused
on the structure of the railroad layout and how various behaviors like safety,
collision detection, and sensitivity can be constructed as libraries of colored
Petri net components and how these libraries of components are related to
each other through a relation of syntactic refinement. The railroad layout
serves as a specification layer, and basic railroad components are constructed
using colored Petri nets. These basic railroad components corresponds to
physical railroad components like turnouts, crossings, slips, etc. Then large
scale colored Petri net models of the entire Oslo subway system is generated
automatically. The colored Petri nets are then automatically translated to
Maude code.

At the moment the standard Petri net tools fail to support industrial ap-
plications of railroad models in several ways; editing of nets gets infeasible
because of (i) the Petri net hierarchies, high level Petri nets does not resem-
ble railroad layouts as used in the industry, (ii) the size of nets exceeds the
allowed usage of memory, and (iii) the execution time for well known tools
like Design/CPN1, Renew2 are not applicable even for small railroad nets.
In this thesis, we will explore the use of Maude as execution environment.

One goal of our research is to address Dines Bjørner’s “Grand Challenge

1http://www.daimi.au.dk/designCPN/
2http://www.renew.de

1

on the Railway Domain”3, by giving generic components and methods for
construction, analysis and standardization of notation in the railroad domain
[1].

The main work on this thesis consists of the following parts:

1. Development of new refinement classes.

2. Expand the algebra of specifications.

3. Introduce the railroad nets as an extension of colored Petri nets.

4. Look at different ways to translate colored Petri nets into Maude mod-
ules.

5. Run simulations of large scale railroads.

6. Software development.

(a) Add new functionality to the tool (RWSEditor) developed to con-
struct the specifications and generate large scale colored Petri
nets.

(b) Development of a tool for automatic translation of colored Petri
nets into Maude modules.

(c) Make a tool for automatic refinement of railroad nets.

Parts of this thesis are presented:

• as the poster “Timed Petri Nets Represented in Maude” at the 9th
Estonian Winter School in Computer Science (EWSCS 2004), Palmse,
Estonia.

• as the talk “Challenges in Simulating Railway Systems using Petri
Nets” at the The TRain Workshop at the 3rd IEEE International Con-
ference on Software Engineering and Formal Methods (SEFM 2005),
Koblenz, Germany.

• in the paper [6]: “Constructing and Refining Large Scale Railroad Mod-
els Represented by Petri Nets”, accepted for publication in IEEE Trans-
actions on Systems, Man and Cybernetics, Part C.

3FMRail at http://www.railwaydomain.org/.

2

• in the paper [5]: “Large Scale Simulations of Railroad Nets”, submitted
to the 4th International Workshop on Modeling of Objects, Compo-
nents, and Agents (MOCA 2006).

The poster, the foils from the talk and the articles may be found on the
CD-ROM attached to this thesis.

Overview

This thesis is built up of nine chapters. In Chapter 2 some technical prelim-
inaries are given. The chapter has short introductions to both Maude and
colored Petri nets. It is also explained some railway terms and mathematical
concepts. Specifications are defined and explained in Chapter 3. Here both
the general specification language and the specific language used to model
the Oslo subway systems are considered. Chapter 4 has a description and
a definition of the railroad nets. These are extensions of colored Petri nets.
Models of the atomic railway components represented as railroad nets are
also presented here. In Chapter 5 several ways of refining the railroad nets
are discussed. The connection between specifications and railroad nets is
shown in Chapter 6. This is what we call saturation. The chapter also has a
description on how to translate railroad nets into executable Maude modules.
Two different approaches are explored. Chapter 7 contains an introduction
to the software developed in this project. This includes several programs.
The results of the simulations we have done are presented in Chapter 8.
Here both computational complexity and data size are discussed. Chapter 9
contains the conclusion of this thesis as well as some suggestions for further
work.

3

Chapter 2

Preliminaries

In this chapter some technical preliminaries are given, including some func-
tions, the definition of colored Petri nets, and a brief explanation of Maude.
Some railroad expressions are explained and there is a short presentation of
the subway system of Oslo.

2.1 Technical preliminaries

This section contains a summary of the technical prerequisites used in this
thesis. A set is an unordered collection of distinguishable elements, and is
written S = {e1, . . . , en}. The empty set is denoted ∅, and the union operator
is denoted ∪. The size of sets are defined in Definition 1.

Definition 1 If S is a finite set then | S | is the number of elements in S.

The set subtraction operator (\) removes all elements of one set from another.

Definition 2 The set subtraction operator is defined by:

S\S′ = {e|e ∈ S ∧ e /∈ S′},

where S and S′ are finite sets and e is an element.

5

We write finite sequences as X = 〈e1, . . . , en〉. The empty sequence is denoted
〈〉. To be able to expand a sequence we need a push-last function. This
function is defined in Definition 3.

Definition 3 The push-last function, ⊢, extends a sequence by adding an
element at the end, and is defined by the following equation:

〈e1, . . . , en〉 ⊢ en+1 = 〈e1, . . . , en, en+1〉

We need a notion of length of finite sequences. This is defined in Definition 4.

Definition 4 The length of a finite sequence X denoted | X | is defined by:

1. | 〈〉 |= 0

2. | X′ ⊢ e |=| X′ | +1

Sequences of length 1 is called singles, sequences of length 2 are referred to
as pairs etc.

Definition 5 A sequence of n empty sets, denoted ∅n where n ∈ N is defined
by the following equations:

1. ∅1 = 〈∅〉

2. ∅i = ∅i−1 ⊢ ∅ if i > 1

Multi-sets can as opposed to sets contain more than one indistinguishable
element. Elements of a multi-set are, as is the case for sets, unordered.

Definition 6 A multi-set Z is a pair Z = 〈S, f〉, where S is a set and f is
a function f : S 7→ N. The size of a multi-set Z, denoted | Z |, is given by
∑

e∈S f(e).

Definition 7 A monoid M is a pair 〈S, ∗〉, where S is a set, and ∗ is a
binary operator that satisfies the following laws:

6

1. Closure. For all elements e1, e2 ∈ S,

e1 ∗ e2 ∈ S

2. Identity. There exists an element e ∈ S such that, for all e2 ∈ S,

e ∗ e2 = e2 = e2 ∗ e

3. Associativity. For all elements e1, e2, e3 ∈ S,

e1 ∗ (e2 ∗ e3) = (e1 ∗ e2) ∗ e3

Definition 8 A monoid M = 〈S, ∗〉, is an abelian monoid (or commutative
monoid) if the following law is satisfied:

4. Commutativity. For all elements e1, e2 ∈ S,

e1 ∗ e2 = e2 ∗ e1

Definition 9 The flat union, denoted ⊔, of two finite sequences of equal
length X = 〈e1, . . . , en〉 and X′ = 〈e′1, . . . , e

′
n〉, given by X ⊔ X′ = 〈e1 ∪

e′1, . . . , en ∪ e′n〉.

Lemma 1 The set of all possible sequences of length n, where n ∈ N and all
element are sets, and the flat union of these sequences, is an abelian monoid.

Proof: Let X = 〈e1, . . . , en〉, X′ = 〈e′1, . . . , e
′
n〉 and X′′ = 〈e′′1 , . . . , e

′′
n〉 be

sequences of length n, where all elements ei, e′i and e′′i are sets.
Closure: We must prove that for all X and X′, X ⊔ X′ are a sequence of
length n, where all elements are sets. X ⊔ X′ = 〈e1 ∪ e′1, . . . , en ∪ e′n〉, which
obviously is a sequence of n elements. All these elements are sets, since the
union of two sets is a set. The closure property hold for the flat union since
it holds for the union of sets.
Identity: We must prove that there exists a sequence, ∅n, of length n such
that X⊔∅n = X = ∅n⊔X. ∅n is the sequence of n empty sets. Then X⊔∅n =
〈e1 ∪∅, . . . , en ∪∅〉 = 〈e1, . . . , en〉 = X, and ∅n ⊔X = 〈∅∪ e1, . . . , ∅∪ en〉 = X.

7

Associativity: Then we must show that X ⊔ (X′ ⊔ X′′) = (X ⊔ X′) ⊔ X′′.

X ⊔ (X′ ⊔ X′′) = X ⊔ 〈e′1 ∪ e′′1 , . . . , e
′
n ∪ e′′n〉

= 〈e1 ∪ (e′1 ∪ e′′1), . . . , e1 ∪ (e′n ∪ e′′n)〉
1
= 〈(e1 ∪ e′1) ∪ e′′1 , . . . , (en ∪ e′n) ∪ e′′n〉

= 〈e1 ∪ e′1, . . . , en ∪ e′n〉 ⊔ X′′

= (X ⊔ X′) ⊔ X′′

Equation 1 is valid because the union operator, (∪), is associative.
Commutativity: Finally we must prove that X ⊔ X′ = X′ ⊔ X.

X ⊔ X′ = 〈e1 ∪ e′1, . . . , en ∪ e′n〉
2
= 〈e′1 ∪ e1, . . . , e

′
n ∪ en〉

= X′ ⊔ X

Note that Equation 2 is valid since the union operator is commutative.

The flat union is an abelian monoid since the union of sets is an abelian
monoid. ♣

A partial monoid as proposed by Anders Moen Hagalisletto in [6] is defined
as follows:

Definition 10 A partial monoid is a 4-tuple 〈S, ⋆, B,J 〉, where S is a set, ⋆
is a set of parameterized binary operators, ⋆ = 〈⋆b|b ∈ B〉, B is a connected
set of pairs, and J (joinable) is a ternary relation over S × S × B 7→ Bool,
such that:

1. If e1, e2 ∈ S and J (e1, e2, b) then e1 ⋆b e2 ∈S

2. (e1 ⋆b1 e2) ⋆b2 e3 = e1 ⋆b1 (e2 ⋆b2 e3)

3. ∃ e1 ∈ S ∃b ∈ B ∀e2 ∈ S e2 ⋆b e1 = e2 = e1 ⋆b e2

Definition 11 A partial monoid 〈S, ⋆, B,J 〉 is a partial abelian monoid if
it satisfies the law of commutativity.

4. e1 ⋆b e2 = e2 ⋆b e1

8

Definition 12 Let ◦ be the unordered concatenation function between ele-
ments and be defined as: e1 ◦ e2 = e1 ◦ e2

Definition 13 Let πi be the projection function for sequences such that:

1. π1(〈e1, . . . , en〉) = e1

2. πi(〈e1, e2, . . . , en〉) = πi−1(〈e2, . . . , en〉) if i > 1

3. πi(〈〉) = ⊥,∀i ∈ N
2.2 Petri nets

Petri net is a graphical programming language introduced by Carl Adam
Petri in 1962 [18], and has evolved into many dialects. We shall now describe
a limited version of colored Petri nets (CPN) (see [9], [10]) applied to railway
modeling. We will first describe CPN by a small example, and then go
through a formal definition. A complete definition of colored Petri nets is
not required, for a careful introduction to CPN see for instance [9].

P1

P2

P3

P4

Large

Small

Large

Large

T1
Small

(a) Initial marking

P1

P2

P3

P4

Large

Small

Large

Large

T1
Small

(b) After firing of T1

Large

Small

TOKENS

Figure 2.1: Firing of a transition.

Figure 2.1(a) shows a small colored Petri net. The four large circles are
places, and the rectangle is a transition. The transitions performs the changes
in the system. The filled circles inside some of the places are tokens. There
are two kinds of tokens in the figure, small and large. The different kinds of

9

tokens are referred to as colors. In uncolored Petri nets, all tokens are indis-
tinguishable. The distribution of tokens over the places is called a marking.
This is the state of the system. The marking of a Petri net before any actions
have occurred is called the initial marking. All the arrows are called arcs.
The text above the arcs are arc expressions. The arcs leads tokens either
from a place to a transition or vice versa. The input places of a transition
are all places that have an arc to the transition. Likewise the output places
of a transition are all places with an arc from a transition. Note that a place
can be both an output place and an input place of the same transition. In
Figure 2.1(a) the place P1 is both an input place, and an output place of the
transition T1. A transition is said to be enabled if all arcs that leads to this
transition may lead a token according to the arc expression. In Figure 2.1(a)
the conditions for the transition T1 to be enabled is that there is a large
token in P1 and a small token in P2. This is the case so T1 is enabled. An
enabled transition may fire. When a transition fires tokens are consumed
from its input places and new tokens are added to its output places accord-
ing to the arc expressions. If the transition T1 in Figure 2.1(a) fires, then
one large token is removed from P1 and a small token is removed from P2.
At the same time a large token is added to each of the places P3 and P4, and
a small token is added to the place P1. We will then have the situation of
Figure 2.1(b). Now T1 is no longer enabled because there are no large tokens
in P1.

Definition 14 An unmarked colored Petri net CPN is a triple, 〈P, T,A〉,
where

1. P is a finite set of places.

2. T is a finite set of transitions.

3. A is a finite set of arcs, A ⊆ (P × T × E) ∪ (T × P × E).

E denotes a set of expressions that can be boolean tests, assignments and
time inscriptions. Boolean tests are written t = x, or just x for short, as-
signments are written t := x, while delays are denoted @ + x. The empty
expression is denoted by nil, and is usually omitted. Subexpression is defined
by recursion: Every expression e is a subexpression of itself, nil is a subex-
pression of every expression, e is a subexpression of both e ∧ e′ and e′ ∧ e,
where e′ is an expression. A node in a colored Petri net is either a place or

10

a transition, i.e x is a node if x ∈ P ∪T , while arcs connect places and tran-
sitions. A transition is a triple 〈TransId,Name,Expr〉 , where TransId is its
unique identity, Name its name and Expr is an expression, also called guard
in [9]. A place is a pair 〈PlaceId,Color〉, that contains a unique identity and
a color. The empty colored Petri net CPN∅ is defined as 〈∅, ∅, ∅〉.

Let C denote a finite set of colors, C = {C1, . . . ,Cn}.

Definition 15 A colored token is a pair, 〈Ci, atr〉, where

1. Ci is the color of the token, such that Ci ∈ C .

2. atr is a sequence of color specific attributes.

Note that atr may be empty. Tokens might inhabit places. The distribution
of tokens over places gives a marking. Let M denote the set of all possible
multi-sets of tokens. Formally a marking is a set of pairs of places and
multi-sets of tokens, {〈p,m〉|p ∈ P ∧ m ∈M}. Given a marking M then we
define m(p,M) = 〈p,m〉 such that 〈p,m〉 ∈ M, if there is any, otherwise it
is undefined. The initial marking is denoted Minit. We say that a Petri net
is 1-safe if it never can reach a marking where a place contains more than
one token from an initial marking where no places contains more than one
token. | π2(m(p,Minit)) |≤ 1,∀p ∈ P →| π2(m(p,M)) |≤ 1,∀p ∈ P for all
reachable markings M from Minit. The occurrence graph is a graph of all
possible markings reachable from a given initial marking.

The preset of the transition t, denoted •t, is the set of input places of t. The
postset of the transition, denoted t• is the set of output places of t.

2.2.1 Timed models

When modeling real life systems, time is often essential. This is particularly
the case for railroad modeling. Introducing time enables us to reason about
many problems. Examples of such problems are:

• How long time does it take for a train to drive a given stretch.

• Whether a train is able to follow its timetable.

11

• How delays influences the other trains due to track sharing.

• How to make the time tables as efficient as possible.

Concepts of time

Even the simplest Petri nets have a notion of time. Even though the net
does not count them we do talk about execution steps. These steps are some
kind of time units and they are essential to talk about the ordering of events.
In the net of Figure 2.2 it is obvious that transition T1 must occur before
T2. This also makes it possible to reason about other qualitative temporal
properties like liveness, dead-locks, fairness, etc.

P1

T1

P2

T2

P3

Figure 2.2: Order of firing

In order to use the Petri net framework to model real time systems it would
be useful to quantify the time units. This can be done in High Leveled
Petri nets. Quantifying the time units will make it possible to reason about
duration, delays, deadlines, etc. There have been many different approaches
to introduce time to colored Petri nets.

Discrete or continuous time

Is time really a continuous or a discrete scale? The most common conclusion
is probably that time is continuous. We can not divide time into atomic
units. All our instruments used to measure time must be discrete though.
We can not build a clock with infinite precision. It will always have a finite
number of decimal places and therefore be rounded. A computer operates
with discrete time, with a clock cycle as an atomic time unit.

So even though a discrete time scale might be the most natural choice, models
often use a continuous time scale. This is to avoid the problem with multiple
events occurring between two time stamps and having to consider all possible

12

orders of them. With a continuous time scale all atomic events can be ordered
in a strictly monotone order [13]. t(e1) < t(e2) or t(e1) > t(e2) for all atomic
events e1 and e2 where t(e) is the time where e occurs.

We have chosen discrete time for all models in this thesis. We have used one
second as the smallest time unit. This is small enough for our models, but
can obviously be even smaller if it should be necessary.

Location of time delays

One way of handling delays is to add a delay to the transitions. In these
kind of nets a transition must remain enabled for a specific time before it
can occur [22]. There are two ways of handling what should happen if a
transition becomes unabled after being enabled for a time. One could either
reset the transitions counter and let it start over the next time it becomes
enabled or let it remember how long it has been enabled for and let it start
from there.

Another way of handling the delays is to let some time pass from the tokens
disappear from the transitions input places to the time they appear in the
output places. This is refereed to as two-phase firing. Two-phase firing
generates a problem if we want to create a occurrence graph. How should
we handle the tokens that are in transition. One solution to this is to add
tokens with time stamps to the output places. This timestamp indicates at
what time the token is ready. They can not be consumed unless the time of
a global clock is equal to or larger than the time stamp, as explained in [9].
All timed models used in this thesis have two-phase firing with time stamps
added to the delayed tokens.

Kinds of delays

The time delays may be ordered into three groups as described in [22]. The
three types are stochastic delays, delays specified by intervals, and determin-
istic delays.

Stochastic delays
The firing time of a transition is determined by a stochastic process. Stochas-
tic delays will be exponentially distributed.

13

Delays specified by intervals
Each transition has assigned a maximum and a minimum delay to it. The
transition lasts for a random amount of time between the maximum and the
minimum boundary.

Deterministic delays
Deterministic delays may either be fixed, or calculated by a function. With
fixed delays each firing of a specific transition lasts for a fixed time. The
weakness of this approach is that in real life situations several applications
of the same action usually do not take exactly the same amount of time. It
may be influenced by external factors. The time it takes for a train to move
from point a to point b may vary as a result of the weather conditions, who
is driving the train etc. If we want to let the delay be dependent on such
factors, we must define a function to calculate it. All delays used in this
thesis are deterministic.

2.3 Rewriting Logic and Maude

In rewriting logic the basic axioms are rewriting rules of the form l : t → t′,
where t and t′ are expressions in a given language, and l is a label. There are
two complimentary readings of a rewrite rule l : t → t′, one computational
and another logical. For more details see [14].

• Computationally the rewrite rule l : t → t′ is interpreted as a local
transition in a concurrent system; that is, t and t′ describe patterns
for fragments of the distributed state of a system, and the rule explain
how a local concurrent transition can take place in such a system,
changing the local state fragment from an instance of the pattern t
to the corresponding instance of the form t′. The rest of the system
remains unchanged.

• Logically the rewrite rule l : t → t′ is interpreted as an inference rule,
so that we can infer formulas of the form t′ from formulas of the form
t.

Definition 16 A rewrite theory is a 4-tuple R = (Σ,E,L, R) where:

1. Σ is an equational signature.

14

2. E is a set of Σ − equations.

3. L is a set of labels.

4. R is a set of labeled rules1.

Then (Σ,E) is the equational theory for rewriting in.

The definition is from [14, 15].

As a consequence, the relevant sentences that may or may not be provable
by the theory R are sequents of the form [t]E → [t′]E where t and t′ are
Σ-terms, possibly involving some variables, and [t]E denotes the equivalence
classes of the term t modulo the equations E. The provable sentences are
exactly those derivable by the following inference rules.

Reflexivity. For each [t] ∈ TΣ,E(X),

[t] → [t]

Congruence. For each f ∈ Σn, n ∈ N
[t1] → [t′1] . . . [tn] → [t′n]

[f(t1, . . . , tn)] → [f(t′1, . . . , t
′
n)]

Replacement. For each rule l : [t(x1, . . . , xn)] → [t′(x1, . . . , xn)] in R,

[w1] → [w′
1] . . . [wn] → [w′

n]

[t(w
x
)] → [t′(w′

x
)]

,

where t(w
x
) denotes the simultaneous substitution of wi for xi in t.

Transitivity.

[t1] → [t2][t2] → [t3]

[t1] → [t3]

1For simplicity we will assume that the rules are unconditional.

15

Maude is a functional language based on rewriting logic. Rewriting logic is
about changing of states. It is therefore particularly well suited to express
state-changing aspects of systems [2].

A typical Maude program contains a set of functions and a set of equations
and rewriting rules. If the predefined sorts are not adequate, new ones can
be defined. It may also contain variables of different sorts. In Maude all
functions are declared recursively by equations. Maude has no pointers or
aliasing and thereby no side-effects. This makes it possible to prove certain
qualities by proving them for each equation without looking at the entire
system.

The execution tool for Maude modules has two ways of executing the mod-
ules. One way is by using the rewrite command, which applies the rules by
a top down strategy. The other option is to use the frewrite or fair rewrite.
This command applies the rules by a position strategy. The Maude tool does
not only execute Maude modules. It is also a powerful analysis tool. It has
both search capabilities, and a built in model checker.

2.4 Railway systems

In this section some railway expressions used later in this thesis is presented.
Figure 2.3 shows a railroad track as seen from above. It consists of two

Sleepers

Rails

Figure 2.3: Railroad track

parallel rails that rests upon sleepers. Movable points or just points are
movable rails which can guide the wheels of a train towards one diverging
track or the other of a branching component. The point where two rails
cross is referred to as a frog. Block sections is a way to divide the tracks into
smaller parts. Block sections may either be fixed or floating. The purpose of
such a division is to ensure train separation. A block section is unoccupied if
there are no trains in it, otherwise it it occupied. Generally a train may enter
a block section only if it is unoccupied. Oslo Sporveier has a slightly different

16

approach. Trains can enter occupied block sections, but at a very low speed.
Block sections are used to determine the speed limits of the trains. Generally
the more unoccupied block sections there are in front of the train the higher
speed limit. For a more thoroughly introduction to railway systems see [17].

2.5 Oslo Sporveier

Figure 2.4: Oslo subway system

Oslo Sporveier2 is the only subway company operating in Oslo. It has 5 lines
with a total of 84 kilometers of tracks and 103 stations. It has a total of 59.4
million travelers pr year, which is 36% of all public transport i Oslo3.

Figure 2.4 shows the current map of the subway of Oslo. From the point
of view of simulating the railroad, the size of the data structures and the
time it takes to run several trains put hard requirements on the underlying
implementation and the hardware, as described in Section 8.1.

The Figure 2.5 shows the specification of the subway of downtown Oslo, the
track from Majorstuen to Grønland. This part of the line is very important
and safety critical, since trains from every line drive on the same track under
ground. Traffic jams are likely to happen, since the interval between the
trains can be as low as 90 seconds. If an accident occur, there will soon be a
queue of trains influencing the throughput on the complete subway system.
The net in Figure 2.5 consists of 93 components, ordinary track segments,

2http://www.sporveien.no/
3The numbers are from 2004

17

turnouts, end segments, crossings and other components (for more details
see [7]).

��
��
��
��

�
�
�
�

GRØNLANDJERNBANETORGET

STORTINGET

FRØEN

MAJORSTUEN

Figure 2.5: The downtown fragment of the subway of Oslo.

18

Chapter 3

Railroad specification

languages

When modeling a railroad topography it is useful to leave out all the details
as long as possible. The specifications have appeared to be a suitable ab-
straction level. A specification can be represented graphically, and will then
look like the example in Figure 3.1. Graphs like these are very much alike
the ones railroad engineers use, like the one in Figure 2.5. The line maps
that passengers use, like the one in Figure 2.4, are not to far from the spec-
ification graphs either. This makes the specification graphs understandable
to a large variety of people. The specifications presented here are expanded
version of the ones presented in [7].

Figure 3.1: Specification of a railroad net.

19

3.1 The general specification language

A specification language is a set of small graphs, called the template graphs,
and instructions on how copies of them can be connected.

Definition 17 A specification language SL is a tuple 〈GT,D,T,C,E〉.

1. GT is the template graphs, a nonempty, finite set of specification-
graphs.

2. D is a finite set of non-empty directions.

3. T is a finite set of non-empty types.

4. C is a nonempty, finite set of combination rules such that C ⊆ D×D.

5. E is a finite set of structural exceptions such that E ⊆ T × T.

The template graphs are representing the building blocks of a railroad sys-
tem. For an example of a set of such template graphs see Section 3.3.3. All
the interface nodes (see Definition 19) of the template graphs are assigned to
a type and a direction. These types and directions are defined in T and D.
The types of the nodes are present to be able to put restrictions on the peo-
ple designing the specification. The structural exceptions are pairs of types.
If the types of two nodes form a pair in the set of structural exceptions,
these nodes can not be connected. The direction of a node tells us what
direction a train that enters this node is traveling in. The combination rules
indicates which directions that can be connected. We must be careful when
designing these rules. A carelessly designed combination rule may result in
direction traps. A direction trap is a point of a specification where trains

+−

n2n1

+ −

n3 n4
− + + −

++

n2

−

n4

−

n1 n3
− −

Figure 3.2: Direction trap.

can not move along the intended path due to its direction. Figure 3.2 shows

20

the creation of a direction trap. If the two nodes n1 and n2 are connected a
direction trap arises. In the new node n1◦n2 trains that enters in the positive
direction can not leave due to the direction. The solution to this problem
involves some special components called direction converters and are further
discussed in Section 3.3.3. Note that the name of the new node is the names
of the original nodes concatenated by the unordered concatenation function.

The simplest nodes of a specification graph are the internal nodes. These are
unconnectable with any other nodes and have no type or direction assigned
to them.

Definition 18 A internal node nInt = 〈id〉 has no attributes except a globally
unique identifier.

Interface nodes are typically present at the end of components and may be
connectable to other interface nodes. An interface node has an unique id, a
type and a direction assigned to it. Interface nodes that are connected to
other interface nodes will have composite types and directions.

Definition 19 An interface node n is a triple 〈id, t,d〉 defined over a spec-
ification language SL = 〈GT,D,T,C,E〉.

1. id is a globally unique identifier.

2. t is the type of the node such that t ∈ T ∪ (T ◦ T).

3. d is the direction of the node such that d ∈ D ∪ (D ◦ D).

A specification graph is a set of interface nodes, a set of internal nodes and
lines between nodes. Both the template graphs of the specification language
and the main specification graph are specification graphs.

Definition 20 A specification-graph G is a tuple 〈N,NInt,L〉.

1. N is a nonempty, finite set of interface nodes.

2. NInt is a finite set of internal nodes.

3. L is a finite set of undirected lines, such that L ⊆ (N∪NInt)×(N∪NInt).

21

The empty specification graph is denoted G∅ = 〈∅, ∅, ∅〉. That a line is
undirected means that if 〈n1, n2〉 is a line then 〈n2, n1〉 is a line.

Definition 21 A specification S is a pair 〈G,SL〉, where the specification-
graph G is built up by the template graphs, and by the rules of SL.

The empty specification over a specification language SL is S∅ = 〈G∅,S
L〉.

3.2 Composition of specification graphs

Copies of the template graphs can be connected to a larger specification
graph in order to model a railway topography. This is done by the joining
of interface nodes. In order to do so we need some functions.

First of all, we need a set of projection functions π. πi extracts the i’th
element of a sequence, as defined in Definition 13. If n is an interface node
then π1(n) returns the id of the node, π2(n) returns the type and π3(n)
returns the direction.

To be able to build larger graphs we must have a way of joining interface
nodes. This process is shown in Figure 3.3. The two specification graphs

(a) Two specification graphs (b) Composite specifica-
tion graph

Figure 3.3: Composition by joining two interface nodes.

of Figure 3.3(a) can be joined by joining two of the interface nodes. The
joining of the two middle interface nodes in Figure 3.3(a), will result in the
specification graph in Figure 3.3(b). In order for two interface nodes to be
joinable their directions must form a pair in the set of combination rules,
and their types must not form a pair in the set of structural exceptions. No
interface node is joinable itself.

22

Definition 22 Two interface nodes n1 and n2, defined in the same specifi-
cation language SL = 〈GT,D,T,C,E〉, are joinable if:

1. π1(n1) 6= π1(n2), and

2. 〈π2(n1), π2(n2)〉 /∈ E, and

3. 〈π3(n1), π3(n2)〉 ∈ C

When two joinable interface nodes are joined they merge into a new interface
node referred to as a composite node.

Definition 23 The composition of two joinable interface nodes
n1 = 〈id1, t1,d1〉 and n2 = 〈id2, t2,d2〉 written n1 n○n2 is defined as:

n1 n○n2 = 〈id1 ◦ id2, t1 ◦ t2,d1 ◦ d2〉

When two interface nodes are joined, the direction of the composite new node
is always concatenated by ◦. Since the combination rules always are pairs of
directions, the direction of the new node does not match any combination
rule. Therefore a composite node is not joinable with any other interface
node.

When replacing an interface node in a specification graph with a new one,
not only do the old node have to be replaced, but all lines with an endpoint
in the old node must be redirected to the new node.

Definition 24 The replacement of an interface node nold with a new inter-
face node nnew in a specification graph G = 〈N,NInt,L〉, is carried out by the
substitution function sub.

1. sub(nold, nnew, 〈N,NInt,L〉) =
〈sub(nold, nnew,N),NInt, sub(nold, nnew,L)〉

2. sub(nold, nnew, {n} ∪ N′) = {n} ∪ sub(nold, nnew,N′\{n}) if nold 6= n

3. sub(nold, nnew, {nold} ∪ N′) = {nnew} ∪ N′\{nold}

4. sub(nold, nnew, {〈n,m〉}∪L′) = {〈n,m〉}∪ sub(nold, nnew,L′\{〈n,m〉})
if nold 6= n ∧ nold 6= m

23

5. sub(nold, nnew, {〈nold,m〉} ∪ L′) =
{〈nnew,m〉} ∪ sub(nold, nnew,L′\{〈nold,m〉}) if nold 6= m

6. sub(nold, nnew, {〈n, nold〉} ∪ L′) =
{〈n, nnew〉} ∪ sub(nold, nnew,L′\{〈n, nold〉}) if nold 6= n

7. sub(nold, nnew, {〈nold, nold〉} ∪ L′) =
{〈nnew, nnew〉} ∪ sub(nold, nnew,L′\{〈nold, nold〉})

8. sub(nold, nnew, ∅) = ∅

where n and m are interface nodes, L′ is a set of lines and N′ is a set of
nodes.

Equation 1 in Definition 24 states that to substitute an old node with a
new one in a graph is the same as substituting the two nodes in the set
of interface nodes, and in the set of lines. The internal nodes will be left
unchanged. Equation 2 means that nodes should be left unchanged if they
are not equal to the node that are supposed to be substituted. The nodes
that are equal to the one that shall be substituted are replaced by the new
node in Equation 3. Equation 4 to 7 takes care of the redirections of lines.
Equation 4 states that lines, with no endpoints in the node that are supposed
to be substituted, are left unchanged. The Equations 4, 5 and 6 redirects
lines with one or both endpoints in the node that will be replaced. Equation
8 ends the recursion when a set of either interface nodes or lines are empty.

When two specifications graphs are joined (or a specification graph is joined
with itself) it is by the joining of two nodes. If the nodes n1 and n2 are
joined, they are both replaced by their union node. We then say that the
specification graphs are joined with the binding b = [n1, n2].

Definition 25 Two specifications graphs G1 and G2 defined in the same
specification language (SL), are joinable with the binding b = [n1, n2] if n1 is
an interface node of G1, n2 is an interface node of G2, and if n1 and n2 are
joinable.

Definition 26 Let G1 and G2 be two joinable specification graphs over the
binding b = [n1, n2], where n1 is an interface node in G1, and n2 is an
interface node in G2. Then the composition of G1 and G2 is given by:

24

G1 ⊓b G2 = sub(n2, n1 n○n2, sub(n1, n1 n○n2, (G1 ⊔ G2)))

Note that a specification graph may be joinable with itself. If G1 and G2

are the same graph, then n1 and n2 must be replaced in both G1 and G2.
If not the composition will result in extra copies of the nodes n1 and n2.
On the other hand if G1 and G2 are two different graphs, there is no harm
in replacing both n1 and n2 in both graphs. There is no effect of replacing
a node that does not exist. Connecting a graph to itself is necessary when
modeling a loop. Figure 3.4 shows this process. In the beginning we can

(a)

(b)

(c)

Figure 3.4: Creating a loop specification.

connect two different specification graphs, as for instance by connecting the
two graphs of Figure 3.4(a) into the graph of Figure 3.4(b), but to be able
to get from the situation of Figure 3.4(b) to the situation of Figure 3.4(c)
the specification graph must be connected to itself.

Lemma 2 Composition of joinable specifications graphs forms an partial

25

abelian monoid.

Proof: For ⊓b to be an partial abelian monoid, it must fulfill the following
four properties, closure, identity, associativity and commutativity

Closure: For all joinable specifications graphs G1 and G2, G1 ⊓b G2 is a
specification graph.

Identity element: G ⊓b G∅ = G = G∅ ⊓b G

Associativity: (G1 ⊓b1 G2) ⊓b2 G3 = G1 ⊓b1 (G2 ⊓b2 G3)

Commutativity: G1 ⊓b G2 = G2 ⊓b G1

Closure:

If G1 = 〈N1,N
Int
1 ,L1〉 and G2 = 〈N2,N

Int
2 ,L2〉 are two joinable specification

graphs, there exists interface nodes n1 ∈ N1 and n2 ∈ N2 such that n1 and
n2 are joinable. Then composition of G1 and G2 by the binding b = [n1, n2]
is sub(n2, n1 n○n2, (sub(n1, n1 n○n2,G1⊔G1))), which is a graph since the flat
union of two graphs always is a graph, and the result of replacing a node in
a graph also is a graph.

Identity element:

We need to prove that there exists an identity element G∅, and that
G1 ⊓ǫ G∅ = G1 = G∅ ⊓ǫ G1

G1 ⊓ǫ G∅
1
= sub(ǫ, ǫ, sub(ǫ, ǫ,G1 ⊔ G∅))
2
= sub(ǫ, ǫ, sub(ǫ, ǫ,G∅ ⊔ G1))
3
= G∅ ⊓ǫ G1

G1 ⊓ǫ G∅
1
= sub(ǫ, ǫ, sub(ǫ, ǫ,G1 ⊔ G∅))
2
= sub(ǫ, ǫ, sub(ǫ, ǫ,G1))
3
= G1

26

Associativity:

Let the specifications graphs G1 = 〈N1,N
Int
1 ,L1〉 and G2 = 〈N2,N

Int
2 ,L2〉 be

joinable with the binding b1 = [n1, n2], where n1 ∈ N1 and n2 ∈ N2, and G2

and G3 = 〈N3,N
Int
3 ,L3〉 be joinable with the binding b2 = [n2′ , n3], where

n2′ ∈ N2 and n3 ∈ N3.

We must add the restriction that n1 6= n2 6= n2′ 6= n3 and that G1 6= G2 6=
G3. The restrictions are necessary because the term (G1 ⊓b1 G2) ⊓b2 G3 is
meaningless if for instance G1 = G3. G3 will then not exist after G1 and G2

are joined, and can therefore not be joined with the composite graph of G1

and G2. The same is applicable for the nodes.

We must then show that (G1 ⊓b1 G2) ⊓b2 G3 = G1 ⊓b1 (G2 ⊓b2 G3)

(G1 ⊓b1 G2) ⊓b2 G3
1
= sub(n2, n1 n○n2, sub(n1, n1 n○n2,G1 ⊔ G2)) ⊓b2 G3

2
= sub(n3, n2′ n○n3, sub(n2′ , n2′ n○n3,

(sub(n2, n1 n○n2, sub(n1, n1 n○n2,G1 ⊔ G2)))

⊔G3))
3
= sub(n3, n2′ n○n3, sub(n2′ , n2′ n○n3,

sub(n2, n1 n○n2, sub(n1, n1 n○n2,G1 ⊔ G2 ⊔ G3))))
4
= sub(n2, n1 n○n2, sub(n1n1 n○n2,

sub(n3, n2′ n○n3, sub(n2′ , n2′ n○n3,

G1 ⊔ G2 ⊔ G3))))
5
= sub(n2, n1 n○n2, sub(n1n1 n○n2,G1 ⊔

(sub(n3, n2′ n○n3, sub(n2′ , n2′ n○n3,G2 ⊔ G3)))))

6
= G1 ⊓b1

sub(n3, n2
′ n○n3, sub(n2

′ , n2
′ n○n3,G2 ⊔ G3))

7
= G1 ⊓b1 (G2 ⊓b2 G3)

Equation 1 follows by Definition 26, and equation 2 is filling in for ⊓b2 .
Equation 3 holds because n2′ and n3 are not the same nodes as n1 and n2,
and because ⊔ is associative. Equation 4 is valid because of the associativity
of sub. Equation 5 holds because neither n2′ or n3 is present in G1. Equation
6 and 7 follows from the definition of ⊓b.

27

Commutativity:

Let the specification graphs G1 = 〈N1,N
Int
1 ,L1〉 and G2 = 〈N2,N

Int
2 ,L2〉 be

joinable with the binding b = [n1, n2], where n1 ∈ N1 and n2 ∈ N2. Then:

G1 ⊓b G2
1
= sub(n2, n1 n○n2, sub(n1, n1 n○n2,G1 ⊔ G2))
2
= sub(n2, n1 n○n2, sub(n1, n1 n○n2,G2 ⊔ G1))
3
= G2 ⊓b G1

This is valid because of the commutativity of the union of graphs. ♣

Definition 27 The copy function C makes a copy of a graph. All the nodes
of the new graph gets new ids, but otherwise it is equal to the original.

Definition 28 The template function T returns the template of a graph if
the graph is a copy of a template. It is undefined for template graphs and
composed graphs.

The specification graphs may now be constructed from the empty specifica-
tion by joining the specification graph with a copy of one of the template
graphs.

3.3 The specification language used to model the

Oslo subway system

The language used to model the subway system of Oslo consists of:

• 2 directions

• 26 types

• 1 combination rule

• 0 structural exceptions

• 9 template graphs

28

All of these are presented in this section. This language is designed to model
the subway system of Oslo, and may be reduced or expanded to fit other
railroad systems.

3.3.1 Directions and types

The language used to represent Oslo subway system has two directions.
These are the positive direction, denoted 1, and the negative direction, de-
noted −1.

D = {1,−1}

The set of types (T) is rather large. This is because all the interface nodes
of all the template components of the language has it’s own type. This is
done to prevent putting restrictions to the structural exceptions.

T = { Tr1, T r2,

En,

Rc1, Rc2, Rc3, Rc4,

Tu1, Tu2, Tu3,

Rs1, Rs2, Rs3, Rs4,

Ls1, Ls2, Ls3, Ls4,

Sc1, Sc1, Sc3, Sc4,

Nn1, Nn2,

Rr1, Rr2 }

3.3.2 Rules and exceptions

The specification language contains only one combination rule. This rule ex-
presses that in order to connect two interface nodes, they must have opposite
directions.

C = {〈1,−1〉}

When modeling an existing railway system, structural exceptions is redun-
dant. The engineers that designed the system have followed some rules, but

29

adding restrictions to the specification language could result in that the lan-
guage is no longer suitable to model the given railway. The language used
to model the subways of Oslo therefore contains no structural exceptions.

E = ∅

3.3.3 Template components

The tracks of the Oslo subway system is built up by numerous copies of
seven different railroad components. These are the track segment, the end
segment, the rigid crossing, the turnout, the left and the right slip, and
finally the scissors. In the specification language, each of these seven railroad
components are represented by a template graph. The language also have
two special components called the negative and the positive converter.

Track segment

The track segment is the main building block of railway networks. This is a
single line, straight or curved. It can be driven in both directions, but it is
impossible to pass another train on a track segment. The leftmost part of

Tr1

n1 n2

Tr2

Figure 3.5: The track segment

Figure 3.5 shows the track segment as seen from above. It consists of two
parallel rails with no branches. A graphical representation of graph modeling
the track segment is shown in the right hand side of Figure 3.5. This graph
has two nodes, and one line. The color of the nodes indicates the direction
of the node, a white node has the negative direction, and a black node has
the positive direction. The name of the node is printed above it. The text
inside the node gives the type. The text representation of the track segment
of Figure 3.5 is:

〈{〈n1, T r1,−1〉, 〈n2, T r2, 1〉}, {∅}, {〈n1, n2〉}, 〉

30

End segment

En

n1
Bumpers

Figure 3.6: The end segment

The end segments is used at the end of the tracks. Is is equipped with
bumpers to prevent derailing. The text representation of the end segment
of Figure 3.6 is:

〈{〈n1, En,−1〉}, {∅}, {〈n1, n1〉}〉

The end segment consists of one interface node (n1) and a line from n1 to
n1.

Rigid crossing

���� ��

�
�
�
�

�
�
�
�

�
�
�
� Rc1

Rc2

Rc4

Rc3

n1

n2

n3

n4

Double frog

in1

Figure 3.7: The rigid crossing

The rigid crossing is a crossing of two tracks without movable points. This
means that a train that enters a rigid crossing has only one possible exit
point. The text representation of the rigid crossing of Figure 3.7 is:

〈{〈n1, Rc1,−1〉, 〈n2, Rc2,−1〉, 〈n3, Rc3, 1〉, 〈n4, Rc4, 1〉},

{in1}, {〈n1, in1〉, 〈n2, in1〉, 〈n3, in1〉, 〈n4, in1〉}〉

31

This component consists of four interface nodes (n1, n2, n3 and n4) and
one internal node (in1). There are lines from all the interface nodes to the
internal node.

Turnout

Facing point
movement

Frog

Points

Point machine

Trailing point

Trailing point
movement

movement

Tu1

n2

n3

n1
Tu2

Tu3

Figure 3.8: The turnout

The turnout is an assembly of rails, movable points and a frog. When a train
enters a turnout from the stem end, it can exit the turnout from any of the
two branching ends. Which of the branching ends it will exit from depends
on the position of the points. The points can either be operated manually
or by a mechanical device called a point machine.

The text representation of the turnout of Figure 3.8 is:

〈{〈n1, Tu1,−1〉, 〈n2, Tu2, 1〉, 〈n3, Tu3, 1〉}, {∅}, {〈n1, n2〉, 〈n1, n3〉}〉

The turnout has three interface nodes (n1, n2 and n3), and lines from n1 to
both n2 and n3.

Right slip

The right slip is an assembly of two turnouts. The right slip is usually used
to allow a train to pass from the left track to the right track in a system with
two parallel tracks. The text representation of the right slip of Figure 3.9 is:

〈{〈n1, Rs1,−1〉, 〈n2, Rs2, 1〉, 〈n3, Rs3,−1〉, 〈n4, Rs4, 1〉},

{∅}, {〈n1, n2〉, 〈n1, n4〉, 〈n3, n4〉}〉

The right slip has four interface nodes (n1, n2, n3 and n4). There are lines
from n1 to n2 and n4, and a line from n3 to n4.

32

n3 n4

n2n1
Rs1

Rs3

Rs2

Rs4

Figure 3.9: The right slip

Left slip

n1
Ls1

Ls3

n3
Ls4

n4

Ls2

n2

Figure 3.10: The left slip

The left slip is the mirror image of the right slip, it’s purpose is also the
inverted of the right slip’s. The text representation of the left slip of Fig-
ure 3.10 is:

〈{〈n1, Ls1,−1〉, 〈n2, Ls2, 1〉, 〈n3, Ls3,−1〉, 〈n4, Ls4, 1〉},

{∅}, {〈n1, n2〉, 〈n2, n3〉, 〈n3, n4〉}〉

The left slip has four interface nodes (n1, n2, n3 and n4). There are lines
from n1 to n2, from n2 to n3, and a from n3 to n4.

Scissors

The scissors is a compound component which is built up by four turnouts
and a rigid crossing. A scissors component will allow trains to move from
one track to the other regardless of the direction of the train. The text
representation of the scissors of Figure 3.11 is:

〈 {〈n1, Sc1,−1〉, 〈n2, Sc2, 1〉, 〈n3, Sc3,−1〉, 〈n4, Sc4, 1〉},

{in1},

{〈n1, n2〉, 〈n3, n4〉, 〈n1, in1〉, 〈n2, in1〉, 〈n3, in1〉, 〈n4, in1〉} 〉

33

The scissors component has four interface nodes (n1, n2, n3 and n4) and one
internal node (in1). There are lines from n1 to n2 and from n3 to n4. As
in the rigid crossing there are also lines from all the interface nodes to the
internal node. A typical use of scissors is to enable re-routing in the case of

��
��
��
��
��
��
��
��
��

��
��
��
��

�
�
�
�
��

n3 n4

n2
Sc1

Sc3

Sc2

Sc4

n1

in1

Figure 3.11: The scissors

a blocked line. Figure 3.12(a) shows the normal route of a train through a
part of a system. The route is indicated by the thick line. If for some reason

(a) Normal route

(b) Rerouted

Figure 3.12: Re-routing by using scissors

the line between the two scissors is blocked, represented by the broken line
of Figure 3.12(b), the train may be rerouted as the thick line shows.

Direction converters

Direction converters are not actually railroad components, but structural
components used to redefine the direction. If traveling to the left is defined as
traveling in the positive direction on one side of a converter it will be defined
as traveling in the negative direction on the other side of the converter. There

34

are two direction converters in the language. The first one is the negative
converter, in which both directions are defined to be in the negative direction.

〈{〈n1, Nn1,−1〉, 〈n2, Nn2,−1〉}, {∅}, {〈n1, n2〉}〉

The other is the positive converter. Here both directions are defined as
positive.

〈{〈n1, Pp1, 1〉, 〈n1, Pp2, 1〉}, {∅}, {〈n1, n2〉}〉

Figure 3.13 shows a graphical representation of the direction converters, the

n1 n2

Nn1 Nn2

n1 n2

Pp2Pp1

Figure 3.13: Direction converters

negative converter to the left, and the positive converter to the right.

The direction converters can be used to solve the problems with direction
traps. The direction trap that arises in Figure 3.2 can be solved by inserting a
negative direction converter between the two track segments. This is shown
in Figure 3.14. If a train enters the node n2◦n5 from the node n1, it is

+−

n2n1

n5

+ −+−

n6

+ −

n3 n4
− +

−−

+ −

+−+−

n1

+ −

n4

+ −

n2 n6
− −

n5 n3

Figure 3.14: Solution to the direction trap

traveling in the positive direction. It may then travel further towards the
node n6◦n3, as it does the direction of the train is redefined to the negative
direction. When the train arrives at the node n6◦n3 it is traveling in the
negative direction, and can then proceed towards the node n4, as intended.
Note that the two nodes n2 and n3 can not be joined because their directions
does not form a pair in the combination rules.

35

−

+

+

−

+

+

+ +

(a) Solution with converters

−

+

+

+

+

+

(b) Solution without convert-
ers

Figure 3.15: Different solutions to the direction trap

One could argue that to solve the direction trap situation in Figure 3.14,
one could simply turn one of the track segments around. Then one could
connect the nodes n2 and n4. This would be a solution if all components
where symmetrical. This however is not the case. A typical situation where
a direction trap may occur, is when two turnouts shall be connected in their
stem end. There are two solutions to this problem. Figure 3.15(a) shows
the approach we have chosen. Here the problem is solved by inserting a
direction converter between the two turnouts. Another approach is shown in
Figure 3.15(b). Here a new version of the turnout component is introduced.
Note that the turnout on the righthand side of the figure have different
directions than the others. This makes it possible for the two turnouts to
connect by joining their stem ends. All possible direction traps may be solved
this way. This would however result in a large increase in the number of
template components. This is why we have chosen the direction converters.

36

Chapter 4

Railroad nets

4.1 Introduction

A railroad net is an extension of a colored Petri net as discussed in Sec-
tion 2.2. In a railroad net, places may be compounded into groups, called
interfaces, in order to connect several places at once when two nets are con-
nected to each other. This can be useful when modeling railroads. In for
instance, Section 5.4 railroad components with signals in a separate path
parallel to the tracks are introduced. When connecting two such nets, we
must connect both the tracks and the signal path. The same end of both
the tracks and the signals path are therefore combined in the same interface.
For instance, the the Left place and the LeftSignal place of Figure 5.6 are
combined in the same interface.

Definition 29 An interface i is a set of places such that π2(p1) 6= π2(p2)
for all p1, p2 ∈ i.

The empty interface I∅ is a set that contains only the empty place (P∅). All
the places in an interface must have different colors. The reason for this is
thoroughly described in Section 4.3. Places can not be in more than one
interface. Interfaces are drawn as dotted rectangles with rounded corners.
For an example see the railroad net in Figure 4.1.

Definition 30 A railroad net R is a pair 〈CPN, I〉, where

37

1. CPN = 〈P, T,A〉 is a colored Petri net as defined in Definition 14

2. I = {i1, . . . , in} is a set of interfaces, where ∀p ∈ ij , p ∈ P for all j
such that 0 ≤ j ≤ n, and ij ∩ ij′ = ∅ for all 0 ≤ j ≤ n and 0 ≤ j′ ≤ n
such that j 6= j′.

Condition number two in the definition above simply states that in order
for a place to be in an interface, it must be a place of the colored Petri
net, and that a place can not be in more than one interface. The empty
railroad net consists of the empty colored Petri net and the empty interface
(N∅ = 〈CPN∅, I∅〉).

A library (L) is a set of railroad nets and a declaration file. The railroad
nets of a library usually have a one to one correspondence to the template
graphs of a specification language. The relationship between the two are
described in Chapter 6.1. All railroad nets that are members of a library is
said to be atomic. The declaration file contains declarations of colors and
functions used in the railroad nets.

4.2 Atomic railroad nets

The nine railroad nets of this section forms a library referred to as the ba-
sic components. They have a one to one correspondence to the template
components described in Section 3.3.

All the railroad nets of the basic components library can be divided into two
parts. The track part, and the controlling part. The track part consists of
places that represents points along the track, and transitions that takes care
of the movement of trains. Places of the track part are referred to as track
places, and the transitions are called move transitions. Trains are represented
as tokens. A train token has a name and a direction. The name is only a
text used to recognize the train, but the direction indicates which way the
train is heading. There are three directions the positive, the negative and
zero. Train tokens may only occupy track places. The controlling parts of
the system models point machines, and other structures made to control the
movement.

38

4.2.1 Track segment

Left Right

tr(trainName, 1) tr(trainName, 1)

tr(trainName, −1)
move−

move+

tr(trainName, −1)

interfaces

Figure 4.1: The track segment

Figure 4.1 shows the track segment as a railroad net. The two places Left

and Right are the two end points of the segment. These places are track
places because they represent points of the track. The move+ transition
moves a train token, that travels in the positive direction, from the Left

place to the Right place. The move- transition moves a train token, that
travels in the negative direction, from the Right place to the Left place.
Note that if the directions were omitted the trains could run back and forth
between the Left place and the Right place. The railroad net contains two
interfaces, one that contains the Left place, and another that contains the
Right place. This is the case for all the basic atomic railroad nets. All track
places belongs to different interfaces.

4.2.2 End segment

tr(trainName, 1)

End

tr(trainName, 0)

move

Figure 4.2: The end segment

Figure 4.2 shows a railroad net representation of the end segment. It consists
of one track place, the End place, and one move transition. This transition
takes a train that is moving in the positive direction from the End place, and

39

gives it the direction zero. This means that the train has stopped, and is no
longer traveling in any direction. In other words trains stop when they reach
an end segment. In some situations one could want the trains to turn when
they reach an end segment. This can be done by letting the train move in
the negative direction after the firing of the move transition.

4.2.3 Rigid crossing

Left Right

tr(trainName, −1)

tr(trainName, 1)

tr(trainName, −1)

tr(trainName, 1)

tr(trainN
am

e, −
1)

tr(trainN
am

e, 1)

tr(trainN
am

e, −
1)

tr(trainN
am

e, 1)

semsem

sem

sem

RigidSem

Down

Up

move+

m
ove−

m
ove+

move−

Figure 4.3: The rigid crossing

The rigid crossing of Figure 4.3 is a composition of two track segments. The
place RigidSem is a semaphore place, and is a part of the control system.
This place should always contain one, and only one semaphore token. The
purpose of this place is to keep the railroad net connected, and to prevent
two trains one on each track to drive through the crossing simultaneously.

40

Upper
Right

Lower
Right

semsem

sem

sem

sem sem

Change

sem

sem

tr(trainName, −1)

tr(trainName, 1) tr(trainName, 1)

tr(trainName, −1)

sem

sem

The point machine

tr(trainName, 1)

tr(trainName, −1)

tr(trainName, 1)

tr(trainName, −1)

Left

Up

Down

setDown

setUp

move−

move+

move−

move+

Figure 4.4: The turnout

4.2.4 Turnout

Figure 4.4 shows a railroad net representation of a turnout. This is basically
two track segments, such as the one in Figure 4.1, joined in their Left places,
and a point machine. The point machine is a part of the control system, and
works as follows. The places Up and Down gives us the state of the turnout.
One of these should always contain a semaphore token. In order for a train
to travel from Left to UpperRight or from UpperRight to Left is has to be
a semaphore token in the Up place. In the same way it has to be a semaphore
token in the Down place for a train to be able to run from Left to LowerRight

or vice versa.

To change the state of the turnout, simply add a semaphore token to the
Change place. This will enable one of the two transitions setUp or setDown.
The firing of one of these transitions will result in a change of the state of
the turnout.

There is a possibility of a dead-lock in this component. If train that travels in
the negative direction is in the UpperRight place, and there are no semaphore
token in the Up place, the train can not move. One must then manually add
a semaphore token to the Change place in order to get the train moving
again. An automatic solution to this is presented in Section 5.2. A similar

41

dead-lock situation arises when a train that travels in the negative direction
is in the LowerLeft, and there are no semaphore token in the Down place.

4.2.5 Direction converters

Left Right

tr(trainName, −1)

tr(trainName, −1)

tr(trainName, 1)

tr(trainName, 1)
move−

move−

Figure 4.5: The negative converter

The direction converters always invert the direction of trains traveling them.
The direction converter in Figure 4.5 is called the negative converter. This
is because when it moves a train it always ends up traveling in the negative
direction. The positive converter is the opposite of the negative converter.
Trains driving trough a positive converter always ends up in the positive
direction. The positive converter is displayed in Figure 4.6. The only differ-
ence between the converters and the track segment are the arc expressions.

Left Right

move+

move+
tr(trainName, 1)

tr(trainName, 1)tr(trainName, −1)

tr(trainName, −1)

Figure 4.6: The positive converter

4.2.6 Singles

The singles are compounded by two turnouts. The Figure 4.7 shows the
single right. Trains in the UpperLeft or the LowerRight may either travel
straight forward or turn right dependent of the states of the point machines.
The single left is a mirror image of the single right.

42

Right
Upper

Lower
Left

Lower
Right

tr(trainName, 1)

tr(trainName, −1)

tr(trainName, 1)

tr(trainName, −1)

sem

sem

sem

sem

sem

sem

sem

sem

tr(trainName, −1)

tr(trainName, 1)

tr(trainName, −1)

tr(trainName, 1)

Upper
Left

tr(trainName, −1)

tr(trainName, 1)tr(trainName, 1)

tr(trainName, −1)

semsem

sem

sem

sem sem

Change

sem

sem

sem

sem sem

sem

Up1

Down1

setDown1

setUp1

setDown2 Up2

Down2setUp2

Change

move−

move+

move−

move+

move−

move+

Figure 4.7: The single right

43

The singles inherits the dead-lock situations from the turnouts.

4.2.7 Scissors

Figure 4.8 shows the railroad net representation of a scissor component.
This is built up by four turnouts and a rigid crossing. Trains that enter
this component may either travel straight forward or diagonally across the
component. Again this is dependent on the states of the turnouts.

4.3 Composition of railroad nets

In order to connect copies of these atomic railroad nets into larger nets,
two places have to be merged into a union place, and all the arcs with an
endpoint in one of the merged places must be redirected to the new place.
The first thing we need to define is which places are joinable. Two places are
joinable if they do have the same color, and if they are marked, their tokens
must be indistinguishable. This is formally defined in Definition 31

Definition 31 Two places p1 of a net N1 and p2 of a net N2 are joinable
if:

1. π1(p1) 6= π1(p2)

2. π2(p1) = π2(p2)

if the net N1 is marked with the marking M1, and N2 is marked with M2

then we also must require that:

3. π2(m(p1,M1)) = π2(m(p2,M2))

Let p1 and p2 be two joinable places. If they are joined with the place join
operator p○, they will merge into a new union place. The id of the union
place will be the ids of the original places, concatenated by the unordered
concatenation operator ◦, as defined in Definition 12. The colors of p1 and
p2 are the same, by the definition of joinable places. The union place will
also get this color. If the the places p1 and p2 contains any tokens, these

44

Change Change

sem sem

sem

sem

semsem

Change

tr(trainName, 1)

tr(trainName, −1)

sem

sem

semsem

sem

sem

sem sem

Change

tr(trainName, 1)

tr(trainName, −1)

sem

sem

sem sem

sem

sem

sem

sem

sem sem

sem

tr(trainName, 1)

sem sem

sem sem

tr(trainName, 1)

sem

sem sem

tr(trainName, −1)tr(trainName, −1)

Lower
Left

Lower
Right

Right
UpperUpper

Left

tr(trainName, 1) tr(trainName, 1) tr(trainName, −1)tr(trainName, −1)

tr(trainName, 1) tr(trainName, 1) tr(trainName, −1)tr(trainName, −1)

sem
semsem

sem

sem sem
sem sem

sem

semsem

sem

RigidSem

setDown1

setUp3

setDown3 Up3 Up4 setDown4

setUp4Down4Down3

setUp1 Down1

Up1 Up2 setDown2

setUp2Down2

move−

move+

move+ move−

move−move+

move+

move−

Figure 4.8: The scissors

45

tokens are indistinguishable. The new union place gets the tokens from one
of the original places.

Definition 32 Let p1 = 〈id1, color1〉 and p2 = 〈id2, color2〉 be two joinable
places. Then p1 p○p2 = 〈id1 ◦ id2, color1〉. If p1 is a place of a net marked
with M1 and p2 is a place of a net marked with M2 then m(p1 p○p2,M1) =
〈p1 p○p2, π2(m(p1,M1))〉 and m(p1 p○p2,M2) = 〈p1 p○p2, π2(m(p1,M1))〉.

Two interfaces are joinable if they contain the same number of places, and
all places in one interface can be joined with exactly one place in the other
interface.

Definition 33 Two interfaces i1 and i2 are joinable if

1. | i1 |=| i2 |

2. ∀p ∈ i1∃p′ ∈ i2 such that p and p′ are joinable.

3. ∀p ∈ i2∃p′ ∈ i1 such that p and p′ are joinable.

Note that because the interfaces have the same number of nodes, and all
places of an interface have different colors, all places of two joinable interfaces
are joinable with one and only one place. The operator p takes two joinable
interfaces, and returns a set of pairs of joinable places.

Definition 34 Let i1 and i2 be two joinable interfaces. Then i1 p i2 is
defined by:

1. ({p} ∪ P) p P ′ = (p p P ′) ∪ ((P\{p}) p P ′)

2. p p ({p′} ∪ P ′) = p p (P ′\{p′}) if π2(p) 6= π2(p
′)

3. p p ({p′} ∪ P ′) = {〈p, p′〉} if π2(p) = π2(p
′)

4. p p {P∅} = {〈p, P∅〉}

5. {P∅} p P = P p {P∅},

where p and p′ are places and P and P ′ are sets of places.

46

Let i1 be an interface of net N1 and i2 be an interface of net N2. If i1 and i2
are joinable we say that N1 and N2 are joinable with the binding b = [i1, i2].
We also need a replacement function sub which takes an old place, a new
place and a colored Petri net as arguments. It will replace the old place by
the new place. It will also redirect all arcs with an end-point in the old place.

Definition 35 The replacement function sub is defined by the following
equations:

1. sub(pold, pnew, 〈P, T,A〉) = 〈sub(pold, pnew, P), T, sub(pold, pnew, A)〉

2. sub(pold, pnew, {pold} ∪ P) = {pnew} ∪ (P\{pold})

3. sub(pold, pnew, {p} ∪ P) = {p} ∪ sub(pold, pnew, P\{p}) if pold 6= p

4. sub(pold, pnew, {〈t, pold, e〉} ∪ A) =
{〈t, pnew, e〉} ∪ sub(pold, pnew, A\{〈t, pold, e〉})

5. sub(pold, pnew, {〈pold, t, e〉} ∪ A) =
{〈pnew, t, e〉} ∪ sub(pold, pnew, A\{〈t, pold, e〉})

6. sub(pold, pnew, {〈n, n′, e〉} ∪ A) =
{〈n, n′, e〉} ∪ sub(pold, pnew, A\{〈n, n′, e〉}) if pold 6= n ∧ pold 6= n′

7. sub(pold, pnew, ∅) = ∅,

where pold, pnew and p are places, t is a transition, n and n′ are nodes of a
railroad net, e is an expression, S is a set of pairs of places, P is a set of
places, T is a set of transitions, A is a set of arcs.

The pair replacement function (subP) takes a set of pairs of places, and a
colored Petri net as arguments. For each pair of places it will generate the
union place of the two places, and replace the two original places with this
new union place.

Definition 36 The pair replacement function (subP) is defined by the equa-
tions:

1. subP ({〈p, p′〉} ∪ S, 〈P, T,A〉) =
subP (S\{〈p, p′〉}, 〈sub(p′, p p○p′, sub(p, p p○p′, 〈P, T,A〉))〉)

47

2. subP (∅, 〈P, T,A〉) = 〈P, T,A〉,

where p and p′ are places, S is a set of pairs of places, P is a set of places,
T is a set of transitions, A is a set of arcs.

Definition 37 The interface union (⊎) of two interfaces i1 and i2 are de-
fined by the following equations:

1. i1 ⊎ i2 = {i1} ∪ {i2} if i1 6= I∅ and i2 6= I∅

2. i1 ⊎ i2 = I∅ if i1 = I∅ or i2 = I∅

Definition 38 Let N1 = 〈CPN1, I1〉 and N2 = 〈CPN2, I2〉 be two joinable
railroad nets over the binding b = [i1, i2]. Then the composition of N1 and
N2 are given by:

N1 1b N2 = 〈subP (i1 p i2,CPN1 ⊔ CPN2), (I1 ∪ I2)\(i1 ⊎ i2)〉

Note that the two joined interfaces are removed from the set of interfaces.
Consequently an interface can only be joined with one other interface.

Lemma 3 The composition of two joinable railroad nets is a partial abelian
monoid.

Proof: In order to prove that the composition of two joinable railroad nets
is a partial abelian monoid, we must prove that it satisfies the laws of clo-
sure, identity, associativity and commutativity.

Closure: If N1 and N2 are two joinable railroad nets over the binding b
then N1 1b N2 is a railroad net. This follows from the restriction joinable.

Identity: We must prove that there exists an identity element N∅ such that
N1 1b N∅ = N1 = N∅ 1b N1, where b = [i1, I∅], and i1 is an interface in N1

N1 1b N∅ = 〈subP (i1 p I∅,CPN1 ⊔ CPN∅), I1 ∪ I∅\(i1 ⊎ I∅)〉

= 〈subP ({〈p1, P∅〉, . . . , 〈pn, P∅〉},CPN1), I1\I∅〉
1
= 〈CPN1, I1〉

= N1

48

Equation 1 holds because the pair replacement
subP ({〈p1, P∅〉, . . . , 〈pn, P∅〉},CPN1) is equal to the substitution
sub(P∅, pi p○P∅, sub(pi, pi p○P∅,CPN1)) recursively for all pi in i1. The ex-
pression pi p○P∅ is always equal to pi, and then the substitution will be
sub(P∅, pi, sub(pi, pi,CPN1)), which is equal to CPN1.

N1 1b N∅ = 〈subP (i1 p I∅,CPN1 ⊔ CPN∅), I1 ∪ I∅\(i1 ⊎ I∅)〉
1
= 〈subP (I∅ p i1,CPN∅ ⊔ CPN1), I∅ ∪ I1\(I∅ ⊎ i1)〉

= N∅ 1ǫ N1

Equation 1 holds because:

• i1 p I∅ = I∅ p i1 by equation number 5 of Definition 34.

• CPN1⊔CPN∅ = CPN∅⊔CPN1 because the flat union is commutative.

• I1 ∪ I∅ = I∅ ∪ I1 because the union operator is commutative.

• i1 ⊎ I∅ = I∅ ⊎ i1 because ⊎ is commutative.

Associativity: We must show that: (N1 1b1 N2) 1b2 N3 =
N1 1b1 (N2 1b2 N3).

(N1 1b1 N2) 1b2 N3

= (〈subP (i1 p i2,CPN1 ⊔ CPN2), (I1 ∪ I2)\(i1 ⊎ i2)〉) 1b2 N3

= 〈subP (i2′ p i3,CPN3 ⊔ (subP (i1 p i2,CPN1 ⊔ CPN2))),
(((I1 ∪ I2)\(i1 ⊎ i2)) ∪ I3)\(i2′ ⊎ i3)〉

1
= 〈subP (i2′ p i3, subP (i1 p i2,CPN3 ⊔ (CPN1 ⊔ CPN2))),

(((I1 ∪ I2) ∪ I3)\(i1 ⊎ i2))\(i2′ ⊎ i3)〉
2
= 〈subP (i1 p i2, subP (i2′ p i3,CPN3 ⊔ (CPN1 ⊔ CPN2))),

(((I1 ∪ I2) ∪ I3)\(i2′ ⊎ i3))\(i1 ⊎ i2)〉
3
= 〈subP (i1 p i2, subP (i2′ p i3,CPN1 ⊔ (CPN2 ⊔ CPN3))),

(((I2 ∪ I3) ∪ I1)\(i2′ ⊎ i3))\(i1 ⊎ i2)〉
4
= 〈subP (i1 p i2,CPN1 ⊔ (subP (i2′ p i3,CPN2 ⊔ CPN3))),

(((I2 ∪ I3)\(i2′ ⊎ i3)) ∪ I1)\(i1 ⊎ i2)〉
= N1 1b1 〈subP (i2′ p i3,CPN2 ⊔ CPN3), (I2 ∪ I3)\(i2′ ⊎ i3)〉
= N1 1b1 (N2 1b2 N3)

49

Equation 1 is valid because none of the places in i1 or i2 are present in CPN3

and because neither i1 or i2 are elements in I3. Equation 2 holds because
none of the places in i1 or i2 are present in i2′ or i3. Therefore it does not
matter what order they are substituted in. The same argument holds for
the subtractions of interfaces. In equation 3, the associativity of the union
operator, (∪), and the flat union operator (⊔) is used. Because none of the
places in the interfaces i2′ or i3 are present in CPN1 or in I1 then equation
4 is valid.

Commutativity: We must show that: N1 1b N2 = N2 1b N1

N1 1b N2 = 〈subP (i1 p i2,CPN1 ⊔ CPN2), (I1 ∪ I2)\(i1 ⊎ i2)〉
1
= 〈subP (i1 p i2,CPN2 ⊔ CPN1), (I2 ∪ I1)\(i1 ⊎ i2)〉
2
= 〈subP (i1 p i2,CPN2 ⊔ CPN1), (I2 ∪ I1)\(i2 ⊎ i1)〉
3
= 〈subP (i2 p i1,CPN2 ⊔ CPN1), (I2 ∪ I1)\(i2 ⊎ i1)〉

= N2 1b N1

Equation 1 is valid because of the commutativity of the union operator (∪)
and the flat union operator (⊔). Equation 2 is valid because ⊎ is commuta-
tive. Equation 3 holds because:

subP (i1 p i2,CPN2 ⊔ CPN1) =

subP ({〈p11
, p21

〉, . . . , 〈p1n
, p2n

〉},CPN2 ⊔ CPN1) =

sub(p2n
, p1n

p○p2n
, sub(p1n

, p1n
p○p2n

, . . . ,

sub(p21
, p11

p○p21
, sub(p11

, p11
p○p21

,CPN2 ⊔ CPN1))))
1
=

sub(p2n
, p2n

p○p1n
, sub(p1n

, p2n
p○p1n

, . . . ,

sub(p21
, p21

p○p11
, sub(p11

, p21
p○p11

,CPN2 ⊔ CPN1))))
2
=

sub(p1n
, p2n

p○p1n
, sub(p2n

, p2n
p○p1n

, . . . ,

sub(p11
, p21

p○p11
, sub(p21

, p21
p○p11

,CPN2 ⊔ CPN1)))) =

subP (i2 p i1,CPN2 ⊔ CPN1)

Equation 1 holds because p○ is commutative. Equation 2 is valid because
the substitution of nodes are commutative. ♣

As for specification graphs we need a copy function (C), which makes a copy
of a railroad net, and replaces all ids with fresh ones.

50

Chapter 5

Refinement of railroad nets

The atomic railroad nets shown in Section 4.2 have a very simple behavior.
In order to get the behavior of the models more complex, we introduce
several refinement functions. A refinement function is defined from a library
of railroad nets to another. At least one railroad net of a refined library
is larger than its ancestor. By larger we mean that it has more places,
transition, arcs or tokens, or that some expressions are expanded. For a
more definition of refinement see [6].

5.1 Safety

One problem with the basic models is that trains may pass each other on a
single track. This is not a life like behavior as an attempt to do so would
result in a crash. To avoid this the noTrain token is introduced. If a place
has a noTrain token this means that the place is unoccupied. In the initial
marking, all move places should either have a train token or a noTrain token.
Figure 5.1 shows the safe track segment. In order for the train in the Left

place to move to the Right place, by the firing of the move+ transition, there
has to be a noTrain token in the Right place. Note that after the train has
moved to the Right place, the Left place will contain a noTrain token, and
is thereby unoccupied. This situation is displayed in Figure 5.2. The result
is that trains can not pass each other on a single track. Another result is
that two trains can not occupy the same place. All the atomic components
are refined in the same way as the track component. For figures of all safe

51

+

+ Train in +direction

No train

TOKENS

tr(trainName, 1) tr(trainName, 1)

tr(trainName, −1) tr(trainName, −1)

Left Right

nt(noTrain) nt(noTrain)

nt(noTrain)nt(noTrain) move−

move+

Figure 5.1: The safe track segment

+

+

Train in +direction

No train

TOKENS

tr(trainName, 1) tr(trainName, 1)

tr(trainName, −1) tr(trainName, −1)

Left Right

nt(noTrain) nt(noTrain)

nt(noTrain)nt(noTrain)

move+

move−

Figure 5.2: The safe track after firing

atomic components, see [25].

5.2 Train routes and train controlled turnouts

When a train has reached a turnout component, or a component that con-
tains a turnout, the route it has been taking is dependent on the current
state of the turnout. Fortunately this is not the case in real railway sys-
tems. The trains should have a destination. To do this all turnouts must
be identifiable, so the train know where it is. This is solved by adding an
id place to all turnouts. These id places has a token that carries the unique
id of the turnout. Figure 5.3 shows such a turnout component, and the id
place is the purple colored place at the bottom. To keep track of which way
a train should go in a turnout, it is equipped with a train route or travel
plan. A travel plan is a set of pairs of switch ids and branches, left or right.
Note that the two transitions that moves a train from the Left place to the
UpperRight and LowerRight places are equipped with guards. The guard
[(id, left)] evaluates to true if the pair (id, left) is in the train route of the
train. The term id is the id of this turnout, and is given by the token in the
SwitchId place. When a train moves from one of the right hand places to
the left hand place it does not have to check its train route as it is only one

52

+

Right
Upper

Right
Lower

sem

sem
sem
sem

sem
sem
sem

sem

Switch
Id

+ Train in +direction

TOKENS

Semaphore

No train

Switch id

tr(train−
Name, 1)

tr(train−
Name, 1)

sem

sem

sem sem

sem

sem

sem

sem

Change

setDown

setUp
Down

Up

sem

sem

Left

[(id, right)]

[(id, left)]

[(id, left)]

[(id, right)]

id

id

id

id
train

train

tr(trainName, −1) tr(trainName, −1)

tr(trainName, −1)tr(trainName, −1)

tr(trainName, 1)tr(trainName, 1)

tr(trainName, 1) tr(trainName, 1)

train

train

nt(noTrain) nt(noTrain)

nt(noTrain)nt(noTrain)

nt(noTrain) nt(noTrain)

nt(noTrain)nt(noTrain)

tr(trainName, −1)

tr(trainName, −1)

move−

move+

SetUp2

SetUp1

SetDown1

SetDown2

move−

move+

Figure 5.3: The turnout with train routes

53

possible path.

As described in Section 4.2.4 the component might have dead-lock situation
if train that travels in the positive direction is in the UpperRight1 place, and
the semaphore token of the point machine is in the Down place. Introducing
the guards results in a new dead-lock possibility to the turnout component.
The new dead-lock situation arises when it is a train in the Left place that
travels in the positive direction and is supposed to turn left in the turnout,
and the semaphore token of the point machine is in the Down place. This is
the marking shown in Figure 5.3. As is the case for the dead-lock described
in Section 4.2.4, the mirror image of the new dead-lock is also a dead-lock.
The four newly introduced pink transitions in Figure 5.3 solves this problem.
When a train enters a turnout in the wrong state, it will change the state
of the turnout. If the train in Figure 5.3 is supposed to turn left in this
turnout, the trainSetUp1 transition is enabled. A firing of this transition
results in that the semaphore token is moved from the down place to the up

place. Then the train can move to the UpperRight place. The two transitions
trainSetDown2 and trainSetUp2 solves the dead-lock problem described in
Section 4.2.4 in a similar way.

A problem with this approach is that live-locks may occur. Figure 5.4 shows
the marking in a turnout causing a possible live-lock. In this marking the
upper move- transition, and the trainSetDown2 transition are enabled. If
the move transition fires, the upper train moves to the Left place, and the
live-lock is resolved. If the trainSetDown2 transition fires, the state of the
turnout is changed. Now the trainSetUp2 and the lower move- are enabled.
Again the firing of the move transition solves the problem, but the firing of
the lower trainSetUp2 results in the marking in Figure 5.4 again.

The live-lock is resolved assuming strong fairness: if a transition t is enabled
infinitely many times, t will fire infinitely many times. This ensures that one
of the move transitions eventually fires and resolves the live-lock. In Maude
the fairness is obtained by using the frewrite command. The live-lock could
be eliminated by letting the train change the state of the turnout and move
in the same operation. However, we keep the two operations separate in the
model, since this is closer to how real trains would operate.

54

sem

sem
sem
sem

sem
sem
sem

sem

Switch
Id

Right
Upper

−

Right
Lower

−

tr(train−
Name, 1)

tr(train−
Name, 1)

sem

sem

sem sem

sem

sem

sem

sem

Change

setDown

setUp
Down

Up

sem

sem

Left

[(id, right)]

[(id, left)]

[(id, left)]

[(id, right)]

id

id

id

id
train

train

tr(trainName, −1) tr(trainName, −1)

tr(trainName, −1)tr(trainName, −1)

tr(trainName, 1)tr(trainName, 1)

tr(trainName, 1) tr(trainName, 1)

train

train

nt(noTrain) nt(noTrain)

nt(noTrain)

nt(noTrain)nt(noTrain)

nt(noTrain)

nt(noTrain) nt(noTrain)

tr(trainName, −1)

tr(trainName, −1)

move+

move−

SetDown2

SetDown1

SetUp1

SetUp2

move+

move−

Figure 5.4: The live-lock situation

55

5.3 How to implement time in a railway system

The easiest way of introducing time to the models is to give the transitions
fixed delays. This means that it always takes the same amount of time for
a train to move from one point to another. This delay can then either be

+

+

Train in +direction

No train

TOKENSRightLeft

tr(trainName, 1) tr(trainName, 1) @ + 4

tr(trainName, −1)

nt(noTrain) @ + 4

tr(trainName, −1) @ + 4

nt(noTrain)

nt(noTrain) @ + 4 nt(noTrain)

move−

move+

Figure 5.5: The track segment with constant time

fixed for a specific kind of component or be an average time found by empiric
tests. The latter will be closer to reality, but also make the generation of
the nets more time consuming as it no longer can be done automatically. If
such data does not exists it is an extensive task getting them. Figure 5.5
shows the track component with a constant delay of four time units. Note
that the noTrain tokens are delayed as well. This means that both places
are occupied while the train is between them.

To make it more realistic we can add or subtract a factor to the constant.
This factor can either be random or be dependent of physical factors or even
a combination. Such physical factors may be the engine driver’s profile, the
trains profile, the passenger load, the weather conditions etc. The driver pro-
file can contain information on different characteristics of the driver. Some
examples could be aggressiveness, will to exceed the speed limit, and will
to wait for passengers. The train profile may contain specifications of the
trains, such as breaking effect, acceleration, top speed, effect of passenger
load etc.

5.4 Sensitive tracks with separate signals

A different approach to introduce time to the system, is to calculate how
long time it takes to drive a stretch. The figures 5.6 and 5.7 shows the track
component and the turnout with such calculations. To be able to do these

56

calculations, some information is needed. Each stretch will be equipped with
a info place. This place contains a info token. The info token has information
on the length of the stretch. The info places are the turquoise colored places
of figures 5.6 and 5.7.

Signal
Right

Info

@ + findDelay(s, dp, tp, negDist1, negDist2, negSpl, length)
negSpl, length), troute, dp, tp))
tr(trainName, −1, findOutSpeed(s, dp, tp, negDist1, negDist2,

(posDist1+ blSec) = posDist2) then posSs2 else true, occ2)
if(occ1 andalso posDist2 = 0) orelse (not occ1 andalso
(negDist2, negSs2, if occ1 then 0 else posDist1 + blSec,

Left Right

Signal
Left

(negDist2, negSs2, posDist2, posSs2, occ2)
(negDist1, false, posDist1, posSs1, occ1)

(negDist1, true, posDist1, posSs1, occ1)

(negDist2, false, posDist1 + blSec, true, true)

(negDist2, negSs2, posDist2, posSs2, occ2)

(negDist1, false, 0, true, false)
(negDist1, negSs1, posDist1, posSs1, occ1)

tr(trainName, 1, s, troute, dp, tp)

nt(noTrain) @ + findDelay(s, dp, tp, posDist1, posDist2, posSpl, length)

(negDist1, negSs1, posDist1, posSs1, occ1)

(0, true, posDist1, false, false)

(negDist2, negSs2, posDist2, posSs2, occ2)
(negDist1 + blSec, true, posDist2, false, true)

tr(trainName, −1, s, troute, dp, tp)

nt(noTrain)

(negDist1, negSs1, posDist1, false, occ1)
(negDist1, negSs1, posDist1, true, occ1)

(negDist2, negSs2, posDist2, posSs2, occ2)

then negSS2 else true, posDist2, posSS2, occ2)

(blSec, length, negSpl, posSpl)

(blSec, length, negSpl, posSpl)

(blSec, length, negSpl, posSpl)

(blSec, length, negSpl, posSpl)

orelse (not occ1 andalso (negDist1 + blsec) = negDist2)
(if occ1 then 0 else negDist1 + blSec, if (occ1 andalso negDist2 = 0)

nt(noTrain)
@ + findDelays(s, dp, tp, negDist1, negDist2, negSpl, length)

tr(trainName, 1, findOutSpeed(s, dp, tp, posDist1, posDist2, posSpl, length),
troute, dp, tp,))@ + findDelay(s, dp, tp, posDist1, posDist2, posSpl, length)

nt(noTrain)

move+

move−

signal+

signal−

Figure 5.6: The track segment with separate signals

In many railroad systems the speed limits depend upon how many block
sections there are to the next obstacle. So is the case for the subway in Oslo.
An obstacle could be another train, a turnout in the wrong state etc. The
info token therefore contains two lists of speed limits, one for each direction.
The position in the list represents how many free block sections needed for
this to be the actual speed limit. an example of one such speed limit list
could be:

speed limit list [15 , 15 , 30 , 50 , 80]
numbers of free block sections 0 1 2 3 ≥ 4

From the example above we can read that if there are two free block sections,
the speed limit is 30 kilometer per hour. The info token also has a slot for
information on whether the two ends of the stretch is in the same block
section. This slot carries the value one if the ends are i different block
sections and zero if they are in the same

The real difficulty is on how to keep track of how many free block sections
there are in each direction. We still want to obtain modularity so a problem
arise. We need to access information on the situation in other parts of the net.
A solution to the problem is to introduce a stream of signals with information
on how far it is to the next obstacle in each direction. This stream runs

57

Signal
Left

Lower
Right
Signal

Right
Lower

Right
Upper

Upper
Right
Signal

External
Control

Lower
Info

Upper
Info

posDist2, posSpl, length)
nt(noTrain) @ + findDelay(s, dp, tp, posDist1,

(not occ1 andalso (posDist1+ blSec) = posDist2) then posSs2 else true, occ2)

(negDist2, negSs2, if occ1 then 0 else posDist1 + blSec,
if(occ1 andalso posDist2 = 0) orelse

tr(trainName, −1, findOutSpeed(s, dp, tp, negDist1,
negDist2, negSpl, length), troute, dp, tp,)) @ +
findDelay(s, dp, tp, negDist1, negDist2, negSpl, length)

negDist2, negSpl, length), troute, dp, tp,))@ +
findDelay(s, dp, tp, negDist1, negDist2, negSpl, length)

tr(trainName, −1, findOutSpeed(s, dp, tp, negDist1,

train
SetUp2

train
SetUp1

train
SetDown1

train
SetDown2

ext

Left

Switch
Id

Up

Down

setUp

setDown

Change

sId
sem
sem

sem
sem

noSem
sem
sem
noSem

sem
noSem

sem

sem

sem
noSem

sem
sem

(negDist1, negSs1, posDist1, true, occ1)

(negDist1, negSs1, posDist1, false, occ1)
(negDist2, negSs2, posDist2, posSs2, occ2)

(blSec, length, negSpl, posSpl)
(blSec, length, negSpl, posSpl)
(blSec, length, negSpl, posSpl)
(blSec, length, negSpl, posSpl)

(blSec, length, negSpl, posSpl)
(blSec, length, negSpl, posSpl)
(blSec, length, negSpl, posSpl)
(blSec, length, negSpl, posSpl)

(negDist2, false, posDist1 + blSec, true, true)

(negDist2, negSs2, posDist2, posSs2, occ2)

(negDist1, true, posDist1, posSs1, occ1)

(negDist1, false, posDist1, posSs1, occ1)

tr(trainName, 1, s, troute, dp, tp)

(negDist1, negSs1, posDist1, posSs1, occ1)
(negDist1, false, 0, true, false)

(negDist1, negSs1, posDist1, true, occ1)

(negDist1, negSs1, posDist1, false, occ1)

(negDist2, negSs2, posDist2, posSs2, occ2)

negDist2) then negSS2 else true, posDist2, posSS2, occ2)
negDist2 = 0) orelse (not occ1 andalso (negDist1 + blsec) =
(if occ1 then 0 else negDist1 + blSec, if (occ1 andalso

[member ((sId,
left), troute)]

sem
sem

sem
sem

noSem
sem
noSem
sem

sId

tr(trainName,

tr(trainName,

[member((sId, left), troute)]

[member((sId, right), troute)]
sId

noSem
noSem

noSem

(if occ1 then 0 else negDist1 + blSec, if (occ1 andalso
negDist2 = 0) orelse (not occ1 andalso (negDist1 + blsec) =
negDist2) then negSS2 else true, posDist2, posSS2, occ2)

((sId, right), troute)]
[member

noSem

sId

tr(trainName, −1, s, troute, dp, tp)

sem

sem
sem

sem

(0, true, posDist1, false, occ1)
(negDist2, negSs2, posDist2, posSs2, occ2)
(negDist1, true, posDist2, true, occ2)

(negDist1, negSs1, posDist1, posSs1, occ1)

sem
noSem
sem

negDist1, negDist2, negSpl, length)

(negDist1 + blSec, true, posDist2, false, true)
(negDist2, negSs2, posDist2, posSs2, occ2)
(0, true, posDist1, false, false)
(negDist1, negSs1, posDist1, posSs1, occ1)

tr(trainName, 1, findOutSpeed(s, dp, tp, posDist1,
posDist2, posSpl, length), troute, dp, tp,))@ +
findDelay(s, dp, tp, posDist1, posDist2, posSpl, length)

nt(noTrain)

(negDist1, negSs1, posDist1, posSs1, occ1)

(0, true, posDist1, false, false)

(negDist2, negSs2, posDist2, posSs2, occ2)
(negDist1 + blSec, true, posDist2, false, true)

tr(trainName, −1, s, troute, dp, tp)
nt(noTrain) @ + findDelay
(s, dp, tp, negDist1, negDist2, negSpl, length)
nt(noTrain)

tr(trainName, 1, findOutSpeed(s, dp, tp, posDist1,
posDist2, posSpl, length), troute, dp, tp,))@ +
findDelay(s, dp, tp, posDist1, posDist2, posSpl, length)

(negDist1, true, posDist2, true, occ2)
(negDist2, negSs2, posDist2, posSs2, occ2)
(0, true, posDist1, false, occ1)
(negDist1, negSs1, posDist1, posSs1, occ1)

(negDist2, negSs2, posDist2, posSs2, occ2)

nt(noTrain)

nt(noTrain)
(negDist2, false, posDist1 + blSec, true, true)
(negDist2, negSs2, posDist2, posSs2, occ2)

posDist1, posDist2, posSpl, length)
nt(noTrain) @ + findDelay(s, dp, tp,

nt(noTrain) @ + findDelay(s, dp, tp,

tr(trainName, 1, s, troute, dp, tp)
(negDist1, false, 0, true, false)
(negDist1, negSs1, posDist1, posSs1, occ1)

(negDist2, negSs2, if occ1 then 0 else posDist1 + blSec,
if(occ1 andalso posDist2 = 0) orelse (not occ1 andalso
(posDist1+ blSec) = posDist2) then posSs2 else true, occ2)
(negDist2, negSs2, posDist2, posSs2, occ2)

(negDist1, false, posDist1, posSs1, occ1)

(negDist1, true, posDist1, posSs1, occ1)

1, s, troute, dp, tp)

1, s, troute, dp, tp)

tr(trainName, −1, s, troute, dp, tp)

tr(trainName, −1, s, troute, dp, tp)

signal−

signal+

move−

move+

move−

move+

signal−

signal+

Figure 5.7: The turnout with separate signals

58

parallel to the trains. For each track place there is one corresponding signal
place. Note that these to corresponding places are members of the same
interface. When something in the system changes, whether it is a train
moving or a point machine changing the state of a turnout, the signals must
be updated. The signals are modeled by signal tokens which exchange values
with its neighbors. Each signal token contains five values. negDistance

and posDistance is the number of block sections to the nearest obstacle
in each direction. negSendSignal and posSendSignal is an instruction on
whether to send the values to its neighbor or not. The value occupied holds
information on whether there is a train in the corresponding track place.
If negSendSignal is true this means that the signal token must send its
negDistance to its neighbor in the positive direction. Trains must inform
the signal tokens of their movement.

5.4.1 The signals

Train movement

When a train moves it sends a signal in both directions. For instance, a train
moves from the place Left to the Right place in the track component of
Figure 5.6. Then the signal tokens from the two signal places are consumed,
and two new ones are added. The token added to the place LeftSignal

have the same negDistance value as the one that was here before. There is
no use sending this value in the positive direction since the token generated
there already has seen this value. Hence the negSendSignal is set to false.
The posDistance is set to zero as we know that there is a train in the Right

place. This value is new to us and must be sent in the negative direction.
Therefore the posSendSignal is set to true. The place Left gets a noTrain
token and is no longer occupied so the occupied is set to false. The token
added to the place RightSignal gets the following values. The negDistance
is set to the value negDistance of the token in the place LeftSignal if Left
and Right are in the same block section, and one more than that if they are
not. This value is new so it must be passed on, hence the negSendSignal

is set to true. The posDistance has not changed and is set to the same
as it was. It is no use sending this value in the negative direction so the
posSendSignal is set to false. The occupied is obviously set to true.

59

The signal stream

When a signal token in the place LeftSignal, of the track segment in Fig-
ure 5.6, has true as its negSendSignal value this means that it is supposed to
send it’s negDistance value in the positive direction. This is handled by the
transition signal+. This transition consumes the signal tokens from the two
signal places. To the place LeftSignal it adds a token equal to the one it
consumed but with the negSendSignal set to false, because it is no point in
sending the same signal again. A token is added to the place RightSignal as
well. This token has the same posDistance, posSendSignal and occupied

values as the one that where consumed from here. The value of negDistance
is updated if necessary. If the occupied of the token in LeftSignal is true
(this means that there is a train in the place Left), then negDistance is set
to zero. If occupied is false then negDistance is set to the negDistance

of the token from LeftSignal if Left and Right are in the same block sec-
tion, if not it it set to one more than the negDistance of the token from
LeftSignal. If the new value of negDistance is the same as it was before,
then the value of negSendSignal is not changed. This is to prevent signaling
the same value over and over again. But if the value of negDistance has
changed then the value of negSendSignal is set to true, we have to send this
value further in the positive direction.

Note: The signal tokens are not timed. This means that signals travel in-
finitely faster than trains. This is of course a simplification of reality, but we
find it a reasonable one.

Changing the state of a turnout

Figure 5.8 shows two states of a tiny railway system. The tracks are divided
into block sections. The numbers shows the number of free block sections in
each direction.

In the system of Figure 5.8(a), the position of the turnout is directed down-
wards, hence the broken line on the upper branch. Note that in the upper
branch the turnout is regarded as an obstacle. If the state of the turnout
is changed, all signals must be updated. This will result in the situation of
Figure 5.8(b).

In the turnout of Figure 5.7 the updating of the signals is performed, when

60

1

012

0123

0 1 24

0

5

2 3 4 5

(a) before state change

4

0

0

1

2 3 4

012

3

1 2

0

3

123

(b) after state change

Figure 5.8: Free block sections

61

the transitions setUp and setDown fires. If for instance setUp fires, the
turnout is set upwards. The signal tokens of LeftSignal and RightSignal

are consumed, and new ones are added. The signal token created in the
LeftSignal place gets the negDistance value of the token from the RightSignal
place. In Figure 5.8 the value is the number 2. This is a new value so it must
be passed on. Hence negSendSignal is set to true. The distance to the next
obstacle in the positive direction is the same as before, but the value must
be sent in the negative direction so posSendSignal is set to be true. In the
lower branch the distance to the next obstacle in the negative direction is
now zero. therefore the negDistance value of the signal token created in the
RightSignal place is zero. This value must be passed on so negSendSignal

is set to true.

5.4.2 The updated point machine

As described in Section 5.4.1 the signals must be updated when the state of a
turnout changes. The update happens when the transition setUp or setDown
fires. It is therefore important that the state of the turnout never changes
unless one of these transitions fire. This is not the case of the turnout in
Figure 5.3. When one of the pink transition fires, the state of the turnout
is changed without the firing of setUp or setDown. The point machine of
the turnout in Figure 5.7 is updated to handle this problem. Instead of
consuming a semaphore token from one of the places Up or Down and adding
it to the other one, the pink transitions now changes the state of the turnout
by adding a token to the Change place. The state of the turnout will then
be changed by the firing of setUp or setDown. To avoid the possibility of
an accumulation of semaphore tokens in the Change place, a non-semaphore
token is introduced. The presence of a non-semaphore token in a place,
mens that there is no semaphore token in it. All transitions that generates a
semaphore token to the Change place, removes a non-semaphore token at the
same time. The same goes for the places Up and Down. We still want to be
able to operate the turnout manually by adding a semaphore token, without
having to remove a non-semaphore token. This possibility is achieved by
adding the place ExternalControl and the transition ext.

62

5.4.3 Calculation of speed and delays

To be able to predict the time it take to get from a place A to a place B by
a transition T, we need to establish a driving pattern. All move transitions
must have information on the speed limits in both directions. When we later
on refer to the speed limit of A, we mean the speed limit in point A in the
direction of point B. Further when we say the speed limit of B, This means
the speed limit of point B in the same direction. For simplicity reasons we
will only consider linear acceleration and retardation.

Figure 5.9 shows a flow chart of the algorithm we use to calculate how long
time it takes to move through a component. The flow chart consists of
squares which represent activities or tasks, diamonds which represent deci-
sion points, and arrows which represent flow of control. The ovals are the
start and end points, and delays are represented by four sided shapes with
a curved right edge.

If the train has been speeding and not yet performed the safety stop, or if
the train is speeding then the train must stop as soon as possible. It must
also stand still for a period of time, before it can accelerate toward the speed
limit again. Otherwise if the speed limit of A is smaller than or equal to
the speed limit of B then the train will try to accelerate to the speed limit
of A, if it does not already travel at that speed, and then keep this speed
all the way to point B. Furthermore if the speed of the train is greater than
the speed limit of B then if the distance between A and B is to short for the
train to break down to the speed limit of B by the time it gets to B then
the train will break at max break power for the entire distance. Otherwise if
the distance is to small for the train to reach the speed limit of B by normal
retardation. Then the train brakes just as hard as it has to to reach the
speed limit of B. Otherwise the train accelerates until it reaches the speed
limit of A or for as long as it can before it performs a normal retardation
and reaches the speed limit of B just as it gets to point B.

Hence time a train uses to get from A to B is dependent on the following
factors:

• Speed at point A

• Speed limit at point A

• Speed limit at point B

63

mustStop
== true

speeding
is the train

break as hard
as possible
mustStop =
true

stop as soon
as possible
mustStop =
false

can reach
speedLimit

before
exit

do not have
to break before
exit

must brake
before exit

accelerate to
speedLimit
drive with
constant speed

accelerate until
it must brake

Labels

Start or end
point

Desition
point

Activity

Delay

Yes
can

stop before
exit point

Yes
Yes

outSpeedLimit
speedLimit >

No

wait for 3 min

NoYes

Yes

No

Yes

No

can reach
speedLimit
before must

brake

Leave the component

accelerate

accelerate to
speedLimit, drive
with constant
speed until
it must brake

Enter the component

No

No

Figure 5.9: Driving pattern of the trains

64

• The acceleration of the train

• The normal retardation of the train

• The maximum retardation of the train

The ML-functions used to calculate the delays may be found on the attached
CD-ROM. Note that there is a difference between normal retardation and
maximum retardation. We have decided that the normal retardation is de-
pendent on how aggressive the driver is, and that it is somewhere between
0.5 and 1 times the maximum retardation. In the driver profiles the aggres-
siveness is represented by a number between zero and one hundred. The
normal retardation must then be:

normal retardation =

(

aggressiveness

200
+ 0.5

)

∗ max retardation

The acceleration is dependent on the drivers aggressiveness in the same way:

acceleration =

(

aggressiveness

200
+ 0.5

)

∗ max acceleration

These expressions can of course be altered if empiric tests shows that the
retardation or acceleration varies more, or less, than we have presumed.

65

Chapter 6

Saturation and translation

6.1 Saturation

The process of connecting the specifications to the railroad nets are called
saturation. When saturating a specification, all template graphs are con-
nected to a railroad component. connecting a specification graph to a rail-
road net means associating all interface nodes of the specification graph with
different interfaces of the railroad net.

Tr1

n1 n2

Left Right

tr(trainName, 1) tr(trainName, 1)

tr(trainName, −1)tr(trainName, −1)

move+

move−

Tr2

(a) Before satu-
ration

Tr1

n1 n2

move+

Left Right

tr(trainName, 1) tr(trainName, 1)

tr(trainName, −1)tr(trainName, −1)
move−

Tr2

(b) After satu-
ration

Figure 6.1: Atomic saturation.

An atomic saturation is a function (satA) that maps all interface nodes of a
template graph to different interfaces of an atomic railroad net. The number
of interface nodes of the graph must be equal to the number of interfaces
of the railroad net. In that way we assure a one to one mapping between
the nodes and the interfaces. Figure 6.1(a) shows a specification graph of

67

a track segment and a railroad net representation of the same component.
In Figure 6.1(b) the saturation is indicated by the dotted lines between the
interface nodes of the specification graph, and the interfaces of the railroad
net.

Definition 39 Given a template specification graph G = 〈N,NInt,L〉 and an
atomic railroad net R = 〈CPN, I〉, satA is an atomic saturation of G with R
if the following conditions are fulfilled:

1. ∀n ∈ N ∃i ∈ I such that satA(n) = i

2. |N| = |I|

3. satA(n1) = satA(n2) ⇒ n1 = n2

When saturating a specification language we must make an atomic saturation
for each of the template components. When doing this one must be careful
so that if two nodes are joinable, the corresponding interfaces must also be
joinable. Figure 6.2 shows the template graphs of a specification language
in the upper part of the figure, and a library of atomic railroad nets in lower
part. The saturation is indicated by the dotted lines

Definition 40 Given a specification language SL = 〈GT,D,T,C,E〉 and a
library L of atomic railroad nets, satL is a library saturation function of SL

with L , if:

1. ∀G ∈ GT ∃R ∈ L |satL is an atomic saturation of G with R

2. If n1 is an interface node in G1 and n2 is an interface node in G2,
and G1,G2 ∈ GT. Then if n1 and n2 are joinable then satL(n1) and
satL(n2) are joinable.

For convenience we introduce a mapping function (SLG) between template
graphs and railroad nets. This function takes a library saturation function
and a template graph as arguments. It returns the railroad net that the
template graph is saturated with.

Definition 41 Let satL be a language saturation function, G be a template
graph, and R be an atomic railroad net. Then SLG(satL,G) = R if satL is
an atomic saturation of G with R

68

Tu1

n2

n3

n1
Tr1

n1 n2

Upper
Right

Lower
Right

Template graphs

Library of atomic
railroad nets

semsem

sem

sem

sem sem

Change

sem

sem

tr(trainName, −1)

tr(trainName, 1) tr(trainName, 1)

tr(trainName, −1)

sem

sem

The point machine

tr(trainName, 1)

tr(trainName, −1)

tr(trainName, 1)

tr(trainName, −1)

Left

Up

Down

setDown

setUp

Left Right

tr(trainName, 1) tr(trainName, 1)

tr(trainName, −1)tr(trainName, −1)

move+

move−

move−

move+

move−

move+

Tu2

Tu3

Tr2

Figure 6.2: Saturation of a library

When saturating a specification all components of the specification graph is
mapped to a copy of the railroad net that its template is mapped to. If two
nodes in the specification are joined so are the corresponding interfaces of
the underlying railroad nets.

Definition 42 A saturation (sat) of a specification S = 〈G,SL〉 with a li-
brary L by the language saturation function satL is defined by:

1. sat(〈G1 ⊓[n1,n2] G2,S
L〉,L , satL) =

sat(〈G1,S
L〉,L , satL) 1[satL(n1),satL(n2)] sat(〈G2,S

L〉,L , satL)

2. sat(〈G, 〈GT,D,T,C,E〉〉,L , satL) =
C (SLG(satL,T (G))) if T (G) ∈ GT

Equation 1 of the definition above states that if two interface nodes in the
specification graph are joined, so are the corresponding interfaces of the un-
derlying railroad net. Equation 2 expresses that a copy of template graphs
is represented by a copy of the corresponding atomic railroad net. The satu-
ration of a specification results in a executable railroad net implementation
of the specification graph.

69

6.2 Colored Petri nets as Maude modules

There are several ways to translate a colored Petri net into a Maude module.
We have focused on two approaches. They will be referred to as set-marking
and list-marking. The names reflects the way markings are represented,
either as a set or as a list in Maude. The two approaches will be analyzed
and compared in Chapter 8.

6.2.1 Set-marking

Ölveczky [16] suggests a translation where all the tokens with their position
are stored in a set. The declaration of the initial marking of the colored Petri
net in Figure 6.3 will be:

eq initMarking = Left(train(+)) UpperRight(noTrain)

LowerRight(noTrain) Down(sem) .

The train names are omitted for readability reasons. For instance the term
Left(train(+)) reads “the place Left, contains the token train(+)”, that is,
Left contains a train token heading in the positive direction. The transitions

+

Right
Upper

Right
Lower

sem

sem

sem sem

sem

sem

sem

sem

Change

setDown

setUp
Down

Up

sem

sem

Left

tr(trainName, −1) tr(trainName, −1)

tr(trainName, −1)

tr(trainName, 1)

tr(trainName, 1) tr(trainName, 1)

nt(noTrain)

nt(noTrain)nt(noTrain)

nt(noTrain)

nt(noTrain)nt(noTrain)

nt(noTrain)

tr(trainName, 1)

tr(trainName, −1)

nt(noTrain)

move+

move−

move+

move−

Figure 6.3: The safe turnout

70

will naturally be translated into rewrite rules. For instance the upper of the
two move- transitions will become the rule:

rl [move-] : UpperRight(train(-)) Left(noTrain) Up(sem)

=>

Left(Train(-)) Up(sem) UpperRight(noTrain) .

The rule above is enabled if the current marking contains at least one oc-
currence of each of the three tokens in the left hand side of the rule. If the
rule is executed, each of the tokens on the left hand side is replaced by the
tokens on the right hand side of the rule. Since the marking is represented
as a set, the order of the tokens in the rules are insignificant.

6.2.2 List-marking

In order to avoid extensive pattern matching we have proposed a translation
where all places are stored in a list. All the places then contains a set of
tokens. This could be a list, but because places i our systems would normally
not contain many tokens, it really does not matter. The initial marking of
the net in Figure 6.3 will be:

eq initMarking = [Left(train(+)), UpperRight(noTrain),

LowerRight(noTrain), Up(null), Down(sem),

Change(null)] .

All places will have a fixed position in the list. The Left place will always
be first, UpperRight will be second and so on. This is done to minimize
the number of pattern matches needed to find a token in a given place in a
marking.

The rule for the upper move- transition is expressed in Maude as:

rl [move-] : [Left(noTrain), UpperRight(train(-)),

lowerRight(toks), Up(sem), Down(toks’),

Change(toks’’)]

=>

[Left(train(-)), UpperRight(noTrain),

71

lowerRight(toks), Up(sem), Down(toks’),

Change(toks’’)] .

where toks, toks’ and toks’’ are variables of token set. Note that all the
places are represented in the rule, not only the ones influenced by the tran-
sition, as is the case for set-marking. This is because of the fixed positions
of the places in the list.

72

Chapter 7

Software

In this chapter we will give an overview of the software developed to build
and execute railroad colored Petri nets. There will also be given a description
of the process of setting up a simulation. The source code of the modules
may be found on the attached CD-ROM.

7.1 The main tool

The main tool, RWSEditor, is a program designed to build up specification
graphs from a predefined set of template graphs. It is also possible to as-
sign types to the nodes of these template graphs. It has functionality for
saturating the specification graph with imported atomic colored Petri nets.
After the saturation it is possible to save the colored Petri nets as XML
files. These nets are executable in Design/CPN, if their size is small enough.
The original version of RWSEditor is written by Ingrid Chieh Yu, and is
presented in [25].

The program has been expanded to handle interfaces. The atomic colored
Petri nets are created in Design/CPN, and do not have any interfaces. These
must be added in RWSEditor. The atomic colored Petri nets are thereby
converted into railroad nets. Copies of these railroad nets are then con-
nected by saturation of the specification graph. When saving the generated
railroad net, the interfaces are omitted, again to obtain compatibility with
Design/CPN.

73

In addition to assigning types to the nodes, one now has the possibility of
assigning directions to the nodes of the template specification graphs.

Possibilities to create trains, train profiles and driver profiles have also been
added. When the user wants to create a new profile, a form pops up. The
fields of this form are dependent on the definition of the profile from the
global declaration file. We have therefore implemented functionality for read-
ing and analyzing declaration files.

Train routes may also be created by clicking on the nodes that are supposed
to be in the route.

Figure 7.1: Screen-shot of the RWSEditor

In order to be able to run online simulations trains must be displayed in the
specification graph. We have also added functionality for communication
with other programs such as Xml2Maude and rws-sim. Figure 7.1 shows a
screen-shot of RWSEditor taken during a simulation. When simulating with
RWSEditor one can choose how many rewrite steps one wants to simulate
for, and also how many intermediate steps one wants displayed. For timed
nets, one may also set how many time steps the simulation shall run.

74

7.2 The translation module

Xml2Maude is a translator made to translate railroad colored Petri nets
to Maude modules. It handles both list- and set-markings as described in
Chapter 6.2. In can either run as a separate program or be included in
another program. When executed as a separate program the filename of
the xml-file to be translated must be given in the command line. So has
information on whether one want it to be translated by the set-marking or
the list-marking approach. When called from another program the net can
be transferred as a xml-element to prevent having to save it to a file.

This program is not a complete translator for all possible colored Petri nets
constructed in Design/CPN. In order to be that it had to contain a complete
compiler from ML to Maude, as the declarations in Design/CPN are written
in ML. It is however a translator of a subset of these colored Petri nets
sufficient for our purposes.

7.3 The automatic refinement tool

Autorefine is a Java program we have developed to automatically refine rail-
road colored Petri nets. It can refine single components, whole libraries or
colored petri net representation of whole railway systems. When started,
the program asks the user to select a refinement class from a menu. All the
input files will be refined and written to a new file. Autorefine can refine the
basic components discussed in Section 4.2 into all refinements described in
this thesis.

7.4 The control script

The Perl script rws-sim controls the communication between RWSEditor
and Maude. It is written by Pål Enger, and will be presented in his Cand.
Scient. thesis.

75

draw
specification

Show results
from the
simulation results

send

send
sim komand

rws−sim

CPNets as
composite

xml element

get

results
get

sim komand
send module & Maude

simulate

CPNets as
xml files

atomic
refined

CPNets

draw
atomic

get

CPNets as
composite

Maude
module

RWSEditor

send

read

Saturate

send

save

Design/CPN
Autorefine

refine

CPNets as
xml files

atomic
read

save

Xml2Maude

compile

Figure 7.2: The overview of a simulation

76

7.5 How to set up a simulation

In this section a step by step description of the process of setting up a simu-
lation is given. The system involves several modules as shown in Figure 7.2.
Processes are drawn as rectangles. Events of a process are drawn in the
order they occur, with the first event at the top. Files and data structures
are drawn with dotted lines. The arrows represent the saving and loading of
files, and sending and receiving data streams.

First the basic atomic colored Petri nets, such as the ones described in Sec-
tion 4.2 are designed using Design/CPN. These nets are saved as xml-files.
Then Autorefine is used to refine the basic atomic colored Petri nets to the
desired level of refinement. The refined atomic colored Petri nets are also
saved as xml-files following the same document type definition (dtd) as for
the basic ones.

When all the refined atomic colored Petri nets are constructed, RWSEditor
is started. In RWSEditor, one have to chose a set of template specification
graphs. This should match the set of refined atomic colored Petri nets. Then
multiple copies of these template specifications graphs are connected to form
the specification graphs. The theory of this is described in Section 3.2. When
the the specification graph is finished, it is time load the refined atomic
colored Petri nets. Then interfaces should be added and the specification
should be saturated with the railroad nets. This process is described in
Chapter 6.1. Now would be a good time to add trains, train routes, profiles
and so on. The system is now ready to be simulated. There are two ways of
simulating the systems, offline or online.

We define offline simulation as a simulation where RWSEditor is used to save
the colored Petri net, generated by a saturation, to a file. This file is trans-
lated to a Maude module by Xml2Maude and then executed in Maude. The
output from an offline simulation is the textual output from Maude only. No
train movements are shown in RWSEditor. With an online simulation the
results of the simulation are displayed in the specification graph of RWSEd-
itor. The first part is to display the initial positions of the trains on the
specification graph. Then the whole system is converted to a xml-element.
This xml-element is sent to Xml2Maude, which translates it to an executable
Maude module. Then the simulation command is generated. This command
contains information on how many steps the net should be executed, and
whether every step should be displayed, or just some of them.

77

The control script, rws-sim, gets the Maude module and the simulation com-
mand, and starts the Maude engine. rws-sim then feeds Maude with the
module and commands, and reports the results back to RWSEditor, which
is used to displays the results.

78

Chapter 8

Simulation

In this chapter we will analyze the two different approaches of translating
colored petri nets to Maude modules. We also describe some simulations,
and present empiric data on their time consume.

8.1 Computational complexity

In this section we discuss the computational cost both with respect to time
and space, and with respect to choosing either the set-marking or list-
marking approach.

File size and computation cost of set-marking

The file-size of a colored Petri net CPN = 〈P, T,A〉 stored as a Maude
module by using the set-marking approach will be given by a linear function
of the expression:

|P | + |T | + |A| + |tokens|, (8.1)

where |tokens| counts the number of tokens in the net.

In the basic railroad net components presented in section 4.2 all arcs leads
one token. It is never more than one arc in each direction between two nodes.
This also applies to all refinements of these nets used in this thesis. Hence a
transition t consumes exactly | •t| tokens when it fires.

79

In order to determine whether a given transition t is enabled, it is necessary
to search through the tokens of the marking for each of the tokens in •t to
see if there is a matching rule. Thus as many as

|tokens| × | •t| (8.2)

tokens must be examined to decide whether t is enabled or not. In the
colored Petri Net CPN, the number of tokens that must be checked in or-
der to determine whether any transition is enabled, is given as the sum of
expression (8.2) for all transitions t ∈ T :

∑

t∈T

|tokens| × | •t| (8.3)

Note that for every transition t, when two railroad nets are connected to
each other | •t| will not increase, hence | •t| is independent of the size of the
railroad.

File size and computation cost of list-marking

The file-size of a colored Petri net CPN = 〈P, T,A〉 stored as a Maude
module by using the list-marking approach will be given by a linear function
of the expression:

|P | + (|T | × |P |) + |tokens|, (8.4)

where |tokens| counts the number of tokens in the net.

In order to determine if a transition t is enabled one have to find out if all
places have a satisfying set of tokens. This means that it is necessary to
compare the marking with the left-hand side of the rule. All places in the
marking list is in the same position as in the list in the left-hand side of the
rule, we therefore have to do

|P | (8.5)

comparisons.

To be able to determine whether any transition is enabled we have to multiply
expression 8.5 with the number of transitions in the system, and thereby get
the expression:

|P | × |T | (8.6)

The sizes of the expressions 8.3 and 8.6, and the proportion between them
are dependent on the net. Let us for instance consider colored Petri net

80

representation of a large railway system, and use components with safety.
Then the number of tokens are almost the same as the number of places.
The number of input places of a transition is very small compared to these
numbers. Therefore Expression 8.3 will be only a few times larger than
Expression 8.6.

8.2 Numbers and statistics

Three sections of the Oslo subway system was modeled as specification
graphs. The smaller one is the downtown part of the system, more pre-
cisely the tracks between the stations Majorstua and Grønland. This part is
shown in Figure 2.5. In the second section, the downtown part was expanded
westwards to the station Kolsås, and eastwards to Bergkrystallen. This is
line number four of Oslo subway system. This specification graph was then
expanded to a model of the whole Oslo subway system. The line map of the
whole system is shown in Figure 2.4. These three specification graphs was
saturated with several different refinements of the railroad nets presented in
Section 4.2.

The three specification graphs were saturated with railroad nets with safety.
This is the library presented in Section 5.1. Table 8.1 shows the size of
the railroad nets constructed by the saturation. The table shows both the

Segment Places Transitions Arcs
CPN List-marking Set-marking

file size file size file size

Majorstuen -
242 423 2966 1.2 Mbyte 1.1 Mbyte 82 Kbyte

Grønland

Kolsås -
885 1556 7710 4.3 Mbyte 14 Mbyte 311 Kbyte

Bergkrystallen

The whole
2067 3572 18286 10 Mbyte 79 Mbyte 728 Kbyte

system

Table 8.1: Size data of the simulated segments

number of railroad net components (places, transitions and arcs), and the file
size of the nets stored as an XML-file, and as a Maude modules. As suspected
the file size of the Maude module made as set-marking is much smaller than
the one made as list-marking. The file sizes of the Maude modules relative
to the Expression 8.1 for the set-marking and Expression 8.4 for the list-
marking are almost the same for all three segments. These numbers are
given in Table 8.2, and implies that the expressions are correct. The reason

81

they are not exactly the same is probably that all constants are omitted in
the expressions.

Segment
Expression 8.1

set-marking file size
Expression 8.4

set-marking file size
Majorstuen -

47 93
Grønland

Kolsås -
35 98

Bergkrystallen

The whole
35 93

system

Table 8.2: Relative file size

First we simulated the three segments offline, as defined in Section 7.5. All
three segments were saturated with safe components as presented in Sec-
tion 5.1. Different number of trains were added to each of the segments, and
then the colored Petri nets was saved. These colored Petri nets was trans-
lated to Maude modules with both the list-marking and the set-marking
approach. Maude was then used to execute these modules. First the initial
state was computed. Then one rewrite was executed, and finally all possible
rewrites was performed. The simulation times as presented by Maude are
shown in table 8.3.

As suspected the the simulation time increased as the net got larger. In
the smaller net the simulation times were almost unmeasurable. This was
the case for both list-marking and set-marking. In the net from Kolsås to
Bergkrystallen, the set-marking was much faster than the list-marking. This
is probably due to the large files of the modules represented by the list-
marking approach. The list-marking of largest net was not executable on a
normal modern computer due to its size, and are therefore omitted from the
table. The set-marking version of the whole system however was executable
in reasonable time. Because of this, the set-marking approach is used for the
rest of the simulations presented in this thesis.

As suspected an increased number of trains results in an increased number
of rewrites needed to reach a final state. However the simulation time did
not increase. The reason is that the number of tokens in the system is not
influenced by the number of trains. Each train token added to the net will
replace a noTrain token. If the number of trains on the line is increased,
more transitions are enabled during execution, which will decrease the time
it takes to find an enabled transition.

82

segment type
number of Simulation time (milliseconds) number of

trains initial state one rewrite all rewrites rewrites

M
a
jo

rs
tu

en
-

G
rø

n
la

n
d se

t
1 0 0 30 85
4 10 0 20 280
16 0 0 20 953

li
st

1 0 0 80 85
4 0 0 70 280
16 0 0 90 953

K
o
ls
å
s

-
B

er
g
k
ry

st
a
ll
en se
t

1 0 0 900 1708
4 0 10 910 11184
16 10 0 920 32253
32 0 0 980 39308

li
st

1 1090 3680 15850 1708
4 490 680 11200 4380
16 260 790 19080 32065
32 400 460 17110 39120

T
h
e

w
h
o
le

sy
st

em se
t

1 0 80 4210 1614
4 0 20 4070 5779
8 0 30 4030 10100
16 10 0 3960 37793
32 0 10 3620 35630

Table 8.3: Experiments on off-line Simulation.

We also simulated the three segments online. We saturated all three specifi-
cation graphs with the same atomic railroad nets as for the offline simulation.
We ran the simulation with a various number of trains. The simulation times
are presented in Table 8.4. First we simulated 100 steps and displayed the
result of all of them in RWSEditor. Then we simulated 1000 steps, display-
ing every tenth step, Finally we ran the simulation until a final state was
reached showing only the final state.

As for the offline simulation the simulation time per rewrite step decreased
when the number of trains increased. None of the simulations for the smallest
net were measurable, and are therefore omitted from the table.

We also ran simulations with railroad nets with constant delays, as presented
in Section 5.3. We ran the simulation with a various number of trains and
let it run for 50 time steps. The results of this simulation are presented in
Table 8.5.

Execution time for the simulation of one step decreases with the number of
trains, while the number of rewrite steps increases. The number of rewrite

83

Simulation time (milliseconds)

Sample of lines
number 100 steps 1000 steps all possible steps
of trains show all show every 10’th show only final

Kolsås 1 2879 1 0
- 10 2387 1 0

Bergkrystallen 30 1264 0 0
The complete 1 13435 1614 335
Oslo subway 10 13169 1337 40

system 30 12413 0 0

Table 8.4: On-line simulations with untimed nets.

Sample of number of number of number of average simulation time
lines trains time-steps rewrite-step per time-step

The complete 1 50 98 141691 ms
Oslo subway 10 50 545 22042 ms

system 30 50 1528 66089 ms

Table 8.5: On-line simulations with timed nets.

steps is close to a linear function of the number of trains. Simulation will be
much faster if we display fewer intermediate states.

84

Chapter 9

Conclusion

The three layered approach of representing railroad systems seems promising.
The specifications are usable to communicate with a wide variety of people
both railroad engineers and lay people. We are able to represent a wide
variety of railroad systems. If the template graphs are not sufficient, new
ones may be introduced.

The colored Petri nets (and the railroad nets) are suitable to model railroad
components. When considered individually the colored Petri net components
are fairly readable. Fortunately we do not have to look at the colored Petri
nets representing the whole railroad systems. They are huge, and almost
impossible to get a survey over.

The atomic colored Petri net components are refinable. This makes it possi-
ble to simulate different behaviors. In this thesis we have presented several
different refinements. The simplest behavior we have looked at are nets
where trains have no direction and just travel around by chance, These com-
ponents are presented in [7]. We have introduced directions to the trains so
that they do not turn around and run in the opposite direction every now
and then these components are presented in Section 4.2 in this thesis. In [25]
safety are introduced. This is a way of preventing two trains of passing each
other on a single track. In Section 5.2 components where trains have travel
plans are introduced. In these component train may also change the state
of branching components. We have also looked at component with constant
delays in Section 5.3. The most complex components considered so far are
the components in Section 5.4. These components have a separate signal

85

stream, and speed limits dependent on how far it is to the next obstacle.
The speed of the trains are dependent on the profiles of the drivers and the
trains. Further refinements are absolutely possible.

We have expanded the specification language by introducing directions. This
makes it possible to create combination rules to prevent direction traps. The
introduction of combination rules will arise some limitations. For instance,
in the language defined in Section 3.3, one may not connect two turnouts by
joining their stem ends. The direction converters have been introduced as a
solution to these limitations. This is shown in Figure 3.15(a). We have also
made it possible to create loops, as shown in Figure 3.4.

Railroad nets have been introduced as extensions to colored Petri nets. This
makes it possible to group places into interfaces, Which have proven useful
for the more complex components, such as the ones described in Section 5.4.

We have looked at two different approaches of translating colored Petri nets
to Maude modules. These two approaches are referred to as the set-marking
and the list-marking approach, and are presented in section 6.2. Both the
analysis of the file-sizes of the Maude modules, and the execution times
indicates that the set-marking approach is far better than the list-marking
approach.

We have presented several software modules. The main program, RWSEd-
itor, has been expanded in several ways. We have introduced a module for
refining the colored Petri nets automatically, and another one for translating
the colored Petri nets into executable Maude modules. Together with the
control script, these programs form a working simulator.

The main problem of representing railroad systems as colored Petri nets is
their size. The common tools for executing colored Petri net can not execute
nets of this size, and would only be usable for simulation of tiny fragments
of railroad system. We have looked at the possibilities of translating the
colored Petri nets to Maude modules, and then use Maude to execute them.
The results from the simulations shows that Maude can handle this large
modules. We were able to simulate approximately one hour of real time
traffic in the whole Oslo subway system in just a few seconds.

86

9.1 Related work

Our work is inspired by Wil van der Aalst’s approach to Work-flow ([23], [24])
where Petri nets were used to precisely define, simulate, execute and analyze
work-flows. The long-term goal of our research is to do the same for railway
systems, decompose the application domain into its constituents and then
show how Petri Nets can be used to enrich the software engineering of railway
systems. A few papers devoted to work on modeling and analyzing railways
using Petri Nets are available ([20], [8], [26], [3], [12]), but the papers are
concerned with modeling and analysis of isolated phenomena. Two signifi-
cant papers investigate the scheduling and analysis of movements on railway
stations [21], and optimal behavior on the meeting points on single-track
railways with sidings [19]. Safe control of train movements is investigated
in [4]. A deadlock prevention method is introduced by augmenting railway
network systems with monitor places. Our work differs from the other works
in two respects: The models proposed in this paper are designed bottom up,
and there is a close resemblance between the executable Petri nets and the
actual railroad system.

9.2 Future work

There are several ways of continuing this work. We have divided these into
three sections, even though some overlap occurs. A final goal may be to
expand the system towards a product suitable for commercial use.

Further refinement

The are many ways of refining the atomic railroad net components, or even
expand the set of basic atomic railroad nets. One could introduce a special
station component. This component could delay the trains for a period
of time dependent on the number of passengers getting on and off at this
station. This could be a function of when the last train left the station, time
of day etc.

A major task in refining the components is to implement the signal system.
This may include both light signals and semaphores. This could probably
be built upon the signal streams that is introduced in Section 5.4.

87

On may also consider other refinements. One of these could involve giving the
trains length. All trains in all the refinements in this thesis are considered as
points. One could also introduce possibilities for accidents, such as collisions.

Software development

The software could be expanded in many ways. One interesting option is
to develop it into a tool for creation of time tables. In order to do so, the
underlying railroad net must have a lifelike behavior. The tools could then
be expanded to give access to the analyzing tools of Maude. The search
functionality of Maude could for instance be used to search for the state
where all trains have reached their destination in as short time as possible.
The tool could then also be used for finding the best way of expanding a
railroad system.

Another possible way is to make it into a training simulator for operators
and dispatchers. This are the people who supervises and controls the train
movements. One then need functionality of influencing the system during a
simulation. This includes accessing the point machines and signals, and also
giving orders to the train drivers.

Yet another possibility is to use the software to monitor trains at the control
center. It then have to be connected to the hardware of the railway system.

Analysis

A more theoretical approach can be to analyze the nets. This can be done
by using Maude’s analyzing tools, or one could analyze small systems in a
Petri net tool, such as Design/CPN. The analysis could involve searching for
unwanted situations due to either badly designed railroad nets, or errors in
the models.

88

Bibliography

[1] D. Bjørner and M. Pěnička. Towards a TRain book, 2004. Technical
report, obtained from FMRail: http://www.railwaydomain.org/.

[2] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer. Principles of Maude.
Obtained from http://maude.cs.uiuc.edu/papers/, 1996.

[3] D. Decknatel. Modelling Train Movement with Hybrid Petri Nets. In
FMRail Workshop 4, 1999.

[4] M. P. Fanti, A. Giua, and C. Seatzu. A Deadlock Prevention Method for
Railway Networks using Monitors for Colored Petri Nets. In Proc. 2003
IEEE Int. Conf. Systems, Man, and Cybernetics (Washington, D.C.,
USA), pages 1866–1873, October 2003.

[5] A. M. Hagalisletto, J. Bjørk, and P. Enger. Large scale simulations of
railroad nets. Submitted to the 4th International Workshop on Mod-
elling of Objects, Components, and Agents (MOCA 2006).

[6] A. M. Hagalisletto, J. Bjørk, I. C. Yu, and P. Enger. Constructing
and Refining Large Scale Railroad Models Represented by Petri Nets,
2006. Accepted for publication IEEE Transactions on Systems, Man
and Cybernetics, Part C.

[7] A. M. Hagalisletto and I. C. Yu. Large scale construction of railroad
models from specifications. In W. Thissen, P. Wieringa, M. Pantic,
and M. Ludema, editors, IEEE SMC’2004. Conference Proceedings 2004
Systems Man and Cybernetics, pages 6212 – 6219. IEEE, October 2004.

[8] W. Hielscher, L. Urbszat, C. Reinke, and W. Kluge. On Modelling Train
Traffic in a Model Train System. In Workshop and Tutorial on Practical
Use of Coloured Petri Nets and Design/CPN, June 8-12, 1998, Aarhus
Denmark, 1998.

89

[9] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, volume 1 of EATCS, Monographs on Theoretical Com-
puter Science. "Springer-Verlag", 1997. Basic Concepts.

[10] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Use, volume 2 of EATCS, Monographs on Theoretical Com-
puter Science. "Springer-Verlag", 1997. Analysis Methods.

[11] T. Kristoffersen, A. M. Hagalisletto, and H. A. Hansen. Extracting
High-Level Information from Petri Nets: A Railroad Case. Proceedings
of the Estonian Academy of Physics and Mathematics, 52(4):378 – 393,
December 2003.

[12] G. Malavasi and S. Ricci. Petri nets theory in the railway signalling
models. In FMRail Workshop 5, 1999.

[13] A. M. Marsan, A. Bobbio, and S. Donatelli. Petri Nets in Performance
Analysis: An Introduction. In W. Reisig and G. Rozenberg, editors,
Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture Notes
in Computer Science, pages 221–256. Springer-Verlag, 1998.

[14] N. Marti-Oliet and J. Meseguer. Rewriting Logic: Roadmap and Bib-
liography. Obtained from http://maude.cs.uiuc.edu/papers/, June
2001.

[15] J. Meseguer. Research directions in rewriting logic. In U. Berger and
H. Schwichtenberg, editors, Computational Logic, Proceedings of the
NATO Advanced Study Institute on Computational Logic held in Mark-
toberdorf, Germany, July 29 – August 6, 1997, volume 165 of NATO
ASI Series F: Computer and Systems Sciences, pages 347–398. Springer-
Verlag, 1998.

[16] P. C. Ölveczky. Specification and Analysis of Real-Time and Hybrid
Systems in Rewriting Logic. PhD thesis, University of Bergen, 2000.

[17] J. Pachl. Railway Operation and Control. "VTD Rail Publishing", 2002.

[18] C. A. Petri. Kommunikation mit automaten. Technical Report Schriften
des IIM Nr. 2, Bonn: Institut für Instrumentelle Mathematik, 1962.

[19] X. Ren and M. C. Zhou. Scheduling of Rail Operation: A Petri Net
Approach. In Proc. of 1995 IEEE Int. Conf. on Systems, Man, and Cy-
bernetics, Vancouver, Canada, Vol. 4, pages 3087–3092, October 1995.

90

[20] L. Tang, T. Chen, and J. Xiao. Analysis of the concurrent model of train
station based on Petri net. In Proc. 2000 Int. Workshop on Autonomous
Decentralized Systems, 21-23 September 2000, Chengdu, China, pages
92–96, 2000.

[21] W. van der Aalst and M. Odijk. Analysis of railway stations by means
of interval timed coloured petri nets. Real Time Systems, 9(3):1–23,
November 1995.

[22] W. M. van der Aalst. Timed Coloured Petri Nets and their Application
to Logistics. PhD thesis, Eindhoven University of Technology, 1992.

[23] W. M. van der Aalst. Modelling and Analyzing Workflow using a
Petrinet based Approach. In G. D. Michelis, C. Ellis, and G. Memmi,
editors, Proceedings of the second Workshop on Computer-Supported Co-
operative Work, Petri nets and related formalisms, pages 31–50, 1994.

[24] W. M. van der Aalst. The Application of Petri Nets to Workflow Man-
agement. The Journal of Circuits, Systems and Computers, 8(1):21–66,
1998.

[25] I. C. Yu. A Layered Approach to Automatic Construction of Large Scale
Petri Nets. Master’s thesis, University of Oslo, 2004.

[26] M. M. zu Hörste. Modelling and Simulation of Train Control Systems
using Petri Nets. In FMRail Workshop 3, 1999.

91

