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The bottleneck matrix M of a rooted tree T is a combinatorial 
object encoding the spatial distribution of the vertices with 
respect to the root. The spectral radius of M , known as the 
Perron value of the rooted tree, is closely related to the theory 
of the algebraic connectivity. In this paper, we investigate the 
Perron values of various classes of rooted trees by making use 
of combinatorial and linear-algebraic techniques. This results 
in multiple bounds on the Perron values of these classes, which 
can be straightforwardly applied to provide information on the 
algebraic connectivity.
© 2022 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let T be a rooted tree having root r and order n whose vertices are labelled 1, 2, . . . , n, 
and consider the symmetric matrix M of order n whose (i, j)’th entry mij is the number 
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of vertices in T that simultaneously lie in the path Pi joining i to r and in the path Pj

joining j to r. Equivalently, following [3], M may be defined as M = NTN , where N
is the path matrix of T , i.e., the n × n (0, 1)-matrix whose j’th column is the incidence 
vector of Pj for j ≤ n (that is, it contains ones in rows corresponding to vertices in 
Pj and zeros elsewhere). The root of a tree in the figures of the paper is denoted by a 
square. The vertices of T can be ordered so that N is upper triangular with ones on the 
diagonal. The matrix M is referred to as the bottleneck matrix of T . Its spectral radius, 
known as the Perron value of T and denoted by ρ(T ) (or ρ(M)), is closely linked to the 
theory of algebraic connectivity and characteristic set of trees. Let T ′ be an unrooted 
tree and pick a vertex v of T ′. Removing v from T ′, along with all edges incident to v, 
results in a forest. A branch at v is a connected component of such a forest, considered 
as a rooted tree whose root is the vertex adjacent to v in T ′; a Perron branch at v is a 
branch at v having maximum Perron value. The bottleneck matrices of the branches at 
v can be obtained as the diagonal blocks of the inverse of the principal submatrix of the 
Laplacian matrix L of T ′ resulting from removing the row and column corresponding 
to v. This connects their spectral radii to the spectrum of L and, in particular, to the 
algebraic connectivity a(T ′) – i.e., the second smallest eigenvalue of L – as described in 
the next result.

Theorem 1.1 ([13]). Let T ′ be an unrooted tree with more than one vertex. Exactly one 
of two cases can occur.

1. There exists exactly one vertex z having k ≥ 2 Perron branches B1, B2, . . . , Bk at z. 
T ′ is said to be a type I tree and z is its characteristic vertex. Moreover, in this case,

a(T ′) = 1
ρ(Bi)

(i = 1, 2, . . . , k).

2. There exists exactly one edge pq such that the unique Perron branch Bp at p contains 
q and the unique Perron branch Bq at q contains p. T ′ is said to be a type II tree 
and p, q are its characteristic vertices. Moreover, in this case,

a(T ′) = 1
ρ (Mp − γJ) = 1

ρ (Mq − (1 − γ)J) ,

where Mp (resp. Mq) is the bottleneck matrix of Bp (resp. Bq), J is the all-ones 
matrix, and γ is a real number such that 0 < γ < 1.

Due to its suitability to express connectivity for graphs, the algebraic connectivity has 
been extensively studied since its introduction by Fiedler [8] (for example, see [7,9,10]). 
Theorem 1.1 asserts that the Perron values of the branches of a tree play a central 
role in determining its algebraic connectivity and characteristic set. More specifically, 
investigating the algebraic connectivity through the lenses of Perron values rather than 
directly studying the spectrum of the Laplacian matrix yields two advantages:
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1. Unlike the Laplacian matrix, the bottleneck matrix is entrywise positive; this opens 
the possibility of using the Perron-Frobenius theory to study its spectral radius and 
the corresponding eigenspace.

2. The variational expression for the maximum (or minimum) eigenvalue of a Hermitian 
matrix coming from the Courant-Fischer-Weyl principle is simpler than the corre-
sponding expression for the other eigenvalues. In particular, the Rayleigh quotient 
of M with any nonzero real vector yields a lower bound on ρ(M).

Unfortunately, analytic expressions for the spectral radii of bottleneck matrices are only 
available for very specific classes of rooted trees. Let Sn be the rooted star on n vertices 
having the central vertex as the root, and let Pn be the rooted path on n vertices having 
one of the endpoints as the root. From [1,3,13], we have the following expressions for 
their Perron values:

ρ(Sn) = 1
2

(
n + 1 +

√
n2 + 2n− 3

)
, (1)

ρ(Pn) = 1
2

(
1 − cos

(
π

2n + 1

))−1

. (2)

A main purpose of this work is to provide bounds on the Perron values of various 
classes of rooted trees by using diverse combinatorial and spectral tools. Through The-
orem 1.1, the bounds we obtain can be straightforwardly turned into bounds for the 
algebraic connectivity of classes of unrooted trees. Below are listed the different tech-
niques applied in the paper.

• In Section 2, we prove a general result on the spectral radius of symmetric matrices 
having a specific 2 × 2 block structure, and we use it to obtain upper bounds for 
the Perron value of generic rooted trees (Corollary 2.3) as well as of split-paths 
(Corollary 2.4), broom trees (Corollary 2.5), and Fiedler roses (Corollary 2.6).

• In Section 3, the focus is on families of “composite” rooted trees, which may be 
obtained from simpler building blocks through certain natural operations that are 
consistent with the behaviour of the Perron value. This results in upper and lower 
bounds for starlike trees (Proposition 3.3) and regular caterpillars (Proposition 3.4).

• In Section 4, we make use of a bound for the spectral radius of nonnegative irreducible 
symmetric matrices from [4,16] and the interlacing of the eigenvalues for the quotient 
matrix of a symmetric partitioned matrix [11] to obtain an upper and a lower bound 
on the Perron value of broom trees, respectively.

• The theory of the combinatorial Perron parameters – developed in [3,2] to provide 
close and computationally efficient approximations of the Perron value – is the core 
of Section 5. These parameters are lower bounds on the Perron value coming from the 
variational characterization of the eigenvalues of Hermitian matrices. The distance 
vector of a rooted tree T is d = (d1, d2, . . . , dn), where dj is the number of vertices 
(note: not edges) in the path Pj joining j to the root. When M is the bottleneck 
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matrix of T , two combinatorial parameters were introduced in [3], namely ρc(M) (or 
ρc(T )) and πd(M) (or πd(T )) and a third one, πe(M) (or πe(T )), was introduced in 
[2]:
(i) ρc(M) = ‖Nd‖2

‖d‖2 = dTMd
dT d

;
(ii) πd(M) = ‖Md‖

‖d‖ ;
(iii) πe(M) = ‖Me‖

‖e‖ , where e is the all-ones vector.
An alternative expression for ρc(M) is ρc(M) = (

∑
i σ

2
i )/(
∑

i d
2
i ), where σi =∑

j:j�i dj and j � i means that j is below i in the sense that the path Pi is contained 
in the path Pj . Each of the parameters (i)–(iii) gives a lower bound on the Perron 
value of T , and their combinatorial nature makes it possible to obtain closed formu-
lae for certain classes of rooted trees. In Section 5, we use this strategy focusing on 
the parameters (i) and (iii) and, as a result, we obtain lower bounds on the Perron 
value of broom trees and regular caterpillars.

We point out here that the unifying aspect of this work lies in the results rather than 
the techniques adopted. In fact, to obtain tight bounds for each different class of rooted 
trees requires to efficiently exploit the specific combinatorial structure of the class; this 
results in a variety of different proof strategies. On the other hand, the scope of these 
techniques is wider than the examples investigated in the current work: Many other 
classes of rooted trees can be addressed with combinations and suitable modifications 
of the tools considered here. Hence, we believe this exposition can serve as a starting 
point for future investigations of the Perron value and the algebraic connectivity of other 
families of trees.

Notation: We treat vectors in Rn as column vectors and identify these with real n-tuples. 
The all-ones matrix of size n ×n is denoted by Jn. We let e(k) denote the all-ones (column) 
vector of dimension k; we sometimes omit the subscript. The transpose of a matrix A
is denoted by AT . The Euclidean norm of a vector x is ‖x‖ = (xTx)1/2. We will need 
the following well-known formulae for the sums of the k’th power of the first n natural 
numbers for k = 1, 2, 3, 4:

S
(1)
n :=

∑n
i=1 i = n2+n

2

S
(2)
n :=

∑n
i=1 i

2 = n(n+1)(2n+1)
6 = 2n3+3n2+n

6

S
(3)
n :=

∑n
i=1 i

3 = n4+2n3+n2

4

S
(4)
n :=

∑n
i=1 i

4 = 6n5+15n4+10n3−n
30 .

(3)

2. The spectral radius of certain block matrices

In this section we prove a quite general result that gives an upper bound for the 
spectral radius of symmetric matrices with a specific 2 × 2 block structure, and use this 
to find an upper bound on the Perron value of certain families of rooted trees.
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Let

M =
[

A B

BT C

]
(4)

where (i) A and C are symmetric matrices of order k and �, respectively, so B is of size 
k× �, and (ii) B = wqT where w ∈ Rk and q ∈ R�. This means that B has rank at most 
1. M is symmetric, and therefore has real eigenvalues. We establish the following upper 
bound on the spectral radius of M , expressed in terms of the spectral radii of A and C.

Theorem 2.1. Let M be as in (4). Then

ρ(M) ≤ 1
2(ρ(A) + ρ(C)) + 1

2
√

(ρ(A) − ρ(C))2 + 4‖w‖2‖q‖2. (5)

Moreover, if ρ(A)ρ(C) > ‖w‖2‖q‖2, then the upper bound in (5) is strictly smaller than 
ρ(A) + ρ(C).

Proof. Consider the 2 × 2 symmetric matrix

K =
[

ρ(A) ‖q‖‖w‖
‖q‖‖w‖ ρ(C)

]
.

Let λmax(X) and λmin(X) denote the maximum and minimum eigenvalue of a symmet-
ric matrix X, respectively. Suppose first that ρ(M) = λmax(M). Then, letting x be a 
corresponding eigenvector of norm 1, we have xTMx = ρ(M). Partition x according to 
M as x = (y, z), let x′ = (‖y‖, ‖z‖), and observe that ‖x′‖2 = ‖y‖2 + ‖z‖2 = ‖x‖2 = 1. 
We obtain

ρ(M) = xTMx =
[
yT zT

] [ A wqT

qwT C

] [
y
z

]
= yTAy + zTCz + 2yTwqT z

≤ λmax(A)‖y‖2 + λmax(C)‖z‖2 + 2|yTw||qT z|
≤ ρ(A)‖y‖2 + ρ(C)‖z‖2 + 2‖y‖‖w‖‖q‖‖z‖

= [‖y‖ ‖z‖ ]
[

ρ(A) ‖q‖‖w‖
‖q‖‖w‖ ρ(C)

] [
‖y‖
‖z‖

]
= x′TKx′ ≤ λmax(K)‖x′‖2 = λmax(K).

A standard formula for the eigenvalues of a symmetric 2 × 2 matrix gives the desired 
inequality (5). Suppose now that ρ(M) = −λmin(M). Observe that

ρ(−M) = ρ(M) = −λmin(M) = λmax(−M).

We can then apply the argument above to −M to find
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ρ(M) = ρ(−M) ≤ 1
2(ρ(−A) + ρ(−C)) + 1

2
√

(ρ(−A) − ρ(−C))2 + 4‖ − w‖2‖q‖2

= 1
2(ρ(A) + ρ(C)) + 1

2
√

(ρ(A) − ρ(C))2 + 4‖w‖2‖q‖2,

as wanted.
If ρ(A)ρ(C) > ‖w‖2‖q‖2, then det(K) > 0, and the entry in position (1, 1) in K

is positive (as A is nonzero), so K is positive definite. Then the eigenvalues of K are 
positive, and their sum equals the trace ρ(A) +ρ(C). Therefore λmax(K) < ρ(A) +ρ(C), 
and the proof is complete. �
Remark 2.2. In Theorem 2.1 one may assume without loss of generality that ρ(A) ≥ ρ(C). 
This is seen by simultaneous row and column permutations which gives

M ′ =
[
C BT

B A

]
.

Notice that ρ(M ′) = ρ(M). �
Let T = (V, E) be a rooted tree, with root r, and let p be a vertex in T . We shall 

assume that p �= r and that p is not a pendent vertex, so Fp = {v : v � p, v �= p} is 
nonempty. Let Tp denote the induced subtree with vertices {v : v � p} with root p and 
let T ′ be the subtree induced by V − Fp with root r; these two trees have only vertex p
in common. Order the vertices in T such that all the vertices in V − Fp are before all 
the vertices in Fp, and for each of these vertex sets we order according to distance from 
the root. Then the bottleneck matrix M of T has the block form in (4), i.e.,

M =
[

A B

BT C

]

where A is the bottleneck matrix of T ′, and C is the truncated bottleneck matrix of Tp

(where the row and column corresponding to p are deleted) plus a constant block. So, A
and C are symmetric. Concerning B, each row corresponds to a vertex u ∈ T ′ and the 
entry buv in the column corresponding to a vertex v ∈ Tp, v �= p, is

buv = |Pu ∩ Pv| = |Pu ∩ Pp|

which is the number of common vertices in Pu and Pp, and independent of v. Thus, each 
row in B is constant, so B = weT where w = (|Pu ∩ Pp| : u ∈ T ′). Note that w can be 
viewed as a “projection” of the paths Pu onto the path Pp for u ∈ T ′. The upper bound 
in Theorem 2.1 then holds for the Perron value of T , with ‖q‖2 = ‖e‖2 = � = |V (Tp)| −1.

Example 1. We illustrate the construction above for the special case when � = 1. Then 
Tp is an edge, say pp′, so |V | = k+ 1 and w = (|Pu ∩Pp| : u ∈ T ′). Let s be the distance 
of the root to p, so dp = s and dp′ = s + 1. The bottleneck matrix is
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M =
[

A w

wT s + 1

]

and (5) gives

ρ(M) ≤ β := 1
2(ρ(A) + s + 1) + 1

2
√

(ρ(A) − s− 1)2 + 4‖w‖2.

We note that β ≤ ρ(A) + ‖w‖ (due to the basic inequality 
√
a + b ≤ √

a +
√
b).

For the rooted path Pn, the bound β is almost tight. For instance, when n = 21, the 
Perron value ρ(Pn) = ρ(M) = 187.4262 and β = 187.6282. Here β is computed based on 
ρ(Pn−1) = (1/2)(1 − cos(π/(2n − 1)))−1, see [3,13]. �

In the remaining part of this section we use the previous approach based on Theo-
rem 2.1 to find an upper bound on the Perron value of rooted trees. First, we develop a 
technique for general trees, and then we consider three different classes of trees.

2.1. Bounds for general trees

Let T be a rooted tree and M its bottleneck matrix. We now give a technique for 
finding an upper bound on ρ(M). Note that the technique applies to any tree.

The starting point is the approach above based on Theorem 2.1. Also, we know that 
T may be constructed by the general tree-construction procedure: (i) Start with a single 
vertex (the root); this is the initial tree, and (ii) successively add a new vertex and 
attach to the existing tree by an edge to some existing vertex. The tree construction 
procedure means that we can repeatedly use Theorem 2.1 as explained in Example 1. 
Let the tree-construction procedure result in the trees

T (1), T (2), . . . , T (n) = T ,

where T (1) consists in the root r = v1 and, for i = 2, 3, . . . , n, T (i) is obtained from T (i−1)

by adding vertex vi and an edge to a vertex vh (in T (i−1)) for some h < i. Note that there 
may be many tree constructions giving the same tree T , by different vertex orderings. 
Let M (i) be the bottleneck matrix of T (i), and let w(i) = (|Pu∩Pvh | : u ∈ T (i−1)), where 
we (for convenience) view paths as vertex sets in the final tree T . Finally, let s(i) be the 
distance of the root to vh. So

M (i) =
[
M (i−1) w(i)

(w(i))T s(i) + 1

]
. (6)

We define (recursively)
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ρ(1) = 1,

ρ(i) = 1
2(ρ(i−1) + s(i) + 1) + 1

2

√
(ρ(i−1) − s(i) − 1)2 + 4‖w(i)‖2 (2 ≤ i ≤ n).

Corollary 2.3. The following upper bound on the Perron value ρ(M (i)) holds

ρ(M (i)) ≤ ρ(i) (i = 1, 2, . . . , n). (7)

In particular, ρ(T ) ≤ ρ(n).

Proof. We prove this by induction on i. For i = 1, 2, or 3, a direct verification shows 
that (7) holds. Let i ≥ 4, and assume that ρ(M (i−1)) ≤ ρ(i−1).

We first prove the following inequality

ρ(M (i−1)) ≥ s(i) + 1. (8)

To do so, let s = s(i). Assume first that s ≥ 3. Then

ρ(M (i−1)) ≥ ρ(Ps) ≥ ρc(Ps) = (1/5)(2s2 + 2s + 1) ≥ s + 1.

Here the first inequality holds as the bottleneck matrix of the path Ps is componentwise 
smaller than M (i−1) so the same ordering holds for the spectral radii (see Theorem 8.1.18 
in [12]). The second inequality and expression concerns the combinatorial Perron value 
ρc, see the Introduction and [3]. The final inequality is by simple algebra. Thus, (8)
holds for s ≥ 3, and it remains to verify (8) when s ≤ 2. If T (i−1) contains a vertex with 
distance 3 to the root (where, as usual, by distance we mean the number of vertices in the 
shortest path), then ρ(M (i−1)) ≥ ρ(P3) ≥ ρc(P3) = (1/5)(2 ·32+2 ·3 +1) = 5 > 3 ≥ s +1, 
as desired. Otherwise, the maximum distance to the root is at most 2, so T (i−1) is a star 
with at least 3 vertices. So, ρ(M (i−1)) ≥ ρ(S3) ≥ ρc(S3) = 3 + 6/9 > 3 ≥ s + 1, as 
desired. This completes the proof of (8).

We can now finish the induction proof, by using the induction assumption ρ(M (i−1)) ≤
ρ(i−1) and Theorem 2.1 on the block matrix (6). This gives

ρ(M (i)) ≤ 1
2 (ρ(M (i−1)) + s(i) + 1) + 1

2

√
(ρ(M (i−1)) − (s(i) + 1))2 + 4‖w(i)‖2

≤ 1
2 (ρ(i−1) + s(i) + 1) + 1

2

√
(ρ(M (i−1)) − s(i) − 1)2 + 4‖w(i)‖2

≤ 1
2 (ρ(i−1) + s(i) + 1) + 1

2

√
(ρ(i−1) − s(i) − 1)2 + 4‖w(i)‖2

= ρ(i),

and the proof is complete. �
We have done extensive computational tests with the bounding procedure of Corol-

lary 2.3. Perhaps surprisingly, the upper bounds are very good. Thus, it seems that the 
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Fig. 1. Random tree; lower and upper bounds on ρ(M(i)), i = 1, 2, . . . , 30.

vsv1

Fig. 2. Split-path P (8, 3; 4).

error in each tree extension is small, and this shows the usefulness of Theorem 2.1. As 
an illustration, we show results for a test with n = 30 for a random tree T , constructed 
using the tree construction where the attaching vertex was chosen uniformly at random 
in each step. Fig. 1 shows three curves, corresponding to ρ(M (i)) (middle curve), ρ(i)

(upper curve), and the known lower bound πe(M (i)) (lower curve). Let the relative gap 
be defined as RG = (100 × (upper bound - exact value) / exact value) %. The relative 
gap for the final tree T = T (30), comparing ρ(M (i)) to ρ(i), is 5.78%. A similar experi-
ment for the path P30 gave relative gap 0.62%, and for the star S30 we got 0.029%. Many 
experiments have been done and for n = 30 the gaps vary typically between 1% and 11%. 
The gap seems to increase very slowly as a function of the tree order n. Random trees 
with the same number of vertices show very similar performance. Finally, we remark that 
for a given tree T , one might improve the bound by trying different tree constructions 
each leading to T .

2.2. Split-paths

Let s, �, k be positive integers such that s +� ≤ k. Consider the path Pk = v1, v2, . . . , vk
and add another path P�+1 at vertex vs of the first path, by identifying vs with the root 
(first vertex) of P�+1. Let P (k, �; s) be the resulting rooted tree, which we call a split-path
(see Fig. 2). It has k + � vertices, and the root is v1. Note that the distances (number of 
vertices) in P (k, �; s) from the root to each of the two other pendent vertices are k and 
s + �. Then, its bottleneck matrix can be partitioned into the block form:

M =
[
A(k) B

BT C

]
, (9)
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where A(k), B, C have dimensions k × k, k × �, and � × �, respectively, and

A(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
...

. . .
...

1 2 3 · · · k

⎤
⎥⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
2 2 2 · · · 2
...

...
...

...
...

s s s · · · s
...

...
...

...
...

s s s · · · s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

and C = s ×J� +A(�) (where A(�) is defined like A(k) but is of order �). Notice that A(k)

is the bottleneck matrix of the path Pk, so we have an exact expression for ρ(A(k)).

Corollary 2.4. For the split-path P (k, �; s),

ρ(M) ≤ 1
2(ρ(A(k)) + s� + ρ(A(�))) + 1

2

√
(ρ(A(k)) − α)2 + 4�(S(2)

s + (k − s)s2)

where S(2)
s =

∑s
i=1 i

2 and α = max{s + ρ(A(�)), s� + (1/6)(2�2 + 3� + 1)}.

Proof. We have w = (1, 2, . . . , s, . . . , s) so ‖w‖2 =
∑s

i=1 i
2 + (k − s)s2. Moreover, let 

x = (x1, x2, . . . , x�) be the Perron vector of A(�), with ‖x‖ = 1. Then

xTJ�x =
∑
i,j

xixj =
∑
i

xi

∑
j

xj ≥
∑
i

xi ≥ 1

because 0 < xi < 1 so xi > x2
i for each i, and therefore 

∑
i xi ≥

∑
i x

2
i = 1. Therefore,

xTCx = xT sJ�x + xTA(�)x ≥ s + ρ(A(�)).

Next, let y = (1/
√
�)e(�), so ‖y‖ = 1. Then,

yTCy = s(1/�)eT(�)J�e(�) + (1/�)eT(�)A(�)e(�) = s� + (1/6)(2�2 + 3� + 1).

So, using Rayleigh quotients we get

ρ(C) ≥ max{xTCx, yTCy} ≥ α.

Observe that, as k ≥ s + �,

ρ(A(k)) ≥ ρ(sJ(k−s) + A(k−s)) ≥ ρ(sJ(�) + A(�)) = ρ(C).

This implies that
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Fig. 3. Split-path k = 50, � = 20. On the y-axis, relative gap for 1 ≤ s ≤ 30.

Fig. 4. Broom tree B(6, 3).

(ρ(A(k)) − ρ(C))2 ≤ (ρ(A(k)) − α)2.

Then the inequality follows from Theorem 2.1. �
We have tested computationally the quality of the bound in Corollary 2.4. Fig. 3 shows 

test cases for split-paths where k = 50, � = 20. We varied s from 1 to k − � = 30; the 
x-axis shows s and the y-axis shows RG. Note that RG is increasing in s. The average RG 
was 12.3% and the maximum RG was 20.4%. A general experience is that the quality 
of the bound improves as k becomes significantly larger than s + �. This can also be 
explained from the formula, as in this case ρ(A(k)) dominates in the expression.

2.3. Broom trees

Let B(k, �) be the broom tree which is obtained from a path Pk of length k by adding 
� vertices and attaching each of these to one of the end vertices of the path (see Fig. 4). 
Let the root of the tree be the other end vertex in the path (so it has degree 1). Then, 
the bottleneck matrix of B(k, �) can be partitioned into the block form

M =
[
A(k) B

BT C

]
, (11)

where A(k), B, C have dimensions k × k, k × �, and � × �, respectively, and
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k � average RG maximum RG
25 1 ≤ � ≤ 50 0.095% 0.2%
100 1 ≤ � ≤ 200 0.094% 0.2%

Fig. 5. Computational results, RG for broom trees B(k, �).

A(k) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
...

. . .
...

1 2 3 · · · k

⎤
⎥⎥⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
2 2 2 · · · 2
3 3 3 · · · 3
...

...
...

. . .
...

k k k · · · k

⎤
⎥⎥⎥⎥⎥⎥⎦ , (12)

and C = k × J� + I�. Here A(k) is the bottleneck matrix of the path Pk, so we have an 
exact expression for ρ(A(k)). Moreover, ρ(C) = k� + 1. Recall that S(2)

k =
∑k

i=1 i
2.

Corollary 2.5. For the broom B(k, �)

ρ(M) ≤ 1
2 (ρ(A(k)) + k� + 1) + 1

2

√
(ρ(A(k)) − k�− 1)2 + 4�S(2)

k .

Proof. This follows from Theorem 2.1. �
We tested computationally the quality of the bound in Corollary 2.5. Some results for 

k = 25 and k = 100, and varying � are shown in Fig. 5. The relative gap RG was defined 
in Subsection 2.1. It was observed that the RG is monotonically increasing as a function 
of �, so the maximum value was obtained for the largest � in the interval. The maximum 
RG was about 0.2%. Several experiments indicate that the upper bound in Corollary 2.5
is very good.

2.4. Rose trees

Rose trees, also called Fiedler roses, were introduced by Evans [6] and were recently 
studied in connection to algebraic connectivity, [1]. See also some work in [15].

Let h, t, � be natural numbers. A rose tree R(h, t, �) is the graph obtained from the 
path Ph+t+1 = v1, v2, . . . , vh+t+1 and the star S� by connecting the vertex vh+1 of the 
path by an edge to the center vh+t+2 of the star. Let vh+t+3, . . . , vn be the other vertices 
of the star where n = h + t + � + 1. The rose tree has n vertices and the root is vertex 
v1. If t = h, then it is called a perfect rose tree [1] and it is just denoted by R(h, �). An 
example of perfect rose tree can be seen in Fig. 6.

Now, order the vertices according to the subscripts, so v1, v2, . . . , vn. For a rose tree 
(or a perfect rose tree) the bottleneck matrix has the form as in (9) with A(k) and B as in 
(10), where A(k) has order k = h + t +1, and s = h +1. Additionally, C = s ×J� +M (�), 
where M (�) is the bottleneck matrix of the star S�.
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vh+1v1

Fig. 6. Perfect rose tree R(3, 4).

Fig. 7. Fiedler roses with h = t = 50. On the y-axis, relative gap (RG) of the bound in Corollary 2.6, for 
1 ≤ � ≤ 30.

Corollary 2.6. For every rose tree R(h, t, �) with � ≤ t

ρ(M) ≤ 1
2 (ρ(A(k)) + (h + 1)� + ρ(M (�))) + 1

2

√
(ρ(A(k)) − α)2 + 4�(S(2)

h+1 + t(h + 1)2)

where k = h + t + 1 and α = (h + 1)� + (�2 + � − 1)/�.

Proof. This may be shown similarly to Corollary 2.4 with one difference being that 
the computed α is different. Moreover, the assumption � ≤ t implies that a principal 
submatrix of A(k) is componentwise larger than or equal to C, so ρ(A(k)) ≥ ρ(C). �

We did computational experiments to study the quality of the bound in Corollary 2.6. 
For h = t = 50, so perfect rose trees, we let � vary with 1 ≤ � ≤ 30. The resulting average 
relative gap (RG) was 0.054%. The RG is monotonically increasing as a function of �
and the maximum value, for � = 30, was about 0.19%, see Fig. 7.

3. Bounds from tree constructions: starlike trees and regular caterpillars

Certain classes of rooted trees have the property that they can be obtained – either 
directly or recursively – by combining simpler trees through some natural constructions. 
In this section, we apply the results obtained in [5] on the Perron values of two such 
constructions – rooted sums and products – to the classes of starlike trees and regular 
caterpillars. This yields simple bounds on their Perron values that would be harder to 
obtain by directly looking at the combinatorial structure of their bottleneck matrices.

Given � rooted trees T1, T2, . . . , T� having roots r1, r2, . . . , r�, their rooted sum + �
i=1 Ti

is the rooted tree obtained by joining r1, r2, . . . , r� to an additional vertex r, which we 
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take as the root. Given two rooted trees T1 and T2, their rooted product T1 � T2 is the 
rooted tree obtained from T1 by identifying each of its vertices with the root of a copy 
of T2. We let the root of T1 � T2 be the root of the copy of T2 identified with the root 
of T1. In [5], certain upper and lower bounds for the Perron value of these constructions 
were obtained. For completeness, we state those results below.

Proposition 3.1 ([5]). Let T1, T2, . . . , T� be rooted trees having orders n1, n2, . . . , n�, and 
let n =

∑�
i=1 ni + 1. Then

max
1≤i≤�

ρ(Ti) ≤ ρ

(
�

+
i=1

Ti

)
≤ max

1≤i≤�
ρ(Ti) + n.

We remark that the bounds in Proposition 3.1 come from the analysis of the neckbottle 
matrix – a matrix that has the same spectrum as the bottleneck matrix and is in some 
cases easier to study since, unlike the bottleneck matrix, it can have zero blocks.

The quantity H(T ) appearing in the next result is the Perron entropy of the rooted 
tree T . It was defined in [5] as H(T ) = (eTw)2/‖w‖2, where w is a Perron vector for the 
bottleneck matrix of T .

Proposition 3.2 ([5]). Let T1 and T2 be rooted trees having orders n1 and n2. Then

(i) ρ(T1 � T2) ≥ n2ρ(T1);
(ii) ρ(T1 � T2) ≥ ρ(T2) + (ρ(T1) − 1)H(T2);
(iii) ρ(T1 � T2) < n2ρ(T1) + ρ(T2).

The proofs of Proposition 3.3 and Proposition 3.4 exploit the fact that starlike trees 
and regular caterpillars can be obtained through the constructions considered above: A 
starlike tree is a rooted sum of stars, while a regular caterpillar can be seen both as a 
(recursive) rooted sum and as a rooted product of suitable rooted trees.

Let n1, n2, . . . , nk be positive integers. The starlike tree S(n1, n2, . . . , nk) is the rooted 
tree that results from the stars Sn1 , Sn2 , . . . , Snk

by connecting their centers to an extra 
vertex r which we take as the root, see [14]. An example of starlike tree can be seen in 
Fig. 8.

Proposition 3.3. Let n =
∑k

i=1 ni + 1 and suppose nM = maxi=1,...,k ni. Then

1
2(nM + 1 +

√
n2
M + 2nM − 3) ≤ ρ(S(n1, n2, . . . , nk))

≤ n + 1
2(nM + 1 +

√
n2
M + 2nM − 3).

Proof. Observe that

S(n1, n2, . . . , nk) =
k

+ Sni
.

i=1
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r

Fig. 8. Starlike tree S(2, 1, 4, 2).

v1

Fig. 9. Regular caterpillar C4,3.

The result then follows from Proposition 3.1 and the known formula (1) for the Perron 
value of stars. �

A caterpillar C(n1, n2, . . . , nk) is a rooted tree consisting of a path P = v1, v2, . . . , vk
for some k and, for each i ≤ k, ni ≥ 0 additional vertices attached to vi. P is called the 
central path and v1 is the root of the tree. We consider here a special case of caterpillars 
where n1 = n2 = · · · = nk = p > 0, which we call regular caterpillars (see Fig. 9). Let us 
denote such a tree by Ck,p. Observe that the number of vertices in Ck,p is n = k + pk.

Proposition 3.4. Let k ≥ 1, p ≥ 1 be integers. Then

U1. ρ(Ck,p) ≤ 1 + (p + 1)k
2+k
2

U2. ρ(Ck,p) < (p + 1)ρ(Pk) + ρ(Sp+1)
L1. ρ(Ck,p) ≥ (p + 1)ρ(Pk)
L2. ρ(Ck,p) ≥ ρ(Sp+1) + (ρ(Pk) − 1)H(Sp+1)

where

H(Sp+1) =
(
p2 + 4p + 3

)√
p2 + 4p + p3 + 6p2 + 9p + 2

(p + 3)
√

p2 + 4p + p2 + 5p + 4
. (13)

Proof. We first prove U1 by induction on k. If k = 1, Ck,p = Sp+1. Using either the 
exact expression for the Perron value of stars or the bound ρ(Sn) ≤ 1 + n pointed out 
in [5, Example 2], we see that

ρ(Ck,p) = ρ(Sp+1) ≤ p + 2 = 1 + (p + 1)k
2 + k

2 .

Let now k ≥ 2, and suppose the bound in U1 holds for regular caterpillars whose central 
path length is at most k − 1. Let E be the trivial rooted tree (of order 1). Observe 
that Ck,p = + p+1

i=1 Ti, where Ti = E for i = 1, 2, . . . , p, and Tp+1 = Ck−1,p. Using 
Proposition 3.1 and the inductive hypothesis, we find
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ρ(Ck,p) = ρ

(
p+1
+
i=1

Ti

)
≤ (p + 1)k + max

1≤i≤p+1
ρ(Ti) = (p + 1)k + ρ(Ck−1,p)

≤ (p + 1)k + 1 + (p + 1)(k − 1)2 + (k − 1)
2 = 1 + (p + 1)k

2 + k

2 .

We next explain the details in this computation. The first equality is true because Ck,p =
p+1
+
i=1

Ti. The first inequality is Proposition 3.1. The second equality is true because the 

bottleneck matrix of E (i.e., the matrix [1]) is a principal submatrix of the bottleneck 
matrix of ρ(Ck−1,p), and hence ρ(E) ≤ ρ(Ck−1,p). Therefore, max

1≤i≤p+1
ρ(Ti) = ρ(Ck−1,p). 

The last inequality follows by applying the inductive hypothesis on ρ(Ck−1,p), and the 
last equality is a simplification.

To prove the other three bounds, we observe that Ck,p = Pk � Sp+1, and we directly 
apply Proposition 3.2. The Perron entropy H(Sp+1) of the star Sp+1 was computed in 
[5, Proposition 2.4] and yields the expression (13). The Perron values of the star and the 
path are given in (1) and (2), respectively. �
Observation 3.5. Both the two upper bounds (U1 and U2) and the two lower bounds (L1 
and L2) in Proposition 3.4 are incomparable. For example, for the regular caterpillar 
C2,1, the values of the bounds in U1, U2, L1, and L2 are 7, 7.854 . . . , 5.236 . . . , and 
5.683 . . . , respectively (while the true value is ρ(C2,1) = 5.783 . . . ). However, for C6,2, 
we find the values 64, 55.353 . . . , 51.621 . . . , and 51.435 . . . (while the true value is 
ρ(C6,2) = 52.292 . . . ). �
Observation 3.6. Using the expression for the combinatorial Perron value ρc of the path, 
we obtain

ρ(Pk) ≥ ρc(Pk) = 2k2 + 2k + 1
5 >

2
5(k2 + k). (14)

Here the first inequality follows from the fact that ρc is a lower bound on ρ, as stated in 
the Introduction. The expression ρc(Pk) = (2k2 +2k+1)/5 was found in [3, Proposition 
3.1].

Combining the bounds U1 and L1 of Proposition 3.4 and using (14), we find the 
following simple interval for the Perron value of Ck,p:

ρ(Ck,p) ∈
[
0.4(p + 1)(k2 + k), 0.5(p + 1)(k2 + k) + 1

]
.

The upper bound in the expression above is U1 from Proposition 3.4. The lower bound 
follows from L1 by plugging in it the lower bound on ρ(Pk) stated in (14). �
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4. Further bounds for the Perron value of broom trees

In this section we present lower and upper bounds for the Perron value of the broom 
trees B(k, �), which we already considered in Section 2.3.

Let T be a rooted tree of order n and let M = [mij ] be its bottleneck matrix. Let also 
R = (r1, r2, . . . , rn) be the row-sum vector of M , so that R = Me. From [4,16], we have 
that

(
(1/n)

n∑
i=1

r2
i

)1/2

≤ ρ(M) ≤ max
1≤j≤n

n∑
i=1

mij

√
rj
ri
. (15)

Observe that the lower bound in (15) is ‖Me‖/‖e‖ = πe(M). We now focus on the upper 
bound in (15). Notice that the maximum in its expression is necessarily attained in a 
pendent vertex. We can apply this bound to the rooted broom to obtain the following 
result.

Proposition 4.1. Let B(k, �) be a rooted broom, and let M be its bottleneck matrix. Then

ρ(M) ≤ k� + 1 +
k∑

i=1

√
i
k2 + k + 2k� + 2
2k + 2�− i + 1 .

Proof. Based on what we noticed above, we can let the vertex j attaining the maximum 
in (15) be one of the � extra pendent vertices. Observe that if α > k

rα =
k∑

i=1
i + (�− 1)k + k + 1 = 1

2(k2 + k + 2k� + 2)

and if 1 ≤ α ≤ k

rα =
α∑

i=1
i + (k + �− α)α = 1

2(2kα + 2�α− α2 + α).

Hence, we can write the upper bound in (15) as

k+�∑
i=1

mij

√
rj
ri

=
k∑

i=1
mij

√
rj
ri

+
∑

k+1≤i≤k+�
i�=j

mij

√
rj
ri

+ mjj

√
rj
rj

=
k∑

i=1
i

√
k2 + k + 2k� + 2
2ki + 2�i− i2 + i

+
∑

k+1≤i≤k+�
i�=j

k + k + 1
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= k� + 1 +
k∑

i=1

√
i
k2 + k + 2k� + 2
2k + 2�− i + 1

as desired. �
We tested computationally the upper bound in Proposition 4.1 on the same test cases 
as for the bound in Corollary 2.5. Both for k = 25 and k = 100 the average RG was ca 
23%, so the bound in Proposition 4.1 is clearly inferior to the other.

The next result gives a lower bound for the Perron value of B(k, �). This bound 
depends only on the eigenvalues of a 2 × 2 matrix. The tool used here is the interlacing 
of eigenvalues for the quotient matrix of a symmetric partitioned matrix [11, p. 594]. Let 
n1, n2, . . . , nr be positive integers, and define n =

∑r
i=1 ni. Consider the partitioning of 

a symmetric matrix M of order n into blocks

M = [Mij ]1≤i,j≤r ,

where Mij is a matrix of size ni × nj and Mij = MT
ji (i, j ≤ r). The quotient matrix 

Q = [qij ] of M is the r× r matrix whose (i, j)’th entry is the average of the row sums of 
Mij , that is:

qij = 1
ni

eT(ni)Mije(nj) (i, j ≤ r).

As shown in [11, Corollary 2.3], all the eigenvalues of Q interlace the eigenvalues of M .

Lemma 4.2. [11] Let M be a symmetric partitioned matrix of order n with eigenvalues 
β1 ≥ β2 ≥ · · · ≥ βn and let Q be its quotient matrix of order r < n with eigenvalues 
ν1, ν2, . . . , νr. Then βi ≥ νi ≥ βn−r+i for i = 1, 2, . . . , r.

We now prove the mentioned lower bound on ρ(M), when M is the bottleneck matrix 
of B(k, �).

Proposition 4.3. Let M be the bottleneck matrix of a rooted broom B(k, �). Then

ρ(M) ≥ γ(k, �)

where

γ(k, �) =
1
2

⎧⎨
⎩2k2 + 3k + 1

6
+ �k + 1 +

[(
2k2 + 3k + 1

6
− (�k + 1)

)2

+ �(k + 1)(k2 + k)
]1/2⎫⎬

⎭ .

Proof. The bottleneck matrix M of B(k, �) can be partitioned into block form as shown 
in (11) and (12). Then, the entries of the quotient matrix are
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q11 = 1
k

[∑k
i=1 i

2
]
,

q12 = 1
k

[(
k2+k

2

)
�
]
,

q21 = 1
�

[
�
(

k2+k
2

)]
,

q22 = 1
� [�(�k + 1)]

so that the quotient matrix is

[
2k2+3k+1

6
�(k+1)

2
k2+k

2 �k + 1

]
.

Since, as is readily seen, for a nonnegative 2 × 2 matrix

ρ

([
aii aij
aji ajj

])
= 1

2

{
aii + ajj +

[
(aii − ajj)2 + 4aijaji

]1/2}
,

it follows by interlacing that

ρ(M) ≥ 1
2

⎧⎨
⎩2k2 + 3k + 1

6
+ �k + 1 +

[(
2k2 + 3k + 1

6
− (�k + 1)

)2

+ �(k + 1)(k2 + k)
]1/2⎫⎬

⎭ . �

Remark 4.4. From Proposition 4.3, by dropping some nonnegative terms, we obtain a 
simple lower bound on γ(k, �) (and, hence, on ρ(M)):

γ(k, �) ≥ 1
2

⎧⎨
⎩2k2 + 3k + 1

6 + �k + 1 +
[(

2k2 + 3k + 1
6 − (�k + 1)

)2]1/2
⎫⎬
⎭

= 2k2 + 3k + 1
6 ,

and this simple lower bound approximates γ(k, �) well when � is small compared to k. �
5. Combinatorial Perron parameters for some classes of trees

In this section, we present exact values for some of the combinatorial Perron param-
eters introduced in [2] and [3]. In particular, we present the exact value for πe(T ) when 
T is a broom tree, as well as the exact values for πe(T ) and ρc(T ) when T is a regular 
caterpillar. These parameters were demonstrated to be good lower bounds for the Per-
ron values of these rooted trees (see [2,3]). All the exact expressions obtained here were 
tested using MATLAB and Maple.
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5.1. Broom trees

In [2], the combinatorial Perron value ρc(B(k, �)) of a broom tree B(k, �) was deter-
mined. Here, we compute πe(B(k, �)).

Proposition 5.1. Consider the broom B(k, �). Then

πe(B(k, �)) = 1√
k + �

√
Ψ1 + Ψ2

where

Ψ1 = 1
30k + 1

6k
2 + 1

3k
3 + 2

15k
5 + 1

3k
4 + 7

12k
2� + 1

6�
2k + 5

12� k
4 + 5

6� k
3 + 1

3�
2k3

+ 1
2�

2k2 + 1
6k�,

Ψ2 = �

(
k2 + k

2 + �k + 1
)2

.

Proof. First note that the bottleneck matrix M of B(k, �) satisfies

Me =
[
p

q

]
,

where p = (pi) ∈ Rk and q = (qi) ∈ R� are given by

pi =
i∑

j=1
j + i(k − i) + i� i = 1, 2, . . . , k,

qi = k2 + k

2 + �k + 1 i = 1, 2, . . . , �.

Therefore,

πe(B(k, �)) = 1√
k + �

√√√√√ k∑
i=1

⎛
⎝ i∑

j=1
j + i(k − i) + i�

⎞
⎠2

+ �

(
k2 + k

2 + �k + 1
)2

.

Setting

Ψ1 =
k∑

i=1

⎛
⎝ i∑

j=1
j + i(k − i) + i�

⎞
⎠2

and Ψ2 = �

(
k2 + k

2 + �k + 1
)2

and using the expressions in (3) yields the desired result. �
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5.2. Regular caterpillars

In this section, we calculate ρc(Ck,p) and πe(Ck,p), where Ck,p is the regular caterpillar 
considered in Section 3. Recall that the order of Ck,p is n = k + pk.

Proposition 5.2. For the regular caterpillar Ck,p, we have

ρc(Ck,p) = φ2

φ1
,

where

φ1 =1
6(2k3 + 9k2 + 13k)p + 1

6(2k3 + 3k2 + k),

φ2 = 1
30k + 1

6k
2 + 1

3k
4 + 1

3k
3 + 12

5 pk + 29
12k

2p + 3
4k

4p2 + 13
12k

4p + 3
2k

3p2 + 11
6 k3p

+ 5
4k

2p2 + 11
30p

2k + 2
15k

5 + 2
15k

5p2 + 4
15k

5p.

Proof. We shall use the alternative expression for ρc found in [3]: ρc(Ck,p) =
(
∑

i σ
2
i )/(
∑

i d
2
i ), where di is the number of vertices in the path Pi joining i to the 

root, σi =
∑

j:j�i dj , and j � i means that j is below i in the sense that the path Pi is 
contained in the path Pj . The vector d = (di) for Ck,p has the following expression:

d = (1, 2, . . . , k, 2, . . . , 2︸ ︷︷ ︸
p

, 3, . . . , 3︸ ︷︷ ︸
p

, . . . , k + 1, k + 1, . . . , k + 1︸ ︷︷ ︸
p

).

Therefore,

φ1 =
n∑

i=1
d2
i = S

(2)
k +

k∑
i=1

p(i + 1)2 = (1 + p)S(2)
k + 2pS(1)

k + kp

= 1
6(2k3 + 9k2 + 13k)p + 1

6(2k3 + 3k2 + k).

Now we calculate the numerator 
∑n

i=1 σ
2
i . For i ∈ {1, . . . , k},

σ2
i = (

∑
j:j�i

dj)2 = (
k∑

j=i

j +
k∑

j=i

p(j + 1))2 = (
k∑

j=i

j + p

k∑
j=i

j + p

k∑
j=i

1)2

=
(

(p + 1)(k + i)(k − i + 1)
2 + p(k − i + 1)

)2

= (p + 1)2
i4 +

(
− (p + 1)2 + p(p + 1)

)
i3
4 2
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+
(

(p + 1)2

4 (−2k2 − 2k + 1) + p(p + 1)(−k − 2) + p2
)
i2

+
(

(p + 1)2

4 (2k2 + 2k) + p(p + 1)(−k2 + 1) + p2(−2k − 2)
)
i

+
(

(p + 1)2

4 (k4 + 2k3 + k2) + p(p + 1)(k3 + 2k2 + k) + p2(k2 + 2k + 1)
)
.

We obtain

φ2 =
n∑

i=1
σ2
i =

k∑
i=1

σ2
i +

n∑
i=k+1

σ2
i

= (p + 1)2

4

(
6k5 + 15k4 + 10k3 − k

30

)

+
(
− (p + 1)2

2 + p(p + 1)
)(

k4 + 2k3 + k2

4

)

+
(

(p + 1)2

4 (−2k2 − 2k + 1) + p(p + 1)(−k − 2) + p2
)(

2k3 + 3k2 + k

6

)

+
(

(p + 1)2

4 (2k2 + 2k) + p(p + 1)(−k2 + 1) + p2(−2k − 2)
)(

k2 + k

2

)

+
(

(p + 1)2

4 (k4 + 2k3 + k2) + p(p + 1)(k3 + 2k2 + k) + p2(k2 + 2k + 1)
)
k

+ p(22 + 32 + . . . + (k + 1)2)

= 1
30k + 1

6k
2 + 1

3k
4 + 1

3k
3 + 12

5 pk + 29
12k

2p + 3
4k

4p2 + 13
12k

4p + 3
2k

3p2 + 11
6 k3p

+ 5
4k

2p2 + 11
30p

2k + 2
15k

5 + 2
15k

5p2 + 4
15k

5p,

as desired. �
Proposition 5.3. For the regular caterpillar Ck,p, we have

πe(Ck,p) =

√
4 (p + 1)3 k4 + 10 (p + 1)3 k3 + (10p3 + 50p2 + 50p + 10) k2 + (5p3 + 45p2 + 45p + 5) k + p3 + 13p2 + 43p + 1

30p + 30 .

Proof. Observe, as noted in the proof of Proposition 3.4, that Ck,p = Pk�Sp+1. Letting 
M1 and M2 denote the bottleneck matrices of Pk and Sp+1, respectively, and using [5, 
Proposition 4.8], we find that the bottleneck matrix of Ck,p is (permutationally similar 
to)

M = Ik ⊗M2 + (M1 − Ik) ⊗ Jp+1,
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where ⊗ denotes the Kronecker product of matrices. Observe that M1 corresponds to 
A(k) in (12), while M2 = Jp+1 + Ip+1 − e1e

T
1 (with e1 the first standard unit vector of 

size p + 1). Hence,

M = Ik ⊗ (Jp+1 + Ip+1 − e1e
T
1 ) + (A(k) − Ik) ⊗ Jp+1

= A(k) ⊗ Jp+1 + Ik ⊗ (Ip+1 − e1e
T
1 ).

Since e(n) = e(k) ⊗ e(p+1), using the well-known multiplication rules for Kronecker prod-
ucts, we obtain

Me(n) = (A(k) ⊗ Jp+1 + Ik ⊗ (Ip+1 − e1e
T
1 ))(e(k) ⊗ e(p+1))

= (A(k)e(k)) ⊗ (Jp+1e(p+1)) + (Ike(k)) ⊗ ((Ip+1 − e1e
T
1 )e(p+1))

= (p + 1)ϑ⊗ e(p+1) + e(k) ⊗ e(p+1) − e(k) ⊗ e1,

where we have denoted A(k)e(k) by ϑ for the sake of simplicity. As a consequence, we 
find

‖Me(n)‖2 = (Me(n))TMe(n)

=[(p + 1)ϑT ⊗ eT(p+1) + eT(k) ⊗ eT(p+1) − eT(k) ⊗ eT1 ]

× [(p + 1)ϑ⊗ e(p+1) + e(k) ⊗ e(p+1) − e(k) ⊗ e1]

=(p + 1)2(ϑTϑ)(eT(p+1)e(p+1)) + (p + 1)(ϑT e(k))(eT(p+1)e(p+1)) − (p + 1)(ϑT e(k))(eT(p+1)e1)

+ (p + 1)(eT(k)ϑ)(eT(p+1)e(p+1)) + (eT(k)e(k))(eT(p+1)e(p+1)) − (eT(k)e(k))(eT(p+1)e1)

− (p + 1)(eT(k)ϑ)(eT1 e(p+1)) − (eT(k)e(k))(eT1 e(p+1)) + (eT(k)e(k))(eT1 e1)

=(p + 1)3ϑTϑ + (p + 1)2ϑT e(k) − (p + 1)ϑT e(k) + (p + 1)2eT(k)ϑ + k(p + 1) − k

− (p + 1)eT(k)ϑ− k + k

=(p + 1)3ϑTϑ + (2p2 + 2p)ϑT e(k) + kp.

Observe that

ϑT e(k) = eT(k)A
(k)e(k) =

k∑
i=1

i2 = S
(2)
k .

Moreover, the i’th entry of ϑ is

ϑi =
i∑

j=1
j + i(k − i) = i(k − i/2 + 1/2)

so that
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ϑTϑ =
k∑

i=1
ϑ2
i =

k∑
i=1

[
i2(k − i/2 + 1/2)2

]
=

k∑
i=1

[
i2
(
k2 + i2/4 + 1/4 − ik + k − i/2

)]
= (1/4)S(4)

k − (k + 1/2)S(3)
k + (k2 + k + 1/4)S(2)

k .

The result follows by using the formulae (3) and recalling that

πe(Ck,p) =
‖Me(n)‖
‖e(n)‖

=
‖Me(n)‖√
k + pk

. �
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