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ABSTRACT
Many banks and credit institutions are required to assess the value 
of dwellings in their mortgage portfolio. This valuation often relies 
on an Automated Valuation Model (AVM). Moreover, these institu
tions often report the models accuracy by two numbers: The frac
tion of predictions within � 20% and � 10% range from the true 
values. Until recently, AVMs tended to be hedonic regression mod
els, but lately machine learning approaches like random forest and 
gradient boosted trees have been increasingly applied. Both the 
traditional approaches and the machine learning approaches rely 
on minimising mean squared prediction error, and not the number 
of predictions in the � 20% and � 10% range. We investigate 
whether introducing a loss function closer to the AVMs actual loss 
measure improves performance in machine learning approaches, 
specifically for a gradient boosted tree approach. This loss function 
yields an improvement from 89:4% to 90:0% of predictions within 
� 20% of the true value on a data set of N ¼ 126 719 transactions 

from the Norwegian housing market between 2013 and 2015, with 
the biggest improvements in performance coming from the lower 
price segments. We also find that a weighted average of models 
with different loss functions improves performance further, yielding 
90:4% of the observations within � 20% of the true value.
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1 Introduction

The housing market is keenly watched by policymakers and the general populace. The 
financial crisis of 2007 told us that a housing market bust come with dire consequences 
for the larger economy. The bust affected consumer spending and solvency of banks as 
houses served as mortgage collaterals. As a protective measure, banks in many countries 
are required to assess their risk exposure regularly by monitoring the value of the houses 
in their mortgage portfolio. One way of efficiently doing this is by using an Automated 
Valuation Model (AVM), that is, a statistical model that estimates the price of a dwelling 
or a portfolio of dwellings.

Historically, AVMs have fallen into two groups. The first and foremost is made up of 
hedonic regression models (Goodman and Thibodeau (2003); Rosen (1974)), where house 
prices are sought to be predicted by regressing transaction prices (or the log of transaction 
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prices) on a set of dwelling characteristics like size, number of bedrooms, etc. The hedonic 
models face three main challenges. The first is that the linear assumption can be unrealistic. 
Such concerns are usually addressed by adding squares and cubes of variables as well as 
interaction terms. The second challenge is possible omitted variable bias as characteristics 
that have a bearing on transaction prices may be unavailable due to data limitations. Finally, 
the third challenge pertains to data quality. Even if a large array of explanatory variables are 
available in the data, oftentimes quite a few tend to be of poor quality. They may be missing 
all together or be poorly measured. This curbs the upside of more refined models.

The second group of models tend to circumvent the challenge of omitted and poorly 
measured determinants of transaction prices by considering repeated sales only (Bailey 
et al. (1963); Case et al. (1993)). This allows us to observe price changes of identical 
objects, provided that the dwelling is unchanged between sales. This approach has 
apparent challenges of its own. It may be hard to know or check that a dwelling is indeed 
unchanged between sales. Moreover, the notion of unchanged is not straightforward, 
especially if the holding time between sales is long. A house that was new 10 years ago 
may appear dated, even in the case where the owners have put great care to counteract 
natural tear and wear.

This latter point has led to hybrid models (Peter et al. (1998); Quigley (1995)) that seek 
to utilise the strengths of both approaches; the repeated sales models independence of 
hedonic characteristics and the hedonic model’s use of all observations. A variety of 
spatial methods has also been applied in order to capture the heterogeneity that is often 
present in house price data (Clapp et al. (2004); Páez et al. (2010)).

Recent years have seen machine learning models replace or supplement hedonic 
models. Machine learning models have gained enormous popularity due to its high 
predictive accuracy and flexible nature that often manages to capture non-linear relation
ships in ways that some traditional statistical models struggle with. A popular class of 
methods are tree-based models that combine multiple decision trees, with random forest 
(Breiman (2001)) and gradient boosted trees (Freund and Schapire (1996); Friedman 
et al. (2000)) as the most notable examples. Artificial neural networks is another class of 
methods that is widely used, including specialised networks like long short-term memory 
networks (Hochreiter and Schmidhuber (1997)) and convolution neural networks 
(LeCun et al. (1999)).

Tree-based models such as random forest and gradient-boosted trees have proven to 
be good at predicting property prices (Baldominos et al. (2018); Ho et al. (2020); Kim 
et al. (2021); Park and Bae (2015) and Sing et al. (2021)). Approaches based on neural 
networks have also lead to promising results in the realm of house price prediction 
(Xiaojie and Zhang (2021), Terregrossa and Ibadi (2021)). In particular, some methods 
use neural networks to process images of a dwelling and use this as input in other 
machine learning models in order to capture visual characteristics of the dwelling (Lim 
et al. (2016); Poursaeed et al. (2018) and Zillow (2019)) or the surrounding areas (Yencha 
(2019)). Other machine learning techniques that have been used for house price predic
tion include genetic algorithms (Sommervoll and Sommervoll (2019)), support vector 
machines (Wang et al. (2014)) and fuzzy logic (Giudice et al. (2017)). A comparison of 
modern approaches to house price prediction is presented in McCluskey et al. (2013), 
while a broader overview of machine learning in the real estate industry is presented by 
Viriato (2019).
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Machine learning models rely on minimisation of a user-defined loss function. 
A common default choice is the squared error (SE) loss function, which minimises the 
sum of the squared distance between a prediction and its corresponding observation. 
Although using the squared error loss function is sensible in many applications in 
statistics and machine learning, some problems would benefit from more tailor-made 
solutions. For instance, Huber (1964) introduced the Huber loss, a novel loss function 
that serves as a compromise between squared error and absolute error loss. Furthermore, 
Varian (1975) and Cain and Janssen (1995) both applied asymmetric loss functions to the 
problem of house price prediction for cases where one want to penalise underestimation 
harder than overestimation. The idea of tailoring a loss function for a specific problem 
can also be seen in other machine learning applications: Barron (2019) introduced 
a novel loss function for the purpose of image recognition, while Gabriel et al. (2017) 
proposed a tailored loss function that regularises neural networks and demonstrated its 
performance on both image recognition tasks and natural language processing tasks.

A widely used performance measure to quantify the performance of an AVM is the 
fraction of predictions that falls within a � 20% or � 10% range of the transaction price.1 

Going forwards we will refer to this as the 20% measure and 10% measure, or generally as 
the percentage measure. The European AVM Alliance (Nitschke et al. (2019)) refers to the 
percentage measure as the most commonly used measure for dispersion. Furthermore, 
they recommend a range of at least 10%, and note that 20% is the most commonly quoted 
range. Zillow, an American property technology company, includes both the 10% measure 
and 20% measure when reporting the accuracy of their AVM, while the American credit 
rating agency Fitch Ratings Inc. acknowledges that the percentage measure is ‘the most 
standard measurement utilized in the industry’ (FitchRatings (2019)).

This is our point of departure: Will a different loss function than the standard SE loss 
lead to better model performance when using the percentage measure as our target 
measure? We study this empirically by comparing two different loss functions for the 
training of machine learning-based models for house price prediction. We note that we 
are not the first one to suggest this; Miriam et al. (2021) comment that the choice of 
performance measure should be made together with a decision on the loss function, but 
for practical reasons their focus lie solely on exploring different measures. In this paper, 
we will do the opposite: With a predetermined measurement of model performance (the 
percentage measure), we ask whether we can improve the model’s performance by 
carefully choosing an appropriate loss function.

Our contribution relates to two strands of literature. In the aftermath of the 2007–2008 
financial crisis the relationship between appraisals, AVMs and bank’s mortgage risk 
exposure has received more academic attentions (Demiroglu and James (2018); Kruger 
and Maturana (2020)). The improvement of AVM performance is therefore of great 
interest to banks. We also contribute to the general machine learning literature: For the 
lion share of applications, the interplay between the performance measure and the loss 
function is a best implicit. Tree-based machine learning techniques are on the way to 
becoming a ‘swiss army knife’, where implementations are easily available through off- 
the-shelf software packages that require little to no tuning. This is likely to result in an 
overuse of the standard loss functions where there is potential for significant improve
ment by introducing more tailored loss functions.
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More specifically, for our data set we find that introducing a tailored loss function 
improves performance from 89:4% to 90:0% when using the 20% measure to evaluate 
model performance. Furthermore, a weighted average of two models – one with the 
standard squared error loss and one with a squared percentage error (SPE) loss – yields 
a further improvement, giving a performance of 90:4% on the same measure. We find 
that the improvement in performance is highest for the lower price segments, with 
a slight decline in performance for the highest price segments.

The remainder of the paper is organised as follows: In Section 2 we present the 
housing market data set used in this paper. It consists of all housing market transactions 
(N ¼ 126719) in the counties Oslo, Viken, Trøndelag and Innlandet in the time period 
2013–2015. In Section 3 we present four different models – linear regression, nearest 
neighbour regression, random forest and gradient boosted trees – and study their 
performance in predicting house prices with the standard loss function. In addition, 
we explore the role of the loss function in gradient boosted trees and argue that a relative 
loss function is more appropriate for the given performance measure. In Section 4 we 
compare the gradient boosted trees trained with SE loss and SPE loss, and find that the 
latter improves the model when using the 20% measure as performance measure. Finally, 
in Section 5 we investigate whether a combination of the two models can lead to an even 
bigger improvement. In Section 6 we conclude and outline some possible ideas for 
further research.

2 Data

2.1 About the Norwegian housing market

Norway has a strong tradition for owning rather than renting. The home ownership rate 
in Norway is 72%, slightly above the OECD average. However, most people cannot afford 
to own outright: 69% of owners in Norway have used a mortgage to finance the 
acquisition, compared with an OECD average of 36%.2 This high mortgage percentage 
creates a tight connection between the housing market and the banking sector in Norway. 
Governmental regulations determine the size of the mortgage provided by the banks 
based on the estimated value of the dwelling and the buyers’ income and equity. Most 
importantly, the potential borrower can at most borrow five times their annual income 
and the mortgage can not exceed 85% of the estimated dwelling value. In most cases 
banks take the dwelling as mortgage collateral, and it is therefore crucial for banks to 
estimate the value of the dwelling regularly for risk management purposes. Estimates of 
the dwelling value is usually updated quarterly by an AVM.

When a potential buyer has been granted a mortgage from the bank, they are ready to 
submit a bid for a dwelling on the market. The overwhelming majority of transactions in 
the Norwegian housing market take place as open auctions where anyone can participate. 
An asking price is determined by the seller, typically guided by a valuation conducted by 
a professional appraiser or an assessment by a real estate agent. The auction normally 
starts – and finishes – the day after the open house. This swift decision making process is 
another characteristic of the Norwegian housing market, which is in stark contrast to 
other markets where the transaction requires lengthy negotiations before an agreement is 
reached.
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Another characteristic of the Norwegian housing market is the spatial heterogeneity. 
Some parts of the country has limited housing market activity due to mountain ranges, 
forestry and farming. This creates big differences in both price levels and market activity 
between urban and rural areas. 52% of transactions in 2021 occurred in the four biggest 
cities (Oslo, Bergen, Trondheim and Stavanger), despite making up only an estimated 
25% of the housing stock.3

2.2 About the data set

We use a data set containing all arms’ length transactions from the Norwegian housing 
market between 2013 and 2015 from the four counties Oslo, Viken, Trøndelag and 
Innlandet (N ¼ 126719).4 This includes Oslo and Trondheim, the largest and third- 
largest cities in Norway. Figure 1 shows a map of these four counties with mean price per 
square metre at municipality level. It also shows the distribution of price per square metre 
per estate type, measured in Norwegian kroners (NOK).5

Table 1 shows summary statistics for the variables in the data set. The data set includes 
several variables that are of high importance to homeowners, such as size, floor number, 
age of the building and the number of bedrooms. It also includes information about the 
area around the dwelling in question, such as distance to the nearest lake and the number 
of homes and other buildings in the surrounding area. Further details on the data 
preparation procedure is found in Appendix A.

We split the full data set into two subsets: A training set (75% of the data) used to train 
a model and a test set (25% of the data) used to test or evaluate the model. The partition is 
done randomly, and not based on the values of the variables. Since the performance of 
the model is vulnerable to how exactly the training and test split is done, we will 

Figure 1. Left plot: The distribution of price per square metre (in thousands NOK) per estate type in the 
data set. Right plot: Mean price per square metre (in thousands NOK) per municipality in the data set.
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throughout this paper consequently conduct 100 random splits into training and test data 
and report the mean and standard deviation of the performance measure across for the 
100 models trained and tested on these sets.

In cases where we need to find optimal hyper parameters for models we also separate 
a fraction (25%) of the training set into a validation set. When the optimal hyper 
parameters are found we use these on the full training set.

3 Benchmark models

We aim to make a statistical model that estimates the sale price yi 2 Rþ of a dwelling 
given its features xi 2 R d. We denote this estimate ŷi ¼ f ðxiÞ. In this section, we will 
consider four models for the function f ðxiÞ: Linear regression, nearest neighbour (NN) 
regression, random forest and gradient boosted trees. This section gives a brief introduc
tion to each of the methods.

Table 1. The variables in the data set with summary statistics for the numerical variables.
Variable Unit Mean St. Dev. Min Max Type

Sale Price NOK (mill.) 3.16 1.78 0.14 38.00 Numerical
Estate Type1 – – – – – Categorical
Municipality2 – – – – – Categorical
City District3 – – – – – Categorical
Sale Date quarters 6.53 3.42 1.00 12.00 Categorical
Longitude degrees 266,181 22,068 109,164 451,605 Numerical
Latitude degrees 6,713,095 149,240 6,535,384 7,222,338 Numerical
Altitude m 109.51 86.18 0 989.00 Numerical
Size 4 m2 97.25 52.92 15.00 642.00 Numerical
Floor5 – 1.99 1.56 −4 14 Categorical
Bedrooms – 2.41 1.17 0 58 Categorical
Footprint Area m2 33.82 64.32 0.00 693.00 Numerical
Dwelling Age years 46.41 33.16 0 415.00 Numerical
Lot Area m2 397 2,458 0 109,786 Numerical
Balcony6 – 0.65 0.48 0 1 Binary
Elevator6 – 0.19 0.39 0 1 Binary
Lot Slope degrees 5.42 4.69 0.00 41.00 Numerical
Lot Slope Direction degrees 181.08 84.28 0.00 360.00 Numerical
Units On Address7 – 10.55 20.11 0.00 274.00 Numerical
Coast Distance m 4,824 3,968 0 16,000 Numerical
Lake Distance m 1,107 757 0 5,885 Numerical
Sunset Hour8 hours 20.83 0.67 15.57 24.00 Numerical
Close Neighbourhood Homes9 – 1,305 1,484 1 6,746 Numerical
Extended Neighbourhood Homes10 – 3,124 3,697 1 14,936 Numerical
Close Neighbourhood Buildings9 – 105 108 0 1,323 Numerical
Extended Neighbourhood Buildings10 – 268 256 0 1,796 Numerical

1There are four distinct estate types: flat, duplex, row house, detached home. 
2There are 135 distinct municipalities in the data set. 
3There are 21 distinct city districts in the data set. Dwellings outside of the city do not have a value. 
4The living area in m2. 
5If the dwelling has multiple floor, this variable will be the lowest floor. For detached homes this is set to 1. 
6In cases where the information is missing, this is set to 0. 
7In some cases, e.g. in apartment buildings, multiple dwellings have the same address. 
8The time of sunset as of July 1st. 
9Norway is divided into squares of 250 m × 250 m. This variable counts the number of homes or other buildings (stores, 

schools, churches etc.) in all the adjacent squares to the square that the target dwelling is in, that is, the 8 neighbouring 
squares. 

10This counts the number of homes or other buildings (stores, schools, churches etc.) in the adjacent eight 250 m × 250 m 
squares, as well as the neighbours of these eight squares. In total, this includes 25 squares.
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3.1 Linear regression

For the linear regression, we have 

f ðxiÞ ¼
Xd

j¼1
xij � βj 

where xi ¼ ½xi1; xi2; . . . ; xid� is the vector of features describing dwelling i and β ¼
½β1; β2; . . . ; βd� is found via maximum likelihood estimation. The features included in 
xi are the ones listed in Table 1.

3.2 Nearest neighbour regression

Nearest Neighbour (NN) regression algorithms refer to algorithms that make predictions 
based on similar objects. One such algorithm is k Nearest Neighbour (k-NN) regression, 
which finds the k closest objects (in feature space) in the data set and use those k objects 
to estimate the unknown price of the target object, typically through a simple mean of the 
objects. The estimate is thus 

f ðxiÞ ¼
1
k

X

xi2NkðxiÞ

yi 

where NkðxiÞ is a neighbourhood of the k nearest neighbours around xi. There are 
multiple ways of determining the neighbourhood in R d, but the L2 norm is often used. 
This highlights an important practical challenge with k-NN regression: If the data is not 
preprocessed properly (scaling and centring) there is a risk that one or a few of the d 
features will dominate the neighbourhood calculation due to difference in magnitude 
between the features.

Another practical challenge is to calculate an N � N distance matrix when N becomes 
large. There exists various approximation methods, often denoted Approximate Nearest 
Neighbour (ANN) techniques. In this paper, we will use the R package RANN (Sunil et al. 
(1998); Sunil et al. (2019)) and L2 norm for distance metrics. We centre all the variables 
by subtracting the mean value, and scale the variables by dividing them by their standard 
deviation. We find k ¼ 2 to be optimal via a validation set.

3.3 Random forest

A random forest builds an ensemble of decision trees on bootstrapped samples of the 
training data and uses this ensemble to make predictions about new instances. 
A prediction from a single decision tree is denoted hðx; qÞ, where q represents the tree 
structure of the decision tree. This tree structure defines a series of splits that partition the 
feature space into J disjoint subsets I 1; . . . ;I J . The subsets are found by subsequently 
making binary splits in the data set based on an information gain criterion. This process 
continues until it reaches a user specified max tree depth or another stopping criterion.

The subsets are represented as leaves on the decision tree, and each leaf j is equipped 
with a constant value wðjÞ that serves as a prediction for new instances x for which we 
want to make a prediction. For a new instance, xi the prediction becomes 
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hðxi; qÞ ¼
XJ

j¼1
wðjÞ � Iðxi 2 I jÞ:

A random forest is a collection of M such trees and the prediction is the average of all 
trees, 

f ðxiÞ ¼
1
M

XM

m¼1
hmðxi; qmÞ:

Breiman (2001) showed that aggregating multiple trees yields precise results if each 
tree is trained on a bootstrapped sample of the original data. Another important trait of 
a random forest model is that the model picks a random subset of features as candidates 
for each split, ensuring that the individual trees are as uncorrelated as possible. A major 
benefit of random forest is its ability to handle both numerical, categorical, and binary 
covariates with very little data preparation, and still produce precise estimates. 
Construction of a random forest involves some choices of hyper parameters, most 
notably the number of trees M to be constructed and the number of splits J in each 
tree. For detailed discussions about these choices, see Breiman (2001); Hastie et al. (2009) 
and Louppe (2014). We used M ¼ 500 trees and a minimum node size of 10 observa
tions, implicitly defining the J (the algorithm stops splitting when the number of 
observations in that node is 10).

3.4 Gradient boosted trees

Gradient boosted trees also combine multiple decision trees, but unlike random forest, 
where trees are trained in parallel on bootstrap samples of the original data set, the trees 
are trained in an sequential manner. The prediction of yi after training M trees is 
expressed as 

fMðxiÞ ¼
XM

m¼1
η � hmðxi; qmÞ;

where hmðxi; qmÞ is a decision tree and η 2 ð0; 1� a shrinkage parameter that determines 
how quickly the method should converge. At every iteration, we find the tree structure qm 

through minimisation of some loss function Lðyi; ŷ
ðm� 1Þ
i Þ, where ŷðm� 1Þ

i is the current 
estimate of yi after the previous iteration, that is, 

qm ¼ arg min
q
fðLðyi; fmðxiÞÞg

¼ arg min
q
ðLðyi; fm� 1ðxiÞ þ η � hmðxi; qÞÞÞ:

The term ’boosting’ stems from the machine learning community, where it has been 
used about ensembles of weak learners, that is, predictive models with low accuracy. 
Surprisingly, combining many weak learners in an additive fashion produced impressive 
results, as demonstrated via the Adaboost algorithm presented by Freund and Schapire 
(1996). The idea has later been analysed from a statistical point of view by among others 
Friedman (2001) and Friedman et al. (2000), linking it to gradient descent methods. In 
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recent years, gradient boosted trees have been become faster and more accessible through 
computationally efficient implementations, such as XGBoost (Chen and Guestrin 
(2016)), CatBoost (Prokhorenkova et al. (2018)) and LightGBM (Guolin et al. (2017)). 
In this paper, we will specifically consider the XGBoost implementation. We use J ¼
3000 trees and a learning rate η ¼ 0:01. Each tree has a maximum depth M ¼ 6.

3.5 Benchmark model performance

We applied the considered method on the data set presented in Section 2. Table 2 reports 
the Root Mean Squared Error (RMSE), Median Error (MdE), the 10% measure, the 20%

measure and R2 for each of the methods. We used the standard squared error loss 
function for XGBoost and random forest.

XGBoost achieves the best results on four of the five performance measures, achieving 
an RMSE of 16:2%, 65:7% on the 10% measure and 89:4% on the 20% measure . Random 
forest is the second best performer in terms of the 10% measure, the 20% measure and 
R2, achieving close to XGBoost with 63:1%, 87:1% and 90:4%, respectively. The NN 
regression achieves the best MdE, but a significantly worse RMSE than the tree-based 
models. Finally, linear regression achieves the worst performance of the four models on 
all measures.

Figure 2 displays the relative errors (in percent of the sale price) from the four models. 
The figure shows the superiority of the tree-based models: While the mean of all the 
densities are all close to zero, the densities of random forest and XGBoost have a much 
narrower distribution, and a larger part of the area is between the stapled lines.

Table 3 displays model performance (measured by the 20% measure) per county. All 
of the models give the best performance in Oslo and the poorest performance in 
Innlandet. Even for XGBoost, the best model, the model performance ranges from 
95:1% in Oslo to 75:1% in Innlandet. The performance correlates with the number of 
observations per county: Oslo has 48143 transactions, Viken has 48476 transactions, 
Trøndelag has 19612 transactions and Innlandet just 10488 transactions. It is worth 
noting that all the models perform consistently better in Oslo than Viken, despite having 
approximately the same number of observations. One likely explanation is the fact that 
dwellings in Oslo are more homogeneous than those in Viken, as there is a larger 
concentration of apartment buildings in Oslo. A map showing mean absolute prediction 

Table 2. Root Mean Squared Error (RMSE), Median Error (MdE), the 10% measure, the 20% measure 
and R2 for linear regression, nearest neighbour regression, random forest and XGBoost. The values 
indicate the mean and standard deviation across the 100 simulations with different training and test 
set. The best values for each performance measure is highlighted in boldface.

RMSE (%) MdE (%) 10% measure (%) 20% measure (%) R2ð%Þ

Linear regression 32.7 (0.5) −1.4 (0.2) 34.1 (0.2) 60.2 (0.3) 73.0 (0.43)
NN regression1 28.4 (0.9) 0.0 (0.1) 44.7 (0.2) 70.9 (0.2) 73.4 (0.47)
Random forest2 18.8 (0.4) −1.2 (0.1) 63.1 (0.3) 87.1 (0.2) 90.4 (0.31)
XGBoost3 16.2 (0.5) 0.4 (0.1) 65.7 (0.2) 89.4 (0.1) 91.9 (0.23)

1We use k ¼ 2, found to be optimal on a validation set consisting of 25% of the training data. 
2We build 500 trees with minimum node size of 10 observations. 
3We build 3000 trees, each with tree depth of 6 splits and learning rate of 0.01.
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error per municipality can be seen in Figure 3. It further strengthens our belief that 
random forest and XGBoost are the superior performers, but also highlights that these 
methods struggle to perform in some municipalities in the central part of the map. These 
are areas with very few observations, in many cases less than 10 observations per 
municipality.

3.6 The role of the loss function in XGBoost

Subsection 3.4 showed how XGBoost builds trees sequentially via minimisation of a loss 
function Lðyi; ŷiÞ, which is , typically, the SE loss in the regression setting. Most machine 
learning models apply the Squared Error (SE) loss, LSE ¼

1
2 ðyi � ŷiÞ

2. XGBoost seeks to 
build the next tree hmðxi; qÞ in a way that minimises a regularised loss function, 

Lðyi; ŷ
ðmÞ
i Þ ¼

PN

i¼1
Lðyi; ŷ

ðmÞ
i Þ þ Ωðht; λ; γÞ

¼
PN

i¼1
Lðyi; ŷ

ðm� 1Þ
i þ η � hmðxi; qÞÞ þΩðht; λ; γÞ

(1) 

Figure 2. Histograms of relative errors (in percent) from the linear regression, NN regression, random 
forest and XGBoost. The vertical dotted lines indicate � 20%. The values on the y axis are normalised 
such that the integral of each density equates to one.

Table 3. Model performance per county measured by the 20% measure for linear 
regression, nearest neighbour regression, random forest and XGBoost. The values 
indicate the mean and standard deviation across the 100 simulations with different 
training and test set.

Innlandet Oslo Trøndelag Viken

Linear regression 40.4 (0.9) 68.8 (0.4) 62.8 (0.6) 55.0 (0.4)
NN regression1 56.6 (0.9) 76.7 (0.4) 71.7 (0.6) 68.0 (0.4)
Random forest2 71.0 (0.8) 93.7 (0.2) 85.9 (0.6) 84.6 (0.4)
XGBoost3 75.1 (0.8) 95.1 (0.2) 87.9 (0.4) 87.6 (0.2)

1We use k ¼ 2, found to be optimal on a validation set consisting of 25% of the training data. 
2We build 500 trees with minimum node size of 10 observations. 
3We build 3000 trees, each with tree depth of 6 splits and learning rate of 0.01.
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where Ωðht; λ; γÞ is a function that penalise complicated trees, and λ; γ are regularisation 
parameters. This term is added to avoid over fitting and thus increase the robustness of 
the model.

To make optimisation easier, a second-order approximation of (1) is often used. This 
approximation relies on using the gradient (first derivative) Gi ¼ @Lðyi; ŷiÞ=@ŷðm� 1Þ

i and 
the hessian (second derivative) Hi ¼ @

2Lðyi; ŷiÞ=@ðŷ
ðm� 1Þ
i Þ

2. Chen and Guestrin (2016) 
demonstrate that the optimal value on leaf j of a decision tree then can be expressed 
analytically as 

w�ðjÞ ¼ �

P
i2I j

Gi

λþ
P

i2I j
Hi
; (2) 

where I j is the subset of all observations in leaf j. Since gradient boosted trees are trained 
sequentially, the value (2) correspond to the increment that will be added to all the 
predictions in leaf j at the next iteration. For detailed derivation of this, see, Section 2 of 
Chen and Guestrin (2016). Equation (2) reveals that we can easily obtain the next 
increment in the prediction, as long as we know which loss function we want to use 
and calculate its first and second derivative. For the default choice of loss function, LSE, 
(2) becomes 

w�SEðjÞ ¼

P
i2I j
ðyi � ŷiÞ

λþ Nj
; (3) 

where Nj is the number of observations in leaf j. Note that if λ ¼ 0 this becomes the 
average of the residuals in the given leaf. Higher values of λ will make w�SE go towards 0, 
which will require more iterations for the algorithm to converge. A simple, but practical 
example of XGBoost with SE loss and two iterations is presented in Appendix C.

Figure 3. Absolute Error per municipality for one run of linear regression, NN regression, random forest 
and XGBoost. The errors are capped at 50%.
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Given that we are measuring the performance of the machine learning model in 
relative terms, we should also train the model on a relative loss function. The relative 
analogue to the SE loss is the Squared Percentage Error (SPE) loss, 

LSPE ¼
1
2

yi � ŷi
yi

� �2

: (4) 

This will return the relative error (in percent) rather than the absolute error (in NOK). 
The first and second derivative is Gi ¼ �

1
y2

i
ðyi � ŷiÞ and consequently Hi ¼

1
y2

i
, respec

tively. Inserting this in (2), we obtain a leaf value of 

w�SPEðjÞ ¼

P
i2I j

1
y2

i
ðyi � ŷiÞ

λþ
P

i2I j
1
y2

i

: (5) 

Although the expressions (3) and (5) differ slightly, they can both be written on the 
common form 

w�commonðjÞ ¼

P
i2I j

Hi � ðyi � ŷiÞ

λþ
P

i2I j
Hi

; (6) 

with Hi ¼ 1 for LSE and Hi ¼ 1=y2
i for LSPE. This common form highlights the differences 

between the leaf values of the two loss functions: While wSE is a regularised mean of the 
residuals in each node, wSPE is a regularised weighted mean of the residuals, where the 
weighting of each residual corresponds to 1=y2

i . Thus, high yi values (i.e. expensive 
dwellings) will receive less weight in the training process when using the SPE loss 
compared with the SE loss.

4 Results and analysis

In this section, we investigate whether changing from SE loss to SPE loss will improve the 
performance of XGBoost. Going forward we will denote the models XGBoost-SE and 
XGBoost-SPE.

Table 4 shows the performance of XGBoost-SPE in comparison with XGBoost-SE and 
the other benchmark models. XGBoost-SPE achieves a slightly better relative RMSE, 
which is to be expected as the model rely on minimising the relative error. It also yields 
a significant improvement in the 20% measure, with a 0:6% points increase over 
XGBoost-SE. Somewhat surprisingly, this same improvement is not present in the 10%

measure, where the two models both achieve 65:7%.
In order to understand the model performance better, we divide the dwellings into 10 

price segments and evaluate the performance per segment. The segments are created by 
calculating the deciles of the full data set before we split it into training and test data. 
Table 5 shows the performance of the two models per segment. It is clear that XGBoost- 
SPE significantly outperforms XGBoost-SE for the lower price segments, while XGBoost- 
SE yields the best performance for higher price segments. In total, XGBoost-SPE yields 
the best performance for eight of ten price segments, with the difference between the 
models gradually decreasing the higher the price segment. The observed improvement 
among the lower price segments is in line with the theoretical results from Section 3: The 
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data points are effectively weighted by a factor of 1=y2
i in the training process, assigning 

more weight to dwellings in the lower price segments, thus learning better how to predict 
these dwellings.

Figure 4 shows a density plot of the relative errors from the two models. This indicates 
that the distribution of relative errors from XGBoost-SPE is slightly skewed to the left 
compared with XGBoost-SE. This is also highlighted by the fact that the MdE for 
XGBoost-SPE is � 1:1% compared with 0:4% for XGBoost-SE, indicating that the new 
model yields more conservative estimates.

We divide the errors into three groups: Critically low errors (below � 20%), accep
table errors (between � 20% and 20%) and critically high errors (above 20%). Table 6 
shows the number of observations that on average move between the three classes when 
we apply XGBoost-SPE instead of XGBoost-SE. The diagonal entries in the table indicate 
how many that stay in the same category, and the off-diagonal elements reflect observa
tions that move between categories. Interestingly, there are a total of six observations that 
swing from the critically low category to the critically high category, or vice versa. 
Furthermore, 27380 observations (86:4%) are within the acceptable error threshold for 
both models. Perhaps the most interesting part is to count the number of observations 
that have moved in or out of the acceptable threshold when changing loss function. There 
are a total of 1114 observations that were either critically low or critically high with 

Table 4. Root Mean Squared Error (RMSE), Median Error (MdE), the 10% measure, the 20% measure 
and R for linear regression, NN regression, random forest, XGBoost-SE and XGBoost-SPE. The values 
indicate the mean and standard deviation across the 100 simulations with different training and test 
set. The best values for each performance measure is highlighted in boldface.

RMSE (%) MdE (%) 10% measure (%) 20% measure (%) R2ð%Þ

Linear regression 32.7 (0.5) −1.4 (0.2) 34.1 (0.2) 60.2 (0.3) 73.0 (0.43)
NN regression1 28.4 (0.9) 0.0 (0.1) 44.7 (0.2) 70.9 (0.2) 73.4 (0.47)
Random forest2 18.8 (0.4) −1.2 (0.1) 63.1 (0.3) 87.1 (0.2) 90.4 (0.31)
XGBoost-SE3 16.2 (0.5) 0.4 (0.1) 65.7 (0.2) 89.4 (0.1) 91.9 (0.23)
XGBoost-SPE3 15.4 (0.4) −1.1 (0.1) 65.7 (0.3) 90.0 (0.2) 91.4 (0.30)

1We use k ¼ 2, found to be optimal on a validation set consisting of 25% of the training data. 
2We build 500 trees with minimum node size of 10 observations. 
3We build 3000 trees, each with tree depth of 6 splits and learning rate of 0.01.

Table 5. The 20% measure for XGBoost-SE and XGBoost-SPE. The best in each price segment is in 
boldface. The rightmost column shows the increase/decrease in performance in terms of percentage 
points.

Decile Price segment1 N XGBoost-SE (%) XGBoost-SPE (%) Δð%Þ

1 (0,1.64] 3 160 71.6 (0.7) 74.8 (0.7) +3.2
2 (1.64,1.96] 3 228 87.7 (0.5) 89.5 (0.5) +1.8
3 (1.96,2.22] 3 102 91.8 (0.5) 93.1 (0.5) +1.3
4 (2.22,2.45] 3 169 93.2 (0.5) 94.1 (0.4) +0.9
5 (2.45,2.7] 3 332 93.8 (0.4) 94.4 (0.4) +0.6
6 (2.7,2.99] 3 021 93.7 (0.4) 94.2 (0.4) +0.5
7 (2.99,3.4] 3 242 92.9 (0.4) 93.1 (0.4) +0.2
8 (3.4,4] 3 087 91.7 (0.4) 91.8 (0.4) +0.1
9 (4,5.25] 3 207 90.9 (0.5) 90.4 (0.6) −0.5
10 (5.25,100] 3 130 87.0 (0.4) 84.1 (0.6) −2.9

31,678 89.4 (0.1) 90.0 (0.2) +0.6
1Measured in million NOK.
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XGBoost-SE that are now within the acceptable range. There are also a total of 949 
observations that have moved the other way, that is, errors that were acceptable with 
XGBoost-SE but critical for XGBoost-SPE. This means that in total, XGBoost-SPE yields 
a reduction in critical errors of 165 dwellings when we go from XGBoost-SE to XGBoost- 
SPE. In other words: 5:0% of the 3349 critical errors from XGBoost-SE have been 
removed, which is a sizeable reduction of errors. Note also that the two models agree 
on a total of 29609 observations (the trace of the table), equivalent to 93:5% of the test set.

The total value of the test set, that is, the sum of the actual observed transaction prices, 
is 100:20� 0:15 billion NOK. XGBoost-SE predicts a total value of 100:26� 0:16 billion 
NOK, whereas XGBoost-SPE predicts a total value of 97:96� 0:15 billion NOK, indicat
ing a much stronger performance from XGBoost-SE. Although not surprising, as the SE 
loss function specifically aims to minimise the absolute error in NOK, it is nevertheless an 
interesting observation since banks tend to use AVMs to value a portfolio of dwellings, 
typically related to a portfolio of mortgages. This emphasises the importance of choosing 
a loss function that suits your performance measure. If the end goal is exclusively to value 
a portfolio of mortgages, then our experiments indicate that XGBoost-SE achieves 
a lower error. However, if the end goal is to minimise the number of errors that are 

Figure 4. Density plots of the relative errors (in %) from XGBoost-SE and XGBoost-SPE, showing that 
the XGBoost-SPE seem to yield more conservative estimates than XGBoost-SE.

Table 6. A matrix showing the mean number of observations that have moved between the categories 
for XGBoost-SE (horizontal) and XGBoost-SPE (vertical). The column sums give the total number in 
each category for XGBoost-SE, while the row sums give the total number in each category for 
XGBoost-SPE.

Error (SE) 2 Error (SE) 2 Error (SE) 2 Sum
( � 100%; � 20%� ( � 20%; 20%) ½20%;1)

Error ðSPEÞ 2 ð� 100%; � 20%� 815 638 3 1 456
Error ðSPEÞ 2 ð� 20%; 20%Þ 249 27,380 865 28,494
Error ðSPEÞ 2 ½20%;1Þ 3 311 1 414 1 728
Sum 1 067 28,329 2 282 31,678
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outside some kind of threshold (as done via the percentage measure), the XGBoost-SPE 
model does a better job. Furthermore, these goals are often not mutually exclusive and 
financial institutions often need to rely on both.

In terms of performance per county, we see an improvement in all counties from the 
XGBoost model shown in Table 3. The performance has increased from 95:1% to 95:4%

in Oslo, from 75:1% to 75:9% in Innlandet, from 87:9% to 88:6% in Trøndelag and from 
87:6% to 88:2% in Viken. The biggest improvement comes from Trøndelag and 
Innlandet, the two counties with the poorest performance, but also the counties with 
the lowest average prices. This gives support to the arguments presented in 
Subsection 3.6, namely that the SPE loss function will yield the largest improvement in 
prediction accuracy for dwellings in the lower price segments.

4.1 What are the differences between the two models?

What is the fundamental difference between XGBoost-SE and XGBoost-SPE? Figure 5 
shows the feature importance for the 10 most important features for both models. The 
feature importance plots show how much performance is improved, measured by the 
reduction of total loss, on average each time a decision trees performs a split on the given 
feature in the training process. A big improvement in performance indicates that the 
feature is important. The feature importance values depend on the choice of loss 
function, and the feature importance values therefore cannot be directly compared 
between models with different loss functions. Nevertheless, the ranking is still useful 
because it highlights the importance of the different variables for the individual models.

The size of the dwelling is the most important feature for both models, followed by 
geographical features, such as whether or not the municipality is Oslo, as well as the 
Longitude and Latitude. This is not surprising, as location and size are two of the most 
important features for any buyer. A more surprising result, however, is that the number 
of homes in the extended neighbourhood is the second most important feature to 
XGBoost-SPE. A high value indicates a densely populated areas (typically in the cities), 
whereas a low value indicates fewer homes (typically rural areas).

Further down the list, we find that whether or not the dwelling is in Bærum is more 
important to XGBoost-SE than XGBoost-SPE. This is the municipality in the data set 
with the largest mean sale price (4895 observations with an average sale price of 4:90 
million NOK). The fact that this is such an important variable for XGBoost-SE underpins 
the results from Table 5, namely that this model is the best performer in the higher price 
segments. This argument is also supported by the fact that municipality being Oslo is 
the second most important feature for XGBoost-SE, while only being the fifth most 
important for XGBoost-SPE. It is also worth noting that estate type is not among the 10 
most important features for either model, although its importance is probably implicitly 
accounted for by other variables. For instance, a small size will imply that the estate type 
is a flat in many cases, and variables, such as the number of homes in extended 
neighbourhood might also indicate whether or not a given dwelling lies in an area 
consisting predominantly of apartment blocks with flats or areas with primarily detached 
homes and so on.

JOURNAL OF PROPERTY RESEARCH 15



5 Combining XGBoost-SE and XGBoost-SPE

We noted in Section 4 that the two models perform differently in different price 
segments: XGBoost-SPE yielded the best results for dwellings in the lower price seg
ments, and XGBoost-SE gave the best results for dwellings in the higher price segments. 
A likely explanation for this is the fact that the SPE loss function weighs each data point 
by a factor 1=y2

i in the training process, effectively giving more weight to dwellings from 
lower price segments. The consequence is that XGBoost-SPE assigns more weight to 
dwellings from less liquid markets, that is, markets with lower transaction volume, as 
prices are often lower in these markets.6 A combination of the two models might improve 
performance by utilising the strengths of both models. We therefore introduce the 
weighted average of the two predictions, 

XGBoost-Combined ¼ a � XGBoost-SEþ ð1 � aÞ � XGBoost-SPE (7) 

for some a 2 ½0; 1�. For a ¼ 0:5 this would equate to a simple average of the two models, 
whereas a ¼ 0:0 or a ¼ 1:0 would give XGBoost-SPE or XGBoost-SE, respectively.

By revisiting the table of movements between error categories, Table 6, we actually 
find a theoretical lower bound for the combined model. Since 86:4% of the observations 
are within the acceptable error threshold for both models, any convex combination will 
also be within. Similarly, 7:0% of the observations are critical errors of the same category 
for both models. Hence, any weighted average of the two will also be in the same 
category. The maximum performance of a weighted average of XGBoost-SE and 
XGBoost-SPE on this data set will thus be 93:0% on the 20% measure .

To select a value for a we optimise with respect to the 20% measure on a validation set, 
resulting in a ¼ 0:39 as the empirical optimum.7 However, the choice of the a value will 
depend on how the user weigh different performance measurements against each other, 
and will likely also vary with the specific application and data set. Although a ¼ 0:39 is 

Figure 5. The ten most important features for XGBoost-SE and XGBoost-SPE. Feature importance 
measure the average impact of making a split on a given feature, measured by the change in accuracy 
after performing the split. A high value indicates that the feature is important for the model.
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the optimal value for the 20% measure, other values will likely optimise e.g. the 10%

measure. Figure 6 shows the performance of the weighted average model for different 
values of a on the full test set. The parabola shape indicates that there indeed exists some 
a other than zero and one that achieves a better result on the test set, that is, there exists 
a convex combination of the model that outperforms the standalone models. It also 
confirms how the optimal a value for the 10% measure is somewhat higher than for the 
20% measure . Going forward we will report the performance of XGBoost-Combined 
for a ¼ 0:39.

Table 7 shows the performance of XGBoost-Combined. We see a further improve
ment in 20% measure of 0:4% over XGBoost-SPE, giving a total improvement of 1:0%

from the model trained on SE loss. Notably, there is also an improvement of 1:1% points 
in performance when using 10% measure. This is interesting given that the two models 
have the same performance of 65:7% as standalone models. The combined model also 
yields a marginally better RMSE than XGBoost-SPE and a clear improvement in MdE.

We previously noted that XGBoost-SPE had a net reduction of 165 dwellings that were 
outside of the � 20% error band. The combined model yields a reduction of 311 
dwellings, corresponding to a 9:3% reduction in critical errors from the 3349 dwellings 
that XGBoost-SE model got wrong. A detailed table showing the number of observations 
in each error category for the combined model can be found in Appendix B.

Table 8 shows the results per price segment for XGBoost-Combined compared with 
the two submodels individually. For seven of the price segments XGBoost-Combined 
performs as good as or better than XGBoost-SPE, while XGBoost-SPE still is the best 
performer for the first and second price segments. Similarly, XGBoost-SE is still the 
leading performer for the highest price segment. It worth noticing, however, that even for 

Figure 6. Empirical results for XGBoost-combined on the full test set with different values of a. For 
each value of a we report the mean (dots) in addition to the minimum and maximum value (the 
shaded area) for the 100 simulations. a ¼ 0 and a ¼ 1 equates the pure XGBoost-SPE and XGBoost-SE 
model, respectively. The red dot shows a ¼ 0:39, found to be the empirical optimum of the 20%

measure on a validation set.
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the segments where the combined model is not the best, it is still very close to the best 
model. The performance of the combined model is, for every price segment, better than 
a linear combination of the performances achieved by the two submodels.

Finally, note that both the SE and SPE loss functions are special cases of a more general 
family of loss functions, Lαðyi; ŷiÞ ¼ y� α � ðyi � ŷiÞ

2, with α ¼ 0 and α ¼ 2, respectively. 
Other values of α might yield promising results depending on the performance measure 
of interest. To investigate this, we performed a brief simulation study where we evaluated 
the the effect of α for a range of values with respect to the 20% measure. The results of this 
study can be found in Appendix D. While the results indicate that we are able to find an α 
that yields a slight improvement compared with the considered loss functions, the 
accuracy was still lower than that of the combined model.

6 Conclusion

Machine learning approaches for house price prediction tend to outperform more 
classical approaches, such as hedonic regression and repeated sales models. Moreover, 
as Automated Valuation Models (AVMs) are a requirement for credit institutions, 
machine learning-based AVMs are likely to dominate in near future.

In this paper, we demonstrate an improvement in XGBoost when it is trained on 
a tailored loss function that more closely mirrors the performance measure used, the 
percentage criterion, rather than the standard loss function that relies on squared errors.

Table 7. Root Mean Squared Error (RMSE), Median Error (MdE), the 10% measure, the 20% measure 
and R2 for XGBoost-SE, XGBoost-SPE and XGBoost-Combined. The values indicate the mean and 
standard deviation across the 100 simulations with different training and test set.

RMSE (%) MdE (%) 10% measure (%) 20% measure (%) R2ð%Þ

XGBoost1 16.2 (0.5) 0.4 (0.1) 65.7 (0.2) 89.4 (0.1) 91.9 (0.23)
XGBoost-SPE1 15.4 (0.4) −1.1 (0.1) 65.7 (0.3) 90.0 (0.2) 91.4 (0.30)
XGBoost-Combined1 15.3 (0.4) −0.5 (0.1) 66.8 (0.2) 90.4 (0.1) 92.1 (0.26)

1We build 3000 trees, each with tree depth of 6 splits and learning rate of 0.01.

Table 8. The 20% criterion for XGBoost-SE and XGBoost-SPE. The best in each price segment is in 
boldface. The rightmost column shows the increase/decrease in performance in terms of percentage 
points.

Decile Price segment1 N XGBoost-SE (%) XGBoost-SPE (%) XGBoost-Combined (%)

1 (0,1.64] 3 160 71.6 (0.7) 74.8 (0.7) 74.5 (0.7)
2 (1.64,1.96] 3 228 87.7 (0.5) 89.5 (0.5) 89.5 (0.5)
3 (1.96,2.22] 3 102 91.8 (0.5) 93.1 (0.5) 93.0 (0.5)
4 (2.22,2.45] 3 169 93.2 (0.5) 94.1 (0.4) 94.2 (0.4)
5 (2.45,2.7] 3 332 93.8 (0.4) 94.4 (0.4) 94.6 (0.3)
6 (2.7,2.99] 3 021 93.7 (0.4) 94.2 (0.4) 94.5 (0.3)
7 (2.99,3.4] 3 242 92.9 (0.4) 93.1 (0.4) 93.5 (0.4)
8 (3.4,4] 3 087 91.7 (0.4) 91.8 (0.4) 92.4 (0.4)
9 (4,5.25] 3 207 90.9 (0.5) 90.4 (0.6) 91.3 (0.5)
10 (5.25,100] 3 130 87.0 (0.4) 84.1 (0.6) 86.5 (0.5)

31,678 89.4 (0.1) 90.0 (0.2) 90.4 (0.1)
1Measured in million NOK.
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The introduction of the SPE loss yields an improvement in performance from 89:4�
0:1% to 90:0� 0:2% when using the 20% measure . While XGBoost-SE gives 3349 
predictions that do not satisfy the 20% measure, this number is reduced by 4:9% with 
XGBoost-SPE. The biggest improvement comes from the lower price segments, while the 
two highest price segments experience a decline in performance when changing loss 
function from SE loss to SPE loss.

A somewhat surprising finding is that the two models may be combined to make an 
even better hybrid model that utilises both the strength of XGBoost-SPE on the lower 
price segments and the strength of XGBoost-SE on the higher price segments. This 
weighted average model gives 90:4� 0:1% by the 20% measure, while also reducing 
the number of observations outside the 20% measure to 3038, corresponding to 
a reduction of 9:3% from XGBoost-SE.

The first implication of these findings relates to the awareness of the choice of loss 
function. Picking a suitable loss function for the application and performance measure at 
hand can have the potential to improve model performance for house price prediction 
models, as demonstrated in this paper. Practitioners and academics ought to explore 
different loss functions as part of their modelling work as opposed to relying only on the 
default choices offered by the pre-implemented software packages. Specifically, one 
might consider training multiple models with different loss functions or applying differ
ent loss functions to different subsets of the data set. Policy makers and industry 
stakeholders should also be also be aware of the interplay between the choice of 
performance measure and choice of loss function: If a specific and potentially unusual 
performance measure is being applied, one should be aware of how the choice of loss 
function might potentially affect performance.

The second implication relates to the broader picture. The housing market is an 
essential part of most modern economies, especially in countries with high ownership 
rate and a majority of the homeowners relying on mortgages to finance the acquisition. 
Banks need AVMs in order to provide mortgages, as dwellings are used as mortgage 
collateral. It is therefore important to get reliable estimates of the value of a dwelling, also 
in the absence of a recent transaction. Furthermore, house price prediction models also 
help market efficiency by providing both buyer and seller with information about 
a dwellings common value. Improving the models used for these purposes will lead to 
more informed decisions from both financial institutions and potential buyers and 
sellers.

We conclude that the introduction of a more application specific and tailored loss 
function can have a significant impact on the performance of AVMs. In terms of 
future research, introducing more sophisticated and data driven weightings in the 
combined model is an interesting next step. Specifically, assigning individual weights 
for each dwelling rather than a constant weight, is an enticing option that would 
likely result in a further improvement in accuracy. Also, although we found no 
conclusive answers in the simulation study with different values of α for the family 
of loss functions, this is an interesting topic for further research. By considering more 
flexible families of loss functions, one might be able to discover even more appro
priate loss functions, which have been fine-tuned for the application and data set at 
hand.
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Notes

1. We choose to use the term ’performance measure’ rather than ‘performance metric’ to avoid 
confusion with the strict mathematical definition of a ’metric’, although we acknowledge 
that the latter term is often used in the literature.

2. OECD Affordable Housing Database. Numbers from 2019, accessed 12th of January 2021.
3. Research by Eiendomsverdi AS, a Norwegian property technology company.
4. There is a total of eleven counties in Norway.
5. 1 Norwegian krone � 0.12 US Dollars as of 22th of October 2021.
6. This can also be found in our data set, where the mean price in the cities is 3:55 million 

NOK, compared with 2:80 million NOK outside the cities.
7. This is done by conducting a further split: We use 75% of the training set for model training 

and the other 25% of the training set for validation of different values of a. The test set (25%

of the full data) is never used for this purpose.
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Appendices

A. Data preparation procedure

In Table 9 we give a step-by-step overview of the data preparation process.

B. Movements between error categories for XGBoost-Combined

Table 10 shows the number of observations that have moved between the three error categories for 
XGBoost-SE and XGBoost-SPE. Table 11 shows the mean number of observations that have 
moved between the error categories.

Table 9. The steps in the data preparation procedure.
Data Operation Rows

Raw data: Arm’s Length Sales in Oslo, Viken, Innlandet, Trøndelag in 2013–20151 136 487
Observations with living area 134 889
Observations with site area and footprint area2 134 664
Observations with coordinates and valid build year 134 018
Observations with number of bedrooms 128 619
Observations with floor number3 126 938
Observations with distance to closest coast line and lake 126 812
Observations with less than 15 floors 126 782
Observations with living area less than 800 square metres 126 781
Observations where sale price is in the range of 0.5–1.5x of asking price 126 719

1There are four estate types: flat, duplex, row house, detached home 
2Applicable to detached homes only. Other estate types are assumed to have zero site area and footprint 

area. 
3Applicable to flats only. Other estate types are assumed to start at ground floor.

Table 10. A matrix showing the mean number of observations that have moved between the 
categories for XGBoost-SE (horizontal) and XGBoost-Combined (vertical). The column sums give the 
total number in each category for XGBoost-SE, while the row sums give the total number in each 
category for XGBoost-SPE.

Error (SE) 2 Error (SE) 2 Error (SE) 2 Sum
( � 100%; � 20%� ( � 20%; 20%) ½20%;1)

Error ðComb:Þ 2 ð� 100%; � 20%� 887 302 0 1 189
Error ðComb:Þ 2 ð� 20%; 20%Þ 179 27,860 600 28,639
Error ðComb:Þ 2 ½20%;1Þ 1 167 1 682 1 850
Sum 1 067 28,330 2 282 31,678

Table 11. A matrix showing the mean number of observations that have moved between the 
categories for XGBoost-SPE (horizontal) and XGBoost-Combined (vertical). The column sums give 
the total number in each category for XGBoost-SE, while the row sums give the total number in each 
category for XGBoost-SPE.

Error (SE) 2 Error (SE) 2 Error (SE) 2 Sum
( � 100%; � 20%� ( � 20%; 20%) ½20%;1)

Error ðComb:Þ 2 ð� 100%; � 20%� 1117 72 0 1 189
Error ðComb:Þ 2 ð� 20%; 20%Þ 339 28,154 146 28,639
Error ðComb:Þ 2 ½20%;1Þ 0 268 1 582 1 850
Sum 1 456 28,495 1 728 31,678
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C. Worked example of gradient boosted trees

Here, we present a quick-worked example of the first two iterations of the XGBoost algorithm on 
a simple data set of a total of 100 observations from a specific city district in Oslo. For simplicity, 
we only include two covariates in the prediction model: Size, that is, the number of square metres, 
and Floor, that is, which floor the dwelling is on. We use a shrinkage of η ¼ 1 and regularisation 
parameter λ ¼ 0. We train the model on the standard Squared Error (SE) loss function. The first 
and second decision tree can be seen in Figure 7. Each tree makes two splits, splitting the data set 
into a total of four subsets each time. Every subset has a Value (which has previously been denoted 
wðjÞ) as well as a Cover number, which indicates how many of the 100 observations that are in this 
leaf. The splits are also equipped with a Gain parameter, which indicates how much the precision 
in the trees increase as a consequence of this split. The numbers on the arrows (such as ”< 62”) is 
the decision rule: Any observation with a Size feature less than 62 m2 will follow that arrow.

Consider now a new dwelling with unknown yi but with known features: Size ¼ 70 m2 and 
Floor ¼ 10. In the first tree, this instance will get a prediction hðxiÞ � 3:79 mill NOK, since it 
belongs in the third leaf from above. In the second tree, the same dwelling belongs to the fourth 
leaf node (with Value � 0:22), since it is bigger than 24 m2 and is higher than floor 9.5. After two 
iterations, the final prediction will thus be 

f2ðxiÞ ¼
X2

m¼1
η � hmðxi; qmÞ

� 3:79þ 0:22 ¼ 4:01:

The algorithm will then calculate the error from f2ðxiÞ (i.e. the difference between 4:01 million 
NOK and the true price yi) and use this to train the third tree. A normal procedure involves 
hundreds or thousands of sequential trees and typically a shrinkage parameter that is lower (e.g. 
η ¼ 0:01), but this example is deliberately made as simple as possible.

Figure 7. The first and second decision tree (left and right, respectively). Cover indicates how many 
observations that are in a given leaf, while Gain indicates the increase in precision as a consequence of 
the split. Value shows the actual prediction from the tree.
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D. A family of loss functions

Both the SE loss and the SPE loss belong to a broader class, 

Lαðyi; ŷiÞ ¼ y� α � ðyi � ŷiÞ
2 

where α ¼ 0 for SE and α ¼ 2 for SPE. Rather than a weighted average of two models trained on 
L0ðyi; ŷiÞ and L2ðyi; ŷiÞ, we might imagine that there exist some α, possibly between 0 and 2 that 
achieves the same feat. In Figures 8, 9 we see the results of simulations with different values of α. 
There seems to be values of α in the region around α ¼ 1:5 in Figure 8 that yields better 
performance than α ¼ 2:0. Figure 9 also show the 20% measure per price segment. For many of 
the lower price segments the optimal α seems to lie in the region between 1:5 and 2:0, with 
performance declining for α> 2:0.

While the results are promising, more research is needed to conclude about the efficiency of 
using the hybrid loss function.

There is no single value of α that achieves a better performance than the weighted average model 
introduced in the text. While this family of loss functions seems interesting due to its flexibility, 
more investigation, tuning and testing is required to find out if it is useful in this context.

Figure 8. Training XGBoost models with loss function Lαðyi; ŷiÞ ¼ y� α � ðyi � ŷiÞ
2 for 

α ¼ 0:0; 0:1; . . . ; 3:0. For every value of α we train 100 models and report the mean performance 
(dotted line) and min/max performance. The performance measure is the 20% measure . The full data 
consists of 40 000 rows, and is a randomly sampled subset of the full data set used in the article.

26 A. HJORT ET AL.



Figure 9. Training XGBoost models with loss function Lαðyi; ŷiÞ ¼ y� α � ðyi � ŷiÞ
2 for 

α ¼ 0:0; 0:1; . . . ; 3:0. For every value of α we train 100 models and report the mean performance 
(dotted line) and min/max performance. The performance measure is the 20% measure, and each plot 
shows a different price segment. The full data consists of 40 000 rows, and is a randomly sampled 
subset of the full data set used in the article.
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