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A B S T R A C T

Quantal response equilibrium choice (QREC) models are structural behavioral models that
account for bounded rationality and strategic interactions in analyses of games where each
player’s payoff is a vector. We revisit the question of how market competition affects pro-
social behavior and fit a QREC model to data from an incentivized laboratory experiment,
where participants make decisions on medical treatments for abstract patients in monopoly,
duopoly, and quadropoly games. Our results demonstrate that competition can cause substantial
behavioral responses without any changes in pro-social preferences if one allows for the
possibility that competition influences the degree of randomness in decision making.

We find that a QREC model with fixed preference parameters provides precise out-of-sample
predictions of behavior in games with vector payoffs. A Monte Carlo study is performed to show
that the two-step estimator is accurate.

. Introduction

In their seminal contribution, McKelvey and Palfrey (1995) proved that a quantal response equilibrium (QRE) always exists
or finite games. A QRE can be described as a statistical version of a Nash equilibrium (Camerer, 2011), where sub-optimal
hoice alternatives have non-zero choice probabilities. By allowing for sub-optimal strategic choices, the QRE introduces a weaker
ssumption on human rationality to game theory. Furthermore, McKelvey and Palfrey (1995) bridged the gap between Behavioral
ame Theory and Choice Modeling by showing that behavior by individuals who maximize a linear combination of expected utility
nd noise is a game theoretic equilibrium. The objective in the QRE model by McKelvey and Palfrey (1995) can be written as:

𝑈𝑗 = 𝜆𝑉𝑗 + 𝜀𝑗 , (1)

here expected utility of choosing pure strategy (alternative) 𝑗 is denoted by 𝑉𝑗 , and 𝜀𝑗 are the noise terms. Assuming 𝜀𝑗 to be
ndependent and extreme value distributed (type I) implies a logistic quantal response equilibrium (LQRE) model. The 𝜆-parameter
s the scale parameter of a multinomial logit (MNL) model, denoted by 𝜎 in Fiebig et al. (2010). This scale parameter is typically
eferred to as the ‘‘rationality parameter’’ in the behavioral game theory literature inspired by McKelvey and Palfrey (1995).

Twenty-five years after McKelvey and Palfrey (1995), most applications are still focusing on strategic scenarios where the choice
lternatives are characterized by a single attribute. Generalizations to study strategic agents caring about multiple attributes are
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straight forward and familiar to choice modelers. Yet, there are few choice modelers applying quantal response equilibrium choice
(QREC) models, i.e. QRE models where decision-makers have preferences for multiple attributes. One of the aims of this paper is
to inspire the use of QREC models in applied research. We show how ready-made software can be applied to obtain a two-step
QREC estimator, and conduct Monte Carlo simulations to provide documentation on its precision.2 Not only is this two-step QREC
estimator a convenient approach, the results from our Monte Carlo simulations show that it is also accurate even with a moderate
sample size.

We conduct an incentivized lab experiment to study strategic behavior under various levels of competition. The experiment is
framed in a medical setting where the individuals play the role of physician. In the game, the subjects make treatment choices
that generate profits for themselves as well as positive health benefits for the patients. Three levels of competition are considered:
monopoly, duopoly, and quadropoly. In the competitive scenarios, the subjects’ joint choices of treatment alternatives determine
the subjects’ profits as well as the health benefits for patients in the market.

The results show that the substantial difference in observed behavior under different competition intensities can be attributed to
a change in the scale parameter. In particular, the choices become less random as the competition intensifies. This finding provides
useful nuance to the recent literature on whether markets erode social responsibility (Falk and Szech, 2013; Bartling et al., 2015;
Kirchler et al., 2015; Bartling et al., 2021) and contributes to the small empirical literature on physician competition (Gaynor and
Vogt, 2000; Gaynor and Town, 2011).

The paper proceeds as follows: In Section 2, we give a brief overview of recent literature on the scale in choice models and
behavioral game theory. In Section 3, we apply a QREC model to a physician oligopoly and describe the two-step estimation
procedure. In Section 4, we give a brief description of the experimental protocol. Descriptive statistics and results from estimation
and Monte Carlo simulations are presented in Section 5. Finally, we discuss and conclude in Section 6.

2. Related literature

2.1. Stochastic choice

As described by McFadden et al. (1999), random utility models allow for weaker forms of human rationality than the strong
rationality assumption typically employed in textbook economics, and theoretical contributions have shown that logit specifications
are highly non-restrictive.3 The MNL model in (1) is highly versatile and can be motivated and deduced in many different ways:

– According to Thurstone (1927a,b), randomness in behavior stems from individuals’ utilities varying from moment to moment
in a stochastic manner.

– A different way of motivating (1) is to regard individuals as incapable of making perfectly rational choices. In the model
deduction by Luce (1959), Tversky (1972), and McKelvey and Palfrey (1995), the individual’s (expected) utility is assumed
deterministic, while randomness occurs in implementation of choice. Luce describes a kind of perception error (McFadden
et al., 1999) in motivating randomness. He proposes that individuals are unable to discriminate perfectly between utility
levels of available alternatives.4

– Swait and Marley (2013) and Wallin et al. (2018) show that (1) follows by implication from the optimizing behavior of a
decision-maker balancing the competing goals of achieving high utility and product variation.

– Erlander (1998) shows that (1) can be motivated by the implication from ‘‘the efficiency assumption’’ that samples with higher
total observable utility are more probable.

– The MNL model has often been presented as a practical econometric specification where the noise term is introduced to account
for variables that are unobservable to the analyst (McFadden, 1974).

The fact that there are many ways to motivate and deduce (1) does not mean that a given way of motivating the MNL model suits
every purpose. Introducing the noise term as unobservables appear to be less convincing when analyzing data collected in a controlled
lab experiment. Using the motivation by Thurstone (1927a,b) or Swait and Marley (2013) appears to be less plausible for models
of (errors in) medical decision making (Mackowiak, 2020), a pilot’s choice of applying flaps for takeoff (Loukopoulos et al., 2009),
or losses by Grandmasters in chess.

The bounded rationality perspective is the motivation applied by McKelvey and Palfrey (1995), and they interpret the scale
parameter as individuals’ degree of rationality. This interpretation can be criticized, as one might argue that rationality would have
to be very narrowly defined to be represented by one single parameter. Furthermore, for investment decisions and many other
examples, randomizing can be a rational strategic choice. Regardless of motivation, the scale parameter is a measure of the degree
of randomness in behavior. We take this broad perspective in this paper.

2 User written programs for estimating generalized multinomial logit models (gmnl) are available for Stata (Gu et al., 2013) and R (Sarrias and Daziano,
017).

3 See Dagsvik (2016) and the references therein.
4 The difference in motivation between Luce and Thurstone becomes superficial in practical applications of standard choice models. McFadden (1981) shows
2

hat the two types of probabilistic choice models are equivalent in many cases.
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2.2. Scale in choice models

Controlled lab experiments provide favorable conditions for identifying the scale parameter in choice models. Experiments
erformed in a controlled environment facilitate implementation of ceteris paribus changes in the choice context and enable the
esearcher to confront each decision-maker with the exact same set of choice scenarios. A context-dependent scale parameter is
dentified under the assumption that preference parameters are fixed and independent of the context.

The scale in choice models has generated much confusion (Swait and Louviere, 1993; Louviere and Eagle, 2006; Hess and
ose, 2012; Hess and Train, 2017). Empirical contributions have often ignored or avoided addressing questions about how the
cale might differ systematically between individuals or between choice occasions for the same individual. An important practical
eason is that many available data sets might not contain sufficient information to address questions regarding, for example, scale
ifferences caused by systematical contextual differences between choice occasions. While data collected in the field may record
ontext differences, such as whether commuters on public transport were interviewed in rush hour, it would rarely be the case that
ecision-makers are randomly assigned to a choice context. As a result of unobserved selection mechanisms, it is highly plausible
hat individuals sampled at different choice contexts differ on both preference parameters and scale.

Louviere and Eagle (2006) argue that scale is highly unlikely to be constant, as the impact of noise on choices can vary over
onditions, context circumstances, or situations, as well as between decision-makers. Furthermore, as illustrated with examples
y Louviere and Eagle (2006), if scales vary across decision-makers, decision-makers will seem to be heterogeneous in preferences
ven if they differ only in scale. For the same reason, differences in scale across choice occasions can make individuals’ preferences
ppear to be context-dependent even when preferences are stable.

As discussed by Louviere et al. (1999), whether preferences are context-dependent or appear context-dependent as a result of
gnoring between-context differences in scale, is an important question for choice modelers. Evidence of stable preferences provides
upport for the validity of results from stated preference experiments when aiming to predict market behavior. The question of
hether preferences are stable is equally important for experimental economists aiming to predict behavior in a future experiment.
ne cannot generally disregard the possibility that preferences are context dependent. Firms and governments allocate resources

o commercial marketing services, aiming to shape consumer preferences by repeated exposure to certain stimuli. One may argue
hat a lab experiment of the type applied in this study will rarely be life-changing for the participants. We, therefore, assume that
he individuals’ valuation of health benefits for patients is predetermined, and that the participants’ values are unaffected by taking
art in a laboratory experiment where they simply choose an abstract treatment alternative on 24 different occasions.

.3. Empirical game theory

The Nash equilibrium (NE) (1950) is useful in providing theoretical predictions in single-criterion games and has undoubtedly
een pivotal to the development of game theory and the empirical analysis of strategic behavior. The fact that the NE fits poorly
ith observed behavior in many cases is much discussed in the literature on empirical game theory, with an example being the
nlightening contribution by Goeree and Holt (2001). For decades, the poor fit of the NE assumption inspired explorations of new
quilibrium concepts that could explain the observed behavior (Harsanyi, 1973; Harsanyi et al., 1988; Ma and Manove, 1993).

Strategic economic agents often care about more than a single criterion when making economic choices. Firms are concerned
bout both long-run and short-run profits, whereas politicians deciding on foreign trade policies might be concerned about several
spects of policy impacts, such as effects on the environment, unemployment, budget deficits as well as the likelihood of re-election.
edical doctors who compete for patients, as in the framing of the experiment studied in this paper, are likely concerned about

rofits as well as health effects for patients when choosing medical treatments. A game with vector payoff is often referred to as a
ulti-criteria game, or a multi-payoff game (Shapley and Rigby, 1959; Zeleny, 1975; Voorneveld et al., 2000), and would perhaps

e translated to a ‘‘multiple attribute game’’ in choice modeling terminology. If the players’ valuation of payoff elements is known
o the researcher, the multi-criteria game can be scalarized into a standard single-criterion game, which can be solved for NE by
sing standard approaches.

Despite the obvious relevance of multi-criteria games for analyzing strategic behavior when the payoff is a vector, its literature
s small compared to that of the single-criterion game theory. A plausible explanation is the lack of useful equilibrium concepts for
ulti-criteria games. Although equilibrium concepts, such as, the Pareto equilibrium (Shapley and Rigby, 1959; Voorneveld et al.,
999) and ideal equilibrium (Voorneveld et al., 2000) have been developed for solving such games, there are clear limitations when
ndividuals’ preferences are latent. Shapley and Rigby (1959) show that narrowing down the set of plausible actions in multi-criteria
ames is difficult when the individuals’ valuation of the elements in the vector payoff is unknown. Therefore, the Pareto equilibrium
iscussed by Shapley and Rigby (1959) is often not useful, as many plausible actions might remain after removing dominated
trategies. Furthermore, the number of pure strategy NEs and whether a given set of actions by the players constitute pure strategy
E can depend on unknown preference weights.

In their seminal contribution, McKelvey and Palfrey (1995) proved the existence of a quantal response equilibrium. As described
y Jessie and Saari (2016), one of the contributions of McKelvey and Palfrey (1995) is linking behavioral game theory to the choice
odeling paradigm. Choices in QRE models are assumed to be the result of individuals maximizing a linear combination of expected
tility and noise as in (1).5 The unknown value of 𝜆 has motivated much criticism of the QRE assumption. While the QRE assumption

5 With a structure similar to Swait and Marley (2013), one could regard a QRE as an equilibrium of a multi-criteria game where the players’ weighing of
he two criteria, a scalar payoff and noise, is unknown. In this text, however, the term multi-criteria refers to games where payoffs are vectors of observable
3
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Table 1
The matrix of payoff vectors to the row player in a symmetric duopoly game
with two pure strategies.

The opponent

L H

Row L 𝛱𝐿|𝐿 , 𝐵𝐿|𝐿 𝛱𝐿|𝐻 , 𝐵𝐿|𝐻
player H 𝛱𝐻|𝐿 , 𝐵𝐻|𝐿 𝛱𝐻|𝐻 , 𝐵𝐻|𝐻

is shown to fit empirical data in many applications, it has been criticized for being difficult to falsify. As noted by Haile et al. (2008),
an estimated scale parameter in a particular game might not be useful in predicting behavior in other games or by other players.
For this reason, some authors, such as McCubbins et al. (2013), even argue that QRE "...is of limited use in explaining human behavior
across even a small range of similar decisions." However, other researchers, such as Anderson et al. (2001), Goeree et al. (2005), Goeree
and Holt (2005), Goeree et al. (2010), Matějka and McKay (2015) and Wright and Leyton-Brown (2017), are more optimistic in
their view on the role of QRE in future empirical research on strategic decision making. Wright and Leyton-Brown (2017) suggest
an agenda for acquiring more knowledge on the usefulness of the QRE assumption when aiming to provide ex-ante predictions of
strategic behavior. They propose to study carefully the out-of-sample predictions of models assuming QRE. Using an estimated scale
parameter from one game to predict behavior in a different game, we may acquire new knowledge on the usefulness of the QRE
assumption.

3. A quantal response equilibrium choice model

3.1. The basic 2 × 2 game for two players

For clarity and ease of exposition, we start with the most basic example of a strategic scenario: A symmetric two-player game
where two identical agents have an identical binary choice set. Our game differs from more commonly studied games where the
players’ payoff is a scalar. In our game, the payoff is a vector, and the values of its elements are determined by the players’ joint
choices. The two players comprise a duopoly of physicians, who can choose between either 𝐿𝑜𝑤 or 𝐻𝑖𝑔ℎ treatment intensities for
heir patients. The two physicians’ joint choices of treatment plans determine the vector of profit and patient health benefits that
ach of the two players receives. We assume that physicians value both profit, 𝛱 ; and patient’s benefit, 𝐵.

The game is described in a normal form representation with a row player and a column player in Table 1. 𝛱𝑟|𝑐 and 𝐵𝑟|𝑐 denote
the payoff to the row player when he chooses row 𝑟 and the column player chooses column 𝑐, 𝑟, 𝑐 = 𝐿,𝐻 . We study symmetric
games in this paper, so reporting the payoffs to the row player is sufficient for describing the game. In a symmetric two-player
game, the payoff to the row player when he chooses treatment 𝐿 and the column player chooses treatment 𝐻 is identical to the
payoff received by the column player in the mirrored situation where the column player chooses treatment 𝐿 and the row player
chooses treatment 𝐻 . We assign the first-person perspective to the row player and let all payoff vectors represent payoffs to the row
player. In this way, we economize on notation and highlight the common ground of strategic decision making and choices under
uncertainty.

The utility for the row player of choosing, for example, 𝐿 is uncertain, as it depends on whether the opponent chooses 𝐿 or 𝐻 .
Conditional on the column player choosing 𝑐, the row player’s utility from choosing row 𝑟, modeled as a simple linear-in-parameter
preference function, can be expressed as:

𝑣𝑟|𝑐 = 𝛽𝛱𝛱𝑟|𝑐 + 𝛽𝐵𝐵𝑟|𝑐 . (2)

Assuming observed choices to be the result of individuals maximizing a linear combination of (objective) expected utility and noise
involves only a small and natural augmentation of the basic choice model in (1).6 Let 𝑃𝐿 and 𝑃𝐻 denote the unobserved probabilities
that the opponent chooses alternative 𝐿 or 𝐻 , respectively. Given the observed payoff matrix in Table 1, the row player’s expected
utility from choosing row 𝑟 can be expressed as:

𝑉𝑟(𝐏) = 𝑃𝐿𝑣𝑟|𝐿 + 𝑃𝐻𝑣𝑟|𝐻 . (3)

Inserting (2) into (3), and rearranging terms, we get:

𝑉𝑟(𝐏) = 𝑃𝐿(𝛽𝛱𝛱𝑟|𝐿 + 𝛽𝐵𝐵𝑟|𝐿) + 𝑃𝐻 (𝛽𝛱𝛱𝑟|𝐻 + 𝛽𝐵𝐵𝑟|𝐻 ) (4a)

= 𝛽𝛱 (𝑃𝐿𝛱𝑟|𝐿 + 𝑃𝐻𝛱𝑟|𝐻 ) + 𝛽𝐵(𝑃𝐿𝐵𝑟|𝐿 + 𝑃𝐻𝐵𝑟|𝐻 ) (4b)

= 𝛽𝛱𝐸𝛱𝑟 + 𝛽𝐵𝐸𝐵𝑟 (4c)

In (4c), we have introduced notation for the expected attribute vector of 𝑟: 𝐸𝛱𝑟 = 𝑃𝐿𝛱𝑟|𝐿 + 𝑃𝐻𝛱𝑟|𝐻 and 𝐸𝐵𝑟 = 𝑃𝐿𝐵𝑟|𝐿 + 𝑃𝐻𝐵𝑟|𝐻 .
Eq. (4) highlights that expected utility is a function of the unobserved multinomial probability vector 𝐏 = (𝑃𝐿, 𝑃𝐻 ).

6 There is a growing body of literature on Random Expected Utility Models. See, for example, Gul and Pesendorfer (2006), Blavatskyy (2007), Dagsvik (2008,
4

2015) and Ke (2018).
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Inserting 𝑉𝑟(𝐏) for 𝑉𝑟 in (1) and assuming 𝜀𝑟 to be type 1 extreme value distributed, the probability that the row player chooses
becomes:

𝑃𝐿 = 𝑒𝜆𝑉𝐿(𝐏)

𝑒𝜆𝑉𝐿(𝐏) + 𝑒𝜆𝑉𝐻 (𝐏) , (5)

where 𝜆 is the scale parameter. As 𝜆 ⟶ 0, the behavior becomes purely random, and the player plays each pure strategy with equal
probability. As 𝜆 ⟶ ∞, the player makes no errors, and the behavior becomes deterministic. In the limit, the players are perfectly
responsive to the differences in expected utility across alternatives, and the behavior converges to a NE.

Data generated from the game in Table 1 differ from typical choice data in that the expected attribute vector in (4c) is
unobservable. This is a key feature that distinguishes (5) from the standard scaled logit model. An intuitive two-step estimation
procedure can be applied to estimate (𝛽, 𝜆). The first step is to replace unobserved probabilities P on the right-hand side of (4c) with
observed relative choice frequencies, f, to obtain an estimate of the expected attribute vector. The second step is to estimate (𝛽, 𝜆)
y means of maximum likelihood, treating the estimated attribute vector as if it was an observed attribute vector. In the following
e refer to this as a two-step QREC estimator. An important note is that a choice modeler tasked with analyzing the data from

his game might likely proceed with the two-step procedure without being knowledgeable of McKelvey and Palfrey’s contribution
f QRE.7

A key feature of (5) from a behavioral game theory perspective is that 𝐏 is a function of itself, as the left-hand side of (5) is
ne of the elements of 𝐏 on the right-hand side. McKelvey and Palfrey (1995) proved that a QRE always exists for a finite game,
hich means that a fixed-point solution of (5) is guaranteed to exist. While solving the fixed point of (5) or having knowledge of

he existence of QRE is not necessary for obtaining the two-step estimator, it should be reassuring for applied choice modelers that
QRE always exists in a game with well-defined choice sets.

In the following subsection, we introduce functional form and generalize the QREC model to more than two players and 𝐽 pure
trategies.

.2. Generalized model

There are three different market settings denoted by 𝑡, 𝑡 =[monopoly, duopoly, quadropoly], and eight independent games are
layed within each market setting. We present the payoff matrices of the 24 games in Appendix A and elaborate one example in
he next section. A complete description of the formulas for computing payoff matrices based on the experimental parameters can
e found in Ge and Godager (2021).

Consider a physician selecting one treatment alternative 𝑗 from a finite set 𝐶 = 1, 2,… , 𝐽 . The choice set comprises 𝐽 mutually
exclusive alternatives within a game. To simplify notation, in this subsection, we suppress the index for each game within a
market setting. We assume that the physicians’ preference parameters are homogeneous and fixed over games. While assuming
a representative individual model appears restrictive after decades of applications of mixed logit models, a parsimonious model
specification is suitable for our purposes.8

The payoff players receive is a vector consisting of two elements: physician profit, 𝛱 ; and patient benefit, 𝐵. Similar to Goeree
et al. (2002), we assume that a healthy patient population in the market is a shared good, and a physician’s valuation of the patient
benefit in the market is independent of which physician provides treatment to which patient. In other words, 𝐵 here is the total
benefit of all the patients in the market. We represent preferences by a linear-in-parameter function of the two payoff elements. We
consider two alternative specifications: a quadratic function and a Cobb–Douglas function in a log-linear form. While the quadratic
specification has obvious drawbacks, such as saturation, it is convenient and simple. The log-linear Cobb–Douglas arguably has a
more solid axiomatic foundation following the proof by Dagsvik (2018) but offers less flexibility than the quadratic specification.
The non-linear utility specification allows us to identify the curvature of the utility function (see, for example, Van Der Pol et al.
(2010), Kolstad (2011), van der Pol et al. (2014), Holte et al. (2016), Wang et al. (2020)). By Taylor’s theorem, further expanding
the polynomial in the two specifications would provide better approximations. However, such improvements in functional forms are
costly, as more and richer data are required to quantify additional parameters. In addition, larger samples and additional parameters
also raise computational costs. Hence, a quadratic form and log-linear Cobb–Douglas, rather than a more general translog, is a
convenient choice.

The payoff elements of treatment alternative 𝑗 in monopoly is denoted by 𝛱𝑗𝑡 and 𝐵𝑗𝑡. In duopoly, 𝛱𝑗𝑡|𝑥 and 𝐵𝑗𝑡|𝑥 are the payoff
elements of choosing 𝑗 given that the opponent’s choice is 𝑥. In quadropoly, 𝛱𝑗𝑡|𝑥𝑦𝑧 and 𝐵𝑗𝑡|𝑥𝑦𝑧 are the payoff elements of choosing
𝑗 given that the combination of choices by opponents are 𝑥𝑦𝑧. The conditional utility of a physician choosing alternative 𝑗 given the
opponent(s)’ choice(s) is denoted by 𝑣𝑗𝑡, 𝑣𝑗𝑡|𝑥, and 𝑣𝑗𝑡|𝑥𝑦𝑧 in monopoly, duopoly, and quadropoly, respectively. Preference parameters
are denoted by the vector 𝛽. The conditional utility for the two functional forms in, for example, quadropoly can be written as:

7 This was the case for the authors of this paper.
8 While generalizing the model to account for the unobserved heterogeneity in 𝜆 or preference parameters is an obvious extension, specifying a representative

ndividual model is a convenient choice as it substantially reduces the burden of conducting the Monte Carlo simulations of repeated equilibrium game play.
ur parsimonious specification can also be defended by arguing that preferences for the attributes in the experiment (money and health benefit) are likely to
5

e less heterogeneous than preferences for, for example, household appliances.
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𝐐𝐮𝐚𝐝𝐫𝐚𝐭𝐢𝐜 𝐮𝐭𝐢𝐥𝐢𝐭𝐲 ∶

𝑣𝑗𝑡|𝑥𝑦𝑧 = 𝛽𝛱𝛱𝑗𝑡|𝑥𝑦𝑧+ 𝛽𝐵𝐵𝑗𝑡|𝑥𝑦𝑧+ 𝛽𝛱𝛱𝛱2
𝑗𝑡|𝑥𝑦𝑧+ 𝛽𝐵𝐵𝐵

2
𝑗𝑡|𝑥𝑦𝑧+ 𝛽𝛱𝐵𝛱𝑗𝑡|𝑥𝑦𝑧𝐵𝑗𝑡|𝑥𝑦𝑧, (6)

𝐂𝐨𝐛𝐛 − 𝐃𝐨𝐮𝐠𝐥𝐚𝐬 𝐮𝐭𝐢𝐥𝐢𝐭𝐲 ∶

𝑣𝑗𝑡|𝑥𝑦𝑧 = 𝑈 + 𝛽𝛱 𝑙𝑛𝛱𝑗𝑡|𝑥𝑦𝑧 + 𝛽𝐵𝑙𝑛𝐵𝑗𝑡|𝑥𝑦𝑧, (7)

here 𝑗, 𝑥, 𝑦, 𝑧 ∈ 𝐶 and 𝑡 =[monopoly, duopoly, quadropoly], and 𝑈 is a reference utility.
The opponent(s)’ action(s) are unknown ex ante. The probability that the opponent chooses alternative 𝑥 in duopoly is denoted

by 𝑃𝑥𝑡, and the probabilities of the three opponents choosing 𝑥, 𝑦, and 𝑧 in quadropoly is denoted by 𝑃𝑥𝑡, 𝑃𝑦𝑡 and 𝑃𝑧𝑡, respectively.
When a physician chooses alternative 𝑗, his expected utility, 𝑉𝑗𝑡(𝐏𝑡), is given by:

Monopoly: 𝑉𝑗𝑡(𝐏𝑡)=𝑣𝑗𝑡 ; (8a)

Duopoly: 𝑉𝑗𝑡(𝐏𝑡)=
∑

𝑥∈𝐶
𝑃𝑥𝑡𝑣𝑗𝑡|𝑥 ; (8b)

Quadropoly: 𝑉𝑗𝑡(𝐏𝑡)=
∑

𝑥∈𝐶

∑

𝑦∈𝐶

∑

𝑧∈𝐶
𝑃𝑥𝑡𝑃𝑦𝑡𝑃𝑧𝑡𝑣𝑗𝑡|𝑥𝑦𝑧 , (8c)

here 𝐏𝑡 = (𝑃1𝑡, 𝑃2𝑡,… , 𝑃𝐽𝑡) denotes the vector of the opponent(s)’ choice probabilities for all alternatives in market setting 𝑡. We
eneralize (1) by assuming that the physician maximizes a linear combination of the expected utility from choosing 𝑗 and an error
erm, 𝜀𝑗𝑡, in each game:

𝜆𝑡𝑉𝑗𝑡(𝐏𝑡) + 𝜀𝑗𝑡 , (9)

n our symmetric games with homogeneous players, the probability of choosing 𝑗 in market setting 𝑡 is the same for each player
nd given by:

𝑃𝑗𝑡 =
𝑒𝜆𝑡𝑉𝑗𝑡(𝐏𝑡)

∑

𝑟∈𝐶 𝑒𝜆𝑡𝑉𝑟𝑡(𝐏𝑡)
, (10)

One cannot identify both the scale parameter and the preference parameters (Train, 2009; Hess and Rose, 2012). In the quadratic
utility specification, we normalize 𝛽𝛱 + 𝛽𝛱𝛱 = 1 in order to identify 𝜆 in all three markets.9 In the Cobb–Douglas specification, we
apply the normalization 𝛽𝛱 + 𝛽𝐵 = 1.10 We handle zeros in the Cobb–Douglas specification by introducing a dummy equal to one
whenever 𝛱 = 0 or 𝐵 = 0. This dummy captures the reference utility 𝑈 in (7), and it is switched on whenever we replace 𝑙𝑛(0) by
0.11

3.3. Estimation

We now let 𝑔 = 1, 2,… , 8 index the eight patient games in each market setting, and 𝑛 = 1, 2,… , 136 index the individuals. The
log-likelihood function given our QREC model specification can be written as:

𝐿𝐿(𝜆𝑡, 𝛽)|𝐏𝑔𝑡 =
∑

𝑛

∑

𝑗

∑

𝑔

∑

𝑡
𝑦𝑛𝑗𝑔𝑡𝑙𝑛

(

𝑒𝜆𝑡𝑉𝑗𝑔𝑡(𝐏𝑔𝑡 ,𝛽)
∑

𝑟∈𝐶 𝑒𝜆𝑡𝑉𝑟𝑔𝑡(𝐏𝑔𝑡 ,𝛽)

)

, (11)

here 𝑦𝑛𝑗𝑔𝑡 = 1 if physician 𝑛 chose 𝑗 in patient game 𝑔 in market setting 𝑡, and zero otherwise. If 𝐏𝑔𝑡 is known, preference estimates
rom maximizing equation (11) can be acquired directly.

In this paper, we use the two-step procedure, where 𝐏𝑔𝑡 is replaced by relative frequencies, 𝐟𝑔𝑡, and document the accuracy by
eans of Monte Carlo simulations.12 With 𝐏𝑔𝑡 replaced by 𝐟𝑔𝑡, the likelihood function can be written:

𝐿𝐿(𝜆𝑡, 𝛽)|𝐟𝑔𝑡 =
∑

𝑛

∑

𝑗

∑

𝑔

∑

𝑡
𝑦𝑛𝑗𝑔𝑡𝑙𝑛

(

𝑒𝜆𝑡𝑉𝑗𝑔𝑡(𝐟𝑔𝑡 ,𝛽)
∑

𝑟∈𝐶 𝑒𝜆𝑡𝑉𝑟𝑡(𝐟𝑔𝑡 ,𝛽)

)

. (12)

Since 𝐟𝑔𝑡 is a consistent estimator of 𝐏𝑔𝑡, (12) converges in probability to Eq. (11) as the number of individuals increases towards
nfinity. It follows that the estimators �̂�𝑡 and 𝛽, which maximize Eq. (12), are consistent. They are estimated by the gmnl module in

Stata 16 (Gu et al., 2013). Note that different from the full information likelihood procedure described by Moffatt (2015), computing
the fixed point, assuming subjects play a LQRE, is not necessary for using the two-step procedure.

9 In this way, the estimates are measured in the marginal utility of the first dollar of profit when the health benefit is zero.
10 See, e.g., Swait and Marley (2013) for an example of constraining the sum of the coefficients.
11 A similar procedure is described by Battese (1997).
12 Although the two-step procedure is frequently used (see, e.g., Bajari and Hortacsu, 2005), we are unaware of any studies that document the accuracy of

he two-step estimator.
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Table 2
Payoff matrix, patient game 1 in duopoly.

The opponent

0 1 2 3 4 5 6 7 8 9 10

Player 𝑛 𝛱 , 𝐵 𝛱 , 𝐵 𝛱 , 𝐵 𝛱 , 𝐵 𝛱 , 𝐵 𝛱 , 𝐵 𝛱 , 𝐵 𝛱 , 𝐵 𝛱 , 𝐵 𝛱 , 𝐵 𝛱 , 𝐵
0 500,0 270,73 120,176 50,285 20,392 10,495 0,600 0,700 0,800 0,900 0,1000
1 723,73 495,100 267,173 119,276 50,385 20,492 10,595 0,700 0,800 0,900 0,1000
2 845,176 701,173 480,200 259,273 115,376 48,485 19,592 10,695 0,800 0,900 0,1000
3 865,285 801,276 664,273 455,300 246,373 109,476 46,585 18,692 9,795 0,900 0,1000
4 823,392 798,385 739,376 613,373 420,400 227,473 101,576 42,685 17,792 8,895 0,1000
5 743,495 735,492 713,485 660,476 548,473 375,500 203,573 90,676 38,785 15,892 8,995
6 640,600 634,595 627,592 608,585 563,576 467,573 320,600 173,673 77,776 32,885 13,992
7 510,700 510,700 505,695 500,692 485,685 449,676 372,673 255,700 138,773 61,876 26,985
8 360,800 360,800 360,800 356,795 353,792 342,785 317,776 263,773 180,800 97,873 43,976
9 190,900 190,900 190,900 190,900 188,895 186,892 181,885 167,876 139,873 95,900 51,973
10 0,1000 0,1000 0,1000 0,1000 0,1000 0,995 0,992 0,985 0,976 0,973 0,1000

Payoffs are measured in Taler (100 Taler = 1 Euro).

. Experimental data

In this section, we briefly describe the experimental design and show an example of the payoff matrices with illustration. A
omplete description of the experimental protocol and the formulas for computing payoff matrices based on the experimental
arameters can be found in Ge and Godager (2021).

.1. Experiment

The experiment has a medical framing. Participants are instructed to play the role of a physician and choose one of eleven
ifferent medical treatments in eight patient games in each of three markets with various levels of competition: monopoly, duopoly,
nd quadropoly. In the instructions for the participants, we use the term ‘‘patient type’’ rather than patient game (see Appendix
for instructions for participants). The trade-offs between profit and patient benefit depend on the payoff matrix, which varies

cross patient games and market settings. The differences in payoffs between market settings for a given patient game are caused by
ifferences in the market shares. In duopoly and quadropoly, the decision-makers’ joint treatment choices determine their own profits
nd the patients’ health benefits.13 The profit and benefit accrued in the laboratory are converted into monetary transfers to the
articipants and a charity dedicated to providing surgeries for ophthalmic patients. This element of our protocol, which is identical
o Hennig-Schmidt et al. (2011), motivates participants’ patient-regarding behavior in the laboratory. The experiment was designed
o accommodate independent games of complete information with simultaneous moves. It was programmed in z-Tree (Fischbacher,
007). Funding for the development of experimental design, the programming, as well as the payments to participants and Christoffel
lindenmission was provided by the Research Council of Norway. The ethical review and approval of experimental procedure were
iven by the Norwegian Social Science Data Services (reference No. 43709).

.2. Payoff matrices in three markets

We now present the payoff matrix for patient game 1 in duopoly in Table 2 as an example, and a complete set of payoff matrices
f the experiment is provided in Appendix A. Since the game is symmetric, we only present player 𝑛’s (the row player) payoffs. Each
ell represents a vector of profit and patient benefit that player 𝑛 receives given the combination of treatments offered by player
and his opponents. If, for instance, player 𝑛 chooses alternative 3 for patient 1 in duopoly, and the opponent chooses alternative

, then player 𝑛 will receive 664 Taler of profit, and 273 Taler will be provided to the patients (100 Taler = 1 Euro). The subjects
ould inspect the payoff elements in each cell of the matrix by means of a ‘‘calculator’’ when choice combinations by players were
nserted (Requate and Waichman, 2011).14

. Results

.1. Descriptive statistics

We report the observed choice frequencies in Table 3 and the relative frequencies in Fig. 2.15 We see in Table 3 that 24 out of
36 subjects chose pure strategy 0 for patient game 1 in monopoly, whereas none of the decision-makers chose this alternative for
atient game 1 in duopoly and quadropoly. Health benefit to patients is proportional to the numbering of the pure strategies, so that

13 Interested readers can find details on parameters for patient games and formulas for computing payoff matrices for 24 games in Ge and Godager (2021).
14 Interested readers may also calculate the payoff matrix using the formulas and game parameters given in Ge and Godager (2021).
15 Note that Table 3 and the payoff matrices in Appendix A are sufficient for reproducing all empirical results in this paper.
7
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Table 3
Observed frequencies of strategy choice in the 24 games by the 136 subjects.

Market Patient game Pure strategy

0 1 2 3 4 5 6 7 8 9 10

Monopoly

1 24 12 4 18 14 27 16 15 2 2 2
2 21 9 9 13 11 18 24 14 10 1 6
3 23 6 10 9 11 14 10 22 14 6 11
4 23 5 7 13 11 19 9 29 11 3 6
5 24 7 7 19 18 15 14 21 5 4 2
6 23 4 8 21 14 17 11 15 13 4 6
7 21 6 7 14 7 14 11 13 24 7 12
8 21 4 14 12 7 16 14 8 20 7 13

Duopoly

1 0 0 1 3 3 12 24 41 26 22 4
2 0 0 0 2 4 7 12 27 36 26 22
3 0 0 0 3 4 3 9 18 37 34 28
4 1 0 3 1 0 4 6 21 30 29 41
5 1 0 0 1 4 18 22 48 32 7 3
6 1 0 0 1 4 9 14 33 42 19 13
7 1 1 0 1 1 1 3 15 18 28 67
8 0 1 0 0 1 2 7 14 25 28 58

Quadropoly

1 0 0 0 2 2 4 14 31 48 30 5
2 0 0 0 2 0 3 10 11 42 31 37
3 1 0 0 0 0 0 3 12 26 41 53
4 1 0 1 0 0 0 4 9 24 39 58
5 0 0 0 0 0 10 9 37 58 17 5
6 0 0 0 1 1 1 8 15 40 43 27
7 0 0 0 1 0 1 3 2 16 22 91
8 0 0 0 0 1 1 4 5 14 27 84

Table 4
Results from estimation.

Model Quadratic utilitya Cobb–Douglas utility

Estimates 95% C.I.b Estimates 95% C.b

Preference
parameters
𝛽𝛱 1.05 1.04 1.05 0.69 0.67 0.71
𝛽b 0.59 0.46 0.73 0.31 0.29 0.33
𝛽𝛱𝛱 −0.05 −0.05 −0.04 n.a. n.a. n.a.
𝛽bb −0.03 −0.04 −0.02 n.a. n.a. n.a.
𝛽𝛱b −0.05 −0.05 −0.04 n.a. n.a. n.a.
𝑈 n.a. n.a. n.a. 1.88 1.77 1.98

𝜆 Parameters

𝑀𝑜𝑛𝑜𝑝𝑜𝑙𝑦 0.54 0.40 0.69 1.80 1.39 2.21
𝐷𝑢𝑜𝑝𝑜𝑙𝑦 2.39 2.13 2.64 2.17 1.98 2.37
𝑄𝑢𝑎𝑑𝑟𝑜𝑝𝑜𝑙𝑦 4.13 3.76 4.50 2.51 2.30 2.73

Log-Likelihood −6121.90 −6243.36
# subjects: 136
# Games: 24

aVariables in the quadratic specifications were scaled in Euro instead of Taler.
bEstimated 95% confidence interval based on standard errors from the maximum likelihood estimation as reported by the software.
Parameter normalizations: 𝛽𝛱 + 𝛽𝛱𝛱 = 1 in the quadratic specification, and 𝛽𝛱 + 𝛽𝐵 = 1 in the Cobb–Douglas specification.

when more decision-makers pick alternatives in the columns further to the right in Table 3, more health benefits are transferred to
the charity. Hence, from observing Table 3 and Fig. 2, it is clear that, in this experiment, more competition benefits the patients in
the market. This finding is in contrast with Falk and Szech (2013). See Section 6 for further discussion.

5.2. Estimation results

We present the estimated scale and preference parameters in Table 4. While all estimated preference parameters are reported to be
significant, the reported standard errors need to be interpreted in a conditional sense, as estimates of 𝐏𝑔𝑡 are used for approximating
the likelihood function. The estimated preference parameters from the Cobb–Douglas specification are similar in magnitude to those
reported by Wang et al. (2020), who fit a scaled logit model with log-linear Cobb–Douglas utility to the data from experiments
based on an extended version of the design by Hennig-Schmidt et al. (2011). The confidence interval for the preference parameter
in Table 4 overlaps with the confidence interval in Wang et al. (2020).
8
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Fig. 1. Distribution of 𝜆 estimates from Monte Carlo simulation. Dotted vertical lines indicate the given parameter values.

Assuming the estimated standard errors are accurate, we apply simple Wald tests to test the null hypothesis that the three scale
arameters are identical across market settings. We may reject this hypothesis for both quadratic (𝑝-value < 0.0001) and Cobb–

Douglas (𝑝-value < 0.0007) specifications. We also perform pairwise tests. For the quadratic specification, we may reject the null
hypothesis that scale parameters in monopoly and duopoly are equal (𝑝-value < 0.0001) and the null hypothesis that the scale
parameters in duopoly and quadropoly are equal (𝑝-value < 0.0001). For the Cobb–Douglas specification, we cannot reject the null
hypothesis that the scale parameters in monopoly and duopoly are equal (𝑝-value = 0.0856). However, we may reject the null
hypothesis that the scale parameters in duopoly and quadropoly are equal (𝑝-value = 0.0056). The interpretation is that higher
competition raises the scale parameter. We return to the interpretation of this result in the discussion section.

For the quadratic specification, we observe that the estimates of 𝛽𝛱𝛱 and 𝛽bb are negative, implying that the marginal utilities
are declining in profit and patient benefit. In addition, the estimate of 𝛽𝛱b is also negative, indicating that profit and patient benefit
are substitutes for this utility specification.

Conditional on parameter estimates from Table 4 and the 16 payoff matrices where competition is present (Tables A.2–A.9 and
Tables A.10–A.17 in Appendix A), we can compute the matrices comprising the scalar utility payoffs in each game (see Appendix
C for the computed utility payoff games assuming the quadratic preferences). We see that the numbers of dominated strategies and
NE differ substantially between games. For example, the pure strategy Nash equilibrium in patient game 1 in duopoly is unique,
but we find many cases where the scalarized games have multiple NEs, such as patient game 7 in duopoly with six different NEs.

5.3. Monte Carlo simulation

We conduct Monte Carlo simulations to assess the precision of the two-step QREC estimator. Let (𝛽 , �̂�𝑡) denote our estimated
preference and scale parameters, which are presented in Table 4. We apply these parameters as the fixed parameters in the Monte
Carlo simulations. From the proof by McKelvey and Palfrey (1995), we know that the preference and scale parameter (𝛽, �̂�𝑡)
determine a LQRE given the payoff matrix for the occasion indexed 𝑔𝑡. We denote this LQRE by �̂�∗

𝑔𝑡.16 To study the performance
of the two-step estimator in estimating parameters of an assumed equilibrium, we start by computing the fixed point �̂�∗

𝑔𝑡. Under

16 McKelvey and Palfrey (1995) claim that uniqueness of the LQRE applies for ‘‘almost all games.’’ Dagsvik (2020) establishes necessary and sufficient conditions
or unique and multiple QRE and provides useful algorithms for concluding on the number of QRE. We applied the algorithms of Dagsvik (2020) to examine
9

he uniqueness of the equilibrium in the eight games in duopoly and found that the equilibrium is unique for all eight games in duopoly.
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Table 5
Confidence intervals from Monte Carlo simulation.

Model Quadratic utility Cobb–Douglas utility

95% C.I.a 95% C.I.a

Preference
parameters
𝛽𝛱 1.05 1.05 0.67 0.71
𝛽b 0.45 0.70 0.29 0.33
𝛽𝛱𝛱 −0.05 −0.05 n.a. n.a.
𝛽bb −0.04 −0.02 n.a. n.a.
𝛽𝛱b −0.05 −0.04 n.a. n.a.
𝑈 n.a. n.a. 1.77 1.98

𝜆 Parameters

𝑀𝑜𝑛𝑜𝑝𝑜𝑙𝑦 0.41 0.69 1.40 2.24
𝐷𝑢𝑜𝑝𝑜𝑙𝑦 2.17 2.68 2.02 2.35
𝑄𝑢𝑎𝑑𝑟𝑜𝑝𝑜𝑙𝑦 3.76 4.55 2.31 2.73

Log-Likelihood −6121.90 −6243.36
# subjects: 136
# Games: 24

a95% confidence interval based on the Monte Carlo simulations described in Section 5.3.
Parameter normalizations: 𝛽𝛱 + 𝛽𝛱𝛱 = 1 in the quadratic specification, and 𝛽𝛱 + 𝛽𝐵 = 1 in the Cobb–Douglas specification.

QRE, each player’s belief of the opponent(s)’s choice probabilities is identical to the equilibrium probabilities. Hence, for a given
occasion 𝑔𝑡, the fixed point �̂�∗

𝑔𝑡 is the solution to the following set of 𝐽 non-linear equations:

𝑃1𝑔𝑡 =
𝑒�̂�𝑡𝑉1𝑔𝑡(�̂�

∗
𝑔𝑡)

∑

𝑟∈𝐶 𝑒�̂�𝑡𝑉𝑟𝑔𝑡(�̂�
∗
𝑔𝑡)

, 𝑃2𝑔𝑡 =
𝑒�̂�𝑡𝑉2𝑔𝑡(�̂�

∗
𝑔𝑡)

∑

𝑟∈𝐶 𝑒�̂�𝑡𝑉𝑟𝑔𝑡(�̂�
∗
𝑔𝑡)

, … , 𝑃𝐽𝑔𝑡 =
𝑒�̂�𝑡𝑉𝐽𝑔𝑡(�̂�

∗
𝑔𝑡)

∑

𝑟∈𝐶 𝑒�̂�𝑡𝑉𝑟𝑔𝑡(�̂�
∗
𝑔𝑡)

, (13)

where, 𝑃𝑗𝑔𝑡, the probabilities on the left-hand side of the equations are the 𝐽 elements of �̂�∗
𝑔𝑡.17 After having computed the fixed

point, we generate 5 000 synthetic data sets for both functional forms. We then simulate choices by individuals with preference and
scale parameters given by (𝛽, �̂�𝑡) under the assumption that they play the LQRE in (13). When generating the synthetic choice data,
we draw type I extreme value distributed error terms, and let simulated players pick the treatment alternative, which maximizes:

�̂�𝑡𝑉𝑗𝑔𝑡(�̂�∗
𝑔𝑡) + 𝜀𝑗𝑔𝑡. (14)

Using the 5 000 synthetic data sets where the data generating process is known, we estimate preference and scale parameters
(𝛽1, �̂�𝑡1)...(𝛽5000, �̂�𝑡5000) by applying the two-step procedure where we maximize (12). For each synthetic data set, we compute the
observed relative frequencies of actions in a game and apply the program gmnl by Gu et al. (2013) to estimate 5 000 scaled logit
models for both functional forms. We describe the distribution of �̂�𝑡 in Fig. 1 and report the confidence intervals based on the Monte
Carlo simulations in Table 5. For both quadratic and Cobb–Douglas specifications, the differences between the confidence intervals
in Table 4 and those in Table 5 are negligible. The interpretation is that the reported standard errors of the two-step estimator are
accurate.

The distributions in Fig. 1 are kernel density plots of estimated scale parameters in the three markets based on the synthetic
data sets. We see that they do not overlap for the quadratic specification, whereas a substantial overlap is observed for the Cobb–
Douglas specification. Hence, under the assumption that the quadratic model is the correct specification, it is highly unlikely that
one would draw the wrong conclusion based on results from the two-step estimator, even with a small sample size. However, if the
Cobb–Douglas model is the correct specification, one would need a larger sample size to provide statistical power to reject the null
hypothesis that scale parameters in monopoly and duopoly are equal.

5.4. Model fit

As discussed by Wright and Leyton-Brown (2017), flexible models of human behavior are vulnerable for overfitting. Hence, the
assessment of model fit should be based on out-of-sample predictions. By applying the following ‘‘jackknife-procedure,’’ we show that
estimation results from our QREC model can be used to predict behavior ex ante: We first estimate the model 24 times, excluding
one game each time. Then we compute the predicted fixed point in the game that was excluded from the estimation. We denote
these ‘‘jackknife fixed points’’ by �̂�∗

−𝑠, where −𝑠 ∈ 1, 2, 3…24 denotes the excluded games.
In Fig. 2, we plot the observed relative frequencies for each strategy in each game, f𝑗𝑔𝑡, with the corresponding out-of-sample

prediction, P̂∗
𝑗,−𝑠. Our QREC model captures the substantial differences in behavior across games and market settings quite well. The

out-of-sample predictions are quite similar to the observed behavior. We do not reject the null hypothesis that the two distributions,

17 See McKelvey and Palfrey, (1995), p. 11.
10
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Fig. 2. Relative frequencies and fixed points predicted out of sample for all pure strategies in the experiment. Patient benefit in a game increases from left to
right.
11
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f𝑗𝑔𝑡 and P̂∗
𝑗,−𝑠, are the same by means of the Wilcoxon matched-pairs signed-ranks test (𝑝 = 0.1861 for quadratic, 𝑝 = 0.1948 for

Cobb–Douglas) and Fisher–Pitman permutation test for paired replicates (𝑝 > 0.99 for both quadratic and Cobb–Douglas forms).
Judged by the mean squared error (MSE), the quadratic specification (MSE = 0.0021) provides a better fit than the Cobb–Douglas
specification (MSE = 0.0033).

. Discussion and conclusion

In this paper, we apply experimental data to study strategic medical choices in three market settings: monopoly, duopoly, and
uadropoly. In our experiment, the individuals’ choices result in more benefit for patients when there is more competition. Our
esults show that a substantial change in behavior can be explained by the fixed preference QREC model. The observed difference
n behavior between monopoly, duopoly, and quadropoly market settings can be attributed to changes in the individuals’ scale
arameter while keeping preferences fixed. The scale parameter is a measure of randomness in behavior, or equivalently, a measure
f determinism in behavior. We are unaware of any previous studies that allow for the possibility that changes in competition
ntensity affect scale. We did not have any prior expectation with regard to whether competition would reduce or increase the degree
f determinism in behavior. On the one hand, decision making might be perceived as more complicated when having to account
or the actions of one or more competitors, and raising complexity could bring about more randomness in treatment choices. On the

other hand, competition might encourage effort and trigger the decision-makers’ attention, leading to less randomness in treatment
choices in market settings with more competition. We find that the scale parameter rises as the market becomes more competitive,
implying a higher degree of determinism in behavior.

As highlighted in the examples of Louviere and Eagle (2006), ignoring scale or assuming scale to be fixed across contexts can
lead to misleading conclusions on the stability of preferences. Our results provide useful nuances to the recent literature on whether
markets erode social responsibility; see, e.g., Falk and Szech (2013), Bartling et al. (2015), Sutter et al. (2020) or Bartling et al.
(2021). Recent contributions to this literature apply laboratory experiments to identify the effects of competition. Observed changes
in behavior across experimental market settings are interpreted as evidence of unstable preferences. An example is Falk and Szech
(2013) who, without estimating preference or scale parameters, conclude that market competition causes experimental subjects to
value the life of a mouse less, based on the observation that competition in the laboratory has unfortunate consequences for the
mice. If we had assumed fixed scale and context-dependent preferences, the results would have suggested that competition causes
preferences to change, and that individuals become more altruistic in market settings with more competition. It might have been
tempting to conclude that ‘‘Competition raises moral values’’ or, alternatively, that ‘‘Competition crowds in pro-social motivation.’’

The economic literature comprises many contributions that reject the assumptions of perfect rationality and purely selfish
ehavior. Rejection of fundamental assumptions has been constructive in that the process has led to the rise of behavioral
conomics (Thaler, 1988; Thaler and Ganser, 2015). Behavioral economics has not yet succeeded in proposing a new overarching
ehavioral economic theory, and Thaler (2018) predicts that such a theory will never come to existence. One may argue that a more
ptimistic view is warranted. The seminal contribution by McKelvey and Palfrey (1995) revealed that the toolkit of choice modelers
an be applied to the study of strategic behavior. Yet, applications of choice models in studying strategic decision making in games
ith vector-payoff have not reached its potential. One may argue that empirical game theory literature can benefit from knowledge

ranslation from advances in the vast choice modeling literature (Revelt and Train, 1998; McFadden, 2001; Hess and Daly, 2010;
essie and Saari, 2016), where context-dependent scale parameters have been a central research topic for decades (Louviere et al.,
999, 2002; Louviere and Eagle, 2006; Louviere and Meyer, 2008; Wang et al., 2020). The QREC model, which is only a slight
ugmentation of a generalized multinomial logit model, provides a consistent economic model of strategic behavior that relies on
ess restrictive assumptions, thereby illustrating that choice modeling has a role in contributing to an overarching theory of economic
ehavior.

An important aspect of our experiment is the large number of cells in payoff matrices; 112 in duopoly and 114 in quadropoly. As
result, many potential choice combinations will remain unrealized in the data. Therefore, one may argue that the experimental

esign provides unfavorable conditions for maximum likelihood estimation of the parameters of a QREC model. However, results
rom the Monto Carlo simulations show that the two-step estimator produces accurate estimates with a moderate sample size, even
nder these unfavorable conditions. Furthermore, since the two-step estimator does not rely on the assumption that an equilibrium
s reached, it is robust with regard to a hypothetical scenario where the data are not generated by a QRE.

Over the last decades, numerous laboratory experiments have generated a large base of data from, for example, public good
ames and ultimatum games. The fact that these games constitute multi-criteria games for altruistic decision-makers are typically
gnored, and NE or other equilibrium concepts for single-criterion games are applied in the analyses. Re-examination of the existing
ata by fitting QREC models has substantial research potential. Behaviors that have been referred to as anomalies can be consistent
ith a QREC model with a plausible utility function. Hence, re-examination of the data is likely to contribute to new insights
nd provide explanations for phenomena that have been poorly understood. More methodological research on QREC models would
enefit this proposed research. For example, while the two-step estimator is robust and consistent, whether it is more or less efficient
han the full information maximum likelihood estimator described by Moffatt (2015) is a question for future research.
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