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A B S T R A C T

The coupling between surface waves and the motion in a flexible porous surface layer is investigated
theoretically. We apply a Lagrangian formulation for the viscous fluid and the fluid-saturated porous medium.
In the floating porous layer, which we assume to be much thinner than the wavelength, we apply a macroscopic
version of Darcy’s law. The interface between the porous layer and the underlying fluid is permeable, and the
wave-induced vertical motion at the interface leads to wave damping. In addition, the viscous shear stress
at the interface also dampens the waves. We here investigate the relative strength of the two mechanisms.
Furthermore, we calculate the Lagrangian mean drift in the porous surface layer. The present study may
provide a physical model for wave damping in the presence of unconsolidated rubble ice and the slow particle
drift in rubble-ice layers.
. Introduction

In a pioneering paper (Reid and Kajiura, 1957) the linear interaction
etween surface wave motion in a fluid layer of finite depth, and the
otion in an underlying saturated porous medium of infinite depth, is

nvestigated. The fluid is inviscid and the flow in the porous medium is
overned by Darcy’s law. It is found that the vertical flow at the bound-
ry between the porous bed and the overlying fluid causes the waves to
ecome spatially attenuated. Later works (Webber and Huppert, 2020,
021; Weber and Ghaffari, 2021) have studied the associated nonlinear
ean drift in a porous seabed of finite thickness when the ocean wave
otion is irrotational.

The present investigation takes this problem further by considering
he coupling between deep-water gravity waves and a thin floating
lexible porous layer. Again, as in the bottom layer case, there will be

wave-induced vertical motion at the boundary between the porous
ayer and the fluid, leading to wave damping. Here we assume that the
cean is viscous, and the viscous shear stress at the interface (Beavers
nd Joseph, 1967; Jones, 1973) leads to an additional damping of the
ave motion. In this paper, we investigate the relative strength of the

wo mechanisms. Furthermore, we calculate the Lagrangian mean drift
n the porous surface layer.

Since the thickness of the viscous boundary layer in the fluid is very
uch smaller than the wave amplitude, one should apply a curvilinear

ype of coordinate system to describe the motion for small, but finite
ave amplitudes. In the present paper, this is achieved by describing

he fluid motion in Lagrangian particle-following coordinates. Since the
ressure gradient becomes nonlinear in this description, the procedure

E-mail address: j.e.weber@geo.uio.no.

has the additional advantage that the wave-drift terms now appears
directly in the Darcy equation for the porous flexible layer.

The rest of this article is organized as follows: In Section 2, we
describe the mathematical formulation, and in Section 3, we present
results from a linear analysis. In Section 4, we discuss the possible
application of our theory to rubble ice. In Section 5, we derive the
Lagrangian mean drift in the porous layer, while Section 6 contains
a discussion and some concluding remarks.

2. Mathematical formulation

We study surface gravity waves in an ocean of unlimited depth.
The effect of the Earth’s rotation is neglected, and the motion is two-
dimensional. At the surface, we have a floating fluid-saturated thin
flexible porous layer of initial thickness 𝐻1. We take that the 𝑋-axis is
horizontal and situated at the undisturbed interface between the porous
layer and the infinitely deep fluid, while the 𝑍-axis is vertical and
directed upwards. The fluid is incompressible with constant density 𝜌
in the porous medium and in the fluid below. Upper and lower layer
variables are denoted by subscripts 1 and 2, respectively. The material
upper surface is found at 𝑍1 = 𝐻1 + 𝜂1, and the position of the water
surface (the interface) is 𝑍2 = 𝜂2; see Fig. 1. The lower boundary is
situated very far from the surface. Here, mathematically, 𝑍2 → −∞.

The infinitely deep ocean is taken to be a Newtonian viscous fluid,
which makes the wave motion rotational. In the porous medium, the
motion is dominated by friction. We here consider a porous medium
where the pore dimension is not necessarily microscopic. Such larger
scales may, for example, be found in floating vegetation mats with a
https://doi.org/10.1016/j.ocemod.2022.102013
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Fig. 1. A diagram showing the configuration, with a surface wave beneath a flexible
ater-saturated porous layer. The layer thickness in the absence of waves is 𝐻1. In the

igure, the porous medium is depicted schematically as a rubble-ice layer with reference
o the application in Section 4 and further on.

ibrous structure, or in rubble ice as indicated in Fig. 1. In the present
tudy, we apply a rather simple model for the flow in the porous
edium, assuming that the Reynolds-averaged Navier–Stokes (RANS)

quations are valid in the voids. By averaging the RANS equations over
representative elementary volume of the porous medium domain, a
acroscale equation for the momentum balance is obtained, with an

ffective permeability 𝐾 and an eddy viscosity 𝜈1; see e.g. Masuoka and
akatsu (1996). To the lowest order approximation, Darcy’s law (Bear,
972) then applies to the motion in the macroscopic porous medium.

As explained in the Introduction, we apply Lagrangian coordinates
or the mathematical analysis. Let a fluid particle (𝑎, 𝑐) initially have
oordinates (𝑋0, 𝑍0). Its position (𝑋,𝑍) at later times will then be a
unction of 𝑎, 𝑐 and time 𝑡. Velocity components and accelerations are
iven by (𝑋𝑡, 𝑍𝑡) and (𝑋𝑡𝑡, 𝑍𝑡𝑡), respectively, where subscripts denote
artial differentiation and the pressure is 𝑃 . The transformation of 𝑋,𝑍
rom independent variables in the Eulerian description to dependent
agrangian variables 𝑋(𝑎, 𝑐, 𝑡), 𝑍(𝑎, 𝑐, 𝑡) is trivial; see Lamb (1932).

We consider a thin flexible porous layer, and assume that the
alance of forces in the vertical direction is hydrostatic. Furthermore,
e take that the pressure is constant along the upper surface. Then we
ave for the pressure distribution in the porous layer

1∕𝜌 = −𝑔(𝑍1 −𝐻1 − 𝜂1), (1)

here 𝑔 is the acceleration due to gravity, and an insignificant constant
as been put equal to zero.

In Lagrangian coordinates, Darcy’s law can be written (Weber and
haffari, 2021),

𝜈1∕𝐾)𝑋1𝑡𝑋1𝑎 = −𝑔𝜂1𝑎. (2)

ere 𝐾 is the permeability in the horizontal direction, and 𝜈1 is the
inematic viscosity of the fluid in the voids. We note from (2) that 𝑋1
s only a function of 𝑎 and 𝑡.

The momentum balance in the fluid can be written in Lagrangian
otation from Lamb (1932), by adding the viscous terms:

2𝑡𝑡𝑋2𝑎 +𝑍2𝑡𝑡𝑍2𝑎 + 𝑔𝑍2𝑎 = −𝑃2𝑎∕𝜌 + 𝜈2[𝑋2𝑎∇2𝑋2𝑡 +𝑍2𝑎∇2𝑍2𝑡], (3)

2𝑡𝑡𝑋2𝑐 +𝑍2𝑡𝑡𝑍2𝑐 + 𝑔𝑍2𝑐 = −𝑃2𝑐∕𝜌 + 𝜈2[𝑋2𝑐∇2𝑋2𝑡 +𝑍2𝑐∇2𝑍2𝑡], (4)

here 𝜈2 is the constant eddy viscosity in the fluid. The Laplacian op-
rator ∇2 is non-linear in the Lagrangian formulation; see for example
ierson (1962) for the explicit form.

Finally, since the density is constant and the same in each layer, the
onservation of mass (now volume) can be written in both layers as

(𝑋,𝑍) = 𝐽 (𝑋0, 𝑍0). (5)

ere 𝐽 (𝐹 ,𝐺) ≡ 𝐹𝑎𝐺𝑐 − 𝐹𝑐𝐺𝑎 is the two-dimensional Jacobian.
Even though (𝑎, 𝑐) is not the initial particle position, it is convenient

o write the displacements and pressure as (Pierson, 1962):

𝑋1 = 𝑎 + 𝑥1 (𝑎, 𝑡) ,

𝑍1 = 𝑐 + 𝑧1 (𝑎, 𝑐, 𝑡) ,

𝑃1 = −𝜌𝑔(𝑐 −𝐻1) + 𝑝1 (𝑎, 𝑐, 𝑡) .

⎫

⎪

⎪

⎬

⎪

⎪

0 ≤ 𝑐 ≤ 𝐻1, (6)
⎭

2

𝑋2 = 𝑎 + 𝑥2 (𝑎, 𝑐, 𝑡) ,

𝑍2 = 𝑐 + 𝑧2 (𝑎, 𝑐, 𝑡) ,

𝑃2 = −𝜌𝑔(𝑐 −𝐻1) + 𝑝2 (𝑎, 𝑐, 𝑡) .

⎫

⎪

⎪

⎬

⎪

⎪

⎭

𝑐 ≤ 0. (7)

he deviations (𝑥1,2, 𝑧1,2, 𝑝1,2) in (6)–(7) can be expanded in series after
small parameter 𝜀 proportional to the wave amplitude; see e.g. Weber

2019). Accordingly, (2)–(5) can be written

𝜈1∕𝐾)𝑥1𝑡(1 + 𝑥1𝑎) = −
(

𝑝1∕𝜌 + 𝑔𝑧1
)

𝑎 = −𝑔𝜂1𝑎, (8)

2𝑡𝑡(1 + 𝑥2𝑎) + 𝑧2𝑡𝑡𝑧2𝑎 = −
(

𝑝2∕𝜌 + 𝑔𝑧2
)

𝑎 + 𝜈2[(1 + 𝑥2𝑎)∇
2𝑥2𝑡 + 𝑧2𝑎∇2𝑧2𝑡],

(9)
𝑥2𝑡𝑡𝑥2𝑐 + 𝑧2𝑡𝑡(1 + 𝑧2𝑐 ) = −

(

𝑝2∕𝜌 + 𝑔𝑧2
)

𝑐 + 𝜈2[𝑥2𝑐∇
2𝑥2𝑡 + (1 + 𝑧2𝑐 )∇2𝑧2𝑡],

(10)

𝑥1,2𝑡𝑎 + 𝑧1,2𝑡𝑐 + (𝑥1,2𝑎𝑧1,2𝑐 )𝑡 − (𝑥1,2𝑐𝑧1,2𝑎)𝑡 = 0. (11)

With this notation we have that 𝜂1 (𝑎, 𝑡) = 𝑧1(𝑎,𝐻1, 𝑡) and 𝜂2 (𝑎, 𝑡) =
𝑧2(𝑎, 0, 𝑡) in Fig. 1.

3. Linear analysis

3.1. Porous layer

We linearize our governing equations (8)–(11), and denote our
linearized variables by a tilde. In the porous layer we have

(𝜈1∕𝐾)�̃�1𝑡 = −𝑔�̃�1𝑎. (12)

We take that

̃1 = 𝜂0 exp 𝑖(𝜅𝑎 − 𝑛𝑡), (13)

where 𝜂0 is the real wave amplitude, and

𝜅 = 𝑘 + 𝑖𝛼, (14)

𝑛 = 𝜔 − 𝑖𝛽. (15)

Here 𝑘 is the real wave number, and 𝜔 the wave frequency, while 𝛼
and 𝛽 are the spatial and temporal damping coefficients, respectively.
We assume slow damping, i.e. 𝛼∕𝑘 ≪ 1 and 𝛽∕𝜔 ≪ 1. From (12),

�̃�1 = 𝑔𝜅𝐾�̃�1∕(𝑛𝜈1). (16)

Then, from (11),

�̃�1𝑡𝑐 = −�̃�1𝑡𝑎 = −𝑔𝜅2𝐾�̃�1∕𝜈1. (17)

At the upper boundary, we have �̃�1(𝑐 = 𝐻1) = �̃�1. Accordingly:

�̃�1 =
[

1 + 𝑖𝑔𝜅2𝐾
(

𝐻1 − 𝑐
)

∕
(

𝑛𝜈1
)]

�̃�1. (18)

3.2. Viscous fluid

In the fluid the linearized equations become

�̃�2𝑡𝑡 = −
(

�̃�2∕𝜌 + 𝑔�̃�2
)

𝑎 + 𝜈2∇
2
𝐿�̃�2𝑡 (19)

�̃�2𝑡𝑡 = −
(

�̃�2∕𝜌 + 𝑔�̃�2
)

𝑐 + 𝜈2∇
2
𝐿�̃�2𝑡, (20)

where ∇2
𝐿 = 𝜕2∕𝜕𝑎2 + 𝜕2∕𝜕𝑐2. From Lamb (1932), we introduce

�̃�2𝑡 = −�̃�𝑎 − �̃�𝑐 , (21)

�̃�2𝑡 = −�̃�𝑐 + �̃�𝑎. (22)

Then (19)–(20) and the linearized version of (11), yield that

∇2
𝐿�̃� = 0, (23)

�̃� − 𝜈 ∇2 �̃� = 0, (24)
𝑡 2 𝐿
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�̃�2∕𝜌 = �̃�𝑡 − 𝑔�̃�2. (25)

Assuming that �̃�, �̃� → 0, when 𝑐 → −∞, we find

�̃� = 𝐴2 exp(𝜅𝑐 + 𝑖 (𝜅𝑎 − 𝑛𝑡)), (26)

�̃� = 𝐵2 exp(𝑚𝑐 + 𝑖 (𝜅𝑎 − 𝑛𝑡)), (27)

where

𝑚 = (1 − 𝑖)𝛾. (28)

Here the large parameter 𝛾 is given by 𝛾 =
[

𝜔∕(2𝜈2)
]1∕2.

3.3. Boundary conditions

With an upper porous layer, we have a discontinuity in the hori-
zontal velocities at the interface. The vertical velocity, however, must
be continuous; see for example the discussion in Webber and Huppert
(2021). Hence,

�̃�1(𝑐 = 0) = �̃�2(𝑐 = 0). (29)

Furthermore, with a viscous fluid beneath the porous layer, the hori-
zontal stress in the fluid cannot vanish at the interface. From Beavers
and Joseph (1967) and Jones (1973), we have that

�̃�2𝑡𝑐 + �̃�2𝑡𝑎 = (𝑎𝐵𝐽∕𝐾1∕2)(�̃�2𝑡 − �̃�1𝑡), 𝑐 = 0. (30)

Here 𝑎𝐵𝐽 is the dimensionless Beavers–Joseph parameter, which de-
pends on the pore-space geometry of the porous medium. Experimental
studies by Beavers and Joseph (1967) indicate that this parameter is in
the range 0.1−4.0, where the largest values of 𝑎𝐵𝐽 occur for the largest
pore diameter.

Finally, the normal stresses must be continuous at the interface, i.e.

−�̃�1 = −�̃�2 + 2𝜌𝜈2�̃�2𝑡𝑐 , 𝑐 = 0. (31)

Here �̃�1 = −𝜌𝑔(�̃�1 − �̃�1) from (1), while �̃�2 is given by (25). Utilizing
(29), we find from (31) that

�̃�𝑡 − 2𝜈2�̃�2𝑡𝑐 − 𝑔�̃�1 = 0, 𝑐 = 0. (32)

From the kinematic condition (29) we obtain

𝐴2 − 𝑖𝐵2 = (𝑖𝑛∕𝜅)[1 + 𝑖𝜅2𝑔𝐻1𝐾∕(𝑛𝜈1)]𝜂0, (33)

while (30) yields that

𝜔𝜅(𝑞1 − 2𝜅)𝐴2 + 𝑖𝜔𝑚(𝑚 − 𝑞1)𝐵2 = 𝑔𝜅𝑞2𝜂0. (34)

Here we have defined the material constants 𝑞1 and 𝑞2 by

𝑞1 = 𝑎𝐵𝐽∕𝐾1∕2, (35)

𝑞2 = 𝑎𝐵𝐽𝜔𝐾
1∕2∕𝜈1, (36)

while 𝑚 is defined by (28).
Finally, from (32) we find that

(

−𝑖𝑛 + 2𝜅2𝜈2
)

𝐴2 − 2𝑖𝜅𝑚𝜈2𝐵2 = 𝑔𝜂0. (37)

In solving the system of Eqs. (33), (34) and (37), where 𝜂0 is given, we
utilize the fact that

𝑘∕𝛾 ≪ 1, (38)

𝑘∕𝑞1 ≪ 1. (39)

Furthermore,

𝑅 = 𝜔𝐾∕𝜈1 = 𝑞2∕𝑞1 ≪ 1. (40)

Here (38) follows from the fact that the viscous boundary layer is very
thin and (39) from the fact that the permeability of the porous medium
3

is small. Finally, 𝑅 in (40) is a small fundamental parameter in the
porous problem, as first pointed out by Reid and Kajiura (1957).

It is readily shown that to lowest order, (33) and (34) yield the
obvious result 𝜔2 = 𝑔𝑘. Utilizing this fact, we obtain to next order,

𝐴2 = (𝑖𝜔 − 𝛽)(𝜂0∕𝑘), (41)

𝐵2 = 𝑖(2𝛽 + 𝜔𝛼∕𝑘 − 𝜔𝑘𝐻1𝑅)(𝜂0∕𝑘). (42)

Finally, by inserting these results into (34), we find from the real part
that

𝛽+𝑐𝑔𝛼 = 𝜔𝑘[𝑞21+2𝛾𝑞2−𝑞1𝑞2]∕[4𝛾
(

𝑞21 + 2𝛾2 − 2𝛾𝑞1
)

]+𝜔𝑘𝐻1𝑅∕2 = 𝑄, (43)

where 𝑐𝑔 = 𝜔∕(2𝑘) is the group velocity for deep-water gravity waves.
Here (43) is just a special version of the general form relating temporal
and spatial wave damping to the dissipative process in the wave motion
Weber (2022). Specifically, we note from (43) that if 𝛼 = 0 (temporal
attenuation), then 𝛽 = 𝑄. If 𝛽 = 0 (spatial attenuation), then 𝛼 = 𝑄∕𝑐𝑔 .
Accordingly, when comparing the two different cases, we have 𝛽 = 𝑐𝑔𝛼,
as shown by Gaster (1962).

We can non-dimensionalize (43) by scaling the temporal wave
damping by the inextensible film limit 𝛽𝑖𝑛𝑒𝑥 = 𝜔𝑘∕(4𝛾) (Lamb, 1932).
This is the case where the water particles in contact with the surface
cover have zero horizontal velocity. Introducing 𝛽 = 𝛽∕𝛽𝑖𝑛𝑒𝑥 and �̂� =
4𝛾𝛼∕𝑘2, (43) becomes

𝛽 + 1
2
�̂� = (𝑞21 + 2𝛾𝑞2 − 𝑞1𝑞2)∕

(

𝑞21 + 2𝛾2 − 2𝛾𝑞1
)

+ 2𝛾𝐻1𝑅 = 𝑄1 +𝑄2. (44)

Here 𝑄1 represents the wave damping caused by friction, while 𝑄2
models the damping caused by vertical motion at the interface between
the porous layer and the fluid. We shall refer to the two mechanisms
as viscous and porous damping, respectively. As mentioned in the
Introduction, the latter damping mechanism was first described for an
infinitely deep porous seabed by Reid and Kajiura (1957).

4. Application to rubble ice

Rubble ice is produced when ice floes collide, leading to smaller
pieces of broken ice. Such formation also occurs when ice collides with
offshore structures, or when ships pass through an ice cover; see the
comprehensive review of field observations by Strub-Klein and Sudom
(2012). The rubble layer consists of randomly orientated elongated ice
blocks with water in the voids between them; see the sketch in Fig. 1.
On top, there is usually a thinner layer of consolidated ice. As the
freezing season progresses, the rubble layer may partly refreeze.

The dimensions of the rubble blocks are related to the thickness of
the ice floes that break up, i.e. thicker ice, larger rubble. As inferred
from Strub-Klein and Sudom (2012), a typical block thickness 𝑑 could
be of the order 0.5m with lateral dimensions 2𝑑 − 3𝑑. The thickness
of the rubble layer is several times the thickness of the consolidated
ice on top. From field measurements in the Barents Sea, the perme-
ability of rubble ice appears to be of order 10−8 m2 (Marchenko, 2022),
while Freitag and Eicken (2003) report values up to 10−7 m2 (it should
be mentioned that these values refer to permeability in the vertical
direction).

In calculating the right-hand side of (44), we assume that we have
a moderately large eddy viscosity in the ocean beneath the ice; see
Weber (1987), or Melsom (1992). Also in the rubble, we take that the
viscosity is somewhat larger than the molecular value. Furthermore, we
assume from Beavers and Joseph (1967) that 𝑎𝐵𝐽 = 4.0 in (35)–(36).
This choice is not very sensitive, and a ten times higher value does
not change the results. Accordingly, for the calculation of the right-
hand side of (44), we take that 𝜈1 = 5 ⋅ 10−6 m2s−1, 𝜈2 = 10−4 m2s−1,
𝐾 = 5 ⋅ 10−8 m2, 𝐻1 = 2m and 𝑎𝐵𝐽 = 4.0. It is seen that with these
values, the conditions (38)–(40) are very well fulfilled. In Fig. 2, we
have displayed 𝑄1 and 𝑄2 from (44) as function of the wavelength
𝜆 = 2𝜋∕𝑘.
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Fig. 2. Non-dimensional damping rates 𝑄1 (blue line) and 𝑄2 (red line) as function of
he wavelength.

We note from the figure that porous damping (red line) is consider-
bly larger than viscous damping (blue line) for shorter waves in this
xample. From (30) we see that for large values of 𝑞1, we have that
�̃�2𝑡 → 0 when 𝑐 = 0. This corresponds to the inextensible layer limit
Lamb, 1932). This is actually the case for the whole wave number
ange in Fig. 2, making 𝑄1 ≈ 1, as seen from (44). We realize from Fig. 2
hat the porous damping mechanism very effectively filters out smaller
aves from the wave spectrum as the surface wave propagate from the
pen sea into the ice pack. We have here assume that the thin layer of
onsolidated is broken up on the wave scale. Hence, we can neglect the
lastic properties of the consolidated ice (Liu and Mollo-Christensen,
988; Melsom, 1992).

It should be stressed that the porous damping effect is related to the
mall parameter 𝑅 = 𝜔𝐾∕𝜈1. Hence, a smaller value of 𝜈1 (a molecular

value), or a larger permeability will enhance the numerical values of
the damping rates considerably.

5. The Lagrangian mean drift

Here we consider the nonlinear problem to second order for the
Lagrangian mean quantities. The mean is defined by averaging over
the wave cycle, and this process is denoted by an over-bar. We find to
second order, when averaging (8) in the porous layer,

𝑢(𝐿)1 = −�̃�1𝑡�̃�1𝑎 − (𝑔𝐾∕𝜈1)𝜂1𝑎, (45)

here 𝑢(𝐿)1 = 𝑥1𝑡 is the horizontal Lagrangian mean drift in the porous
medium. The Stokes drift (Stokes, 1847) to second order in Eulerian
variables was derived by Longuet-Higgins (1953). In Lagrangian terms,
Longuet-Higgins’ formula can be written

𝑢(𝑆)1 = �̃�1�̃�1𝑡𝑎 + �̃�1�̃�1𝑡𝑐 . (46)

Since �̃�1 = �̃�1(𝑎, 𝑡); see (6), we find from (46) that in the porous layer

𝑢(𝑆)1 =
(

�̃�1𝑡�̃�1
)

𝑎
− �̃�1�̃�1𝑡𝑎 = −�̃�1�̃�1𝑡𝑎, (47)

ince
(

�̃�1𝑡�̃�1
)

𝑎
is very small (of 𝑂(𝛼𝛽)). Hence, we can write (45) as

(𝐿) = 𝑢(𝑆) + 𝑢(𝐸), (48)
1 1 1 m

4

here
(𝐸)
1 = −(𝑔𝐾∕𝜈1)𝜂1𝑎 (49)

is the Eulerian mean velocity. We see right away that for purely
temporal decay (𝛼 = 0), we have that 𝑢(𝐸)1 = 0.

In calculating the wave damping (43), the ocean was assumed to be
a viscous fluid. Fig. 2 shows that the viscous effect alone on damping
was equivalent to assuming an inextensible layer at the surface. The
associated Lagrangian mean current in the viscous ocean in this case
has been thoroughly discussed in Weber (1987). The new element in
this paper is porous damping, which operates independently of the
oceanic eddy viscosity. It yields considerably larger wave damping than
viscosity, as seen in Fig. 2. We therefore focus on this effect on the drift
velocity and neglect viscosity in the ocean in this last part of our study.
With this assumption, we obtain from (9) that

𝑢(𝐿)2𝑡 = −�̃�2𝑡𝑡�̃�2𝑎 − �̃�2𝑡𝑡�̃�2𝑎 − (𝑝2∕𝜌 + 𝑔𝑧2)𝑎, (50)

here 𝑢(𝐿)2 = 𝑥2𝑡 is the horizontal Lagrangian mean drift. We require a
steady Lagrangian mean drift. Then, the right-hand side of (50) must
vanish. Accordingly,

(𝑝2∕𝜌 + 𝑔𝑧2)𝑎 = −�̃�2𝑡𝑡�̃�2𝑎 − �̃�2𝑡𝑡�̃�2𝑎 = −𝛼𝜔2(�̃�22 + �̃�
2
2), (51)

where the last result is correct to lowest order. At the interface we must
have continuity of pressure and the mean elevation, i.e. 𝑝1 (𝑐 = 0) =
𝑝2 (𝑐 = 0) and 𝑧1 (𝑐 = 0) = 𝑧2 (𝑐 = 0). Hence,

(𝑝1∕𝜌 + 𝑔𝑧1)𝑎 = (𝑝2∕𝜌 + 𝑔𝑧2)𝑎, 𝑐 = 0. (52)

nserting from (8) and (51), we find that

𝜂1𝑎 = −𝛼𝜔2(�̃�22 + �̃�
2
2), 𝑐 = 0. (53)

hen we neglect the effect of viscosity in the fluid, we have from (21)–
22) that �̃�2𝑡 = −�̃�𝑎, and �̃�2𝑡 = −�̃�𝑐 , where �̃� is given by (26). Here, to

lowest order from (41), 𝐴2 = 𝑖𝜔𝜂0∕𝑘. Inserting real values into (53), we
find that

𝑔𝜂1𝑎 = −𝛼𝜔2𝜂20 exp[−2(𝛼𝑎 + 𝛽𝑡)]. (54)

n this case, we obtain from (43) for the damping rates,

+ 𝑐𝑔𝛼 = 𝜔𝑘𝐻1𝑅∕2, (55)

here the small parameter 𝑅 is given by (40). From (49) the Eulerian
ean current becomes

(𝐸)
1 = 𝛼𝜔𝑅𝜂20 exp[−2 (𝛼𝑎 + 𝛽𝑡)]. (56)

Likewise, we find from (47) for the Stokes drift
(𝑆)
1 = 1

2
𝜔𝑘𝑅2𝜂20 exp[−2 (𝛼𝑎 + 𝛽𝑡)]. (57)

ence, the Lagrangian mean drift (48) becomes
(𝐿)
1 =

[

𝑅∕2 + 𝛼∕𝑘
]

𝜔𝑘𝑅𝜂20 exp[−2 (𝛼𝑎 + 𝛽𝑡)], (58)

where the second term in the parenthesis is the Eulerian contribution.
For spatially damped waves (𝛽 = 0), which is the relevant case for
waves propagating inwards from the ice edge, we have from (55) that
𝛼 = 𝑘2𝐻1𝑅. Hence, (58) becomes

𝑢(𝐿)1 =
[

1∕2 + 𝑘𝐻1
]

𝜔𝑘𝑅2𝜂20 exp(−2𝛼𝑎). (59)

Since we have assumed that the porous layer is thin (𝑘𝐻1 ≪ 1), we
note from the second term in (59) that the Eulerian contribution to the
Lagrangian mean drift is small. Hence, pure temporal wave decay and
pure spatial wave decay yield in practice the same mean drift current
in the porous layer, being the Stokes drift.

In the fluid, we have assumed a non-accelerating mean drift, i.e. 𝑢(𝐿)2𝑡
0 in (50). To derive an explicit expression for the steady Lagrangian
ean velocity, we use the fact that the vorticity is zero in the fluid
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in this non-viscous part of the study. Expressing the vorticity in La-
grangian terms, and assuming that the vorticity vanishes identically,
we obtain from Weber (2011), Eq. (21) that

𝑢(𝐿)2𝑐 = 2
(

�̃��̃�𝑡𝑎 + �̃��̃�𝑡𝑐
)

= 2𝑘𝑢(𝑆)2 . (60)

Hence, in the infinitely deep fluid,

𝑢(𝐿)2 = 𝑢(𝑆)2 = 𝜔𝑘𝜂20 exp[2𝑘𝑐 − 2 (𝛼𝑎 + 𝛽𝑡)] (61)

We remark that this result is also obtained if we use the Stokes drift
expression (46) for the ocean. The difference here is that (61) yields
the Lagrangian mean drift, so this equation tells us in addition that the
Eulerian mean velocity vanishes in the inviscid ocean, which should
not come as a surprise; see Longuet-Higgins (1953).

Spatial attenuation (𝛼 > 0) introduces a small vertical mean drift
into the problem. We obtain from the continuity Eq. (11) that 𝑧1𝑡𝑐 =
−2𝛼𝑥1𝑡, and 𝑧2𝑡𝑐 = −2𝛼𝑥2𝑡. Assuming vanishing mean vertical velocity

hen 𝑐 → −∞, we find for the fluid that

𝑧2𝑡 = (𝛼∕𝑘)𝑢(𝑆)2 , 𝑐 ≤ 0. (62)

tilizing the continuity of mean velocities at 𝑐 = 0, and neglecting a
ery small vertical creep of 𝑂(𝑅3) within the medium, the interface and
he porous layer will move upwards with a small velocity given by

𝑧1𝑡 = (𝛼∕𝑘)𝑢(𝑆)2 (𝑐 = 0). (63)

e find that

𝑧2𝑡∕�̃�2𝑡|| = 𝛼𝜂0 = (𝑘𝐻1)𝑅(𝑘𝜂0), (64)

where all of the three parts are much less than one. Hence, the vertical
mean drift has no practical consequences in this problem.

6. Discussion and final remarks

We study the coupling between surface gravity waves and the
motion in a floating flexible porous surface cover. As first shown by
Reid and Kajiura (1957) for inviscid wave motion over a porous seabed,
wave damping occurs due to the vertical flow at the boundary between
the fluid and the porous bottom layer. As we have shown here, this
phenomenon, which we have termed porous damping, also occurs when
we have a floating porous layer at the sea surface.

Thin porous floating layers at the sea surface do occur in nature.
The perhaps most fascinating example is the case of large mats of
floating vegetation formed by Sargassum seaweed in the Sargasso Sea;
see e.g. Gower and King (2011). These mats form a fibrous water-
filled porous medium, which constitutes an important habitat for many
marine species (it is sometimes referred to as the golden floating
rainforest of the Atlantic Ocean). However, it is hard to find reports of
physical properties such as porosity or permeability in the literature.
Hence, without such data, our results will be rather speculative. On
the other hand, with relevant data, the results reported in this paper
could be applied to the slow flow of water (and pollution) in Sargassum
seaweed cause by incoming surface waves.

We have therefore concentrated on the application to rubble-ice
layers, which is a well-documented phenomenon in cold regions. This
application is interesting in that porous damping acts stronger than
viscous damping on shorter surface waves. It increases the filter-
ing of shorter waves from wave spectra observed from platforms
on the ice. However, also this case is not without problems. Since
rubble ice often occurs beneath a layer of consolidated ice, the rub-
ble is hard to observe from stations on the ice. Hence, it is diffi-
cult to separate the damping effect described here from other damp-
ing mechanisms in the vast amount of observations of waves in the
ice; see for example Wadhams (2000), Squire (2020) and references
therein.

In addition, the thickness of the rubble layer is not constant in

real-world ice covers. It has maximum thickness beneath ice ridges;

5

see for example Strub-Klein and Sudom (2012). On the other hand,
Haapala (2000) reports of regions of fairly constant-thickness rubble
ice in the Baltic Sea. Anyway, as long as the rubble layer is porous,
some lateral variation in thickness will not obstruct the porous wave
damping mechanism described here.

Finally, we remark that the porous matrix elements in ice rubble are
not rigidly connected. However, we assume that the individual rubble
blocks are so densely packed that we can ignore their relative motion.
Furthermore, a precise description of the flow in the ‘‘pores’’ is probably
not possible. But certainly, a kind of creeping motion will occur. Then,
the Darcy formulation of the friction in the permeable medium may
constitute a robust lowest order approximation; see also Marchenko
(2022). The description of the slow Lagrangian mean transport in
the rubble layer in this paper is new. It may have bearing to the
motion of ice algae, or pollution like oil or microplastics in rubble
ice.
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