
Andreas Nakkerud

Integer Programming Approaches
for Real-Time Traffic Management

Thesis submitted for the degree of Philosophiae Doctor

Department of Mathematics
Faculty of Mathematics and Natural Sciences

2022



© Andreas Nakkerud, 2022

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo 
No. 2514

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without 
permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.



To my wife and our family and friends





Preface
All the papers of this thesis have been written in collaboration with my supervisor
Prof. Carlo Mannino of the University of Oslo and SINTEF. I have also
collaborated closely with other researchers at SINTEF, most notably Dr. Giorgio
Sartor, and with researchers at the University of Rome Tor Vergata, most notably
Prof. Gianpaolo Oriolo and his then M.Sc. student Cristina Elena Filippi. They
all have my deepest gratitude; I could not have done this without them.

“Each of us is carving a stone, erecting a column,
or cutting a piece of stained glass
in the construction of something much bigger than ourselves.”

Adrienne Clarkson

First and foremost, I want to thank my supervisor, Professor Carlo Mannino.
In one of our first meetings, Carlo told me that the next great idea could come
from anyone, so I should never hesitate to speak my mind. Carlo truly lives
by this belief, and he always takes the time to listen to my input. With this
said, you can’t be a good supervisor without occasionally rejecting bad ideas.
Still, Carlo has the rare gift of making these occasions feel enlightening; it is
impossible to leave a meeting with Carlo without being eager to get back to
solving the problem.

I want to thank my friends and fellow students, Doctors Jørgen Trømborg,
Anders Hafreager, Leif Harald Karlsen, Daniel Lupp, and Vidar Klungre, for
proving that it can be done. Also, I would like to thank the members of the
DataScience@UiO Innovation Cluster for providing a great community and
forum for discussing our ideas and experiences. In particular, I would like to
thank Professors Ingrid Kristine Glad and Arnoldo Frigessi for their interest and
involvement in my work. On several pivotal occasions, they have helped shape
the direction of my research. I would also like to extend special thanks to my
fellow student Daniel Bakkelund. He has taught me much of both mathematics
and programming in the course of our cross-disciplinary explorations.

I want to thank my teachers, Trond-Håkon Bjærke and Elbjørg Bjuving, for
inspiring my love for mathematics and science. I also want to thank teacher,
colleague, and friend Roger Antonsen, who has been an important mentor
through most of my adult life.

I want to thank my brother, Erik Nakkerud, for many exciting and wild chess
games. Especially during the pandemic, the occasional online chess match and
accompanying phone call has been a much-appreciated relief.

I want to thank my parents, Anne K. Haugestad and Mads B. Nakkerud,
for inspiring and supporting my interest in mathematics, science, and academic

iii



Preface

pursuits since my childhood. They have always been great role models, showing
me the value of knowledge and curiosity. Their example led me to see learning as
among the most worthwhile of pursuits. I also want to thank my wife’s parents
for taking care of my wife and our daughter when I spent long hours working on
this thesis.

Finally, I want to thank my wife, Elisabeth Nakkerud. She provides the
bedrock of support on which I have built my life and work. We had a daughter
in the spring of 2020, and we’re expecting another child this winter; the joyful
company of my family leaves me fulfilled in a way that makes it possible to get
through anything.

Andreas Nakkerud
Oslo, January 2022

iv



List of Papers

Paper I

C. Mannino, A. Nakkerud, G. Sartor, and P. Schittekat. ‘Hotspot Resolution
with Sliding Window Capacity Constraints using the Path&Cycle Algorithm’.
Published in SESAR Innovation Days 7 (2018).

Paper II

C. Mannino, A. Nakkerud, and G. Sartor. ‘Air Traffic Flow Management with
Layered Workload Constraints’. Published in Computers & Operations Research,
Volume 127 (2021).

Paper III

C. Mannino, A. Nakkerud ‘Optimal Train Rescheduling in Oslo Central Station’.
Submitted to Omega, revision requested by editor.

Paper IV

A. Nakkerud ‘Rail Infrastructure Data for Oslo Central Station’. Submitted to
Data in Brief.

The published papers are reprinted with permission from Elsevier and SESAR.
All rights reserved.

v





Contents

Preface iii

List of Papers v

Contents vii

1 Introduction 1
1.1 Mathematical Optimization . . . . . . . . . . . . . . . . . 1
1.2 Easy Problems and Hard Problems . . . . . . . . . . . . . 2
1.3 Combinatorial Optimization . . . . . . . . . . . . . . . . . 4
1.4 Scheduling Problems . . . . . . . . . . . . . . . . . . . . . 5
1.5 Decomposition Approaches . . . . . . . . . . . . . . . . . . 11
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Theoretical Background 13
2.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . 13
2.2 Mixed-Integer Programming . . . . . . . . . . . . . . . . . 17
2.3 Linearizing Disjunctive Constraints . . . . . . . . . . . . . 23
2.4 Delayed Constraint Generation . . . . . . . . . . . . . . . . 24
2.5 Cutting-Plane Decomposition . . . . . . . . . . . . . . . . 25
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Contributions 31
3.1 Domain Knowledge and Requirements . . . . . . . . . . . 31
3.2 Theory and Modeling . . . . . . . . . . . . . . . . . . . . . 31
3.3 Implementation and Experiments . . . . . . . . . . . . . . 32
3.4 Summary of Papers . . . . . . . . . . . . . . . . . . . . . . 32

Papers 34

I Hotspot Resolution with Sliding Window Capacity Con-
straints using the Path&Cycle Algorithm 35

II Air Traffic Flow Management with Layered Workload
Constraints 45

III Optimal Train Rescheduling in Oslo Central Station 65

IV Rail Infrastructure Data for Oslo Central Station 97

vii





Chapter 1

Introduction

“Nothing pertaining to humanity becomes us so well as mathematics.”

Isaac Asimov

The topic of this thesis is the application of Mixed-Integer Linear Program-
ming approaches to problems in real-time traffic management. With steady
improvements in algorithm and solver design, the size and complexity of problems
that can be solved by Integer Programming are ever-expanding. We focus on
real-time scheduling problems in highly structured traffic systems, specifically
aviation and railways.

Thesis: Integer programming approaches to scheduling can be made flexible
and fast enough for applications in real-time traffic management.

For a scheduling approach to be suitable for real-time applications, it must be
able to handle real-life instances in a short time. In both air traffic management
and train dispatching, solution times of a minute or less may be required if an
approach is to make its way into practical use.

1.1 Mathematical Optimization

Before the invention of computers, mathematicians were not overly concerned
with the complexity of formulas used in proofs and results. Once a problem was
solved, it was solved. The arithmetical hierarchy, developed independently by
Kleene and Mostowski in the mid-1940s, is among the first works on classifying the
efficiency of a mathematical formula. With the invention of the Turing machine.
In 1965, Alan Cobham published a paper titled The intrinsic computation
difficulty of functions, where he suggested the modern definition of easy, or
tractable, problems. During the late 20th century, complexity theory grew into a
field of its own, and large classes of very difficult optimization problems were
discovered.

Linear programming, a technique for solving large sets of linear inequalities
in real variables, has been around in some form since Isaac Newton but was
developed into the modern science we know today in the 1930s and 1940s. In the
1960s, algorithms for solving linear programs were extended to integer variables.
With this, mathematical optimization could be used to attack some of the difficult
problems that were cropping up in complexity theory.
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1. Introduction

Figure 1.1: The city of Venice is famous for its bridges and canals. Left: Part
of an old-school map of Venice. Right: A graph representation of the Venetian
islands and bridges.

1.2 Easy Problems and Hard Problems

Imagine that Alice and Bob are going to Venice. They both love canals, but
while Alice wants to see all the islands, Bob wants to see all the bridges. Of
course, if Alice tags along with Bob, she will see all the islands; they all have
bridges. Though, while Bob will enjoy walking endlessly around Venice, spending
quality time on bridges, Alice may get tired of visiting the same islands over and
over. Alice wants to know if it is possible to visit every island exactly once. Bob
does not mind repeating islands but wants to visit every bridge exactly once.
Figure 1.1 shows a map of Venice city center along with a graph representation
of its islands and bridges.

For Bob, the problem turns out to be easy. He is trying to find what is
known as an eulerian path. Alice is not as lucky; what she needs to find is a
hamiltonian path. A simple inspection of each island can solve the first problem.
For the second problem, no known general solution is known that is significantly
better than checking each possible sequence of islands, the number of which is
exponential in the number of islands.

At first glance, it is sometimes hard to tell which optimization problems
are simple and which are difficult. Problems that appear easy may hide deep
complexity, and problems that appear hard may contain structures that greatly
simplify them. Of course, the problems of finding eulerian and hamiltonian paths
are very familiar to mathematicians familiar with graph theory, but in practice,
the difference is rarely as clear-cut.

1.2.1 Some Hard Problems can be Easy (Sometimes)

When crossing a bridge has a cost, we can look for the cheapest way to visit
each island exactly once. This problem is famously known as the Travelling
Salesperson Problem (TSP). We know TSP to be a hard problem because it can
be used as a generalization for a large class of very hard problems. Formally,

2



Easy Problems and Hard Problems

we say TSP is NP-hard since it generalizes any problem in the class NP.1 It
is widely believed that no problem in NP can have an efficient solution, which
means TSP cannot have an efficient solution; an efficient solution for TSP would
be an efficient solution for any problem in NP.

The formal complexity classification of a problem, such as NP or NP-hard,
is fundamental from a theoretical perspective. In practice, these classifications
give solid indications of how difficult the problem is to solve. However, problems
with a high theoretical difficulty rating may still be solvable in practice. Many
of the applications of Combinatorial Optimization is focused on solving NP-hard
problems in practice.

In practice, the Travelling Salesperson Problem is usually given as a set of
cities that should be visited, with travel costs given between any pair of cities.
While TSP is NP-hard, this is only a statement about worst-case instances of
the problem. It could be that practical instances were all straightforward to
solve. This did not appear to be the case for TSP. In 1962, Proctor & Gamle
offered a prize of $10,000 for the optimal solution to a TSP instance of only 33
cities [Coo12]. This problem was already very difficult since no known approach
was significantly faster than checking every ordering of the cities. For 33 cities,
that is over 1035 orderings. For comparison, the age of the universe is about
1020 seconds.

Barring an exceptional breakthrough shattering our understanding of
theoretical complexity, solving the TSP in general requires exponential
computational resources; for every city added to the problem, the computational
requirements double. If this is true in practice, even with Moore’s law promising
computing power growing exponentially more available, we can only expect to
add one or two cities to our problems every year.

The Integer Programming community came to the rescue of the traveling
salesperson. By 2006, the record for the largest solved TSP instance was an
optimal tour of 85,900 cities. This record was set by the Concorde solver
developed by William Cook et al. The number of orderings, in this case, is
10386521, a number beyond imagining. It was not brute force but rather an
understanding of some structure in the problem that brought the record to these
unbelievable heights.

The travel distance between cities on a map is not randomly distributed.
Instead, it is usually very closely correlated with the straight-line distance
between the cities. This means that the shortest tour through a collection of
cities likely will pass between neighboring cities more often than it jumps around.

What happens then if we take away this structure? What if we construct a
map full of magical portals, strange barriers, and strict travel restrictions? If we
allow arbitrary distances between pairs of cities, the TSP reverts to the problem
of finding the shortest hamiltonian path in an arbitrary graph. In which case,
we may be back to struggling with 33 cities.

1NP-complete is another common class of problems. This class contains the easiest NP-hard
problems: the problems that generalize NP while also belonging to NP. That is, NP-complete
is the intersection of NP and NP-hard. We use NP-hard here since it is a more general class,
although many of the problems we discuss have versions that are NP-complete.
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1. Introduction

While the Concorde is an enormously impressive piece of software, it does
not prove anything about the worst-case instances of the TSP. Sylvia Boyd and
colleagues at the University of Ottawa discovered that the Petersen graph could
form the basis for very tough instances of TSP. In one case, Concorde took over
11 hours to solve an instance with only 56 nodes, according to Boyd.

1.3 Combinatorial Optimization

The Travelling Salesperson Problem is one of many that falls under the purview
of combinatorial optimization. Combinatorics is the study of orderings and
combinations, and in combinatorial optimization, we study optimization problems
where the space of possible solutions is built on combinatorial principles.

An illuminating example of combinatorial optimization is the so-called
knapsack problem. In this problem, we are given the task of filling a knapsack
for maximum value while respecting the weight limit of the knapsack. Each item
we can choose from has a given weight and value.

In order to state the knapsack problem formally, we let S be the set off all
the available items. For an item s ∈ S, let Cs be the item’s value, and Ws the
weight. We let W be the maximum weight allowance of the knapsack and denote
by S the set of items selected for the knapsack. The knapsack problem is as
follows.

maximize
∑

s∈S Cs

subject to
∑

s∈S Ws ≤ W

S ⊆ S

(1.1)

1.3.1 Integer Programming

Integer programming (IP) is one of the most powerful tools for solving
combinatorial optimization problems. First, we must state our problem using
integer variables. We let S = {s1, . . . , sn}, and introduce the binary variables yi

for 1 ≤ i ≤ n. We let yi = 1 when si ∈ S, that is, when si is chosen to be in the
knapsack.

maximize
∑n

i=1 Ciyi

subject to
∑n

i=1Wiyi ≤ W

yi ∈ {0, 1} i ∈ {1, . . . , n}

(1.2)

The above set of equations is an integer linear program (ILP) since both
the objective is a linear function and all the constraints are linear. If we add
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Scheduling Problems

Figure 1.2: XKCD #287 (NP-complete) by Randall Munroe (CC BY-NC 2.5).

continuous variables to the problem, we get a mixed integer linear program
(MILP), which is the type of optimization model focused on in this thesis.

While the knapsack problem may not sound all too hard initially, it is, in
fact, NP-hard. Figure 1.2 shows a comic by Randall Munroe highlighting how
difficult even a simple instance of the knapsack problem can be. In the version
of the knapsack problem in the comic, the task is not to maximize value but
to find an exact match for the capacity of the knapsack. Also, items may be
selected multiple times.

For the curious, the solution to the problem in Figure 1.2 is one mixed fruit,
two hot wings, and one sampler plate. In an interview with the Mathematical
Association of America, Munroe admitted missing a trivial solution to the
problem: seven mixed fruit.

Integer programming (and mixed-integer linear programming) is a very
powerful tool because many general-purpose solvers and specialized algorithms
have been developed for solving IPs (and MILPs).

1.4 Scheduling Problems

One of the widespread applications of mathematical optimization is scheduling
problems. In job-shop scheduling, for example, we are given a set of jobs or work
orders to schedule. The schedule can be subject to several resource constraints,
such as deadlines and personnel and equipment availability. The objective may
be to minimize overtime, minimize deadline overruns, or maximize the number
of completed work orders before a set time.

5
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1. Introduction

In the following example, we are given n jobs, and our task is to schedule as
many as possible in a week of 5 days. Each job takes a whole day. E is the set of
jobs requiring an engineer, and M is the set of jobs requiring a mechanic. NE(d)
and NM (d) are, respectively, the number of engineers and mechanics available
on day d. We define binary variables yd

i , where yd
i = 1 if we schedule job i on

day d. The following is an IP formulation for a simple version of the job-shop
scheduling problem.

maximize
∑n

i=1
∑5

d=1 y
d
i

subject to
∑

i∈E y
d
i ≤ NE(d) d ∈ {1, . . . , 5}∑

i∈M yd
i ≤ NM (d) d ∈ {1, . . . , 5}∑5

d=1 y
d
i ≤ 1 i ∈ {1, . . . , n}

yd
i ∈ {0, 1} i ∈ {1, . . . , n}, d ∈ {1, . . . , 5}

(1.3)

Given a problem statement, there may be many possible formulations, each
with advantages and disadvantages. The basis for any formulation is the choice
of variables used to model decisions. These variables must be chosen so that
we can express constraints and objectives as simply as possible. In the case of
linear programming, the constraints and objectives must be linear functions in
the variables.

We can extend the example (1.3) with additional types of constraints. For
example, if job j must be completed before job k, we can add the constraints

y1
k = 0
y2

k ≤ y1
j

y3
k ≤ y1

j + y2
j

y4
k ≤ y1

j + y2
j + y3

j

y5
k ≤ y1

j + y2
j + y3

j + y4
j

(1.4)

That is, job k cannot be done on day 1. Furthermore, it can only be done on
one of the other days if job j is completed on one of the preceding days.

A different formulation could help us simplify (1.4). If we let zi ∈ {1, 2, 3, 4, 5}
be the day we schedule job i, then instead of (1.4), we write simply

zk ≥ zj + 1 (1.5)

The problem with this choice of variable is that the rest of the formulation
becomes more complicated. We can no longer use the variables directly in a
count, as we have done in (1.3).

Finding good IP (or MILP) formulations for scheduling problems is the
major challenge in applying mathematical optimization to scheduling. A good
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A

B

Figure 1.3: Two railway lines merging in a train station. Train dispatchers must
decide the order of trains entering the station’s one platform track.

formulation must permit modeling of all constraints and objectives and be suited
to some solution approach—for example, the use of a general-purpose solver.

As modern solvers, like CPLEX and Gurobi, become better at exploiting
structure in the formulations they solve, creating formulations with a clear
structure becomes essential.

In (1.3), we handle scheduling conflicts by limiting the number of simultaneous
jobs requiring the same personnel. In transport scheduling, we get similar
constraints for trains in train stations, busses in bus terminals, and cargo trucks
in loading bays.

1.4.1 Scheduling in Traffic Management

In the job-shop scheduling example in the previous section, we intentionally
created a problem that was well suited to a time-indexed formulation. In these
formulations, time is divided into discrete slots or windows. In the job-shop
example, each slot is a full workday.

If we want to apply time-indexed formulations to traffic scheduling, we will
need to use much shorter time slots. For trains in a railway station, time slots
of 1 minute or shorter are often required. Scheduling 24 hours will then require
1440 time slots, compared to the five time slots used in (1.3). Even so, there are
many scheduling applications where time-indexed formulations work well.

Figure 1.3 shows an example of a single platform train station with two
incoming lines and one outgoing line. We let A be the set of trains to schedule
and H be the planning horizon. That is, H is a set of time indexes, one for
each time slot. If a ∈ A is a train and t ∈ H a time slot (or time index), then
we let xat ∈ {0, 1} be a decision variable, where xat = 1 if a arrives at the
station platform in slot t. Furthermore, we let cat be the cost of a arriving at
t. Typically, this cost will be zero until the train becomes delayed. We let Da

be the dwelling time of train a. That is, the time a must wait at the platform
before departing.

In order to create an IP formulation for this train scheduling problem, we
introduce the set Tat = {(t−Da + 1), . . . , t}. That is, Tat is the set of arrival
times for a that would cause a to be at the platform at time t. If the train arrives
at t−Da, it would depart just before t. We get the following IP formulation.

7



1. Introduction

minimize
∑

a∈A
∑

t∈H catxat

subject to
∑

t∈H xat = 1 a ∈ A∑
a∈A

∑
t′∈Tat

xat′ ≤ 1 t ∈ H

xat ∈ {0, 1} a ∈ A, t ∈ H

(1.6)

When we are scheduling only in a station, we must likely respect the order of
the incoming trains on each line. We let (a1, . . . , an) be the sequence of trains
coming in on line A, and (b1, . . . , bm) be the sequence of trains coming in on line
B. We can preserve the order of the trains on line A by adding the following
constraints to (1.6):∑

t∈H
[t+Dai−1 ]xai−1t ≤

∑
t′∈H

t′xait′ i ∈ {2, . . . , n} (1.7)

and similar for B. Since each train enters the station exactly once, the sum on
the left-hand side has only one non-zero term. That is, t+Dai−1 , wheret is the
time train ai−1 enters the station and Dai−1 is the dwelling time of that train.
The right-hand side also has a single non-zero term, which is t′, where t′ is the
time ai enters the station. Thus, the constraint ensures that each train must
enter the station no sooner than the preceding train on the same line has left.
Of course, any number of trains from the other line may come between the two
trains.

We can further expand Equation (1.6) to cover additional line segments and
stations. However, this would require the introduction of even more variables,
along with additional constraint types. For example, we would likely need to
add the option of a train remaining at the station for longer than the minimum
dwelling time.

1.4.2 Continuous-Time Formulations

Different problems may call for different formulations. Continuous-time
formulations are an alternative to time-indexed formulations for scheduling
problems in traffic management. We revisit the station in Figure 1.3, and this
time build a MILP formulation around the continuous-time variables ta. For a
train a ∈ A, ta is the time that train enters the station. If train a enters the
station before train b, then we represent this by the constraint

tb ≥ ta +Da (1.8)

In order to build a MILP formulation, we also need variables for deciding
the order of trains. For trains a, b ∈ A, we introduce the binary variables
yab, yba ∈ {0, 1}, where yab = 1 is train a arrives in the station before train b.
We combine these variables into the disjunctive constraint

tb ≥ ta +Da if yab = 1
ta ≥ tb +Db if yba = 1 (1.9)

8
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Since the two inequalities are equal to the order of the train names, we will often
list only one in a formulation.

In order to use (1.9), we must first write it in a linear form. Taking the first
of the two inequalities, we arrange it as follows:

tb − ta −Da ≥ 0 if yab = 1 (1.10)

Notice that even when the order of the trains is wrong (or the trains overlap),
the left-hand side of this inequality becomes negative. However, the magnitude
of the left-hand side will never exceed the planning horizon of the model, at
least not by much. After all, both trains must be scheduled to arrive within the
planning horizon.

If we let M be some large number, maybe twice the length of the planning
horizon, we can rewrite (1.10) as

tb − ta −Da ≥ −M(1− yab) (1.11)

If yab = 0, then the right-hand side of this inequality becomes −M . This is
such a negative number that the left-hand side will always be larger, and the
constraint is effectively inactivated. If yab = 1, on the other hand, the right-hand
side becomes 0, and the constraint is active.

The trick shown in (1.11) is known as the big-M trick, and formulations
using this trick are known as big-M formulations. The trick is very powerful,
but it has its drawbacks. Adding very large coefficients to a MILP formulation
can slow down the solution process, throw off heuristics that cut off irrelevant
parts of the solution space, and even cause numerical instability in the solver.

As before we let (a1, . . . , an) be the sequence of incoming trains on line A,
and (b1, . . . , bm) the same for line B. We let C be the set of pairs of trains on
different lines. That is,

C = {(ai, bk) | i ∈ 1 . . . n, k ∈ 1 . . .m} (1.12)

For each train a ∈ A, we let Sa be the scheduled arrival time of a. We can
then write the following big-M -based MILP formulation for our train scheduling
example:

minimize
∑

a∈A ηa

subject to tai
≥ tai−1 +Dai−1 i ∈ 2 . . . n

tbk
≥ tbk−1 +Dbk−1 k ∈ 2 . . .m

tb − ta −Da ≥ −M(1− yab) (a, b) ∈ C
ta − tb −Db ≥ −M(1− yba) (a, b) ∈ C

ηa ≥ ta − Sa a ∈ A

ta ≥ Sa a ∈ A
yab ∈ {0, 1} a, b ∈ A

(1.13)

9
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In the last lines, we define the variables used in the formulation. For
continuous variables with constant lower or upper bounds, it is customary
to state these bounds instead of the variable type, as we have done here for ta.
If a continuous variable r is unbounded, we write r ∈ R.

With the continuous-time variables, it is very easy to extend this formulation
to allow trains to wait at the station beyond their dwelling time. Instead of
having a single continuous variable per train a ∈ A, we introduce the arrival
time tAa and departure time tDa variables. Since the arrival time determines the
delay, we can use it in the objective. Of course, with minimum dwelling time,
we must have

tDa ≥ tAa +Da (1.14)

so that the train does not depart too early.
Now, if train b must wait for train a, we have

tAb ≥ tDa (1.15)

The arrival of b must be after the departure of a.
The advantage of this generalization is that we can now let the model respect

constraint on the outbound line. If there were different outbound lines, the
formulation then allows the prioritization of trains that can depart quickly after
arrival. It is possible to model these same constraints by extending the time-
indexed formulation (1.6). However, the extension is more natural and easy to
understand with the continuous-time variables.

1.4.3 Scheduling in Highly Structured Traffic Systems

The previous section gave examples of MILP formulations for two different
scheduling problems. Considering how different these formulations were, it may
seem like different problems always call for different formulations. After all,
train, car, airplane, and boat traffic behave very differently.

However, it turns out that several highly structured traffic systems behave
similarly to railways. A high-speed railway connecting two cities shares many
important constraints with a flight connection between the same cities. In both
cases, the planning stage may be able to ignore much of what happens outside
the stations or airports. In both cases, the capacity for waiting vehicles is limited,
and a very limited number of vehicles can enter or leave simultaneously. Boat
traffic in shipping canals may show similar constraints, while car traffic is likely
to be too flexible and therefore too different.

When the scheduling of a traffic system is focused around some heavily
restricted chokepoints, we can likely use scheduling approaches developed for
railways. This thesis studies how a class of MILP formulations can be applied
to congestion reduction in centralized air traffic control and real-time train
dispatching in large passenger stations.
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1.5 Decomposition Approaches

Big-M MILP formulations may be suited to various decomposition approaches.
In this thesis, we study the effect of using an improved Bender’s decomposition
approach, called the Path&Cycle approach [LM19].

One of the drawbacks of the Path&Cycle approach is that it leads to a
non-compact formulation. The approach eliminates big-M constraints but does
so at the cost of replacing them with a potentially exponential number of new
constraints.

In our experience, the decomposition approach was less effective for the
combined in-station routing and dispatching problem. In Paper I, we compared
a decomposition approach with a standard approach to scheduling problems
in air traffic control. Having found the decomposition approach promising, we
made a more extensive study of it in Paper II. In Paper III, we used a big-M
approach without decomposition, as the non-compactness introduced by the
decomposition became a problem.

1.5.1 Delayed Row Generation

In MILP formulations for train scheduling, a large number of constraints are
needed to handle conflicts between trains, as can be seen in (1.13). The number
of these disjunctive constraints is quadratic in the number of trains, whereas the
number of the constraints is linear.

If the existing schedule results in only a few conflicts, we may get away with
leaving out a large number of the disjunctive constraints. One approach, called
delayed row generation, is to drop most or all the disjunctive constraints from
the beginning the add them one by one whenever the current solution violates
one. This process requires solving many intermediate optimization problems, but
they are significantly smaller than the full problem. The delayed row generation
problem works well when this process generates only a tiny fraction of the rows
in the full formulation.

It is delayed row generation that also makes the Path&Cycle approach
possible. While it may introduce an exponential number of constraints into the
formulation, most of these may be superfluous in many cases. Again, we may
start by dropping all of them and introducing them as needed.

Delayed row generation relies on the ability to separate violated constraints
efficiently. That is, we need a fast way of checking if a given solution is, in
fact, feasible or if there are any constraints it violates. Efficient constraint
separation is possible for scheduling conflicts between trains or airplanes and for
the constraints introduced by the Path&Cycle approach.
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Chapter 2

Theoretical Background
“Without mathematics, there’s nothing you can do.
Everything around you is mathematics.
Everything around you is numbers.”

Shakuntala Devi

In mathematical optimization, we study problems of the form

min
x∈X

f(x) (2.1)

The different branches of mathematical optimization focus on various
restrictions on X and f . In linear optimization, one of the most restrictive classes
of mathematical optimization, both X and f must allow linear representation.
Examples of more general classes of mathematical optimization are quadratic
optimization and convex optimization. These other classes allow more expressive
mathematical models at the cost of more demanding solution algorithms.

This chapter aims to outline the concepts that are central to the work
presented in this thesis. Thus, many details are omitted when they do not
directly bear upon the topics explored in this thesis. For a thorough introduction
to mathematical optimization, see [BT97; WN99].

2.1 Linear Programming

Linear programming is a common approach to optimization problems that
allow linear representation. It is a widely applied approaches to mathematical
optimization. The normalized form of a linear program is

(LP) z = min{cT x : Ax ≥ b,x ∈ Rn
+}. (2.2)

Linear programs can be solved in polynomial time using the ellipsoid method,
proving they are computationally tractable. However, most linear problems are
solved more efficiently using the simplex algorithm by George Dantzig, even
though this algorithm may require exponential time.

Within linear programming, we often allow integrality constraints as a special
type of non-linear constraint. If we represent a problem using only integer
variables and linear expressions, the result is an integer (linear) program

(IP) z = min{cT x : Ax ≥ b,x ∈ Zn
+}. (2.3)

If we represent a problem using a mix of continuous and integer variables,
the result is a mixed-integer (linear) program

(MIP) z = min{cT x + fT y : Ax +By ≥ b,x ∈ Rn
+,y ∈ Zp

+}. (2.4)
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Figure 2.1: Unbounded polytope in R2
+ with 4 vertices and 2 extreme rays.

2.1.1 Simplex Algorithm

For the (continous) linear program (2.2), the feasible region is the set

P =
{

x ∈ Rn
+ : Ax ≥ b

}
. (2.5)

Such a subset of Rn
+ bounded by the hyperplanes Aix = bi, is called a convex

polytope or simply polytope. Figure 2.2 shows a bounded 3-dimensional convex
polytope.

When a convex polytope is bounded, it can also be defined as the convex
hull of a set of critical points or vertices. A point x is a vertex of P if it cannot
be written as a convex combination of two other points in P . That is, x is not a
non-extreme point on any line in P . If X is the set of vertices of P , we write

P = conv(X) =
{∑

x∈X

λxx :
∑
x∈X

λx = 1, λ ∈ RX
+

}
(2.6)

When a convex polytope in P ⊆ Rn
+ is unbounded, there will be rays r ∈ Rn

+
such that for any x ∈ P , we have x + µr ∈ P for any µ ≥ 0. A ray in P is an
extreme ray if it cannot be written as a convex combination of other rays in P .
Figure 2.1 shows an example of an unbounded 2-dimensional polytope with 4
vertices and 2 extreme rays.

If a polytope P has vertices X and extreme rays R, we can write

P =
{

x +
∑
r∈R

µrr : x ∈ conv(X), µ ∈ RR
+

}
(2.7)

In linear programming, we typically define polytopes by bounding hyperplanes.
That is, by sets of linear inequalities. While it is very natural to state optimization
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x0

x∗

Figure 2.2: The simplex algorithm steps from vertex to vertex, going from some
initial solution x0 to an optimal solution x∗. Each step must be an improvement
of the solution.

problems in terms of inequalities, it is natural to discuss the solution of these
problems in terms of vertices and rays, as indicated by the following proposition.

Lemma: Let P ⊆ Rn be a convex polytope with vertices X and extreme
rays R, let c ∈ Rn such that cT r < 0 for all rays r ∈ R, and let x′ ∈ X. Then
either

cT x′ = min
x∈P

cT x (2.8)

or there is an edge in P connecting x′ to x′′ where cT x′′ > cT x′.

The simplex lemma guarantees that we can find an optimal solution to an
LP by moving from vertex to vertex in the corresponding polytope, given that
the LP is not unbounded. Figure 2.2 shows a sequence of vertices that could be
produced by the simplex algorithm.

While the simplex algorithm is guaranteed to find an optimal solution to a
bounded LP, it may require a vast number of steps. We can try to mitigate this
by looking for the option giving the largest immediate improvement. However,
there is no guarantee that such a greedy algorithm will find the shortest path.
Although the worst-case performance of the simplex algorithm is poor, the
algorithm turns out to be enormously efficient in practice.

To understand why we can use the n-dimensional hypercube as an illustration.
It is bounded by the 2n hyperplanes xi ≥ 0 and xi ≤ 1 for 1 ≤ i ≤ n, but has the
2n vertices {0, 1}n. This feasible region is huge, but the path taken by simplex
can have at most n steps; each step taken must improve the objective, which is
to minimize cT x.

The n-dimensional hypercube polytope has edges connecting pairs of vertices
that differ in exactly one coordinate xi. The simplex algorithm can follow ad
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x0

x∗

Figure 2.3: It is theoretically possible for simplex to find very long paths to the
optimal solution, even when each step must improve the solution.

edge changing xi from 1 to 0 if ci > 0, and from 0 to 1 if ci < 0. Thus, once
variable xi has been changed, it can never change back since this would worsen
the objective. As a result, the simplex algorithm can take at most n steps.

Of course, the n-dimensional hypercube is an artificially simple case. The
optimal solution could be determined directly by inspection of the objective as

xi =
{

1 if ci ≤ 0,
0 otherwise.

(2.9)

There will generally be edges between vertices that differ in several variables.
Figure 2.3 shows a slightly more complex example where a terrible solution path
is possible. The figure shows the convex hull of points on a spiral

P = conv {(cos 2πz, sin 2πz, z) : z ∈ {i/8 : i = 0 . . . 8}} (2.10)

If we let c = (0, 0,±1), then each vertex of P has an edge leading to the
optimal vertex. Still, it is possible for the simplex algorithm to find a path
visiting every vertex. This path is shown in Figure 2.3.

While the simplex algorithm is easy to conceptualize, it is not trivial to
implement. However, many high-quality solvers are available commercially and
as community projects. In our work, we rely entirely on solvers for solving LPs.
For more details on the simplex algorithm, see [BT97].

2.1.2 Linear Programming Duality

A very important result in linear optimization is the strong duality theorem for
linear programming. Given a linear program

z = min
{

cT x : Ax ≥ b,x ≥ 0
}

(2.11)
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there exists a dual linear program

v = max
{

uT b : uTA ≤ cT ,u ≥ 0
}

(2.12)

The strong duality theorem states that if either problem is feasible, then both
are feasible and z = v.

Linear programming duality is useful for rewriting problems to an equivalent
form. The weak duality theorem states that for any pair of feasible solutions
xi,uj , we have

cT xi ≥ uT
j b (2.13)

so that we can use dual linear programs to find bounds on the optimal solution
value.

2.2 Mixed-Integer Programming

Integer Linear Programming is a branch of linear programming where we slightly
relax the linearity requirement. We do this in a very controlled way by allowing
integrality constraints on the variables of the linear program.

The resulting feasible region is no longer a polytope but instead a union of
polytopes.

minimize c1x1 + c2x2 + fy

subject to x1 + x2 − y = 0

x1, x2 ∈ [0, 3]
y ∈ Z+

(2.14)

We note that if we let x = (x1, x2, y)T , then the feasible region of (2.14) can
be expressed as

X = {x ∈ R3
+ : Ax ≥ b, y ∈ Z+} (2.15)

which is not a polytope. If we treat y as an integer constant, ranging from 0 to
6, we get a 7 disconnected 2-dimensional polytopes, shown in Figure 2.4a.

If we are given an objective c to minimize, one way of doing this is as follows:
apply the simplex algorithm to each of the seven polytopes, then pick the global
minimum from the local solutions. The biggest problem with this brute-force
approach is that it scales exponentially with the number of integer variables;
each feasible combination of integer values gives rise to a polytope that must be
explored.
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(a) We can show the feasible region in 2
dimensions by treating the integer variable
as a constant. Each possible value of the
constant gives a (disconnected) part of the
feasible region.
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(b) If we relax the integrality constraint
on the integer variable, the resulting fea-
sible region is a plane (a 2-dimensional
polytope) in 3 dimension. This plane con-
tains the feasible region for the unrelaxed
problem.

Figure 2.4: Feasible region of a mixed-integer linear program. The red lines
(and dots) represent the feasible region. The shaded area represents the relaxed
feasible region.

2.2.1 Relaxed Formulation

In the case of (2.14), we are fortunate enough that a much simple approach
will yield the optimal solution. We create the relaxed formulation for (2.14) by
dropping all the integrality constraints. The resulting relaxed feasible region is

RX = {x ∈ R3
+ : Ax ≥ b} (2.16)

This feasible region is shown in Figure 2.4b. From the figure, we see that each
vertex of RX is in fact also in X. Since the simplex algorithm by design always
finds vertex solutiuons, we can solve (2.14) by ignoring the integrality constraints
and feeding the remaining constraints and objective function to simplex. The
relaxed version of a MIP or IP is called the relaxation, the linear relaxation or
the linear programming (LP) relaxation.

The feasible region for the general MIP (2.4) is

X = {x ∈ Rn
+ × y ∈ Zp

+ : Ax +By ≥ b} (2.17)

and the relaxed feasible region is

RX = {x ∈ Rn
+ × y ∈ Rp

+ : Ax +By ≥ b} (2.18)

The mixed-integer program (2.14) was carefully designed so that all the
vertexes of its feasible region would take integer values in the integer variable
coordinate. In reality, only a very few problems have this very fortunate property.
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(a) No vertex of the relaxed feasible region
takes an integer value for y.
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(b) The perfect reformulation is the convex
hull of the original feasible region.

Figure 2.5: We can create a perfect reformulation by cutting away vertices that
are not feasible for the original MIP.

2.2.2 Perfect Reformulations

By a very slight modification of (2.14), we get a MIP which can no longer be
solved directly using simplex.

minimize c1x1 + c2x2 + fy

subject to x1 + x2 − y = − 1
2

x1, x2 ∈ [0, 3]
y ∈ Z+

(2.19)

As shown in Figure 2.5a, each vertex of the relaxed feasible region of (2.19) has
a fractional value for the integer variable, and is therefore not in the feasible
region of (2.19).

One way to resolved this issue by adding valid inequalities or valid cuts to
the formulation. An inequality aT x ≥ a0 is valid for a formulation if it holds for
each point in the corresponding feasible region. By adding

x1 + x2 ≥ 0.5
x1 + x2 ≤ 5.5
x1 − x2 ≥ −2.5
x2 − x1 ≥ −2.5

(2.20)

to (2.19), we get the feasible region shown in Figure 2.5b. By adding (2.20)
to (2.19), we have created a perfect reformulation of (2.19). In a perfect
reformulation of a MIP, each vertex of the relaxed feasible region takes integer
values for all integer variables. Alternatively, the feasible region of a perfect
reformulation is the convex hull of the original feasible region, i.e. RX = conv(X).

If a perfect reformulation is known for a given MIP, then using this
reformulation allows us to solve the MIP using simplex. The problem is that
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(a) The optimal solution to the relaxed
problem is not feasible for the original
MIP.
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(b) In this case, the relaxed optimal
solution in each branch is feasible for the
original MIP.

Figure 2.6: When the optimal solution to a relaxed problem has integer variables
with fractional solutions, we branch on one of those variables.

finding perfect reformulations to arbitrary MIPs amounts to finding convex hulls,
which is, in general, NP-hard.

2.2.3 The Branch-and-Bound Algorithm

When finding perfect reformulations is impractical, we can apply the branch-
and-bound algorithm. Given a feasible region X with relaxation RX , the
branch-and-bound algorithm relies on the observation that, since X ⊆ RX ,

min
x′∈RX

f(x′) ≤ min
x′∈X

f(x′) ≤ f(x) ∀x ∈ X (2.21)

That is, feasible solutions provide upper bounds on the optimal value, while
optimal solutions to the relaxed problem provide lower bounds on the optimal
value.

In the branch-and-bound approach to solving a MIP M , we start by solving
the relaxation of M . If the solution has at least one integer variable taking
fractional values, we pick one of these variables, say y with fractional value r,
and create two new MIPs. In one, we add the constraint y ≥ dre, in the other,
we add y ≤ brc. This process is pictured in Figure 2.6 for the MIP (2.19) with
the objective −x1 + x2.

In order to illustrate the branch-and-bound process, we consider the IP

minimize 4x+ 3y

subject to x+ 3y ≥ 5
12x+ 6y ≥ 25

x, y ∈ Z+

(2.22)
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Figure 2.7: The branch-and-bound approach to solving IP (2.22). M2 gives an
integer feasible solution. M3 is infeasible and no further exploration is required
from it. M4 is not integer feasible, but the LP value is higher than the lower
bound established by M2, so no further exploration is needed. The LP solution
to M2 is the optimal solution.

Figure 2.7 shows the branching tree for (2.22). In the figure, M0 is the LP
relaxation of the IP. When we move down the branching tree, we restrict the
feasible region. Thus, the optimal value in the root node of any subtree is a lower
bound on the optimal value for any node in that subtree; we cannot improve the
solution by limiting the search space.

The idea behind the branch-and-bound approach is to introduce integer
bounds on variables taking fractional values until integer solutions are found.
At any time, the incumbent solution is the best integer solution known in terms
of objective value, given that some integer solution has been found.

In the solution presented in Figure 2.7, the first step is to solve M0. Since
the solution is not integer, we branch on the most fractional variable, in this
case, x. We may also note z0 as a lower bound on the optimal value.

Branching on x generates M1 and M2. The solution of M1 is still fractional,
but the solution of M2 is integer. We note x2 = (x2, y2) as the incumbent
solution, with zIP = z4 as an upper bound on the optimal value. The incumbent
solution best known integer solution in terms of objective value.

Since z1 < zIP, the optimal solution may still be in the subtree rooted at M1,
so we again branch on the most fractional variable. This could be x still, but in
this case, we branch on y. The resulting nodes are M3 and M4. M3 is infeasible
and can be discarded. The solution of M4 is fractional, but the optimal value
is higher than the existing upper bound, so the subtree rooted at M4 cannot
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Figure 2.8: Formulations for an integer program. The feasible region is drawn
using large, solid dots. The smaller dots are integer points outside the feasible
region. The green polygon shows the perfect reformulation (the convex hull)
of the feasible region. The black polygon and the gray polygon show other
formulations. The red rectangles are not formulations; both rectangles contain
infeasible points, and the dashed rectangle does not contain the entire feasible
region.

contain an optimal solution, and we can discard it too.
Thus, the optimal solution to (2.22) is x2 with optimal value z2. The graph

in the upper left of Figure 2.7 shows the solutions to the feasible nodes of the
branching tree, together with the objective normalized as uc. The dotted line
through x2 shows the set of points with the same objective value as x2.

2.2.4 Formulation Strength

Given a perfect reformulation of a MIP, we can bypass the branch-and-bound
process. The solution of the root M0 of the branching tree would be integer
for a perfect reformulation, and the algorithm would perform no branching.
Perfect reformulations are an uncommon special case; in general, we look for
formulations that lead to branching trees that are as small as possible.

Figure 2.7 shows several formulations for an IP, together with some polygons
that are not formulations for the IP. Given two formulations P and Q, we say
that P is stronger than Q if P ⊆ Q. This is motivated by the observation

P ⊆ Q =⇒ min
x∈P

f(x) ≥ min
x∈Q

f(x) (2.23)

That is, stronger formulations give tighter bounds on any objective value.
Generally, tighter bounds lead to smaller branching trees. This can be seen in
Figure 2.7, where we stop branching at M4 because the lower bound for that
node was higher than the incumbent solution.

The two non-perfect formulations in Figure 2.8 are not comparable since
neither is a subset of the other. In this case, experimentation would be necessary
to determine which formulation performs better in practice. Different MIP
formulations for the same problem may use different variables. In this case, a
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(b) By introducing a selection variable,
we are able to construct a disjunctive
constraint polytope.

Figure 2.9: Linearizing a disjunctive constraint by introducing a selection
variable.

direct comparison between the formulations will be even more difficult without
resorting to experimentation.

2.3 Linearizing Disjunctive Constraints

In continuous-time formulations for scheduling problems, we encounter disjunc-
tive constraints on the continuous variables. This happens, for example, when
two vehicles share a resource, and one must pass before the other. We consider
the disjunctive constraint

x2 ≥ x1 + ∆ or x1 ≥ x2 + ∆ (2.24)

where x1, x2 ∈ [0, 3∆]. These constraints result in the fesible region shown in
Figure 2.9a.

In order to linearize (2.24), we introduce a selection variable that will
deactivate exactly one of the disjuncts in the constraint. A constraint is redundant
if it is implied by the rest of the formulation. The big-M trick is a technique for
rendering a constraint redundant by adding a very large negative term to one
side of the inequality. When we apply the big-M trick to a constraint aT x ≥ b,
we get

aT x− b ≥ −My

y ∈ {0, 1}
(2.25)

where M is a very large number. If the condition for making the constraint
redundant is y = 0, we replace y with y − 1 in (2.25). The big-M trick can
be applied whenever a lower bound on aT x − b is implied by the rest of the
formulation.
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(b) M is too small, which renders the
formulation invalid.

Figure 2.10: Getting the right value for M in the big-M trick.

We can apply the big-M trick to (2.24). The result is

−x1 + x2 + 4∆y ≥ ∆
x1 − x2 − 4∆y ≥ −3∆

x1, x2 ∈ [0, 3∆]
y ∈ [0, 1]

(2.26)

where M = 4∆, which is just large enough to guarantee redundancy in this case.
The feasible region is the polytope shown in Figure 2.9b. The faces defined
by y = 0 and y = 1 correspond, respectively, to the two feasible regions of
Figure 2.9a.

If we don’t use an appropriate value for M , we end up with one of the
situations shown in Figure 2.10. If we set M too large, the resulting formulation
is weaker, as shown in Figure 2.10a. If we let M be too small, the resulting
formulation cuts away part of the original feasible region, as shown in Figure 2.10b.
This formulation is invalid because it cuts away feasible integer solutions.

2.4 Delayed Constraint Generation

The branch-and-bound algorithm presented above is an example of an iterative
solution algorithm. In iterative approaches, simplified versions of the problem,
typically relaxations, are solved and gradually built up until the solution can be
proved feasible (and optimal) for the full problem.

A common iterative approach is delayed constraint generation. In this
approach, some constraints are dropped from the initial model. As the solution
algorithm proceeds, constraints are added back in as needed. For delayed
constraint generation to work, we rely on an efficient solution to the corresponding
separation problem.
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Separation problem: Given a set of constraints A ⊆ Rn × R and a point
x∗ ∈ Rn

+, find a constraint (a, b) ∈ A such that aT x∗ < b, or determine that no
such constraint exists.

When solving a MIP

min{cT x : Ax ≥ b : x ∈ Zp
+ × Rq

+} (2.27)

we let A represent the set of constraints Ax ≥ b. In each iteration i of the
delayed constraint generation process, Ai is a subset of A such that

A0 ⊆ . . . ⊆ Ai ⊆ Ai+1 ⊆ . . . ⊆ A (2.28)

Thus, we get a sequence of MIPs

min{cT x : Aix ≥ bi : x ∈ Zp
+ × Rq

+} (2.29)

with feasible sets Qi and optimal solutions (xi, zi) respecting

Q ⊆ . . . ⊆ Qi+1 ⊆ Qi ⊆ . . . ⊆ Q0

z ≥ . . . ≥ zi+1 ≥ zi ≥ . . . ≥ z0
(2.30)

If at iteration i, we have xi ∈ Q, then xi is feasible for the full problem,
and thus z ≤ zi. Since we already have zi ≤ z, we must have z = zi, and xi is
optimal for the full problem.

If xi 6∈ Q, then there must be some (a, b) ∈ A\Ai for which aT xi < b. Given
that we can solve the separation problem, we get Ai+1 by adding this constraint,
and possibly others, to Ai.

In delayed constraint generation, we are typically working with very large
sets A, where only a very few constraints will be violated in each iteration. In
some cases, A is so large that delayed constraint generation is the only practical
solution approach. In these cases, we usually rely on an implicit definition of A,
which allows us to solve the separation problem without enumeration. In some
cases, we may solve a different optimization problem to find the most violated
constraint in A.

In the branch-and-bound algorithm, we solve a different type of separation
problem. In that case, we look for violated constraints of the form yi ∈ Z+ by
simply inspecting each variable, in turn, to see if it takes a fractional value.

2.5 Cutting-Plane Decomposition

When a MIP is too large for a practical solution, we may use a decomposition
approach. Here, we will look at one type of cutting-plane decomposition related
to delayed constraint generation.
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2.5.1 Benders’ Decomposition

We consider a MIP on the form

minimize cT x + dT y

subject to Ax ≥ b
Bx +Dy ≥ g

x ∈ Zp
+ × Rq

+
y ∈ Rn

+

(2.31)

That is, x is a mix of integer and continuous variables, and y is continuous. This
decomposed representation allows the rewriting

minimize cT x + f(x)

subject to Ax ≥ b

x ∈ Zp
+ × Rq

+

(2.32)

where

f(x) = min
{

dT y : Bx +Dy ≥ g,y ≥ 0
}

(2.33)

since f(x) is a (continuous) linear program for a given x, we can write down its
dual

f ′(x) = max
{

(g−Bx)T u : DT u ≤ d,u ≥ 0
}

(2.34)

Since f(x) = f ′(x) by the strong duality theorem, we can rewrite (2.31) as

minimize cT x + η

subject to Ax ≥ b
η ≥ f ′(x)

x ∈ Zp
+ × Rq

+
η ∈ R

(2.35)

with the understanding that if f ′(x) is unbounded for every x, then so if f ,
and (2.31) is infeasible.

We note that the feasible region of f ′(x) is {u ≥ 0 : DT u ≤ d}, which does
not depend on x. We let U be the vertices of this feasible region, and R be the
set of extreme rays. By definition of f ′(x), we have

f ′(x) ≥ (g−Bx)T u ∀u ∈ U (2.36)

That is, no vertex can be better than the optimal vertex.
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Since f(x), and therefore (2.31), is feasible if and only if f ′(x) is bounded,
we must also have

(g−Bx)T u ≤ 0 ∀u ∈ R (2.37)

That is, x must be chosen so that no extreme ray makes f ′(x) undbounded.
Using these observations about the vertices U and the extreme rays R of

f ′(x), we again rewrite (2.31)

minimize cT x + η

subject to Ax ≥ b
η ≥ (g−Bx)T u u ∈ U
0 ≥ (g−Bx)T u u ∈ R

x ∈ Zp
+ × Rq

+
η ∈ R

(2.38)

We have now eliminated the variables y, but at the cost of potentially making
the problem intractable; we have already seen that U could be exponential in
the number of constraints in DT .

In order to solve (2.38), we use an approach similar to delayed constraint
generation. We start with a master problem which is the relaxed formulation

minimize cT x + η

subject to Ax ≥ b

x ∈ Zp
+ × Rq

+
η ∈ R

(2.39)

Given a solution x̄, η̄ to this problem, we solve the subproblem

maximize (g−Bx̄)T u

subject to DT u ≤ d

u ≥ 0

(2.40)

If the subproblem is bounded with optimal solution u∗, and η̄ < (g−Bx)T u∗
then we add η ≥ (g − Bx)T u∗ to the master problem. If the subproblem is
bounded with η̄ ≥ (g − Bx)T u∗, then x̄, η̄ is feasible for the subproblem, and
an optimal solution has been reached.

If the subproblem is unbounded, then there will be at least one extreme
ray u′ for which (g − Bx̄)T u′ > 0, so we add (g − Bx̄)T u′ ≤ 0 to the master
problem.
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2. Theoretical Background

2.5.2 Logic-Based Benders’ Decomposition

Classical Benders’ decomposition (Classic Benders) has a significant advantage
in that it provides a general procedure for creating cuts for the master problem.
This ability is ensured by the requirement that the subproblem is an LP, as
in (2.33).

In logic-based Benders’ decomposition (Logic Benders), the subproblem can
be any optimization problem, but we must develop the process for creating cuts
specifically for each problem. In classic Benders, the dual of the subproblem is
used to find lower bounds on the objective of the master problem, as well as
feasibility cuts when the subproblem is infeasible for the current master solution.
In Logic Benders, an inference dual takes the place of the LP dual. Here, we
present the Logic Benders setup of Hooker and Ottosson [HO03].

Given an optimization problem

min
x∈D
{f(x) : x ∈ S} (2.41)

where D is the domain of x and S is the feasible set, the inference dual is the
optimization problem

maximize η

subject to x ∈ (S ∩D)→ f(x) ≥ η
(2.42)

That is, the solution value to the inference dual is the largest lower bound on
the objective function of the primal (2.41) over its feasible region. Thus, the
inference dual (2.42) is a strong dual to (2.41) by definition. The problem with
using the inference dual is that there is no general solution strategy.

In Logic Benders, we start with a problem of the form

mininize f(x,y)

subject to (x,y) ∈ S

x ∈ Dx

y ∈ Dy

(2.43)

then, we fix the master variable x at a trial value x̄, which gives us the subproblem

min
y∈Dy

{f(x̄,y) : (x̄,y) ∈ S} (2.44)

Letting S(x̄) = {y : (x̄,y) ∈ S}, we get the inference dual

maximize η

subject to y ∈ [S(x̄) ∩Dy]→ f(x̄,y) ≥ η
(2.45)
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Cutting-Plane Decomposition

The key to Logic Benders is using the solution η∗ from the subproblem to
create a function ηx̄ : Dx → R such that

ηx̄(x̄) = η∗

ηx̄(x) ≤ f(x,y) (x,y) ∈ S
(2.46)

That is, ηx̄ defines a lower bound on the objective value for any fixed x and a
largest lower bound for x̄.

Based on these functions, we set up an iterative solution process similar to
the one in Classic Benders. We let the (iterated) master problem be

(LBn)

minimize z

subject to z ≥ ηx̄i(x) i ∈ {0, . . . , n− 1}

z ∈ R,x ∈ Dx

(2.47)

For each iteration i, the optimal solution is (zi, x̄i), and the Logic Benders cut
generated in the subproblem is z ≥ ηx̄i(x).

If we rewrite the Logic Benders master problem as

mininize z

subject to z ≥ f(x,y)
(x,y) ∈ S

r ∈ R
x ∈ Dx

y ∈ Dy

(2.48)

we can recognize LB0 as a relaxation of this problem. Since the Logic Benders
cuts are clearly dominated by the constraints z ≥ f(x,y), each LBi must also
be a releaxation. It follows that each zi is a lower bound on the optimal solution.

When we solve LBj , we get the solution (zj , x̄j). If the subproblem is feasible
for x̄j , we get the solution (ηj , ȳj). If zj < ηj , then (zj , x̄j , ȳj) is not feasible
for (2.48), since then zj < f(x̄j , ȳj). Therefore, we add the cut z ≥ ηx̄j (x).

If, instead, zj ≥ ηj , the solution (zj , x̄j , ȳj) is feasible for (2.48). Then, zj is
both an upper and a lower bound on the objective value, and therefore optimal.

So far, we have assumed the problems and subproblems to be feasible and
bounded. We now look at what happens when they are not.

Unbounded Subproblem If the subproblem is unbounded (dual infeasible)
at some iteration j, then the full problem is also unbounded. From the
unboundedness of subproblem, we get the existene of a sequence yn so that

lim
n→∞

f(x̄,yn) = −∞ (2.49)

Since (x̄,yn) ∈ S, we let zn = f(x̄,yn), and so the full problem is unbounded,
since each zn is an upper bound in the optimal solution, and zn → −∞.
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2. Theoretical Background

Infeasible Subproblem If the subproblem is infeasible for some x̄, the dual
is unbounded. Thus, the resulting Logic Benders cut should have the property
that

x = x̄ =⇒ z →∞ (2.50)

An alternative solution is to replace the standard Logic Benders cut with a
custom cut that eliminates any solution for which x = x̄.

Infeasible Master Problem Each LBi (2.47) is a relaxation of the full
problem (2.48). Thus, if the master problem is infeasible at any time, the
full problem is also infeasible.

2.5.2.1 Logic Benders for Scheduling in Sparse Traffic Systems

Logic Benders can be useful in scheduling problems in sparse traffic systems. In
such problems, we may initially assume that all traffic can move according to
the current plan. By studying candidate solutions, we may identify conflicts that
either cause infeasible subproblems or raise the lower bounds on the objective, for
example, when a train will be delayed more than the master solution assumed.

If traffic is sparse and conflicts few, then the Logic Benders approach may end
up generating very few constraints. However, to use Logic Benders, we require a
scheduling formulation with which we can efficiently solve the subproblem.
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Chapter 3

Contributions

“However beautiful the strategy,
you should occasionally look at the results.”

Winston Churchill

3.1 Domain Knowledge and Requirements

Expanding our knowledge of the domains in which we work has been behind many
of our new developments. In Paper II, we present workload targets based on
discussions with air traffic controllers. In Paper III, we give a detailed description
of how to model train scheduling without slack, enabling tighter schedules.

3.1.1 Workload Constraints in Air Traffic Control

At the presentation of Paper I at SESAR Innovations Days 2018, we were able
to conduct informal interviews with air traffic controllers in various roles within
European centralized air traffic management. Based on these, we created the
capacity constraint variants presented in Paper II.

3.1.2 Rail Infrastructure and Business Rules

We have made an extensive study of the infrastructure of Oslo Central Station,
including the business rules governing simultaneous train movements in the
station. We share our observations and data in Papers III and IV.

3.2 Theory and Modeling

In Papers I and II, we extended the Path&Cycle formulation for the hotspot
problem in air traffic management. In Paper I, we study different forms of capacity
constraints and how these compare in performance. In Paper II, we further
expand the flexibility of the capacity constraint modeling, allowing multiple
simultaneous constraints. We compare solution quality and performance of
different capacity constraint combinations.

In Paper III, we develop a MILP formulation that allows simultaneous
dispatching and in-station rerouting. The model also captures many detailed
business rules that constrain train movements in a station, allowing very precise
scheduling.
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3. Contributions

3.3 Implementation and Experiments

For Papers II and III, we implemented the solution algorithms from scratch
and used the implementations to run extensive computational studies on the
performance of the algorithms. In Paper II, we had to craft artificial instances
based on observations of traffic and publicly available traffic data. In Paper III,
we were able to get detailed infrastructure data from Bane NOR, which allowed
us to model Oslo Central Station with high accuracy. We created traffic schedules
based on published timetables.

The source code developed for Paper III has been used by SINTEF to create
a prototype for real-time dispatching support. This prototype is part of the
GOTO project with Bane NOR and is now being tested by dispatchers in Oslo
Central Station.

In Paper IV, we share the infrastructure data from the computational
experiments in Paper III. This allows other researchers to test their approaches
on the same problem.

3.4 Summary of Papers

Paper I introduces new capacity constraints for the alternative-graph based
Path&Cycle approach to the Hotspot Problem in Air Traffic Flow
Management.

Paper II further expands the Path&Cycle model for Air Traffic Controller
workload by showing how we can use layered capacity constraints to
provide useful, detailed models for workload restrictions. The paper also
gives a detailed presentation of the Path&Cycle solution algorithm.

Paper III shows how to expand alternative-graph-based scheduling approaches
also to consider routing. The paper shows that this extended approach
can solve the Optimal Dispatching Problem for Oslo Central Station in
real use-cases.

Paper IV is a companion paper to Paper III, containing the infrastructure data
used for the computational experiments of that paper. We share these
data so that other researchers may compare their approaches to ours.
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Abstract—We extend the new, efficient Path&Cycle formula-
tion for the Hotspot Problem with two methods for dealing with
windowed capacity constraints. We also discuss how to combine
constraints to allow two-level capacity restricions for peak and
average load respectively. Finally, we present computational
results for the sliding window capacity constraint.

I. INTRODUCTION

The Hotspot Problem in Air Traffic Management is the
problem of avoiding localized congestion in the controlled
airspace. The airspace is divided into sectors, each with a
capacity constraint. These constraints can limit the number
of flights simultaneously in a region, or the number of flights
entering a region in given time windows (see Figure 1). A
hotspot [1], [2] is a sector with a violated capacity constraint.
One common approach to eliminating hotspots is to limit the
number of flights in fixed time windows. However, this will
often result in bunching [3], where some of the flights in one
window are moved to the beginning of the next, causing the
beginnings of all windows to be crowded. In order to combat
bunching, we propose to use sliding capacity windows.

In practice, it is not enough to only look at short-term peak
capacity. Even when peak capacity is not violated, sustained
high load puts too much strain on controllers. We propose
combining capacity contraints to allow for both higher-load
short-time peak capacity constraints and lower-load long-time
capacity constraints. The ability to combine both short-term
and long-term of capacity constraints in one model makes for
more realistic hotspot resolution.

When checking for capacity violations, we count the number
of flights currently in each sector, i.e., occupancy count. When
using windowed constraints, another possibility is to count
only the entries into the sector during the given window, i.e.,
entry count. The entry can be a better option if the workload
associated with each flight is largely independent of the time
that flight spends in the sector. In this paper, we only use
occupancy counts, but our algorithms support the use of both
counts interchangeably.

The Path&Cycle formulation is a new, efficient formulation
for job-shop scheduling problems that was introduced in [4]
to tackle the Hotspot Problem in Air Traffic Management. It
does not have the disadvantages of time-indexed formulations

1A

0min 10min 20min 30min 40min 50min 60min

c = 2

2

0min 10min 20min 30min 40min 50min 60min

c = 2

1B

0min 10min 20min 30min 40min 50min 60min

c = 2

Figure 1. Three types of capacity constraints, each with capacity at most 2.
Solid, blue lines represent flights present in this sector. Violations are shown
in red. Type 1A violations are instantaneous, Type 2 violations are in fixed
windows at 10 minute intervals, Type 1B violations are in any 10 minute
interval.

and big-M formulations, which are used in similar approaches.
In particular, time-indexed formulations struggle when the
number of time periods grow large, while big-M formulations
are slowed down due to weak bounds on optimality.

We briefly discuss the Path&Cycle model from [4] in
Section II. We also introduce a new generalization of the
Path&Cycle model which allows for sliding capacity windows.
We discuss how to add a layer of fixed-window capacity
constraints to the Path&Cycle model in Section III. Finally,
we present computational results for sliding capacity windows
in Section IV.

II. THE PATH&CYCLE MODEL FOR TYPE 1 CAPACITY
CONSTRAINTS

We are solving the Hotspot Problem for a set of sectors S
and a set of flights F , under a variety of capacity constraints.
A route node (f, s) is a pair of a flight and a sector, where
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the flight f passes through the sector s. Each flight f ∈ F has
an associated route, which is an ordered sequence of route
nodes ((f, s1), (f, s2), . . . , (f, sq)), where s1 is the departure
sector and sq is the arrival sector. We let (f, s+ 1) denote the
route node immediately following (f, s). Our goal is to find
a schedule t that specifies for each route node (f, s) the time
tsf when flight f will enter sector s.

For each route node (f, s), we are also given the time Λs
f

flight f takes to traverse sector s. For each departure node, we
are given the earliest departure time, and for some departure
nodes we are also given the latest departure time. In addition
to satisfying these time constraints, our schedule must also
satisfy the given capacity constraints.

A. Type 1 Capacity Constraints
Type 1 capacity constraints are constraints that apply to

any interval (or instant) of a given length. Type 1A capacity
constraints are violated if there is an instant where the capacity
of a sector is exceeded. Type 1B capacity constraints are
violated if there is an interval where the number of flights
in the sector during that interval is above the capacity of the
sector. (See Figure 1.)

The algorithm for Type 1A capacity violations (see Fig-
ure 1) from [4] is presented in Section II-B. Type 1B is a
generalization of Type 1A, where each flights occupancy in
the sector is extended by the length of the desired capacity
constraint window (see Figure 2 and Lemma 1). Since Type 1A
is Type 1B with zero-width windows, we refer to the more
general Type 1B as Type 1.

Lemma 1. We have a Type 1B violation of capacity c and
window width ∆ if and only if we have a Type 1A violation
of capacity c where each flight occupancy has been extended
by ∆ after the original occupancy.

Proof: Suppose we have a Type 1B violation of capacity
c and window width ∆. Let t be the time at the end of the
window. Now extend the duration of each flight by ∆. Each
flight present in the window will now either be present at t, or
have its extension present at t, so we have a Type 1A violation
at time t.

Suppose, for the other direction, that we have extended the
durations of all flights by ∆, and that we have a Type 1A
violation of capacity c at time t. If we remove each extension,
then all the flights with an extension present at t must have
been present between t − ∆ and t, so we have a Type 1B
violation of capacity c and window width ∆.

B. The Path&Cycle Formulation for Type 1A
We first develop the algorithms and models needed to

solve for Type 1A capacity constraints. We then describe the
generalization to Type 1B in Section II-D.

Let tsf be the time flight f enters sector s, and let Λs
f be

the time flight f takes to traverse sector s. When the flight
is understood from context, we use s + 1 to denote the next
sector in the flight’s path. We get the equality

ts+1
f = tsf + Λs

f , (1)

1B

0min 10min 20min 30min 40min 50min 60min

Figure 2. By extending the duration of each flight’s occupation of the region,
we can turn 1B violations into 1A violations. We use dashed lines to represent
occupancy extensions.

o

(f, s1) (f, s) (f, s + 1) (f, sq)

(g, s′1) (g, s) (g, s + 1) (g, s′q)

Γf

Γg

−Γg

Λs
f

−Λs
f

Λs
g

−Λs
g

Figure 3. Route node graph. The black edges between route nodes of a single
flight represent departure constraints and sector traversal times. The red edges
between route nodes on different flights (conflict edges) represent scheduling
constraints between flights. In this example f has an earliest departure time,
while g has a fixed departure time.

which we will represent using the inequalities ts+1
f ≥ tsf +Λs

f

and tsf ≥ ts+1
f − Λs

f .
The earliest departure time, relative to the reference time

to, of a flight f is denoted Γf . Thus

ts1f ≥ to + Γf . (2)

If the flight must depart on schedule, then we also add the
reverse inequality to make an equality. In our problem, we
assume flights cannot be delayed in the air. Therefore, flights
arriving from outside the managed area, and flights already in
the air, are accounted for using fixed departure times.

We represent (1) and (2) using a weighted, directed graph
where the nodes are route nodes, and the weighted, directed
edges represent inequalities. Figure 3 shows the resulting
graph.

When there is an edge from (f, s) to (f ′, s′), with weight w,
this means that ts

′
f ′ ≥ tsf +w. The red, diagonal edges between

route nodes of different flights in Figure 3 represent possible
conflict edges. The dashed edges (going left to right) together
represent a meeting of f and g in s. The two constraints
together require that both flights enter s before either leaves.
The dotted edges (right to left) each represent a precedence
constraint. In each case, one flight has to leave s before the
other enters. See [5] for more details on disjunctive graphs.
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Associated to the conflict edges, we introduce the variables

xsfg =

{
1 if f and g meet in s,
0 otherwise,

(3)

ysfg =

{
1 if f precedes g in s,
0 otherwise.

(4)

Note that for any pair of flights f, g, and for any region s, we
must have

ysfg + ysgf + xsfg = 1. (5)

We let G(y,x) be the route node graph with added conflict
edges such that x and y are incidence matrices. We divide
the set K of all conflict edges into the two sets Kx and Ky .
Note that K, Kx, and Ky contains all conflict edges of the
matching type, not only those currently selected.

If ysfg = 1, we add the inequality

ts+1
f ≤ tsg, (6)

that is, f leaves s before g enters. If xsfg = 1, we add the pair
of inequalities

ts+1
f ≥ tsg (7)

ts+1
g ≥ tsf , (8)

that is, neither may leave s before both have arrived.

Lemma 2. If G(y,x) contains a strictly positive directed
cycle, then the set of inequalities corresponding to the edges
of the cycle is inconsistent (infeasible).

Proof: If G(y,x) contains a directed cycle visiting node
(f, s), and the sum total weight of the edges in the cycle is
W > 0, then

tsf ≥ tsf +W > tsf .

From Lemma 2, it follows that G(y,x) cannot contain
strictly positive directed cycles. This restricts the possible
values of x and y.

Given a G with no strictly positive directed cycles, we can
always find a longest path from o to any route node u = (f, s).
We label this distance L∗(y,x, u).

Lemma 3. Let x and y be such that G(y,x) does not contain
any strictly positive directed cycles, let f be a flight, and s be
a sector. Minimizing tsf subject to the instances of (6), (7), and
(8) corresponding to conflict edges in G(y,x) is equivalent to
minimizing L∗(y,x, (f, s)).

Proof: By the same argument as in the proof of Lemma 2,
we have that

tu ≥ to + L∗(y,x, u).

This inequality is most restricting, since L∗ is the longest
path. Therefore, when minimizing tsf , we can instead minimize
L∗(y,x, (f, s)).

Lemma 3 is the key to building a model with no direct
reference to the scheduling variables. All connections to time
are coded into the edge weights of the route node graph.

C. The Mixed-Integer Linear Programming Model

The variables for our model are x and y, introduced in
Section II-B. For each sector, these variables encode meetings
of flights, and precedence between flights that do not meet.

Lemmas 2 and 3 give us most of what we need to build our
model. All the scheduling and conflict inequalities are encoded
in the graph G(y,x). The only thing missing is the encoding
of capacity constraints.

Lemma 4. Let F be the set of all flights, s a sector, and cs
the capacity of s. The capacity constraint cs is at all times
respected if and only if for all F̄ ⊆ F where |F̄ | = cs + 1, we
have

∑

{f,g}⊆F̄
xsfg ≤

(|F̄ |
2

)
− 1. (9)

Proof: Suppose the capacity is violated at some point in
time. At that time, at least cs + 1 flights must be in s. Let F̄
contain any cs + 1 of these flights. The number of pairs in F̄
is
(|F̄ |

2

)
. Since each pair is meeting, the sum in (9) is

(|F̄ |
2

)
,

and so the inequality is violated.
Conversely, suppose (9) is violated. Then there is a set F̄

of cs + 1 flights with at least
(|F̄ |

2

)
pairwise meetings. Since

this is the total number of possible meetings, the flights must
all meet. Since they all meet, none may leave s before all
have entered, and so there is a point in time when they are all
present, and the capacity is violated.

Lemma 5. Let C be the set of all strictly positive directed cy-
cles in G(1,1). G(y,x) contains the strictly positive directed
cycle C ∈ C if and only if

∑

e∈C∩Ky

ye +
∑

e∈C∩Kx

xe = |C ∩K|.

Proof: C is a subgraph of G(y,x) exactly when all
conflict edges in C, numbering |C ∩K|, are selected.

One typical objective is to minimize the sum of delays of
all flights. This is equivalent to minimizing the sum of arrival
times, since our scheduling constraints make it impossible to
schedule early arrivals. If we let A be the set of arrival nodes,
then our goal is to minimize

∑
u∈A tu. Using the results of

Section II-B and Lemmas 4 and 5, we get the following Linear
Programming model.

min
∑

u∈A L
∗(y,x, u)

s.t.
(i) ysfg + ysgf + xsfg = 1, {f, g} ⊆ F, s ∈ S,

(ii)
∑

e∈C∩Ky
ye +

∑
e∈C∩Kx

xe ≤ |C ∩K| − 1,

C ∈ C,

(iii)
∑
{f,g}⊆F̄ x

s
fg ≤

(|F̄ |
2

)
− 1,

s ∈ S, F̄ ⊆ F, |F̄ | = cs + 1,

y ∈ {0, 1}|Ky|,x ∈ {0, 1}|Kx|.
(10)
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D. Generalization to Type 1B

By Lemma 1 (see also Figure 2), we know that we model
Type 1B constraints by modifying (6), (7), and (8). We use
∆ to denote the width of our Type 1B capacity windows. For
ysfg = 1, we get

ts+1
f + ∆ ≤ tsg, (11)

and for xsfg we get

ts+1
f + ∆ ≥ tsg (12)

ts+1
g + ∆ ≥ tsf . (13)

The only required change is modification of weights in the
route node graph G.

E. Row and Column Generation

Model (10) is well suited to delay row and column gen-
eration. First, we need only generate ysfg, y

s
gf , x

s
fg and the

associated row of type (10.i) if f and g are violating a capacity
constraint.

Of the constraints of type (10.ii) and (10.iii), most rows will
not be relevant. Further, in the relevant rows, we do not need
to worry about ungenerated variables, as we always generate
the x’s that may take value 1, i.e., those that represent flights
that may meet in the given sector.

Dealing with the objective function is the challenging aspect
of delayed row and column generation in this model. This is
because the longest path from o to any u ∈ A will depend on
the choice of x and y through G(y,x).

Let H be the set off all G(y,x), such that x and y satisfy
(10.i), (10.ii), and (10.iii). We use Pu(H) to denote (the set of
edges of) a longest path from o to u in H for u ∈ A and H ∈
H. Lu(H) is the length of Pu(H). If all the conflict edges in H
are chosen by the current solution, then Lu(H) = L∗(y,x, u).

If all the conflict edges of H are selected, then
∑

e∈Pu(H)∩Kx

xe +
∑

e∈Pu(H)∩Ky

ye = |K ∩ Pu(H)|. (14)

That is, the set of inequalities

Lu(H)

( ∑

e∈Pu(H)∩Kx

xe +
∑

e∈Pu(H)∩Ky

ye

− |K ∩ Pu(H)|+ 1

)
≤ µu, H ∈ H, (15)

is equivalent to

L∗(y,x, u) ≤ µu. (16)

Thus, by expressing the objective of (10) in terms of µu

and adding the inequalities (15), we obtain the Path&Cycle
formulation. When solving this model, we can start with
H = C = ∅, and only add inequalities for longest paths (H)
and cycles (C) when they become relevant. The steps of the
delayed row and column generation algorithm are described
in detail in [4].

o

(f, s1) (f, s) (f, s + 1) (f, sq)

(w1, s) (wk, s) (wk+1, s) (wm, s)

Γf

0

0

Λs
f

−Λs
f

∆

−∆

Figure 4. The figure shows how we can adapt the route node graph to
model Type 2 capacity constraints. The lower line of nodes represent capacity
windows for a single sector s, which is visited by flight f .

III. MODELLING TYPE 2 CAPACITY WINDOWS

We now present a way to add Type 2 capacity constraints
to our current model. This allows us to use two different,
simultaneous capacity constraints.

We adapt existing methods in order to model Type 2
capacity constraints. Figure 4 shows how we modify the route
node graph in order to account for capacity windows. We can
make a further simplification by linking the window nodes
directly to the origin o (see Figure 5).

For each sector s and each time window w, we introduce a
new window node (w, s). We extend x and y by thinking of
each w as a flight. This means that

xsfw =

{
1 f is in s in window w,
0 otherwise,

(17)

ysfw =

{
1 f leaves s before window w begins,
0 otherwise,

(18)

yswf =

{
1 f enters s after window w ends,
0 otherwise.

(19)

We use tw to denote the start time of window w, the end
time is then tw +∆. We let m be the number of windows, and
label the windows w1, . . . , wm. For each i ≤ m and for each
sector s, we add the window node (wi, s) to the route node
graph G. We also add, for each i ≤ m, edges corresponding
to the pair of inequalities

tswi
= to + (i− 1)∆. (20)

That is, and edge from o to (wi, s) with weight (i− 1)∆, and
an edge from (wi, s) to o with weight −(i− 1)∆.

If xsfw = 1, we add the inequalities (and corresponding
edges)

tsf ≤ tsw + ∆ (21)

ts+1
f ≥ tsw, (22)

if ysfw = 1, we add the inequality

ts+1
f ≤ tsw, (23)

4
 

 
Eighth SESAR Innovation Days, 3rd – 7th December 2018 

 

 

 

 

 

 



o (wk, s)

(f, s) (f, s + 1)

(k − 1)∆

−(k − 1)∆

Λs
f

−Λs
f

−∆ 0

Figure 5. Sub graph of the route node graph. This subgraph encodes the
fact that flight f is in sector s in window wk .

and if yswf = 1, we add

tsf ≥ tsw + ∆. (24)

We are assuming, without loss of generality, a fixed window
size ∆. In order to use a variable window size ∆s

w, simply
modify (20) as follows

tswi
= to +

i−1∑

j=1

∆s
wj
, (25)

and replace ∆ with ∆s
w in (21) and (24). Note that ∆s

w is free
to vary by window and sector, so that each sector can use its
own set of windows.

Figure 5 shows the edges added to the route node graph
when flight f is in region s in window wk. The edges between
o and (wk, s) represent (20), the edges between the window
node and the route nodes represent (21) and (22).

So far, we have extended the route node graph G(y,x) in
order to account for the scheduling constraints for capacity
windows. What remains is to define proper constraints on the
new variables in x and y. We let W be the set of windows.
As before, we have

ysfw + yswf + xsfw = 1, f ∈ F,w ∈W, s ∈ S. (26)

The added capacity constraint is simpler, since we now only
need to count the number of flights that appear in each window.
We let cws be the capacity for window w and sector s, then

∑

f∈F
xsfw ≤ cws , s ∈ S,w ∈W. (27)

By adding these new inequalities to (10), we get the
following model.

min
∑

u∈A L
∗(y,x, u)

s.t.
(i.a) ysfg + ysgf + xsfg = 1, {f, g} ⊆ F, s ∈ S,

(i.b) ysfw + yswf + xsfw = 1, f ∈ F,w ∈W, s ∈ S,

(ii)
∑

e∈C∩Ky
ye +

∑
e∈C∩Kx

xe ≤ |C ∩K| − 1,

C ∈ C,

(iii.a)
∑
{f,g}⊆F̄ x

s
fg ≤

(|F̄ |
2

)
− 1,

s ∈ S, F̄ ⊆ F, |F̄ | = cs + 1,

(iii.b)
∑

f∈F x
s
fw ≤ cws s ∈ S,w ∈W,

y ∈ {0, 1}|Ky|,x ∈ {0, 1}|Kx|.
(28)

This model is suited for the same delayed row and column
generation as in Section II-E.

IV. COMPUTATIONAL RESULTS

Tables I and II show the results of our experiments with
Type 1 capacity constraints, based on simulated data. The first
columns of Table I shows the performance of our Type 1A
algorithm. The running times are longer in the cases with
Type 1B capacity windows of 10 seconds and 1 minute, but
this is expected; there are more hotspots when we use time
windows, as shown in Figure 1. The data in Table I also
confirms that the algorithms have to resolve more hotspots
for the wider windows.

In our experiments, the Path&Cycle formulation solves
all test instances within a few seconds, while the standard
Big-M formulation times out at 10 minutes on some of the
more difficult instances, especially with the longer 1 minute
windows.

In Table II, we show results from the same instances as in
Table I with the same capacity (left-most colums), but using 10
minute Type 1B windows. In this case, the number of hotspots
grew too large and almost all of the computations timed out
at 10 minute limit. In the worst instances, over 100 hotspots
were resolved before time ran out.

We have designed our instances to have a reasonable amount
of hotspots with Type 1A capacity constraints. For a proper test
of the Type 1B constraints, we need to increase the capacity
or change the instances to reduce the number of hotspots. In
Table II, we also show the effect of increasing the capacity of
the sectors. As the capacity increases, the number of hotspots
go down, and many more instances are solved within the time
limit.

Our experiments were done with a C# implementation using
CPLEX 12.8. CPLEX was set to default parameters, except the
number of available threads were set to 1, the advanced start
switch was set to 0, and both dual reduction and dynamic
search were disabled. The code was run on an Intel i7-7700
HQ 2.8 GHz CPU, with 32 GB of RAM.
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TABLE I
COMPUTATIONAL RESULTS FOR TYPE 1A AND TYPE 1B CAPACITY CONSTRAINTS. PATH&CYCLE RESULTS ARE LABELED PC, BIG-M FORMULATION

RESULTS ARE LABELED BM. TIME LIMIT WAS SET TO 600 SECONDS, AND SOME BM COMPUTATIONS TIMED OUT. THE NUMBER OF HOTSPOTS
INCREASES WITH THE WIDTH OF THE CAPACITY WINDOWS, THIS IN TURN INCREASES COMPUTATION TIME. THE “NODES” COLUMNS SHOW HOW MANY

NODES WERE VISITED BY THE BRANCH AND BOUND ALGORITHM USED BY THE MILP SOLVER IN CPLEX.

Type 1A Type 1B, 10 seconds time window Type 1B, 1 minute time window

|F | cs Hotspots Nodes Time (s) Hotspots Nodes Time (s) Hotspots Nodes Time (s)

PC BM PC BM PC BM PC BM PC BM PC BM PC BM PC BM PC BM

122 3 16 15 1e+3 9e+4 1.24 10.99 17 16 2e+3 9e+5 1.45 168.4 20 20 2e+4 3e+6 4.16 449.3
137 3 21 21 5e+3 2e+6 2.24 117.9 21 21 7e+3 1e+7 2.17 494.3 19 15 7e+3 3e+6 2.22 —
131 3 12 12 3e+2 3e+4 0.48 2.99 12 12 3e+2 5e+4 0.49 4.79 13 13 1e+3 3e+4 0.62 2.97
142 3 13 13 5e+2 1e+5 0.53 29.93 13 13 9e+2 1e+5 0.8 26.34 17 17 3e+3 8e+5 1.99 118.5
110 3 12 12 5e+2 4e+4 0.29 9.82 12 12 5e+2 5e+4 0.4 11.55 16 16 9e+3 8e+5 1.58 113.7
127 3 11 11 2e+2 1e+4 0.35 1.04 12 12 3e+2 9e+3 0.52 0.89 18 18 2e+3 2e+4 1.09 1.87
115 3 1 1 0e+0 7e+0 0.05 0.04 1 1 0e+0 6e+0 0.04 0.04 1 1 0e+0 7e+0 0.04 0.04
120 3 4 4 8e+0 1e+1 0.04 0.07 4 4 3e+0 5e+1 0.04 0.06 5 5 9e+0 5e+1 0.04 0.07
131 3 7 7 3e+1 2e+3 0.12 0.36 7 7 3e+1 2e+3 0.13 0.34 8 8 5e+1 5e+3 0.12 0.78
143 3 8 8 6e+1 2e+3 0.14 0.46 8 8 2e+1 2e+3 0.14 0.75 10 10 2e+2 3e+4 0.2 6.42
136 3 15 15 5e+2 6e+4 0.29 17.21 17 17 4e+2 2e+6 0.28 — 20 20 2e+3 2e+6 0.63 —
142 3 9 9 2e+2 6e+3 0.1 1.68 9 9 3e+2 5e+3 0.16 1.41 12 12 1e+3 1e+5 0.45 14.18
139 3 14 14 1e+2 2e+4 0.27 4.42 14 14 1e+2 7e+4 0.29 8.83 20 20 8e+2 6e+5 0.73 76.77
126 3 10 10 2e+2 7e+3 0.24 1.38 11 11 4e+2 1e+4 0.33 1.9 15 14 2e+3 3e+5 0.77 49.75
139 3 19 19 1e+4 2e+5 2.16 31.16 19 19 1e+4 1e+6 1.99 266.7 24 24 3e+4 1e+6 5.29 134.9
288 5 8 8 8e+1 7e+3 0.54 1.52 8 8 7e+1 5e+3 0.51 1.24 12 12 6e+2 1e+5 1.32 18.41
289 5 9 9 3e+1 2e+4 0.23 7.31 10 10 7e+1 2e+4 0.26 9.41 14 14 3e+3 2e+6 1.95 —
278 5 10 10 4e+2 4e+4 0.92 9.88 11 11 5e+2 5e+4 1 12.29 16 14 7e+3 2e+6 3.74 —
259 5 3 3 0e+0 5e+2 0.1 0.23 3 3 0e+0 4e+2 0.11 0.2 6 6 2e+1 8e+2 0.15 0.44
254 5 8 8 7e+1 7e+3 0.31 2.09 8 8 7e+1 8e+3 0.41 2.1 9 9 6e+2 1e+5 0.58 22.85
279 5 9 9 5e+2 4e+4 0.66 8.37 9 9 8e+2 1e+4 0.82 3.91 14 14 5e+3 2e+6 2.38 —
287 5 3 3 0e+0 4e+2 0.12 0.24 6 6 0e+0 2e+3 0.33 0.57 10 10 6e+1 4e+3 0.36 1.78
259 5 11 11 8e+1 1e+4 0.59 2.52 14 14 1e+2 4e+4 0.86 8.96 16 16 7e+2 7e+5 1.63 136.3
281 5 8 8 2e+2 9e+3 0.75 1.85 9 9 2e+2 2e+4 0.83 3.83 12 12 5e+2 8e+4 1.28 23.86
296 5 4 4 4e+1 1e+3 0.16 0.67 4 4 4e+1 2e+3 0.16 0.93 6 6 2e+2 8e+3 0.5 1.8
275 5 7 7 2e+1 8e+2 0.24 0.69 7 7 2e+1 3e+3 0.25 1.46 8 8 2e+2 5e+4 0.39 16.78
256 5 5 5 2e+2 3e+3 0.37 0.83 5 5 2e+2 3e+3 0.4 0.78 7 7 7e+2 3e+3 0.7 1
273 5 9 9 2e+2 1e+4 0.6 3.14 9 9 3e+2 4e+4 0.69 12.37 12 12 2e+3 2e+5 1.92 32.34
274 5 9 9 7e+1 2e+4 0.67 4 9 9 5e+2 2e+4 0.84 4.77 16 16 5e+3 3e+6 3.37 —
287 5 11 11 1e+3 2e+4 0.89 5.34 12 12 1e+3 4e+4 1.48 9.93 16 16 5e+3 1e+6 4.18 193.5

V. CONCLUSIONS

We have shown (see Section IV) that our algorithm for
Type 1A (see [4]) also efficiently solves for Type 1B capacity
constraints with short time windows, and that it performs well
compared to the standard Big-M formulation on almost all our
instances.

With a large number of flights, low capacities, and long
capacity windows, the number of hotspots becomes too large
to handle. However, according to the results in Tables I
and II, the Path&Cycle formulation can easily handle up to
20–30 hotspots (including those introduced by intermediate
solutions).

In order to further prove our model, we need access to real
instances. While we have shown that our model performs well
compared to one established approach, we still need to confirm
that it performs well in real life.

VI. FUTURE WORK

Our next step is to integrate Type 2 constraints into our
model, so that we can solve the Hotspot Problem with layered

capacity constraints. This will allow us to restrict, simultane-
ously, peak and average load. By tuning window sizes, it is
possible to approximate a wide range of capacity constraint
schemes. We will also introduce entry counts as an alternative
to occupancy counts for defining capacity constraints.

Using this model in practice would allow for more realistic
modeling of the air traffic controller’s workload capacity
contraints, and therefore result in a more achievable work load.
Also, the use of sliding windows have the added benefit of
reducing the drive towards bunching.

Furthermore, our experiments have indicated that the
Path&Cycle algorithm is well suited to reoptimization with
slight variations in the model. This makes the algorithm ideal
for the approach to inter-airline scheduling fairness presented
by Jacquillat and Vaze [6]. We will include this approach
to fairness in our future models, so that we can evaluate
the fairness criteria themselves in terms of performance and
effectiveness.
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TABLE II
COMPUTATIONAL RESULTS FOR TYPE 1B CAPACITY CONSTRAINTS WITH 10 MINUTE WINDOWS. PATH&CYCLE RESULTS ARE LABELED PC, BIG-M
FORMULATION RESULTS ARE LABELED BM. TIME LIMIT WAS SET TO 600 SECONDS. AT THE LOWER CAPACITIES, THE NUMBER OF HOTSPOTS GROW

VERY LARGE, AND ALMOST ALL COMPUTATIONS TIME OUT. AS THE CAPACITY INCREASES, THE NUMBER OF HOTSPOTS BECOMES MANAGEABLE.

Type 1B, 10 minutes time window Type 1B, 10 minutes time window Type 1B, 10 minutes time window

|F | cs Hotspots Time (s) cs Hotspots Time (s) cs Hotspots Time (s)

PC BM PC BM PC BM PC BM PC BM PC BM

122 3 61 47 — — 4 11 11 1.49 61.2 5 1 1 0.19 0.07
137 3 75 58 — — 4 16 16 1.68 47.78 5 1 1 0.07 0.06
131 3 52 47 — — 4 5 5 0.1 0.18 5 0 0 0.03 0.04
142 3 52 48 — — 4 8 8 0.13 0.28 5 0 0 0.02 0.03
110 3 47 47 — — 4 4 4 0.06 0.32 5 0 0 0.02 0.02
127 3 58 63 — — 4 19 19 4.57 74.73 5 2 2 0.06 0.08
115 3 14 14 0.2 53.24 4 0 0 0.02 0.03 5 0 0 0.02 0.03
120 3 33 32 43.76 — 4 1 1 0.05 0.04 5 0 0 0.03 0.02
131 3 50 35 — — 4 6 6 0.11 0.47 5 0 0 0.03 0.04
143 3 51 54 — — 4 2 2 0.04 0.07 5 0 0 0.03 0.03
136 3 65 62 — — 4 7 7 0.36 8.25 5 0 0 0.02 0.03
142 3 54 53 — — 4 9 9 0.79 24.43 5 0 0 0.03 0.03
139 3 63 50 — — 4 9 9 0.58 2.68 5 1 1 0.05 0.06
126 3 68 71 — — 4 16 16 1.22 5.46 5 2 2 0.05 0.08
139 3 76 56 — — 4 21 21 8.19 — 5 3 3 0.04 0.06
288 5 59 60 — — 6 31 24 39.06 — 7 2 2 0.18 0.26
289 5 102 103 — — 6 46 36 — — 7 7 7 0.29 1.32
278 5 0 142 — — 6 48 41 — — 7 4 4 0.2 0.52
259 5 57 58 — — 6 37 25 — — 7 7 7 0.49 5.05
254 5 44 44 — — 6 25 14 53.25 — 7 6 6 0.79 0.82
279 5 75 76 — — 6 29 25 — — 7 9 9 0.47 1.47
287 5 84 83 — — 6 42 27 — — 7 4 4 0.22 0.7
259 5 87 86 — — 6 27 20 487.6 — 7 2 2 0.14 0.21
281 5 91 89 — — 6 43 31 — — 7 11 11 2.57 5.07
296 5 60 62 — — 6 24 21 213.2 — 7 2 2 0.12 0.24
275 5 68 67 — — 6 16 16 18.31 — 7 1 1 0.11 0.13
256 5 56 57 — — 6 32 19 — — 7 6 6 0.39 1.14
273 5 0 97 — — 6 48 29 — — 7 10 10 2.72 8.05
274 5 93 93 — — 6 44 37 — — 7 10 10 1.41 —
287 5 0 112 — — 6 36 24 — — 7 8 8 1.24 14.26
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a b s t r a c t

Many regions of the world are currently struggling with congested airspace, and Europe is no exception.
Motivated by our collaboration with relevant European authorities and companies in the Single European
Sky ATM Research (SESAR) initiative, we investigate novel mathematical models and algorithms for sup-
porting the Air Traffic Flow Management in Europe. In particular, we consider the problem of optimally
choosing new (delayed) departure times for a set of scheduled flights to prevent en-route congestion and
high workload for air traffic controllers while minimizing the total delay. This congestion is a function of
the number of flights in a certain sector of the airspace, which in turn determines the workload of the air
traffic controller(s) assigned to that sector. We present a MIP model that accurately captures the current
definition of workload, and extend it to overcome some of the drawbacks of the current definition. The
resulting scheduling problem makes use of a novel formulation, Path&Cycle, which is alternative to the
classic big-M or time-indexed formulations. We describe a solution algorithm based on delayed variable
and constraint generation to substantially speed up the computation. We conclude by showing the great
potential of this approach on randomly generated, realistic instances.

� 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Air Traffic Flow Management consists in regulating air traffic to
prevent congestion while optimizing the usage of the available
capacity. This is a very important topic in SESAR (SESAR, 2020),
an ongoing extensive European collaborative project with the
objective of improving and modernizing every aspect of the air
traffic management in Europe. In this paper, we present recent
results related to our work on SESAR sub-projects.

The European airspace is divided into control sectors, each
assigned to one or more air traffic controllers who are in charge
of guaranteeing the safety of the air traffic. The tasks of a controller
(e.g., communicate with pilots, handover flights to the controller of

an adjacent sector, prevent potential conflicts, etc.) are heavily reg-
ulated, each one requiring a certain amount of time and effort.
Within each sector, controllers are solving the Air Traffic Control
problem of finding a feasible combination of flight paths, subject
to regulations about the temporal and spatial separation of air-
planes. In Europe, these flight paths are also subject to the schedule
determined by the central control authority. The workload of a
controller is usually a function of these tasks which, in turn, is a
function of the flights traversing the sector. Therefore, capacity
constraints are imposed on each sector to regulate the number of
flights and consequently to keep the workload of controllers within
the set boundaries. In Europe, this capacity is computed through
involved simulation procedures, standardized by the European
control authority. Briefly, depending on the traffic scenario, each
task performed by a controller is decomposed into atomic control-
ling actions, and each such action has an expected time required
for execution. For a given traffic scenario, the expected overall time
use necessary for a controller in a time window of one hour must
not exceed 42 min (70% workload). Then, many historical traffic

https://doi.org/10.1016/j.cor.2020.105159
0305-0548/� 2020 The Author(s). Published by Elsevier Ltd.
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scenarios are assessed and, for each such scenario, the maximum
number of flights which can be controlled within the time thresh-
old is determined. The capacity of the sector is then simply the
minimum of such numbers overall traffic scenarios (Flynn et al.,
2003). Whenever a set of flights violates these capacity regulations
in a certain sector, we say there is a hotspot (Allignol et al., 2012;
Dubot et al., 2016) (see Fig. 1 for an illustrated example). In this
paper, we present techniques that allow more precise modelling
of controller workload, which in turn could be used to allow higher
capacities without the risk of overloading a sector.

Typically, the working day of a controller is divided into fixed
time windows, e.g., from 10 a.m. to 11 a.m., from 11 a.m. to 12 p.
m., and so on. Then the regulations usually impose a limit on the
number of aircraft entering the sector during each time window.
Since flight plans are submitted to the control authorities by each
airline only a few hours before departure (sometimes even half an
hour in the case of private jets), it is not uncommon that they will
ultimately produce a hotspot. Control authorities have many ways
to deal with this issue, such as asking the airline to submit an
altered flight plan. When a satisfactory solution cannot be agreed
upon in due time, control authorities can simply choose to delay
the departure. This is the scenario considered in this paper. In par-
ticular, given the schedule for a set of flights and given the capacity
constraints for all sectors, the Hotspot Problem (HP) consists in
finding new (possibly delayed) departure times for all flights such
that the corresponding schedule is hotspot-free and the sum of
delays is minimized.

The exact definition of HP depends on the exact definition of
hotspot. As mentioned above, the current definition agreed in Eur-
ope (Flynn et al., 2003) considers fixed intervals of time and, for
each sector and for each interval of time, it compares the aircraft
entry counts with the predefined sector capacity. There are several
drawbacks with this definition. The most evident is perhaps a phe-
nomenon called bunching, where the excess flights of a certain
interval of time are simply moved and amassed at the beginning
of the next interval. We propose to solve this by considering sliding
intervals of time, where the sector capacity must be respected in
any interval of time of a certain length. A recent study (Guibert
et al., 2019), which also involves the European control authority,
considers the possibility to jointly take into account entry counts
and occupancy counts. The first measures the number of aircraft
entering a sector within a certain interval of time, whereas the lat-
ter measures the number of aircraft simultaneously traversing a
sector within a certain interval of time (see Fig. 2). In this paper,
we describe a model that considers both sliding intervals of time
and occupancy counts, and that can be immediately extended to
support fixed interval of times and entry counts.

The literature on the hotspot problem is small, with only a few
papers dealing with somewhat related problems (of which an over-
view can be found in Zhong (2018)). None of these papers matches
exactly with the Hotspot Problem. In Schefers et al. (2017), the air-
space is subdivided into micro-cells of unit capacity, and airplanes
can be delayed at the departure, but only within the assigned time
slot. The question of delaying flights to reduce congestion is dis-
cussed in de Jonge and Seljée (2011) along with a greedy-like
prioritization-based iterative algorithm to compute delays. In con-
trast, a MILP model for the same problem is discussed in Damhuis
et al. (2015), with some interesting experimental results on some
simulation scenarios. In Vaaben and Larsen (2015) the problem is
studied from the side of the airlines. When control authorities
issue flying restrictions, airlines need to modify flight trajectories
to meet such restrictions. Both schedules and trajectories can be
modified in this study, but the feasible trajectories are chosen from
a predefined, finite set. In Sailauov and Zhong (2016) the stand-
point is again from the control authority side. The model factors
in many details, including, for instance, stops at intermediate

airports and fairness of the solutions. The resulting, overarching
time-indexed MILP model is probably too complex to be solved
for the size of practical instances, and indeed the experiments
reported in the paper involves only two flights.

One of the most closely related problems in the literature is pre-
sented in Kim et al. (2009), where a combination of greedy and
randomized rounding heuristics is used to minimize the maximum
occupancy of any sector. Our problem mainly differs from the one
in Kim et al. (2009) in that we minimize delays while respecting
capacity restrictions rather than minimize occupancy, and that
we apply an exact method. Our computational experiments (Sec-
tion 7) are on instances of the single-sector problem, which is
already NP-hard in general Kim et al. (2009). Our ability to solve
these instances using our exact method rests on the fact that we
have an available schedule which is already close to feasible. If
no schedule is available, a heuristic method like the one presented
in Kim et al. (2009) could be applied as a preprocessing step.

Most of the above-mentioned papers focus on modelling issues,
using either constraint (CP) or mathematical programming—
mainly Mixed Integer Programming (MIP). The resulting formula-
tions are then solved by directly invoking a MIP solver (with the
exception of Damhuis et al. (2015) and Kim et al. (2009) where
delayed constraint generation is applied). In our experience, how-
ever, this approach typically does not suffice to find exact solutions
to instances of a practical size. The main reason is that the classical
formulations for this class of problems are either too weak or too
large to work well in practice without additional algorithmic
enhancements. More specifically, the Hotspot Problem is a variant
of the job-shop scheduling problem with blocking and no-wait
constraints (see Mascis and Pacciarelli, 2002), where the sectors
can be seen as machines and the flights as jobs. The main issue
of this class of problems is that we have to introduce disjunctive
constraints to represent and solve conflicts in the use of shared
resources. Basically, two MIP models are competing in the litera-
ture: the big-M and the time-indexed formulations (see
Queyranne and Schulz, 1994). The former usually provides weak
bounds, and thus large search trees; the latter produces better
bounds but at the cost of increasing time to solve the relaxations.
While time-indexed formulations work well for some scheduling
problems, it is a well-known problem that they struggle when
the number of time slots becomes large, which is often the case
in modern transportation scheduling (Mannino and Mascis,
2009). So, the reduction in the number of branching nodes due to
a stronger bound is typically not enough to compensate for the
increase in running times.

Finally, while the Hotspot Problem takes into account en-route
conflicts, it only allows delaying airplanes at the airports. The Hot-
spot Problem, therefore, belongs to a larger class of air traffic
scheduling problems in terminal control areas, such as Avella
et al. (2017), Kim et al. (2009), Bianco et al. (2006), D’Ariano
et al. (2015), Samà et al. (2017).

In this paper, we experiment with a different MIP formulation
for job-shop scheduling in transportation, recently introduced by
Lamorgese and Mannino (2019) for rail traffic management, and
then extended to cope with air traffic in Mannino and Sartor
(2018). The Path&Cycle formulation is a MIP formulation for job-
shop scheduling problems. As the classical big-M formulation, it
uses a set of binary variables per disjunction, but without resorting
to the notorious big-M coefficients and constraints. This allows for
stronger relaxations, without the excessive increase in running
times typically associated with time-indexed formulations. For
the Hotspot Problem, the Path&Cycle formulation was indeed pro-
ven to be more effective than the big-M formulation (Mannino and
Sartor, 2018). In this paper, we develop a Path&Cycle formulation
for the Hotspot Problem, where delayed constraint generation is
applied to cope with the potentially large number of constraints.
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To speed up the separation process, we also describe a projection-
based, preprocessing technique that has the potential to signifi-
cantly reduce the size of the alternative graph which is the input
to our solution algorithm. This projection technique can also be
applied to other problems that can be modelled using an alterna-
tive graph, for example, train scheduling. Finally, since real-life
instances were not available, we tested our approach on randomly
generated instances of sizes comparable with the real ones.

A preliminary to this work (Mannino et al., 2018) was presented
at SESAR Innovation Days 2018, organized by the Single European
Sky ATM Research (SESAR) Joint Undertaking under the Horizon
2020 framework.

Our contribution is twofold: modelling and algorithmic. From
the modelling standpoint, we introduce and model the concepts
of sliding window capacity constraints (Section 3.1) and and fixed
window capacity constraints (Section 5.1), counting either occu-
pancy (Section 3.2 and Mannino and Sartor (2018)) or entries (Sec-
tion 5.2) within the specific window towards capacity. Finally, we

discuss layering of capacity constraints (Section 5.3). These exten-
sions allow for a better representation of the actual controller
workload with respect to previous works. From the algorithmic
standpoint, we have extended the Path&Cycle solution algorithm
to tackle these model extensions.

The rest of the paper is organized as follows. In Section 2, we
describe in detail the Hotspot Problem, and in Section 3 we intro-
duce a mathematical model for the Hotspot Problem. We introduce
the Path&Cycle model for the Hotspot Problem in Section 4, and in
Section 5 we introduce extensions to this model. We discuss our
solution algorithm and its implementation in Section 6, and our
computational results in Section 7.

2. The hotspot problem

We are given a set F of flights through an airspace divided into
predefined control sectors S. Conventionally, we also include in S

a fictitious ‘‘arrival sector” af for every f 2 F, to represent the final

Fig. 1. In this illustration a sector is considered to be a hotspot if it is occupied by more than two flights at any point in time. On the left, the highlighted sector is a hotspot. On
the right, we have delayed one flight to resolve the hotspot.

Fig. 2. Occupancy and entry counts with fixed windows of capacity 2. Aircraft entries are shown as dots to illustrate that only the first 10-minute window contains more than
2 entries.

C. Mannino, A. Nakkerud and G. Sartor Computers and Operations Research 127 (2021) 105159

3



sector of flight f. Note that af may be an airport or the space outside
the control region. Also, we conventionally assume af–ag for any
pair of distinct flights f ; g 2 F. The route of each flight f 2 F is

given as an ordered set Sf ¼ fsf1; sf2; . . . ; sfnf g of sectors, with

af ¼ sfnf . Also, we let df ¼ sf1be the departure sector (departure sec-

tors of different flights may coincide). Note that the first sector sf1
may be the one immediately after the flight takes off from a con-
trolled airport, or the first sector in the controlled airspace when
the flight enters the control space already airborne. The travel time
Ks

f of flight f through sector s 2 Sf is the time f uses to travel

through s (we let Kaf
f ¼ 0). The release time Cf of f is either (i) the

(expected) earliest departure time of f (if the departure airport is
within the controlled airspace), or (ii) the time f enters the con-
trolled airspace. Release times are given relative to an arbitrary ref-
erence time to. Because the task is to schedule flights sometime in
the future, normally (but not necessarily) to coincides with the
time when such planning is carried out. We may assume to pre-
cedes all release times, so we have Cf P 0 for all f.

The planning horizon H is subdivided into a set of contiguous
intervals, the time windows. The subdivision is completely defined
by the starting time and the size of each time window. Typically,
one-hour intervals are considered, starting at 12 a.m., 1 a.m., . . .,
but other window sizes may be possible. Each control sector
s 2 S is assigned a capacity cs 2 Z. There are two alternative ways
to interpret such capacity.

2.1. Entry count

In this interpretation, the capacity cs of a sector represents the
maximum number of flights which can enter the sector in the time
window. Indeed, if things go according to plan, most of the (time-
consuming) activities carried out by controllers occur when a flight
enters the sector. This is the definition used by the European con-
trol authorities.

2.2. Occupancy count

The capacity cs of a sector represents the maximum number of
flights which can be in the sector during the time window. Note
that, depending on the travel time and window size, entry and
occupancy counts may differ significantly (see Fig. 2).

We finally define the schedule of a flight f 2 F as the time
tfs 2 IR the flight enters sector s 2 Sf .

The Hotspot Problem is then the problem of finding a feasible
schedule tf for each flight such that, for each sector s 2 S, the num-
ber of flights in s never exceeds the capacity cs of the sector in any
predefined time window.

Note that since the travel time in each sector is fixed, that is, it is
subject to a no-wait constraint, the schedule of a flight is com-
pletely determined once the departure time is established. As a
consequence, flights entering the controlled space from ‘‘outside”
will have fixed release times, and their schedules cannot be
modified.

2.3. Fixed and sliding windows

The official definition of hotspot (Flynn et al., 2003) is based on
the above described fixed window approach. This approach has
some major drawbacks. The first is that it may lead to unwanted
violations of capacity. Suppose we ensure that in given fixed win-
dows, say from 10 a.m. to 11 a.m. and from 11 a.m. to 12 a.m., the
number of aircraft in a given sector does not exceed the capacity,
say 10. This does not prevent that in ‘‘intermediate” windows,
say from 10:30 a.m. to 11:30 a.m., we have up to 20 flights in

the sector. The second is mainly an operational problem, namely
bunching. When the capacity of a sector is violated during a time
window, one possibility is to hold some of the involved flights at
the airport. Obviously, one would like to generate the least possible
delay, so a natural algorithm is to hold the flights precisely the
time necessary to skip the overloaded time window. However, this
may produce a schedule with many flights bunching up at the
beginning of the next time window.

An alternative approach that solves both the ‘‘intermediate”
capacity violations and bunching is the sliding window. It simply
states that for any time interval of a given size, the number of
flights in a sector should not exceed the capacity of the sector. In
other words, the starting time of the control window is not fixed
and can be anywhere in the time horizon. Depending on the
adopted time window, we have different definitions of a hotspot.

2.4. Fixed window hotspot

A fixed window hotspot occurs when too many flights occupy
the sector during one of the predefined fixed windows. In Fig. 3
the windows have width 10 min, and start at time 0;10;20; . . ..
In this example, the windows do not overlap, but in principle, they
could. The red shaded areas of the fixed window portion of Fig. 3
shows when the sector is a fixed window hotspot.

2.5. Sliding window hotspot

A sliding window hotspot occurs when too many flights occupy
the sector during any period of time at most as long as the window
width D. It may be viewed as a family of overlapping fixed win-
dows, where the next window starts one unit of time after the pre-
vious. In Fig. 3, the sliding window has width 10 min. The red
shaded areas of the sliding window portion of Fig. 3 shows when
the sector is a sliding window hotspot. The grey crosshatched area
around the last hotspot shows how far that window can slide with
the sector remaining a hotspot.

We summarize the above with the following formal definition.

Definition 1. Let nsðtÞ be some count of flights in sector s at time t
based on the current planned departure times. The sector s is a
hotspot at time t if nsðtÞ > cs, where cs is the capacity of s.

The form of nsðtÞ in the above definition depends on the type of
the corresponding capacity constraint. We will use D to denote
windowwidth, and we will subscript D to denote widths of specific
windows. We let WðtÞ denote the window corresponding to time t,
that is eitherWðtÞ ¼ W fixedðtÞ ¼ ½a; aþ D� is the fixed window inter-
val such that t 2 ½a; aþ D�, or WðtÞ ¼ WslidingðtÞ ¼ ½t; t þ D� is the
sliding window starting at t. Let Isf ¼ ½t0f ; t1f � be the time interval
flight f spends in sector s. Then

nsðtÞ ¼
jff 2 F : Isf \WðtÞ–£gj; for occupancy counts

jff 2 F : t0f 2 WðtÞgj; for entry counts:

(
ð1Þ

In order to model controller workload more realistically, we
also propose layering different hotspot definitions. We propose
using a long-term window to manage sustained workload, and a
simultaneous short-term window to manage peak workload (Sec-
tion 5.3). In this case, the capacity may not depend only on the sec-
tor, but also on the specific capacity constraint.

3. Modelling the sliding window hotspot problem

In this section, we present our MILP model for the sliding win-
dow hotspot problem. This model is an extension of the novel
Path&Cycle formulation, which is a special version of the job-
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shop scheduling problem with blocking and no-wait constraints
(Mascis and Pacciarelli, 2002). The formulation was recently intro-
duced by Lamorgese and Mannino in Lamorgese and Mannino
(2019) for train scheduling and then extended by Mannino and
Sartor in Mannino and Sartor (2018) to flight scheduling.

Let f 2 F be a flight and s 2 Sf be a sector on the flight plan

Sf ¼ fdf ¼ sf1; s
f
2; . . . ; s

f
nf ¼ af g of f. With some abuse of notation, if

s 2 Sf n fsfnf g, we denote by tsþ1
f the time f enters the sector follow-

ing s in the flight plan.
Using this notation, since tsþ1

f is also the time when f leaves sec-
tor s. We get the schedule constraints

tsþ1
f � tsf ¼ Ks

f ð2Þ

that is the travel time of f through s is precisely Ks
f .

Next, recalling that the release time Cf P 0 is given relative to
the reference time to, we have

t
df
f � to P Cf ð3Þ
for all flight f, with equality holding if f enters the controlled region
already airborne.

Any feasible schedule t must satisfy (2) and (3). Linear con-
straints of the form tv � tu P luv are called time precedence con-
straints. We note that (2) can be written as a pair of time
precedence constraints.

3.1. Modelling sliding window constraints

Let D be the size of the sliding window and � > 0 be a small con-
stant. We say that two distinct flights f ; g 2 F do not meet in a sec-
tor s 2 Sf \Sg if either ðiÞ f leaves sector s at least D units of time
before g enters it, that is tsg � tsþ1

f P Dþ �; or ðiiÞ g leaves sector s at

least D units of time before f enters it, that is tsf � tsþ1
g P Dþ �. In

contrast, we say that f ; g meet in s if none of the two conditions
ðiÞ and ðiiÞ is satisfied, that is,

tsg � tsþ1
f 6 D ^ tsf � tsþ1

g 6 D:

Because f ; g either meet or do not meet in sector s, we have that
any feasible schedule must satisfy the following constraint:

tsg � tsþ1
f P Dþ �

_
tsf � tsþ1

g P Dþ �
_

tsg � tsþ1
f

6 D ^ tsf � tsþ1
g 6 D: ð4Þ

The above constraint is called a disjunctive constraint, and it is
the disjunction of three terms. The first two terms are time prece-
dence constraints, whereas the third term is a conjunction of two
time-precedence constraints. Any feasible schedule t will satisfy
exactly one of the three terms in disjunction (4).

In order to represent this disjunctive constraint in a MILP, we
introduce the selection variables. For any ordered pair ðf ; gÞ of
flights f ; g both flying through a common sector s 2 Sf \ Sg , we
define the precedence variable

ysfg ¼
1; if fprecedes g in s

0; otherwise

�
ð5Þ

and for any unordered pair ff ; gg of distinct flights f ; g both flying
through a common sector s, we define the meeting variable

zsfg ¼
1; if f and g mhboxmeetin s

0; otherwise

�
ð6Þ

where we have preferred the notation zsfg for zsffgg, with the conven-
tion that zsfg is the same as zsgf .

So, associated with a pair of distinct flights f ; g with a shared
sector s, we have three binary variables: two precedence variables
and one meeting variable. Each of these variables corresponds to
one of the terms of the disjunction (4) associated with f ; g, and s.
Since exactly one of the three terms must be satisfied by any fea-
sible schedule, the binary variables must satisfy the following se-
lection constraints:

ysfg þ ysgf þ zsfg ¼ 1: ð7Þ
We use (y; z) to denote the vector of selection variables, that is,

the selection vector. A schedule �t associated with a selection vector
ð�y;�zÞ must satisfy, for all pair of distinct flights f ; g 2 F, and all
s 2 Sf \Sg

ðiÞ tsg � tsþ1
f P Dþ �; if �ysfg ¼ 1

or ðiiÞ tsf � tsþ1
g P Dþ �; if �ysgf ¼ 1

or ðiiiÞ tsg � tsþ1
f 6 D ^ tsf � tsþ1

g 6 D; if �zsfg ¼ 1:

ð8Þ

Fig. 3. Fixed time windows versus sliding time windows. The red boxes (and line) illustrate times when the section becomes a hotspot. In each case, we have set the capacity
to 2. In the sliding window case, the windows can move slightly to the left and right with the sector remaining a hotspot, as illustrated by the grey crosshatched areas on the
right side of the figure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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In other words, the selection variables decide which time prece-
dence constraints in each disjunction must be satisfied by the
schedule t. Associated with any selection vector ðy; zÞ we have thus
a system of precedence constraints. This motivates the next:

Definition 2. We let Aðy; zÞ be the system of precedence con-
straints (2) and (3), and the constraints of the disjunctions (8)
associated with the selection vector ðy; zÞ.

The system of precedence constraints Aðy; zÞ ensures that each
flight’s schedule is feasible in isolation and that the precedence
decisions coded by y and z are respected. However, this system
of constraints does not take into account capacity.

3.2. Capacity constraints

The vector z determines which pairs of flights meet in a given
sector. We say that a set of flights F#F meet is a shared sector s
if there is a time window of size D when all flights are in s. Now,
a set F#F of flights meet in a sector s if and only if every pair
f ; g 2 F of distinct flights meet in s. In this case we have that

zsfg ¼ 1 for all distinct ff ; gg# F and
P

ff ;gg# Fz
s
fg ¼

jFj
2

� �
.

We denote by Fs #F the set of flights going through s and let
cs be the capacity of s, i.e. no set of cs þ 1 flights can meet in s. Then,
for every set of flight F#Fs where jFj ¼ cs þ 1; z must satisfy the
following constraint:

X
ff ;gg# F

zsfg 6
cs þ 1

2

� �
� 1: ð9Þ

A meeting (selection) vector is hotspot free if it satisfies (9).

3.3. A disjunctive formulation for the Hotspot problem

We can now state more formally our basic version of the Hot-
spot problem.

3.3.1. The sliding window hotspot problem
The Sliding Window Hotspot problem amounts to finding a hot-

spot free selection vector ðy; zÞ satisfying (7) and (9), and a sched-
ule t satisfying Aðy; zÞ, such that the cost wðtÞ of the schedule is
minimized.

The function w : t ! R determines the cost of the schedule and
typically increases monotonically with the delays (that is with tÞ).
Note that constraints (2), (3), (8) and (9), provide a disjunctive for-
mulation for the feasible solutions ðy; z; tÞ to the Hotspot problem.
A standard way to linearize (8) is by means of the so called big-M
trick (see, for instance, Queyranne and Schulz, 1994). However, as
discussed in the introduction, this leads to very weak relaxations.
Following (Lamorgese and Mannino, 2019), we prefer a different
model.

4. The Path&Cycle model

4.1. The route node graph

At the heart of the Path&Cycle formulation is an event graph
G ¼ ðV ; EÞ called the route node graph. The nodes are associated
with the time variables of the disjunctive formulation for the hot-
spot problem. In particular, V contains a special node o, the origin,
associated with the reference time variable to and a route node hf ; si
associated with the variable tsf , for each f 2 F; s 2 Sf . The node
hf ; si represents the event ‘‘flight f enters sector s”. The directed

arcs of the graph are associated with time precedence constraints
between the schedule variables. So, if u ¼ hf ; si 2 V and
v ¼ hg; ri 2 V , then ðu;vÞ 2 E with length luv represents the con-
straint tgr � tfs P luv . Note that the inequality tu � tv 6 l is equiva-
lent to tv � tu P �l, which in turn is associated with an arc ðu;vÞ
with length �l. Furthermore, an equality precedence constraint
tv � tu ¼ l can be transformed into two inequalities, which in turn
correspond to two anti-parallel arcs ðu;vÞ and ðv; uÞ of length l and
�l, respectively.

Release time constraints (3) are thus represented by arcs from
the origin to the node associated with the first sector of every
flight. Fig. 4 shows an example of a route node graph for two
flights.

When two flights f and g both fly through a common sector s,
then either they meet in s or one precedes the other as represented
by (4). Since each term in the disjunction is either a time prece-
dence constraint or the conjunction of two time-precedence con-
straints, it can be represented in the route node graph by arcs
called alternative arcs, as shown in Fig. 5. The alternative arcs,
which are drawn in the figure as either dashed or dotted arrows,
have length equal D or �D, according to (8). That is, the arc lengths
are determined by the window width D. Note that we have two
arcs associated with the ‘‘meet” case of the disjunction. Now, each
alternative arc (or pair of arcs) is associated with one term in the
disjunctive constraint (4), which in turn is associated with a selec-
tion variable. Consequently, each alternative arc is associated with
exactly one selection variable. For instance, in Fig. 5, the arc
ðhg; s2i; hf ; s3iÞ is associated with the meeting variable zs2fg .

We now summarize the above construction by giving a formal
definition of the route graph.

Definition 3. Let F be a set of flights and, for f 2 F, let Cf be the
departure time, and let Ks

f be the travel time for each s 2 Sf . Let
F� #F be the set of flights with fixed departure times. Let
UF ¼ fhf ; si : f 2 F; s 2 Sf } be the set of route nodes. The route
node graph is a directed graph G ¼ ðV ; ER [ ET [ EAÞ, where ER are
the release arcs, ET are the fixed precedence arcs, and EA ¼ EyA [ EzA are
the alternative arcs. We have

V ¼ UF [ fog
ER ¼ fðo; hf ;df iÞ : f 2 Fg

[fðhf ; df i; oÞ : f 2 F�g
ET ¼ fðhf ; si; hf ; sþ 1iÞ : f 2 F; s 2 Sf g

[fðhf ; sþ 1i; hf ; siÞ : f 2 F; s 2 Sf g
Ey
A ¼ fðhf ; sþ 1i; hg; siÞ : s 2 S; ðf ; gÞ 2 Fs �Fs; f–gg

Ez
A ¼ fðhf ; si; hg; sþ 1iÞ : s 2 S; ðf ; gÞ 2 Fs �Fs; f–gg:
For each arc e 2 E, its length le is the constant term in the corre-

sponding time precedence constraints. So, for e ¼ ðo; hf ; df iÞ 2 ER

we have le ¼ Cf ; for e ¼ ðhf ; df i; oÞ 2 ER we have le ¼ �Cf ; for
e ¼ fðhf ; si; hf ; sþ 1iÞ 2 ET we have le ¼ Ks; for
e ¼ fðhf ; sþ 1i; hf ; siÞ 2 ET we have le ¼ �Ks; for e 2 Ey

A with have
le ¼ D; and finally, for e 2 Ez

A we have le ¼ �D. If e is an alternative
arc, we let VarðeÞ be the variable associated with e. Since every
alternative arc is associated with a selection variable in the binary
vector ðy; zÞ, we may interpret ðy; zÞ as the incidence vector of a
subset EAðy; zÞ# EA. We use Gðy; zÞ ¼ ðV ; Eðy; zÞÞ to denote the sub-
graph of G induced by the set of arcs Eðy; zÞ ¼ ER [ ET [ EAðy; zÞ, that
is, the graph we obtain from G by removing all alternative arcs not
selected in ðy; zÞ.

We extend the definition of Var to a set of arcs E ¼ fe1; . . . ; eng
so that VarðEÞ ¼ fVarðeiÞ : ei 2 Eg.
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4.2. Positive cycles and longest paths

By construction, the route node graph contains a directed path
from the origin o to any other node of the graph. Indeed, there is a
directed edge from o to the node hf ; df i associated with the first
sector in the route of flight f 2 F, and a directed path from hf ; df i
to every node hf ; sf i associated with any sector sf 2 Sf on the route
of f. Note that this path does not make use of alternative edges, and
so for any selection vector ðy; zÞ, the graph Gðy; zÞ ¼ ðV ; Eðy; zÞÞ also
contains a path Pu from o to any other node u 2 V . By construction,
even if G contains negative length arcs, the length lðPuÞ of this path
is always non-negative.

It is well known that, if Gðy; zÞ does not contain a strictly
positive directed cycle (corresponding to an infeasible subset
of time precedence constraints), then it contains a maximum
length path from o to any other node u. For all u 2 V , let us
denote by L�ðy; z;uÞ such length. The following Lemma 4 follows
from well-known results (see, for instance, Bertsimas and
Tsitsiklis, 1997).

Lemma 4. Let ð�y;�zÞ be a selection vector. There exists a feasible
solution to the set of inequalities Að�y;�zÞ if and only if the graph Gð�y;�zÞ
does not contain strictly positive length directed cycles. Then, a feasible
solution is given by t�u ¼ L�ð�y;�z;uÞ, for u 2 V. Finally, if the cost
function wðtÞ is non-decreasing, then t� is a feasible solution which
minimizes wðtÞ.

We let Cþ be the set of all strictly positive directed cycles of the
route node graph G and let C 2 Cþ be one such cycle. We denote by
AltðCÞ ¼ C \ Ea the set of alternative arcs in C. We divide the alter-
native arcs into precedence arcs AltyðCÞ ¼ C \ Ey

a, and meeting arcs
AltzðCÞ ¼ C \ Ez

a. It follows from Lemma 4 that, for any feasible
solution ðy; z; tÞ to the hotspot problem, the graph Gðy; zÞ does
not contain a strictly positive directed cycle. So, for any C 2 Cþ,
at least one alternative arc in C must be excluded in any feasible
solution, and the selection vector ðy; zÞ satisfies the following set
of (no good) constraints:X
e2AltyðCÞ

ye þ
X

e2AltzðCÞ
ze 6 jAltðCÞj � 1; C 2 Cþ: ð10Þ

Fig. 4. Route node graph for two flights f and g. g has a fixed departure time to þ Cg , while f has an earliest departure time to þ Cf . Both flights fly through sector s2. The arcs
represent time precedence constraints.

Fig. 5. Since both flights f and g fly through s2, they must either meet there, or one must precede the other. The dashed and dotted alternative arcs between nodes of different
flights represent each of these options. All the arc lengths have been omitted, and the alternative arcs have instead been labelled with their associated binary variables.
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4.3. Path&Cycle MILP formulation

To simplify the following discussion, we assume now that the
objective function amounts to minimizing the sum of the delays
of all flights at their destinations; the extension to any function
non-decreasing with time is straightforward. With this assump-
tion, it follows by Lemma 4 that the Hotspot problem can be mod-
elled as follows. We let A ¼ fhf ; af i : f 2 Fg be the set of arrival
route nodes, and get the mathematical model

min
X
u2A

L�ðy; z;uÞ

s:t:

ðiÞ ysfg þ ysgf þ zsfg ¼ 1 s 2 S; ff ;gg#Fs

ðiiÞ
X

e2AltyðCÞ
ye þ

X
e2AltzðCÞ

ze 6 jAltðCÞj � 1 C 2 Cþ

ðiiiÞ
X

ff ;gg# F

zsfg 6
jFj
2

� �
� 1 s 2S; F#Fs; jFj ¼ cs þ 1

ysfg ;y
s
gf ; z

s
fg 2 f0;1g s 2S;ff ;gg#Fs:

ð11Þ
Note that this is a non-compact formulation since the size of Cþ

in (ii) is potentially exponential in G. To turn (11) into a MILP, we
need to deal with the objective function.

To this end, for an arrival node u 2 A, we introduce a non-
negative, continuous variable gu 2 IRþ such that, for any ðy; zÞ,
we have gu P L�ðy; z;uÞ. Equivalently, we want gu P lðPÞ for any
path P from o to u in Gðy; zÞ.

Now, let Pu be the set of all simple paths from o to u in
G ¼ ðV ; EÞ, let P 2 Pu, let lðPÞ be its length, and let AltðPÞ be the
set of alternative arcs of P. If all such arcs are selected in a solution
ðy; zÞ then P belongs to Gðy; zÞ and gu P lðPÞ. This can be expressed
by the following linear expression:

gu P lðPÞ
X

e2AltyðPÞ
ye þ

X
e2AltzðPÞ

ze � jAltðPÞj þ 1

0
@

1
A ð12Þ

where Alt is defined in the same way as for cycles. Indeed, if all
selection variables in (12) are 1, then the r.h.s reduces to lðPÞ, other-
wise the constraint is redundant.

Combining (11) and (12) we get the following MILP formulation

min
X
u2A

gu

s:t:

ðiÞ ysfg þ ysgf þ zsfg ¼ 1 s 2 S; ff ; gg#Fs

ðiiÞ
X

e2Alty ðCÞ
ye þ

X
e2Altz ðCÞ

ze 6 jAltðCÞj � 1 C 2 Cþ

ðiiiÞ
X

ff ;gg# F

zsfg 6
jFj
2

� �
� 1 s 2 S; F#Fs; jFj ¼ cs þ 1

ðivÞ gu P lðPÞ
X

e2Alty ðPÞ
ye þ

X
e2Altz ðPÞ

ze � jAltðPÞj þ 1

0
@

1
A u 2 A; P 2 Pu

ysfg ; y
s
gf ; z

s
fg 2 f0;1g s 2 S; ff ; gg#Fs

gu P 0 u 2 A:

ð13Þ

Now, since gu P L�ðy; z;uÞ for u 2 A, the optimal value of (13) is
an upper bound on the optimal value of (11). Actually, one can
show that the two formulations are equivalent, (see Lamorgese
and Mannino, 2019), and the following result holds

Lemma 5. Let g�; y�; z� be an optimal solution to (13) and let
t�u ¼ L�ðy�; z�;uÞ for u 2 V. Then t� is an optimal solution for the
Hotspot Problem, and wðt�Þ ¼ P

u2Ag�
u.

In the next section, we show how to adapt this basic formula-
tion to fixed windows and entry counts, respectively.

5. Model extensions

The mathematical program so far introduced is based on the
sliding windows model. We now show how to extend it to fixed
windows.

5.1. Modelling fixed windows

In the fixed-window hotspot problem, for each sector s 2 S the
planning time horizon is subdivided into windows Ws. For each
w 2 Ws we let Dw be the size of windoww (in the current air traffic
control practice, Dw is 60 min or 25 min) and Tw be the start time.
The capacity constraint now requires that, in anyw 2 Ws, the num-
ber of flights is bounded by cw. We model this by introducing new
selection variables to represent the fact that a flight traverses a sec-
tor before, after, or during a given time window. We introduce
variables similar to (5) and (6), namely

ysfw ¼ 1; if f flies through s before w

0; otherwise

�

yswf ¼
1; if f flies through s after w

0; otherwise

� ð14Þ

zsfw ¼ 1; if f flies through s during w
0; otherwise

�

and associated terms in the corresponding disjunctive constraint

ðiÞ tsþ1
f 6 Tw � � if ysfw ¼ 1

or ðiiÞ tsf P Tw þ Dw þ � if yswf ¼ 1

or ðiiiÞ tsþ1
f P Tw ^ tsf 6 Tw þ Dw if zsfw ¼ 1

ð15Þ

where � > 0 is a suitably small constant. Note that each term in the
above disjunction is a standard time precedence constraint and can
be represented by an arc with suitable length in the route node
graph. Fig. 6 (corresponding to Fig. 5 for the sliding window capac-
ity constraint) shows how we represent (15) in the route node
graph.

The capacity constraint for the fixed windows can now be writ-
ten as follows:

X
f2Fs

zsfw 6 cw; s 2 S; w 2 Ws: ð16Þ

Note that, for a given sector s, we may have fixed windows of
different sizes and overlapping windows. Also, fixed window and
sliding window constraints can easily be used together in a com-
bined formulation.

5.2. Modelling entry counts

It is very easy to amend our model to count entry rather than
occupancy. Without going into details, this is obtained by simply
replacing, in the disjunctive constraints (4), (8) and (15), variables
tsþ1
f and tsþ1

g with tsf and tsg , respectively, leaving sign and constants
unchanged. Accordingly, the alternative arcs in the node-route
graph will be ‘‘re-directed”, so that all tails and heads will be either
hf ; si or hg; si, but the lengths will stay unchanged.

The result of this is that we replace the occupancy time interval
of each flight with the single moment in time when the flight
enters the sector. That is, from the point of view of the algorithm,
the flight exists only at the moment it enters the sector. It is there-
fore irrelevant when the flight leaves the sector, or, equivalently,
when it enters the next sector.
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5.3. Modelling layered workload constraints

We are now ready to state our general MILP. The alternative
arcs of the route node graph G ¼ ðV ; EÞ will be associated with each
of the terms in the disjunctions (8) and (15). Then Cþ will be the
set of strictly positive directed cycles of G, whereas, for u 2 V ;Pu

is the set of directed simple paths from o to u in G.

min
X
u2A

gu

s:t:
ðiaÞ ysfg þ ysgf þ zsfg ¼ 1 s 2 S; ff ; gg#Fs

ðibÞ ysfw þ yswf þ zsfw ¼ 1 s 2 S;w 2 Ws; f 2 Fs

ðiiaÞ
X

ff ;gg# F

zsfg 6
jFj
2

� �
� 1 s 2 S; F#Fs; jFj ¼ cs þ 1

ðiibÞ P
f2Fs z

s
fw 6 cw s 2 S;w 2 Ws

ðiiiÞ P
e2AltyðCÞye þ

X
e2AltzðCÞ

ze 6 jAltðCÞj � 1 C 2 Cþ

ðivÞ gu P lðPÞ
X

e2AltyðPÞ
ye þ

X
e2AltzðPÞ

ze � jAltðPÞj þ 1

0
@

1
A u 2 A; P 2 Pu

ysfg ; y
s
gf ; z

s
fg 2 f0;1g s 2 S; ff ; gg#Fs

gu P 0 u 2 A:

ðHPÞ

In order to model multiple simultaneous fixed windows, we
simply add more windows to the sets Ws. We can also model mul-
tiple simultaneous sliding windows, but then we must add indexed
copies of the selection variables (5) and (6) with corresponding
copies of ðiaÞ and ðiiaÞ.Summary of notation The schedule related
variables gu are introduced in Section 4.3, while the decision vari-
ables ysfg ; z

s
fg ; yfw; ywf , and zfw are introduced in Eqs. (5), (6) and (14).

S is the set of all sectors, Fs is the set of all flights using sector s,
and Ws is the set of all fixed windows of sector s. cs is the sliding
window capacity of sector s, and cw is the capacity of the fixed win-
dow w. The sets Cþ (of strictly positive cycles) and Pu (of longest
paths) are introduced in Section 4.2, along with the notation
Alt;Alty , and Altz (alternative arcs in a set of arcs).

6. Solution algorithm and implementation

In principle, HP could be solved by simply feeding it to an off-
the-shelf MILP solver. However, we would quickly find out that

even for very small instances both the number of variables and
constraints would grow prohibitively large.

In order to deal with the size of the model, we apply delayed
variable and constraint generation. We present the details of our
custom row and column generation algorithm (Section 6.1) and
and show how we separate violated constraints (Section 6.2).
Finally, we show how to significantly reduce the size of the route
node graph in order to speed up the constraint generation process
(Section 6.3).

6.1. Delayed variable and constraint generation

Following the typical framework of a row and column genera-
tion algorithm, we build a sequence HP0, HP1; . . .of subproblems
of HP, where each MILP is obtained from the previous one by add-
ing some constraints and/or some variables. The initial subProblem
HP0 is obtained from HP by removing all variables but g and all the
constraints but the non-negativity constraints on g.

min
P

u2Agu

s:t: gu P 0 u 2 A:
HP0

At iteration k ¼ 0;1; . . . we solve Problem HPk to optimality.
Since HPk is a relaxation of HP, if HPk is infeasible, so is HP, and
we are done.

Otherwise, let (gk; yk; zk) be the optimal solution to HPk at iter-
ation k and let Gðyk; zkÞ be the corresponding route node graph as
described throughout Section 4. Then, we exploit Gðyk; zkÞ to look

Fig. 6. Route node and arcs for a fixed window. The solid arcs between o and w represent the starting time of the window. The dashed and dotted arcs to and from w are
disjunctive arcs. The disjunctive arcs are labelled with both their weights and their associated binary variables.
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for violated inequalities (the details are described in Section 6.2) by
performing the following steps:

1. We start by searching for strictly positive directed cycles in the
graph Gðyk; zkÞ, which is equivalent to searching for violated
cycle inequalities. If any such cycle is found, we add the corre-
sponding inequality to HPk and iterate.

2. Otherwise, Gðyk; zkÞ does not contain strictly positive directed
cycles and we can construct a feasible schedule tk by Lemma
4, which can then be used to look for violated path inequalities.
If any is found, we add it to HPk and iterate.

3. Finally, if no cycle and path inequalities are violated, we look for
capacity constraints violations. If no capacity constraints are
violated, then (gk; yk; zk) is feasible and thus optimal for the
overall Problem HP, and tk is the optimal schedule by Lemma
5. Otherwise, we add the violated capacity constraint and
iterate.

Note that during step 3 it might happen that HPk does not yet
contain all the variables z that are needed for separating a particu-
lar violated capacity constraint. For example, at the very first iter-
ation, HP0 does not contain any variable y; z, which means that no
positive cycle can be generated, and the length of a path associated
to a certain airplane will be simply equal to the corresponding
minimum travel time. This is usually called free-running and it
represents the situation in which all airplanes travel as if there
were no other airplanes (see Fig. 4). The schedule t0 that arises
from this situation might violate some of the capacity constraints,
which means that some decisions must be made to prevent it. As
we have seen in Section 4, these decisions are represented by the
variables y; z. In general, if one of the violated capacity inequalities
contains a certain variable zsfg and that variable is not present in
HPk, then we need to add to HPk the set of variables ysfg ; y

s
gf ; z

s
fg that

is associated with zsfg together with its corresponding constraint
ysfg þ ysgf þ zsfg ¼ 1. In other words, we need to give the model the
ability to prevent a certain capacity violation by adding the appro-
priate decision variables and constraints. However, the newly
added decision variables, which are associated to newly added arcs
in the route node graph (see Fig. 5), will now contribute to possibly
generating more violated cycle and path inequalities.

6.2. Separating violated inequalities

The effectiveness of the solution algorithm described in the pre-
vious section is clearly conditional to the effectiveness of the pro-
cedure for separating violated inequalities. Here we describe the
details of such a procedure for each class of inequality (capacity
HP:ii, cycle HP:iii, and path HP:iv), and we show that it can be per-
formed efficiently.

It is important to recall that the different classes of inequalities
are separated sequentially. Given a vector (�g; �y;�z), with �y;�z 0,1-
vectors, we generate first all the violated cycle inequalities. There-
fore, when we separate new classes of inequalities for the current
point (�g; �y;�z), the associated graph Gð�y;�zÞ contains no strictly pos-
itive directed cycles. As stated in Lemma 4, this is indeed a neces-
sary condition for generating a feasible schedule �t. Also, we do not
look for capacity violations until we have found a feasible schedule
�t that is optimal for the current subproblem, or in other words until
there are no more path inequalities violated. Finding an optimal
schedule is not a necessary condition for the separation of capacity
inequalities, but we still separate capacity inequalities last, since
this separation may require the introduction of binary variables.

� Cycle inequalities. This problem is reduced to that of finding a
strictly positive directed cycle in graph Gð�y;�zÞ. In turn, this
can be performed in OðjV j � jEjÞ time by applying a specialized
label correcting algorithm (see Ahuja et al., 1993). If the algo-
rithm returns a strictly positive directed cycle C of Gð�y;�zÞ, then
we add the corresponding cycle inequality to the current MILP.

� Path inequalities. Let Puð�y;�zÞ#Pu be the set of ou-paths in
Gð�y;�zÞ. Recall that when we separate path inequalities, Gð�y;�zÞ
does not contain strictly positive directed cycles. Assume that,
for some u 2 A, there exists a path inequality associated with
�P 2 Pu, which is violated by (�g; �y;�z), that is

�gu < lð�PÞ
X

e2Altyð�PÞ
�ye þ

X
e2Altzð�PÞ

�ze � jAltð�PÞj þ 1

0
@

1
A ð17Þ

Note that �P is contained in Gð�y;�zÞ, otherwiseP
e2Altyð�PÞ�ye þ

P
e2Altzð�PÞ�ze < jAltð�PÞj, and the r.h.s. of (17) is non-

positive, a contradiction since �gu P 0. So, �P 2 Puð�y;�zÞ, and we
denote by P�

u 2 Puð�y;�zÞ the path of maximum length in Gð�y;�zÞ
(such path exists because the graph does not contain strictly
positive directed cycles). By definition, lð�PÞ 6 lðP�

uÞ and thus
there exists a violated path inequality if and only if

�gu < lð�P�
uÞ ð18Þ

So, the separation of a path inequality violated by (�g; �y;�z)
amounts to computing the maximum ou-path in Gð�y;�zÞ, for
u 2 A. As for cycles, this can be performed in OðjV j � jEjÞ time. If,
for some u, we have �gu < lðP�

uÞ, then we add the constraints asso-
ciated with P�

u to the current MILP. Otherwise, no violated path
inequalities exist.

� Capacity constraints. When separating violated capacity con-
straints for point (�g; �y;�z), the associated graph Gð�y;�zÞ contains
no strictly positive directed cycles, and we can compute a ten-
tative schedule �t by letting �tu ¼ L�ð�y;�z;uÞ for u 2 V . Note that,
since �t is constructed on Gð�y;�zÞ, then �t will respect all meetings
imposed by the (arcs associated with the) meeting variables �z,
and we can use �t to check whether any of the capacity con-
straints are violated.
Fixed window. Checking if �t violates a fixed window constraint
can be done by inspection, and thus in linear time in the num-
ber of flights and the number of windows.
Sliding window. This case a bit more tricky. First, recall from (8)
that if two flights f ; g are in the same sliding window (with
width D) in sector s, then we have

tsf 6 tsþ1
g þ D ^ tsg 6 tsþ1

f þ D: ð19Þ
The above condition is satisfied if and only if the intervals
Isf ¼ ½tsf ; tsþ1

f þ D� and Isg ¼ ½tsg ; tsþ1
g þ D� overlap. Consider the lar-

gest set F�
s #Fs of flights mutually satisfying condition (19) in

s. If jF�
s j > cs then we have identified a violated sliding window

capacity constraint (associated with F�
s ). This reduces to the

problem of finding a maximum cardinality clique in an interval
graph, that is the undirected graph obtained by associating a
node with each interval and an edge with every pair of overlap-
ping intervals. Finding a maximum clique in an interval graph
H ¼ ðF;WÞ can be performed in OðjWj log jWjÞ (see Gupta et al.,
1982).

6.3. Reduction of the route node graph

The time spent separating violated path and cycle inequalities
depends on the size of the route node graph. Since we use
Bellman-Ford for both separations, the worst-case complexity is
OðnmÞ, where n is the number of nodes and m the number of arcs.
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In this section, we will show that we can look for cycles and paths
in a reduced graph with only jFj þ 1 nodes and potentially far fewer
arcs than in the original route node graph. The reduced graph is
quickly computed as a preprocessing step and has the potential
to save significant time in each iteration of path and cycle con-
straint separation process. The effectiveness of the reduction has
been confirmed by a set of experiments carried out during the
development of our implementation. The greatest effect is
expected when the number of sectors on each flight path is large.

Recall that the nodes of the route node graph correspond to the
continuous schedule variables of a disjunctive formulation of the
hotspot problem (see Section 2). The basic idea for our reduction
is to project out all continuous-time variables except one for each

flight (the arrival time t
af
f ) and the reference time variable to. To this

end, we use an analogue of the Fourier-Motzkin elimination scheme
applied to the original disjunctive formulation. Indeed, if the formu-
lation only contains precedence constraints and no disjunctions,
then the projection operation has an immediate interpretation on
the route-node graph. Namely, projecting out one variable tv corre-
sponds to removing the corresponding node v from the route node
graph and replace each pair of arcs ðu;vÞ; ðv ;wÞ (of length luv ; lvw,
respectively), with a single arc of length luv þ lvw (see, for instance,
Mannino and Mascis, 2009). The new arc corresponds to the time
precedence constraint obtained by Fourier-Motzkin combining
the precedence constraints associated with ðu;vÞ and ðv;wÞ (see
Wolsey and Nemhauser, 1999). This operation can in principle cre-
ate an exponential number of constraints, and thus exponentially
many arcs in the reduced graph. In case only time precedence con-
straints are involved in the projection, however, this does not hap-
pen. We can see this on the reduced graph, where the proliferation
is prevented by the fact that when parallel arcs are created, we can
remove all but the one with the largest length.

Unfortunately, when dealing with disjunctive precedence con-
straints, things become complicated and Fourier-Motzkin cannot
be applied straightforwardly. In the following, we show one way
to adapt the procedure to cope with disjunctive precedence con-
straints and avoid that exponentially many arcs appear. The
reduced graph will however contain parallel edges. Before intro-
ducing the reduced graph G0 ¼ ðV 0; E0Þ, we need a few definitions.

Definition 6. Let f be a flight flying through sectors
s ¼ s1; . . . ; sk ¼ s0 in sequence, where k P 2. Then the flight time of
f from s to s0 is

df ðs; s0Þ ¼ Ks1
f þ . . .þKsk�1

f

We also define df ðs0; sÞ ¼ �df ðs; s0Þ.
In other words, if s precedes s0 on the route of f, then df ðs; s0Þ is

the travel time of f from s to s0, otherwise it is the negative of the

travel time. In both cases, df ðs; s0Þ is the length lðPf
ss0 Þ of the path

Pf
ss0 from s to s0 on the route of f in the route node graph.
Note that since df ðs; s0Þ includes the flight time through sector s,

but not through s0, we have

df ðs; s00Þ ¼ df ðs; s0Þ þ df ðs0; s00Þ ð20Þ
In fact, this holds regardless of the order in which f flies through

s; s0, and s00.
We will also use the notation dðhf ; si; hf ; s0iÞ ¼ df ðs; s0Þ and

dðo; hf ; df iÞ ¼ Cf . We observe that dðu;vÞ ¼ �dðv ;uÞ and that
dðu;wÞ ¼ dðu;vÞ þ dðv;wÞ if u; v;w 2 Uf are route nodes of the
same flight f, and that if G contains the edge ðhf ; df i; oÞ, then
dðhf ; df i; oÞ ¼ �Cf .

We now go back to define the reduced graph G0. The nodes of
the reduced graph are the origin o0 and a node n0

f for each flight

f 2 F, corresponding to, respectively, the reference time to and
the arrival times tnf . Note that these nodes correspond to the origin
o and the arrival nodes nf ¼ hf ; af i in the route node graph. The arcs
of the reduced graph are of two types:

� Fixed arcs, all incident in o0 (either incoming or outgoing). In
particular, for every f 2 F we have that ðo0;n0

f Þ 2 E0. The length
kðo0;n0

f Þ ¼ Cf þ df ðdf ; af Þ is the minimum arrival time of flight f

at destination, and equals the length lðPf
o;nf

Þ of the path from o

to nf in the route of f on the route node graph. When the flight
f has fixed departure time Cf , then we also have the backward
arc ðn0

f ; o
0Þ 2 E0. The length kðn0

f ; o
0Þ ¼ �Cf � df ðdf ; af Þ ¼

�kðo0;n0
f Þ is the length of the path from nf to o on the route of

f in the route node graph.
� Alternative arcs. The alternative arcs are ‘‘copies” of the original
alternative arcs, and each is associated with the same decision
variable as is associated with its original version. In particular,
if e ¼ ðu;vÞ ¼ ðhf ; si; hg; s0iÞ 2 E is an alternative arc of G with
length le, then e0 ¼ ðn0

f ;n
0
gÞ 2 E0 is an alternative arc of G0 and

we have Varðe0Þ ¼ VarðeÞ. The length of e0 is defined as

ke0 ¼ kðe0Þ ¼ le þ dgðs0; agÞ � df ðs; af Þ:
Note that the reduced graph may contain parallel arcs between
pairs of nodes.

Definition 7 (Reduced route node graph). Let G ¼ ðV ; EÞ be a route
node graph. The reduced route node graph is the graph
G0 ¼ ðV 0; E0Þ, where V 0 ¼ fo0g [ fn0

f : f 2 Fg; E0 ¼ E0
R [ E0

A, and

(i) for each f 2 F, we have e0 ¼ ðo0;n0
f Þ 2 E0

R and
ke0 ¼ Cf þ df ðdf ; af Þ;
(ii) for each f 2 F with fixed departure time we have
e0 ¼ ðn0

f ; o
0Þ 2 E0

R, and ke0 ¼ �Cf � df ðdf ; af Þ;
(iii) for each alternative arc e ¼ ðu;vÞ ¼ ðhf ; si; hg; s0iÞ 2 EA , we
have e0 ¼ ðn0

f ;n
0
gÞ 2 E0

A; ke0 ¼ le þ dgðv ; af Þ � df ðu; af Þ, and
Varðe0Þ ¼ VarðeÞ.

Fig. 7 shows an example of a reduced route node graph. If two
flights f and g share more than one sector, then there will be mul-
tiple sets of alternative arcs between ðf ; af Þ and ðg; agÞ in the
reduced route node graph, each labelled according to the corre-
sponding shared sector.

Lemma 8. There is a simple path P from o to ng in G ¼ ðV ; EÞ of length
lðPÞ if and only if there is a simple path P0 from o0 to n0

g in G0, with

lðPÞ ¼ kðP0Þ. Moreover, the alternative arcs of P0 corresponds one-to-
one to the alternative arcs of P so that VarðP0Þ ¼ VarðPÞ.

Proof. If. Let e1 ¼ ðu1;v1Þ; e2 ¼ ðu2;v2Þ; . . . ; eq�1 ¼ ðuq�1;vq�1Þ be
the sequence of alternative arcs encountered on P, with f q ¼ g. Path
P is the concatenation of P1 � e1 � P2 � . . . � Pq�1 � eq�1 � Pq, where P1

is the path from the origin o ¼ v0 to u1 on the route of flight f 1; Pq is
the path from vq to uqþ1 ¼ ng on the route of flight f q ¼ g and, for
1 < i < q; Pi is the path from route node v i�1 to route node ui on
the route of flight f i (note that v i�1 does not necessarily precedes
ui on the route of f i). Now, we have that
lðPÞ ¼ lðP1Þ þ le1 þ . . .þ leq�1 þ lðPqÞ. Note that lðPiÞ can be negative
(i.e. ui precedes v i�1 on the route of f i). By (20), for
i ¼ 1; . . . ; q� 1 we have lðPiÞ ¼ dðv i�1;uiÞ ¼ dðv i�1;nf i Þ � dðui;nf i Þ,
whereas lðPqÞ ¼ dðvq;nfq Þ. So, we have:
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lðPÞ ¼
Xq�1

i¼1

lei þ dðv i�1;nf i Þ � dðui;nf i Þ
� �þ dðvq�1;nfq Þ

¼ dðv0;nf 1 Þ þ
Xq�1

i¼1

lei þ dðv i;nf iþ1
Þ � dðui;nf i Þ ð21Þ

where the last equality is obtained by simply rearranging the terms
(i.e. taking the first term of the summation out and bringing the
term outside the summation in). The above steps are illustrated in
Fig. 8.

Now, the path P0 on G0 associated with P will be
P0 ¼ ðo0;n0

f 1
Þ � ðn0

f 1
;n0

f 2
Þ � . . . � ðn0

f q�1
;n0

f q
Þ, as shown in Fig. 9, and we

have

kðP0Þ ¼ kðo0;n0
f 1
Þ þ

Xq�1

i¼1

kðn0
f i
;n0

iþ1Þ

¼ dðo;nf 1 Þ þ
Xq�1

i¼1

lei þ dðv i;nf iþ1
Þ � dðui;nf i Þ: ð22Þ

Only if. The proof goes like in the if case, only by reversing the
construction (i.e. from P0 to P).

Lemma 9. There is a simple cycle C in G ¼ ðV ; EÞ of length lðCÞ if and
only if there is a simple cycle C0 from in G0, with lðCÞ ¼ kðC0Þ. Moreover,
the alternative arcs of C0 corresponds one-to-one to the alternative
arcs of C and VarðC0Þ ¼ VarðCÞ.

The proof of the above lemma is very similar to the one of
Lemma 8 and we omit it. The main idea is to prove two cases sep-
arately: one case for cycles that go through the origin, and one case
for cycles that do not go through the origin.

7. Computational results

In order to test the performance of our model and our algorithm
in the presence of layered capacity constraints, we run two differ-
ent numerical experiments. In the first, we compare different
capacity constraint combinations on a collection of small instances
in order to highlight the differences in solutions and performance.
In the second, we test a particular capacity constraint combination
on a series of larger instances to test performance on a larger scale.

Fig. 7. Reduced route node graph with three flight f ; g, and h. Flights f and g are as
shown in Figure 5 and both fly through sector s2, while flights g and h both fly
through sector s4. Flights f and h have no common sectors, so there are no
alternative arcs between them. The reduced route node graph may have parallel
alternative arcs, so we label the alternative arcs to distinguish them.

Fig. 8. A simple ong-path P in the route node graph G. The dotted arcs represent path lengths.
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Our experiments were run on a MacBook Pro (15-inch, 2016)
with a 2.9 GHz Quad-Core Intel Core i7 processor and 16 GB
2133 MHz LPDDR3 memory, running macOS Catalina version
10.15, Python 3.7.3, and CPLEX 12.9 running on a single thread
with default settings.

7.1. Comparison of capacity constraint combinations

For our first experiment, we simulate traffic in a small sector.
The simulated traffic follows a realistic pattern, for example for a
smaller airport, and highlights the differences in performance
between different capacity constraints we study. With only a few
notable exceptions, most Norwegian airports have no more than
6 aircraft movements per hour on average across the year, accord-
ing to 2019 data from Avinor (2020).

We simulate 7 different capacity constraint setups. The setups,
summarized in Table 1, are as follows

Baseline (B). Maximum 6 flights in fixed windows of 1 h, and
maximum 3 flights in fixed windows of 15 min. This solution
can easily be found by conventional time-indexed formulations,
so we use it as the baseline for comparison.
Alternative 1 (A1). Maximum 6 flights in fixed windows of 1 h.
This is a relaxation of the baseline (B).
Alternative 2 (A2). Maximum 6 flights in sliding windows of
1 h. This is similar to (A1), but the sliding window should
reduce bunching. (A2) is a strengthening of (A1), in the sense
that (A1) is a relaxation of (A2).
Alternative 3 (A3). Maximum 3 flights in fixed windows of 15
min. This is a relaxation of the baseline (B).
Alternative 4 (A4). Maximum 3 flights in sliding windows of 15
min. This is similar to (A3), but the sliding window should

reduce bunching. (A4) is a strengthening of (A3), in the sense
that (A3) is a relaxation of (A4).
Alternative 5 (A5). Maximum 6 flights in fixed windows of 1 h,
and maximum 3 flights in sliding windows of 15 min. This com-
bination of (A1) and (A4) is a strengthening of (B). The conver-
sion of the shorter fixed windows to sliding windows is
expected to reduce any bunching introduced by the longer fixed
windows.
Goal (G). Maximum 6 flights in sliding windows of 1 h, and
maximum 3 flights in sliding windows of 15 min. This combina-
tion of (A2) and (A4) is a further strengthening of (A5). The use
of sliding windows for both constraints is expected to further
reduce bunching. However, this setup is expected to be compu-
tationally heavy.

Our main interest is to compare the performances of (B), (A5),
and (G). We have also included (A1), (A2), (A3), and (A4) to show
the benefit of combining capacity constraints. In each of our setups
using fixed windows, the fixed windows partition the timeline,
with a window starting at the beginning of every hour. We use
occupancy counts in each capacity constraint. The bar graphs
labelled I in Fig. 10 show the initial traffic density in each simu-
lated schedule.

The results of our experiments are shown in Fig. 10 and Tables 2
and 3. We have used a time cut-off of 1800 seconds1. The figure
shows the number of flights entering the sector every 10 min. It
shows that the solution for (A5) is very similar to that of (G) for
the schedules where both are computed.

For all of the capacity constraint setups, the processing time
starts growing very rapidly when the schedule becomes too
crowded and too many conflicts must be resolved. Most cases that
were solved before the cut-off took only a few seconds to solve,
and in many cases were solved in the presolve, even after a few
conflicts were added.

Looking at Fig. 10, we see that (A5) generates schedules with
similar flight distributions to those generated using (G) in the cases
where both schedules could be computed. That is, (A5) does not
significantly increase bunching when compared to (G) in our
experiments. (A4) also compares favourably to (A5) and (G) in
most cases, but allows a larger sustained load since it only limits
peak capacity. In our simulations, (A5) comes out as a strong com-

Fig. 9. The ong 0-path P0 in the reduced route node graph G0.

Table 1
The table shows 6 different capacity constraint setups. Baseline represents a common
existing solution, and Goal represents our suggested ideal solution. The alternative
solutions represent various simplifications of Goal.

Baseline (B) FW (6, 60 min); FW (3, 15 min)

Alternative 1 (A1) FW (6, 60 min)
Alternative 2 (A2) SW (6, 60 min)
Alternative 3 (A3) FW (3, 15 min)
Alternative 4 (A4) SW (3, 15 min)
Alternative 5 (A5) FW (6, 60 min); SW (3, 15 min)
Goal (G) SW (6, 60 min); SW (3, 15 min)

1 Each successive MILP was solved without a time cut-off. In one case (S3, A4) an
optimal solution was found after the global time cut-off. This solution has been
included for comparison.
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promise between lower sustained loads, less bunching, and lower
processing times.

Table 3 shows the total and maximum delays in each solution.
We have included maximum delays to show that our solutions do
not tend to heavily delay a small number of flights, even though
the maximum delay is not taken into account in our models. That
is, our solutions tend to retain some measure of fairness between
flights.

Tables 2 and 3 and Fig. 10 together show a fuller picture of how
(A5), which is a combination of two capacity constraints, compares
to a set of different single capacity constraints. The comparisons to
(A1), (A2) and (G) are of particular interest. (A1) is the 1 h fixed
window that is part of (A5). Since (A1) is a relaxation of (A5), it
is expected to be easier to compute. However, (A5) gives signifi-
cantly less bunching. (A2) is the sliding window version of (A1).
(A2) is slower to compute than (A1), but does reduce bunching

Fig. 10. An illustration of bunching. The bars show number of arrivals in 10-minute windows. The initial schedule I is shown in red; the baseline B, alternative A5, and the goal
G, all combinations of two capacity constraints, are shown in shades of green; and the alternatives A1, A2, A3, and A4, all single capacity constraints, are shown in shades of
blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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in some cases. (A5) is faster than (A2), but still appears to reduce
bunching even more. In fact, (A5) seems to reduce bunching almost
as much as the very much slower (G), where (G) is the standard we
are aiming for.

7.2. Larger-scale performance test

In order to test the performance of our algorithm and explore its
limits, we compute optimal schedules for 40 randomly generated
instances with a higher traffic load. These instances all cover 6 h,
with between 10 and 15 flights per hour. This traffic density range
is representative for the average hourly traffic density of larger air-
ports in Norway, like Stavanger or Bergen, according to data from
Avinor (2020). The capacity constraint combination used is similar
to A5, but with a fixed window capacity constraint allowing 12
entries per hour, and a sliding window constraint allowing 4 occu-
pants in any 10-minute window. Table 4 shows the performance
data.

As seen in Table 4, the number of flights in the smallest instance
M1 is 63. With a sliding window capacity limit of 4, the total num-
ber of capacity constraints in the full formulation, HP, would be
63
5

� �
, which is just over 7 million constraints in almost 2 thou-

sand binary variables. Had the hourly limit of 12 flight also been
a sliding window, the total number of capacity constraints in the
full HP would be over 1013. As shown in the table, the number of
capacity constraints generated is only a tiny fraction of the total
number of such constraints. Furthermore, since every permutation
(down to rotational symmetry) of every subset of the flights corre-
sponds to a cycle, the number of cycle constraints in the full HP
would be 62!þ 61!þ . . ., which is about 1085. Computing the num-
ber of path inequalities would require an in-depth analysis of the
individual instance. A comparison of ttotal and tlast shows that a sig-
nificant amount of the total processing time is spent solving the

final formulation HPklast . Since the final formulation can be very
small compared with the total formulation, the overhead in pro-
cessing time from delayed variable and constraint generation is
comparatively small.

Figs. 11 and 12 show how the total processing time varies with
other solution statistics. The size of each dot represents the

number of flights in the related instance, but not in direct propor-
tion. Differing sizes are used to show that total processing time is
affected by more than just the number of flights in the instance.

Fig. 11 shows how the total processing time varies with the
number of time the MIP solver is invoked, and the total number
of MIP nodes processed. We use a logarithmic scale for total pro-
cessing time since the time tends to increase exponentially with
some measure of instance size. In Fig. 11 we use log-log axes since
the quantities being compared appear to have a near-linear
relationship.

Fig. 12 shows how the total processing time varies with the
number of binary variables and the number of generated con-
straints. In this case, we use log-linear axes, since the total process-
ing time appears to increase exponentially with the number of
variables, and near exponentially in the number of constraints.

As we can see in Table 4, our model solves most instances very
quickly and only breaks down when the traffic becomes very dense
and the number of separated capacity conflicts exceeds a few
dozen. Since the schedules we are targeting are ones initially cre-
ated to be handled by controllers, we can reasonably expect that
real-world instances will have a relatively small number of capac-
ity conflicts to be resolved.

8. Conclusions and future work

We have shown that the Path&Cycle approach can be used to
model the Hotspot Problem with occupancy counts and layered
capacity constraints. We have also discussed how we can speed
up the solution process so that we can use our model to solve
instances with novel capacity constraint setups that are of interest
to air-traffic control authorities.

It is clear from the model HP that sliding window capacity con-
straints can generate a very large number of variables, should the
number of conflicts grows too large. This has led us to propose
(A5), where fixed windows are used to spread the flights out, and
a sliding window is used to smooth away bunching. With access
to real-world instances, we could further validate our approach
and test its scalability under a variety of conditions.

Table 4 shows how our model performs on a collection of ran-
domly generated instances with a larger number of flights. We

Table 2
Processing time t, number of nodes processed n, and number of conflicts resolved c. For each schedule, we list the number of flights jFj. For the computations that did not complete
before the processing time cut-off, we still show the number of nodes processed and conflicts resolved before the cut-off was reached. When the number of processed nodes for an
instance is 0, each successive MILP for that instance was solved in the presolve. The instances are sorted according to the processing time of A5.

B A1 A2 A3 A4 A5 G

jFj t n c t n c t n c t n c t n c t n c t n c

S1 25 0.0 0 0 0.0 0 0 2.1 548 8 0.0 0 0 0.0 0 2 0.0 0 2 3.4 1324 9
S2 24 0.0 0 2 0.0 0 0 3.1 2694 15 0.0 0 2 0.1 3 4 0.1 3 4 6.0 7083 17
S3 26 0.0 0 3 0.0 0 2 — 1.3e6 63 0.0 0 1 0.1 8 6 0.1 14 8 — 1.3e6 63
S4 27 0.1 0 6 0.0 0 2 — 1.8e6 53 0.0 0 4 21.0 4.9e4 30 4.0 1.4e4 16 — 1.8e6 53
S5 25 0.1 1 6 0.0 0 2 — 2.1e6 73 0.1 4 6 — 4.2e6 59 5.6 2.0e4 20 — 2.1e6 73
S6 29 0.1 0 5 0.0 0 2 — 1.8e6 103 0.0 0 4 2143.1 3.2e6 54 1159.9 2.1e6 60 — 1.8e6 103

Table 3
Total delay R and maximum delay m. The maximum delay was not taken into account by the model, but is included as a measure of how delays are distributed.

B A1 A2 A3 A4 A5 G

R m R m R m R m R m R m R m

S1 0 0 0 0 39 13 0 0 7 5 7 5 45 13
S2 3 2 0 0 64 22 3 2 20 12 20 12 81 22
S3 18 8 7 6 — — 11 8 25 12 32 12 — —
S4 75 21 62 21 — — 15 8 65 10 107 21 — —
S5 144 25 120 25 — — 30 11 — — 180 25 — —
S6 59 24 44 24 — — 29 9 114 22 133 26 — —
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see that even for quite dense traffic patterns, a relatively small
number of variables and constraints are generated before an
optimal solution is found. Figs. 11 and 12 show that the total

processing time of an instance depends more on the number of
conflicts (variables and constraints) detected than on the number
of flights in the instance. This is in line with the findings in

Table 4
Computational performance on 40 randomly generates instances. In each case, the traffic is divided across 6 h, with between 10 and 15 flight per hour. The capacity constraint is
similar to A5, with at most 12 entries per hour, and at most 4 occupants in any 10-minute window. The instances are sorted according to the total number of flights and total
processing time. Each instance was run with a cut-off where no new calls were made to the MIP solver after 1 h. Instance M22 has a node count of 0 because it was solved in the
initial presolve.

jFj MIP nodes MIP solves ttotal tlast tcallback nvars ncapacity npath ncycle

M1 63 4805 12 1.29 0.30 0.05 90 11 190 6
M2 64 59 6 0.22 0.05 0.03 57 5 129 5
M3 65 3340 7 1.33 0.43 0.05 117 6 252 0
M4 65 39849 23 10.30 3.98 0.24 153 22 432 55
M5 66 88 4 0.15 0.08 0.03 72 3 142 1
M6 66 138 4 0.22 0.13 0.03 90 3 159 0
M7 66 488582 139 165.82 4.05 1.18 240 138 576 147
M8 67 2 2 0.02 0.02 0.01 30 1 54 0
M9 67 1858 9 1.13 0.57 0.09 111 8 324 20
M10 67 5429 12 1.55 0.76 0.09 120 11 257 12
M11 68 14 4 0.05 0.02 0.02 45 3 100 0
M12 68 10 3 0.07 0.05 0.02 60 2 109 0
M13 68 266 4 0.25 0.16 0.03 90 3 163 0
M14 68 3663575 163 2829.23 329.72 2.71 285 162 1312 427
M15 68 6178644 45 — — — 210 45 1149 410
M16 68 8196053 38 — — — 219 38 815 82
M17 69 2 2 0.02 0.02 0.01 30 1 54 0
M18 69 19 3 0.11 0.08 0.03 60 2 108 0
M19 69 1606 9 0.83 0.51 0.08 132 8 353 4
M20 69 6118 8 2.33 1.45 0.15 219 7 401 13
M21 69 31692 29 14.57 1.12 0.89 162 28 373 222
M22 70 0 1 0.00 0.00 0.00 0 0 0 0
M23 70 145229 20 52.90 32.43 0.46 303 19 735 74
M24 70 443948 20 247.86 38.50 1.62 213 19 1132 343
M25 71 57 20 0.69 0.10 0.40 240 19 279 80
M26 71 23364 11 7.00 5.10 0.19 204 10 415 23
M27 71 35420 71 13.72 3.43 0.71 309 70 419 101
M28 71 120844 27 60.08 20.77 2.44 321 26 603 450
M29 71 221104 27 78.66 41.22 0.52 177 26 695 125
M30 71 196980 24 97.81 62.80 0.79 348 23 807 135
M31 71 4296321 125 — — — 468 125 1251 526
M32 72 98 9 0.45 0.08 0.19 153 8 171 48
M33 72 425 15 0.82 0.32 0.54 243 14 242 108
M34 72 143 16 1.03 0.21 0.52 252 15 297 100
M35 72 1457 17 1.33 0.26 0.29 219 16 309 50
M36 72 6649 19 3.75 1.22 0.57 300 18 422 95
M37 72 19707 13 6.64 1.96 0.26 216 12 657 41
M38 72 6212160 55 5222.85 1955.66 1.26 282 54 1158 229
M39 73 9541090 295 — — — 339 295 873 186
M40 73 7633255 420 — — — 423 420 665 272

Fig. 11. Total processing time against, respectively, the total number of MIP nodes and the number of calls to the MIP solver. Since the running time appears to increase
exponentially with somemeasure of the difficulty of the instance, the processing time is shown on a logarithmic scale. Since the processing time is approximately linear in the
number of MIP nodes and solves respectively, these are also shown on a logarithmic scale. The size of each dot represents the number of flights in the instance, but not in
direct proportion.
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Mannino and Sartor (2018), where the Path&Cycle approach is
used to solve a version of the Hotspot problem for multiple, low-
capacity sectors. This scaling property makes the Path&Cycle
approach well suited to last-minute Air Traffic Flow Management,
where the current schedule in nearly feasible.

In the future, we would like to build a more precise understand-
ing of the problems surrounding bunching. In order to show
bunching effects, we use Fig. 10 to illustrate the density of flights
in 10-minute intervals. This gives a good visual indication of the
bunching effect, and studying the figure can give us an indication
about how to tweak our capacity constraints. Working with con-
trollers and control authorities we could further our understanding
of how bunching affects the workload on controllers, which in turn
would allow us to further improve our analysis of different capac-
ity constraint setups.

The Hotspot Problem as we define it falls under last-minute Air
Traffic Flow Management (ATFM), which does not take into
account aircraft separation and other local feasibility constraints.
Instead, capacities are set low enough that local Air Traffic Control
(ATC) can handle feasibility in each sector of the airspace. The sep-
aration of ATFM and ATC requires ATFM to be very conservative. By
expanding our model into the domain of ATC, we could potentially
allow higher capacities in the ATFM problem by enforcing local
feasibility already at the ATFM level. Our model can already handle
temporal aircraft separation constraints, so the major challenge
would be to expand the model to route and flight level selection.

In this case, we may have to resort to heuristic approaches, like
the ones presented in Kim et al. (2009), Samà et al. (2017), or other
tried approaches for job-shop scheduling (Allahverdi, 2016).
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Abstract

Real-time train dispatching (i.e., rescheduling and replatforming) in passenger railway sta-
tions is a very important and very challenging task. In most major stations, this task is
carried out by hand by highly trained dispatchers who use their extensive experience to
find near-optimal solutions under most conditions. Under major disruptions, however, the
traffic situation may become too complex for any human to handle it far beyond finding
feasible solutions. As part of a prototype for a dispatching support tool developed in col-
laboration with Bane NOR (Norwegian rail manager), we develop an approach for Optimal
Train Rescheduling in large passenger stations. To allow for replatforming, we extend the
standard job-shop scheduling approach to train-scheduling, and we develop and compare
different MILP formulations for this extended approach. With this approach, we can find,
in just a few seconds, optimal plans for our realistic instances from Oslo Central Station, the
largest passenger train hub in Norway. The prototype will be tested by dispatchers in the
greater Oslo area, starting from the fall of 2021.

Keywords: Integer programming, Optimization, Rail transport, Dispatching, Scheduling,
Routing
2010 MSC: 90B06, 90B20, 90C06, 90C08, 90C11, 90C90

1. Introduction

Like all management of critical infrastructure, train dispatching is heavily regulated.
Under the current system, all dispatching decisions must be made by highly trained human
dispatchers. Therefore, the only practical way to introduce optimization into the process is
through decision support tools. This work is part of the GOTO project [18] with Norwegian
rail manager Bane NOR. The GOTO project aims to deliver an optimization-based decision
support tool for dispatching trains in Oslo Central Station and other large passenger train
stations. While the tool we develop is aimed at Oslo Central Station, the algorithms we
present are general and not tailored to this station. The layout of Oslo Central Station
(Figure 10) is typical of large passenger train stations.
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In order to have a decision support tool accepted, we must make sure that our approach
can at least match or, better, outperform the human dispatchers under normal traffic condi-
tions. Under these conditions, human dispatchers can use their expert intuition to evaluate
suggested solutions and compare them to the near-perfect solutions they produce. Based
on evaluations under normal traffic conditions, dispatchers may come to trust the suggested
solutions in heavily congested traffic situations where no human can expect to capture the
complete picture. It follows that we must model the infrastructure and business rules with
a very high level of detail to produce high-quality solutions under any conditions.

The need for automated decision support can only be expected to grow with the intro-
duction of new technology in railway signaling. Currently, almost all dispatching is based on
a fixed division of the track infrastructure by signals. Level 3 of the European Train Control
System (ETCS) introduces moving blocks (see [19]), where trains are protected by safe zones
determined by breaking distances rather than by signals at fixed locations. As these new
control systems are introduced, they will increase the flexibility of train rescheduling and
make it even harder to solve the train dispatching problem optimally by hand. In order
to make full use of the flexibility introduced by moving blocks, we will require fine-grained
scheduling approaches.

An extensive research effort has gone into real-time train rescheduling problems (see, for
example, survey papers [4, 6, 8]), but the research primarily covers simple railway network
designs. Only a few works are devoted explicitly to dispatching trains in (large) railway
stations. The works typically make use of Mixed Integer Linear Programming (MILP) for-
mulations [20]. We can identify two major classifications according to the way scheduling
and platforming (routing within the station area) are represented in the models.

• For the scheduling part, two main streams of MILP models are applied in the literature:
big-M formulations and time-indexed formulations [16]. In both models, the path of
a train through the stations or lines is subdivided into smaller segments (sometimes
down to the physical track circuits, which are the smallest regions in the train detection
systems). In big-M formulations, for each train and each segment in its path, we have
a continuous variable representing the time in which the train enters the segment.
The drawback of this approach is that we need to introduce a disjunctive constraint
to represent the order in which two trains travel through a contended track. These,
in turn, are translated into linear constraints by introducing binary variables and the
so-called big-M constraints, i.e., constraints containing some very large coefficients–
notoriously weakening the formulation [16]. In time-indexed models, the planning
horizon is discretized into small time periods. A binary variable is associated with
each train, each segment in its path, and time period. The resulting formulations are
typically stronger than their big-M counterparts, but they have a much larger number
of variables and constraints, slowing down the solution process. The smaller the time
period, the larger the number of variables: on the other hand, large time periods lead
to a poor approximation of the train movement through the station, which may end
up generating suboptimal solutions, or even in solutions that cannot be implemented
in practice [10].
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• For the platforming part, we can identify two major categories according to how paths
through the station are represented. In multicommodity flow approaches [1], a binary
variable x is associated with each train and each segment of its path, and x = 1
denotes that the train will run through the segment. In this class of approaches, the
train path is constructed directly by the model. The drawback of this approach is that
the model must incorporate flow constraints to represent paths through the station. In
path-based approaches, we have a binary variable associated with each train and each
potential path of the train through the station. The drawback of this approach is that
the number of paths may grow exponentially with the station’s size.
Finally, the two approaches may be combined using Dantzig-Wolfe decomposition and
column generation (see [7]). With this technique, a path-based MILP is constructed
iteratively by solving a sequence of single-commodity flow subproblems.

Discrete time
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Zhu et al. [21]

Caimi et al. [5]

Pellegrini et al. [15]

Foglietta et al. [9]

Reynolds et al. [17]

Figure 1: Categorization of some recent papers on replatforming and rescheduling in railway stations.

Figure 1 shows how some recent papers on the topic are divided according to the classi-
fications described above.

Outside these major classes of approaches, there are some simulation-based and heuristic
approaches.

Reynolds et al. [17] present a time-indexed multicommodity flow model for rescheduling
and replatforming. In their approach, they then transform their formulation into a path-
based one by Dantzig-Wolfe decomposition. They then solve this formulation by branch-
and-price and column generation [2]. Reynolds et al. apply their approach to solve instances
with up to 32 trains (1 hour of traffic) in a large station area. They use a 15-second time
step for their time-indexed formulation and 30-second margins to account for business rules
that their model does not take into account.

Caimi et al. [5] present a discrete-time path-based formulation for rescheduling and re-
platforming. They introduce blocking stairways, which detail the speed profile of a train and
when the train blocks different segments. The trains are then assigned to available block-
ing stairways for entry to and exit from the station. If no feasible solution can be found,
additional blocking stairways are generated in a column generation fashion. The blocking
stairways allow the track infrastructure to be modeled to the level of track circuits, but
many blocking stairways may need to be generated. Caimi et al. apply their approach to

3



instances of the central station of Berne, Switzerland, where they solve a whole operational
day (roughly 1500 trains) in about 11/2 hours.

Pellegrini et al. [15] present a continuous-time multicommodity-flow-like approach. In
their approach, like in that of Raynolds et al. [17], the routing is left to the solver. They also
model the track infrastructure at the level of track circuits, which is the highest available
resolution for train position detection in most current signaling systems. Pellegrini et al.
apply their approach to Lille-Flandres station, where they solve instances with up to 47
trains, but only for up to 450-second (71/2-minute or 1/8-hour) periods.

Zhu et al. [21] present a continuous-time path-based formulation similar to the one we
present here. However, their formulation is slightly simplified and is used to solve smaller
instances in order to support an overarching agent-based approach. Zhu et al. show detailed
analyses of computational results for MILP instances with four trains. He et al. [11] also
present a similar path-based formulation, but they use it as part of a simulation-based
approach rather than as a MILP formulation.

To our knowledge, although tested on real-life or realistic instances, none of the above
approaches have been implemented in control centers and tested or adopted by operative
dispatchers. Foglietta et al. [9] present a heuristic approach that was in operation to support
dispatchers in Roma Tiburtina. While their paper also describes an exact, flow-based IP
model, this model required a commercial solver and was not applied in the station.

As this paper is part of the research project GOTO in collaboration with Bane NOR, our
modeling requirements have been guided by the use-cases at Bane NOR. In particular, we
want to focus on real-time dispatching support for Oslo Central Station. This station acts as
a hub, connecting traffic bound for the south-east and the south of Sweden; for the east and
central Sweden; for the north; for the south-west; and for the west. Delays in Oslo Central
Station can have knock-on effects on the entire Norwegian rail network, both for passengers
and cargo. In order to control these effects, we require a very long planning horizon.

Trains entering and leaving Oslo Central Station must be highly coordinated since they
often share track resources. To avoid causing unnecessary delay, we must model the infras-
tructure and business rules of the station very accurately, and we must avoid adding catch-all
buffer times. In late 2019, the Director for Customers and Traffic of Bane NOR, the Norwe-
gian rail manager, told Norwegian newspaper Aftenposten [3] that to increase punctuality
for 2020, trains will close their doors 20 seconds before their scheduled departure. This
statement indicates that the flow of passenger-train traffic is sensitive to very small delays
and that we must aim for a very fine time resolution.

In order to achieve sufficient accuracy, we model the track infrastructure on the level
of track circuits [19], which offer the finest resolution of train location in fixed-signal based
train control. Then, we extend the alternative-graph big-M formulations of Mannino et
al. [12, 13] to include path selection, and we develop continuous-time formulations for the
train dispatching problem in the large, hub-like passenger station Oslo Central Station in
Norway.

We adopt the path-based approach for platforming and assign collections of possible
paths to each train. Candidate paths are pre-selected based on observations of traffic and
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Figure 2: We represent a station by a set of signals and a set of interlocking routes connecting pairs of
signals. All train movements in the depicted area is from left to right.

discussions with dispatchers in Oslo Central Station. As a result, we can offer the flexibility
in routing expected by dispatchers while also finding optimal dispatching solutions in a
reasonable time for real-time applications. Using 1 hour of observed rush-hour traffic, we
craft instances of 6 hours of rush-hour traffic (330 trains) and instances with 24 hours of traffic
with morning and afternoon rush-hours (996 trains). In both cases, we solve all instances to
optimality in a reasonable amount of time for real-time applications in dispatching.

A support tool built on our algorithm will be field-tested by dispatchers at Oslo Central
Station, starting in the fall of 2021. This field test is part of the ongoing GOTO project,
which has delivered a line dispatching prototype already in active testing on the lines incident
to the station.

2. The Optimal Dispatching Problem

In this section, we give a formal description of the optimization problem tackled in this
paper. We consider the simultaneous rescheduling and replatforming of passenger-train
traffic through large passenger stations. The combination of rescheduling and replatforming
is the typical task of dispatchers. The Optimal Dispatching Problem (ODP) is the task
of assigning tracks and schedules to trains in a way that minimizes delays or maximizes
passenger utility. In this paper, we aim to minimize the (weighted) sum of delays for all
trains. For our computational experiments, we solve ODP for Oslo Central Station, the
largest hub for passenger-train traffic in Norway. We consider a scheduling horizon of up to
24 hours.

2.1. Track Infrastructure: Signals and Interlocking Routes

On the most basic level of scheduling, we represent the track infrastructure of a station
as a set of signals and a set of interlocking routes, which are the track sections connecting
two successive signals. The movement of a train can be decomposed into a sequence of
elementary movements, one for each interlocking route of its path. This decomposition is
of particular practical interest since, under normal operations, the interlocking routes are
at the highest level of precision in scheduling train movements in signal-based train control
systems [19]; dispatchers control trains on the level of signals.

Figure 2 shows an example of a station with three platforms. Often, an interlocking route
is uniquely determined by the signals it connects, but not always. In Figure 2, there are
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Figure 3: Train a (purple) is about to enter interlocking route AD, and train b (blue) is about to enter
interlocking route BD. Since the two interlocking routes physically overlap, one of the trains must wait.

two possible interlocking routes connecting signals D and G. An interlocking route cannot
pass a signal, so the remaining interlocking routes are uniquely defined by the signals they
connect. Signals are directional, and signals for opposite directions need not be placed at
the same point along the tracks. Therefore, there need not be any correspondence between
interlocking routes in opposite directions.

2.2. Paths and Station Platform Tracks

The station in Figure 2 has three platforms, drawn as solid, black rectangles with a circle
containing the track number. Each train passing the station will have a set of permitted
paths through the station, where a path is a sequence of interlocking routes. One or more
paths may be preferred for a specific train, for example, paths using one of the tracks adjacent
to a given platform. We may associate a cost with the choice of path.

In principle, any physically connected sequence of interlocking routes can be a feasible
path. Usually, however, only a few paths are actually available to a given train because
of business rules and other operational considerations. In a large station like Oslo Central
Station, it is typically required that a train stops at its designated track or, possibly, the
track opposite on the same physical platform.

2.3. Timetable and Delays

For each train, we are given a set of stations where the train is supposed to stop and
the scheduled arrival and departure times at these stations. Together, these are referred to
as the timetable. Given a station, our task is to decide, for each train, which path it will
take and when it will pass each signal on its path. In general, we may be given a scheduled
arrival time and an earliest departure time for any signal.

When we reschedule, the delay of a train in a station is the difference between the (re-
)scheduled arrival time and the arrival time in the timetable, or 0 if the difference is negative.
We assume that the timetable is independent of the choice of path through the station. That
is, scheduled arrival and departure times do not depend on the choice of platform track.
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Figure 4: An example collection of paths for a train going through the station from signal A to signal J. Not
all possible paths are included in the collection.

2.4. Scheduling Conflicts

When two trains are set to use the same interlocking route (or a pair of physically
overlapping interlocking routes), we have a potential scheduling conflict as shown in Figure 3.
In Figure 3 we identify two potential scheduling conflicts. The first is between train a entering
interlocking route AD and train b entering interlocking route BD, and the other is between
a entering DG and b entering DF . Generally, a pair of interlocking routes is incompatible
if some physical restriction or business rule limits their simultaneous use. An interlocking
route will always be incompatible with itself.

A potential conflict is realized by a given schedule only if, according to the schedule,
the two trains simultaneously occupy the interlocking route(s) generating the conflict. It is
apparent that if a schedule realizes a conflict, then the schedule is not feasible. We will use
the term candidate schedule when we want to emphasize that the schedule may be infeasible.

3. The Model

3.1. Route Nodes and Schedules

As discussed in the previous section, and illustrated in Figures 2 and 3, the movement
of a train can be decomposed into a sequence of elementary movements, each through an
interlocking route of the train’s path. We assume the speed of a train to be constant through
an interlocking route so that movement can be described by the entry time of the train in
each interlocking route of its path. We assume unique entry signals to and exit signals from
the modeled area for each train.

Figure 4 shows a collection of five paths from signal B to signal J through the station in
Figure 2. Each path consists of three interlocking routes. Figure 5 is a graph representation
of how the interlocking routes in Figure 4 are connected into paths through the station. Each
directed edge in Figure 5 represents a permitted transition from one interlocking route to
another, and each directed path in the figure represents an available path through the station.
The nodes labeled XB and JY are the entry and exit interlocking routes, respectively. Note
that Figures 4 and 5 represent the same possible collection of path options available to a
train passing the station. Different trains may have different path options, and the picture
in the figures is not a complete representation of all the path options in the station.
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Figure 5: The figure shows the directed graph associated with the interlocking routes of the paths highlighted
in Figure 4. XB is the entry interlocking route leading to signal B, and JY is the exit interlocking route
leading away from signal J .

For each train a, and each interlocking route r that may be used by a, we define the route
node 〈a, r〉. We let N (a) be the set of all route nodes of train a. Informally, a route node
〈a, r〉 ∈ N (a) represents the occupation of the interlocking route r by train a. A path for a
through the station corresponds then to a subset of route nodes in N (a).

We let A be the set of all trains, and define N = {o} ∪ ⋃a∈AN (a). That is, N is the
set of all route nodes associated with the trains, plus a special node o which represents the
origin of the planning horizon. We let NS ⊂ N be the set of sink (or terminal) route nodes,
i.e., the route nodes representing the end of the journey of a train (in the modeled area).

A schedule is a function t : N → R. We let tu = t(u). A schedule associates a time
to each route node, and t〈a,r〉 is the time train a enters interlocking route r, if r belongs to
the path chosen for a. Note that, since there are alternative paths available, an interlocking
route r available for a may not be chosen. In this case, t〈a,r〉 may assume any value.

The time to associated with the origin is the start time of our planning horizon, and we
have

tu ≥ to u ∈ N (1)

For ease of explanation, through this section, we assume that the path through the
station, i.e., the sequence of interlocking routes, is fixed in advance for any train a. In this
case, the graph of available interlocking routes (Figure 5) reduces to an oriented, simple path
and the set N (a) to the nodes in this path.
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3.2. Release Times and Free Running
When we consider the schedule of an individual train in isolation, without any interaction

with other trains, we say we are considering the free running of the train. In free running,
a train’s schedule is only determined by the train’s time to traverse interlocking routes and
by constraints on departure times.

If u = 〈a, ri〉 is a route node of train a, and ri+1 is the route following ri on the path of
a, then we let u + 1 = 〈a, ri+1〉. That is, u + 1 is defined for all u ∈ N \ NS. We let L〈a,r〉
be the time it takes a to traverse r, so we have the following traversal time constraint

tu+1 − tu ≥ Lu u ∈ N \ NS. (2)

Trains typically follow a public timetable and cannot depart from a station before the
officially scheduled time. Furthermore, we need to specify when trains enter the dispatching
area being modeled. At the beginning of a train’s path or at a station platform, we limit
the train’s earliest departure time, which is the earliest the train may enter the following
interlocking route. We let Γ : N → R, where Γu = Γ(u) is the earliest release time of u
relative to to, and get the release time constraint

tu − to ≥ Γu u ∈ N (3)

If the train is subject to a no-wait condition, the inequalities (2) and (3) may become
equalities. E.g., if the train is not allowed to stop at a certain signal or the time a train
enters the controlled area is fixed. If there is no earliest release time for u, we make the
constraint (3) redundant by setting Γu = 0; by (1), we already have tu ≥ to.

3.3. Timetable and Objective
A standard way to assess the quality of a schedule t is by comparing it to the published

timetable T . The timetable will specify target arrival and departure times at specific points
in the network, called timing points. From the point of view of dispatchers, these points are
normally the home signals and exit signals of stations with scheduled stops. The times at
these points are denoted as, respectively, arrival time (at the station) and departure time
(from the station). The quality of schedule t is measured by a cost function c(t, T ), which
typically penalizes delays of trains at their timing points. For passenger trains, the cost
function may only penalize delays at arrival since these are the ones that most influence
passenger utility; a delayed departure is not a problem if the train catches up by the next
station.

More formally, we let NT be a set of route nodes designated as timing nodes. A timetable
is a function T : NT → R. We let Tu = T (u), so that T〈a,r〉 is the target time (or target entry
time) of train a in route r (or at 〈a, r〉). We define the delay at each timing node u ∈ NT as
tu − Tu if tu > Tu, and 0 otherwise, and introduce the delay variable ηu, with

ηu = max(0, tu − Tu) u ∈ NT (4)

Note that, depending on the route r, the target (entry) time may be an arrival or de-
parture time. If Tu is the target entry (resp. arrival, departure) time at u, then tu is the
scheduled entry (resp. arrival, departure) time at u and ηu is the delay in entry (resp. arrival,
departure) time at u.
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Figure 6: There are 9 possible paths from O to S. For a train travelling through a sequence of stations
with multiple paths through each station, the total number of paths is, in the worst case, exponential in the
number of stations.

3.4. Potential Conflicts and Selection Constraints

Until now, all our discussions have been about the free running of trains. In order to take
the interaction between trains into account, we must now consider all potential scheduling
conflicts between trains. Figure 3 shows an example of two trains crossing paths.

As described in Section 2, a potential conflict exists when two trains a, b make use of
two incompatible (e.g., overlapping) interlocking routes r, q, respectively. In this case, we
say a potential conflict exists between route notes 〈a, r〉 and 〈b, q〉. In Figure 3, 〈a,AD〉 and
〈b, BD〉 are in potential conflict, and so are 〈a,DG〉 and 〈b,DF 〉.

Conflicts cannot occur in an actual schedule, and so we must decide which train goes
first. If a goes first, then b can enter q only after a has left r. Vice versa, if b goes first, then
a can enter r only after b has left q. This disjunctive precedence condition translates into a
disjunctive constraint on the schedule of suitable route nodes on the paths of a and b.

We let K be the set of pairs of route nodes in potential conflict. Then, the following
disjunctive constraint must be satisfied by every feasible schedule:

tv − tu+1 ≥ δu
or

tu − tv+1 ≥ δv

{u, v} ∈ K (5)

where δu for u = 〈a, r〉 is the time it takes the length of train a to pass the signal at the end
of interlocking route r, thus clearing the way for the next train.

4. Path Selection

In this section, we show how to extend our model to consider the existence of alternative
paths for a train through the station. Different paths may exist from the entry point to the
platform track and from the platform track to the exit point. Even the choice of platform
(or platform track) may not be fixed in advance, although the official timetable may indicate
a preferred platform (or platform track). Each path is a sequence of interlocking routes, as
pictured in an example with two stations in Figure 6. As the figure shows, the number of
possible paths can grow exponentially with the number of locations where multiple routing
options are available.

Figure 7 shows the station from Figure 4 with some of the possible paths drawn in. Paths
5–9 are the paths shown in Figure 4. The paths entering from signal A and exiting through
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Path name 1 2 3 4 5 6 7 8 9
Signals ACFI ADFI ADGI ADHI BDFJ BDGJ BEFJ BEGJ BEHJ
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Figure 7: A collection of paths through the station in Figure 2. Each path is made up of three interlocking
routes, identified by the adjacent pairs of signals in the path definition. The interlocking routes are uniquely
defined by the names of their end signals, with the exception of DG and EG, which we define as they are
drawn in the figure.

signal I are shown as solid, purple lines. The paths entering from signal B and exiting
through signal J are shown as dashed, blue lines. We note that the interlocking routes DG
and EG are not uniquely defined by their end signals. We define DG and EG as they are
drawn in Figure 7. The alternative interlocking routes (with the detour to the lower track
for DG and the earlier change to the middle track for EG) could be added under different
names, which would increase the number of possible paths.

We now extend our model to allow for path selection. As before, we let A be the set of
trains, and for train a, we let N (a) be the set of route nodes for a and P(a) be the set of
paths available to a. Any path p ∈ P(a) is an ordered sequence of route nodes in N (a). If
u is a route node of p, we denote by u+p the route node which follows u on p (if it exists).
For a node u ∈ N (a), we let S(u) ⊆ N (a) be the set of potential successors of u. That
is, if v ∈ S(u) then there is at least one path p ∈ P(a) such that v = u+p . For a node
u = 〈a, r〉 ∈ N (a), we denote by ρ(u) the set of paths in P(a) which goes through (i.e.,
uses or contains) interlocking route r. Now, let P =

⋃
a∈AP(a). We define the path variable

wp ∈ {0, 1} for p ∈ P , which is 1 if and only if path p is selected. Since each train must be
assigned exactly one path through the modelled area, we get the path selection constraint

∑

p∈P(a)
wp = 1 a ∈ A (6)

Next, for all route nodes u ∈ N \ {o} we introduce a variable zu ∈ {0, 1} which is 1 if
and only if (a path containing) u is selected. We get

zu =
∑

p∈ρ(u)
wp u ∈ N \ {o} (7)

If zu = 1 we say that node u is active (or selected).
Many of the constraints we have introduced in Section 3 now depend on the choice of

path for each train. We generalize these constraints in the following sections.
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Figure 8: The route-node graph Gb of train b. Nodes correspond to the interlocking routes available for b,
and an arc (u, v) means that the route associated with v starts at the signal where the route associated with
u ends. The variables used to label each arc (u, v) represent the paths containing both u and v. The route
node 〈b,XB〉 is the origin or the route node for the interlocking route leading to signal B, while the route
node 〈b, JY 〉 is a sink node (if the train leaves the modelled area) or the route node for the interlocking
route leading away from signal J. In the figure, we are assuming that neither 〈b,XB〉 nor 〈b, JY 〉 are path
dependent. Any path p ∈ P(a) corresponds to a directed path from 〈b,XB〉 to 〈b, JY 〉 in Gb. However, not
all paths from 〈b,XB〉 to 〈b, JY 〉 in Gb need to belong to P(a).

4.1. Path-Dependent Free Running Constraints

The following set of inequalities is a generalization of (2) to the case with path selection:

tu+p − tu − Lu ≥M (wp − 1) u ∈ N \ NS, p ∈ ρ(u) (8)

where M is a suitable large positive constant. When wp = 1, then (8) reduces to (2),
otherwise it becomes redundant (this is the big-M trick). It is well known that big-M
constraints are weak, in the sense that they do not help improve the value of the linear
relaxation of the MILP formulation [20].

In a station with parallel platform tracks (as in Oslo Central Station), one can show that
the system of inequalities (8) is dominated by the following family:

tv − tu ≥ Lu
∑

p∈ρ(u)∩ρ(v)
wp u ∈ N \ (NS ∪ {o}), v ∈ S(u) (9)

where Lu, when u = 〈a, r〉, is the time for train a to run through r. Note that when wp = 1
for some p containing both u and v, then (9) reduces to (2). Otherwise, when either or both
route nodes are inactive, the constrain reduces to tv ≥ tu (where v ∈ S(u)).
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Similarly, we get path dependent release-time constraints

tu − to − Γu ≥M(zu − 1) u ∈ NR (10)

Again, one can show that this constraint is dominated by the following system of inequalities:

tu − to ≥ Γuzu u ∈ NR (11)

which does not involve the big-M constant. Indeed, if zu = 1, then (11) reduces to (10). If
zu = 0, then (11) reduces to (1).

Figure 8 shows the route-node graph Gb for the station in Figure 7. We have omitted the
arc weights, and have instead labeled each arc with the path variables on which it depends,
in accordance with (8) (or (9)).

4.2. Path-Dependent Objective Functions

This subsection shows how to assess the cost of a schedule (and path selection) when
trains can follow different routes in the station. There are two major considerations. First,
the timing points may depend on the path. Second, some paths may be preferred to others,
e.g., when the official timetable establishes the (preferred) stopping platform.

Path-dependent timing nodes. Let NT (a) ⊆ NT be the timing nodes for train a. Then we
rewrite (4) as follows

ηu = max(0, tu − Tu)
ηu = 0

if zu = 1

otherwise
u ∈ NT (a), a ∈ A (12)

We let ka ≥ 0 be the cost of 1 unit of delay of train a.

Path-dependent costs. To account for this cost component, we let cp ≥ 0 be the cost of
choosing path p ∈ P .

Path-dependent objective function. The overall path-dependent objective function can be
written as:

min
∑

a∈A

∑

p∈P(a)
cpwp +

∑

a∈A

∑

u∈NT (a)

kaηu (13)

In order to express (16) using linear constraints, we can use the big-M trick. This results
in the following family of inequalities:

ηu ≥ tu − Tu −M(1− zu)
ηu ≥ 0

a ∈ A, u ∈ N a
A (14)

If we have zu = 1, then ηu ≥ tu − Tu and ηu ≥ 0 hold together, and then the positive
coefficient ka in objective function will push the optimal value η∗u down to max(0, tu − Tu).
When zu = 0, only ηu ≥ 0 holds (the other inequality becomes redundant), and we get
η∗u = 0.
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Partitioning of path-dependent timing nodes. We now consider the case where NT (a), the
timing nodes for train a, can be partitioned into {N 1

T (a), . . . ,N ra

T (a)}, such that

∑

u∈N i
T (a)

zu = 1

Tu = Tv for u, v ∈ N i
T (a)

i ∈ {1, . . . , ra} (15)

That is, train a will use precisely one timing node in N i
T (a), and all timing nodes in N i

T (a)
have the same time in the published timetable.

For passenger trains with multiple path options in a station, the partitioning condi-
tion (15) holds if arrival and departure times are independent of path selection. This is
usually the case, and we can generally assume that the above partition exists. When it does,
we introduce only one delay variable per set in the partition, namely ηia, . . . , η

ra

a .
Finally, using (15) and the assumptions behind (9), one can show that the constraints

(14) can be replaced by the family of constraints

ηia ≥ tu − Tu
ηia ≥ 0

a ∈ A, i = 1, . . . , ra, u ∈ N i
T (a) (16)

which does not contain the big-M constant. We let kia be the cost of delaying train a by one
unit at the nodes in N i

T (a) (e.g., the parallel timing points this represents), and get

min
∑

a∈A

∑

p∈P(a)
cpwp +

∑

a∈A

ra∑

i=1

kiaη
i
a (17)

4.3. Path-Dependent Selection Variables and Disjunctive Constraints

When we introduce alternative paths, potential conflicts become path-dependent, as they
depend on whether certain tracks are used by certain trains.

More specifically, let u = 〈a, r〉 and v = 〈b, s〉 be two distinct route nodes, with {u, v} ∈
K, where now K contains all pairs of route nodes in potential conflict, independently of
whether or not the nodes are actually used by the trains. Then the potential conflict exists
if and only if a path p ∈ ρ(u) trough u for train a and a path q ∈ ρ(v) through v for train b
are selected, namely if node u and v are both active. In this case, we need to decide whether
a precedes b or b precedes a in the contested track resource. The constraint (5) is extended
as follows:

tv − tu+p ≥ δu
or if zu = zv = 1

tu − tv+q ≥ δv

{u, v} ∈ K (18)

To linearize the above disjunctive constraint we introduce, for {u, v} ∈ K, binary selection
variables yuv, yvu ∈ {0, 1} which, as in (5), decide which of the two terms of the disjunction
must be satisfied by the schedule. In particular, if yuv = 1, then u precedes v and the first
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term is the valid one; if yvu = 1, then v precedes u and the second term is the valid one.
Since (18) only holds if both u and v are active, we have for all {u, v} ∈ K

yuv ≤ zu, yvu ≤ zu, yuv ≤ zv, yvu ≤ zv. (19)

In any case, for all {u, v} ∈ K at most one selection variable can be one:

yuv + yvu ≤ 1 (20)

Finally, for all {u, v} ∈ K, when both u and v are selected, one selection variable must be
one:

yuv + yvu ≥ zu + zv − 1. (21)

Note that if zu = 0 or zv = 0, (21) is redundant as the y variables are non-negative.
We are now ready to write the linear version of constraint (18), by exploiting once again

the big-M trick:

(i) tv − tu+p − δu+p ≥M (yuv + wp − 2) p ∈ ρ(u)

(ii) tu − tv+q − δv+q ≥M (yvu + wq − 2) q ∈ ρ(v)
{u, v} ∈ K (22)

Let u = 〈a, r〉 and v = 〈b, s〉, and suppose wp = yuv = 1. It follows from (19) that, since
yuv = 1, both u and v are selected and train a precedes b. wp = 1 implies that path p is
selected for train a and, therefore, u+p is the node following u for a. Since wp = yuv = 1,
the r.h.s. of (22.i) is 0 and the constraint is active. On the other hand, since yuv = 1, then
yvu = 0, and, with M suitably large, (22.ii) becomes redundant. A similar argument applies
with the first and second term in (22) interchanged, when yuv = 0 and yvu = wq = 1.

These path-dependent disjunctive constraints can be represented and visualized by the
path-dependent disjunctive graph of in Figure 9, associated with two trains a, b. This graph
contains as subgraphs the route-node graphs Ga, Gb of trains a and b, respectively, plus
the origin, which is connected to the entry node of each train in the corresponding route-
node graph. The green arcs belong to the train-specific route-node graphs, and they can
be associated with the path variables as in Figure 8. Each arc with one endpoint in one
route-node graph, and the other endpoint in the other route-node graph, is associated with
one of the terms in a disjunction. A term becomes active if both the corresponding y variable
and w variable are 1. Note that the graph may contain parallel arcs. To simplify notation,
we let α = 〈a,AD〉 and β = 〈b, BD〉.

In Figure 9 the red arcs correspond to the following set of inequalities (which are an
instance of (22)):

tβ ≥ t〈a,DF 〉 + δ〈a,DF 〉 if yαβ = w2
a = 1

tβ ≥ t〈a,DG〉 + δ〈a,DG〉 if yαβ = w3
a = 1

tβ ≥ t〈a,DH〉 + δ〈a,DH〉 if yαβ = w4
a = 1

tα ≥ t〈b,DF 〉 + δ〈b,DF 〉 if yβα = w5
b = 1

tα ≥ t〈b,DG〉 + δ〈b,DG〉 if yβα = w6
b = 1
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Figure 9: A path dependent disjunctive graph. Each red arc represents one of the two terms in a disjunctive
constraint (22). One such arc is thus associated with a selection variable y and a path variable w. The term
becomes active, i.e. the arc is chosen, when both the associated y and w variables are 1.

5. Solution Approach

Using the linearized constraints (8), (10), (14), and (22), we get the following MILP
formulation for ODP. A listing of notation can be found in Table 1.
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Symbol Description

A Set of all trains

N Set of all route nodes
N (a) Set of all route nodes for train a
NT Set of all timing nodes
NT (a) Set of all timing nodes for train a
N i
T (a) Element i of partition of timing nodes for train a
NS Set of all sink nodes
o Origin route node
u+p Route node following u on path p

P Set of all paths
P(a) Set of all paths for train a
ρ(u) Set of all paths containing route node u

K Set of all (potential) conflicts

T, Tu Timetable
t, tu Schedule (variable)
ηu, η

i
a Delay variable

yuv (precedence) selection variable
wp (path) selection variable
zu (route node) selection variable

ka, k
i
a Cost of unit delay to train a (in i)

cp Cost of selecting path p
L〈a,r〉 Time for train a to pass through interlocking route r
δ〈a,r〉 Time for the length of train a to pass the signal at the end of r

Table 1: Listing of notation
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min
∑

a∈A
∑

p∈P(a) cpwp +
∑

a∈A
∑

u∈NT (a) kaηu

s.t. (ia)
∑

p∈P(a)wp = 1 a ∈ A
s.t. (ib)

∑
p∈ρ(u)wp = zu u ∈ N \ {o}

(iia) yuv + yvu ≥
∑

p∈ρ(u)wp +
∑

q∈ρ(v)wq − 1 {u, v} ∈ K
(iib) yuv + yvu ≤ 1 {u, v} ∈ K
(iic) yuv ≤ zu {u, v} ∈ K
(iid) yuv ≤ zv {u, v} ∈ K

(iii) tu − to − Γu ≥M (zu − 1) u ∈ N
(iv) tu+p − tu − Lu ≥M (wp − 1) u ∈ N \ NS, p ∈ ρ(u)

(va) tv − tu+p − δu ≥M (yuv + wp − 2) {u, v} ∈ K, p ∈ ρ(u)

(vb) tu − tv+p − δv ≥M (yvu + wq − 2) {u, v} ∈ K, q ∈ ρ(v)

(vi) ηu − tu + Tu ≥M (zu − 1) a ∈ A, u ∈ N (a)

tu ≥ 0 u ∈ N
ηu ≥ 0 a ∈ A, u ∈ NT (a)
yuv ∈ {0, 1} {u, v} ∈ K
wp ∈ {0, 1} p ∈ P
zu ∈ {0, 1} u ∈ N \ {o}

(23)

In Section 4, we discussed how we can strengthen (23.iii), (23.iv), and (23.vi), replacing
them with (9), (11), and (16), respectively.

5.1. Delayed Variable and Constraint Generation

Already in a moderately sized instance of ODP, the number |K| of potential scheduling
conflicts can grow prohibitively large. Therefore, rather than generating a full instance with
all constraints (23.v) from the start, we prefer to solve a sequence of smaller instances by
applying the delayed constraint generation approach. The idea is to start solving to opti-
mality a model with much fewer constraints. We then check if any of the missing constraints
are violated by the current optimal solution. If this is not the case, then the solution can
be shown to be optimal for the full problem (with all constraints). Otherwise, the violated
constraints are added to the model, and the process is iterated.

We start with a model M0, which is (23) with all constraints of type (23.v) removed,
and without any y-variables. Then, we use the algorithm outlined as follows.

1. Set i← 0.

2. Find the optimal solution ti, wi, yi, µi to Mi .
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Source: Bane NOR (CC BY-SA 4.0)

Figure 10: Schematic track layout of Oslo Central Station. The station is laid out approximately east-to-west,
so this schematic is oriented north-up.

Table 2: Comparison between different MILP formulations for ODP using different versions of the constraints
(23.iii), (23.iv), and (23.vi). For comparison, a set of 200 instances (220 trains over 4 hours with random
delays) have been solved using each formulation, and the values shown in this table are the averages for each
formulation. The fastest formulation has been highlighted.

(23.iii),(23.iv) (23.vi) ttotal tlast tsep MIP Nodes Vars Constr

big-M big-M 13.63 1.00 0.25 17.07 21778.87 1035.29 517.64
big-M modified 16.47 0.66 0.36 25.45 26405.58 1300.69 650.35
big-M combined 15.11 0.63 0.34 25.43 22796.97 1273.94 636.97

modified big-M 14.83 1.18 0.25 16.88 29430.74 1001.78 500.89
modified modified 29.30 1.83 0.31 21.12 49842.10 1147.05 573.52
modified combined 24.17 1.53 0.27 19.64 40426.82 1125.34 562.67

combined big-M 12.73 0.94 0.24 16.66 20313.77 1036.53 518.26
combined modified 23.07 1.57 0.28 18.55 34165.39 1136.41 568.21
combined combined 16.98 1.22 0.26 17.59 25044.31 1093.82 546.91

(a) if there exist a potential conflict pair {u, v} ∈ K such that paths p ∈ ρ(u), q ∈ ρ(v)
are chosen (i.e. wip = wiq = 1) and constraint (18) is violated, create Mi+1 by
adding to the model the associated constraints (19), (20), (21) and (22), and
update i← i+ 1. Go to 2.

(b) else the solution is optimal for (23).

Checking for violated inequalities can be done very efficiently. In Appendix A we give
more details on our constraint generation (conflict detection) algorithm.

6. Computational Results

To test our approach, we find the optimal dispatching solution in a variety of traffic
instances in Oslo Central Station, shown in Figure 10. The station has 19 platform tracks, 1
west-bound line, 4 east-bound lines, and 2 east-bound exits to technical areas. Oslo Central
Station has 19 tracks. Track 1 and tracks 14–19 are east-bound only, while tracks 2–13
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Table 3: Computational results for Oslo Central Station. Each instance is 6 hours of rush-hour traffic, with
a total of 330 trains. Nd is the number of trains that has been delayed to create the random instance, and
each delayed train was delayed by a random number of minutes between 1 and 15.

Nd ttotal tlast tsep MIP Nodes Vars Constr
0 31.75 2.19 0.39 19 27842 1576 788
1 44.83 1.89 0.48 24 39388 1628 814
2 15.46 1.52 0.27 13 18871 1486 743
3 41.33 1.41 0.50 24 27607 1662 831
4 28.17 1.01 0.34 16 43545 1586 793
5 32.61 2.65 0.39 20 27394 1572 786
6 29.99 2.77 0.36 17 31249 1562 781
7 56.48 2.18 0.62 30 41290 1736 868
8 41.42 2.23 0.47 23 29717 1652 826
9 27.63 1.77 0.38 18 44345 1566 783
10 47.22 1.99 0.49 24 39800 1690 845
11 17.89 1.17 0.29 14 13660 1556 778
12 42.11 1.77 0.49 24 32576 1600 800
13 22.29 1.87 0.33 16 26874 1542 771
14 34.46 2.48 0.40 20 27559 1612 806
15 36.59 1.91 0.47 22 24433 1734 867
16 27.39 1.64 0.38 18 35316 1568 784
17 27.00 2.01 0.38 18 21565 1564 782
18 31.92 2.87 0.40 19 28043 1618 809
19 21.70 1.80 0.35 16 13584 1540 770
20 31.87 2.14 0.39 18 29370 1580 790
21 25.43 2.68 0.35 16 36534 1574 787
22 18.38 2.18 0.28 14 11386 1574 787
23 23.60 2.59 0.36 17 28187 1610 805
24 28.07 2.19 0.34 16 19580 1642 821
25 29.39 2.43 0.44 21 34381 1604 802
26 32.68 1.43 0.40 19 21195 1592 796
27 48.98 2.42 0.48 25 45070 1644 822
28 18.66 1.71 0.28 13 18206 1604 802
29 27.29 1.97 0.38 18 36655 1576 788
30 24.44 2.06 0.33 16 17919 1568 784

20



Table 4: Computational results for Oslo Central Station. Each instance is 24 hours of traffic, with two
rush-hour periods of 4 hours each and a total of 996 trains. Nd is the number of trains that has been delayed
to create the random instance, and each delayed train was delayed by a random number of minutes between
1 and 15.

Nd ttotal tlast tsep MIP Nodes Vars Constr
0 43.45 3.02 1.64 19 19721 3064 1532
1 47.47 2.99 1.81 22 34519 3016 1508
2 89.21 3.48 2.69 32 51796 3202 1601
3 63.15 2.34 2.08 25 31459 3166 1583
4 53.14 2.91 1.69 21 53566 3208 1604
5 54.38 3.16 1.80 21 32423 3200 1600
6 36.19 2.88 1.31 17 34178 3068 1534
7 57.66 3.71 1.89 24 28443 3176 1588
8 23.80 2.52 0.95 12 22428 3010 1505
9 36.60 2.73 1.32 16 23108 3100 1550
10 54.25 2.71 1.70 21 39828 3108 1554
11 91.07 2.48 2.75 34 54384 3246 1623
12 53.08 2.64 1.77 22 59062 3070 1535
13 35.81 3.29 1.36 17 26755 3086 1543
14 36.29 3.22 1.27 16 20789 3044 1522
15 55.57 3.87 1.84 23 32907 3114 1557
16 76.93 3.95 2.04 25 34058 3202 1601
17 50.44 2.75 1.62 20 61812 3066 1533
18 31.90 2.71 1.30 16 30493 3004 1502
19 67.57 3.44 2.09 26 35096 3108 1554
20 26.92 2.54 1.13 14 26348 2924 1462
21 57.52 3.48 1.75 21 26297 3224 1612
22 65.72 3.19 1.95 25 46235 3130 1565
23 61.08 3.70 2.08 26 54550 3182 1591
24 56.80 3.05 1.74 22 18673 3166 1583
25 33.78 2.33 1.30 17 18268 3100 1550
26 71.83 3.03 2.35 30 40423 3078 1539
27 47.63 2.66 1.73 21 46208 3024 1512
28 37.13 3.35 1.38 17 32929 3130 1565
29 84.11 1.86 2.46 32 49202 3132 1566
30 51.30 3.97 1.80 21 29310 3134 1567
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are both east-bound and west-bound. Tracks 2–8 are primarily used for west-bound traffic,
while tracks 9–13 are primarily used for east-bound traffic. To the west, all tracks collect
into a west-bound double-track tunnel. This tunnel is the main line connecting the east
and the west of Norway by rail and is very busy. To the east, traffic can go north-east
on Brynsbakken to one of the three lines Gjøvikbanen, Hovedbanen, and Romeriksporten
(Gardermobanen); southeast to Østfoldbanen or the depot at Lodalen; or south to the yard
at Haven. To the east, tunnels allow traffic to move at different levels in order to improve
traffic flow. The tracks are divided into hundreds of track circuits, allowing effective use of
sectional release (see Appendix A). In order to construct our experiments, we have been
given insight into restricted-access documents detailing the infrastructure of Oslo Central
Station and the surrounding area. In particular, we have been able to use the real track-
circuit and signal layout, though we have had to estimate the exact sizes of each track circuit.
In order to generate the timetable, we have used the public listing of arrivals and departures
at the station. With permission from Bane NOR, we have published the infrastructure data
for Oslo Central Station in a companion paper [14].

All our instances are based on repeating the traffic scheduled between 4 p.m. and 5 p.m.
on a weekday, during the height of the after-work commute out of Oslo city center. We test
our approach under an extra heavy load by repeating this very busy hour instead of following
the published timetable. The number of trains scheduled to move through the station this
hour is 55, with some trains arriving from or departing to the neighboring depot. For traffic
outside of rush hour (for longer simulations), we have selected 38 of the rush-hour trains.
Whenever a track connection existed, the trains were allowed to use both their scheduled
track and the other track on the same platform. As possible paths, we allowed the paths
trains are observed to take to their designated track and paths suggested as alternatives
by dispatchers at Bane NOR. We ran our experiments on a MacBook Pro (15-inch, 2016)
with a 2.9 GHz Quad-Core Intel Core i7 processor and 16 GB 2133 MHz LPDDR3 memory,
running macOS 10.15, Python 3.8.2, and Gurobi 9.0.3 with default settings.

In order to compare the different formulations we present in Section 5, we have generated
a set of 200 instances, each consisting of 4 consecutive hours of rush-hour traffic. In each
instance, we randomly select trains and give them a random delay between 1 and 15 minutes.
The number of trains selected for delay is between 1 and 30. We then solve all 200 instances
using each of the formulations we compare.

The big-M formulation is the one given in (23). In rows labeled modified, the correspond-
ing constraints have been replaced by their strengthened versions, described immediately
following (23). In rows labeled combined, the corresponding constraints have been supple-
mented by their strengthened versions. Table 2 shows the average performance statistics.
The columns of the table are (ttotal) the total processing time, (tlast) the processing time of
the last MIP to be solved, (tsep) the time spent separating conflict constraints, (MIP) the
number of MIP models solved, (Nodes) the total number of MIP nodes processed, (Vars) the
number of selection variables generated, and (Constr) the number of selection constraints
generated.

Table 2 shows a surprising result: replacing (23.iii) and (23.iv) with stronger, non-big-M

22



versions slows down the solution process. Comparing the first three rows of Table 2 with
the middle three rows, we see that the number of MIPs solved is smaller when using the
strengthened constraints. This indicates that the intermediate solutions, and therefore the
conflict detection process, might be better. However, the number of MIP nodes processed
is much larger, indicating that the branch-and-bound process is less effective. When we
replace (23.vi), we get even slower running times. In this case, strengthening the inequality
removes the explicit connection between the path variables and the delay variables, which
could explain the increased number of MIP nodes processed. The highlighted row of Table 2
shows the formulation with the best performance in our comparison experiments. In this
formulation we have supplemented (23.iii) and (23.iv) with their strengthened version, and
kept (23.vi). This results in the number of MIP solves and the number of MIP nodes
processed being comparatively low. We use this formulation in the rest of our experiments.

Table 3 shows performance results from an experiment very similar to the comparison
experiment, but with six consecutive hours of traffic. The new column (Nd) is the number
of trains delayed to create the instance. Each instance has 330 trains moving through the
station. Most trains have options for which path to take to their designated platform, and
some trains have options for which platform to take. In each instance, the total number of
path selection variables is 798. All the instances are solved in under 1 minute. This is fast
enough that dispatchers can use the suggested solutions; the traffic pattern does not change
too much in 1 minute. Furthermore, once a train is approaching the station, the signals
will have been set, and changing the train’s schedule will be very work-intensive. Therefore,
there is no great need for a faster refresh rate than every minute; dispatchers need time to
implement the planned schedule.

Table 4 shows the performance results from an experiment where each instance is made
up of 24 hours of traffic: two 4-hour periods of rush-hour traffic and three periods of reduced
traffic. Each instance has 996 trains moving through the station, and the total number of
path selection variables is 2520. All instances are solved within 100 seconds. Similar to the
above situation, this is fast enough to be useful in real-time applications when dispatchers
and schedulers plan this far ahead.

7. Conclusions and Future Work

The computational results reported in the previous section show that our approach can
solve the ODP in a large passenger train station up to a 24-hour planning horizon in a
reasonable amount of time. As a part of the innovation project GOTO with the Norwegian
infrastructure manager Bane NOR, a prototype based on our approach will undergo a field-
test campaign from the fall of 2021. The dispatchers at Oslo Central Station control center
will be involved in the testing.

Even though the experiments on real-life data show that the approach will work in prac-
tice, the field campaign may present new challenges. Also, further research may be needed
to tackle even larger stations with more congested traffic, which exist in other European
railways.
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In the GOTO project, we also developed a prototype, already under testing at Oslo
Central Station, to dispatch trains on the lines incident to the station. The final objective of
the GOTO project is to develop a decomposition approach to combine the two prototypes
to control the traffic over the entire Greater Oslo region. The final prototype will be tested
at Oslo Central Station in June 2022.

Based on discussions with dispatchers at Oslo Central Station, we have decided to rely
on predetermined paths for the routing within the station. On the one hand, this approach
aligns well with how dispatchers route trains in the station, making it easy for dispatchers to
implement suggested solutions. On the other, using predetermined paths restricts the search
space. In order to further improve our approach, we want to explore more options for path
generation. First, we want to let dispatchers control which paths are available for each train,
including drawing new paths. Second, we want to design an algorithm that generates paths
on-demand based on the current traffic in the station.
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Figure A.11: The figure shows an area of tracks divided into 12 track circuits, shown as shaded or crosshatched
areas. The track circuits are delimited by the signals and the small hatches drawn on the lines. The
large, shaded track circuit on the right prevents the two parallel tracks going through it from being used
simultaneously.

Appendix A. Detailed Conflict Modelling

In order to model Oslo Central Station (or any other large passenger station) with suffi-
cient accuracy, it is necessary to understand the low-level business rules of operating the rail
infrastructure that makes up the station. In this appendix, we explain the details behind our
conflict detection approach. These are the details that allow us to achieve feasible schedules
without adding safety margins.

Appendix A.1. Track Infrastructure

Up to this point, we have considered the track infrastructure to be divided into inter-
locking routes with potential conflicts between interlocking routes that share some physical
resources. While the interlocking routes are the finest division from a scheduling point of
view, these routes are further divided into track circuits for actual conflict detection. Fig-
ure A.11 shows an example of how tracks can be divided into track circuits.

Track circuits can be seen as atomic track elements since they partition the track infras-
tructure; no two track circuits may share any piece of track. Track circuits are equipped
with detectors that can tell if a train occupies the track circuit. For the purpose of conflict
detection, we regard an interlocking route as a sequence of track circuits r = (c1, . . . , cn). A
pair of routes are in potential conflict when they share at least one track circuit.

In our discussion so far, if one train must wait for another, the preceding train must enter
the following route in its path before the waiting train may proceed (Section 3.4). By looking
at the underlying track circuits of an interlocking route, we may introduce alternative, less
restrictive variants of the precedence constraints.

When a train enters an interlocking route, some of the track circuits following the up-
coming signal are temporarily reserved as an added layer of protection against collisions.
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Figure A.12: If the blue train wants to enter v2, it must reserve the blue, hatched track circuits, including
the first track circuit of v3 as a safety zone. This would prevent the purple train from entering u3 until the
safety zone is released. Conversely, if the purple train wants to enter u3, it must reserve the purple, shaded
track circuits, including u4 as a safety zone, this would prevent the blue train from entering v2 until the first
track circuit of u3 is cleared by the purple train and released.

Thus, two interlocking routes can be in potential conflict even if they do not share a track
circuit directly.

Appendix A.2. Track Circuit Reservations

When a train enters an interlocking route, it must reserve all track circuits that are part
of that route and possibly some track circuits forming a safety zone after the signal at the
end of the route.

Any pair of trains reserving the same track circuit represent a potential scheduling con-
flict. In order to check if a candidate schedule realizes a potential conflict, we create an
interval graph for each track circuit, where each interval represents a reservation of the
track circuit. If any pair of intervals overlap, there is a realized scheduling conflict, and the
candidate schedule is not feasible.

Track circuits reservations end and we say the track circuits are released, either after they
have been passed by the train, when the train exits the containing interlocking route, or, in
the case of safety zones, after a fixed amount of time.

Appendix A.2.1. Safety Zones

Signals offer the primary protection of trains moving in interlocking routes. No collision
is ever possible as long as no train ever passes a signal at danger (red light). Safety zones (or
interlocking route overlaps [19]) offer additional protection against collision if a train should
pass a signal at danger accidentally.

Figure A.12 shows an example of a safety zone. Train b (blue) is about to enter route
v2, and train a (purple) is about to enter u3. In order to protect against collision, train b
must reserve not only v2, but also the first track circuit of v3. If b were to pass the signal
protecting v3 (and u3), an automatic emergency break could stop b in the safety zone. Were
it not for this safety zone, train a could occupy the points in u3 while b enters v2. Should b
pass the following signal, it could crash into a before an emergency break could bring b to a
stop.

27



Table A.5: When operating with safety zones, there are three types of conflicts between trains. First, two
trains may want to use the same track circuit(s) as a safety zone. Second, a train may want to enter the
safety zone of another train. And third, two trains may want to enter the same track circuit(s).

Purple Blue Variables Description
Enter u2 Enter v2 yu2v2 , yv2u2 Conflicting safety zones
Enter u3 Enter v2 yu3v2 , yv2u3 Purple train enters safety zone of blue train
Enter u2 Enter v3 yu2v3 , yv3u2 Blue train enters safety zone of purple train
Enter u3 Enter v3 yu3v3 , yv3u3 Both trains enter the same track circuit(s)

In order to prevent a collision, a safety zone must contain enough track circuits to cover
the minimum braking distance of the train approaching the corresponding signal. Unlike the
track circuits making up an interlocking route, the track circuits of a safety zone may be
released before they are used by the reserving train. Consider the example in Figure A.12
again. When b enters v2, it is going to stop at the adjacent platform. Then, a will leave
the platform and enter u3. The blue, crosshatched track circuits are reserved by b, and the
purple-shaded track circuits are the ones a must reserve. A certain amount of time after b
enters v2 we can say for certain that b must have slowed. Otherwise, it would have reached
the following signal. At this time, b can release the track circuits making up its safety zone
in v3, and a can reserve the track circuits on its path. Track circuits in a safety zone are
reserved for a fixed amount of time.

Appendix A.2.2. Route Release and Sectional Release

When a track circuit is part of an interlocking route, it is released either with the route
or once the reserving train has passed through the track circuit itself.

We use Figure A.12 to illustrate the difference between route and sectional release. If
we let train a take precedence over b, then b cannot enter v2 before a releases the first track
circuit of u3, since this track circuit is the safety zone required by b when entering v2. Under
route release, a must fully enter u4 before the contested track circuit is released, and b may
proceed. Under sectional release, the track circuit can be released once a has passed fully
into the last track circuit of u3.

Under sectional release, train b may proceed earlier than under route release. Even if a
must stop at the signal protecting u4, a may proceed into v2. In general, sectional release
allows closer scheduling than route release.

Appendix A.3. Conflict Types

We let u = 〈a, r〉 and v = 〈b, s〉 be route nodes. There is a potential scheduling conflict
between u and v when they have a track circuit in common, either as part of the route
itself or a part of a safety zone. The associated precedence constraints depend on the type
of reservations made by the route nodes. A pair of routes may cause multiple potential
scheduling conflicts. We add constraints to make sure none of the potential conflicts are
realized. The form of these constraints depends on what the yielding train is waiting for.
Table A.5 and Figure A.13 show the different types of potential scheduling conflicts.
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u1 u2 u3 u4

v1 v2 v3 v4

Ξu2Ξv2

Ξu2

αv3u2 αu3v2

Ξv2

δu4

δv4

Figure A.13: Four disjunctive precedence constraints of three different types. The physical situation is
illustrated in Figure A.12, and the conflicts are described in Table A.5.

Waiting for Route Release. When one train is waiting for a preceding train to fully clear its
route, the waiting train is waiting for a route release. This is, for example, the case when
both trains are going to the same signal. In Figure A.12, if a precedes b under route release,
then b cannot enter v2 before a has fully left u3 (and fully entered u4). We get the constraint

tv2 − tu4 ≥ δu4 if yu3v2 = 1 (A.1)

where we note that the precedence decision is between u3 and v2, while it is u4 that is used
in the constraint. The arcs (u4, v3) and (v4, u3) in Figure A.13 both represent route release
constraints.

Waiting for Sectional Release. If the route of the waiting train is crossing the route of the
preceding train sufficiently far from the end of that route, then sectional release may apply.
In sectional release, individual track circuits are released once they are passed. Since, when
we reschedule, we may assume trains will only stop at signals, we can compute when a train
passes a track circuit based on when it enters the route containing that track circuit. This
will work as long as the track circuit is not part of the area where the train may stop before
a signal. If train a precedes train b in Figure A.12, it is natural to apply sectional release.

We let αuv be the time it takes for the preceding train (route node u) to get past the end
of the last track circuit on the route of the waiting train (route node v). In the example in
the figure we then get the constraint

tv2 − tu3 ≥ αu3v2 if yu3v2 = 1 (A.2)

The arcs (u3, v2) and (v3, u2) in Figure A.13 both represent sectional release constraints.

Waiting for Safety Zone Release. Waiting for a safety zone to be released is much like waiting
for a sectional release. In Figure A.12, if v2 precedes u3, then train a only has to wait a
fixed time after b enters v2, instead of waiting for b to enter v3 (which in this case would
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cause a different potential conflict with a). We let Ξu be the amount of time the safety zone
corresponding to u must be reserved. Then,

tv2 − tu3 ≥ Ξu3 if yu3v2 = 1 (A.3)

The arcs (u2, v2), (v2, u2), (u2, v3), and (v2, u3) in Figure A.13 all represent waiting for a
safety zone to be released.
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