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Abstract 

Background:  Observational data are increasingly being used to conduct external comparisons to clinical trials. In this 
study, we empirically examined whether different methodological approaches to longitudinal missing data affected 
study conclusions in this setting.

Methods:  We used data from one clinical trial and one prospective observational study, both Norwegian multicenter 
studies including patients with recently diagnosed rheumatoid arthritis and implementing similar treatment strate-
gies, but with different stringency. A binary disease remission status was defined at 6, 12, and 24 months in both stud-
ies. After identifying patterns of longitudinal missing outcome data, we evaluated the following five approaches to 
handle missingness: analyses of patients with complete follow-up data, multiple imputation (MI), inverse probability 
of censoring weighting (IPCW), and two combinations of MI and IPCW.

Results:  We found a complex non-monotone missing data pattern in the observational study (N = 328), while miss-
ing data in the trial (N = 188) was monotone due to drop-out. In the observational study, only 39.0% of patients had 
complete outcome data, compared to 89.9% in the trial. All approaches to missing data indicated favorable outcomes 
of the treatment strategy in the trial and resulted in similar study conclusions. Variations in results across approaches 
were mainly due to variations in estimated outcomes for the observational data.

Conclusions:  Five different approaches to handle longitudinal missing data resulted in similar conclusions in our 
example. However, the extent and complexity of missing observational data affected estimated comparative out-
comes across approaches, highlighting the need for careful consideration of methods to account for missingness 
in this setting. Based on this empirical examination, we recommend using a prespecified advanced missing data 
approach to account for longitudinal missing data, and to conduct alternative approaches in sensitivity analyses.

Keywords:  External control group, Missing data, Multiple imputation, Inverse probability weighting

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Data from observational studies and registries are 
increasingly being used to complement randomized 
controlled trials (RCTs) in clinical effectiveness research 
[1–3]. One recognized approach is to use observational 
data as an external control group to compare with clinical 
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trial data [2–6]. The external controls may be histori-
cal or contemporaneous and may represent the natural 
course of disease or current standard of care [4, 5]. How-
ever, integrating trial data and observational data in one 
comparative effectiveness study poses methodological 
challenges due to the heterogeneity of data sources, not 
only related to the lack of randomization, but also due to 
differences in follow-up data [4–9].

The follow-up strategy in a clinical trial will typically 
include more frequent and rigorous monitoring com-
pared with an observational study carried out in clinical 
practice [1, 4, 8]. This can result in differential patterns of 
longitudinal missing data. Addressing these differences is 
crucial to limit potential selection bias when using obser-
vational data sources to form external control groups for 
clinical trials [4, 5, 9, 10]. However, guidance in how to 
assess and address longitudinal missing data in this set-
ting is scarce.

The present methodological investigation was moti-
vated by challenges arising in a previous study in which 
we used data from a prospective observational study as 
an external contemporaneous control group to be com-
pared with a clinical trial [11]. The objectives of this 
paper are to 1) describe differences in missing data pat-
terns during follow-up in a clinical trial versus an obser-
vational study and 2) empirically examine the impact 
of different missing data methods on study conclusions 
when using observational study data to form an external 
control group for a clinical trial.

Methods
In the following, we explain the clinical setting and data 
sources that motivated our methodological investigation, 
the description of longitudinal missing patterns, and the 
empirical comparison study. All statistical methods were 
carried out using the statistical software STATA, version 
16.0.

Clinical setting and data sources
Data for the present methodological investigation were 
provided by the ARCTIC trial [12] and the NOR-VEAC 
prospective observational study [11, 13]. Both enrolled 
patients with recently diagnosed rheumatoid arthritis 
(RA) and implemented treat-to-target strategies of differ-
ent stringency as patients started disease-modifying anti-
rheumatic drug (DMARD) therapy.

“Treat-to-target” in RA care involves defining a disease 
activity treatment target when initiating a new therapy, 
frequent monitoring and adjusting therapy if the target is 
not achieved [14]. Disease activity is typically measured 
by a composite score calculated from clinically relevant 
measurements, such as the number of swollen and ten-
der joints, the patient’s global assessment of disease, and 

an inflammatory biomarker [15]. The preferred treatment 
target in RA is remission, i.e., a clinical state of no or lit-
tle remaining disease activity [14, 16]. Treat-to-target is 
currently the recommended approach in the care for 
patients with RA [16, 17], however, the stringency of the 
strategy (i.e., how often to conduct follow-up) and how 
aggressive the disease activity target should be is debated.

The ARCTIC trial [12] included 230 RA-patients 
at eleven rheumatology centers across Norway dur-
ing the period 2010–2013. Patients were scheduled to 
meet for thirteen visits during two years of follow-up 
from the time point of initiating DMARD therapy. All 
patients were treated according to the same pre-specified 
treatment escalation protocol. The ARCTIC trial was 
designed to examine the benefit of structured ultrasound 
assessments compared with conventional follow-up 
under the principles of the same treat-to-target strategy. 
As the two original strategies of the trial showed similar 
outcomes in the main study [12], we pooled the groups 
for the purpose of the present study, giving “single-arm” 
trial data. The ARCTIC strategy represents a stringent 
treat-to-target strategy for RA.

The NOR-VEAC prospective observational study 
[11, 13] included 429 RA-patients at five rheumatology 
centers in Norway in the period 2010–2016. Patients 
were prospectively followed from the time of initiating 
DMARD therapy. Monthly visits were scheduled until 
the treatment target had been achieved, followed by visits 
every 3–6 months. The study protocol in the NOR-VEAC 
study did not specify a treatment escalation algorithm; 
however, participating study centers committed to follow 
current international treat-to-target recommendations 
[14, 18]. The NOR-VEAC strategy represents a less strin-
gent and more pragmatic treat-to-target strategy.

Patients were included for the present study according 
to a common set of eligibility criteria (supplementary file 
S1).

Baseline balancing and longitudinal missing data in target 
trial emulation
Defining and identifying missing data during follow-up 
requires an understanding of what “ideal” follow-up data 
might look like. This is not straightforward when using 
observational data sources as external controls for a clini-
cal trial. We approached this issue using the target trial 
emulation framework. We conceptualized a hypotheti-
cal target trial [19] that compares stringent and prag-
matic treat-to-target strategies for RA (supplementary 
file S2). To emulate baseline randomization to either the 
ARCTIC trial (representing the stringent treat-to-target 
strategy) or the NOR-VEAC observational study (repre-
senting the pragmatic treat-to-target strategy), we used 
inverse probability of treatment weighting using the 
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propensity scores calculated from baseline covariates [20, 
21]. The propensity scores were calculated by regressing 
assignment to either the ARCTIC strategy or the NOR-
VEAC strategy on the following baseline covariates con-
sidered to be potential confounders in the estimation of 
the main outcome: age, gender, months since first swollen 
joint, higher education (completed college or university 
degree), rheumatoid factor positivity, anti-cyclic citrul-
linated peptide positivity, erythrocyte sedimentation 
rate, C-reactive protein, swollen and tender joint count 
in 28 joints, patient global assessment of disease, physi-
cian global assessment of disease, number of comorbidi-
ties (≥1 versus none), smoking status (never/previous 
vs current), fatigue (VAS 0–100) and the EQ-5D-index 
score. Further details on the IPTW model and the corre-
sponding STATA code are available in supplementary file 
S3. Time zero, or baseline, was set to the time of initiat-
ing DMARD therapy, which occurred at or shortly after 
inclusion for both studies.

The ideal data from the target trial would have all 
patients’ outcome data at the 6, 12 and 24-months fol-
low-up visits. However, missing outcome data occurred 
in both “arms” of the empirical example. To enable the 
use of appropriate missing data methods to account for 
missingness, we separately identified and assessed three 
types of missingness in the trial data arm and in the 
observational data arm (supplementary file S4). The first 
type of missingness is “drop-out,”, which arises from loss 
to follow-up. This type of missingness is common in lon-
gitudinal studies and, if occurring alone, it results in a 
monotone missing data pattern, i.e., patients are followed 

with complete data until they drop out of the study [22, 
23]. A second type of missingness is “intermittent miss-
ing visits”, which can arise when patients do not meet for 
one or more visits, but reenter the study on a later time 
point [22, 23]. This type of missingness may also arise 
from the misalignment of visits occurring in the empiri-
cal data and the study visits in the target trial. Although 
both the trial and the observational study had scheduled 
visits at the selected time points (6,12 and 24 months 
after baseline), some patients in the observational study 
may have completed the scheduled visit on a later time 
point. A third type of missingness is “missing outcome 
data at visit”. In this type of missingness, patients do have 
visits corresponding to the study visits that the target 
trial dictates. However, one or more of the components 
of the composite outcome score are missing. Intermittent 
missing visits and missing outcome data at visits results 
in a non-monotone missing data pattern [22, 23]. In lon-
gitudinal studies, monotone and non-monotone data 
patterns are often observed simultaneously, especially in 
studies with an observational design [23].

Missing data approaches
We empirically evaluated five different approaches to 
handle these three types of missing data, as displayed in 
Table  1. In this section we outline the approaches and 
evaluation metrics.

Complete follow‑up case analysis
In this approach, we performed analyses in a subset 
of patients with complete follow-up data for the main 

Table 1  Evaluated approaches to missing outcome data during follow-up when using data from an observational study as an external 
control arm to a clinical trial

IPCW Inverse probability of censoring weighting, MI Multiple imputation
a Assumptions: Patients with complete follow-up data are exchangeable with patients with missing data
b  Assumptions: The IPCW model is correctly specified when modeling the missing mechanism given previous observations in individuals with missing data due to 
drop-out (naturally occurring or created due to artificial censoring)
c  Assumptions: Both the MI model and the IPCW model are correctly specified. MI models missing outcome variables at visits given available information in the 
dataset. IPCW models the missing mechanism given the observed past for missing data due to drop-out (naturally occurring or created due to artificial censoring)
d  Assumptions: Both the MI model and the IPCW model are correctly specified. MI models missing outcome variables at visits and intermittent missing visits given 
information in the dataset. IPCW models the missing mechanism given the observed past for missing data due to naturally occurring drop-out
e Assumptions: The MI model is correctly specified when modeling all missing outcome data given information in the dataset. Separate models were specified for each 
cohort and the imputed datasets were thereafter combined
f A visit is recorded at the required time point, but the disease activity measure is missing
g A visit is missing for the 6-month and/or 12-month follow-up, but there is a later visit within the timeframe of the study
h A follow-up visit and all subsequent visits are missing within the timeframe of the study

Approach Missing outcome data at visitf Intermittent missing visitsg Drop-outsh

Complete follow-up case analysesa Exclusion Exclusion Exclusion

Strict censoring + IPCWb Censoring (set as drop-out) Censoring (set as drop-out) IPCW

MI + censoring + IPCWc MI Censoring (set as drop-out) IPCW

MI + IPCWd MI MI IPCW

MI for alle MI MI MI
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outcome. All three types of missingness were handled by 
excluding patients who did not have complete follow-up 
data. The assumption for this approach was that patients 
with complete outcome data were exchangeable with 
patients with missing data.

Strict censoring plus IPCW
In the second approach, we used strict censoring 
and time-varying inverse probability of censoring 
weighting (IPCW) [24]. Subjects were censored (set 
as “drop-out”) at the first visit with missing outcome 
data or at the first intermittent missing visit, which-
ever occurred first. This created a monotone miss-
ing pattern and allowed the use of IPCW to account 
for naturally occurring or created drop-out [24]. The 
IPCW method assigns weights to individuals with 
complete follow-up data corresponding to the inverse 
of their estimated probability of having complete data 
[24]. All approaches using IPCW assume a correctly 
specified IPCW model to account for missing data. 
We specified a logistic regression model to predict the 
probability of missing any of the variables required to 
calculate the outcome data. In the calculation of the 
IPCWs, we used both baseline values and time-varying 
values of relevant covariates at available visits to pre-
dict missingness. Further details on the IPCW-model, 
the selection of covariates included in the model and 
specification of the STATA code are available in sup-
plementary file S5.

MI plus censoring plus IPCW
In the third approach, we used multiple imputation (MI) 
[25–27] in combination with IPCW. First, missing out-
come data at completed visits were imputed using MI. 
Thereafter, subjects were censored at the first intermit-
tent missing visit or the first missing visit due to drop-
out, whichever occurred first. This created a monotone 
missing pattern and IPCW was used to account for miss-
ing outcome data due to naturally occurring or created 
drop-out. MI models missing outcome data given avail-
able information in the dataset. All approaches using MI 
assume a correctly specified MI model to account for 
missing data.

MI plus IPCW
In the fourth approach, we also used MI in combination 
with IPCW. First, we used MI to impute missing outcome 
data at completed visits and outcome data for intermit-
tent missing visit. Thereafter, IPCW was applied to 
account for the remaining, naturally occurring drop-out 
in the imputed datasets.

MI for all missing
In a final approach, we used MI to impute all three types 
of missing outcome data: missing data at completed vis-
its, intermittent missing visits, and drop-out. For all 
approaches involving MI, relevant available observations 
at all visits in each of the cohorts were used to inform the 
imputation models. Given the limited range and typically 
non-normal distribution of the variables to be imputed, 
we used multiple imputation by chained equations [27, 
28]. We specified separate MI models and created 10 
imputed datasets for each cohort, and these were com-
bined into 10 final datasets. Estimates were averaged into 
a final estimate, while the standard errors were obtained 
using Rubin’s rule [25]. Further details on the MICE-
models, the selection of covariates included in the mod-
els and specification of the STATA codes are available in 
supplementary file S6.

Comparison metrics
We applied each of these five missing data approaches 
to conduct the comparative effectiveness study of treat-
to-target strategies with different stringency. The main 
endpoint was binary and defined as achievement of 
remission or not according to the disease activity score 
in 28 joints (DAS28) (24). The DAS28 is a composite 
disease activity index with a score between 0 and 9.4. 
Remission is defined as a score < 2.6 (25). We first speci-
fied logistic regression models to compare the log odds 
ratio (OR) estimates, standard errors, and ORs for the 
treatment strategy outcomes across the five missing data 
approaches. STATA codes for the final outcome models 
are available in supplementary file S7. Finally, we com-
pared the estimated proportions of patients in remission 
at 6, 12, 24 months according to each treatment strategy.

Results
Cohort characteristics
A total of 188 patients from the ARCTIC trial and 328 
patients from the NOR-VEAC study met the common 
eligibility criteria (supplementary file S1).

ARCTIC trial data
In the ARCTIC trial, 89.9% (169/188) of patients had 
complete follow-up data for the main outcome. Patients 
with incomplete follow-up data (drop-out exclusively) 
were younger, had less comorbidity, lower education, 
and more were current smokers compared to patients 
with complete follow-up data (supplementary file S8). 
Furthermore, patients with missing data also had higher 
disease activity at baseline, with a mean (standard devi-
ation) DAS28 of 5.4 (1.5) compared with 4.7 (1.2) in 
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patients with complete data, which gives a standardized 
mean difference of 0.448 (online supplementary file S8).

NOR‑VEAC observational study data
In the NOR-VEAC study, only 39.0% (128/328) of 
patients had complete follow-up data for the main out-
come. Patients with incomplete follow-up data were 
somewhat younger and had lower education than 
patients with complete follow-up data; however, disease 
activity levels at baseline were similar (supplementary file 
S8).

Description of longitudinal missing data patterns
Missing data in the ARCTIC trial was monotone and 
almost exclusively a result of drop-out. The drop-out 
rate was 1.6% at 6 months, 6.4% at 12 months, and 10.1% 
at 24 months (Fig.  1). In the NOR-VEAC observational 
study, the proportion of missing data was considerably 
higher, resulting from missing outcome data at completed 

visits, intermittent missing visits or drop-out, i.e., a non-
monotone missing pattern (Fig.  1). Drop-out in NOR-
VEAC counted for 2.4% of missing data at 6 months, 9.2% 
at 12 months and 35.1% at 24 months. Additionally, at the 
6-month visit 7.3% of patients had an intermittent miss-
ing visit and 4.0% had missing outcome data at a recorded 
visit, while at the 12-month visit 11.3% had an intermit-
tent missing visit, and 4.6% had missing outcome data at 
a recorded visit. At 24 months, 8.5% of patients had miss-
ing outcome data at a recorded visit (Fig. 1).

Results from method comparison
Impact of missing data approaches on effect estimates
Regardless of the approaches to missing data (Table  2), 
the odds of achieving disease remission was higher for 
the “stringent treat-to-target” (based on the trial data) 
than for the “pragmatic treat-to-target” (based on the 
observational study data) in our target trial emulation.

Fig. 1  Patterns of missing outcome data in A the ARCTIC trial and B the NOR-VEAC observational study after standardization of follow-up. SJC28, 
swollen joint count in 28 joints; TJC28, tender joint count in 28 joints; PGA, patient’s global assessment of disease; ESR, erythrocyte sedimentation 
rate; DAS28, Disease Activity Score in 28 joints
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The complete follow-up case analysis provided higher 
effect estimates than the more sophisticated approaches 
to missing data. This tendency was most apparent at the 
6-month assessment, when the OR estimate was 2.13 
[95% confidence interval (CI) 1.21, 3.75] favoring the 
stringent treat-to-target strategy. Other approaches to 
missing data gave more conservative estimates ranging 
from OR 1.53 [95% CI 0.99, 2.37] for the strict censor-
ing plus IPCW approach to OR 1.49 [95% CI 0.96, 2.32] 
for the MI for all missing approach. All three approaches 
involving MI to various extents yielded essentially iden-
tical results for the 6-month assessment. Statistical effi-
ciency was evidently worse (higher standard errors) for 
the complete follow-up case analysis, which handled all 
missingness by exclusion of patients.

The 12-month assessment generally gave similar 
results, with the complete follow-up case approach giv-
ing the most optimistic results, whereas the other more 
sophisticated approaches giving more conservative and 
similar results. The estimates became slightly more con-
servative as the extent of MI use increased from the strict 

censoring plus IPCW approach (no MI; OR 2.41 [95% CI 
1.40, 4.00]) to the MI for all missing approach (OR 1.99 
[95% CI 1.22, 3.23]).

The 24-month assessment generally exhibited a similar 
trend to the 6- and 12-month assessments, but the dis-
crepancies between all approaches were subtle (OR 1.44–
1.57) compared with the first two time points. Since there 
were no intermittent missing visits at 24 months, the two 
combinations of MI and IPCW both used MI to impute 
partial missing visit data and IPCW to account for natu-
rally occurring drop-out.

Impact of missing data approaches on response rate
The estimated proportion achieving disease remission 
in the emulated “stringent treat-to-target” arm (based 
on the trial data) was similar across the approaches to 
missing data (Fig. 2). Since missing data in the trial were 
almost exclusively due to drop-out, the estimated propor-
tion achieving remission was not affected by the different 
approaches to partial missing visit data or intermittent 
missing visit. This implies that all approaches including 

Table 2  Differences in achievement of remission at 6, 12 and 24 months in the ARCTIC trial (Norway; 2010–2015) compared to the 
NOR-VEAC observational study (Norway; 2010–2018) according to different approaches to missing dataa

SE Standard error, CI Confidence interval, CC Complete case analyses, IPCW Inverse probability of censoring weighting, MI Multiple imputation
a For all approaches, inverse probability of treatment weighting using the propensity score was used to balance the two cohorts on relevant baseline covariates
b Analyses in a subset of patients with complete follow-up data for the main outcome
c Censoring of subjects with missing outcome data at a visit or intermittent missing visits, whichever occurred first. IPCW used to account for missing data due to 
drop-out (naturally occurring or created due to censoring)
d MI used to account for missing outcome data at visits. Censoring of subjects with intermittent missing visits. IPCW used to account for missing data due to drop-out 
(naturally occurring or created due to censoring)
e MI used to account for missing outcome data at a visit and intermittent missing visits. IPCW used to account for naturally occurring drop-out
f MI used to account for all missing data

Approaches to missing data Estimate SE Odds ratio 95% CI p-value

6 months
  CCb 0.756 0.288 2.13 1.21–3.75 0.009

  Strict censoring + IPCWc 0.423 0.223 1.53 0.99–2.37 0.058

  MI + censoring + IPCWd 0.401 0.222 1.49 0.97–2.31 0.072

  MI + IPCWe 0.401 0.220 1.49 0.97–2.30 0.069

  MI for allf 0.401 0.225 1.49 0.96–2.32 0.074

12 months
  CCb 1.093 0.294 2.98 1.68–5.31 < 0.001

  Strict censoring + IPCWc 0.879 0.259 2.41 1.45–4.00 < 0.001

  MI + censoring + IPCWd 0.797 0.250 2.22 1.36–3.62 0.001

  MI + IPCWe 0.768 0.243 2.16 1.34–3.47 0.002

  MI for allf 0.687 0.248 1.99 1.22–3.23 0.006

24 months
  CCb 0.429 0.288 1.54 0.87–2.70 0.136

  Strict censoring + IPCWc 0.407 0.284 1.50 0.86–2.62 0.151

  MI + censoring + IPCWd 0.448 0.279 1.57 0.91–2.70 0.108

  MI + IPCWe 0.401 0.268 1.49 0.88–2.52 0.134

  MI for allf 0.367 0.253 1.44 0.88–2.38 0.147
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IPCW used this method to account for naturally occur-
ring drop-out only. The estimated proportions achiev-
ing remission were somewhat lower at 12 and 24 months 
when using MI to account for drop-out (Fig.  2). Com-
pared to the remission rate among observed data points, 
the imputed data points for drop-out in the trial gave a 
somewhat lower mean remission rate at 12 months (sup-
plementary file S9), which is consistent with higher base-
line disease activity in patients with incomplete follow-up 
data (supplementary file S8).

In the emulated “pragmatic treat-to-target” arm (based 
on the observational study data), the estimated propor-
tions achieving disease remission varied across differ-
ent approaches to missing data at 6 and 12 months, but 
were similar at 24 months (Fig.  2). At 6 and 12 months, 
analyses of patients with complete follow-up data and 
the approach using strict censoring and IPCW resulted 

in lower estimated proportions achieving the main out-
come than the approaches handling incomplete visit data 
and intermittent missing visits in addition to drop-out 
(Fig. 2). Since there were no intermittent missing visits at 
24 months, the two combinations of MI and IPCW both 
used MI to impute partial missing visit data and IPCW 
to account for naturally occurring drop-out. In the obser-
vational data, imputed data points gave similar mean 
disease remission rates compared to the remission rates 
among observed data points, regardless of the extent of 
imputations (supplementary file S9).

Discussion
We examined the impact of five alternative approaches 
to longitudinal missing data in an empirical example of 
RA treatment strategy comparison, in which we used 
data from a prospective observational study to form an 

Fig. 2  Estimated proportion of patients achieving the main outcome according to different approaches to missing data in A the ARCTIC trial and 
B the NOR-VEAC observational study CC, complete (follow-up) case; cens., censoring; IPCW, inverse probability of censoring weighting; MI, multiple 
imputation
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external control group for a clinical trial. We consist-
ently found superior outcomes of the “stringent treat-to-
target” strategy (based on the trial data) compared with 
the “pragmatic treat-to-target” strategy (based on the 
observational study data), although the difference was 
only statistically significant at the 12-month visit. The 
complete follow-up case analysis tended to give higher 
effect estimates of the OR and wider confidence intervals 
compared with the other more sophisticated approaches; 
however, this difference decreased with longer follow-up. 
The four methods employing IPCW, MI, and their com-
binations, generally yielded similar OR estimates despite 
their differing modeling assumptions.

Although the literature on missing data is vast [26], our 
paper is unique in its focus on longitudinal missing data 
challenges in the emerging area of using real-world data 
as external controls for trial data [4]. The similarity of 
the patient populations and applied treatment strategies 
in the two studies providing data for this methodological 
investigation enabled us to assess missing data patterns 
resulting from follow-up under different study designs. 
We found a larger amount of missing data with more 
complex missing patterns in the observational study 
compared with the limited and monotone missing data in 
the trial. As a result, the differences across the alterna-
tive approaches to longitudinal missing data mainly came 
from the estimated proportions of disease remission in 
the “pragmatic treat-to-target” strategy arm (based on 
the observational study data). Most notably, the complete 
follow-up case analyses gave smaller estimates for the 
proportions of patients reaching the desired remission 
outcome at 6 and 12 months in the “pragmatic treat-to-
target” strategy arm. This made the estimated benefits 
associated with the “stringent treat-to-target” strategy 
(based on the trial data) appear better. The difference 
among the advanced missing data approaches mainly 
came from the extent of IPCW use rather than changes 
in imputed values when MI was used more extensively.

Both IPCW and MI can provide unbiased estimates 
under the missing at random assumption, which is 
weaker than the assumption for the complete follow-up 
case analysis. An advantage of MI is that this method 
efficiently uses information from individuals with par-
tially missing data [24, 25, 27]. All available and relevant 
data can be included in the imputation model, including 
both variables related to the outcome analyses and vari-
ables associated with missingness [25, 27]. However, the 
MI approach is potentially sensitive to misspecification 
in situations where some individuals have large blocks of 
missing values [24]. Thus, missing data due to drop-out 
in the present study may make MI less appealing, espe-
cially for the 24- month time point. IPCW assumes a cor-
rectly specified model for the missingness mechanism, 

given observed data at previous time points [24, 29]. A 
correctly specified IPCW can account for missingness 
due to blocks of drop-out. However, IPCW can be less 
efficient due to the loss of information from incomplete 
cases [24]. Thus, the IPCW model for the trial data, with 
smaller amounts of missing at 6 and 12 months and a 
maximum of 10.1% missing at 24 months, was likely to 
be more efficient than the IPCW model for the obser-
vational data, with a substantial amount of missing out-
come data during follow-up.

In the present empirical evaluation, censoring all 
patients at first missing data (strict censoring) created 
a monotone missing pattern in the observational data, 
while a monotone missing pattern already existed natu-
rally in the trial data. Despite using IPCW to account for 
created or naturally occurring drop-out, the estimates 
from the strict censoring approach were less efficient at 
12 and 24 months than approaches involving MI, reflect-
ing the substantial loss of information due to excluded 
data points. This may indicate increased efficiency due 
to recovered information when using MI to impute all or 
partial missing visit data and may be preferable compared 
with excluding individuals at first missing value.

A limitation of this methodological investigation is the 
generalizability of results to other settings using an exter-
nal control group. Data in the external control group of 
the present study was provided by a contemporaneous, 
prospective observational study with a patient popula-
tion initiating treatment and follow-up strategy similar 
to the trial [12–14]. This is the most favorable type of 
external control group [4]. As a result, emulating a tar-
get trial was relatively straightforward. In a more typical 
use of synthetic control arms, the comparator arm may 
not receive new medication, device, or treatment, intro-
ducing additional challenges, such as ambiguity of time 
zero (start of follow-up). Sources of observational data, 
such as electronic health records and insurance claims, 
likely pose more missing data challenges than seen in 
our observational data source due to the complete lack 
of recommended follow-up frequencies. Finally, as we 
used empirical data rather than simulations, we do not 
know the true underlying effect of the “stringent treat-
to-target” compared to “pragmatic treat-to-target”. Our 
empirical evaluation was limited to methods assuming 
missing-at-random. Additional consideration of missing-
not-at-random may be reasonable in practice. Under this 
general missingness mechanism, observed data alone is 
not enough for unbiased missingness handling, requiring 
a range of sensitivity analyses. MI may be more approach-
able for this purpose as some MI software allows shifting 
of imputed values by a user-specified sensitivity param-
eter (this “delta adjustment” specifies the departure from 
MAR) during the imputation process [26, 30]. With the 
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IPW approach, sensitivity analyses focused on the miss-
ing probability model could be performed, although the 
interpretability is not as transparent [31].

Conclusions
In conclusion, we empirically examined the impact of 
different approaches for missing follow-up data when 
using data from an observational study to form an exter-
nal control arm for a clinical trial. Despite the favorable 
setting of having prospectively collected observational 
data, there were some differences in the effect estimates 
although the clinical conclusion was not affected qualita-
tively. The differences mainly came from the handling of 
more extensive and complex missing data in the obser-
vational data source. When using routine observational 
data as external controls even more complex missingness 
issues are likely expected. As the quality of a compara-
tive effectiveness study is dependent on what we compare 
to, we cannot overemphasize the importance of carefully 
examining missing data patterns across data sources, 
using a prespecified advanced missing data method 
beyond simply using complete follow-up. In the current 
study, using MI for all missing outcome data at visits, 
intermittent missing visits, and drop-out, was the most 
pragmatic approach, providing the simplicity of using a 
single missing data method and a potential efficiency 
gain due to the ability of using information from indi-
viduals with partial missing data. However, conducting 
sensitivity analyses with alternative missing data methods 
is recommended. Particularly in settings with high drop-
out rates, IPCW may be a valuable addition.
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