
Quality of Service in Ad Hoc Networks
A study of the Stateles Wireless Ad Hoc Network

mechanism

Fredrik Andreassen

Department of Informatics
Faculty of Mathematics and Natural Science

UNIVERSITY OF OSLO

 ii

 iii

Abstract

Mobile Ad Hoc Networks (MANET) is an autonomous collection of mobile
nodes with wireless connection. The nodes are free to move and there exist
no infrastructure for these wireless connected nodes. The Stateless Wireless
Ad hoc Network model (SWAN) is a proposal trying to solve the Quality of
Service concerns in MANET’s. This study presents an introduction to the
wireless world, the SWAN network model, a theoretical analysis of the SWAN
model, and finally my work and analysis of the result gained with the
simulation of the SWAN model in Network Simulator 2 (ns-2).

 iv

Preface

This master thesis is written as part of my Civil Engineering degree in
Computer Science at the University of Oslo, department of Informatics. The
topic of my thesis was introduced to me by Andreas Hafslund at the Unik
University Graduation Center. Hafslund have been my supervisor throughout
this project.

In my early days of studying computer science I had most interest of computer
networks. Thus, studying and doing simulations for wireless Ad Hoc networks
was an exciting task for me. Most of the areas where new to me, and there
have been many challenges and a lot of hard work, but at the same time I
have learned a lot about Quality of Service, wireless Ad Hoc networks and the
many sides that appear in large projects like a master thesis.

I would like thank my two supervisors PhD. Andreas Hafslund and Prof. Knut
Øvsthus for guidance and helping me accomplish this master thesis project.

Fredrik Andreassen
Oslo, May 1st, 2005

 v

Table of Contents

1 INTRODUCTION .. 1

1.1 ABOUT MY WORK WITH THIS THESIS ... 1
1.2 CHAPTER OVERVIEW... 1
1.3 WHO IS WHO IN THE NETWORK COMMUNITY.. 1

2 WIRELESS NETWORKS AND MOBILE AD HOC NETWORKING................................ 3
2.1 INTRODUCTION TO WIRELESS NETWORKS.. 3
2.2 THE IEEE 802.11 WIRELESS LAN.. 3

2.2.1 The Protocol Stack... 6
2.3 MOBILE AD HOC NETWORKS... 7

2.3.1 Introduction to Ad Hoc Networks ... 7
2.3.1.1 Usages of Ad Hoc Networks..8

2.3.2 Dynamics and Mobility ... 8
2.3.3 Ad Hoc Routing Protocols.. 9

2.3.3.1 Ad hoc On Demand distance Vector (AODV) ..10
2.3.3.2 Optimized Link State Routing (OLSR) ...10
2.3.3.3 Hybrid routing protocols...11

2.3.4 Other considerations for Ad Hoc networking ... 11
3 QUALITY OF SERVICE ... 13

3.1 BEYOND BEST-EFFORT... 13
3.2 QUALITY OF SERVICE IN GENERAL... 13

3.2.1 QoS Parameters .. 14
3.3 QOS MECHANISMS ... 17

3.3.1 Integrated Services (IntServ) ... 17
3.3.2 Differentiated Services (DiffServ) .. 18
3.3.3 Adapting Service models to MANET ... 19

3.4 QUALITY OF SERVICE IN AD HOC NETWORKS... 19
4 STATELESS WIRELESS AD HOC NETWORKS (SWAN) ... 21

4.1 INTRODUCTION ... 21
4.2 THE ARCHITECTURE.. 22

4.2.1 Rate Control... 22
4.2.2 Admission Control.. 24
4.2.3 The Classifier ... 25
4.2.4 The Shaper .. 25
4.2.5 Probe Message Format ... 26
4.2.6 Mobility and False Admission .. 27
4.2.7 Explicit Congestion Notification (ECN) .. 27
4.2.8 Regulation Algorithm.. 28

4.2.8.1 Source-Based Regulation Algorithm..28
4.2.8.2 Network-Based Regulation Algorithm..28

5 PROBLEMS AND TROUBLE WITH SWAN.. 29
5.1 THE SWAN ARTICLES... 29
5.2 CLASSIFICATION AND SCHEDULING .. 31
5.3 COMPRESSION AND RATE REGULATION .. 31
5.4 ADMISSION CONTROLLER.. 32
5.5 REGULATION ALGORITHM .. 32
5.6 REPEATABILITY OF THE SWAN SIMULATIONS ... 34
5.7 BUGS IN SWAN ... 34
5.8 SUMMARY .. 34

6 RELATED WORK... 37
6.1 INSIGNIA.. 37
6.2 DS-SWAN .. 37

 vi

7 SIMULATIONS ... 39
7.1 NS-2 OVERVIEW ... 39

7.1.1 Introduction to ns-2 .. 39
7.1.2 Credibility on simulations in ns-2 ... 40
7.1.3 The implementation of SWAN in ns-2.. 41
7.1.4 My work with ns-2 .. 41

7.2 PRELIMINARY SIMULATIONS ... 42
7.2.1 Maximum throughput tests .. 42

7.2.1.1 Testing maximum throughput with TCP traffic ...42
7.2.1.2 Testing maximum throughput with UDP traffic...44

7.2.2 Performance test of additional traffic ... 45
7.2.2.1 Additional Traffic Exchange with RT Source..46
7.2.2.2 Additional Traffic Exchange with RT destination..50

7.2.3 Variable packet size test .. 52
7.3 SUMMARY .. 55

8 SIMULATION SCENARIOS FOR SWAN .. 57
8.1 SINGLE SHARED CHANNEL SIMULATION (DESCRIPTION) ... 57

8.1.1 Single Shared Channel scenario 1 (SSC1) ... 58
8.1.2 Single Shared Channel scenario 2 (SSC2) ... 59

8.2 MULTI HOP SIMULATION.. 60
8.2.1 Multi Hop Scenario 1 (MH1) .. 60
8.2.2 Multi Hop Scenario 2 (MH2) .. 62

9 TESTS AND RESULTS.. 65
9.1 SINGLE SHARED CHANNEL SIMULATION... 65

9.1.1 Simulation of SSC1.. 65
Throughput ...65
Delay ..68

9.1.2 Simulation of SSC2.. 70
Throughput ...70
Delay ..73

9.2 MULTI HOP SIMULATION .. 76
9.2.1 Simulation of MH1.. 76

Throughput ...76
Delay ..78

9.2.2 Simulation of MH2.. 81
9.2.2.1 Delay and Throughput ...81

9.2.3 Summary of simulations and test results ... 89
10 CONCLUSION.. 91

10.1 CONCLUDING REMARKS .. 91
10.2 FURTHER STUDIES ... 92

11 REFERENCES ... 95
12 APPENDIX A .. 99
13 APPENDIX B .. 100
14 APPENDIX C .. 101
15 APPENDIX D .. 109

 vii

List of Figures

FIGURE 2.1: THE ISM UNLICENSED FREQUENCY BANDS. FIGURE FROM [23]................................... 3
FIGURE 2.2: INDEPENDENT MODE BSS (IBSS).. 4
FIGURE 2.3: THE INFRASTRUCTURE MODE (BSS) .. 5
FIGURE 2.4: THE EXTENDED SERVICE SET (ESS) ... 5
FIGURE 2.5: THE 802.11 PROTOCOL STACK WITH SWAN AND THE OSI MODEL............................... 6
FIGURE 2.6: A SIMPLE MULTI HOP AD HOC NETWORK.. 7
FIGURE 3.1: QUALITY OF SERVICE REQUIREMENTS.. 15
FIGURE 3.2: APPLICATION BANDWIDTH REQUIREMENTS IN BITS PER SECOND. FIGURE FROM [17] ... 16
FIGURE 3.3: WIRELESS SIGNAL/NOISE RATIO MEASURED IN NETWORK STUMBLER........................ 20
FIGURE 4.1: GRAPHICAL PRESENTATION OF DATA-RATES AND -LIMITS... 21
FIGURE 4.2: THE ARCHITECTURE OF THE SWAN NETWORK MODEL. FIGURE FROM [1] 22
FIGURE 4.3: MAC DELAY ... 23
FIGURE 4.4: PROBE MESSAGE .. 25
FIGURE 4.5: THE SHAPER; LEAKY BUCKET ... 26
FIGURE 4.6: THE PROBE MESSAGE FORMAT .. 27
FIGURE 5.1: AVERAGE DELAY OF REAL-TIME TRAFFIC VS. NUMBER OF TCP FLOWS [1]................. 29
FIGURE 5.2: AVG. “GOODPUT” OF TCP BEST-EFFORT TRAFFIC VS. NO OF TCP FLOWS [1]. 30
FIGURE 7.1: SCREENSHOT FROM NAM ... 40
FIGURE 7.2: MAXIMUM THROUGHPUT OF TCP TRAFFIC WITH SWAN ON/OFF VS. TIME................... 43
FIGURE 7.3: MAXIMUM THROUGHPUT OF CBR TRAFFIC WITH SWAN ON/OFF VS. TIME 45
FIGURE 7.4: SIMULATION SCENARIO WITH ADDITIONAL TRAFFIC TO NODE 0 OR NODE 1 46
FIGURE 7.5: DELAY OF 32 KBPS AUDIO STREAM.. 47
FIGURE 7.6: THROUGHPUT OF THE GREEDY FTP TRAFFIC.. 49
FIGURE 7.7: DELAY OF 32 KBPS AUDIO STREAM WITH PACKET SIZE OF 80 BYTE............................ 51
FIGURE 7.8: THROUGHPUT OF THE FTP TRAFFIC... 52
FIGURE 7.9: AVERAGE DELAY OF CBR ON 80 BYTES (VOICE)... 53
FIGURE 7.10: AVERAGE DELAY OF CBR ON 250 BYTES ... 54
FIGURE 7.11: AVERAGE DELAY OF CBR TRAFFIC ON 512 BYTES (VIDEO) 55
FIGURE 8.1: SINGLE SHARED SIMULATION SCENARIO 1 ... 58
FIGURE 8.2: SINGLE SHARED SIMULATION SCENARIO 2 ... 59
FIGURE 8.3: MULTI HOP SCENARIO 1.. 61
FIGURE 9.1: AVERAGE TCP THROUHTPUT VS NUMBER OF TCP FLOWS... 65
FIGURE 9.2: THROUGHPUT - SWAN OFF, 2 TCP FLOWS.. 66
FIGURE 9.3: THROUGHPUT - SWAN ON, 2 TCP FLOWS ... 66
FIGURE 9.4: THROUGHPUT - SWAN OFF, 12 TCP FLOWS.. 67
FIGURE 9.5: THROUGHPUT - SWAN ON, 12 TCP FLOWS ... 67
FIGURE 9.6: AVERAGE RT DELAY, 2 TCP FLOWS .. 68
FIGURE 9.7: AVERAGE RT DELAY, 12 TCP FLOWS .. 68
FIGURE 9.8: AVERAGE END-TO END DELAY (SWAN ON / SWAN OFF) VS. NUMBER OF TCP FLOWS 69
FIGURE 9.9: TCP THROUGHPUT VS. NUMBER OF TCP FLOWS.. 70
FIGURE 9.10: THROUGHPUT - SWAN OFF, 2 TCP FLOWS.. 71
FIGURE 9.11: THROUGHPUT - SWAN ON, 2 TCP FLOWS ... 71
FIGURE 9.12: THROUGHPUT - SWAN OFF, 12 TCP FLOWS.. 72
FIGURE 9.13: THROUGHPUT - SWAN ON, 12 TCP FLOWS ... 72
FIGURE 9.14: AVERAGE END-TO END DELAY (SWAN ON/SWAN OFF) VS. TCP FLOWS 73
FIGURE 9.15: AVERAGE RT DELAY - 2 TCP FLOWS ... 74
FIGURE 9.16: AVERAGE RT DELAY - 12 TCP FLOWS ... 74
FIGURE 9.17: TCP THROUGHPUT VS. NUMBER OF TCP FLOWS.. 76
FIGURE 9.18: THROUGHPUT - SWAN OFF, 2 TCP FLOWS.. 77
FIGURE 9.19: THROUGHPUT - SWAN ON, 2 TCP FLOWS ... 77
FIGURE 9.20: AVERAGE END-TO-END DELAY VS TCP FLOWS.. 78
FIGURE 9.21: AVERAGE RT DELAY, 2 TCP FLOWS .. 79
FIGURE 9.22: AVERAGE RT DELAY, 12 TCP FLOWS .. 79
FIGURE 9.23: AVERAGE END-TO-END DELAY VOICE/VIDEO VS. TCP FLOWS.................................. 80
FIGURE 9.24: AVERAGE DELAY OF VIDEO STREAMS ECH SECOND ... 82
FIGURE 9.25: AVERAGE TCP THROUGHPUT .. 82
FIGURE 9.26: AVERAGE DELAY OF VOICE STREAMS ... 83

 viii

FIGURE 9.27: AVERAGE TCP THROUGHPUT .. 84
FIGURE 9.28: MEASUREMENT FROM MH2, SIMULATION 2... 84
FIGURE 9.29: AVERAGE DELAY OF VIDEO STREAMS .. 85
FIGURE 9.30: AVERAGE TCP THROUGHPUT .. 86
FIGURE 9.31: AVERAGE DELAY - REAL-TIME TRAFFIC... 87
FIGURE 9.32: AVERAGE TCP THROUGHPUT .. 88

 ix

Table of Tables

TABLE 3.1: QOS REQUIREMENTS. FIGURE TAKEN FROM [51]...15
TABLE 7.1: INITIATION TIME OF CBR/FTP FLOWS ..53
TABLE 9.1: MEASUREMENT FROM MH2, SIMULATION 1..83
TABLE 9.2: MEASUREMENT FROM MH 2, SIMULATION 3...86
TABLE 9.3: MEASUREMENT FROM MH2, SIMULATION 3..88

 1

1 Introduction

1.1 About my work with this thesis
The general idea behind my work on this master thesis is to study wireless Ad
Hoc networks, Quality of Service in MANET, and particularly take a deeper
look at the SWAN network model and the implementation of that model made
for ns-2. The people behind SWAN have done several tests to show how the
model performs in the ns-2 network simulator. The two major tasks in this
thesis are; first, to make a theoretical analysis of the SWAN model, and
second, making analysis of the simulations of the SWAN network model in ns-
2.

My effort is to install the ns-2 simulator for Linux and then to set up the same
scenario which they ran, and then verify those tests. I will also expand my
simulations with scenarios, which seems realistic for Real-Time applications in
an Ad-Hoc network environment. After accomplishing my simulations I will
analyse the output of these simulations and try to find out the status of the
SWAN network model. That means how well is the SWAN network model
improving the Quality of Service in an Ad Hoc network, what do works, what
does not works and what improvement can be done in both the model and the
implementation. New suggestions will be enclosed in suggestions for future
work.

1.2 Chapter overview
Chapter 1 is an introduction to this thesis and also to the different network
communities. Chapter 2 introduces the reader to world of wireless networks
and particularly Mobile Ad Hoc networks. Explaining the term “Quality of
Service” and its conceptions is carried out in chapter 3. The Stateless
Wireless Ad Hoc Networks (SWAN) model is presented in chapter 4. The
problems and troubles I came across during my work with SWAN are
presented in chapter 5. Chapter 6 is dedicated to a short description of two
related QoS network models. Chapter 7 includes a presentation of the ns-2
networks simulator, my work with this simulator and my preliminary
simulations schemes carried out in this simulator. In chapter 8, a description
of the different simulations scenario intended for testing the performance of
the SWAN implementation. Chapter 9 is dedicated to the presentations of the
result of the simulation scenarios described in chapter 8. Chapter 10
summarizes my work, my result and concludes the status of the current
SWAN model. This chapter also contains suggestions for future work and
research.

1.3 Who is who in the network community
In the internet research network community a lot of vendors, suppliers,
organizations, universities etc. exist. In this chapter I will give a short overview
of who is who, of the most important organizations in the network community,
their tasks and major areas of work. To ensure that computers are able to
communicate despite inequalities in both hardware and software from all the

 2

vendors that exist, network standards are needed to ensure word wide
compatibility.

One of the earliest founded standardization organization is the International
Telecommunication Union (ITU). The task of the ITU’s standardization unit
ITU-T, is to make technical recommendations about data communication,
telegraphy, and telephony. Another major contributor, which is the largest
professional organization in the world, is the Institute of Electrical and
Electronics Engineers (IEEE). Every year IEEE host hundreds of conferences,
publish journals and articles in addition to develop standards in their electrical
engineering and computing standardization group. One of their most
successful groups is the 802 committee.

Yet another important organization is the part of the Internet Architecture
Board (IAB) which is called the Internet Engineering Task Force (IETF). IETF
concentrates its work on short-term engineering issues. The IETF is divided
into specific working groups with individual problem to solve. For a proposal of
a technical contribution to the Internet to become a Proposed Standard, in
addition to have sufficient interest, it must first be described completely in an
Internet draft. After the publishing, the draft is made available for informal
reviews and comments for a six months period. A working implementation
must have been thoroughly tested upon advancing to a Request For
Comments (RFC). The archival series of RFC document is the official
publication channel for Internet standards documents and other publications.
After this, the proposal is ready to be declared as an Internet Standard if the
software works and the IAB is convinced [46] [51].

 3

2 Wireless Networks and Mobile Ad Hoc Networking
This chapter will present background material of wireless computer networks,
its operations, architecture and its protocols.

2.1 Introduction to Wireless Networks
In recent years, wireless radio networks have become increasingly popular.
Among the most popular devices are mobile phones, PDAs and computer
laptops. The nomadic lifestyle of people in modern society has to be
supported by future wireless system. Wireless computer networks can be
divided into three broad categories; System interconnection (e.g., Bluetooth),
Wireless LAN, and Wireless WAN (e.g., IEEE 802.16). For the further purpose
of this paper, Wireless LAN (WLAN) is the one of interest. Several standards
for WLAN have been developed, such as IEEE 802.11 standard and the
European developed standard; HIPERLAN. So far the IEEE 802.11 protocol is
the one that is implemented in most products for WLAN and the one that is
most widely used. Throughout this paper the IEEE 802.11 is the basis for
further investigation of Mobile Ad Hoc Networking. [6] [51]

2.2 The IEEE 802.11 Wireless LAN
Since its initiation in 1990, and the completion of the international standard in
1997, the IEEE 802.11 Wireless Network (WLAN) has become incredibly
popular. As an alternative to the high installation and maintenance costs
experienced in the traditional LAN, WLAN was developed to equip the users
in limited geographical areas with high bandwidth. Typical communication
range of WLAN lies between 100-500 meters. The IEEE 802.11 is operating
in the Industrial, Scientific, and Medical (ISM) band (See Figure 2.1).

Figure 2.1: The ISM Unlicensed Frequency bands. Figure from [23]

 4

The original 802.11 standard operates in the 2.4 GHz band with data rates up
to 2 Mbps. Examples of places where WLAN is used are conferences,
classrooms, office buildings, and military environments. When the first
standard was released, the IEEE initiated two new task groups, to work on
two new initiatives. The first resulted in the 802.11a, which was introduced as
a standard in 1999, and which operates in the 5 GHz band with data rates up
to 54 Mbps. The 802.11b standard was also released in 1999, operating in the
2.4 GHz band with data rates up to 11 Mbps. It has so far been the most
successful standard of the IEEE, and it has millions of users every day. Other
WLAN standards such as the European HIPERLAN2, is also present today, in
addition to the many 802.11 standards.

A substantial part and a building block of the IEEE 802.11 architecture is the
basic service set (BSS). The definition of a BSS is simply a group of stations
which are under control of a single coordination function, and therefore is able
to communicate with each other. The basic service area (BSA) is the diffuse
geographical area covered by the BSS. When a station finds oneself in a BSA
it can communicate with the other member of the BSS. The BSS is divided in
two configuration modes:

• The Independent BSS mode (IBSS) is the formal name of this mode,
more commonly known as Mobile Ad Hoc Network (MANET). In an Ad
Hoc network the nodes (stations) are operating on a peer-to-peer
basis. A group of nodes in a single BSS can communicate directly with
each other. There is no need of any centralized access point (AP) or
any wired network connections, (see Figure 2.2).

 Figure 2.2: Independent mode BSS (IBSS)

 5

• The infrastructure mode (BSS), where at least one central access
point (AP) is present. In infrastructure networks all communication is
flowing through the AP, including communication between the mobile
nodes in the same BSA. The AP is normally connected to the Internet,
(see Figure 2.3).

Figure 2.3: The Infrastructure mode (BSS)

In addition, the IEEE 802.11 standard allows connectivity between multiple
BSS’s, linked together in somewhat called extended service set (ESS), (see
Figure 2.4). The ESS appears as one large BSS to the mobile node [5] [6] [7]
[8].

Figure 2.4: The Extended Service Set (ESS)

 6

2.2.1 The Protocol Stack
Compared to the OSI model, the physical layers looks pretty much the same,
but in 802.11 the layer that corresponds to the data link layer in the OSI model
is divided into two sub layers. In the 802.11 standard the MAC (Medium
Access Control) sub layer is responsible for the protocol data unit (PDU)
addressing, frame formatting, fragmentation, and how the channel is
allocated. The Logical Link Control (LLC) sub layers of the Data Link layer
establishes and maintains the connections between network devices and
hides the differences between the different 802 variants and make them
indistinguishable to the network layer. The LLC is also responsible for the
error correction and flow control at the Data Link layer. The SWAN module
spans from the MAC layer up to the IP layer (see figure 2.5).

Figure 2.5: The 802.11 protocol stack with SWAN and the OSI model

One of the most pervasive channel access mechanisms at the 802.11 MAC
layer is the Distributed Coordination Function (DCF), which is a Carrier Sense
Multiple Access/Collision Avoidance (CSMA/CA) mechanism, with exponential
back off. The DCF senses the channel before transmitting to determine if the
channel is not in use by another station. The IEEE 802.11 also includes an
alternative access method known as the Point Coordination Function (PCF),
but only the DCF is suitable for the Ad Hoc mode. The main disadvantage of
using the DCF is that it is only capable of delivering Best-Effort service to the
network, and it is primary designed for asynchronous data transport. Activity
has been established by the 802.11e Working Group to enhance the current
802.11 MAC protocol to support the QoS requirements for applications [5], [7],
[21], [22] and [51].

 7

2.3 Mobile Ad Hoc Networks
In Latin, Ad Hoc literally means "for this", “towards this”, or "for this purpose
only," and implies a spontaneous and temporary setting [32] [33].

2.3.1 Introduction to Ad Hoc Networks
Mobile Ad Hoc Networks (MANET) is usually simply referred to as Ad Hoc
networks. In Ad Hoc networks the hosts are free to move, and no central
agency is involved. A MANET is an autonomous system of mobile nodes; it
can be created and used anywhere, anytime, and without any preexisting
infrastructure. Ad Hoc networks also benefits from its simplicity, scalability and
robustness due to its distributed nature. It may operate as a standalone
network, or it could be connected to a larger network through a gateway, such
as the Internet, for instance through a satellite connection. The hosts or
mobile devices are usually called nodes.

Figure 2.6: A simple Multi Hop Ad hoc Network

Wireless multi-hop ad hoc networks consist of several peer-to-peer connected
nodes. A pair of nodes uses intermediate nodes to communicate when they
do not have direct radio contact with each other. In a multi-hop ad hoc
network the mobile nodes are not only edge nodes and therefore each mobile
node must also be able to serve as a router as well as being able to forward
packets generated by other nodes. Multi-hop communication is not supported
by the 802.11 protocol, thus a special routing protocol suited for the dynamic
multi-hop nature of ad hoc network must be used for this purpose. A loop free
path from the source to the destination must be found so that packets do not

 8

traverse the network infinitely. Such loop free path is called a route. Route
updates may be required when the dynamic of the network changes the
reach-ability relations among the nodes.

For instance, in figure 2.6, if node A wants to communicate with node C, it
does not have direct radio contact with node C, because node A and C is out
of each others radio transmission ranges. Instead, node A can reach node C
through node B, because both node A and C are within B’s transmission
range. In order for node A to reach node C through node B, node B has to
function as a router and forward packets it receive on its wireless interface
from node A, which are destined for node C, out on the wireless interface
again so they finally will reach the destination node, which here is node C.
This is the simplest form of a multi-hop Ad Hoc network.

More nodes can easily join, but then we probably get more routes, and more
nodes have to function as intermediate nodes in order for a source and
destination pair to reach each other without direct radio contact.

2.3.1.1 Usages of Ad Hoc Networks
The advantages of such networks immediately elicited interest from the
military, rescue agencies and the police in the use of armed conflicts and
disaster areas, where the conditions can be hostile and highly disorganized.
Since the 1990s, Ad Hoc network have become increasingly important to
commercial participants as well. Home or small offices networking with
laptops and PDAs, such as in a classroom or conference situation, have
emerged as other major areas of application. With the commercial
participation, customers are demanding more and more features and
functionality. Therefore, multimedia applications such as streaming of video
and voice (VideoIP and VoIP) are important areas where special attentions
have to be taken, to support the Quality of Service (QoS) requirement.

In near future, such networks are probably going to cooperate and coexist
with other mobile systems such as the UMTS. It is also probably that a
development of cooperative mobile robotic systems where the human
presence is dangerous will use such technologies found in mobile Ad Hoc
networks. [6] [13] [14]

2.3.2 Dynamics and Mobility
Mobility is one of the primary motivations and a very important feature for
wireless networks. The nodes can move arbitrarily, thus the topology of the
network may change randomly and rapidly. However, the mobility model may
be very different in each Ad Hoc network. Mobility can occur within a
constellation of mobile nodes, and the constellation can move as group in the
same direction. Military networks may be highly mobile in a battlefield
situation. On the other hand, the mobility patterns for commercial usage may
be fundamentally different. Commercial users typically stand still or walk
slowly using their PDAs and user tend to sit down when using their laptop
computers. Typical examples of commercial Ad Hoc networks are a
conference or a classroom situation. Thus the mobility in commercial
networks tends to be more rarely and more slowly than in military

 9

environment, unless the users stay inside a train or a car. The speed of the
moving nodes can change the capacity of the network and hence the
utilization of its resources.

Mobility is not the only contribution to the dynamics of wireless networks.
Nodes can join and leave the network at any time, and new links and routes
can be created, or old ones destroyed. Another contribution to the dynamic
nature is the mobility of obstacles and interfering objects moving around in the
network environment. Thus a wireless network in a static approach may face
many of the same challenges as a network in a dynamic approach [28] [29]
[30].

2.3.3 Ad Hoc Routing Protocols
Intermediate nodes are used in transmission when the source and destination
node not are within radio range of each other. Each node on the intermediate
path, process packets intended for the receiving node, and forwards the other
packets to one of its neighbors. In that way all wireless nodes serve as
routers. Route identification and reconfiguration is to be performed by the
routing protocols, and the traditional TCP/IP routing tables are used to keep
track of the routes to the hosts.

To ensure effective routing the first task is to find a suitable path between the
source and destination. To prevent packets from traversing infinitely long
paths, an obvious essential requirement for choosing a path is that the path
must be loop-free. A loop free path between a pair of nodes is called a route.
All the routes are kept in the routers local routing tables. A suitable QoS route
means a path that supports the necessary resources to be able to meet the
Quality of Service constraints desired. The QoS routing is often a NP-
complete problem when more than one constraint is present. QoS routing
includes request, identification and reservation of the available resources.
Minimizing the number of intermediate hops is one of the principal ways of
determining a suitable route to minimize the end-to-end delay and utilizing the
network resources in a better way. The time needed to calculate routes
certainly need to be low.

The dynamic nature of Ad Hoc networks may cause the reach ability relations
among the nodes to change, and a route update may be required. In order to
keep the network connected despite changes in the topology, the network
performance is highly dependent upon the performance of the routing
protocols. To be able to give any guarantee at all, it is important that the rate
at which the topology changes is not “too” fast. In other words the topology
updates of the routing tables must be faster than the topology changes. An Ad
Hoc network is said to be combinatorial stable, if and only if the topology
changes occur sufficiently slowly to allow successful propagation of all
topology updates which is necessary.

Routing protocols in Ad Hoc networks have traditionally been topology-based;
it uses the knowledge of the instantaneous connectivity of the network based
on the state of the links. Topology-based routing protocols can be divided in
three main categories, first the proactive (periodic or table-driven), which

 10

attempts to maintain the knowledge of every current route to every other node
in a dynamic way, regardless of packets flowing in the network based on a
periodic exchange of control messages (e.g., OLSR), the reactive (on-
demand) which only creates a route on-demand when it is necessary for
carrying data packets (e.g., AODV). The third category is hybrid routing
protocols. In addition, another class of routing protocols is the so called
location-based routing protocols. In addition to topology-based information,
this protocol uses information about the actual position to determine the
routes [6] [30] [31] [50].

2.3.3.1 Ad hoc On Demand distance Vector (AODV)
The AODV routing protocol is a routing protocol for ad hoc mobile networks,
which is capable of both unicast and multicast routing. The algorithm is on
demand, in the way that it only initiates new routes on request from a source
node. These routes are maintained as long as they are needed by any of the
source nodes. The freshness of a route is taken care of with sequence
numbers. Furthermore, the AODV is loop-free, self-starting, and scales well
on large number of mobile nodes. The AODV is the routing protocol used to
support the current SWAN implementation.

Routes are built using route request (RREQ) / route reply (RREP) queries. A
route request (RREQ) packet is broadcasted across the network when a
source wants to reach a destination which it does not already have a route.
Upon receiving the RREQ packet, intermediate nodes sets a backward
pointer to the source in their routing tables. The intermediate nodes discard
the RREQ if they receive one they already have processed, otherwise they
rebroadcast the RREQ. A node unicast a RREP packet back to the source, if
it is the final destination, or if it has a route to the destination, with a
corresponding sequence number greater than, or equal to that contained in
the RREQ. A forward pointer is set up to the destination as the RREP
propagates back to the destination. The source node can start transmitting as
soon as it receives the RREP. If a better route to the destination is found, the
source updates its routing tables and starts using this route instead. The route
is maintained as long as the route remains active. A timeout will occur once
the source stops the transferring of data packets and the link will then be
deleted from the intermediate nodes routing tables. A route error (RERR)
message is sent to the source node if a link break occurs on an active route
[27].

2.3.3.2 Optimized Link State Routing (OLSR)
As mention above, the OLSR routing protocol have the routes immediately
available when needed, due to its proactive nature. OLSR is an optimization
of a pure link state protocol where all the links are flooded in the entire
network. The multipoint relays (MPR) is one of the key concepts in the OLSR
protocol. The set of MPR is selected such that it covers all the nodes that are
two hops away. The routes to all known destinations are calculated through
the nodes selected as MPRs, and these nodes are selected as intermediate
nodes in the communication path. This significantly reduces the number of
retransmissions in a flooded or broadcasted network. The OLSR protocol is
also well suited for large and dense networks due to the optimization scheme

 11

of the MPRs. It is also well suited for WLAN where radio transmission
problems are frequent, because it does not relay on reliable transmission for
its control messages [11] [12].

2.3.3.3 Hybrid routing protocols
Hybrid routing protocols combines techniques from both the proactive and the
reactive routing protocols. Zone Routing Protocol (ZRP) is such routing
protocol. The idea behind ZRP is to divide routing into local and global zones
[6].

2.3.4 Other considerations for Ad Hoc networking
When working with Ad Hoc network development, mobility management,
power management and security are among the topics that might need to be
taken into consideration. Mobility management can be divided in two broad
categories: Location management, which keep track of the position of every
unit (e.g., with a GPS), and handoff, which mainly concern about the
continuity of a Real-Time stream. In order to have a seamless communication,
a QoS capable Ad Hoc network has to support reestablishment and rerouting
when handoffs occur. It is important with a fast reestablishment in the case of
a handoff event [24]. An important part of power management is power
control, where one is dealing with increasing and decreasing the level of
transmitting power, in order to reduce the interference and increase the
overall system capacity. It is also urgent for researchers to develop efficient
and low power consumption algorithm and protocols [24]. The main concern
in wireless security is the physical access to data transmission over radio
waves. This makes 802.11 networks vulnerable to eavesdropping. In addition
to the existing security concerns which are common on any networks, such as
authentication and integrity, wireless networks are also vulnerable to possible
Denial of Service (DOS) attacks by a malicious station [25] [26].

 12

 13

3 Quality of Service
In this chapter I will discuss Quality of Service both in general and in the
special case of wireless ad hoc networks.

3.1 Beyond Best-Effort
Since the ISM band is unlicensed and free for all commercial use, users will
commonly experience significant interference in some locations. The
interference can interact with the wireless signal and disturb or block it
completely. Interference can be caused by simultaneous transmissions, when
two or more 802.11 stations are trying to send at the same time. The
interference can also be caused by other devices operating in the same
geographical area using the ISM band such as a police car radio, or even a
microwave oven. This type of interference is called noise. An 802.11 station
can also experience echo from its own signal which again induces
interference. Multi-path fading can be an additional source of interference to
the 802.11. Multi-path fading arises when radio signals following different
paths arrive out of phase at the receiver. When interference is experience, the
bandwidth, which the 802.11 operate on is highly variable and far from the
theoretical throughput limits. Yet another impact of interference is higher bit
error and more frequent disconnection. In addition to the variable radio link
quality, the new dynamics introduced by the WLAN gives us more stringent
challenges.

Because of the interference problem, mobility, and because the 802.11 MAC
sub layer protocol (DCF) only can deliver Best- Effort, the need for at least
one additional mechanism, which can handle this problem and assure a
certain level on the quality on the service delivered by the network.

Another problem arises when the network traffic gets excessive, then
congestion occurs. In a congested network more data packets are entering a
node than the packets leaving the node. A congested node is said to be a
bottleneck. Then the nodes buffers get overloaded and the node have to drop
packets. The delay for data packets entering a congested network is usually
higher than for data packets entering an idle network [5] [6] [9] [17].

3.2 Quality of Service in General
Quality of Service (QoS) is a widely used term, but it has different meanings
to different people, and the issues associated with QoS are not very well
understood. In RFC 2386, QoS is characterized as a set of service
requirements that the network has to meet, during a flow from the source to
the destination [50]. And The United Nations Consultative Committee for
International Telephony and Telegraphy (CCITT) Recommendation E.800 has
defined QoS as: "The collective effect of service performance which
determines the degree of satisfaction of a user of the service" [49]. The
previous definition is also used as basic definition of QoS by ITU and ETSI. At
he IP layer, the QoS guarantees that can be offered are a product of the
cooperation of operation of several mechanisms, such as policy management,
traffic classification, bandwidth reservation and admission control, traffic
conditioning, queuing, scheduling and discarding [44]. When considering the

 14

Quality of Service, one can investigate and ensure the quality at all the layers
in the TCP/IP protocol stack, but the overall Quality of Service is finally that
experienced by the user at the application layer.

3.2.1 QoS Parameters
The IETF defines a flow as: “set of packets passing an observation point in
the network during a certain time interval. All packets belonging to a particular
flow have a set of common properties derived from the data contained in the
packet and from the packet treatment at the observation point” [34]. The four
primary parameters that determine the QoS for each flow are; reliability,
latency, jitter and bandwidth [51].

• Reliability concerns the need to manage packet loss. Packet loss is
usually caused by network congestion and is defined as the ratio of the
undelivered packets to the one that are sent. Packet loss serves to
reduce the number of packets competing for the output link. When the
sources discover that packets are lost it usually reduce the transfer
rate. If the source does not receive an acknowledgement (ACK) for a
packet it can be re-transmitted, depending on the type of application.
The packet can also be delivered with bit errors. This is usually taken
care of by verifying the checksum at the destination.

• Latency is the one-way end-to-end delay for a flow, experienced while
passing through the network. The end-to-end delay may be introduced
by intermediate routers and switches and due to the latency of the
physical transmission media. Significant delays can appear when
packets are queued for long periods of time.

• Jitter is the variations in latency between packets, mainly due to the
variations in the volume of other traffic streams competing for the
output link. Then packets may take different routes through the
network, or they may encounter varying queue length. In a stream,
delay variations must be removed on the receiver side in order to
replay the stream. This can be achieved with a de-jitter buffer. Then
packets are rearranged in a timely order. The delivery time of a packet
must not exceeds the length of the receive buffer, because this packet
then arrives too late, with respect to the replaying time, and the packet
will be discarded from the buffer, which again have a degrading effect
on the replay quality.

• Bandwidth concerns itself with how the network manages the entire
stream of data packets flowing through it, particularly in times of
network congestion.

 15

Figure 3.1: Quality of Service requirements

The treatment experienced by packets while traversing the network can be
described by these parameters, which again can be translated into particular
parameters of the network architecture components to ensure the QoS. The
stringent of the QoS requirements for some selected applications are
visualized in Table 3.1 [16] [35] [52].

Table 3.1: QoS requirements. Figure taken from [51]

The reliability requirement is most important to the first four applications. This
is usually taken care of by using a checksum to verify the content of each
packet. The last four applications can handle bit errors, without using any
control routine as the checksum correction. The likelihood of loosing a packet
usually grows as the packet size increases. In an unreliable channel, as often
is the case in a MANET, smaller packets are preferred. A drawback of using
small packets payload compare to the fixed headers is waste of useful
bandwidth.

 16

When it comes to delay, file transfer application including video and e-mail,
are not sensitive to delay. Web surfing and remote login have moderate
sensitivity on delay, and audio and video on demand does not require low
delay. On the other hand, IP telephony and videoconferencing have very
strictly requirements on the delay [51]. The International Telecommunication
Union (ITU), recommend that the one-way delay for general network planning,
should not exceed 400ms. However, in highly interactive tasks, such as IP
telephony, videoconferencing and interactive data application, these
applications may be affected of delays below 150ms. Most applications would
not be significantly affected, if the delays are kept below 150ms [16].

E-mail, file transfer, and web access is not very sensitive on packets arriving
with irregular intervals. Remote login is slightly more sensitive to jitter, but
applications involving audio or video are extremely sensitive to jitter. A typical
audio- or video streaming application cannot handle more than a few
milliseconds of variation before it is audible or the effect is visual.

Figure 3.2: Application bandwidth requirements in bits per second. Figure from [17]

The applications demand for bandwidth can be categorized in sustained,
bursty and interactive. For voice, 20 ms of speech is contained in speech
packet from 20 to 160 bytes at 8 and 64 Kbps respectively, depending on the
compression, while a high quality MPEG-2 video may require up to 10 Mbps.
It depends on the quality, but typical rate for MPEG is about 1.2 Mbps. File
transfers are bursty and tends to grab as much bandwidth as they can to
make a fast data delivery. The bursty traffic is usually a common reason of
congestion and must be controlled. Different applications bandwidth
requirement can be viewed in Figure 3.2 [10] [35] [43].

 17

As we can se from the table 4.1 both IP telephony and videoconferencing is
sensitive on both the delay and jitter requirements. To satisfy those
applications requirements on delay and jitter, the network has to offer special
treatment so that the tight guarantees can be met. In order to enforce such
network policies, classifying in traffic classes, marking of packets and flows,
and scheduling using a queuing mechanism in the network is most likely
necessary. The ability to varying the data rate upon feedback of the available
bandwidth in the network, using compression and reducing the play back
quality, may also be a likely solution to meet the QoS demands.

3.3 QoS Mechanisms
Among the many service models and mechanisms proposed by the Internet
Engineering Task Force (IETF) are the Integrated Service model (IntServ) and
the Integrated Service model (DiffServ).

3.3.1 Integrated Services (IntServ)
The philosophy of the IntServ model is to provide special QoS for specific
user packet streams, or "flows" through resource reservation in the routers,
which in turn represents a fundamental change to the Internet model. Two
service classes in addition to best-effort service (which is characterized by the
absence of any QoS specification at all) are proposed:

• Guaranteed services provide an assured amount of bandwidth for
applications with tight bounds on both the delay and the jitter
requirements.

• Predictive services also called controlled load services is intended for
more tolerant and adaptive applications, which do not require a perfect
reliable bond on the delay requirement. The provided service will be as
close as possible to the service received by a best effort flow in a lightly
loaded network, even though the network as a whole may be heavily
loaded.

The implementation framework in [36] includes four traffic control
components: admission control, the classifier, a packet scheduler and a
resource reservation protocol. The admission controller is responsible for the
reservation policies and determines whether the QoS request for a new flow
can be granted without any devastating effect to earlier guarantees. The
purpose of the classifier is to map each incoming packet into some class.
Forwarding of the different packet streams is managed by the packet
scheduler who uses queues and perhaps other mechanisms like timers.
Packets’ belonging to the same class receives the same treatment from the
packet scheduler. To create and maintain flow-specific state in the endpoint
hosts and in routers along the path of a flow a resource reservation protocol is
needed. The protocol should be able to find a route that supports resource
reservation and has sufficient unreserved resources for a new flow. It should
also adapt to route failure and route change without failure. The protocol
recommended by the IntServ group is The Resource ReSerVation Protocol
(RSVP), which reserves a portion of the output link in each router along the
path of a flow [36] [37] [38].

 18

3.3.2 Differentiated Services (DiffServ)
In the differentiated services model, traffic entering a network is classified and
possibly conditioned at the boundaries of the network, and assigned to
different behaviour aggregates. Unlike IntServ, no signalling are exchanged
between the source and the destination. It does not attempt to guarantee a
level of service. It rather tries to make some relative ordering of aggregations.
This causes one traffic aggregation to receive better or worse treatment
relative to other aggregations. Within the core of the network, packets are
forwarded according to the Per-Hop Behaviour (PHB). A DiffServ domain is a
contiguous set of nodes which operate with a common service policy and set
of PHB groups.

Two primary PHB forwarding classes in addition to the Best-Effort service are
proposed by the IETF:

• Expedited Forwarding (EF) – The EF class also described as Premium
service is intended for applications requiring low latency, low jitter, low
packet loss, assured bandwidth and end-to-end service.

• Assured Forwarding (AF) – The AF class is divided in four separate
classes intended for applications requiring better reliability than best-
effort service.

The boundary of a DiffServ domain is well-defined and consists of boundary
nodes that act both as ingress and egress nodes for traffic in different
directions. A traffic flow enters a DiffServ domain at an ingress node and
leaves at an egress node. The boundary nodes classify and possibly
stipulating ingress traffic to ensure that packets passing by the domain are
appropriately marked to select a PHB from one of the PHB groups. Based on
the content of some portion of the packet header, the packet classifiers select
packets in a traffic stream and lead the packets to a logical instance of a
traffic conditioner. Traffic conditioning ensures that the traffic entering the
DiffServ domain conforms to the rules specified in the given policy. Elements
included in the traffic conditioner may be: meter, marker, shaper, and dropper.

The traffic meters measure a stream of packets temporal properties and
passes state information to other conditioning functions to trigger a particular
action for each packet. To add a packet to a particular DiffServ behaviour
aggregate, the packet marker set the Type of Service (TOS) byte (DS field) of
a packet to a particular codepoint. Several differentiated service classes can
be created by marking the DS fields of the packets differently. In order to bring
a stream into accordance with a traffic profile, the shaper delays some or all of
the packets in a traffic stream based on their DS fields. Packets are discarded
if there is not sufficient buffer space to hold the delayed packets. The process
known as policing the stream is executed by the dropper who discards some
or all of the packets in a stream, to bring a stream into compliance with a
traffic profile.

For a customer to be able to receive differentiated services, a Service Level
Agreement (SLA) must be arranged with its Internet Service Provider (ISP). In
an SLA, which can be either static or dynamic, the basically service classes

 19

supported and the amount of traffic allowed in each class is specified [38] [39]
[40] [41] [42].

3.3.3 Adapting Service models to MANET
A lot of work has been done to achieve QoS in wired networks, but
unfortunately this cannot be directly applied in Ad Hoc networks. In the
IntServ/RSVP proposal, there are several factors which make the model not
suitable for MANET’s. First, huge storage and processing overhead due to the
state information that has to be maintained is a drawback. Second, in the
case of a topology update, all the reservations would have to be renegotiated
simultaneously. This may lead to congestion of several routers. Third, in a
MANET, every node has to function as a router, thus each node also has to
perform the admission control, classification and scheduling. These tasks will
require resources, which usually are not available in an Ad Hoc network. In
addition, the RSVP signalling packets will compete with other data packets for
the usually scare resource of bandwidth.

On the other hand, DiffServ is a more proper model for MANET’s, even
though the model cannot be applied directly in such a network. A clearly
drawback on using the DiffServ model is that the dynamic nature of Ad Hoc
network cause an unclear definition of what is the core network, ingress and
egress routers. For the interior routers, DiffServ is a more lightly weighted
model than IntServ.

For the future, in order to make suitable QoS model for MANET’s one
approach could be to make proper changes to the DiffServ model to make it fit
the dynamic nature of Ad Hoc networks. Another approach could be to take
advantage of the benefits from both the IntServ and the DiffServ model.
Several models have been proposed, among them are the SWAN model [3]
[49].

3.4 Quality of Service in Ad Hoc Networks
Due to the dynamic nature of Ad Hoc networks, the challenges in utilizing the
resources in such networks are more numerous and more difficult than in a
traditional wired IP network such as the Internet. These challenges include
subjects as effective routing, channel access, mobility management (hand-off
e.g.,), security issues (e.g., Denial of Service attacks), power management
and Quality of Service, mainly pertained to bandwidth management, and to
the delay and jitter requirements. All these challenges are potential sources to
degraded Quality of Service experienced by the users.

So far, Ad Hoc networks have only been able to support best-effort service,
without any guarantees. To satisfy the demand of using the same applications
(web browsing, interactive multimedia e.g.,) which are common in the
traditional wired networks and to carry out other complex operations, various
Quality of Service attributes for these applications must be satisfied. Quality of
Service solutions for wired networks cannot be directly applied to wireless Ad
Hoc networks.

 20

Bandwidth management means administrating the scarce resource of the
wireless channel among the users. Wireless networks have until recently
delivered lower bandwidth than their wired counterparts. With an optimizing of
the coding of bit in the transmission, it is expected that the IEEE 802.11n will
be able to deliver a theoretical data rate of 320 Mbps by 2005 [9]. In a BSA,
the network bandwidth is divided among the users. In addition to the raw
transmission bandwidth, an important measurement of the network capacity is
the deliverable bandwidth per user, which is dependent of the density and
distribution of nodes. There are two ways to increase this capacity. One
approach is to divide a BSS into two or more new BSS’s operating on different
wavelength. The other approach is to decrease the geographical area of the
BSA, which means decreasing the radio range of the antennas. Due to
interference and the dynamics, the available bandwidth of Ad-Hoc networks is
highly time varying, and need to bee managed efficiently and in a fair way
among the users to achieve a guaranteed Quality of Service. Figure 3.3
shows the application Network Stumbler measuring the Signal/Noise ratio.

Figure 3.3: Wireless Signal/Noise ratio measured in Network Stumbler

Another concern, is how often and how much administrative and control
information that may be exchanged due to the limited bandwidth available and
due to the generally hostile transmission characteristics of wireless Ad Hoc
networks. A good implemented solution is needed to satisfy the existing
requirement to achieve the desired level of the Quality of Service. Together
with performance analysis studies of Ad Hoc networks with QoS constraints
this is still an open area for more research [6], [15], [17], [50].

 21

4 Stateless Wireless Ad hoc Networks (SWAN)
In this chapter I will introduce the reader to SWAN, a network model proposed
by the COMET Group at Columbia University in New York.

4.1 Introduction
SWAN is a stateless network model proposal, which is supposed to ensure a
certain level of QoS in wireless Ad Hoc networks. The SWAN mechanism,
which is based on a best-effort MAC protocol, is placed between the IP and
the MAC layer. SWAN uses rate control for Best-Effort traffic, and sender-
based admission control for UDP Real-Time traffic. A classifier and a shaper
is also part of the SWAN mechanism. The admission controller located at the
source nodes, uses a bandwidth probe message to find the instantaneous
bottleneck capacity path in the network. There is none state information about
the ongoing flows kept in the network. Instead SWAN uses feedback
information from the network.

Figure 4.1: Graphical presentation of data-rates and -limits

For regulation of admitted Real-Time traffic, SWAN uses Explicit Congestion
Notification (ECN) as feedback, when the network experience overload. MAC
delay measurement from packet transmission is used as feedback for rate
control of both TCP and UDP Best-Effort traffic. The admission controller gets
feedback from measurement of the aggregated real-time traffic. To limiting the
experienced delay, the total rate of both real-time and best-effort in a local
shared media channel should be maintained below a threshold rate, see
Figure 4.1. For this purpose SWAN adopts the Adaptive Increase
Multiplicative Decrease (AIMD) rate control mechanism in order to improve
the performance of Real-Time UDP traffic and at the same time let Best-Effort
traffic efficiently utilize any remaining bandwidth. Unfortunately, for a number

 22

of reasons it is not desirable to admit the Real-Time traffic up to the threshold
rate. First, the flexibility upon channel dynamics will be intolerant. Second, if
the Real-Time traffic is allowed up to the threshold rate, Best-Effort traffic
would be starved. Therefore, SWAN uses a simpler approach and only admits
Real-Time traffic up to a more conservative rate than the threshold rate. The
local available bandwidth, of a shared media channel, estimated by each
node, is then the difference between the rate of the Real-Time traffic and this
new conservative “admission control rate” [3] [4].

4.2 The architecture
In chapter 2.2.1 I presented how the SWAN network model fits in to the OSI
stack. A deeper picture of the SWAN architecture can be viewed in Figure 4.2.
Here we can see how each data packet traverse the SWAN network model.
First, upon a request from higher layers, the admission controller probe to see
if enough resources are available. If a data packet is admitted, it is marked by
the admission controller, otherwise it is left unmarked. The classifier then
inspects the IP header to see if the packet is marked or not. An unmarked
packet is passed down to the shaper, while an unmarked packet bypasses the
shaper and is passed straight down to the MAC layer. The shaping rate at
which the shaper forward the data packet to the MAC layer is adjusted by
input from the rate controller, which again takes its decisions upon feedback
from the MAC layer delay. From the MAC layer the packet is passed to the
Physical Layer and converted to radio signals.

Figure 4.2: The architecture of the SWAN network model. Figure from [1]

4.2.1 Rate Control
Best-effort traffic is independently regulated in every mobile node. The
transmitting rate used by the shaper, is determined by the rate controller using

 23

a modified AIMD rate control algorithm. In the AIMD algorithm, the TCP
sender increases its congestion window by one packet each roundtrip time
(RTT), in times of no congestion. When congestion is indicated, the AIMD
mechanism cut the window size aggressively. Then the TCP sender
decreases its congestion window, so that the new congestion window is half
of the minimum of the congestion window and the receiver's advertised
window.

In SWAN the rate is based on the packet delay measured by the MAC layer.
The packet delay is simply the time it took to send the packet from the source
to the destination, including the acknowledgement from the receiver. At the
source node, the delay (DelayMAC) is measured by subtracting the time the
MAC layer receives a packet (Tsend) (from the upper layer), from the time an
ACK is received from the destination TACK/recv.

DelayMAC = TACK/recv – Tsend

Every mobile node increases its transmission rate every T seconds until the
packet delays become noticeable, (Additive Increase with the increment rate
of c Kbps). This delay is detected by the rate controller when one or more
packets have greater delay than the threshold delay d seconds. When the
rate controller discover excessive delays, it backs of the rate (Multiplicative
Decrease by r %). Every T seconds the shaping rate is adjusted. To respond
to the dynamics of Ad Hoc networks the time T should be kept below a certain
limit.

Figure 4.3: MAC delay

The shaping rate is the maximum rate determined by the Rate Controller in
which the shaper is allowed to transmit. The actual transmission rate is the
current rate at which the shaper actually is transmitting the Best-Effort

 24

packets. If the difference between the actual transmission rate and the
shaping rate is too large, the mobile node is enabled to send a burst, which
might raise the delay for the real-time traffic. The rate controller monitors the
actual transmission rate and adjusts the shaping rate to be g% above the
actual rate if the difference between the actual rate and the shaping rate is
greater than g% of the actual rate [3] [4].

4.2.2 Admission Control
The real-time traffic is measured by the admission controller in every node to
find the local resource availability. In the shared wireless channel, nodes
listen to packets sent within their transmission range in order to calculate the
rate of Real-Time traffic. An average of these measures is used to smooth out
small-scale traffic variations. Nodes actual available bandwidth is the
difference between the current physical bandwidth and the total Real-Time
packets sent within the transmission range. Since the SWAN mechanism is
trying to improve the performance of Real-Time traffic, SWAN adopts the
threshold rate, at a level below the physical limit, as a total maximum data
rate of both Best-Effort and Real-Time traffic. Unfortunately, if the Real-Time
traffic is allowed to consume the entire data rate up to the threshold rate,
there would be no flexibility upon handling additional Real-Time traffic due to
network dynamics and the Best-Effort traffic could be completely starved.
Therefore, a more conservative rate than the threshold rate is used by SWAN.
The difference between this conservative admission control rate and the
current rate is then the available bandwidth for Real-Time traffic that a node
can “see”. The Real-Time traffic is allowed up to this admission control rate.
The static value of the admission control rate is coarse and approximated. All
remaining unutilized bandwidth from the current rate of Real-Time traffic and
up to the threshold rate will be absorbed by potentially best-effort traffic.

When a node wants to start a real-time session, the admission controller in
this source node sends a bandwidth probing request towards the destination
node, (see Figure 4.4). The task of this probing packet is to visit every
intermediate node and then find the end-to-end bandwidth capability along the
route from source to destination. If an on-demand routing protocol is used by
the network and an intermediate node has no known route to that destination
a route discovery process must be initiated before the probe can proceed to
the next hop node. The nodes between the source and destination, updates
the bottleneck field in the probing request packet, if the available bandwidth in
that node is less than the current value in the packet. When the destination
receives the bandwidth probe request packet it copies the bottleneck field into
a bandwidth probe reply packet. The reply packet is sent directly to the source
node and is not restricted to follow the request packets reverse path back to
the source node. A simple admission control is done by the source node when
it receives the bandwidth probe reply packet. The admission controller simply
compares the new Real-Time session required bandwidth with the bottleneck
field in the reply packet. If the bottleneck field in the reply packet is the same
size or greater than the required bandwidth, then the session is admitted.
Otherwise packets belonging to this session are refused and considered Best-
Effort until a new probe request might find enough available resources in the
network. In this model the intermediate nodes does not need to do any

 25

reservations on behalf of a session, neither are any admission control
executed in other nodes than the source node.

Figure 4.4: Probe message

The packet belonging to an admitted real-time session are marked RT (Real-
Time) and will then bypass the shaper mechanism. An important assumption
here is that each source nodes regulates its real-time sessions based on the
decision of its admission controller [3] [4].

4.2.3 The Classifier
Best-effort traffic is separated from the real-time traffic by the classifier in
order to let the shaper process only best-effort packets. When a packet leaves
the IP layer the classifier examines the DS field in the IP header. If the packet
is marked RT it will bypass the shaper, otherwise the packets are forwarded
to the shaping mechanism [3]

4.2.4 The Shaper
The purpose of the shaper is to delay BE packets. This delay is adjusted by
the rate calculated by the Rate Controller. The shaper is implemented as a
simple leaky bucket algorithm where the input rate could be bursty and where
the output rate is controlled.

 26

Figure 4.5: The shaper; leaky bucket

In Figure 4.5 the bucket represents an abstraction of a set of actions the
network takes to monitor and control traffic. The bucket depth represents the
tolerance of packet burst over a period of time. When the bucket is full, the
incoming packets are dropped. The hole in the bucket represents the
instantaneous rate at which the packets are allowed to transmit.

The departure rate of the shaper (bucket) is determined by the rate controller
which is using the AIMD rate control algorithm based on feedback from the
MAC layer [1] [3].

4.2.5 Probe Message Format
Two control messages are defined by SWAN’s admission controller;
“bandwidth probe request” and “bandwidth probe reply”. Both are using UDP
with a port reserved for the SWAN module. The probe request packet
contains a “bottleneck bandwidth” field which contains the bottleneck of the
path from the source to the receiver when it reaches the receiver. The total
layout of the probe message format is illustrated in Figure 4.6 [4]. (In ns-2
implementation of SWAN port 252 are used).

 27

Figure 4.6: The Probe message format

The SWAN network model is using AODV as its corporate routing protocol,
and the probe packet is placed as a piggyback message on a Route Request
message in AODV.

4.2.6 Mobility and False Admission
In an Ad Hoc network, the nodes are not aware of how and when the mobility
takes place. Harmful resource conflicts will most likely be the result, if re-
routing due to mobility is not taken into consideration.

False admission arises when several nodes simultaneously probe the network
for bandwidth and their paths from the source to the destinations are
traversing one or more identical intermediate nodes. Both source nodes may
then receive enough bandwidth, in the probe request, when the available
bandwidth strictly is just enough for only one of the sources. This false
admission is nothing the source nodes is aware of, and therefore admits new
sessions of real-time packets, when the session actually should be denied.

The re-routing due to mobility and false admission can cause excessive delay
and jitter for the real-time traffic if it is left unresolved.

4.2.7 Explicit Congestion Notification (ECN)
When running SWAN in an Ad Hoc network, every node periodically
measures real-time traffic to get the exploitation ratio of local link such that the
available bandwidth can be calculated. A node starts marking the ECN bits in
the IP header of the real-time packets with Congestion Experienced (CE),
when it detects violations such as congestion and overload conditions, due to
re-routing and “false admission”. When the receiver discover the CE mark in
the IP header it notifies the source node through a regulate message when it
discover the ECN bits in the IP header. The source node try to re-establish its
real-time session when it receives a regulate message. With the same
bandwidth needs as the old session, the source node sends a probe request

 28

toward the destination, in the same manner as when setting up a new
session. If the bandwidth field in the new probe response packet is less than
what the existing session needs, the session is terminated by the source node
[3] [4].

4.2.8 Regulation Algorithm
If all real-time packets are to be marked CE, when the node detects
overloaded condition or congestion, then every session that has this node in
the path from source to destination has to re-establish at the same time. This
is a behavior that is not wanted and is indeed vastly inefficient. Two and more
systematic approaches, which penalize only a small number of sources and
sessions, are considered in [4].

4.2.8.1 Source-Based Regulation Algorithm
When overload or congestion is experienced by a node it marks all real-time
flows with CE. Instead of re-establish the session when receiving a regulate
message, the source node wait a random amount of time before it sends a
new probe message with the intention to make a re-establishment of the
session. With source-based regulation, situations where a number of source
nodes simultaneously initiate re-establishment of their real-time session, and
at the same time find the network overbooked, and in which they all drop their
sessions will be avoided. Gradually the rate of real-time traffic will decrease
until it gets below the admission control rate. Then the intermediate nodes,
which experience congestion and overload will stop marking the packets. The
source nodes need to be able to differentiate between regulation messages
due to re-routing/mobility and false admissions. This can be taken care of by
keeping some state information in the nodes about newly admitted flows and
existing flows. With this approach, the source nodes can take immediate
action, when a session is admitted by mistake, due to false admission [4].

4.2.8.2 Network-Based Regulation Algorithm
In Network-Based regulation a randomly selected “congestion set” is picked
out by the nodes that experience congestion/overload condition. Only real-
time sessions associated with this congestion set is marked with CE. The
congested set is marked for a period of time T, and then the congested nodes
calculate a new congested set for a new period. When the measured real-time
traffic fall below the admission control rate, the nodes stop marking the
packets. Under congestion and overload, the intermediate nodes need to
distinguish between flows which is admitted due to false admission, or flows
which is rerouted due to mobility. In the Network-Based approach, the source
nodes could mark packets in a real-time session to inform the intermediate
nodes, whether the session is new or old. However, this case requires some
calculations by the intermediate nodes in order to distinguish the new flows
from the old so that they can take correct action upon false admission [4].

 29

5 Problems and trouble with SWAN
In this chapter I will discuss the problems and troubles I came across, during
my work with this master thesis and the SWAN network model.

5.1 The SWAN articles
At first glance, the SWAN mechanism looks like a promising protocol in order
to deliver a satisfying level of QoS for wireless Ad-Hoc networks. In [1] and
[3], the SWAN mechanism claim to experience low and stable delays in an
experimental wireless test bed, during various mobility, traffic and multi-hop
situations. However, the delay measured in the wireless test bed in [1] and [3]
is the average delay at the MAC layer, while the most critical issue is whether
the end-to-end delay from application layer to application layer is low enough
to support Real-Time traffic. In other words, this end-to-end delay should be
kept below 150 milliseconds (see section 4.2). In [3] they even conclude that
the result presented implies that the proposed SWAN mechanism is able to
support Real-Time traffic within a single shared media channel. When it
comes to the multi hop scenarios, this statement is found in [3]:

“The average end-to-end delay of the real-time traffic in the original system
grows linearly from 8 to 39 msec, as the number of TCP flows increase from 2
to 12 flows, respectively. In contrast, the average delays of real-time traffic in
the proposed system remains around 5- to 7 msec”

Figure 5.1: Average delay of Real-Time traffic vs. Number of TCP flows [1].

See Figure 5.1 for a graphical presentation of this. These results, where far
from the experience during the early setup of my own simulation scenarios of
SWAN in ns-2. I suspected this statement concerning the delay to be false, or

 30

at least not telling us all that we need to know, in order to figure out if
streaming of Real-Time applications could be supported. Therefore, it was
important to recreate these simulations scenarios. Then measurement of the
end-to-end delay experienced at the applications layer for both a single
shared channel and a multi hop situation has to be made, so it is possible to
figure out at what level the SWAN mechanism is able to support Real-Time
traffic.

In [1] and [3] the term “goodput” is also widely used. I have done some
research on this topic, and found a great variety in the definition of “goodput”.
After e-mailing the people behind SWAN, it turns out that their definition of
“goodput” is similar to throughput but only includes the packets that are useful
to the applications. Throughout this paper, the term “throughput” which is the
packets received at the application layer is used.

In [3] it is claimed that the action taken to improve the delay comes at a cost
of only 15-20 percent reduction of TCP throughput compared to the original
system. In addition to the end-to-end delay, it is important that measurements
of the throughput also have to be taken into consideration when looking at the
performance of the SWAN mechanism.

Figure 5.2: Avg. “goodput” of TCP best-effort traffic vs. No of TCP flows [1].

Due to the nature of wireless Ad-Hoc networks, mobility has an impact of the
performance of such a network. Measurement of delay and throughput versus
mobility is also carried out in [1] and [3]. It is clear that special treatment, to
oppose the reduced performance due to this mobility have to be made.

 31

However, it is fundamental that a network is able to satisfy the QoS
requirements in a static approach, before mobility is taken into consideration.
Therefore my simulations are concentrated on scenarios where no mobility
occurs.

5.2 Classification and scheduling
In SWAN only two packet classification schemes are proposed; Real-Time
and Best-Effort. The classifier differentiate the packets and the BE packets go
through a shaping mechanism, while RT packets bypass the shaper. Then the
RT packets and the shaped BE packets are joined in a FIFO queue towards
the MAC layer. SWAN treats all the UDP traffic equally. This may not be
sufficient when trying to satisfy the many requirements and different behaviors
of all the applications that exist (see chapter 4). First, the bandwidth and the
delay requirements may be different for traffic belonging to different classes.
Second, some flows may be more important than others. A more advanced
classification scheme may be required. I chapter 4, the behavior for the most
common applications was described. Based on the many applications
different requirements, more classes should be added in order to differentiate
data traffic to satisfy these applications service requirements. This scheme
will give us a more complete QoS solution for a wireless Ad Hoc network. The
classification scheme used in DiffServ (described in chapter 3.3.2) could be
used as model for this improvement.

5.3 Compression and rate regulation
When a network using SWAN gets congested, the ECN mechanism in the
congested nodes starts marking the packets with Congestion Experienced.
Then all the affected sessions has to be re-probed. The re-probing is most
likely to cause unacceptable delay to a Real-Time session, and the playback
buffer at the receiver will run out of packets. Then the sessions are interrupted
and possibly teardown. This may have devastating effects on a Real-Time
session, and could make the communication completely useless. Another
drawback of re-probing is that the probe packets are competing with ordinary
data packets for useful bandwidth. The probe packets are likely to passing
through the congested routers and possibly making the situation even worse.

Here is a proposal of different scheme. Instead of just marking the packets of
some flows with CE when congestion is experienced, packets belonging to all
the flows passing through a router which experience Heavily Load, but not as
much as experienced during excessive congestion, could be marked HL.
Upon receiving the regulate messages, all or the least important of the
transmitting nodes could either reduce the transmitting rate using
compression, or in some way lowering the quality of the session. In this
approach, all the affected transmitting nodes contribute to congestion
avoidance, and any sessions may not be terminated at all. When the data
traffic gets excessive, and some routers really experience congestion, the
packets are marked CE as before. The HL marking serves for congestion
avoidance, while CE marking is for congestion recovery. Due to the fact that
all nodes is notified when the wireless channel is about to be exhausted, the
false admission problem could easily be solved. All nodes know when their
RT session was started, and if the time of their session is shorter than a fixed

 32

threshold time, their session is falsely admitted, and must be terminated
immediately.

When the receiving nodes detects HL or CE in the incoming packets, they
send a regulate message to the transmitter. These regulate messages
reverse paths will most likely follow the same path as through the nodes
which experience overload and/or congestion. For that reason it is urgent that
these regulate messages are given a high priority so that proper action can be
taken as fast as possible in order to decrease the affected session’s end-to
end delay.

5.4 Admission Controller
Another topic is the necessity of an admission controller. A well known
solution to keep the QoS at a satisfying level in the Internet is over-
provisioning the capacity of the routers and the links. It is believed that within
2005, the IEEE 802.11n standard will be able to deliver a theoretical
throughput of 308 Mbps [9]. This will be a major improvement to the wireless
world. If this bandwidth enhancement almost always will give us enough
resources to initiate a new Real-Time session in typical Ad Hoc network,
admission control might be superfluous upon starting a new session. The
source node does not need to send a probing request towards the destination
node to start a new session. This will again eliminate most of the start up
delay, which is one of the drawbacks in the recent SWAN implementation.
This is experienced in the simulation presented in chapter 7.2.2.2. Even
though congestion occurs less frequently in an over-provisioned network,
congestion may still occur. Therefore, the admission controller is still needed
when sessions have to re-probe in times of congestion. If a partly removal of
the admission controller in a QoS model for MANET is feasible, and the
scheduling mechanism and congestion management is improved, the model
would also be simpler and more suitable for a wireless environment.

5.5 Regulation algorithm
Neither the Source-Based nor the Network-Based regulation algorithm
proposed in [4], are optimal solutions to regulate network traffic due to
congestion. Both proposals have certain disadvantages, and there are several
trade-offs in both of them.

In the Source-Based proposal, upon receiving a regulate message, the source
node does not immediately initiate reestablishment. Instead, it waits a random
time before it initiates the reestablishment procedure to avoid simultaneously
re-probing from all the affected sources. This may not be fair for the sources
that wait the shortest period of time before re-probing, because these nodes
are more likely to still find the path to heavily loaded, and therefore has to
drop their sessions. Also, because the source node waits a random time
before initiates their reestablishments, immediate countermoves against the
congestion are not necessarily taken and the situation could be even worse.
Another disadvantage is that this approach does not differentiate the different
RT flows, and it may also force too many flows to be regulated.

 33

In the Network-Based proposal, there is no differentiating of flows based on
their importance, rather it randomly select a set of Real-Time sessions that
has to reestablish their session. In this approach, important flows may have to
drop their sessions in advantage of less important flows. Another
disadvantage of this scheme is to determine if a flow is new or old in order to
take correct action upon false admission, some intelligence at the
intermediate nodes are required.

It is clear that the regulation of network traffic to dissolve congestion has to be
quick. Another important fact is that the workload on the intermediate nodes
should be kept low. In simulations presented in [swan] for the Network-Based
and the Source-Based approach respectively, it took approximately 4 and 6
seconds for the Real-Time rate to reach below the Admission control rate.
The Network-Based approach performed better than the Source-Based
approach, at the cost of more workload and complexity in the intermediate
nodes. When we know that some applications are delay sensitive in order of
magnitude on hundreds of milliseconds, it may be to slow to dissolve the
congestion in seconds. Before the regulate message have reached the source
node, and proper action have been taken to regulate the transmission rate,
the congestion may already have caused disruption to many of the ongoing
RT flows.

Among my proposals, one immediate action in order to dissolve the
congestion faster, could be for the congested node to broadcast one single
CE/HL message to all it adjacent nodes. Then all the nodes, either directly
disturbing or feeding the congested nodes with packets, could for a short
period of time immediately back off all their transmitting traffic, or lowering the
data rate for low priority traffic, such as BE and other non-delay-sensitive
packets by either dropping those packets, or delay them in a buffer. This
period of time should be long enough for the RT sources to adjust their data
rate so the total RT rate again is kept below the Admission Control rate,
without the necessity of terminating any RT sessions.

Also, the regulation of RT traffic could have two separate regulate messages.
One regulate message for the lowest priority of RT traffic, and another
regulate message to inform all the sources that the network is Heavily Loaded
or Congestion Experienced. The destination nodes could select their set of
“victim” flows among the least important flows, to reestablish their session
based on their priority marks which could be located in the TOS field in the IP
header.

Finally, since SWAN already trusts the source nodes, they could keep some
state information about their newly admitted flows versus on-going flows in
order to distinguish the flows that have been falsely admitted. Hence the
complexity seen in the Network-Based regulation algorithm is moved from the
network interior to the transmitting “edge” nodes.

In this proposal, faster and more thorough actions are taken to counter the
upcoming or already on-going congestion, and the interior of the network is

 34

spared from complex work, because most of the intelligence is kept in the end
nodes.

5.6 Repeatability of the SWAN simulations
In order to test the performance of the SWAN network model, and figure out
how the result claimed in [3] was received, a recreation of some of their
simulations in ns-2 had to be made. First of all, TCL scripts of some simple
simulations are enclosed in the SWAN source code. These scripts are just
some simple scripts to describe how to set up the SWAN protocol in ns-2, and
not the TCL scripts used in the simulations described in [3]. Also, the
documentation of the simulations including all is parameters are only
described by its major details in the SWAN articles, and a lot of important
details are missing. Therefore, a lot of time was spent on figuring out how to
put up the TCL scripts to recreate similar simulations as those described in
[3].

5.7 Bugs in SWAN
In the implementation of the SWAN network model for ns-2, several bugs
have been found and reported. The following bugs have been found by
people working at Thales Communication U.K. Wrong variable have been set
for the shaper queue size, so the default value is used instead. Second,
SWAN uses the data_packet function to use if each packet is a valid
DATA_PACKET. The variable PT_UDP is not defined for this function, so if you
are going to use non CBR traffic over UDP it would not work unless you
define it for this function. Third, the local channel usage, computed by the
SWAN implementation, is not computed correctly. Code has to be added in
the 802.11 MAC files of the ns-2 implementation. In addition to these errors,
the modified packet.h file following the SWAN implementation code for ns-2
contained a lot of bugs that had to be fixed in order to re-compile the ns-2
source with the SWAN extension.

5.8 Summary
In chapter 5, problems with the SWAN network model proposal was
discussed. In section 5.1 Questions whether the delay experienced by the
Real-Time applications is low enough to properly support this type of traffic.
Also, a question was raised whether the statements about the delay in the
SWAN articles really are what they claim to be. This was suggested to be
investigated in deeper details through further simulations. Section 5.2 claimed
that one of the major drawbacks of the recent SWAN model have a poorly
equipped classification scheme. More classes could, and must be added, in
order to fully support a more complete QoS solution for Ad Hoc networks.
Section 5.3 demands a more advanced notifications scheme than the existent
one. In order to support both congestion avoidance and congestion recovery,
it could be necessary with more than one notification message, without a
heavy increase of the complexity of the network interior. Section 5.4
discussed the need for an admission controller, and that it could be
superfluous with the increased capacity of the wireless bandwidth. Section 5.5
highlighted the drawback of the proposed regulation algorithms, and

 35

suggested a regulation algorithm with more immediate action upon
congestion, and a better solution concerning the differentiation of sessions to
be re-established. Also, this section included a proposal to move the
complexity of deciding whether a session is falsely admitted or not out to the
“edge” routers. Sections 5.6 described the difficulties on repeating the
simulations presented in the SWAN articles. In the final section of chapter 5,
some bugs discovered during the work with the SWAN implementation was
presented.

 36

 37

6 Related work
This chapter presents two additional and relevant protocols which also focus
on the QoS in mobile ad hoc networks.

6.1 INSIGNIA
The QoS protocol INSIGNIA is a proposal for an in-band signaling system that
supports restoration and adaptive reservation service, in the continuously
changing conditions of mobile ad hoc networks. The protocol supports
“operational transparency” between several mobile ad hoc networking
protocols, such as AODV, DSR and TORA.

INSIGNIA encapsulates control signals in the IP option of every IP data
packet (INSIGNIA option), and can be characterized as an in-band RSVP
signaling protocol. The flow state information, informing the source nodes for
the status of their flows is maintained on an end-to-end basis. Whenever the
INSIGNIA option is used in an IP packet, the INSIGNIA module is involved. If
the resource requirement can be satisfied, it allocates bandwidth to the flow in
coordination with the Admission Control module. If the requested resource
can’t be satisfied, the packet is left with only best effort service.

The two major drawback of INSIGNIA is that it, as the SWAN module, only
enables the existence of two service classes (RT and BE), and that the flow
state information is kept in the mobile host, which could lead to a scalability
problem as the number of flow increases [47][49].

6.2 DS-SWAN
Another protocol proposed to ensure QoS in wireless Ad Hoc network is the
DS-SWAN protocol. The DS-SWAN protocol is based on the co-operation
between the SWAN network model within the ad hoc network, and the
Differentiated Services (DiffServ) in the fixed infrastructure network. The DS-
SWAN protocol supports end-to-end QoS in ad hoc network connected to
fixed DiffServ domains.

In the DiffServ domain the EF service class is used for Real-Time traffic. At
the ingress edge router, the traffic are policed by a token bucket and traffic
that exceeds the profile is dropped.

In DS-SWAN the nodes in the ad hoc networks are notified when the network
congestion are about to be too excessive to support properly functioning of
Real-Time applications. The affected nodes then react by adjusting the
transmission rate for their Best-Effort traffic. If the end-to-end delay for a Real-
Time session becomes greater than 140 milliseconds, the destination node
sends a QoS-LOST warning message to the ingress edge router. The
parameter values in the AIMD rate control algorithm is then modified by the
nodes in the ad hoc networks receiving this QoS-LOST message [48].

 38

 39

7 Simulations
The general idea is to recreate some of the scenarios in the SWAN articles,
and the results stated in those articles, and then investigate that those test
and the implementation of SWAN, seems to be what it really claims to be.
Additional performance tests will also be carried out in order to make a
thoroughly investigation of the SWAN mechanism. Simulations will be
executed in a single-shared-cannel medium and in a multi-hop scenario. An
ideal approach would have been to run the test on real computers. When
considering the amount of resources that will require, a network simulator is
more suitable for this purpose. Therefore, it is important that the model on
which the simulator is based matches as closely as possible to the reality, in
order for the result of the simulations to be meaningful [18].

An implementation of SWAN for ns-2 has been made by the originators of
SWAN, so ns-2 is the network simulator chosen throughout this work.

7.1 Ns-2 overview

7.1.1 Introduction to ns-2
The network simulator (ns-2) is a discrete network simulator targeted at
network researching. Ns-2 originated in 1989 as a variant of the REAL
network simulator. As a part of the Virtual InterNetwork Testbed (VINT)
project at the University of California in Berkley. The project was supported by
DARPA in 1995.

Ns-2 is an object-oriented simulator with substantial support available for
simulation of TCP, routing, and multicast protocols, initially intended for wired
networks, but the Monarch Group at CMU have extended ns-2 to support
wireless networks.

The core of the simulator, including the network protocols is implemented in
C++, while object oriented TCL is used as an interface to describe, and set up
the simulations. The implementation of ns-2 closely follows the OSI model.
The essential of the wireless model consist the MobileNode at the core, with
additional support for simulations of multi-hop ad-hoc network etc. A mobile
node is derived from the basic Node object, with additional functionalities of a
mobile wireless node, like the ability to receive and transmit signals to and
from a wireless channel, and the ability to move within a given topology. In ns-
2, an agent is used as a representation of an endpoint where network traffic
are constructed, processed and terminated.

Ns-2 is able to trace the network traffic through the different protocols and
produce output trace files, which can be used to calculation of the QoS
parameters. Cmu-trace objects are used to support trace in wireless
simulations. In the Network Animator (NAM) output from the trace files can be
used to view the simulation, see Figure 7.1. Output from the trace files can
also be plotted as graphs in graphical applications such as Xgraph or
GnuPlot.

 40

Figure 7.1: Screenshot from NAM

Due to its open source nature, ns-2 has certain limitations and disadvantages.
Information and documentation are often limited and not state of the art in
proportion to the current release of the simulator. Compatibility and
consistency of code across releases may also cause problems. The last
drawback of ns-2 is that it is poorly equipped with tools to prepare the
simulation scenarios and to analyze the results [18] [19].

7.1.2 Credibility on simulations in ns-2
“An opinion is spreading that one cannot rely on the majority of the published
results on performance evaluation studies of telecommunication networks
based on stochastic simulation, since they lack credibility. Indeed, the spread
of this phenomenon is so wide that one can speak about a deep crisis of
credibility.” [20].

 When simulating network performance in a network simulator, it is important
to consider the credibility of the simulator chosen for the modelling, and also
in credibility of the results achieved in this simulator. In order to have a valid
simulator model, it is of great importance to have appropriate assumptions
about the network mechanisms and its limitations. The next step is to ensure
that the simulation and analysis of the experiment is valid.

 41

As mention previous in this paper, the simulator chosen for modelling this
experiment is ns-2. When considering the size and complexity of ns-2, a
complete validation of ns-2 is out of the scope of this thesis. Anyway, it is
important to be aware of the weaknesses and limitations of the tools used in
any experiment, and this experiment is no exception. In [18] several network
simulators suited for MANET is tested. In [18] ns-2 is among the simulators in
which the results show that there exists significant divergence between the
simulators when equal models are executed on the simulators. Naturally, I
have not found any complete validation on ns-2 ability to match the reality.
Even though the match to the reality in fact could be close, a certain range of
error in the simulation results is highly likely to occur. Anyway, this thesis has
to rely on the correctness in the implementation of the ns-2, and then carefully
considerations of the abbreviations that may exist upon making conclusions of
the simulation results must be done.

7.1.3 The implementation of SWAN in ns-2
The SWAN module for ns-2 requires the ns-2 simulator version 2.1b9a. To
install the SWAN module for ns-2 you need to download the SWAN module
from http://www.comet.columbia.edu/swan/simulations.html, modify the
makefile and compile the simulator with a C++ compiler. The additional
SWAN files includes: run, swan.tcl, mobility.tcl, traffic.tcl,
swan_ac.cc, swan_ac.h, swan_rc.cc and swan_rc.h. Modifications to
some of the original ns-2 source code have also been made by SWAN. Those
files are originally included in the downloaded version of ns-2 and have to be
replaced by the modified one from SWAN. Those files are: ip.h, packet.h,
ll.cc, ll.h, ns-default.tcl, ns-mobilenode.tcl, ns-packet.tcl
and cmu-trace.cc. The SWAN extension for ns-2 includes an admission
controller, a rate controller (AIMD), a mechanism for packet delay
measurement, local utilization monitoring, a probe protocol and the ECN
mechanism.

7.1.4 My work with ns-2
When I started my work on this paper I was completely new to ns-2, C++ and
TCL. I started with the SWAN and ns-2 webpage, the SWAN articles and
Marc Greis’ Tutorial. I downloaded the 2.1b9a all-in-one package and installed
it on my laptop computer running RedHat Linux. The installation was not
without problems, and I had to fix a lot of bugs before I had a valid compilation
of the simulator. When I finally had ns-2 up and running I had to learn how to
write and run simulation scripts. I started with the small and simple scripts in
Marc Greis’ Tutorial. From there I went to more advanced simulation scripts
and networks. Then I went into exploring the wireless part of ns-2. I looked at
the descriptions of the simulation carried out in [3] and I had a hard time
figuring out how their simulations were set up. Gradually, I approached similar
simulations as the simulations in [3]. In order to have a reasonable output of
the simulations, Agent/LossMonitor where used as traffic sinks since ns-2 use
them to store the amount of bytes received. I wanted to use this information to
calculate the bandwidth and delay of the simulations, but I could not get any
output from TCP traffic with the LossMonitor. I later found out from the ns-2

 42

mailing list that tracing of TCP traffic with the LossMonitor in ns-2 was not
supported for a wireless simulation, so then I was stuck for a little while.
Fortunately, I found out that I did have all the information I really needed in the
trace files. Then I started making small scripts in Python with the trace files as
input. Then I used the scripts to calculate the throughput and delay from my
simulations. Finally, I had enough knowledge of ns-2 to add the SWAN
module (as described in the previous chapter), and set up the scenarios I
want to run, with and without the SWAN module. To fully understand the
implementation of SWAN for ns-2, I also had to take a deeper look into the
C++ files of the SWAN module and ns-2. The complete implementation of ns-
2 including all the network modules is pretty large and complex, so I only had
a chance to get a glance at how ns-2 is built up. The all-in-one package
actually requires about 250 Mb of disk space. Since this installation and
learning period, I have spent my time on setting up and running the different
scenarios I want to simulate. During my simulations and when analyzing some
of the results, I have also found many new scenarios I wanted to run and find
out more about.

7.2 Preliminary simulations

7.2.1 Maximum throughput tests
Due to the generally hostile transmission channel in wireless networks, the
achieved throughput is usually far from the theoretical throughput dedicated to
the wireless interfaces. The introduction of an additional protocol such as the
SWAN module in an Ad Hoc network will also ad an extra burden to the
network in terms of extra administrative and control information exchange.
Before starting on more advanced simulations like the one in [1] and [3], it
was desirable to see how SWAN performed in simple scenarios. Therefore I
found it useful to first figure out what is the maximum throughput of TCP traffic
in a wireless 802.11b simulation using ns-2 (version 2.1b9a).

7.2.1.1 Testing maximum throughput with TCP traffic
These simulations were run both with and without the SWAN mechanism, in a
single shared channel, under ideal and undisturbed conditions. No other
nodes or traffic were present in the simulation area. To simulate this rather
simple test, the simulation area included only 2 nodes and one single greedy
FTP connection between two nodes. The bandwidth of the wireless media
was set to 11 Mbps and SWAN’s Threshold rate was set to 4000 Kbps when
the SWAN modules where turned on. The packet size was 512 bytes and the
RTS/CTS mechanism where turned on. The simulations lasted for a total
period of 100 seconds. As we can see from the graph Figure 7.2, the
simulation with the SWAN rate/admission controller turned off, the achieved
throughput lay almost constantly around 3 Mbps from the beginning to the end
of the simulation period.

 43

Figure 7.2: Maximum throughput of TCP traffic with SWAN on/off vs. time

On the other hand, a corresponding simulation with the SWAN mechanism
turned on, the result shows that the achieved TCP throughput started at
0Mbps and then increased exponentially up to 1.5 Mbps for about 5 seconds.
Then the AIMD protocol in SWAN started to use the Slow Start algorithm to
increase the congestion window from a “cold start”. Then AIMD’s Slow Start
Threshold (ssthresh) was reached, and AIMD used the “old” additive increase
algorithm. For the next 25 seconds the TCP throughput grew linearly up 3
Mbps. The AIMD rate controller in the SWAN module uses more than 30
seconds to reach a stable throughput around 3 Mbps. After the first 30
seconds, the rate controller reached its “maximum” throughput. From now on,
the extra administrative burden of SWAN control traffic was barely noticeable,
and the achieved throughput stabilized approximately at the same throughput
as achieved without the SWAN mechanism. For a single application running
over TCP, it is not of great importance if a link at anytime is fully utilized. On
the other side, there is no need to waste valuable bandwidth which indeed is a
scarce resource in a wireless medium. For better utilizing of the link, the AIMD
protocol in the SWAN module should be implemented and or adjusted so it
faster adapts to the actually available bandwidth. Apparently it looks like a
good idea to increase the ssthresh. Then the Slow Start algorithm will be used
for a longer period of time, and the throughput will grow exponentially up to
this new ssthresh. Thus, the utilization of the link will be more efficiently.

 44

7.2.1.2 Testing maximum throughput with UDP traffic
UDP traffic has different network characteristics than TCP traffic; therefore I
had an analogous simulation with Real-Time CBR traffic where also
accomplished. This simulation used 2 nodes and 10 CBR flows (5 in each
direction); because some trouble with fast generation of packet occurred, and
because the packet size over UDP is usually limited to 1500 bytes [45].
Instead of having only one flow and packet size of 10000 bytes, each flow had
a packet size on 1000 byte and a sending interval on 0.01 seconds thereby
making the simulation more realistic. The total CBR traffic generated in this
simulation was then 8 Mbps.

The total simulation time of this simulation was the same as with TCP traffic;
100 seconds, and the RTS/CTS mechanism was turned on. Initially, the
Threshold rate was set to 4000 Kbps and the Admission Control rate to 2000
Kbps in this simulation. The consequences of keeping this settings, was that
the RT traffic was marked as BE traffic when it exceeded the Admission
Control Rate, and then obviously treated as BE traffic by the Classifier and the
Shaper. The outcome of this looked pretty much like the graph in the previous
chapter, where the throughput first grows exponentially and then grows
linearly up to a more stable throughput. In order to be capable of finding out
how much RT traffic that could be achieved in this simulation, without having
RT traffic converted to BE traffic, I had to put both the Threshold rate and the
Admission Control rate high above the generated traffic of 8 Mbps. The
bandwidth of the wireless media was set to 11 Mbps.

With the raised Threshold rate and Admission Control rate, the total
throughput of this simulation was slightly above the previous simulation with
TCP traffic. This could be due to the nature of TCP which introduces more
overhead, and then produces a less effective throughput. Another reason why
the achieved throughput in these simulations was higher than the previous
with TCP traffic could be the packet size, which was nearly doubled.
Increasing the packet size usually gives a higher throughput. The reason for
this is that for each packet sent, the ratio of payload/header is higher with
higher packet sizes.

Without the SWAN mechanism, an average UDP throughput about 3.6 Mbps
was received in this simulation. Indeed, very small variations in the throughput
were experienced, except for the very first seconds of the simulation. With the
SWAN mechanism turned on, the throughput was slightly lower and the
received average UDP throughput was about 3.4 Mbps (see Figure 7.3).
Upon initiating a RT session, the probe packet has to be sent from the source
to the destination. The session is not admitted to start before the source
receives the probe-reply from the destination, thus introducing a start up
delay, and naturally the network will not be fully utilized before all flows are
admitted. It took almost 10 seconds before the simulation with the SWAN
mechanism turned on, reached a maximum throughput at about 3.6 Mbps.

 45

Figure 7.3: Maximum throughput of CBR traffic with SWAN on/off vs. time

7.2.2 Performance test of additional traffic
After running several simulations, it was discovered that the delay in some of
the situations was extraordinary high. Due to this strange behavior, and after
several trials it was reason to believe that the delay in some situations was
dependent of whether the source or destination nodes where receiving or
sending additional traffic. Therefore, a new simulation similar to the simulation
above, were set up. This simulation contained two nodes, one source and one
receiver and one single RT flow, once with small packet (voice), and once
with larger packet (video). Additionally, to stress either the source or the
destination node, a third node (node 2) which both aggregate and receive BE
traffic from one of the two other nodes, was introduced. Respectively, in the
first simulation sending additional FTP traffic to the source node of the RT
traffic (node 0) and in the second simulation to the destination node of the RT
traffic (node 1).

Also, it was desirable to see how the SWAN mechanism reacted in these
situations. So, the simulation was executed both with and without the present
of the SWAN module. As in the previous simulation, the bandwidth of the
wireless media was set to 11 Mbps, the Threshold rate was set to 4000 Kbps,
and the Admission Control rate was set to 2000 Kbps, when the SWAN
modules where turned on. The packet size was 512 bytes. The simulations
lasted for a total period of 100 seconds. Every second, the average delay was
measured for the packets of the RT session, and the throughput was
measured for the FTP connections.

 46

Figure 7.4: Simulation scenario with additional traffic to node 0 or node 1

7.2.2.1 Additional Traffic Exchange with RT Source
This simulation deployed voice traffic with a packet size of 80 byte, from node
0 to node 1, throughout the complete simulation period of 100 seconds. After
the first 20 seconds of the simulation, node 2 starts aggregating FTP traffic to
node 0. After 40 seconds node 0 starts to send FTP traffic back to node 2.
From 40 seconds of the simulation we have an overlap of 20 seconds where
FTP traffic is going in both directions between node 0 and node 2. After 60
seconds node 2 stops its aggregation of FTP traffic to node 0. Finally, after 80
seconds node 0 also terminate its FTP session to node 2. For the last 20
second of the simulation period, the only traffic present is the RT flow from
node 0 to node 1.

From the graph in Figure 7.4, showing the delay of the voice flow from node 0
to node 1, scarcely no delay was imposed in the first 20 seconds of the
simulation, where the only traffic present was the voice flow. After 20
seconds, where node 0 receives FTP traffic from node 2, the delay when
using SWAN was still scarcely anything. For the same period the simulation
without the SWAN mechanism showed a significant increase in the delay
imposed on the RT flow. The delay rises from barely 0 up to about 80

 47

milliseconds where the delay stabilized for the next 20 seconds until the next
event occurd.

Figure 7.5: Delay of 32 Kbps Audio stream

At time 40, where node 0 started to send FTP traffic to node 2 in addition to
the traffic it received from that same node, there was a considerable increase
in the delay, both with and without the SWAN module. With the SWAN
mechanism turned on, the delay raise almost instantly from nearly 0 to about
160 milliseconds, and then sharply declined for the next five seconds down to
120-130 milliseconds where it stayed for about 10 seconds. Then the delay
suddenly dropped again, and until the next event occurred, the delay stayed
at about 70-90 milliseconds. In the same interval (40-60 seconds) the
simulations without the SWAN module showed a delay which was more than
doubled compared to the last interval where only node 0 received FTP traffic.
Indeed, the delay rises suddenly from about 80 milliseconds to between 160
and 170 milliseconds. Apart from some drops the delay stayed mostly around
this level until the next event occurred.

After 60 seconds node 2 stopped generating FTP traffic to node 0. At that
point, the graph in Figure 7.5 show us significantly different behavior of the
delay experienced with and without the SWAN mechanism. The plot from the
simulation with SWAN shows us a very strange behavior. The delay suddenly
jumped from about 90 milliseconds, up to about 170 milliseconds, and then

 48

the delay immediately decreased, approximately linearly down to 110
milliseconds, where all FTP traffic is stopped. In this same interval (60-80
seconds), the delay for the simulation without the SWAN mechanism was
immediately reduced to less than half its value, when node 2 stopped sending
FTP traffic to node 0. Indeed, for this interval, where the only FTP flow
present, was the FTP flow from node 0 to node 2, the delay stayed at the
same level as when the only FTP traffic present was the one in the opposite
direction from node 2 to node 0 (interval 20 – 40 seconds).

All FTP traffic terminated after 80 seconds, and for the last 20 seconds where
the RT flow from node 0 to node 1 was the only traffic present, the delay went
back to almost 0 milliseconds throughout the simulation.

In Figure 7.6, the throughput of the FTP traffic from the same simulation can
be viewed. The low delay experienced with SWAN in the second interval (20-
40 seconds), could be explained by the behavior of the FTP throughput. As
mention previous in this paper, SWAN is using the AIMD rate controller to
regulate Best-Effort traffic. When node 2 starts to send FTP traffic after 20
seconds, the rate controller will only allow this flow to utilize the remaining
bandwidth not used by the RT flow. Thus it was not making any disturbance
on the RT session.

The reason why the delay was raised so heavily in the next interval (40-60
seconds), is probably because the node 0 was starting to send FTP traffic to
node 2, and node 0 was not aware of the fact that node 2 is utilizing all the
“free” bandwidth for best-effort traffic. All nodes get its measure from the MAC
delay, and at the moment of initiating this FTP session, node 0 has no
measure of the MAC delay. Therefore it probably misconceives the situation
and thinks it can utilize the “remaining” bandwidth. Node 0 starts to send a
burst of FTP packets, before it gets measurement of the excessive delay.
When the delay gets excessive, node 0 adjust its transmission rate quickly.
This was probably the reason why the delay jumps so high and then
immediately backed off to a much lower level. The reason why the delay
again reach a high peak in the forth interval (60-80 seconds) I have no good
explanation for.

 49

Figure 7.6: Throughput of the greedy FTP traffic

A solution to solve the problem of a node initiates a session with best-effort
traffic without a MAC delay measurement, could be to in some way to retrieve
this information from its most adjacent neighbor nodes. How this could be
implemented I leave for future development of the SWAN mechanism.

Without the SWAN mechanism, there is no organized mechanism trying to
prior, or in any way put any limitation on the traffic, except from the upper
physical bandwidth limitation. As we can see from Figure 7.5, as long as there
is at least one greedy FTP flow present, the TCP throughput was close to the
physical limit of 3 Mbps measured in previous simulations. Here all the
packets are equally competing for the bandwidth and as we can se from
Figure 7.4 and 7.5, the delay was approximately doubled for the RT session.
As reasonable to expect, this happens when the number of FTP flows was
increased from 1 to 2 sessions, and at the same time no TCP throughput was
increased.

Finally, some statistics in numbers: As expected the delay upon initiating a
Real-Time session using SWAN was higher than without SWAN; the first RT
packet was delayed 24.47 milliseconds, compared to 5.61 milliseconds
without SWAN. The max delay of one single RT packet was 193.73
milliseconds with SWAN, and 181.55 milliseconds without SWAN. Also as
expected, the average delay using SWAN; 48.92 milliseconds, was lower than

 50

without SWAN; 62.46 milliseconds. Also, the total TCP throughput was lower
with SWAN; 11 725 Kb, than it was without SWAN; 16 351 Kb.

7.2.2.2 Additional Traffic Exchange with RT destination
Similar to the simulation above, another simulation was accomplished; instead
of sending FTP traffic between the RT source (node 0), and the external one
(node 2), a “2-way” connection between the external node, and the RT
destination node (node 3) was set up. All network parameters where as in the
previous simulations; the only difference was the swapping of the source and
destinations nodes of the FTP traffic. So, here the RT connection from node 0
to node 1 also went throughout the simulation period. After 20 seconds, node
2 started to aggregate FTP traffic towards the RT destination node (node 1)
and after another 20 seconds node 1 started aggregating FTP traffic back to
node 2. For the next 20 seconds there was a “2-way” FTP connection
between node 1 and node 2, until the FTP traffic from node 2 cease, after 60
seconds of the simulation time. After 80 seconds, the other FTP connection
also terminates, and finally the simulation ends after 100 seconds. This
simulation was also run separate for both voice and video.

Even though it still exist a start-up delay using the SWAN mechanism, in this
simulation the average delay started at less than 10 milliseconds, with a fast
decrease to only a few milliseconds. After 20 seconds, when node 2 started
its FTP session to node 1, the average RT delay was increased by only a
small fraction, and the delay was still down to only a few milliseconds. When
the second FTP session was initiated by node 1, the delay seems to be
doubled, but still the delay was very low. In this interval, it oscillated around 5
milliseconds (40-60 seconds). When node 2 terminated its FTP session after
60 seconds, the delay suddenly made a jump to about 13 milliseconds, and
then a quick decrease down to only 2-3 milliseconds, where it stayed until
node 1 also terminated its FTP session, and the delay decreased further to
only a couple of milliseconds for the rest of the simulation period.

Without the SWAN mechanism, the simulation results shows a flat line, at only
1-2 milliseconds for the RT delay in the first 40 seconds. After 40 seconds, the
second FTP session was initiated. When the first FTP session was terminated
after 60 seconds it does not seems to affect the delay at all. In fact, the delay
oscillated around 6 milliseconds, with some high peaks until the second FTP
session also terminated after 80 seconds. For the rest of the simulation
period, the only traffic present is the RT flow, and then the RT delay went
back to only 1-2 milliseconds.

In Figure 7.7, the FTP throughput for this simulation can be viewed. Without
the SWAN mechanism, the FTP session from node 2 to node 1 was not
admitted to transmit at all. This seems very strange, and at first glance this
could be due to a one-time error in this simulation, but the same thing also
occurred during simulations of video. So, this clearly explains why the delay at
the same period stayed at that low level. In the same period of the simulation
with the SWAN mechanism, everything seems to work fine, and the FTP
throughput was increased using the AIMD mechanism. After 40 seconds, the
second FTP session started to generate traffic from node 1 to node 2. Then

 51

the FTP throughput was fully utilized, and stayed just below 3Mbps, until this
session ceased after 80 seconds. The behavior of the FTP throughput in the
same period in the simulation using SWAN shows that the FTP traffic is
controlled by the AIMD controller. The throughput drops certain times when
the traffic gets excessive, and then it was raised linearly, without much
disturbance to the RT flow.

Figure 7.7: Delay of 32 Kbps Audio stream with packet size of 80 byte

To enumerate the statistics of this simulation, the delay for the first packet
was the same as in the previous simulation, both with and without SWAN.
This is exactly as anticipated, because in both simulations, only RT traffic was
present in the first 20 seconds interval. Surprisingly, the average delay was
down to only 3.03 milliseconds, which is very satisfying for the demands of RT
applications. This was achieved both with and without the use of the SWAN
mechanism. Also, the maximum delay of one single packet was much lower in
these simulations. With SWAN, the maximum delay was 77.62 milliseconds
and without SWAN the maximum delay was slightly lower; 62.58 milliseconds.
On the other hand, the achieved FTP throughput was decreased; 11 006 Kb
without SWAN, and as expected, slightly less with the usage of the SWAN
mechanism; 10 374 Kb.

 52

Figure 7.8: Throughput of the FTP traffic

7.2.3 Variable packet size test
As part of the preliminary tests, before running larger simulations scenarios
like those posted in [3], it was desirable to find out how the performance
varied with the size of the data packet. Applications like voice and video
usually have different packet size. Also, in a Real-Time session the packet
size can vary with different compressions, hence it is interesting to find out
how the different packet size influence the performance, and in which
situations different packet size triggers excessive delay. In an environment
with high density of nodes, and an increasing amount of competing data
flows, I wanted to show that this different type of data traffic have different
behaviour. It was also desirable to show that different packet also needs to be
treated separately in a QoS mechanism.

In this simulation, 40 nodes were present in the same BSA, so all the nodes
shared the same 11 Mbps radio channel. Also, the Admission Control rate
was set to 2000 Kbps and the Threshold rate was set to 4000 Kbps when the
SWAN modules where turned on. The simulations lasted for a period of 100
seconds.

In 6 separate simulations, each with different packet size, the tests was
executed in the same simulation environment. Results from three of the test
are shown and discussed below. At time 0, 5, 10 and 15 a pair CBR sessions

 53

was initiated. These CBR flows, one in each direction between a pair of
nodes, was sent at a rate of 50 packets every second. In addition to the CBR
traffic, one single greedy FTP session was also initiated every 10 seconds,
from the 10th to 90th second of the simulation period, see table 7.1 for more
details. Each FTP session has its own transmitter/receiver pair.

Time in
seconds

5 10 15 20 30 40 50 60 70 80 90

CBR 2 2 2
FTP 1 1 1 1 1 1 1 1 1

Table 7.1: Initiation time of CBR/FTP flows

The first simulation (see Figure 7.9) started with CBR traffic on 80 bytes. For
the first 20 seconds of the simulation period, the average RT delay was kept
very low both with and without the SWAN mechanism. Then if we look at the
simulation with the SWAN mechanism turned off; after 20 seconds, when all
the 6 CBR flows was transmitting, and the second FTP session was initiated,
the delay started to grow up to such a level where Real-Time traffic no longer
could be supported properly. Throughout this simulation, the delay continued
to grow and when the simulation ends it had reached almost 3000
milliseconds. With the SWAN mechanism turned on the delay was kept very
low throughout the simulation only with some exceptions ranging up to 100-
200 milliseconds. Promisingly, the delay was kept below the upper limit of
acceptable delay stated by the ITU in [16]. The SWAN mechanism was
performing very well in this simulation environment, with a packet size on 80
bytes.

Figure 7.9: Average delay of CBR on 80 bytes (Voice)

In the next two simulations, with the packet size of hence 150 and 200 bytes,
the simulation where carried out in the same simulation environment. In those
simulations, the results were not much different from the one with a packet

 54

size of 80 bytes, except for the last 10 seconds of those simulations. For this
last period, the delay starts to increase fast using the SWAN mechanism.

Figure 7.10: Average delay of CBR on 250 bytes

When the packet size was increased to 250 bytes the performance start to
change radically. Without SWAN, the result was almost the same as in all the
previous simulations. When running simulations with the SWAN mechanism,
the delay started to grow after 40 seconds when all the 6 CBR sessions were
running and the second FTP session was initiated. For the next 30 seconds
the delay lied about 300 milliseconds with some minor variations, but the
delay was below the limit of supporting RT traffic in this 30 seconds interval.
After 70 seconds of this simulation the delay again started to increase.
Actually it increases linearly from about 300 milliseconds to about 1400
milliseconds where the simulation ends at 100 seconds. For this last 30
seconds the network is poorly able to support any RT traffic at all. Another
simulation where the packet size was set to 300 bytes where also
accomplished. In that simulation, the delay when running with the SWAN
mechanism was very excessive and closing in on the high delay explored
without the SWAN mechanism.

The largest packet size used in these simulations was 512 bytes, which was
the same packet size used for simulating video traffic. In the simulation
without the SWAN mechanism, the measured delay was much like the delay
experienced during the previous simulations; the delay was low until it starts
to rise after about 20-30 seconds. Then the delay became so excessive, that
hardly any properly functioning of RT traffic could be supported.

 55

Figure 7.11: Average delay of CBR traffic on 512 bytes (video)

If we look at the graph in Figure 7.11, we can see that the experienced delay
in the simulations with the SWAN mechanism has changed radically. In this
simulation there are certain differences which separate the experienced
results from all the analogous and previous simulations. When running
simulations with the SWAN mechanism, the average RT delay was getting
excessive within the first 5 seconds. Then the average RT delay smoothed
out, and stabilized at an acceptable low level. After 20 seconds, the average
RT delay started growing at almost the same rate as it grew without the
SWAN mechanism. Even though the average RT delay lays 100-200
milliseconds lower with the SWAN mechanism, it gets too excessive after
about 25 seconds. From that time and throughout the rest of the simulation,
the RT delay is so high that functioning of any RT application could not be
properly supported.

7.3 Summary
In any simulations it is important to be aware of the weaknesses and
limitations of the experiment tools and the aberrations this may lead to in the
results. Before the simulations in [3] were recreated, some preliminary
simulations was accomplished. First, the throughput of the wireless link using
different type of traffic was tested. As expected, the throughput was far from
the theoretical capacity of 11 Mbps. In these simulations, the SWAN
mechanism was had slightly less throughput than without any QoS
mechanism.

 56

Section 7.2.2, introduced additional FTP traffic from an external node, when to
nodes where having a Real-Time session. In these simulation, devastating
impact on the experienced performance where shown when an external node
started to exchange BE traffic with the source node of the RT session.
However, this effect was not seen when the external node exchanged BE
traffic with the destination node of the RT session. In these simulations, there
were some differences in the behavior with or without the SWAN mechanism,
but none could be said to perform better than another. The simulations from
this section also showed us that there could be some problems when a best-
effort session is initiated without any measurement of the MAC delay. The
transmitting node misconceives the situation, but if the MAC delay could be
retrieved from the most adjacent neighbors, this situation could probably be
avoided.

Section 7.2.3, contained simulations with variations of the packet size of the
CBR traffic. From these simulations, one can clearly see that for an Ad Hoc
network, with the SWAN turned on, the performance is dependent on the
packet size, when different nodes are present and transmitting in the same
BSA. Even when treated equal by the SWAN mechanism, it is clear that
applications like Real-Time video or voice, have different needs and different
behavior preferences. Therefore, the SWAN mechanism should be able to
differentiate Real-Time in different service classes (like the DiffServ
mechanism) to better satisfying this needs, so it could deliver an overall
improved performance to all applications. Also, from this simulations, where
different packet size gives different performance, one can conclude that
SWAN also should be able to let applications on the edge nodes, adjust their
transmitting rate using compression, when congestion is experienced and the
delay get too excessive. Then, a heavily loaded network can be released from
its strain, and the delay might reach a level where the Quality of Service could
be satisfied for most or all of the applications. The results from these
simulations also show us that SWAN is performing very well in this scenario
where the CBR packet size was kept low. When the packet size was
increased, SWAN was not performing any better, than without any QoS
mechanism.

 57

8 Simulation scenarios for SWAN
This chapter presents the different simulations scenarios used both to
recreate the simulations scenarios from the SWAN articles and in further
testing of the SWAN mechanism. The simulations can be divided in two broad
categories; the simulations in a Single Shared Channel and the simulations in
a Multi Hop situation.

8.1 Single Shared Channel Simulation (Description)
In this simulation scenario all nodes were within transmission range of every
other node, thus al nodes shared the same 11 Mbps wireless transmission
channel. In this scenario no intermediate routing was performed in order to
reach other nodes, but the AODV routing protocol was still up and running.
Also, the RTS/CTS mechanism was switched on during these simulations.
The simulation area was a 150 m * 150 m flat square, and the transmission
range of each node was 250m. The Admission Control rate was set to 2000
Kbps and the Threshold rate was set to 4000 Kbps. Every simulations
consisted of UDP real-time traffic; 4 voice flows, 4 video flows versus a
different number of TCP background traffic. The background traffic was
modeled as a pair of 2, 4, 6, 8, 10 or 12 FTP flows. The simulation time was
set to 100 seconds.

This test was carried out with two different scenario setups. One simulation
setup where all the flows were evenly distributed, and where each flow had its
own receiver/transmitter pair. This simulations setup is later referred to as
Single Shared Channel 1. The other simulation setup, includes the same
amount of flows, but with fewer nodes so that more flows share the same
transmitter/receiver pair. This is referred to as Single Shared Channel 2.

These simulation setups closely match the setups of the simulations carried
out in the SWAN articles. The purpose of this simulations test was mostly to
recreate the simulations, and verify the validness of the results published in
these articles. The purpose of having two different simulations setups, was to
se how SWAN behave in situations where the ratio of flows/node where
moderate or high.

 58

8.1.1 Single Shared Channel scenario 1 (SSC1)
In this simulation scenario every flow had its own transmitter/receiver pair of
nodes, which made up the total number of 40 nodes, as illustrated in Figure
8.1. Even though the simulations posted in the SWAN articles have been
modeled with 50 nodes, there is no need for any “silent” nodes. That means,
only nodes either transmitting or receiving data traffic are present in the
simulation scenario.

Nodes with even number are transmitting and nodes on unequal numbers are
receiving data traffic. Nodes 0 to node 7 are transmitter/receiver pairs of video
traffic. Nodes 8 to node 15 are transmitter/receiver pair of voice. The rest of
the nodes are transmitting/receiver pair of greedy FTP traffic. This is the
nodes from 16 to node 39. In SSC1 all data traffic was simultaneously initiated
at the start of the simulation and stopped when the simulations ended.

Figure 8.1: Single Shared Simulation Scenario 1

 59

8.1.2 Single Shared Channel scenario 2 (SSC2)
In this simulation scenario the total number of nodes is reduced to only 8
nodes, but more data traffic are distributed on each node. The first four pair of
nodes are both transmitting and receiving video and voice. This is a likely
situation in a video conference situation, likely to occur in a rescue area. Here
people using such applications on an end node are able to see and speak to
the other opponent, at the same time.

Background traffic like FTP is also likely to be present in such situation.
Therefore nodes 4 to nodes 7, was heavily stressed with the task of both
transmitting and receiving FTP traffic. Nodes 4 to nodes 7 where transmitting
or receiving from 0-3 different nodes at the same time. All the different traffic
flows where in the same BSA.

Figure 8.2: Single Shared Simulation Scenario 2

 60

8.2 Multi Hop Simulation
In a multi hop scenario the receiving node is not within the radio transmission
range of the transmitting node. In order to reach the receiver, the transmitting
node has to pass its data packet to the next intermediate node lying on the
path between the transmitter and receiver.

The simulations of multi hop scenarios have been divided into two main
simulation scenario categories. The first scenario is very similar to the
scenario simulated in SSC1, except that all data traffic has to go through one
intermediate node to reach its final destination. The second simulation
scenario of multi hop contained less data traffic, but the transmitting and
receiving nodes is moved further apart from each other and the data traffic
has to go through a longer path of intermediate nodes to reach its destination.

8.2.1 Multi Hop Scenario 1 (MH1)
In this simulation scenario, the transmitting node is not able to reach the
receiving node directly. Therefore the AODV routing protocol is used to keep
track of the next hop information. The transmission range is still 250 meter
and each transmitter/receiver pair is spaced by 260 meter. The capacity of the
wireless medium is 11 Mbps and the RTS/CTS mechanism is turned on
during the simulations. The simulation area is a 1500 m x 300 m flat square,
and the CBR (video and voice) and FTP sessions are evenly distributed in the
simulation area. Also, SWAN’s Admission Control rate is set to 2000 Kbps
and the Threshold rate is set to 4000 Kbps in the SWAN mechanism. Every
session has its own transmitter/receiver pair. Every simulations consisted of
UDP real-time traffic; 4 voice flows, 4 video flows versus a different number of
TCP background traffic. The background traffic is modeled as a pair of 2, 4, 6,
8, 10 or 12 FTP flows. The simulation time is set to 100 seconds. All data
traffic is simultaneously initiated at the start of the simulation and stopped
when the simulations ends.

Nodes with even numbers are transmitting, and nodes with unequal numbers
are receivers of data traffic. Nodes 0 to node 23 are handling FTP traffic,
nodes 24 to node 31 are handling video traffic, and nodes 32 to node 39 are
handling voice traffic.

The simulation of MH1 is very similar to the one of SSC1. Both the number of
nodes, and the number of traffic flows are the same in these two simulation
scenarios. The difference between MH1 and SSC1 is that the nodes are
spread over a wider area in MH1 and then is dependent of intermediate
routing in order to send data traffic. A consequence of the wide distribution of
nodes is that the interference between the nodes radio signal probably will be
reduced, and hence improve the performance of both Real-Time and best
effort traffic. On the other hand, the fact that the traffic has to go over a longer
path will probably decrease the performance and lower the Quality of Service.
The purpose of these simulations is to se how a wireless network performing
in a multi hop situation, both in only “Best-Effort service” and in the presence
of the SWAN mechanism.

 61

Figure 8.3: Multi Hop Scenario 1

 62

8.2.2 Multi Hop Scenario 2 (MH2)
In this simulation scenario the mobile nodes are organized as a 5 x 4 grid,
with the total number of 20 nodes. Both vertically and horizontally, the nodes
are spaced by 200 meters. The simulation area is a 1000 m * 800 m flat
square. The routing protocol used is the AODV routing protocol. The
bandwidth capacity is 11 Mbps, and the RTS/CTS mechanism is turned on
during the simulations. The radio transmission range is 250 meter, the
Admission Control rate is set to 2000 Kbps, and the Threshold rate is set to
4000 Kbps. The total simulation time is 100 seconds.

Compare to the previous simulation (MH1) this simulation contains fewer
flows, but more hops to reach its final destination. The purpose of this
simulation is to se how a greater number of intermediate hops in a traffic path
impact the performance in a wireless network running the SWAN mechanism.

Figure 8.4: Multi Hop Scenario 2

When simulating the simulation scenario of MH2, 6 different simulations was
carried out with different combinations on aggregating the data traffic. From
the previous simulations, we know that Voice and Video traffic have different
characteristics. The shortest path from each corner nodes diagonally spaced
is minimum over 7 links, through 6 intermediate nodes. In all different
combination one FTP flow runs from the upper middle node to the lower
middle node. The crossing FTP session intersects all the available paths for
CBR sessions (from Sx to Rx, or the reverse path) with FTP background traffic.

 63

All the traffic flows is aggregated from the beginning to the end of the
simulation period of 100 seconds.

In the first combination, only aggregated video and FTP traffic is aggregated.
The upper left node is transmitting video traffic to the lower right node, and the
lower left node is transmitting to the upper right node.

In the second combination, video was now left out and replaced by voice
traffic. The upper left node was now transmitting voice traffic to the lower right
node, and the lower left node was transmitting to the upper right node.

In the third combination of MH2, video traffic flowing was going in both
directions of the nodes. Then the upper left node was both sending and
receiving traffic from the lower right node. Also, the lower left node was also
sending and receiving traffic from the upper right node.

The fourth combination was similar to the third, except that the video traffic
was replaced by voice traffic. The FTP traffic was still going from the upper
middle node to the lower in the middle.

The fifth traffic scenario was a combination of the first and second
aggregation. Here, both video and voice was flowing from the upper left node
to the lower right node. Also, both video and voice traffic was flowing from the
lower left node to the upper right node. The FTP traffic was still present.

Finally, the last aggregation scenario was a combination of the 3rd and 4th
aggregation. Here both voice and video traffic was flowing in both directions of
the Sx/Rx pair. In addition to the FTP traffic from the upper to the lower middle
node, both video and voice traffic was going to and from the upper left node to
the lower right node. In addition, both video and voice traffic was flowing from
the lower left node to the upper right node.

These different combinations of the aggregated data traffic in MH2 where
pretty similar to each other. Therefore, the result from the simulations, in
chapter 9, only presents the most interesting of these simulations.

 64

 65

9 Tests and Results
This chapter presents the result from simulations of several different
scenarios concerning the performance of the SWAN network module.

9.1 Single Shared Channel Simulation

9.1.1 Simulation of SSC1

Throughput
From the simulation of SSC1, figure 9.5 shows the average Best-Effort (FTP)
throughput of each node, versus the different number of on going FTP
sessions. As expected, and also stated in [3] the total throughput of Best-
Effort (FTP) traffic in the network, was higher with the SWAN control
mechanism turned off, than it was when SWAN in use. This is true no matter
how many FTP traffic flows running in the background. (0-12 FTP flows)

Figure 9.1: Average TCP throuhtput vs number of TCP flows

 When comparing figure 9.1 to the one posted in the SWAN articles [1] and
[3], the average TCP throughput received in this simulation (SSC1) is clearly
much below the TCP throughput shown in the SWAN articles (see figure 5.2).
Actually, the TCP throughput from SSC1, presented in figure 9.1 is only about
one half of the TCP throughput presented in the SWAN articles.

The total throughput of each type of data traffic from the simulations where
only two FTP sessions was running, are presented in hence, Figure 9.2
without SWAN, and Figure 9.3 with SWAN. Even thought the throughput of
video traffic was slightly more stable without the SWAN mechanism, the
overall received throughput of video traffic in these simulations was at the
same level as when the SWAN mechanism was used. For voice traffic, the
received throughput was also at the same level when the SWAN mechanism
was in use, as it was when the SWAN was not used. Though, a more stable
throughput for video was now seen in the result from the simulation where the

 66

SWAN mechanism was running. As stated above, the FTP throughput was
higher, but the FTP throughput was also more stable in the simulation without
the SWAN mechanism.

Figure 9.2: Throughput - SWAN off, 2 TCP flows

In the simulation without SWAN and where 12 FTP traffic flows where
present, both video and voice traffic experienced much lower throughput, than
in the simulations with fewer FTP sessions present. When the SWAN
mechanism is not used all the data packets is treated equally as Best-Effort
packets. At the same time, in this simulation the FTP session are sending
even greedier. As a result; the TCP traffic is actually given more of the total
bandwidth “cake” and the total TCP throughput in this simulation where higher
than in the simulation with only 2 FTP flows.

Figure 9.3: Throughput - SWAN on, 2 TCP flows

 67

In the simulations where the SWAN mechanism where turned on, the total
TCP throughput was decreased from a level around 1500 Kbps, to a level
where it oscillate between 1300-1500 Kbps. Video and voice traffic was much
higher and more stable in the simulation where the SWAN mechanism was
controlling the network. The total video and voice throughput was also closer
to the received throughput in the simulations where only two FTP sessions
was present. This is due to video and voice traffic being prioritized in the
SWAN mechanism.

Figure 9.4: Throughput - SWAN off, 12 TCP flows

In SSC1, the total throughput of all the data traffic with SWAN off, varies from
2.0 to 2.4 Mbps. The total throughput with SWAN on, varies from 1.5 to 1.9
Mbps. Comparing this results to the results of the available bandwidth, shown
in figure 7.1 and figure 7.2; when running the simulation without SWAN, 60-70
percent of the available bandwidth is utilized, while running with SWAN, only
45 to 60 percent of the channel is utilized.

Figure 9.5: Throughput - SWAN on, 12 TCP flows

 68

Delay
When it comes to delay in the simulations of SSC1, the result shows that the
SWAN mechanism was able to give a much lower and often, more stable
delay for the Real-Time traffic, compared to the delay experienced when
SWAN was turned off.

Figure 9.6: Average RT delay, 2 TCP flows

In the simulation with 2 FTP background traffic flows, the average RT delay
ranges from about 600 milliseconds, up to almost 1200 milliseconds, when
SWAN was not used. When the SWAN mechanism was turned, on the delay
is noteworthy reduced; the RT delay now ranges from 200-300 milliseconds
and only up to 600-700 milliseconds.

Figure 9.7: Average RT delay, 12 TCP flows

 69

In the simulations where 12 FTP sessions where present as background
traffic, the divergence between the experienced delay with and without SWAN
was much higher than in the simulations with only 2 FTP flows. The RT delay
without the SWAN mechanism was extremely high. It ranged from about 1500
milliseconds in the lower end, up to 4000 milliseconds in the upper. When the
same simulation was carried out with the SWAN mechanism turned on, the
delay laid pretty stable around 600 milliseconds.

Figure 9.8: Average end-to end delay (SWAN on / SWAN off) vs. number of TCP flows

In figure 9.8, the average end-to-end Real-Time delay versus, a raising
number of TCP flows present in the simulation area, is shown. In this
simulation, the idea was to recreate the same simulation, and then see if
similar result as those posted in [1] and [3] could be recreated. When
comparing these results (figure 5.1 vs. figure 9.8), the plot of the graphs is
very familiar, but still the results are indeed very different. In figure 5.1 the
scale of the delay axis is in tens of milliseconds, while my delay results plotted
in figure 9.8, is in thousands of milliseconds. The gap between these
measurements is tremendous. This is most likely explained by the fact that
the delay measured and shown in figure 5.1 is not the end-to-end delay, but
indeed the average RT delay measured at the MAC layer.

The average end-to-end delay with the SWAN mechanism was relatively
stable around 500 milliseconds, while delay in the simulation without SWAN

 70

grew linearly up to almost 2700 milliseconds. Even though the delay was
much lower for the SWAN mechanism, the result from this simulation shows
clearly that the end-to-end delay of this simulation is way beyond the
maximum delay that can be handled by a Real-Time application. ITU-T’s
recommendation [16] states an upper limit of delay on 400 milliseconds for
any type of applications, while 150 milliseconds is the recommended upper
limit of end-to-end delay for a Real-Time application.

9.1.2 Simulation of SSC2

Throughput
From the simulation of SSC2, figure 9.9 shows the average throughput of
Best-Effort (FTP) traffic versus a raising number of background FTP sessions.
As expected, the simulation of SSC2 shows that the TCP throughput with
SWAN was lower than when running simulations without SWAN. The overall
average TCP throughput in SSC2 lies close upon the result gained in the
simulations of SSC1.

Figure 9.9: TCP throughput vs. number of TCP flows

In the simulation of SSC2, when only two FTP sessions was running as
background traffic (see figure 9.10 and figure 9.11), the received throughput
for voice traffic was almost the same in the simulation without SWAN, as it
was in the one with the SWAN mechanism turned on. For video traffic, the
throughput was actually to some extend more unstable with SWAN, than it

 71

was without SWAN, but the average throughput was very close in those two
simulations. Also, as one can anticipate from the construction of the SWAN
network model, the throughput for the TCP traffic was much lower in the
simulation when the SWAN mechanism was turned on, compared to the
simulations running without SWAN.

Figure 9.10: Throughput - SWAN off, 2 TCP flows

In the simulations where the number of FTP flows was increased to 12 (see
figure 9.12 and figure 9.13), the throughput for both voice and video was
slightly higher in the simulations where the SWAN mechanism was turned on,
compared to the simulation without the SWAN mechanism. Even so, in both
simulations the total throughput stayed around 100 Kbps for voice, and 500-
600 Kbps for video. When it comes to the throughput for the FTP traffic, the
throughput now as in previous simulations was heavily decreased when the
SWAN mechanism was switched on. This result is in sharp contrast to the
analogous simulations in SSC1, where the TCP throughput lied around 1500
Kbps both with and without SWAN.

Figure 9.11: Throughput - SWAN on, 2 TCP flows

 72

Figure 9.12: Throughput - SWAN off, 12 TCP flows

Compared to SSC1, the simulation where the SWAN mechanism was not in
use, the average TCP throughput with the all different number of TCP
background traffic, ranges from 3 to 50 percent lower than the average TCP
throughput in SSC1. At the same time, when running with SWAN, the average
TCP throughput of SSC2 ranges from 4 percent higher to 24 lower than in
SSC1 (see figure 9.1 and figure 9.9). These results could imply that it might
be more difficult to utilize the wireless channel when the density of flows on
each node is high, and hence the workload on each node also is high. This
was the case when SSC2 was compared to SSC1. It could also imply that
SWAN does not handle this higher density very well.

Figure 9.13: Throughput - SWAN on, 12 TCP flows

 73

The total average throughput of all traffic in SSC2 ranges from 2.0 to 2.2
Mbps in the simulation without SWAN. With SWAN, this total average
throughput ranged from 1.0 to 1.6 Mbps. The total utilization of the channel is
then 60-70 percent without SWAN, which is the same as in the simulation of
SSC1. When the SWAN mechanism was turned on, the utilization of the
bandwidth was down to 30-50 percent, which is less than in SSC1.

Delay
In the simulation of SSC2 the difference of the RT delay with and without
SWAN was not as high as experienced in the SSC1 simulation. Actually, with
only a few FTP background traffic flows present, the delay was higher when
the SWAN mechanism was used than it was without the SWAN mechanism.
In figure 9.14 one can se that the RT delay with SWAN was almost the same
as in SSC1 (see figure 9.8). In the simulation of SSC2, the average RT delay
without SWAN was heavily decreased compared to SSC1. SWAN was
performing slightly better, and the average RT delay experienced in the
simulation with the SWAN mechanism was mainly below the delay
experienced without SWAN.

Figure 9.14: Average end-to end delay (SWAN on/SWAN off) vs. TCP flows

In the simulations with only 2 FTP background flows (see figure 9.15), the
average RT delay without the SWAN mechanism laid mostly around 500
milliseconds, while the delay with the SWAN mechanism turned on ranged
from 300 up to 1400 milliseconds. The delay experienced in the simulation
with the SWAN mechanism, was very unstable, and most of the time it was
higher than the simulation without SWAN.

 74

It seems like that in the simulation scenario of SSC2, the performance of the
SWAN mechanism compared to having no QoS mechanism, is higher when
the number of background traffic present is increased (compare Figure 9.15
with Figure 9.16). Indeed, this was also the case in the simulation of SSC1.
The simulation where 12 FTP sessions was present as background traffic
flows can be viewed in figure 9.16. Even thought the RT delay with SWAN
ranged from 400 up to 1200 milliseconds, most of the simulation time, the
delay laid below the delay experienced without the SWAN mechanism.
Without SWAN, the delay laid just below 800 milliseconds except in the very
first part of the simulation.

Figure 9.15: Average RT delay - 2 TCP flows

These simulations showed that the RT delay for the SWAN mechanism was
slightly lower than the delay without SWAN, but the result from the simulation
of SSC2 shows that the improvement with SWAN is not enough to properly
support Real-Time traffic. The average Real-Time traffic delay for SWAN
when 2 or more TCP background traffic is introduced ranges from 550 to 800
milliseconds. This is 3-5 times higher than the upper limit of the ITU-T
recommendation.

Figure 9.16: Average RT delay - 12 TCP flows

 75

Even though the simulation scenario of SSC2 varies a little bit from those in
described in the SWAN articles [1] and [3], the results obtained in this
simulations has a large aberration from the result posted in the SWAN
articles. The experienced delay in both SSC1 and SSC2 are in order of
magnitude of 100 of milliseconds, while the result posted in the SWAN articles
are in order of magnitude of tens of milliseconds. This further confirms that the
delay measured in the SWAN articles are not the end-to-end delay, but the
delay experienced at the MAC layer.

 76

9.2 Multi hop Simulation

9.2.1 Simulation of MH1

Throughput
In the simulation of MH1, Figure 9.17 shows the average Best-Effort
throughput for FTP traffic of each node, versus an increasing number FTP
sessions. Here, the TCP throughput was only slightly higher without SWAN,
compared to the simulation where the SWAN mechanism was turned on. The
major drawback in the simulation of this scenario was the extremely low TCP
throughput received both with and without SWAN. The average TCP
throughput ranged from about 40 Kbps up to 120 Kbps. The graph is only
slightly decreasing, so the raising number of TCP background traffics, does
not seem to impact the throughput in the same manner as in SSC1 (see figure
9.1).

Figure 9.17: TCP Throughput vs. number of TCP flows

In the simulations of MH1 with only two FTP flows in the background, video
and voice traffic received approximately the same throughput with or without
SWAN (Figure 9.18 and figure 9.19). This was approximately the same
throughput which also was received in the analogous simulation without multi-
hop in SSC1 (see figure 9.2 and figure 9.3). When it comes to the throughput
of the FTP traffic, the results show a different behavior with or without the

 77

SWAN mechanism. Without SWAN, the throughput was raised to almost 1000
Kbps for the first five seconds, then it dropped down below 500 Kbps.
Throughout the rest of the simulation time, the TCP throughput showed a very
unstable behavior. It stayed mostly below 500 Kbps and several times the
throughput was almost 0 Kbps. With SWAN the TCP throughput is more
stable, but at the same time much lower.

Figure 9.18: Throughput - SWAN off, 2 TCP flows

In the simulation where the number of FTP sessions was increased to 12, the
throughput for both video and voice was just slightly below the throughput
received in the simulations where only two FTP flows were present as
background traffic. This is true both with and without the SWAN mechanism.
Due to the similarity of these similar results, the graphs from the simulations
with 12 FTP sessions are not present in this paper.

Figure 9.19: Throughput - SWAN on, 2 TCP flows

 78

Delay
From the result gained in the simulations of MH1, it is clear that the
experienced Real-Time delay in average was lower when the SWAN
mechanism was running compared to the simulation where the SWAN
mechanism not was providing any QoS guarantees. The average RT delay
when SWAN was not running, was in range of 80 milliseconds below, and up
to 800 milliseconds above, the average RT delay experienced when the
SWAN mechanism was providing soft Quality of Service guarantees (see
figure 9.20).

Compared to the result from SSC1, the average RT delay in MH1 is not
growing linearly when the SWAN mechanism not was running, which is the
case in SSC1. When 4 or more FTP flows was present as background traffic,
the average RT delay in MH1 is less than half of that experienced in the
simulations of SSC1.

Figure 9.20: Average end-to-end delay vs TCP flows

With the SWAN mechanism present, the average RT delay in MH1 was
slightly above that delay experienced in SSC1. When no FTP flows was
present, the average RT delay was more than 400 milliseconds in MH1, but
no substantial delay is experienced with 0 FTP flows in SSC1. For the
presents of 2 and up to 10 FTP flows, the average RT delay was

 79

approximately at the same level as in SSC1. When 12 FTP background traffic
flows was added to the simulation, the average RT delay was more than 150
milliseconds higher in MH1 than in the analogous simulation in SSC1.

Figure 9.21: Average RT delay, 2 TCP flows

Even when the SWAN mechanisms improved performance, having the Real-
Time traffics delay in mind, the delay is still too high to give the stable and
robust network performance a Real-Time application truly need.

Figure 9.22: Average RT delay, 12 TCP flows

When the SWAN mechanism was up and running, the simulations where
either 2 or 12 FTP flows was running as additional background traffic, the RT

 80

delay was very close to the delay experienced when not running the SWAN
mechanism. In figure 9.21, the graph show the RT delay when 2 FTP flows
was running as disturbing background traffic. Here, the delay mainly stayed in
the ranges from 300 up to 500 milliseconds.

In figure 9.22, one can se the result of the analogous simulation with 12 FTP
flows as disturbing background traffic. Still the delay was pretty much at the
same level whether the SWAN mechanism was running or not. But now the
delay was much higher than in the simulations displayed in Figure 9.21. The
RT delay range from 400 and up to more than 1200 milliseconds.

To get a deeper view of the experienced Real-Time delay, the delay of video
and voice is present as individual plots in the graph in Figure 9.23. From this
graph, it looks very clear that voice and video traffic have different behavior
characteristics. With the SWAN mechanism, the video traffic (blue line)
experienced an average delay of 400-500 milliseconds when the number of
TCP background traffic flows where 10 or less. With the presents of 12 FTP
flows the average delay for video was about 750 milliseconds.

Figure 9.23: Average end-to-end delay Voice/Video vs. TCP flows

The average delay of video traffic in the simulation where the SWAN
mechanism where not present (red line) was highly variable. When no FTP
flows where present, the experienced video delay where almost 600

 81

milliseconds. With a raising number of FTP background traffic flows, the
average video delay varies from 300 and up to 1000 milliseconds.

When the SWAN mechanism was not used to assure the Quality of Service,
the voice delay (green line) started at about 500 milliseconds, when no FTP
flows was present, and up to its highest at 1200 milliseconds, when 10 FTP
flows where present. In the analogous simulation where the SWAN
mechanism was used, the voice delay (purple line) ranged at a lower level.
The delay ranged from 400 milliseconds and up to just above 800
milliseconds at it’s highest.

From figure 9.23 we can see that the average delay is higher for voice traffic
than for the video traffic, both with and without the SWAN mechanism. This
clearly shows that the performance characteristics of voice and video traffic is
highly different, and need different treatment in a data network. This is not the
case in the resent SWAN network model.

9.2.2 Simulation of MH2
In the simulations of the Multi-Hop scenarios, six separate simulations with
different combination of traffic aggregation were accomplished. Because
some of them are analogous, only four of these simulations are present in this
chapter.

9.2.2.1 Delay and Throughput
In the first simulation of MH2, only video traffic where aggregated in addition
to the crossing FTP background traffic flow. The delay observed in this
simulation, is present in figure 9.24, and from that graph we can see that the
average delay of the two video streams in this simulation was highly variable.
Even though the average delay measured each second was around the
recommended upper limit of delay for any data traffic, stated by the ITU-T in
[16] for most of the simulation period, it was also way beyond that limit several
times. Both with and without SWAN, the average delay throughout the 100
seconds simulation period was high above ITU-T’s recommended limit of
delay for Real-Time applications.

The strange incident in these simulations was that the introduction of the
SWAN mechanism did not seem to improve the QoS. Indeed, it seemed that
the experienced performance while using the SWAN mechanism, gave us
even worse results than the result gained in simulations running without any
QoS mechanisms. With the SWAN mechanism, the average Real-Time delay
measured once each second, ranged from almost nothing up to 1300
milliseconds. Without the SWAN mechanism, the result where to some
extends actually better. Then the average delay ranged from about 50
seconds at it lowest, and up 1150 milliseconds at its highest peak.

 82

Figure 9.24: Average delay of Video streams ech second

As observed in many in the previous simulations with the SWAN mechanism,
the start up delay in the very first seconds was very high. The delay of the first
packet was actually 5 times higher with the SWAN mechanism than it was
without it. Also, the maximum delay of one single packet, experienced in this
simulation, run with the SWAN mechanism, was 72 % higher than the delay
experienced without the SWAN mechanism.

Figure 9.25: Average TCP throughput

When it comes to the average delay throughout the simulation period, the
divergence in the experienced delay was not as high as experienced with the
first packet delay and the maximum packet delay, but still the SWAN
mechanism gave higher output values. The average delay of the 100 seconds

 83

simulation period was 389 milliseconds without the SWAN mechanism and
440 milliseconds when the SWAN mechanism was used. This is shown in
Table 9.1.

 First packet

delay
Max delay Average delay TCP throughput

SWAN off 86.79 ms 2264.42 ms 388.59 ms 5376 Kb
SWAN on 450.44 ms 3894.96 ms 440.14 ms 5124 Kb

Table 9.1: Measurement from MH2, simulation 1

Even though the TCP total throughput was slightly higher without the SWAN
mechanism in these simulations, the achieved TCP throughput was
approximately the same. Without the SWAN mechanism, the total received
TCP throughput was 5376 Kb. With the SWAN mechanism, the TCP
throughput received was 5124 Kb. This gave an average TCP throughput on
51-54 Kbps. A graphical presentation of the TCP throughput can be viewed in
figure 9.25.

In the second simulation of MH2, the video traffic was replaced by voice
traffic. The FTP background traffic was still present. The results from these
simulations, was somehow different from result of the previous simulations.
From the graph in figure 9.26, we can observe that the average Voice delay
each second, for long periods, was more stable in this simulation, compared
to the delay experienced in the previous simulation.

Figure 9.26: Average delay of Voice streams

 84

Figure 9.27: Average TCP throughput

The average video traffic delay without the SWAN mechanism was highly
unstable in the first 15 seconds of the simulation period. In this interval it
oscillates between 100 and 800 milliseconds. The average delay of the first
packet reached only 82 milliseconds. After that it stayed around 250
milliseconds throughout the simulation period, except for the very last
seconds where the delay became excessive and reached almost 600
milliseconds. The highest delay of one single packet without the SWAN
mechanism was 1771 milliseconds in this simulation.

With the SWAN mechanism, the delay was also very unstable in the first 15
seconds of the simulation. The delay of the first packet was 190 seconds, and
for a very few seconds of this 15 seconds interval, the delay reached an
extremely high peak of 7756 milliseconds. For the next 35-40 seconds, the
average delay stayed at a very low level at less than 50 milliseconds. Then it
started to bounds at a high frequency again. It oscillates from very low, to an
extremely high delay, throughout most of the simulation period. With voice
traffic the average delay of the 100 seconds simulation period was much
lower than in the analogous simulation with video traffic. Without the SWAN
mechanism this average delay was 261 milliseconds and even lower with the
SWAN mechanism; 217 milliseconds. This is shown in Table 9.2. Even
though this is still above the most critical limit of delay for Real-Time
streaming, this looks more promising, especially in the stable periods.

 First packet

delay
Max delay Average delay TCP throughput

SWAN off 82.20 ms 1771.47 ms 261.12 ms 29460 Kb
SWAN on 190.16 ms 7456.00 ms 216.76 ms 4296 Kb

Figure 9.28: Measurement from MH2, simulation 2

 85

The lower average delay with the SWAN mechanism came with an
unreasonably high price to the TCP throughput, see figure 9.27. In these
simulations, the TCP throughput was at a pretty fair level without the SWAN
mechanism. The total amount of 29460 Kb FTP traffic was received, which
gave an average TCP throughput on 295 Kbps. With the SWAN mechanism,
only 4296 Kb FTP traffic was transferred in the simulation period, and
therefore the average TCP throughput was down to only 43 Kbps.

In the third and forth simulations of MH2, with video and voice traffic
respectively, the Real-Time traffic went in both directions, between the two
pair of transmitting/receiving nodes. The FTP session was also crossing the
Real-Times flows traffic paths in these simulations. Due to the analogy of
these simulations with video and voice traffic, only the results from the
simulations with video traffic are present in this chapter.

The average delay of the four video flows, measured once every second, can
be viewed in figure 9.28. The average delay was not only highly unstable, but
also at an unusually high level, way above the critical limit of 400 milliseconds
stated by ITU-T. Both with and without the SWAN mechanism, the average
video delay ranged from almost 0 milliseconds in some few periods, up to
more than 5000 milliseconds at the highest peaks.

Figure 9.29: Average delay of Video streams

In this traffic scenario, the result from the simulation with the SWAN
mechanism was slightly better than the one without any QoS mechanisms,
except from the start up delay. With the SWAN mechanism, the delay of the
first packet was 20 times higher than the simulation without the SWAN
mechanism. The plot of the average video delay with the SWAN mechanism
is also climbing at a faster rate in the very first second of the simulation, than
what is the case without the SWAN mechanism. The maximum delay for one

 86

single video CBR packet in the simulation without SWAN was 12300
milliseconds. With the SWAN mechanism, this maximum delay was also
extremely high, but was here reduced to 10285 milliseconds.

Figure 9.30: Average TCP throughput

The average video delay throughout the simulation period of 100 seconds
was; 1955 milliseconds without the SWAN mechanism, and 1824 milliseconds
with the SWAN mechanism. The average delay is shown in Table 9.3. This
average delay is way beyond any limits of being able to support Real-Time
streaming.

 First packet

delay
Max delay Average delay TCP throughput

SWAN off 21.49 ms 12299.97 ms 1954.79 ms 12 Kb
SWAN on 425.14 ms 10185.10 ms 1823.94 ms 168 Kb

Table 9.2: Measurement from MH 2, simulation 3

In addition to this bad result for the experienced delay, the simulations of this
scenario also show terrible results concerning the TCP throughput (see figure
9.29). The total TCP throughput of the simulation period of 100 seconds was
only 12 Kb without the SWAN mechanism. Even though the total TCP
throughput was 14 times higher in the simulation with the SWAN mechanism
it is still too low to be at any acceptable level for the throughput of the Best-
Effort service class.

Both the fifth and sixth traffic scenario of the simulations of MH2 was
combinations of the previous simulations of MH2. In these simulations, both
video and voice traffic was present simultaneously. The fifth simulation had a

 87

one way transmission of Real-Time traffic. Here the traffic paths of the Real-
Time traffic were from the left to the right side of the simulation area,
presented in Figure 8.4. In the sixth and last simulation of MH2, the traffic
paths of the Real-Time flows where two ways and the video and voice traffic
was flowing in both directions between the two diagonal node pairs. Hence,
the total number of flows, include the FTP session, was 9 flows. Due to the
analogy of the fifth and sixth simulation, only the sixth traffic scenario is
present in this chapter. The main difference of the result from the simulations
of these traffic scenarios was that the sixth traffic scenario had worse
performance than the fifth, due to a more dense traffic situation.

Figure 9.31: Average delay - Real-Time traffic

From figure 9.34 we can see that the average delay of the Real-Time traffic
for the 8 RT flows. Not only was the Real-Time delay much higher, but also
much more unstable than in the previous simulations. It is hard to believe that
any RT traffic streams can work properly in such a heavily strained network.

In these simulations, the differences between the simulation with the SWAN
mechanism, and the one without SWAN, was not of any convenient matter to
make any difference to the user’s experience of the Quality of Service.
Though the performance was not exactly the same, but the introduction of the
SWAN mechanism did hardly made any difference on improving the network
performance.

 88

Figure 9.32: Average TCP throughput

The average Real-Time traffic delay for the total simulation period,
experienced while the SWAN mechanism not was running, was 2169
milliseconds. With the SWAN mechanism the same delay was lower, but still,
as high as 1995 milliseconds. The highest maximum delay experienced by a
single data packet in these simulations was highest with the SWAN
mechanism running; 12740 milliseconds. Without SWAN, this maximum delay
for a single data packet reached 11538 milliseconds. Just as experienced
many times in previous simulations, the startup delay was very high using
SWAN. The delay of the first packet was now 6 times higher in the simulation
running SWAN, than in the one without SWAN.

 First packet
delay

Max delay Average delay TCP throughput

SWAN off 70.50 ms 11537.62 ms 2168.78 ms 348 Kb
SWAN on 426.23 ms 12739.76 ms 1995.25 ms 252 Kb

Table 9.3: Measurement from MH2, simulation 3

Also as experienced in the previous simulation, the TCP throughput in these
simulations was completely terrible, see figure 9.35. The total TCP traffic
transferred in the simulation without SWAN was only 348 Kb, and even lower
in the one using SWAN; 252 Kb. Hence, this gave a TCP throughput on only
3.5 Kbps without SWAN, and 2.5 Kbps in the simulation running SWAN.

 89

9.2.3 Summary of simulations and test results
From the simulations of SSC1 I found out that the total TCP throughput was
lower in mine simulations, analogous to the one present in [3]. During these
simulations, I also experienced that the TCP throughput was more unstable,
when the SWAN mechanism was used. As expected, and also present in [3],
the delay experienced by voice or video traffic is mostly lower simulations
where the SWAN mechanism is in use. The overall utilization of the available
throughput is also inferior in the simulations with the SWAN mechanism. In
the benefit of the SWAN mechanism, is the low end-to-end delay for Real-
Time traffic. With the SWAN mechanism, and especially in a network with
many simultaneous competing traffic flows, the delay is much lover than the
delay experienced without any QoS mechanism. The drawback is that the
average end-to-end delay still is too high to support Real-Time traffic properly.
Another major discovery in the simulation of SSC1 is the gap between the
results in [3] and my own result. The result presented in [3] is most likely not
the end-to-end delay, but the delay experienced at the MAC layer.

The FTP throughput was lower in the simulations of SSC2 than in SSC1. This
could imply that the SWAN mechanism is not so good in network scenarios
where the ratio of RT traffic on each node is high. It could also imply that it is
more difficult to utilize the wireless channel when the RT traffic distributed on
each node is denser. In the simulations of SSC2, the experienced RT delay
was lower with SWAN than without SWAN. The drawback in these
simulations was that the experienced RT delay with the SWAN mechanism
was much higher than in the analogous simulation in SSC1. The result from
SSC1 and SSC2 could also imply that the SWAN mechanism is working much
better when the number of FTP background traffic is high. The simulations of
SSC2 shows us that the network performance due to RT traffic is better with
the present of the SWAN mechanism, but the performance is not good
enough to meet the requirement from ITU-T [16]. Further, the simulations of
SSC2 confirm that the delay present in the SWAN articles is not the end-to-
end RT delay, but the RT delay experienced at the MAC layer.

The multi-hop simulations in MH1 show that the TCP throughput is much
lower than in the analogous simulations where all the nodes in the network
share the same wireless channel, e.g., SSC1. The simulations of MH1 also
showed that with the SWAN mechanism, a lower delay was experienced
compared to simulations where the SWAN mechanism not was used. Still, the
major drawback of these results is that the experienced delay in a multi-hop
scenario such as MH1, the delay is too high for Real-Time applications.
Another experience of the simulations of MH1 was that the average RT delay
was increased, when the number of FTP background traffic flows was
increased. One important discovery from the simulations of MH1 was the
different performance characteristics for voice and video traffic. The different
characteristics of video and voice traffic emphasize that they should be
treated differently in a computer network. This is not the case in the today’s
SWAN model.

The simulations of the multi-hop scenario labeled as MH2, the introduction of
the SWAN mechanism does not seem to have any significant impact on

 90

improving the QoS. In the simulations of MH2, SWAN gave a better result in
the simulation of voice traffic than in the simulations with video traffic. With
voice traffic, the delay was not only lower, but the delay was also for long
periods much more stable than it was with video traffic. Thus, SWAN’s effort
to handle voice traffic better than a network without any QoS mechanism
came at a high price to the TCP traffic; the average throughput was 7 times
higher without the SWAN mechanism. The introductions of two-way traffic
paths for the Real-Time traffic in the simulations of MH2 raised the average
delay 5-10 times compared to the previous simulation of MH2, which only had
one-way paths for the RT traffic. Even though the delay was very high both
with and without the SWAN mechanism, SWAN seems to better handle the
situations with an increased number of RT flows, and where RT traffic is going
in both directions between the affected nodes. In all the simulations of MH2,
the start-up delay when using the SWAN mechanism is always very high.
Also, the presents of the SWAN mechanism seems to lower the delay to
some extents, but not enough, so it will be of any significant matter from the
user’s perspective.

 91

10 Conclusion
This chapter will conclude the work with this thesis, and presents possible for
a future QoS mechanism based on the SWAN network model.

10.1 Concluding remarks
The increased popularity of wireless networks and the widespread usage of
multimedia applications call for strictly management of the time variable
available wireless channel. State of the art within wireless ad hoc network is
not an efficient utilization. Multimedia applications have to rely upon Best-
Effort service, which basically is no Quality of Service at all. A supplementary
QoS mechanism is most likely to be needed to achieve the goals of reliable
multimedia applications in Ad Hoc networks. The SWAN network model is one
step towards such a goal.

From the simulations studies I gained knowledge about many of the problems
concerning Quality of Service in Ad Hoc network and particularly the problems
related to the implementation of the SWAN network model. In this section I
will present the most important issues in this context.

• In my early simulations I found problems with the performance when a
source node of Real-Time traffic, was given an extra task of an
additional session of data transfer with an external node. This could be
a problem related to the network simulator used, or it could be a
problem in the real world. If the latter is the case, this is a serious
problem. Then, action has to be taken upon exhaustive testing and
solving this case.

• In most of my simulations the end-to-end delay experienced while the
SWAN mechanism was used to ensure the Quality of Service was
lower than when no QoS mechanism was used. However, the
difference in the experienced delay with or without the SWAN
mechanism was not of such significance magnitude that the Quality of
Service was considerably improved. Another major drawback was that
most of the end-to-end delay measured in the simulations was beyond
the critical limit of end-to-end delay of one way transmission for any
data applications stated by ITU in [16].

• My suspicions regarding the delay present in the SWAN articles [1] and
[3] not being the end-to-end delay, but the delay measured at the MAC
layer was correct. After several simulations I found a huge gap
between my end-to-end delay and the delay presented in those
articles. After sending several e-mails to the people behind the SWAN
model, this was confirmed.

• The simulations also revealed that when a Best-Effort traffic session
was initiated without any measurement of the MAC delay, the SWAN
mechanism in the transmitting node misconceives the situation and
believes it has more available bandwidth than it actually has. This issue
needs more exhaustive testing and needs to be addressed if it turns
out to be a major problem.

• Another drawback of the SWAN implementation discovered in the
simulations is the extremely high “start-up” delay experienced in the

 92

very first seconds of a simultaneous initiation of Real-Time traffic. This
is due to the probe mechanism in SWAN which needs feedback from
the probe message before a node is admitted to transmit such data
packet.

10.2 Further Studies
This section presents areas which are open for more research and needs to
be addressed in a successful Quality of Service model for the future. First
some issues discovered during the simulations studies in this thesis are
presented. Second, new proposals to a future QoS model for Ad-Hoc
networks gained in theoretical analysis of the SWAN network model are
presented.

• The issue concerning the discovery of high rise in the delay, when a
RT source is involved in transmission of additional traffic certainly
needs further testing either in ns-2 or in a lab network.

• It is of great importance to a Real-Time application of keeping the end-
to-end delay below 150 milliseconds. Today, this situation is simply not
good enough, and more research is needed to gain additional
decrease in the delay and also in having a more stable delay over time.

• The simulation studies also revealed there could be situations where
nodes misconceive the available bandwidth due to erroneous
measurement of the Mac delay. This needs more testing, and certainly
needs to be fixed in the implementation if it turns out to be a serious
problem.

• In times of an emerging congestion situation, any computer network
will have advantage of a congestion avoidance mechanism, which
informs the transmitting node about the upcoming difficulties in the
network. Proper action for a transmitting node could be to lower the
transfer rate, and hence lower the quality of the multimedia streams. In
the resent SWAN model there is no such mechanism, but in a new
QoS model for Ad Hoc networks, a congestion avoidance mechanism
like this should be incorporated.

• In any computer network a great variety of applications and hence a
great variety in the types of data packet using the network is common.
These different types of data packets have different characteristics and
also different requirements. Some packet may also be more important
than others. To satisfy these requirements, an advanced scheduling
mechanism which differentiates among the packet types is needed.
The resent SWAN model contains only a simple scheduling
mechanism which does not fully cover this requirement.

• With the recent year’s successful work on increasing the bandwidth
capacity in wireless networks, the distance to the wired counterpart
have been diminished. It is also believed that IEEE has plans of
increasing the bandwidth of the 802.11 standard to 308 Kbps within
this year. This bandwidth enhancement could make the need for an
admission controller superfluous, if enough resources will always be
available. A removal of the Admission control mechanism in SWAN will
probably eliminate most of the start-up delay experienced with SWAN.

 93

• A future QoS model must be able to dissolve congestion in a rapid
manner. In the SWAN mechanism, measurement shows that it took 4-6
seconds before the Real-Time rate to reach below the Admission
control rate. This may be to slow when some applications are delay
sensitive in order of milliseconds. Fast congestion recovery has to be
addressed in future implementations.

• The addressing of “false admission” is also mention as a problem in the
SWAN mechanism. I have suggested an approach where all nodes are
informed about congested network situations. In this approach, there is
no need for an intelligent mechanism in the network interior, because
this task could easily be taken care of by the transmitting nodes,
without any large increase of the complexity.

The popularity of wireless network shows that this technology is here to stay.
Only the future will show the limitations. However, more effort has to be
accomplished in many fields, in order to have a more complete solution.
Quality of Service is definitely one area that needs more research and
development to satisfy the many requirements. The Comet’s groups Stateless
Wireless Ad hoc Network model is one good proposal, but not a complete
model. However, it is a giant leap in the right direction.

 94

 95

11 REFERENCES
[1] G.-S. Ahn, A. T. Campbell, Andras Veres and Li-Hsiang Sun, "Supporting
Service Differentiation for Real-Time and Best Effort Traffic in Stateless
Wireless Ad Hoc Networks (SWAN)", IEEE Transactions on Mobile
Computing, September 2002.

[2] A. Veres, A.T. Campbell, M. Barry and L-H. Sun, “Supporting Service
Differentiation in Wireless Packet Networks Using Distributed Control”, IEEE
Journal of Selected Areas in Communications, Special Issue on Mobility and
Resource Management in Next-Generation Wireless Systems, Vol. 19, No.
10, pp. 2094-2104, October 2001.

[3] G.-S. Ahn, A. T. Campbell, Andras Veres and Li-Hsiang Sun, “SWAN:
Service Differentiation in Stateless Wireless Ad Hoc Networks", Proc. IEEE
INFOCOM'2002, New York, New York, June 2002.

[4] Gahng-Seop Ahn, Andrew T. Campbell, Andras Veres and Li-Hsiang Sun,
"SWAN", draft-ahn-swan-manet-00.txt, Work in Progress, October 2002.

 [5] Crow, B.P., Widjaja, I, Kim, J.G., and Sakai, P.T.,: “IEEE 802.11 Wireless
Local Area Networks”, IEEE Commun. Magazine, vol. 35, pp. 116-126,
Sept.1997.

[6] Mohammad Ilyas: “The Handbook of Ad Hoc Wireless Network”, CRC
Press.

[7] Heegard, C., Coffey, J.T., Gummadi, S., Murphy, P.A., Provencio, R.,
Rossin, E.J., Schrum, S., and Shoemaker, M.B.: “High-PerformanceWireless
Ethernet”, IEEE Commun. Magazine, vol. 39, pp. 64-73, Now. 2001.

[8] Matthew S. Gast: “802.11 Wireless Networks”, O’Reilly

[9] Upkar Varshney: “The Status and Future of 802.11 Based WLANs”

[10] P. Berthou, T. Gayraud, O. Alphand, C. Prudhommeauz, M. Diaz: “A
Multimedia Architecture for 802.11b networks” WCNC 2003 - IEEE Wireless
Communications and Networking Conference, vol. 4, no. 1, Mar. 2003
pp. 1742-1747

[11] P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum, L.
Viennot: “Optimized Link State Routing Protocol for Ad Hoc Networks” IEEE
INMIC, 2001. Hipercom Project, INRIA Rocquencourt.

[12] Ying Ge, Thomas Kunz, Louise Lamont: “Quality of Service Routing in
Ad-Hoc Networks Using OLSR” Proceedings of the 36th Annual Hawaii
International Conference on System Sciences (HICSS'03), Track 9, Volume 9.

[13] Daqing Gu and Jinyun Zhang: “QoS Enhancement in IEEE802.11
Wireless Local Area Networks”, IEEE Communications Magazine, pp. 120 –
124, June 2003.

 96

[14] Zhigang Wang, MengChu Zhou and Nirwan Ansari: “Ad-hoc Robot
Wireless Communication” Systems, Man and Cybernetics, 2003. IEEE
International Conference, 5-8 Oct. 2003, Volume: 4, On page(s): 4045- 4050
vol.4

[15] A. Roche, C. B Westphall and Graf von Mecklenburg: “Quality of Service
for Ad Hoc Network” XII International Conference of the Chilean Computer
Science Society (SCCC'02) , 11 06 - 11, 2002, Copiapó, Atacama, CHILE

[16] International Telecommunication Union (ITU), ITU-T Recommendation
G.114: “Series G: Transmission systems and media digital systems and
networks”

[17] G. H. Forman and J. Zahorjan, "The Challenges of Mobile Computing,"
IEEE Computer, vol. 27, no. 4, 1994

[18] D. Cavin et al., "On the accuracy of MANET simulators" Proc. ACM
Workshop on Princ. Mobile Computing (POMC'02), Oct. 2002, pp. 38-43.

[19] The ns-2 home page: The Network Simulator - ns-2,
[http://www.isi.edu/nsnam/ns/]

[20] Pawlikowski it al: “On credibility of simulation studies of
telecommunication networks”. IEEE Communications Magazine 40

[21] J. L. Sobrinho and A. S. Krishnakumar: “Quality-of-Service in ad hoc
Carrier Sense Multiple Access Wireless Networks”, IEEE JSAC, vol. 17, no. 8,
Aug. 1999, pp.1353-1414.

[22] Stefan Mangold, Sunghyun Choi, Peter May, Ole Klein, Guido Hiertz,
Lothar Stibor: “IEEE 802.11e Wireless LAN for Quality of Service”, in Proc.
Eur. Wireless'02, vol. 1, Feb. 2002, pp. 32-39.

[23] http://security.zhwin.ch/ITG_WLAN_Theory.pdf “Wireless LAN”

[24] Youssef Iraqi and Raouf Boutaba: “Resource Management issues in
Future Wireless Multimedia Networks”, The International Journal of High
Speed Networking, volume 9 number3 pp. 231-260, 2000.

[25] Y. Murat Erten and Emrah Tomur: “A Layered Architecture for Corporate
802.11 Wireless Networks” Wireless Telecommunications Symposium, 2004
Publication Date: 14-15 May 2004, pp. 123- 128.

[26] F. Ferreri, M. Bernashi and L. Valcamonici: “Access points vulnerabilities
to DoS attacks in 802.11 networks”, Proceedings of WCNC2004, IEEE
Wireless Communications and Networking Conference, Atlanta (Georgia-
U.S.), 2004.

 97

[27] [http://moment.cs.ucsb.edu/AODV/aodv.html#Description]

[28] Common Wireless Ad Hoc Network Usage Scenarios -
http://www.flarion.com/ans-research/Drafts/draft-irtf-yang-ans-scenarios-00.txt

[29] RFC 2501 - Mobile Ad hoc Networking (MANET): Routing Protocol
Performance Issues and Evaluation Considerations.

[30] Harpreet S. Arora: “Towards Achieving QoS Guarantees in Mobile Ad
Hoc Networks”, Masters Thesis, Drexel University, Department of Computer
Science, Philadelphia, PA, November 2003.

[31] Saurabh Jain and Dharma P. Agrawal: “Wireless community networks”,
IEEE Computer, Vol. 36, No. 8, August 2003, pp. 90-92.

[32] http://planetmath.org/encyclopedia/AdHoc.html

[33] http://www.wordiq.com/definition/List_of_Latin_phrases

[34] RFC 3917: “Requirements for IP Flow Information Export” (IPFIX)

[35] Policy Based Quality of Service - www.csd.uch.gr/~hy536/PB.pdf

[36] RFC 1633: Integrated Services in the Internet Architecture: an Overview

[37] Constant Gbaguidi, Hans J. Einsiedler, Paul Hurley, Werner
Almesberger, and Jean-Pierre Hubaux: “A Survey of Differentiated Services
Proposals for the Internet”, Technical report No. SSC/1998/020, April 1998.

[38] Xipeng Xiao and Lionel M. Ni: “Internet QoS: A Big Picture”, IEEE
Network, vol. 13, no. 2, Mar./Apr. 1999.

[39] RFC 2475: An Architecture for Differentiated Services

[40] RFC 3086: Definition of Differentiated Services Per Domain Behaviors
and Rules for their Specification

[41] RFC 2597: Assured Forwarding PHB Group

[42] RFC 2598: An Expedited Forwarding PHB

[43] H. Dong, I. D. Chakares, C. –H. Lin, A. Gersho, E. Belding-Royer, U.
Madhow, J. D. Gibson: “Speech Coding for Mobile Ad Hoc Networks”
Proceedings of the Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove, CA, November 2003.

[44] RFC 3819: Advice for Internet Subnetwork Designers

[45] IETF Internet-draft: “Using Radius for PE-Based VPN Discovery”, draft-
heinanen-radius-pe-discovery-03.txt

 98

[46] RFC 2026: The Internet Standards Process -- Revision 3

[47] Lee, S.B., Ahn, G.S., Campbell, A.T., “Improving UDP and TCP
performance in Mobile Ad Hoc Networks with INSIGNIA”, June 2001, pp 156-
165, IEEE Communication Magazine

[48] M. C. Domingo and D. Remondo: “A Cooperation Model between Ad Hoc
Networks and Fixed Networks for Service Differentiation”, Proceedings of the
4th International IEEE Workshop on Wireless Local Networks (WLN). IEEE, p.
692-693.

[49] Zeinalipour-Yazti Demetrios: “A Glance at Quality of Services in Mobile
Ad-Hoc Networks”, Technical report, University of California-Riverside, 2001.

[50] S. Chakrabarti and A. Mishra, “QoS Issues in Ad Hoc Wireless
Networks”, IEEE Communications Magazine, vol. 39, no. 2, pp. 142-148,
February 2001.

[51] Andrew S. Tanenbaum: “Computer Networks”, 4th edition. Pearson
Education, Inc.

[52] Janusz Gozdecki, Andrezej Jajszczyk, and Rafal Stankiewitz, “Quality of
Service Terminology in IP Networks”, IEEE Communications Magazine, pp
153-159, March 2003.

 99

12 Appendix A

 CBR packet size: 80 byte CBR packet size: 150 byte

 CBR packet size: 200 byte CBR packet size: 250 byte

 CBR packet size: 300 byte CBR packet size: 512 byte (Video

 100

13 Appendix B
Number of
TCP flows 2 4 6 8 10 12
SWAN
off

609
Kbps

425
Kbps

295
Kbps

232
Kbps

210
Kbps

128
Kbps

SWAN
on

388
Kbps

237
Kbps

176
Kbps

145
Kbps

121
Kbps

114
Kbps

Table SSC1: Average TCP throughput of each node

Number of
TCP flows 2 4 6 8 10 12
SWAN
off

561
Kbps

397
Kbps

259
Kbps

199
Kbps

160
Kbps

133
Kbps

SWAN
on

192
Kbps

228
Kbps

124
Kbps

104
Kbps

 72 Kbps 61
Kbps

Table SSC2: Average TCP throughput of each node

Number of
TCP flows 0 2 4 6 8 10 12
SWAN
off

 2.25 ms 818.15 ms 1562.96
ms 2003.96 ms 3357.00 ms 2665.89 ms 2893.88 ms

SWAN
on

51.28 ms 452.57 ms 544.75 ms 631.13 ms 638.27 ms 672.49 ms 680.46 ms

Table SSC1: Average Real-Time delay

Number of
TCP flows 0 2 4 6 8 10 12
SWAN off 2.19 ms 446.16 ms 717.89 ms 693.93 ms 717.28 ms 715.37 ms 721.12 ms

SWAN on 8.94 ms 734.73 ms 607.75 ms 554.17 ms 639.76 ms 593.14 ms 590.26 ms
Table SSC2: Average Real-Time delay

 101

14 Appendix C
Scripting files for SSC2 in ns-2:

==
Define options
==
set val(chan) Channel/WirelessChannel ;# channel type
set val(prop) Propagation/TwoRayGround ;# radio-propagation model
set val(netif) Phy/WirelessPhy ;# network interface type
set val(mac) Mac/802_11 ;# MAC type
set val(ifq) Queue/DropTail/PriQueue ;# interface queue type
set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model
set val(ifqlen) 50 ;# max packet in ifq
set opt(seed) 0.0 ;# don't know what this is ???
set val(x) 1000 ;# x-coord of simulation field
set val(y) 800 ;# y-coord of simulation field
set val(rp) AODV ;# Routing protocol
set val(energymodel) EnergyModel ;#????????????????????????????
set val(initialenergy) 100 ;# Initial energy in Joules
set val(progress) 4 ;# progress markers
set val(nn) 20 ;# number of mobilenodes
set val(nodes) "nodes20_1000x800_wireless.tcl"
set val(traffic) "traffic20_1000x800_wireless.tcl"
set val(stop) 100.0 ;# stop simulation at this time
==
options for SWAN module
==
set opt(swan_rc) "ON" ;# rate controller ON/OFF
set opt(swan_ac) "ON" ;# admission controller ON/OFF
set opt(dir) "result/test" ;# result directory
set opt(band) "100Kb" ;# initial rate
set opt(ssthresh) "1Mb" ;# slow start threshold
set opt(segment) "50Kb" ;# increment segment (c)
set opt(mdrate) "50" ;# decrement rate (r)
set opt(gap) "1.2" ;# gap control (g)
set opt(minband) "100kb" ;# minimum rate
set opt(acrate) "2000Kb" ;# admission control rate
set opt(thrate) "4000Kb" ;# threshold rate
==
aditional SWAN stuff
==
set AgentTrace OFF
set RouterTrace OFF
set MacTrace OFF

LL set mindelay_ 50us
LL set delay_ 25us ;# link-level overhead
LL set bandwidth_ 0 ;# not used
LL set off_prune_ 0 ;# not used
LL set off_CtrMcast_ 0 ;# not used

Agent/Null set sport_ 0
Agent/Null set dport_ 0

Agent/CBR set sport_ 0
Agent/CBR set dport_ 0

Agent/TCPSink set sport_ 0
Agent/TCPSink set dport_ 0

Agent/TCP set sport_ 0
Agent/TCP set dport_ 0
Agent/TCP set packetSize_ 1460

Queue/DropTail/PriQueue set Prefer_Routing_Protocols 1
==

unity gain, omni-directional antennas #
set up the antennas to be centered in the node and 1.5 meters above it #

Antenna/OmniAntenna set X_ 0
Antenna/OmniAntenna set Y_ 0
Antenna/OmniAntenna set Z_ 1.5
Antenna/OmniAntenna set Gt_ 1.0
Antenna/OmniAntenna set Gr_ 1.0

Initialize the SharedMedia interface with parameters to make #
it work like the 914MHz Lucent WaveLAN DSSS radio interface #

Phy/WirelessPhy set CPThresh_ 10.0

 102

Phy/WirelessPhy set CSThresh_ 1.559e-11
Phy/WirelessPhy set RXThresh_ 3.652e-10
Phy/WirelessPhy set Rb_ 11*1e6
Phy/WirelessPhy set Pt_ 0.2818
Phy/WirelessPhy set freq_ 914e+6
Phy/WirelessPhy set L_ 1.0
Phy/WirelessPhy set bandwidth_ 11e6

Initialize the 802.11 MAC #

Mac set bandwidth_ 11e6

==#
Main Program #
=== #

Initialize Global Variables #

Creating an instance of the simulator
set ns_ [new Simulator]

set up topography object that keep track of mobile nodes within the topologica boundary
set topo [new Topography]

#set god_ [new God]

#makedir $opt(dir)

Settup trace support #

open a files for writing that is going to be used for the nam and trace data
#set tracefd [open trace40_150x150_wireless.tr w]
#set namtrace [open out40_150x150_wireless.nam w]

set tracefd [open trace20_1000x800_wireless.tr w]
set namtrace [open out20_1000x800_wireless.nam w]

Provide the topography object with x and y co-ordinates of the boundary
$topo load_flatgrid $val(x) $val(y)

$ns_ trace-all $tracefd
$ns_ namtrace-all-wireless $namtrace $val(x) $val(y)

Create God object (General Operations Director) #
used to store global information about the state of #
the environment, network or nodes #

create-god $val(nn)

Create channel #1 #

set chan_1_ [new $val(chan)]

Create the specified number of mobilenodes [$val(nn)] and "attach" them #
to the channel. #
Here two nodes are created : node(0) and node(1) #

configure node #

$ns_ node-config -adhocRouting $val(rp) \
 -llType $val(ll) \
 -macType $val(mac) \
 -ifqType $val(ifq) \
 -ifqLen $val(ifqlen) \
 -antType $val(ant) \
 -propType $val(prop) \
 -phyType $val(netif) \
 -channel $chan_1_ \
 -topoInstance $topo \
 -agentTrace ON \
 -routerTrace ON \
 -macTrace ON \
 -movementTrace OFF \
 -energyModel $val(energymodel) \
 -initialEnergy $val(initialenergy)

 103

Create val(nn) mobile nodes #

for {set i 0} {$i < $val(nn) } {incr i} {
 set node_($i) [$ns_ node]
 $node_($i) random-motion 0 ;# disable random motion
}

Set lossmonitor for the different nodes #

for {set i 0} {$i < $val(nn)} {incr i} {

 set x [expr $i % 2]

 if { $x > 0} {
 puts "putting lossmonitor on node $i"
 set loss_($i) [new Agent/LossMonitor]
 } else {
 # denne skal bort senere
 puts "putting lossmonitor on node $i"
 set loss_($i) [new Agent/LossMonitor]
 }
}

Loading scenario file #

puts "Loading nodes scenario file..."
source $val(nodes)
puts "Load complete..."

Loading traffic file #

puts "Loading connection pattern..."
source $val(traffic)
puts "Load complete..."

trigger shaper & utilization monitor every second #

for {set i 0} {$i <= $val(stop)} {incr i 1} {
 for {set j 0} {$j < $val(nn) } {incr j} {
 $ns_ at $i "$node_($j) shape 1"
 $ns_ at $i "$node_($j) monitor c1"
 }
}

Define node initial position(size) in nam #

for {set i 0} {$i < $val(nn)} {incr i} {
 # 20 defines the node size in nam, must adjust it according to your scenario
 # The function must be called after mobility model is defined
 $ns_ initial_node_pos $node_($i) 60
}

Tell nodes when the simulation ends #

for {set i 0} {$i < $val(nn) } {incr i} {
 $ns_ at $val(stop).000000001 "$node_($i) reset";
}

stoping procedure #

proc stop {} {
 global ns_ tracefd namtrace th_put_vi th_put_vo th_put_ftp val recv_ftp
 $ns_ flush-trace

 close $tracefd
 close $namtrace

 exit 0
}

simulation counter #

for {set i 1} {$i <= $val(progress)} {incr i} {
 set t [expr $i * $val(stop) / ($val(progress) + 1)]
 $ns_ at $t "puts \"completed through $t secs...\""
}

starting procedures #

 104

#$ns_ at 0.0 "record_thput"
#$ns_ at 100.0 "stop"
$ns_ at $val(stop) "stop"
$ns_ at $val(stop).00000001 "puts \"NS EXITING...\" ; $ns_ halt"

start the simulation #

puts "Starting Simulation..."
$ns_ run

END OF THE SCRIPT #

 105

Provide initial (X,Y, for now Z=0) co-ordinates for mobilenodes #

set god_ [God instance]

Node initial position #

nodes 0-3
$node_(0) set X_ 0.0
$node_(0) set Y_ 0.0
$node_(0) set Z_ 0.0

$node_(1) set X_ 0.0
$node_(1) set Y_ 200.0
$node_(1) set Z_ 0.0

$node_(2) set X_ 0.0
$node_(2) set Y_ 400.0
$node_(2) set Z_ 0.0

$node_(3) set X_ 0.0
$node_(3) set Y_ 600.0
$node_(3) set Z_ 0.0

nodes 4-7
$node_(4) set X_ 200.0
$node_(4) set Y_ 0.0
$node_(4) set Z_ 0.0

$node_(5) set X_ 200.0
$node_(5) set Y_ 200.0
$node_(5) set Z_ 0.0

$node_(6) set X_ 200.0
$node_(6) set Y_ 400.0
$node_(6) set Z_ 0.0

$node_(7) set X_ 200.0
$node_(7) set Y_ 600.0
$node_(7) set Z_ 0.0

nodes 8-11
$node_(8) set X_ 400.0
$node_(8) set Y_ 0.0
$node_(8) set Z_ 0.0

$node_(9) set X_ 400.0
$node_(9) set Y_ 200.0
$node_(9) set Z_ 0.0

$node_(10) set X_ 400.0
$node_(10) set Y_ 400.0
$node_(10) set Z_ 0.0

$node_(11) set X_ 400.0
$node_(11) set Y_ 600.0
$node_(11) set Z_ 0.0

nodes 12-15
$node_(12) set X_ 600.0
$node_(12) set Y_ 0.0
$node_(12) set Z_ 0.0

$node_(13) set X_ 600.0
$node_(13) set Y_ 200.0
$node_(13) set Z_ 0.0

$node_(14) set X_ 600.0
$node_(14) set Y_ 400.0
$node_(14) set Z_ 0.0

$node_(15) set X_ 600.0
$node_(15) set Y_ 600.0
$node_(15) set Z_ 0.0

nodes 16-19
$node_(16) set X_ 800.0
$node_(16) set Y_ 0.0
$node_(16) set Z_ 0.0

$node_(17) set X_ 800.0
$node_(17) set Y_ 200.0
$node_(17) set Z_ 0.0

$node_(18) set X_ 800.0

 106

$node_(18) set Y_ 400.0
$node_(18) set Z_ 0.0

$node_(19) set X_ 800.0
$node_(19) set Y_ 600.0
$node_(19) set Z_ 0.0

Node movement #

#$ns_ at 5.0 "$node_(24) setdest 20.0 120.0 15.0"

==
Traffic Model
==

set pareto1 [new RandomVariable/Pareto]
$pareto1 set avg_ 10
$pareto1 set shape 1.2

set pareto2 [new RandomVariable/Pareto]
$pareto2 set avg_ 10
$pareto2 set shape 1.2

set uniform [new RandomVariable/Uniform]
$uniform set min_ 0
$uniform set max_ 1

set udp_cnt 0
set tcp_cnt 0

proc create-video-connection { src dst stime} {
 global ns_ node_ val uniform udp_cnt loss_
 set j [expr $stime + [$uniform value]]

 set udp_($udp_cnt) [new Agent/UDP]
 $ns_ attach-agent $node_($src) $udp_($udp_cnt)

 # set null_($udp_cnt) [new Agent/Null]
 # $ns_ attach-agent $node_($dst) $null_($udp_cnt)
 $ns_ attach-agent $node_($dst) $loss_($dst)

 set cbr_($udp_cnt) [new Application/Traffic/CBR]

 $cbr_($udp_cnt) set packetSize_ 512
 $cbr_($udp_cnt) set interval_ 0.02
 $cbr_($udp_cnt) set random_ 1
 $cbr_($udp_cnt) set maxpkts_ 15000
 $cbr_($udp_cnt) attach-agent $udp_($udp_cnt)

 #$ns_ connect $udp_($udp_cnt) $null_($udp_cnt)
 $ns_ connect $udp_($udp_cnt) $loss_($dst)

 $ns_ at $j "$cbr_($udp_cnt) start"
 $ns_ at 1000 "$cbr_($udp_cnt) stop"

 puts "at $j | SRC($src) | DST($dst) | Video($udp_cnt) | lossMonitor: loss($dst)"
 incr udp_cnt
}

proc create-voice-connection { src dst stime} {
 global ns_ node_ val uniform udp_cnt loss_
 set j [expr $stime + [$uniform value]]

 # This creates an instance of the UDP agent
 set udp_($udp_cnt) [new Agent/UDP]

 107

 # This is a common command used to attach any <agent> to a given <node>
 $ns_ attach-agent $node_($src) $udp_($udp_cnt)

 # Creates an instance of the Null agent
 set null_($udp_cnt) [new Agent/Null]

 # Put receiving node on the Null agent
 $ns_ attach-agent $node_($dst) $null_($udp_cnt)

 # Put the receiving node on the LossMonitor agent
 $ns_ attach-agent $node_($dst) $loss_($dst)

 # setup a CBR traffic flow for the udp agent
 set cbr_($udp_cnt) [new Application/Traffic/CBR]

 # Constant size of packets generated
 $cbr_($udp_cnt) set packetSize_ 80

 # Interval between packets
 $cbr_($udp_cnt) set interval_ 0.02

 # Whether or not to introduce random noice in the scheduled departure times
 $cbr_($udp_cnt) set random_ 1

 # Maximum number of packets to send
 $cbr_($udp_cnt) set maxpkts_ 15000

 $cbr_($udp_cnt) attach-agent $udp_($udp_cnt)

 # setup an end-to-end connection between two agents (at the transport layer)
 $ns_ connect $udp_($udp_cnt) $null_($udp_cnt)
 $ns_ connect $udp_($udp_cnt) $loss_($dst)

 # Causes the source to start generating packets at $i sec
 $ns_ at $j "$cbr_($udp_cnt) start"

 # Causes the source to stop generating packets at time 1000 sec
 $ns_ at 1000 "$cbr_($udp_cnt) stop"

 puts "at $j | SRC($src) | DST($dst) | Voice($udp_cnt) | lossMonitor: loss_($dst)"
 incr udp_cnt
}

proc create-ftp-connection { src dst stime} {
 global ns_ node_ val uniform tcp_cnt loss_
 set j [expr $stime + [$uniform value]]

 # create sender agent
 set tcp_($tcp_cnt) [new Agent/TCP/Reno]

 # Put sender on node $node_($src)
 $ns_ attach-agent $node_($src) $tcp_($tcp_cnt)

 # Create receiver agent
 set null_($dst) [new Agent/TCPSink]

 # Put receiver on node $node_($dest)
 $ns_ attach-agent $node_($dst) $null_($dst)

 # Put the receiving node on the LossMonitor agent
 $ns_ attach-agent $node_($dst) $loss_($dst)

 # Create an FTP source "application"
 set ftp_($tcp_cnt) [new Application/FTP]

 # The size in bytes to use for all packets from this source
 $ftp_($tcp_cnt) set packetSize_ 512

 # The upper bound on the advertised window for the TCP connection
 $ftp_($tcp_cnt) set window_ 32

 # The initial size of the congestion window on slow-start
 $ftp_($tcp_cnt) set windowInit_ 16

 # The maximum number of packets generated by the source
 $ftp_($tcp_cnt) set maxpkts_ 1000000

 # Associate FTP with the TCP sender
 $ftp_($tcp_cnt) attach-agent $tcp_($tcp_cnt)

 # Astablish TCP connection
 $ns_ connect $tcp_($tcp_cnt) $null_($dst)

 # Arrange for FTP to start at time $j sec
 $ns_ at $j "$ftp_($tcp_cnt) start"

 # Arrange for FTP to stop at time 1000 sec

 108

 $ns_ at 1000 "$ftp_($tcp_cnt) stop"

 puts "at $j |SRC($src) | DST($dst) | FTP($tcp_cnt) | lossMonitor: loss_($dst)"
 incr tcp_cnt
}

Video
create-video-connection 0 19 0
create-video-connection 3 16 0
create-video-connection 19 0 0
create-video-connection 16 3 0

Voice
create-voice-connection 0 19 0
create-voice-connection 3 16 0
create-voice-connection 19 0 0
create-voice-connection 16 3 0

2 TCP flows
create-ftp-connection 8 11 0
#create-ftp-connection 2 3 0
4 TCP flows
#create-ftp-connection 4 5 0
#create-ftp-connection 6 7 0
6 TCP flows
#create-ftp-connection 8 9 0
#create-ftp-connection 10 11 0
8 TCP flows
#create-ftp-connection 12 13 0
#create-ftp-connection 14 15 0
10 TCP flows
#create-ftp-connection 16 17 0
#create-ftp-connection 18 19 0
12 TCP flows
#create-ftp-connection 20 21 0
#create-ftp-connection 22 23 0

 109

15 Appendix D
Python script files for analysis:

#!/usr/bin/env python

import sys, re, math, os, shutil

print "script to make plotfile for gnuplot"

reading infile and outfile
try:
 infilename = sys.argv[1]
 outfilename = sys.argv[2]
 no_tcp_flows = sys.argv[3]
except:
 print 'Usage:', sys,argv[0], 'infile_tcp outfile_tcp
no_of_tcp_flows'
 sys.exit(1)

out_vi = 'vi_cbr_plott.out'
out_vo = 'vo_cbr_plott.out'

open files
ifile = open(infilename, 'r') # r for reading
ofile = open(outfilename, 'w') # w for writing

vi_ofile = open(out_vi, 'w')
vo_ofile = open(out_vo, 'w')

initaitions
counter = 0

vi_pac_interval = 0
vo_pac_interval = 0
tcp
total_pac_interval = 0

total_thput = 0
vi_total = 0
vo_total = 0
case = "tmp1"

kan putte pÃ¥ en for-lÃ¸kke her som gÃ¥r 6 ganger (2-4-6-8-10-12
tcp flows)

read line by line:
for line in ifile:

 pattern1 =\
 r"r\s(\d+)\.\d+\s_(\d+)_\s.*"

 pattern2 = \
 r"r\s\d+\.\d+\s_\d+_\sAGT\s{2}---\s\d+\stcp\s(\d+)\s.*"

 110

 pattern3 = \
 r"r\s\d+\.\d+\s_\d+_\sAGT\s{2}---\s\d+\scbr\s(\d+)\s.*"

 #pattern2 = \
 # r"s\s\d+\.\d+\s_\d+_\sAGT\s{2}---\s\d+\stcp\s(\d+)\s.*"

 #pattern1 =\
 # r"s\s(\d+)\.\d+\s.*"

 match1 = re.search(pattern1, line)

 if match1:
 time = float(match1.group(1))
 node = int(match1.group(2))

 if time > counter:
 counter = counter + 1

 total_in_Kbps = total_pac_interval * 8 / 1000
 total_pr_flow = total_in_Kbps / int(no_tcp_flows)

 vo_in_Kbps = vo_pac_interval * 8 / 1000
 vi_in_Kbps = vi_pac_interval * 8 / 1000

 #print "---
---"
 #print "line: %s" % (line)
 #print "tid: %g" % (time)
 #print "%d total average throughput: %d Kbps | average
throughput for each flow: %d Kbps" %
(counter,total_in_Kbps,total_pr_flow)
 #print "voice byte: %d:" % (vo_pac_interval)
 #print "Voice: %d Kbps" % (vo_in_Kbps)
 #print "Video: %d Kbps" % (vi_in_Kbps)

 # write output to plott-file
 ofile.write('%d %d\n' % (counter,total_in_Kbps))
 vi_ofile.write('%d %d\n' % (counter,vi_in_Kbps))
 vo_ofile.write('%d %d\n' % (counter,vo_in_Kbps))

 total_pac_interval = 0
 vo_pac_interval = 0
 vi_pac_interval = 0

 match2 = re.search(pattern2, line)
 if match2:
 #time = float(match.group(1))
 packet = int(match2.group(1))
 # received packet are 20 bytes higher than the one sent
(bug in ns-2)
 packet = packet - 20

 # collect total throughput on tcp
 total_thput = total_thput + packet

 total_pac_interval = total_pac_interval + packet

 match3 = re.search(pattern3, line)

 111

 if match3:
 #print "line: %s" % (line)
 #node = int(match3.group(1))
 cbr_packet = int(match3.group(1))
 #print "cpr:packet: %d" % (cbr_packet)
 cbr_packet = cbr_packet - 20

 if (node == 33 or node == 35 or node == 37 or node ==
39):
 # voice
 #print "VOICE node: %s | line: %s" % (node,line)
 vo_pac_interval = vo_pac_interval + cbr_packet
 vo_total = vo_total + cbr_packet
 #print "node%d: cbr_packet: %d voice" %
(node,cbr_packet)
 else:
 #print "VIDEO node: %s | line: %s" % (node,line)
 vi_pac_interval = vi_pac_interval + cbr_packet
 vi_total = vi_total + cbr_packet
 #print "node%d: cbr_packet: %d video" %
(node,cbr_packet)

 cbr_packet = 0

counter = counter + 1
total_in_Kbps = total_pac_interval * 8 / 1000
total_pr_flow = total_in_Kbps / int(no_tcp_flows)

vo_in_Kbps = vo_pac_interval * 8 / 1000
vi_in_Kbps = vi_pac_interval * 8 / 1000
#print "---
-----------------------------------"
#print "%d total average throughput: %d Kbps | average throughput for
each flow: %d Kbps" % (counter,total_in_Kbps,total_pr_flow)

write last interval output to plott-file
ofile.write('%d %d\n' % (counter,total_in_Kbps))
vi_ofile.write('%d %d\n' % (counter,vi_in_Kbps))
vo_ofile.write('%d %d\n' % (counter,vo_in_Kbps))

get the throughput in Kbps
total_thput = total_thput * 8 / 1000 / (counter + 1)
vi_total = vi_total * 8 / 1000 / (counter + 1)
vo_total = vo_total * 8 / 1000 / (counter + 1)
print "--
----------------------------------"
print "total average TCP throughput: %g Kbps" % (total_thput)
print "total average Video throughput: %g Kbps" % (vi_total)
print "total average Voice throughput: %g Kbps" % (vo_total)
get the average throughput on each flow
total_thput = total_thput / int(no_tcp_flows)
print "average TCP throughput for each flow: %g Kbps" % (total_thput)
print "--
----------------------------------"

ofile.close()
vi_ofile.close()
vo_ofile.close()

run the outputfile in gnuplot
f = open(case + '.gnuplot', 'w')

 112

f.write("""
set title 'Throughput (Kbps)';
set yrange [0:2000];
set term png small color;
set output 'MH1_on_th12.png';
""")

f.write("plot '%s' title 'TCP' with lines, '%s' title 'Video' with
lines, '%s' title 'Voice' with lines;\n" %
(outfilename,out_vi,out_vo))
#f.write("plot '%s' title 'TCP' with lines;\n" % (outfilename))
f.close()
cmd = "gnuplot -geometry 800x600 -persist " + case + ".gnuplot"
failure = os.system(cmd)
if failure:
 print "running gnuplot failed"; sys.exit(1)

 113

#!/usr/bin/env python

import sys, re, math, os, shutil

print "script to make plotfile for gnuplot"

reading infile and outfile
try:
 #infilename = sys.argv[1]
 no_nodes= sys.argv[1]
 seconds = sys.argv[2]
except:
 print 'Usage:', sys,argv[0], '<number of nodes> <seconds
simulated>'
 sys.exit(1)

SwanOff_infile = 'AGT_SWANoff_'+no_nodes+'_'
SwanOn_infile = 'AGT_SWANon_'+no_nodes+'_'
infile_end = '.tr'
ofile_end = '.out'

#s_list = []
#counter = 0
total_delay = 0

def put_in_list(dsec,seq):
 #s_list[seq] = dsec
 s_list.append(dsec)

def check_sendt(seq):
 return s_list[seq]

loop for SWAN on/off
for i in range(0,2,1):
 if (i == 0):
 print "j = %d" % (i)
 infilename = SwanOff_infile
 if (i == 1):
 print "j = %d" % (i)
 infilename = SwanOn_infile

 no_flow = 0
 ofile = open(infilename + ofile_end, 'w')
 vi_ofile = open('vi_' + infilename + ofile_end, 'w')
 vo_ofile = open('vo_' + infilename + ofile_end, 'w')

 # loop for diffrent number of TCP flows
 for j in range(7):

 #no_flow = no_flow + 2
 no = no_flow

 s_list = []
 counter = 0
 total_delay = 0
 max_delay = 0

 114

 vi_tot_delay = 0
 vo_tot_delay = 0
 vi_count = 0
 vo_count = 0

 ifile = open(infilename + str(no) + infile_end, 'r') # r for
reading

 # read line by line:
 for line in ifile:

 pattern0 = \
 r"s\s(\d+\.\d+)\s_(\d+)_\sAGT\s{2}---
\s(\d+)\s.*"

 pattern1 = \
 r"r\s(\d+\.\d+)\s_(\d+)_\sAGT\s{2}---
\s(\d+)\scbr\s(\d+)\s.*"

 match0 = re.search(pattern0, line)

 if match0:
 sendt = float(match0.group(1))
 s_node = int(match0.group(2))
 s_seq = int(match0.group(3))

 # call function put_in_list(s_dsec,seq)
 put_in_list(sendt,s_seq)

 match1 = re.search(pattern1, line)

 if match1:
 received = float(match1.group(1))
 r_node = int(match1.group(2))
 r_seq = int(match1.group(3))
 packet = int(match1.group(4))

 # call fuction check_sendt(r_dsec,seq)
 sendt_sec = check_sendt(r_seq)
 delay = received - sendt_sec
 msec_delay = delay * 1000

 if packet < 110:
 #voice
 vo_tot_delay = vo_tot_delay + msec_delay
 vo_count = vo_count + 1
 else:
 vi_tot_delay = vi_tot_delay + msec_delay
 vi_count = vi_count + 1

 if msec_delay > max_delay:
 max_delay = msec_delay

 #if max_delay > 2700:
 #print "new max delay: %f" % (max_delay)
 #print "sendt: %f | received: %f | node: %d |
seq: %d | delay: %f | delay in millisec: %f msec" %
(sendt_sec,float(received),r_node,r_seq,delay,msec_delay)
 total_delay = total_delay + msec_delay
 counter = counter + 1

 115

 avg_delay = total_delay / counter
 vi_avg_delay = vi_tot_delay / vi_count
 vo_avg_delay = vo_tot_delay / vo_count
 print "--

-"
 print "avg delay %s TCP flows: avg_delay: %f msec | max delay
%f | Video: %f | Voice: %f" %
(str(no),avg_delay,max_delay,vi_avg_delay,vo_avg_delay)

 ofile.write('%d %f\n' % (no_flow,avg_delay))
 vi_ofile.write('%d %f\n' % (no_flow,vi_avg_delay))
 vo_ofile.write('%d %f\n' % (no_flow,vo_avg_delay))
 no_flow = no_flow + 2
 ofile.close()
 vi_ofile.close()
 vo_ofile.close()

case = 'avg_rt_delay'
case_vivo = 'avg_vivo_delay'

run the outputfile in gnuplot
f = open(case + '.gnuplot', 'w')
f.write("""
set title 'RT delay vs. number of TCP flows';
set yrange [0:1500];
set xrange [0:12];
set ylabel 'Delay in milliseconds';
set xlabel 'Number of TCP flows';
set term png small color;
set output 'avg_rt_delay.png';
""")

f.write("plot '%s' title 'SWAN off' with lines, '%s' title 'SWAN on'
with lines;\n" % (SwanOff_infile+ofile_end,SwanOn_infile+ofile_end))

f.close()
cmd = "gnuplot -geometry 800x600 -persist " + case + ".gnuplot"
failure = os.system(cmd)
if failure:
 print "running gnuplot failed"; sys.exit(1)

second plot
vivo = open(case_vivo + '.gnuplot', 'w')
vivo.write("""
set title 'Video/Voice delay vs. number of TCP flows';
set yrange [0:1500];
set xrange [0:12];
set ylabel 'Delay in milliseconds';
set xlabel 'Number of TCP flows';
set term png small color;
set output 'avg_vivo_delay.png';
""")

vivo.write("plot '%s' title 'Video SWAN off' with lines, '%s' title
'Voice SWAN off' with lines, '%s' title 'Video SWAN on' with lines,
'%s' title 'Voice SWAN on' with lines;\n" %
('vi_'+SwanOff_infile+ofile_end,'vo_'+SwanOff_infile+ofile_end,'vi_'+
SwanOn_infile+ofile_end,'vo_'+SwanOn_infile+ofile_end))

 116

vivo.close()
cmd2 = "gnuplot -geometry 800x600 -persist " + case_vivo + ".gnuplot"
failure = os.system(cmd2)
if failure:
 print "running gnuplot failed"; sys.exit(1)

