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Abstract 
 
Mobile Ad Hoc Networks (MANET) is an autonomous collection of mobile 
nodes with wireless connection. The nodes are free to move and there exist 
no infrastructure for these wireless connected nodes. The Stateless Wireless 
Ad hoc Network model (SWAN) is a proposal trying to solve the Quality of 
Service concerns in MANET’s. This study presents an introduction to the 
wireless world, the SWAN network model, a theoretical analysis of the SWAN 
model, and finally my work and analysis of the result gained with the 
simulation of the SWAN model in Network Simulator 2 (ns-2).   
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1 Introduction 

1.1 About my work with this thesis 
The general idea behind my work on this master thesis is to study wireless Ad 
Hoc networks, Quality of Service in MANET, and particularly take a deeper 
look at the SWAN network model and the implementation of that model made 
for ns-2. The people behind SWAN have done several tests to show how the 
model performs in the ns-2 network simulator. The two major tasks in this 
thesis are; first, to make a theoretical analysis of the SWAN model, and 
second, making analysis of the simulations of the SWAN network model in ns-
2. 
 
My effort is to install the ns-2 simulator for Linux and then to set up the same 
scenario which they ran, and then verify those tests. I will also expand my 
simulations with scenarios, which seems realistic for Real-Time applications in 
an Ad-Hoc network environment. After accomplishing my simulations I will 
analyse the output of these simulations and try to find out the status of the 
SWAN network model. That means how well is the SWAN network model 
improving the Quality of Service in an Ad Hoc network, what do works, what 
does not works and what improvement can be done in both the model and the 
implementation. New suggestions will be enclosed in suggestions for future 
work. 

1.2 Chapter overview 
Chapter 1 is an introduction to this thesis and also to the different network 
communities. Chapter 2 introduces the reader to world of wireless networks 
and particularly Mobile Ad Hoc networks. Explaining the term “Quality of 
Service” and its conceptions is carried out in chapter 3. The Stateless 
Wireless Ad Hoc Networks (SWAN) model is presented in chapter 4. The 
problems and troubles I came across during my work with SWAN are 
presented in chapter 5. Chapter 6 is dedicated to a short description of two 
related QoS network models. Chapter 7 includes a presentation of the ns-2 
networks simulator, my work with this simulator and my preliminary 
simulations schemes carried out in this simulator. In chapter 8, a description 
of the different simulations scenario intended for testing the performance of 
the SWAN implementation. Chapter 9 is dedicated to the presentations of the 
result of the simulation scenarios described in chapter 8. Chapter 10 
summarizes my work, my result and concludes the status of the current 
SWAN model. This chapter also contains suggestions for future work and 
research. 

1.3 Who is who in the network community 
In the internet research network community a lot of vendors, suppliers, 
organizations, universities etc. exist. In this chapter I will give a short overview 
of who is who, of the most important organizations in the network community, 
their tasks and major areas of work. To ensure that computers are able to 
communicate despite inequalities in both hardware and software from all the 
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vendors that exist, network standards are needed to ensure word wide 
compatibility.  
 
One of the earliest founded standardization organization is the International 
Telecommunication Union (ITU). The task of the ITU’s standardization unit 
ITU-T, is to make technical recommendations about data communication, 
telegraphy, and telephony. Another major contributor, which is the largest 
professional organization in the world, is the Institute of Electrical and 
Electronics Engineers (IEEE). Every year IEEE host hundreds of conferences, 
publish journals and articles in addition to develop standards in their electrical 
engineering and computing standardization group. One of their most 
successful groups is the 802 committee.  
 
Yet another important organization is the part of the Internet Architecture 
Board (IAB) which is called the Internet Engineering Task Force (IETF). IETF 
concentrates its work on short-term engineering issues. The IETF is divided 
into specific working groups with individual problem to solve. For a proposal of 
a technical contribution to the Internet to become a Proposed Standard, in 
addition to have sufficient interest, it must first be described completely in an 
Internet draft. After the publishing, the draft is made available for informal 
reviews and comments for a six months period. A working implementation 
must have been thoroughly tested upon advancing to a Request For 
Comments (RFC). The archival series of RFC document is the official 
publication channel for Internet standards documents and other publications. 
After this, the proposal is ready to be declared as an Internet Standard if the 
software works and the IAB is convinced [46] [51].  
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2 Wireless Networks and Mobile Ad Hoc Networking 
This chapter will present background material of wireless computer networks, 
its operations, architecture and its protocols. 

2.1 Introduction to Wireless Networks 
In recent years, wireless radio networks have become increasingly popular. 
Among the most popular devices are mobile phones, PDAs and computer 
laptops. The nomadic lifestyle of people in modern society has to be 
supported by future wireless system. Wireless computer networks can be 
divided into three broad categories; System interconnection (e.g., Bluetooth), 
Wireless LAN, and Wireless WAN (e.g., IEEE 802.16). For the further purpose 
of this paper, Wireless LAN (WLAN) is the one of interest. Several standards 
for WLAN have been developed, such as IEEE 802.11 standard and the 
European developed standard; HIPERLAN. So far the IEEE 802.11 protocol is 
the one that is implemented in most products for WLAN and the one that is 
most widely used. Throughout this paper the IEEE 802.11 is the basis for 
further investigation of Mobile Ad Hoc Networking. [6] [51]  

2.2 The IEEE 802.11 Wireless LAN 
Since its initiation in 1990, and the completion of the international standard in 
1997, the IEEE 802.11 Wireless Network (WLAN) has become incredibly 
popular. As an alternative to the high installation and maintenance costs 
experienced in the traditional LAN, WLAN was developed to equip the users 
in limited geographical areas with high bandwidth. Typical communication 
range of WLAN lies between 100-500 meters. The IEEE 802.11 is operating 
in the Industrial, Scientific, and Medical (ISM) band (See Figure 2.1).  
 
 

 
 

Figure 2.1: The ISM Unlicensed Frequency bands. Figure from [23] 
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The original 802.11 standard operates in the 2.4 GHz band with data rates up 
to 2 Mbps. Examples of places where WLAN is used are conferences, 
classrooms, office buildings, and military environments. When the first 
standard was released, the IEEE initiated two new task groups, to work on 
two new initiatives. The first resulted in the 802.11a, which was introduced as 
a standard in 1999, and which operates in the 5 GHz band with data rates up 
to 54 Mbps. The 802.11b standard was also released in 1999, operating in the 
2.4 GHz band with data rates up to 11 Mbps. It has so far been the most 
successful standard of the IEEE, and it has millions of users every day. Other 
WLAN standards such as the European HIPERLAN2, is also present today, in 
addition to the many 802.11 standards. 

 
A substantial part and a building block of the IEEE 802.11 architecture is the 
basic service set (BSS). The definition of a BSS is simply a group of stations 
which are under control of a single coordination function, and therefore is able 
to communicate with each other. The basic service area (BSA) is the diffuse 
geographical area covered by the BSS. When a station finds oneself in a BSA 
it can communicate with the other member of the BSS. The BSS is divided in 
two configuration modes: 
 

• The Independent BSS mode (IBSS) is the formal name of this mode, 
more commonly known as Mobile Ad Hoc Network (MANET). In an Ad 
Hoc network the nodes (stations) are operating on a peer-to-peer 
basis. A group of nodes in a single BSS can communicate directly with 
each other. There is no need of any centralized access point (AP) or 
any wired network connections, (see Figure 2.2). 

 
 
 

 
 

     Figure 2.2: Independent mode BSS (IBSS) 
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• The infrastructure mode (BSS), where at least one central access 
point (AP) is present. In infrastructure networks all communication is 
flowing through the AP, including communication between the mobile 
nodes in the same BSA. The AP is normally connected to the Internet, 
(see Figure 2.3). 

 
 

 
 

Figure 2.3: The Infrastructure mode (BSS) 
 
 
In addition, the IEEE 802.11 standard allows connectivity between multiple 
BSS’s, linked together in somewhat called extended service set (ESS), (see 
Figure 2.4). The ESS appears as one large BSS to the mobile node [5] [6] [7] 
[8]. 
 
 

         
 

Figure 2.4: The Extended Service Set (ESS) 
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2.2.1 The Protocol Stack 
Compared to the OSI model, the physical layers looks pretty much the same, 
but in 802.11 the layer that corresponds to the data link layer in the OSI model 
is divided into two sub layers. In the 802.11 standard the MAC (Medium 
Access Control) sub layer is responsible for the protocol data unit (PDU) 
addressing, frame formatting, fragmentation, and how the channel is 
allocated. The Logical Link Control (LLC) sub layers of the Data Link layer 
establishes and maintains the connections between network devices and 
hides the differences between the different 802 variants and make them 
indistinguishable to the network layer. The LLC is also responsible for the 
error correction and flow control at the Data Link layer. The SWAN module 
spans from the MAC layer up to the IP layer (see figure 2.5). 
 
 

 
 

Figure 2.5: The 802.11 protocol stack with SWAN and the OSI model 
 
 
One of the most pervasive channel access mechanisms at the 802.11 MAC 
layer is the Distributed Coordination Function (DCF), which is a Carrier Sense 
Multiple Access/Collision Avoidance (CSMA/CA) mechanism, with exponential 
back off. The DCF senses the channel before transmitting to determine if the 
channel is not in use by another station. The IEEE 802.11 also includes an 
alternative access method known as the Point Coordination Function (PCF), 
but only the DCF is suitable for the Ad Hoc mode. The main disadvantage of 
using the DCF is that it is only capable of delivering Best-Effort service to the 
network, and it is primary designed for asynchronous data transport. Activity 
has been established by the 802.11e Working Group to enhance the current 
802.11 MAC protocol to support the QoS requirements for applications [5], [7], 
[21], [22] and [51]. 
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2.3 Mobile Ad Hoc Networks 
In Latin, Ad Hoc literally means "for this", “towards this”, or "for this purpose 
only," and implies a spontaneous and temporary setting [32] [33].  

2.3.1 Introduction to Ad Hoc Networks 
Mobile Ad Hoc Networks (MANET) is usually simply referred to as Ad Hoc 
networks. In Ad Hoc networks the hosts are free to move, and no central 
agency is involved. A MANET is an autonomous system of mobile nodes; it 
can be created and used anywhere, anytime, and without any preexisting 
infrastructure. Ad Hoc networks also benefits from its simplicity, scalability and 
robustness due to its distributed nature. It may operate as a standalone 
network, or it could be connected to a larger network through a gateway, such 
as the Internet, for instance through a satellite connection. The hosts or 
mobile devices are usually called nodes.  
 
 

 
 

Figure 2.6: A simple Multi Hop Ad hoc Network 
 
 
Wireless multi-hop ad hoc networks consist of several peer-to-peer connected 
nodes. A pair of nodes uses intermediate nodes to communicate when they 
do not have direct radio contact with each other. In a multi-hop ad hoc 
network the mobile nodes are not only edge nodes and therefore each mobile 
node must also be able to serve as a router as well as being able to forward 
packets generated by other nodes. Multi-hop communication is not supported 
by the 802.11 protocol, thus a special routing protocol suited for the dynamic 
multi-hop nature of ad hoc network must be used for this purpose. A loop free 
path from the source to the destination must be found so that packets do not 
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traverse the network infinitely. Such loop free path is called a route. Route 
updates may be required when the dynamic of the network changes the 
reach-ability relations among the nodes. 
 
For instance, in figure 2.6, if node A wants to communicate with node C, it 
does not have direct radio contact with node C, because node A and C is out 
of each others radio transmission ranges. Instead, node A can reach node C 
through node B, because both node A and C are within B’s transmission 
range. In order for node A to reach node C through node B, node B has to 
function as a router and forward packets it receive on its wireless interface 
from node A, which are destined for node C, out on the wireless interface 
again so they finally will reach the destination node, which here is node C. 
This is the simplest form of a multi-hop Ad Hoc network. 
  
More nodes can easily join, but then we probably get more routes, and more 
nodes have to function as intermediate nodes in order for a source and 
destination pair to reach each other without direct radio contact. 

2.3.1.1  Usages of Ad Hoc Networks 
The advantages of such networks immediately elicited interest from the 
military, rescue agencies and the police in the use of armed conflicts and 
disaster areas, where the conditions can be hostile and highly disorganized. 
Since the 1990s, Ad Hoc network have become increasingly important to 
commercial participants as well. Home or small offices networking with 
laptops and PDAs, such as in a classroom or conference situation, have 
emerged as other major areas of application. With the commercial 
participation, customers are demanding more and more features and 
functionality. Therefore, multimedia applications such as streaming of video 
and voice (VideoIP and VoIP) are important areas where special attentions 
have to be taken, to support the Quality of Service (QoS) requirement.  
 
In near future, such networks are probably going to cooperate and coexist 
with other mobile systems such as the UMTS. It is also probably that a 
development of cooperative mobile robotic systems where the human 
presence is dangerous will use such technologies found in mobile Ad Hoc 
networks. [6] [13] [14] 

2.3.2 Dynamics and Mobility 
Mobility is one of the primary motivations and a very important feature for 
wireless networks. The nodes can move arbitrarily, thus the topology of the 
network may change randomly and rapidly. However, the mobility model may 
be very different in each Ad Hoc network. Mobility can occur within a 
constellation of mobile nodes, and the constellation can move as group in the 
same direction. Military networks may be highly mobile in a battlefield 
situation. On the other hand, the mobility patterns for commercial usage may 
be fundamentally different. Commercial users typically stand still or walk 
slowly using their PDAs and user tend to sit down when using their laptop 
computers. Typical examples of commercial Ad Hoc networks are a 
conference or a classroom situation. Thus the mobility in commercial 
networks tends to be more rarely and more slowly than in military 
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environment, unless the users stay inside a train or a car. The speed of the 
moving nodes can change the capacity of the network and hence the 
utilization of its resources. 
 
Mobility is not the only contribution to the dynamics of wireless networks. 
Nodes can join and leave the network at any time, and new links and routes 
can be created, or old ones destroyed. Another contribution to the dynamic 
nature is the mobility of obstacles and interfering objects moving around in the 
network environment. Thus a wireless network in a static approach may face 
many of the same challenges as a network in a dynamic approach [28] [29] 
[30]. 

2.3.3 Ad Hoc Routing Protocols  
Intermediate nodes are used in transmission when the source and destination 
node not are within radio range of each other. Each node on the intermediate 
path, process packets intended for the receiving node, and forwards the other 
packets to one of its neighbors. In that way all wireless nodes serve as 
routers. Route identification and reconfiguration is to be performed by the 
routing protocols, and the traditional TCP/IP routing tables are used to keep 
track of the routes to the hosts.  
 
To ensure effective routing the first task is to find a suitable path between the 
source and destination. To prevent packets from traversing infinitely long 
paths, an obvious essential requirement for choosing a path is that the path 
must be loop-free. A loop free path between a pair of nodes is called a route. 
All the routes are kept in the routers local routing tables. A suitable QoS route 
means a path that supports the necessary resources to be able to meet the 
Quality of Service constraints desired. The QoS routing is often a NP-
complete problem when more than one constraint is present. QoS routing 
includes request, identification and reservation of the available resources. 
Minimizing the number of intermediate hops is one of the principal ways of 
determining a suitable route to minimize the end-to-end delay and utilizing the 
network resources in a better way. The time needed to calculate routes 
certainly need to be low.  
 
The dynamic nature of Ad Hoc networks may cause the reach ability relations 
among the nodes to change, and a route update may be required. In order to 
keep the network connected despite changes in the topology, the network 
performance is highly dependent upon the performance of the routing 
protocols. To be able to give any guarantee at all, it is important that the rate 
at which the topology changes is not “too” fast. In other words the topology 
updates of the routing tables must be faster than the topology changes. An Ad 
Hoc network is said to be combinatorial stable, if and only if the topology 
changes occur sufficiently slowly to allow successful propagation of all 
topology updates which is necessary. 
 
Routing protocols in Ad Hoc networks have traditionally been topology-based; 
it uses the knowledge of the instantaneous connectivity of the network based 
on the state of the links. Topology-based routing protocols can be divided in 
three main categories, first the proactive (periodic or table-driven), which 
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attempts to maintain the knowledge of every current route to every other node 
in a dynamic way, regardless of packets flowing in the network based on a 
periodic exchange of control messages (e.g., OLSR), the reactive (on-
demand) which only creates a route on-demand when it is necessary for 
carrying data packets (e.g., AODV). The third category is hybrid routing 
protocols. In addition, another class of routing protocols is the so called 
location-based routing protocols. In addition to topology-based information, 
this protocol uses information about the actual position to determine the 
routes [6] [30] [31] [50]. 

2.3.3.1  Ad hoc On Demand distance Vector (AODV) 
The AODV routing protocol is a routing protocol for ad hoc mobile networks, 
which is capable of both unicast and multicast routing. The algorithm is on 
demand, in the way that it only initiates new routes on request from a source 
node. These routes are maintained as long as they are needed by any of the 
source nodes. The freshness of a route is taken care of with sequence 
numbers. Furthermore, the AODV is loop-free, self-starting, and scales well 
on large number of mobile nodes. The AODV is the routing protocol used to 
support the current SWAN implementation.  
 
Routes are built using route request (RREQ) / route reply (RREP) queries. A 
route request (RREQ) packet is broadcasted across the network when a 
source wants to reach a destination which it does not already have a route. 
Upon receiving the RREQ packet, intermediate nodes sets a backward 
pointer to the source in their routing tables. The intermediate nodes discard 
the RREQ if they receive one they already have processed, otherwise they 
rebroadcast the RREQ. A node unicast a RREP packet back to the source, if 
it is the final destination, or if it has a route to the destination, with a 
corresponding sequence number greater than, or equal to that contained in 
the RREQ. A forward pointer is set up to the destination as the RREP 
propagates back to the destination. The source node can start transmitting as 
soon as it receives the RREP. If a better route to the destination is found, the 
source updates its routing tables and starts using this route instead. The route 
is maintained as long as the route remains active. A timeout will occur once 
the source stops the transferring of data packets and the link will then be 
deleted from the intermediate nodes routing tables. A route error (RERR) 
message is sent to the source node if a link break occurs on an active route 
[27]. 

2.3.3.2  Optimized Link State Routing (OLSR) 
As mention above, the OLSR routing protocol have the routes immediately 
available when needed, due to its proactive nature. OLSR is an optimization 
of a pure link state protocol where all the links are flooded in the entire 
network. The multipoint relays (MPR) is one of the key concepts in the OLSR 
protocol. The set of MPR is selected such that it covers all the nodes that are 
two hops away. The routes to all known destinations are calculated through 
the nodes selected as MPRs, and these nodes are selected as intermediate 
nodes in the communication path. This significantly reduces the number of 
retransmissions in a flooded or broadcasted network. The OLSR protocol is 
also well suited for large and dense networks due to the optimization scheme 
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of the MPRs. It is also well suited for WLAN where radio transmission 
problems are frequent, because it does not relay on reliable transmission for 
its control messages [11] [12].  

2.3.3.3  Hybrid routing protocols 
Hybrid routing protocols combines techniques from both the proactive and the 
reactive routing protocols. Zone Routing Protocol (ZRP) is such routing 
protocol. The idea behind ZRP is to divide routing into local and global zones 
[6]. 

2.3.4 Other considerations for Ad Hoc networking 
When working with Ad Hoc network development, mobility management, 
power management and security are among the topics that might need to be 
taken into consideration. Mobility management can be divided in two broad 
categories: Location management, which keep track of the position of every 
unit (e.g., with a GPS), and handoff, which mainly concern about the 
continuity of a Real-Time stream. In order to have a seamless communication, 
a QoS capable Ad Hoc network has to support reestablishment and rerouting 
when handoffs occur. It is important with a fast reestablishment in the case of 
a handoff event [24]. An important part of power management is power 
control, where one is dealing with increasing and decreasing the level of 
transmitting power, in order to reduce the interference and increase the 
overall system capacity. It is also urgent for researchers to develop efficient 
and low power consumption algorithm and protocols [24]. The main concern 
in wireless security is the physical access to data transmission over radio 
waves. This makes 802.11 networks vulnerable to eavesdropping. In addition 
to the existing security concerns which are common on any networks, such as 
authentication and integrity, wireless networks are also vulnerable to possible 
Denial of Service (DOS) attacks by a malicious station [25] [26].   
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3 Quality of Service 
In this chapter I will discuss Quality of Service both in general and in the 
special case of wireless ad hoc networks. 

3.1 Beyond Best-Effort 
Since the ISM band is unlicensed and free for all commercial use, users will 
commonly experience significant interference in some locations. The 
interference can interact with the wireless signal and disturb or block it 
completely. Interference can be caused by simultaneous transmissions, when 
two or more 802.11 stations are trying to send at the same time. The 
interference can also be caused by other devices operating in the same 
geographical area using the ISM band such as a police car radio, or even a 
microwave oven. This type of interference is called noise. An 802.11 station 
can also experience echo from its own signal which again induces 
interference. Multi-path fading can be an additional source of interference to 
the 802.11. Multi-path fading arises when radio signals following different 
paths arrive out of phase at the receiver. When interference is experience, the 
bandwidth, which the 802.11 operate on is highly variable and far from the 
theoretical throughput limits. Yet another impact of interference is higher bit 
error and more frequent disconnection. In addition to the variable radio link 
quality, the new dynamics introduced by the WLAN gives us more stringent 
challenges. 
 
Because of the interference problem, mobility, and because the 802.11 MAC 
sub layer protocol (DCF) only  can deliver Best- Effort, the need for at least 
one additional mechanism, which can handle this problem and assure a 
certain level on the quality on the service delivered by the network. 
 
Another problem arises when the network traffic gets excessive, then 
congestion occurs. In a congested network more data packets are entering a 
node than the packets leaving the node. A congested node is said to be a 
bottleneck. Then the nodes buffers get overloaded and the node have to drop 
packets. The delay for data packets entering a congested network is usually 
higher than for data packets entering an idle network [5] [6] [9] [17]. 

3.2 Quality of Service in General 
Quality of Service (QoS) is a widely used term, but it has different meanings 
to different people, and the issues associated with QoS are not very well 
understood. In RFC 2386, QoS is characterized as a set of service 
requirements that the network has to meet, during a flow from the source to 
the destination [50]. And The United Nations Consultative Committee for 
International Telephony and Telegraphy (CCITT) Recommendation E.800 has 
defined QoS as: "The collective effect of service performance which 
determines the degree of satisfaction of a user of the service" [49]. The 
previous definition is also used as basic definition of QoS by ITU and ETSI. At 
he IP layer, the QoS guarantees that can be offered are a product of the 
cooperation of operation of several mechanisms, such as policy management, 
traffic classification, bandwidth reservation and admission control, traffic 
conditioning, queuing, scheduling and discarding [44]. When considering the 
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Quality of Service, one can investigate and ensure the quality at all the layers 
in the TCP/IP protocol stack, but the overall Quality of Service is finally that 
experienced by the user at the application layer.  

3.2.1 QoS Parameters 
The IETF defines a flow as: “set of packets passing an observation point in 
the network during a certain time interval. All packets belonging to a particular 
flow have a set of common properties derived from the data contained in the 
packet and from the packet treatment at the observation point” [34]. The four 
primary parameters that determine the QoS for each flow are; reliability, 
latency, jitter and bandwidth [51]. 
 

• Reliability concerns the need to manage packet loss. Packet loss is 
usually caused by network congestion and is defined as the ratio of the 
undelivered packets to the one that are sent. Packet loss serves to 
reduce the number of packets competing for the output link. When the 
sources discover that packets are lost it usually reduce the transfer 
rate. If the source does not receive an acknowledgement (ACK) for a 
packet it can be re-transmitted, depending on the type of application. 
The packet can also be delivered with bit errors. This is usually taken 
care of by verifying the checksum at the destination. 

• Latency is the one-way end-to-end delay for a flow, experienced while 
passing through the network. The end-to-end delay may be introduced 
by intermediate routers and switches and due to the latency of the 
physical transmission media. Significant delays can appear when 
packets are queued for long periods of time. 

• Jitter is the variations in latency between packets, mainly due to the 
variations in the volume of other traffic streams competing for the 
output link. Then packets may take different routes through the 
network, or they may encounter varying queue length. In a stream, 
delay variations must be removed on the receiver side in order to 
replay the stream. This can be achieved with a de-jitter buffer. Then 
packets are rearranged in a timely order. The delivery time of a packet 
must not exceeds the length of the receive buffer, because this packet 
then arrives too late, with respect to the replaying time, and the packet 
will be discarded from the buffer, which again have a degrading effect 
on the replay quality. 

• Bandwidth concerns itself with how the network manages the entire 
stream of data packets flowing through it, particularly in times of 
network congestion. 

 
 



 15 

 
 

Figure 3.1: Quality of Service requirements 
 

 
The treatment experienced by packets while traversing the network can be 
described by these parameters, which again can be translated into particular 
parameters of the network architecture components to ensure the QoS. The 
stringent of the QoS requirements for some selected applications are 
visualized in Table 3.1 [16] [35] [52].  
 
 

 
 

Table 3.1: QoS requirements. Figure taken from [51] 
 

 
The reliability requirement is most important to the first four applications. This 
is usually taken care of by using a checksum to verify the content of each 
packet. The last four applications can handle bit errors, without using any 
control routine as the checksum correction. The likelihood of loosing a packet 
usually grows as the packet size increases. In an unreliable channel, as often 
is the case in a MANET, smaller packets are preferred. A drawback of using 
small packets payload compare to the fixed headers is waste of useful 
bandwidth. 
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When it comes to delay, file transfer application including video and e-mail, 
are not sensitive to delay. Web surfing and remote login have moderate 
sensitivity on delay, and audio and video on demand does not require low 
delay. On the other hand, IP telephony and videoconferencing have very 
strictly requirements on the delay [51]. The International Telecommunication 
Union (ITU), recommend that the one-way delay for general network planning, 
should not exceed 400ms. However, in highly interactive tasks, such as IP 
telephony, videoconferencing and interactive data application, these 
applications may be affected of delays below 150ms. Most applications would 
not be significantly affected, if the delays are kept below 150ms [16]. 
 
E-mail, file transfer, and web access is not very sensitive on packets arriving 
with irregular intervals. Remote login is slightly more sensitive to jitter, but 
applications involving audio or video are extremely sensitive to jitter. A typical 
audio- or video streaming application cannot handle more than a few 
milliseconds of variation before it is audible or the effect is visual. 
 
 

 
 

Figure 3.2: Application bandwidth requirements in bits per second. Figure from [17] 
 
 
The applications demand for bandwidth can be categorized in sustained, 
bursty and interactive. For voice, 20 ms of speech is contained in speech 
packet from 20 to 160 bytes at 8 and 64 Kbps respectively, depending on the 
compression, while a high quality MPEG-2 video may require up to 10 Mbps. 
It depends on the quality, but typical rate for MPEG is about 1.2 Mbps. File 
transfers are bursty and tends to grab as much bandwidth as they can to 
make a fast data delivery. The bursty traffic is usually a common reason of 
congestion and must be controlled. Different applications bandwidth 
requirement can be viewed in Figure 3.2 [10] [35] [43]. 
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As we can se from the table 4.1 both IP telephony and videoconferencing is 
sensitive on both the delay and jitter requirements. To satisfy those 
applications requirements on delay and jitter, the network has to offer special 
treatment so that the tight guarantees can be met. In order to enforce such 
network policies, classifying in traffic classes, marking of packets and flows, 
and scheduling using a queuing mechanism in the network is most likely 
necessary. The ability to varying the data rate upon feedback of the available 
bandwidth in the network, using compression and reducing the play back 
quality, may also be a likely solution to meet the QoS demands.   

3.3 QoS Mechanisms 
Among the many service models and mechanisms proposed by the Internet 
Engineering Task Force (IETF) are the Integrated Service model (IntServ) and 
the Integrated Service model (DiffServ). 

3.3.1  Integrated Services (IntServ) 
The philosophy of the IntServ model is to provide special QoS for specific 
user packet streams, or "flows" through resource reservation in the routers, 
which in turn represents a fundamental change to the Internet model. Two 
service classes in addition to best-effort service (which is characterized by the 
absence of any QoS specification at all) are proposed: 
 

• Guaranteed services provide an assured amount of bandwidth for 
applications with tight bounds on both the delay and the jitter 
requirements. 

• Predictive services also called controlled load services is intended for 
more tolerant and adaptive applications, which do not require a perfect 
reliable bond on the delay requirement. The provided service will be as 
close as possible to the service received by a best effort flow in a lightly 
loaded network, even though the network as a whole may be heavily 
loaded. 

 
The implementation framework in [36] includes four traffic control 
components: admission control, the classifier, a packet scheduler and a 
resource reservation protocol. The admission controller is responsible for the 
reservation policies and determines whether the QoS request for a new flow 
can be granted without any devastating effect to earlier guarantees. The 
purpose of the classifier is to map each incoming packet into some class. 
Forwarding of the different packet streams is managed by the packet 
scheduler who uses queues and perhaps other mechanisms like timers. 
Packets’ belonging to the same class receives the same treatment from the 
packet scheduler. To create and maintain flow-specific state in the endpoint 
hosts and in routers along the path of a flow a resource reservation protocol is 
needed. The protocol should be able to find a route that supports resource 
reservation and has sufficient unreserved resources for a new flow. It should 
also adapt to route failure and route change without failure. The protocol 
recommended by the IntServ group is The Resource ReSerVation Protocol 
(RSVP), which reserves a portion of the output link in each router along the 
path of a flow [36] [37] [38]. 
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3.3.2  Differentiated Services (DiffServ) 
In the differentiated services model, traffic entering a network is classified and 
possibly conditioned at the boundaries of the network, and assigned to 
different behaviour aggregates. Unlike IntServ, no signalling are exchanged 
between the source and the destination. It does not attempt to guarantee a 
level of service. It rather tries to make some relative ordering of aggregations. 
This causes one traffic aggregation to receive better or worse treatment 
relative to other aggregations. Within the core of the network, packets are 
forwarded according to the Per-Hop Behaviour (PHB). A DiffServ domain is a 
contiguous set of nodes which operate with a common service policy and set 
of PHB groups.  
  
Two primary PHB forwarding classes in addition to the Best-Effort service are 
proposed by the IETF: 
 

• Expedited Forwarding (EF) – The EF class also described as Premium 
service is intended for applications requiring low latency, low jitter, low 
packet loss, assured bandwidth and end-to-end service.  

• Assured Forwarding (AF) – The AF class is divided in four separate 
classes intended for applications requiring better reliability than best-
effort service. 

 
The boundary of a DiffServ domain is well-defined and consists of boundary 
nodes that act both as ingress and egress nodes for traffic in different 
directions. A traffic flow enters a DiffServ domain at an ingress node and 
leaves at an egress node. The boundary nodes classify and possibly 
stipulating ingress traffic to ensure that packets passing by the domain are 
appropriately marked to select a PHB from one of the PHB groups. Based on 
the content of some portion of the packet header, the packet classifiers select 
packets in a traffic stream and lead the packets to a logical instance of a 
traffic conditioner. Traffic conditioning ensures that the traffic entering the 
DiffServ domain conforms to the rules specified in the given policy. Elements 
included in the traffic conditioner may be: meter, marker, shaper, and dropper. 
 
The traffic meters measure a stream of packets temporal properties and 
passes state information to other conditioning functions to trigger a particular 
action for each packet. To add a packet to a particular DiffServ behaviour 
aggregate, the packet marker set the Type of Service (TOS) byte (DS field) of 
a packet to a particular codepoint.  Several differentiated service classes can 
be created by marking the DS fields of the packets differently. In order to bring 
a stream into accordance with a traffic profile, the shaper delays some or all of 
the packets in a traffic stream based on their DS fields. Packets are discarded 
if there is not sufficient buffer space to hold the delayed packets. The process 
known as policing the stream is executed by the dropper who discards some 
or all of the packets in a stream, to bring a stream into compliance with a 
traffic profile. 
 
For a customer to be able to receive differentiated services, a Service Level 
Agreement (SLA) must be arranged with its Internet Service Provider (ISP). In 
an SLA, which can be either static or dynamic, the basically service classes 
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supported and the amount of traffic allowed in each class is specified [38] [39] 
[40] [41] [42]. 

3.3.3  Adapting Service models to MANET 
A lot of work has been done to achieve QoS in wired networks, but 
unfortunately this cannot be directly applied in Ad Hoc networks. In the 
IntServ/RSVP proposal, there are several factors which make the model not 
suitable for MANET’s. First, huge storage and processing overhead due to the 
state information that has to be maintained is a drawback. Second, in the 
case of a topology update, all the reservations would have to be renegotiated 
simultaneously. This may lead to congestion of several routers. Third, in a 
MANET, every node has to function as a router, thus each node also has to 
perform the admission control, classification and scheduling. These tasks will 
require resources, which usually are not available in an Ad Hoc network. In 
addition, the RSVP signalling packets will compete with other data packets for 
the usually scare resource of bandwidth. 
 
On the other hand, DiffServ is a more proper model for MANET’s, even 
though the model cannot be applied directly in such a network. A clearly 
drawback on using the DiffServ model is that the dynamic nature of Ad Hoc 
network cause an unclear definition of what is the core network, ingress and 
egress routers. For the interior routers, DiffServ is a more lightly weighted 
model than IntServ.  
 
For the future, in order to make suitable QoS model for MANET’s one 
approach could be to make proper changes to the DiffServ model to make it fit 
the dynamic nature of Ad Hoc networks. Another approach could be to take 
advantage of the benefits from both the IntServ and the DiffServ model. 
Several models have been proposed, among them are the SWAN model [3] 
[49].  
 

3.4 Quality of Service in Ad Hoc Networks  
Due to the dynamic nature of Ad Hoc networks, the challenges in utilizing the 
resources in such networks are more numerous and more difficult than in a 
traditional wired IP network such as the Internet. These challenges include 
subjects as effective routing, channel access, mobility management (hand-off 
e.g.,), security issues (e.g., Denial of Service attacks), power management 
and Quality of Service, mainly pertained to bandwidth management, and to 
the delay and jitter requirements. All these challenges are potential sources to 
degraded Quality of Service experienced by the users.  
 
So far, Ad Hoc networks have only been able to support best-effort service, 
without any guarantees. To satisfy the demand of using the same applications 
(web browsing, interactive multimedia e.g.,) which are common in the 
traditional wired networks and to carry out other complex operations, various 
Quality of Service attributes for these applications must be satisfied. Quality of 
Service solutions for wired networks cannot be directly applied to wireless Ad 
Hoc networks.  
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Bandwidth management means administrating the scarce resource of the 
wireless channel among the users. Wireless networks have until recently 
delivered lower bandwidth than their wired counterparts. With an optimizing of 
the coding of bit in the transmission, it is expected that the IEEE 802.11n will 
be able to deliver a theoretical data rate of 320 Mbps by 2005 [9]. In a BSA, 
the network bandwidth is divided among the users. In addition to the raw 
transmission bandwidth, an important measurement of the network capacity is 
the deliverable bandwidth per user, which is dependent of the density and 
distribution of nodes. There are two ways to increase this capacity. One 
approach is to divide a BSS into two or more new BSS’s operating on different 
wavelength. The other approach is to decrease the geographical area of the 
BSA, which means decreasing the radio range of the antennas. Due to 
interference and the dynamics, the available bandwidth of Ad-Hoc networks is 
highly time varying, and need to bee managed efficiently and in a fair way 
among the users to achieve a guaranteed Quality of Service.  Figure 3.3 
shows the application Network Stumbler measuring the Signal/Noise ratio. 
 
 

 
 

Figure 3.3: Wireless Signal/Noise ratio measured in Network Stumbler 
 
 
Another concern, is how often and how much administrative and control 
information that may be exchanged due to the limited bandwidth available and 
due to the generally hostile transmission characteristics of wireless Ad Hoc 
networks.  A good implemented solution is needed to satisfy the existing 
requirement to achieve the desired level of the Quality of Service. Together 
with performance analysis studies of Ad Hoc networks with QoS constraints 
this is still an open area for more research [6], [15], [17], [50]. 
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4 Stateless Wireless Ad hoc Networks (SWAN) 
In this chapter I will introduce the reader to SWAN, a network model proposed 
by the COMET Group at Columbia University in New York. 

4.1 Introduction 
SWAN is a stateless network model proposal, which is supposed to ensure a 
certain level of QoS in wireless Ad Hoc networks. The SWAN mechanism, 
which is based on a best-effort MAC protocol, is placed between the IP and 
the MAC layer. SWAN uses rate control for Best-Effort traffic, and sender-
based admission control for UDP Real-Time traffic. A classifier and a shaper 
is also part of the SWAN mechanism. The admission controller located at the 
source nodes, uses a bandwidth probe message to find the instantaneous 
bottleneck capacity path in the network. There is none state information about 
the ongoing flows kept in the network. Instead SWAN uses feedback 
information from the network.  
 
 

 
 

Figure 4.1: Graphical presentation of data-rates and -limits 
 
 
For regulation of admitted Real-Time traffic, SWAN uses Explicit Congestion 
Notification (ECN) as feedback, when the network experience overload. MAC 
delay measurement from packet transmission is used as feedback for rate 
control of both TCP and UDP Best-Effort traffic. The admission controller gets 
feedback from measurement of the aggregated real-time traffic. To limiting the 
experienced delay, the total rate of both real-time and best-effort in a local 
shared media channel should be maintained below a threshold rate, see 
Figure 4.1. For this purpose SWAN adopts the Adaptive Increase 
Multiplicative Decrease (AIMD) rate control mechanism in order to improve 
the performance of Real-Time UDP traffic and at the same time let Best-Effort 
traffic efficiently utilize any remaining bandwidth. Unfortunately, for a number 



 22 

of reasons it is not desirable to admit the Real-Time traffic up to the threshold 
rate. First, the flexibility upon channel dynamics will be intolerant. Second, if 
the Real-Time traffic is allowed up to the threshold rate, Best-Effort traffic 
would be starved. Therefore, SWAN uses a simpler approach and only admits 
Real-Time traffic up to a more conservative rate than the threshold rate. The 
local available bandwidth, of a shared media channel, estimated by each 
node, is then the difference between the rate of the Real-Time traffic and this 
new conservative “admission control rate” [3] [4]. 

4.2 The architecture 
In chapter 2.2.1 I presented how the SWAN network model fits in to the OSI 
stack. A deeper picture of the SWAN architecture can be viewed in Figure 4.2. 
Here we can see how each data packet traverse the SWAN network model. 
First, upon a request from higher layers, the admission controller probe to see 
if enough resources are available. If a data packet is admitted, it is marked by 
the admission controller, otherwise it is left unmarked. The classifier then 
inspects the IP header to see if the packet is marked or not. An unmarked 
packet is passed down to the shaper, while an unmarked packet bypasses the 
shaper and is passed straight down to the MAC layer. The shaping rate at 
which the shaper forward the data packet to the MAC layer is adjusted by 
input from the rate controller, which again takes its decisions upon feedback 
from the MAC layer delay. From the MAC layer the packet is passed to the 
Physical Layer and converted to radio signals. 
 
 

 
Figure 4.2: The architecture of the SWAN network model. Figure from [1] 

 
 

4.2.1 Rate Control 
Best-effort traffic is independently regulated in every mobile node. The 
transmitting rate used by the shaper, is determined by the rate controller using 
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a modified AIMD rate control algorithm. In the AIMD algorithm, the TCP 
sender increases its congestion window by one packet each roundtrip time 
(RTT), in times of no congestion. When congestion is indicated, the AIMD 
mechanism cut the window size aggressively. Then the TCP sender 
decreases its congestion window, so that the new congestion window is half 
of the minimum of the congestion window and the receiver's advertised 
window. 
 
In SWAN the rate is based on the packet delay measured by the MAC layer. 
The packet delay is simply the time it took to send the packet from the source 
to the destination, including the acknowledgement from the receiver. At the 
source node, the delay (DelayMAC) is measured by subtracting the time the 
MAC layer receives a packet (Tsend) (from the upper layer), from the time an 
ACK is received from the destination TACK/recv. 
 

DelayMAC = TACK/recv – Tsend 

 
Every mobile node increases its transmission rate every T seconds until the 
packet delays become noticeable, (Additive Increase with the increment rate 
of c Kbps). This delay is detected by the rate controller when one or more 
packets have greater delay than the threshold delay d seconds. When the 
rate controller discover excessive delays, it backs of the rate (Multiplicative 
Decrease by r %). Every T seconds the shaping rate is adjusted. To respond 
to the dynamics of Ad Hoc networks the time T should be kept below a certain 
limit.  
 
 

 
 

Figure 4.3: MAC delay 
 
 
The shaping rate is the maximum rate determined by the Rate Controller in 
which the shaper is allowed to transmit. The actual transmission rate is the 
current rate at which the shaper actually is transmitting the Best-Effort 
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packets. If the difference between the actual transmission rate and the 
shaping rate is too large, the mobile node is enabled to send a burst, which 
might raise the delay for the real-time traffic. The rate controller monitors the 
actual transmission rate and adjusts the shaping rate to be g% above the 
actual rate if the difference between the actual rate and the shaping rate is 
greater than g% of the actual rate [3] [4]. 

4.2.2 Admission Control 
The real-time traffic is measured by the admission controller in every node to 
find the local resource availability. In the shared wireless channel, nodes 
listen to packets sent within their transmission range in order to calculate the 
rate of Real-Time traffic. An average of these measures is used to smooth out 
small-scale traffic variations. Nodes actual available bandwidth is the 
difference between the current physical bandwidth and the total Real-Time 
packets sent within the transmission range. Since the SWAN mechanism is 
trying to improve the performance of Real-Time traffic, SWAN adopts the 
threshold rate, at a level below the physical limit, as a total maximum data 
rate of both Best-Effort and Real-Time traffic. Unfortunately, if the Real-Time 
traffic is allowed to consume the entire data rate up to the threshold rate, 
there would be no flexibility upon handling additional Real-Time traffic due to 
network dynamics and the Best-Effort traffic could be completely starved. 
Therefore, a more conservative rate than the threshold rate is used by SWAN. 
The difference between this conservative admission control rate and the 
current rate is then the available bandwidth for Real-Time traffic that a node 
can “see”. The Real-Time traffic is allowed up to this admission control rate. 
The static value of the admission control rate is coarse and approximated. All 
remaining unutilized bandwidth from the current rate of Real-Time traffic and 
up to the threshold rate will be absorbed by potentially best-effort traffic.  
 
When a node wants to start a real-time session, the admission controller in 
this source node sends a bandwidth probing request towards the destination 
node, (see Figure 4.4). The task of this probing packet is to visit every 
intermediate node and then find the end-to-end bandwidth capability along the 
route from source to destination. If an on-demand routing protocol is used by 
the network and an intermediate node has no known route to that destination 
a route discovery process must be initiated before the probe can proceed to 
the next hop node. The nodes between the source and destination, updates 
the bottleneck field in the probing request packet, if the available bandwidth in 
that node is less than the current value in the packet. When the destination 
receives the bandwidth probe request packet it copies the bottleneck field into 
a bandwidth probe reply packet. The reply packet is sent directly to the source 
node and is not restricted to follow the request packets reverse path back to 
the source node. A simple admission control is done by the source node when 
it receives the bandwidth probe reply packet. The admission controller simply 
compares the new Real-Time session required bandwidth with the bottleneck 
field in the reply packet. If the bottleneck field in the reply packet is the same 
size or greater than the required bandwidth, then the session is admitted. 
Otherwise packets belonging to this session are refused and considered Best-
Effort until a new probe request might find enough available resources in the 
network. In this model the intermediate nodes does not need to do any 
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reservations on behalf of a session, neither are any admission control 
executed in other nodes than the source node.  
 
 

 
 

Figure 4.4: Probe message 
 
 
The packet belonging to an admitted real-time session are marked RT (Real-
Time) and will then bypass the shaper mechanism. An important assumption 
here is that each source nodes regulates its real-time sessions based on the 
decision of its admission controller [3] [4]. 

4.2.3 The Classifier 
Best-effort traffic is separated from the real-time traffic by the classifier in 
order to let the shaper process only best-effort packets. When a packet leaves 
the IP layer the classifier examines the DS field in the IP header. If the packet 
is marked RT it will bypass the shaper, otherwise the packets are forwarded 
to the shaping mechanism [3] 

4.2.4 The Shaper 
The purpose of the shaper is to delay BE packets. This delay is adjusted by 
the rate calculated by the Rate Controller. The shaper is implemented as a 
simple leaky bucket algorithm where the input rate could be bursty and where 
the output rate is controlled.  
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Figure 4.5: The shaper; leaky bucket 
 
 

In Figure 4.5 the bucket represents an abstraction of a set of actions the 
network takes to monitor and control traffic. The bucket depth represents the 
tolerance of packet burst over a period of time. When the bucket is full, the 
incoming packets are dropped. The hole in the bucket represents the 
instantaneous rate at which the packets are allowed to transmit. 
 
The departure rate of the shaper (bucket) is determined by the rate controller 
which is using the AIMD rate control algorithm based on feedback from the 
MAC layer [1] [3].  

 

4.2.5 Probe Message Format 
Two control messages are defined by SWAN’s admission controller; 
“bandwidth probe request” and “bandwidth probe reply”. Both are using UDP 
with a port reserved for the SWAN module. The probe request packet 
contains a “bottleneck bandwidth” field which contains the bottleneck of the 
path from the source to the receiver when it reaches the receiver. The total 
layout of the probe message format is illustrated in Figure 4.6 [4]. (In ns-2 
implementation of SWAN port 252 are used). 
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Figure 4.6: The Probe message format 
 
 

The SWAN network model is using AODV as its corporate routing protocol, 
and the probe packet is placed as a piggyback message on a Route Request 
message in AODV. 

4.2.6 Mobility and False Admission 
In an Ad Hoc network, the nodes are not aware of how and when the mobility 
takes place. Harmful resource conflicts will most likely be the result, if re-
routing due to mobility is not taken into consideration. 
 
False admission arises when several nodes simultaneously probe the network 
for bandwidth and their paths from the source to the destinations are 
traversing one or more identical intermediate nodes. Both source nodes may 
then receive enough bandwidth, in the probe request, when the available 
bandwidth strictly is just enough for only one of the sources. This false 
admission is nothing the source nodes is aware of, and therefore admits new 
sessions of real-time packets, when the session actually should be denied.  
 
The re-routing due to mobility and false admission can cause excessive delay 
and jitter for the real-time traffic if it is left unresolved. 

4.2.7 Explicit Congestion Notification (ECN) 
When running SWAN in an Ad Hoc network, every node periodically 
measures real-time traffic to get the exploitation ratio of local link such that the 
available bandwidth can be calculated. A node starts marking the ECN bits in 
the IP header of the real-time packets with Congestion Experienced (CE), 
when it detects violations such as congestion and overload conditions, due to 
re-routing and “false admission”. When the receiver discover the CE mark in 
the IP header it notifies the source node through a regulate message when it 
discover the ECN bits in the IP header. The source node try to re-establish its 
real-time session when it receives a regulate message. With the same 
bandwidth needs as the old session, the source node sends a probe request 
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toward the destination, in the same manner as when setting up a new 
session. If the bandwidth field in the new probe response packet is less than 
what the existing session needs, the session is terminated by the source node 
[3] [4]. 

4.2.8 Regulation Algorithm 
If all real-time packets are to be marked CE, when the node detects 
overloaded condition or congestion, then every session that has this node in 
the path from source to destination has to re-establish at the same time. This 
is a behavior that is not wanted and is indeed vastly inefficient. Two and more 
systematic approaches, which penalize only a small number of sources and 
sessions, are considered in [4]. 

4.2.8.1  Source-Based Regulation Algorithm 
When overload or congestion is experienced by a node it marks all real-time 
flows with CE. Instead of re-establish the session when receiving a regulate 
message, the source node wait a random amount of time before it sends a 
new probe message with the intention to make a re-establishment of the 
session. With source-based regulation, situations where a number of source 
nodes simultaneously initiate re-establishment of their real-time session, and 
at the same time find the network overbooked, and in which they all drop their 
sessions will be avoided. Gradually the rate of real-time traffic will decrease 
until it gets below the admission control rate. Then the intermediate nodes, 
which experience congestion and overload will stop marking the packets. The 
source nodes need to be able to differentiate between regulation messages 
due to re-routing/mobility and false admissions. This can be taken care of by 
keeping some state information in the nodes about newly admitted flows and 
existing flows. With this approach, the source nodes can take immediate 
action, when a session is admitted by mistake, due to false admission [4]. 

4.2.8.2  Network-Based Regulation Algorithm 
In Network-Based regulation a randomly selected “congestion set” is picked 
out by the nodes that experience congestion/overload condition. Only real-
time sessions associated with this congestion set is marked with CE. The 
congested set is marked for a period of time T, and then the congested nodes 
calculate a new congested set for a new period. When the measured real-time 
traffic fall below the admission control rate, the nodes stop marking the 
packets. Under congestion and overload, the intermediate nodes need to 
distinguish between flows which is admitted due to false admission, or flows 
which is rerouted due to mobility. In the Network-Based approach, the source 
nodes could mark packets in a real-time session to inform the intermediate 
nodes, whether the session is new or old. However, this case requires some 
calculations by the intermediate nodes in order to distinguish the new flows 
from the old so that they can take correct action upon false admission [4]. 
 
 
 
 
 



 29 

5 Problems and trouble with SWAN 
In this chapter I will discuss the problems and troubles I came across, during 
my work with this master thesis and the SWAN network model. 

5.1 The SWAN articles 
At first glance, the SWAN mechanism looks like a promising protocol in order 
to deliver a satisfying level of QoS for wireless Ad-Hoc networks. In [1] and 
[3], the SWAN mechanism claim to experience low and stable delays in an 
experimental wireless test bed, during various mobility, traffic and multi-hop 
situations. However, the delay measured in the wireless test bed in [1] and [3] 
is the average delay at the MAC layer, while the most critical issue is whether 
the end-to-end delay from application layer to application layer is low enough 
to support Real-Time traffic. In other words, this end-to-end delay should be 
kept below 150 milliseconds (see section 4.2). In [3] they even conclude that 
the result presented implies that the proposed SWAN mechanism is able to 
support Real-Time traffic within a single shared media channel. When it 
comes to the multi hop scenarios, this statement is found in [3]:  
 
“The average end-to-end delay of the real-time traffic in the original system 
grows linearly from 8 to 39 msec, as the number of TCP flows increase from 2 
to 12 flows, respectively. In contrast, the average delays of real-time traffic in 
the proposed system remains around 5- to 7 msec”  
 
 

 
Figure 5.1: Average delay of Real-Time traffic vs.  Number of TCP flows [1]. 

See Figure 5.1 for a graphical presentation of this. These results, where far 
from the experience during the early setup of my own simulation scenarios of 
SWAN in ns-2. I suspected this statement concerning the delay to be false, or 
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at least not telling us all that we need to know, in order to figure out if 
streaming of Real-Time applications could be supported. Therefore, it was 
important to recreate these simulations scenarios. Then measurement of the 
end-to-end delay experienced at the applications layer for both a single 
shared channel and a multi hop situation has to be made, so it is possible to 
figure out at what level the SWAN mechanism is able to support Real-Time 
traffic. 
 
In [1] and [3] the term “goodput” is also widely used. I have done some 
research on this topic, and found a great variety in the definition of “goodput”. 
After e-mailing the people behind SWAN, it turns out that their definition of 
“goodput” is similar to throughput but only includes the packets that are useful 
to the applications. Throughout this paper, the term “throughput” which is the 
packets received at the application layer is used.  
 
In [3] it is claimed that the action taken to improve the delay comes at a cost 
of only 15-20 percent reduction of TCP throughput compared to the original 
system. In addition to the end-to-end delay, it is important that measurements 
of the throughput also have to be taken into consideration when looking at the 
performance of the SWAN mechanism.   
 

 
 

Figure 5.2: Avg. “goodput” of TCP best-effort traffic vs.  No of TCP flows [1]. 
 
Due to the nature of wireless Ad-Hoc networks, mobility has an impact of the 
performance of such a network. Measurement of delay and throughput versus 
mobility is also carried out in [1] and [3]. It is clear that special treatment, to 
oppose the reduced performance due to this mobility have to be made. 
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However, it is fundamental that a network is able to satisfy the QoS 
requirements in a static approach, before mobility is taken into consideration. 
Therefore my simulations are concentrated on scenarios where no mobility 
occurs.   

5.2 Classification and scheduling 
In SWAN only two packet classification schemes are proposed; Real-Time 
and Best-Effort. The classifier differentiate the packets and the BE packets go 
through a shaping mechanism, while RT packets bypass the shaper. Then the 
RT packets and the shaped BE packets are joined in a FIFO queue towards 
the MAC layer. SWAN treats all the UDP traffic equally. This may not be 
sufficient when trying to satisfy the many requirements and different behaviors 
of all the applications that exist (see chapter 4). First, the bandwidth and the 
delay requirements may be different for traffic belonging to different classes. 
Second, some flows may be more important than others. A more advanced 
classification scheme may be required. I chapter 4, the behavior for the most 
common applications was described. Based on the many applications 
different requirements, more classes should be added in order to differentiate 
data traffic to satisfy these applications service requirements. This scheme 
will give us a more complete QoS solution for a wireless Ad Hoc network. The 
classification scheme used in DiffServ (described in chapter 3.3.2) could be 
used as model for this improvement.  

5.3 Compression and rate regulation 
When a network using SWAN gets congested, the ECN mechanism in the 
congested nodes starts marking the packets with Congestion Experienced. 
Then all the affected sessions has to be re-probed. The re-probing is most 
likely to cause unacceptable delay to a Real-Time session, and the playback 
buffer at the receiver will run out of packets. Then the sessions are interrupted 
and possibly teardown. This may have devastating effects on a Real-Time 
session, and could make the communication completely useless. Another 
drawback of re-probing is that the probe packets are competing with ordinary 
data packets for useful bandwidth. The probe packets are likely to passing 
through the congested routers and possibly making the situation even worse. 
 
Here is a proposal of different scheme. Instead of just marking the packets of 
some flows with CE when congestion is experienced, packets belonging to all 
the flows passing through a router which experience Heavily Load, but not as 
much as experienced during excessive congestion, could be marked HL. 
Upon receiving the regulate messages, all or the least important of the 
transmitting nodes could either reduce the transmitting rate using 
compression, or in some way lowering the quality of the session. In this 
approach, all the affected transmitting nodes contribute to congestion 
avoidance, and any sessions may not be terminated at all. When the data 
traffic gets excessive, and some routers really experience congestion, the 
packets are marked CE as before. The HL marking serves for congestion 
avoidance, while CE marking is for congestion recovery. Due to the fact that 
all nodes is notified when the wireless channel is about to be exhausted, the 
false admission problem could easily be solved. All nodes know when their 
RT session was started, and if the time of their session is shorter than a fixed 
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threshold time, their session is falsely admitted, and must be terminated 
immediately.  
 
When the receiving nodes detects HL or CE in the incoming packets, they 
send a regulate message to the transmitter. These regulate messages 
reverse paths will most likely follow the same path as through the nodes 
which experience overload and/or congestion. For that reason it is urgent that 
these regulate messages are given a high priority so that proper action can be 
taken as fast as possible in order to decrease the affected session’s end-to 
end delay. 

5.4 Admission Controller 
Another topic is the necessity of an admission controller. A well known 
solution to keep the QoS at a satisfying level in the Internet is over-
provisioning the capacity of the routers and the links. It is believed that within 
2005, the IEEE 802.11n standard will be able to deliver a theoretical 
throughput of 308 Mbps [9]. This will be a major improvement to the wireless 
world. If this bandwidth enhancement almost always will give us enough 
resources to initiate a new Real-Time session in typical Ad Hoc network, 
admission control might be superfluous upon starting a new session. The 
source node does not need to send a probing request towards the destination 
node to start a new session. This will again eliminate most of the start up 
delay, which is one of the drawbacks in the recent SWAN implementation. 
This is experienced in the simulation presented in chapter 7.2.2.2. Even 
though congestion occurs less frequently in an over-provisioned network, 
congestion may still occur. Therefore, the admission controller is still needed 
when sessions have to re-probe in times of congestion. If a partly removal of 
the admission controller in a QoS model for MANET is feasible, and the 
scheduling mechanism and congestion management is improved, the model 
would also be simpler and more suitable for a wireless environment. 

5.5 Regulation algorithm 
Neither the Source-Based nor the Network-Based regulation algorithm 
proposed in [4], are optimal solutions to regulate network traffic due to 
congestion. Both proposals have certain disadvantages, and there are several 
trade-offs in both of them.  
 
In the Source-Based proposal, upon receiving a regulate message, the source 
node does not immediately initiate reestablishment. Instead, it waits a random 
time before it initiates the reestablishment procedure to avoid simultaneously 
re-probing from all the affected sources. This may not be fair for the sources 
that wait the shortest period of time before re-probing, because these nodes 
are more likely to still find the path to heavily loaded, and therefore has to 
drop their sessions. Also, because the source node waits a random time 
before initiates their reestablishments, immediate countermoves against the 
congestion are not necessarily taken and the situation could be even worse. 
Another disadvantage is that this approach does not differentiate the different 
RT flows, and it may also force too many flows to be regulated.  
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In the Network-Based proposal, there is no differentiating of flows based on 
their importance, rather it randomly select a set of Real-Time sessions that 
has to reestablish their session. In this approach, important flows may have to 
drop their sessions in advantage of less important flows. Another 
disadvantage of this scheme is to determine if a flow is new or old in order to 
take correct action upon false admission, some intelligence at the 
intermediate nodes are required. 
 
It is clear that the regulation of network traffic to dissolve congestion has to be 
quick. Another important fact is that the workload on the intermediate nodes 
should be kept low. In simulations presented in [swan] for the Network-Based 
and the Source-Based approach respectively, it took approximately 4 and 6 
seconds for the Real-Time rate to reach below the Admission control rate. 
The Network-Based approach performed better than the Source-Based 
approach, at the cost of more workload and complexity in the intermediate 
nodes. When we know that some applications are delay sensitive in order of 
magnitude on hundreds of milliseconds, it may be to slow to dissolve the 
congestion in seconds. Before the regulate message have reached the source 
node, and proper action have been taken to regulate the transmission rate, 
the congestion may already have caused disruption to many of the ongoing 
RT flows.  
 
Among my proposals, one immediate action in order to dissolve the 
congestion faster, could be for the congested node to broadcast one single 
CE/HL message to all it adjacent nodes. Then all the nodes, either directly 
disturbing or feeding the congested nodes with packets, could for a short 
period of time immediately back off all their transmitting traffic, or lowering the 
data rate for low priority traffic, such as BE and other non-delay-sensitive 
packets by either dropping those packets, or delay them in a buffer. This 
period of time should be long enough for the RT sources to adjust their data 
rate so the total RT rate again is kept below the Admission Control rate, 
without the necessity of terminating any RT sessions.  
 
Also, the regulation of RT traffic could have two separate regulate messages. 
One regulate message for the lowest priority of RT traffic, and another 
regulate message to inform all the sources that the network is Heavily Loaded 
or Congestion Experienced. The destination nodes could select their set of 
“victim” flows among the least important flows, to reestablish their session 
based on their priority marks which could be located in the TOS field in the IP 
header.  
 
Finally, since SWAN already trusts the source nodes, they could keep some 
state information about their newly admitted flows versus on-going flows in 
order to distinguish the flows that have been falsely admitted. Hence the 
complexity seen in the Network-Based regulation algorithm is moved from the 
network interior to the transmitting “edge” nodes.   
 
In this proposal, faster and more thorough actions are taken to counter the 
upcoming or already on-going congestion, and the interior of the network is 
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spared from complex work, because most of the intelligence is kept in the end 
nodes.    
 

5.6 Repeatability of the SWAN simulations 
In order to test the performance of the SWAN network model, and figure out 
how the result claimed in [3] was received, a recreation of some of their 
simulations in ns-2 had to be made. First of all, TCL scripts of some simple 
simulations are enclosed in the SWAN source code. These scripts are just 
some simple scripts to describe how to set up the SWAN protocol in ns-2, and 
not the TCL scripts used in the simulations described in [3]. Also, the 
documentation of the simulations including all is parameters are only 
described by its major details in the SWAN articles, and a lot of important 
details are missing. Therefore, a lot of time was spent on figuring out how to 
put up the TCL scripts to recreate similar simulations as those described in 
[3]. 

5.7 Bugs in SWAN 
In the implementation of the SWAN network model for ns-2, several bugs 
have been found and reported. The following bugs have been found by 
people working at Thales Communication U.K. Wrong variable have been set 
for the shaper queue size, so the default value is used instead. Second, 
SWAN uses the data_packet function to use if each packet is a valid 
DATA_PACKET. The variable PT_UDP is not defined for this function, so if you 
are going to use non CBR traffic over UDP it would not work unless you 
define it for this function. Third, the local channel usage, computed by the 
SWAN implementation, is not computed correctly. Code has to be added in 
the 802.11 MAC files of the ns-2 implementation. In addition to these errors, 
the modified packet.h file following the SWAN implementation code for ns-2 
contained a lot of bugs that had to be fixed in order to re-compile the ns-2 
source with the SWAN extension.    

5.8 Summary 
In chapter 5, problems with the SWAN network model proposal was 
discussed. In section 5.1 Questions whether the delay experienced by the 
Real-Time applications is low enough to properly support this type of traffic.  
Also, a question was raised whether the statements about the delay in the 
SWAN articles really are what they claim to be. This was suggested to be 
investigated in deeper details through further simulations. Section 5.2 claimed 
that one of the major drawbacks of the recent SWAN model have a poorly 
equipped classification scheme. More classes could, and must be added, in 
order to fully support a more complete QoS solution for Ad Hoc networks. 
Section 5.3 demands a more advanced notifications scheme than the existent 
one. In order to support both congestion avoidance and congestion recovery, 
it could be necessary with more than one notification message, without a 
heavy increase of the complexity of the network interior. Section 5.4 
discussed the need for an admission controller, and that it could be 
superfluous with the increased capacity of the wireless bandwidth. Section 5.5 
highlighted the drawback of the proposed regulation algorithms, and 



 35 

suggested a regulation algorithm with more immediate action upon 
congestion, and a better solution concerning the differentiation of sessions to 
be re-established. Also, this section included a proposal to move the 
complexity of deciding whether a session is falsely admitted or not out to the 
“edge” routers. Sections 5.6 described the difficulties on repeating the 
simulations presented in the SWAN articles. In the final section of chapter 5, 
some bugs discovered during the work with the SWAN implementation was 
presented. 
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6 Related work 
This chapter presents two additional and relevant protocols which also focus 
on the QoS in mobile ad hoc networks.  

6.1 INSIGNIA 
The QoS protocol INSIGNIA is a proposal for an in-band signaling system that 
supports restoration and adaptive reservation service, in the continuously 
changing conditions of mobile ad hoc networks. The protocol supports 
“operational transparency” between several mobile ad hoc networking 
protocols, such as AODV, DSR and TORA.  
 
INSIGNIA encapsulates control signals in the IP option of every IP data 
packet (INSIGNIA option), and can be characterized as an in-band RSVP 
signaling protocol. The flow state information, informing the source nodes for 
the status of their flows is maintained on an end-to-end basis. Whenever the 
INSIGNIA option is used in an IP packet, the INSIGNIA module is involved. If 
the resource requirement can be satisfied, it allocates bandwidth to the flow in 
coordination with the Admission Control module. If the requested resource 
can’t be satisfied, the packet is left with only best effort service. 
 
The two major drawback of INSIGNIA is that it, as the SWAN module, only 
enables the existence of two service classes (RT and BE), and that the flow 
state information is kept in the mobile host, which could lead to a scalability 
problem as the number of flow increases [47][49]. 

6.2 DS-SWAN 
Another protocol proposed to ensure QoS in wireless Ad Hoc network is the 
DS-SWAN protocol. The DS-SWAN protocol is based on the co-operation 
between the SWAN network model within the ad hoc network, and the 
Differentiated Services (DiffServ) in the fixed infrastructure network. The DS-
SWAN protocol supports end-to-end QoS in ad hoc network connected to 
fixed DiffServ domains. 
 
In the DiffServ domain the EF service class is used for Real-Time traffic. At 
the ingress edge router, the traffic are policed by a token bucket and traffic 
that exceeds the profile is dropped.  
 
In DS-SWAN the nodes in the ad hoc networks are notified when the network 
congestion are about to be too excessive to support properly functioning of 
Real-Time applications. The affected nodes then react by adjusting the 
transmission rate for their Best-Effort traffic. If the end-to-end delay for a Real-
Time session becomes greater than 140 milliseconds, the destination node 
sends a QoS-LOST warning message to the ingress edge router. The 
parameter values in the AIMD rate control algorithm is then modified by the 
nodes in the ad hoc networks receiving this QoS-LOST message [48].  
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7 Simulations 
The general idea is to recreate some of the scenarios in the SWAN articles, 
and the results stated in those articles, and then investigate that those test 
and the implementation of SWAN, seems to be what it really claims to be. 
Additional performance tests will also be carried out in order to make a 
thoroughly investigation of the SWAN mechanism. Simulations will be 
executed in a single-shared-cannel medium and in a multi-hop scenario. An 
ideal approach would have been to run the test on real computers. When 
considering the amount of resources that will require, a network simulator is 
more suitable for this purpose. Therefore, it is important that the model on 
which the simulator is based matches as closely as possible to the reality, in 
order for the result of the simulations to be meaningful [18].  
 
An implementation of SWAN for ns-2 has been made by the originators of 
SWAN, so ns-2 is the network simulator chosen throughout this work.  

7.1 Ns-2 overview 

7.1.1 Introduction to ns-2 
The network simulator (ns-2) is a discrete network simulator targeted at 
network researching. Ns-2 originated in 1989 as a variant of the REAL 
network simulator. As a part of the Virtual InterNetwork Testbed (VINT) 
project at the University of California in Berkley. The project was supported by 
DARPA in 1995.  
 
Ns-2 is an object-oriented simulator with substantial support available for 
simulation of TCP, routing, and multicast protocols, initially intended for wired 
networks, but the Monarch Group at CMU have extended ns-2 to support 
wireless networks. 
 
The core of the simulator, including the network protocols is implemented in 
C++, while object oriented TCL is used as an interface to describe, and set up 
the simulations. The implementation of ns-2 closely follows the OSI model. 
The essential of the wireless model consist the MobileNode at the core, with 
additional support for simulations of multi-hop ad-hoc network etc. A mobile 
node is derived from the basic Node object, with additional functionalities of a 
mobile wireless node, like the ability to receive and transmit signals to and 
from a wireless channel, and the ability to move within a given topology. In ns-
2, an agent is used as a representation of an endpoint where network traffic 
are constructed, processed and terminated.  
 
Ns-2 is able to trace the network traffic through the different protocols and 
produce output trace files, which can be used to calculation of the QoS 
parameters. Cmu-trace objects are used to support trace in wireless 
simulations. In the Network Animator (NAM) output from the trace files can be 
used to view the simulation, see Figure 7.1. Output from the trace files can 
also be plotted as graphs in graphical applications such as Xgraph or 
GnuPlot.  
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Figure 7.1: Screenshot from NAM 
 
 
Due to its open source nature, ns-2 has certain limitations and disadvantages. 
Information and documentation are often limited and not state of the art in 
proportion to the current release of the simulator. Compatibility and 
consistency of code across releases may also cause problems. The last 
drawback of ns-2 is that it is poorly equipped with tools to prepare the 
simulation scenarios and to analyze the results [18] [19]. 

7.1.2 Credibility on simulations in ns-2 
“An opinion is spreading that one cannot rely on the majority of the published 
results on performance evaluation studies of telecommunication networks 
based on stochastic simulation, since they lack credibility. Indeed, the spread 
of this phenomenon is so wide that one can speak about a deep crisis of 
credibility.” [20]. 
 
 When simulating network performance in a network simulator, it is important 
to consider the credibility of the simulator chosen for the modelling, and also 
in credibility of the results achieved in this simulator. In order to have a valid 
simulator model, it is of great importance to have appropriate assumptions 
about the network mechanisms and its limitations. The next step is to ensure 
that the simulation and analysis of the experiment is valid. 
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As mention previous in this paper, the simulator chosen for modelling this 
experiment is ns-2. When considering the size and complexity of ns-2, a 
complete validation of ns-2 is out of the scope of this thesis. Anyway, it is 
important to be aware of the weaknesses and limitations of the tools used in 
any experiment, and this experiment is no exception. In [18] several network 
simulators suited for MANET is tested. In [18] ns-2 is among the simulators in 
which the results show that there exists significant divergence between the 
simulators when equal models are executed on the simulators. Naturally, I 
have not found any complete validation on ns-2 ability to match the reality. 
Even though the match to the reality in fact could be close, a certain range of 
error in the simulation results is highly likely to occur. Anyway, this thesis has 
to rely on the correctness in the implementation of the ns-2, and then carefully 
considerations of the abbreviations that may exist upon making conclusions of 
the simulation results must be done.   

7.1.3 The implementation of SWAN in ns-2 
The SWAN module for ns-2 requires the ns-2 simulator version 2.1b9a. To 
install the SWAN module for ns-2 you need to download the SWAN module 
from http://www.comet.columbia.edu/swan/simulations.html, modify the 
makefile and compile the simulator with a C++ compiler. The additional 
SWAN files includes: run, swan.tcl, mobility.tcl, traffic.tcl, 
swan_ac.cc, swan_ac.h, swan_rc.cc and swan_rc.h. Modifications to 
some of the original ns-2 source code have also been made by SWAN. Those 
files are originally included in the downloaded version of ns-2 and have to be 
replaced by the modified one from SWAN. Those files are: ip.h, packet.h, 
ll.cc, ll.h, ns-default.tcl, ns-mobilenode.tcl, ns-packet.tcl 
and cmu-trace.cc. The SWAN extension for ns-2 includes an admission 
controller, a rate controller (AIMD), a mechanism for packet delay 
measurement, local utilization monitoring, a probe protocol and the ECN 
mechanism. 

7.1.4 My work with ns-2 
When I started my work on this paper I was completely new to ns-2, C++ and 
TCL. I started with the SWAN and ns-2 webpage, the SWAN articles and 
Marc Greis’ Tutorial. I downloaded the 2.1b9a all-in-one package and installed 
it on my laptop computer running RedHat Linux. The installation was not 
without problems, and I had to fix a lot of bugs before I had a valid compilation 
of the simulator. When I finally had ns-2 up and running I had to learn how to 
write and run simulation scripts. I started with the small and simple scripts in 
Marc Greis’ Tutorial. From there I went to more advanced simulation scripts 
and networks. Then I went into exploring the wireless part of ns-2. I looked at 
the descriptions of the simulation carried out in [3] and I had a hard time 
figuring out how their simulations were set up. Gradually, I approached similar 
simulations as the simulations in [3]. In order to have a reasonable output of 
the simulations, Agent/LossMonitor where used as traffic sinks since ns-2 use 
them to store the amount of bytes received. I wanted to use this information to 
calculate the bandwidth and delay of the simulations, but I could not get any 
output from TCP traffic with the LossMonitor. I later found out from the ns-2 
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mailing list that tracing of TCP traffic with the LossMonitor in ns-2 was not 
supported for a wireless simulation, so then I was stuck for a little while. 
Fortunately, I found out that I did have all the information I really needed in the 
trace files. Then I started making small scripts in Python with the trace files as 
input. Then I used the scripts to calculate the throughput and delay from my 
simulations. Finally, I had enough knowledge of ns-2 to add the SWAN 
module (as described in the previous chapter), and set up the scenarios I 
want to run, with and without the SWAN module. To fully understand the 
implementation of SWAN for ns-2, I also had to take a deeper look into the 
C++ files of the SWAN module and ns-2. The complete implementation of ns-
2 including all the network modules is pretty large and complex, so I only had 
a chance to get a glance at how ns-2 is built up. The all-in-one package 
actually requires about 250 Mb of disk space. Since this installation and 
learning period, I have spent my time on setting up and running the different 
scenarios I want to simulate. During my simulations and when analyzing some 
of the results, I have also found many new scenarios I wanted to run and find 
out more about. 

7.2 Preliminary simulations 

7.2.1 Maximum throughput tests 
Due to the generally hostile transmission channel in wireless networks, the 
achieved throughput is usually far from the theoretical throughput dedicated to 
the wireless interfaces. The introduction of an additional protocol such as the 
SWAN module in an Ad Hoc network will also ad an extra burden to the 
network in terms of extra administrative and control information exchange. 
Before starting on more advanced simulations like the one in [1] and [3], it 
was desirable to see how SWAN performed in simple scenarios. Therefore I 
found it useful to first figure out what is the maximum throughput of TCP traffic 
in a wireless 802.11b simulation using ns-2 (version 2.1b9a). 

7.2.1.1 Testing maximum throughput with TCP traffic 
These simulations were run both with and without the SWAN mechanism, in a 
single shared channel, under ideal and undisturbed conditions. No other 
nodes or traffic were present in the simulation area. To simulate this rather 
simple test, the simulation area included only 2 nodes and one single greedy 
FTP connection between two nodes. The bandwidth of the wireless media 
was set to 11 Mbps and SWAN’s Threshold rate was set to 4000 Kbps when 
the SWAN modules where turned on. The packet size was 512 bytes and the 
RTS/CTS mechanism where turned on. The simulations lasted for a total 
period of 100 seconds. As we can see from the graph Figure 7.2, the 
simulation with the SWAN rate/admission controller turned off, the achieved 
throughput lay almost constantly around 3 Mbps from the beginning to the end 
of the simulation period. 
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Figure 7.2: Maximum throughput of TCP traffic with SWAN on/off vs. time 
 
 
On the other hand, a corresponding simulation with the SWAN mechanism 
turned on, the result shows that the achieved TCP throughput started at 
0Mbps and then increased exponentially up to 1.5 Mbps for about 5 seconds. 
Then the AIMD protocol in SWAN started to use the Slow Start algorithm to 
increase the congestion window from a “cold start”. Then AIMD’s Slow Start 
Threshold (ssthresh) was reached, and AIMD used the “old” additive increase 
algorithm. For the next 25 seconds the TCP throughput grew linearly up 3 
Mbps. The AIMD rate controller in the SWAN module uses more than 30 
seconds to reach a stable throughput around 3 Mbps. After the first 30 
seconds, the rate controller reached its “maximum” throughput. From now on, 
the extra administrative burden of SWAN control traffic was barely noticeable, 
and the achieved throughput stabilized approximately at the same throughput 
as achieved without the SWAN mechanism. For a single application running 
over TCP, it is not of great importance if a link at anytime is fully utilized. On 
the other side, there is no need to waste valuable bandwidth which indeed is a 
scarce resource in a wireless medium. For better utilizing of the link, the AIMD 
protocol in the SWAN module should be implemented and or adjusted so it 
faster adapts to the actually available bandwidth. Apparently it looks like a 
good idea to increase the ssthresh. Then the Slow Start algorithm will be used 
for a longer period of time, and the throughput will grow exponentially up to 
this new ssthresh. Thus, the utilization of the link will be more efficiently.  
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7.2.1.2 Testing maximum throughput with UDP traffic 
UDP traffic has different network characteristics than TCP traffic; therefore I 
had an analogous simulation with Real-Time CBR traffic where also 
accomplished. This simulation used 2 nodes and 10 CBR flows (5 in each 
direction); because some trouble with fast generation of packet occurred, and 
because the packet size over UDP is usually limited to 1500 bytes [45]. 
Instead of having only one flow and packet size of 10000 bytes, each flow had 
a packet size on 1000 byte and a sending interval on 0.01 seconds thereby 
making the simulation more realistic. The total CBR traffic generated in this 
simulation was then 8 Mbps.  
 
The total simulation time of this simulation was the same as with TCP traffic; 
100 seconds, and the RTS/CTS mechanism was turned on. Initially, the 
Threshold rate was set to 4000 Kbps and the Admission Control rate to 2000 
Kbps in this simulation. The consequences of keeping this settings, was that 
the RT traffic was marked as BE traffic  when it exceeded the Admission 
Control Rate, and then obviously treated as BE traffic by the Classifier and the 
Shaper. The outcome of this looked pretty much like the graph in the previous 
chapter, where the throughput first grows exponentially and then grows 
linearly up to a more stable throughput. In order to be capable of finding out 
how much RT traffic that could be achieved in this simulation, without having 
RT traffic converted to BE traffic, I had to put both the Threshold rate and the 
Admission Control rate high above the generated traffic of 8 Mbps. The 
bandwidth of the wireless media was set to 11 Mbps. 
 
With the raised Threshold rate and Admission Control rate, the total 
throughput of this simulation was slightly above the previous simulation with 
TCP traffic. This could be due to the nature of TCP which introduces more 
overhead, and then produces a less effective throughput. Another reason why 
the achieved throughput in these simulations was higher than the previous 
with TCP traffic could be the packet size, which was nearly doubled. 
Increasing the packet size usually gives a higher throughput. The reason for 
this is that for each packet sent, the ratio of payload/header is higher with 
higher packet sizes.   
 
Without the SWAN mechanism, an average UDP throughput about 3.6 Mbps 
was received in this simulation. Indeed, very small variations in the throughput 
were experienced, except for the very first seconds of the simulation. With the 
SWAN mechanism turned on, the throughput was slightly lower and the 
received average UDP throughput was about 3.4 Mbps (see Figure 7.3). 
Upon initiating a RT session, the probe packet has to be sent from the source 
to the destination. The session is not admitted to start before the source 
receives the probe-reply from the destination, thus introducing a start up 
delay, and naturally the network will not be fully utilized before all flows are 
admitted. It took almost 10 seconds before the simulation with the SWAN 
mechanism turned on, reached a maximum throughput at about 3.6 Mbps.  
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Figure 7.3: Maximum throughput of CBR traffic with SWAN on/off vs. time 
 
 

7.2.2 Performance test of additional traffic 
After running several simulations, it was discovered that the delay in some of 
the situations was extraordinary high. Due to this strange behavior, and after 
several trials it was reason to believe that the delay in some situations was 
dependent of whether the source or destination nodes where receiving or 
sending additional traffic. Therefore, a new simulation similar to the simulation 
above, were set up. This simulation contained two nodes, one source and one 
receiver and one single RT flow, once with small packet (voice), and once 
with larger packet (video). Additionally, to stress either the source or the 
destination node, a third node (node 2) which both aggregate and receive BE 
traffic from one of the two other nodes, was introduced. Respectively, in the 
first simulation sending additional FTP traffic to the source node of the RT 
traffic (node 0) and in the second simulation to the destination node of the RT 
traffic (node 1). 
 
Also, it was desirable to see how the SWAN mechanism reacted in these 
situations. So, the simulation was executed both with and without the present 
of the SWAN module. As in the previous simulation, the bandwidth of the 
wireless media was set to 11 Mbps, the Threshold rate was set to 4000 Kbps, 
and the Admission Control rate was set to 2000 Kbps, when the SWAN 
modules where turned on. The packet size was 512 bytes. The simulations 
lasted for a total period of 100 seconds. Every second, the average delay was 
measured for the packets of the RT session, and the throughput was 
measured for the FTP connections. 
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Figure 7.4: Simulation scenario with additional traffic to node 0 or node 1 
 
 

7.2.2.1  Additional Traffic Exchange with RT Source 
This simulation deployed voice traffic with a packet size of 80 byte, from node 
0 to node 1, throughout the complete simulation period of 100 seconds. After 
the first 20 seconds of the simulation, node 2 starts aggregating FTP traffic to 
node 0. After 40 seconds node 0 starts to send FTP traffic back to node 2. 
From 40 seconds of the simulation we have an overlap of 20 seconds where 
FTP traffic is going in both directions between node 0 and node 2. After 60 
seconds node 2 stops its aggregation of FTP traffic to node 0. Finally, after 80 
seconds node 0 also terminate its FTP session to node 2. For the last 20 
second of the simulation period, the only traffic present is the RT flow from 
node 0 to node 1. 
 
From the graph in Figure 7.4, showing the delay of the voice flow from node 0 
to node 1, scarcely no delay was imposed in the first 20 seconds of the 
simulation, where the only traffic present was the voice flow. After 20 
seconds, where node 0 receives FTP traffic from node 2, the delay when 
using SWAN was still scarcely anything. For the same period the simulation 
without the SWAN mechanism showed a significant increase in the delay 
imposed on the RT flow. The delay rises from barely 0 up to about 80 
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milliseconds where the delay stabilized for the next 20 seconds until the next 
event occurd. 
 
 

 
 

Figure 7.5: Delay of 32 Kbps Audio stream 
 
 
At time 40, where node 0 started to send FTP traffic to node 2 in addition to 
the traffic it received from that same node, there was a considerable increase 
in the delay, both with and without the SWAN module. With the SWAN 
mechanism turned on, the delay raise almost instantly from nearly 0 to about 
160 milliseconds, and then sharply declined for the next five seconds down to 
120-130 milliseconds where it stayed for about 10 seconds. Then the delay 
suddenly dropped again, and until the next event occurred, the delay stayed 
at about 70-90 milliseconds. In the same interval (40-60 seconds) the 
simulations without the SWAN module showed a delay which was more than 
doubled compared to the last interval where only node 0 received FTP traffic. 
Indeed, the delay rises suddenly from about 80 milliseconds to between 160 
and 170 milliseconds. Apart from some drops the delay stayed mostly around 
this level until the next event occurred. 
 
After 60 seconds node 2 stopped generating FTP traffic to node 0. At that 
point, the graph in Figure 7.5 show us significantly different behavior of the 
delay experienced with and without the SWAN mechanism. The plot from the 
simulation with SWAN shows us a very strange behavior. The delay suddenly 
jumped from about 90 milliseconds, up to about 170 milliseconds, and then 
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the delay immediately decreased, approximately linearly down to 110 
milliseconds, where all FTP traffic is stopped. In this same interval (60-80 
seconds), the delay for the simulation without the SWAN mechanism was 
immediately reduced to less than half its value, when node 2 stopped sending 
FTP traffic to node 0. Indeed, for this interval, where the only FTP flow 
present, was the FTP flow from node 0 to node 2, the delay stayed at the 
same level as when the only FTP traffic present was the one in the opposite 
direction from node 2 to node 0 (interval 20 – 40 seconds).   
 
All FTP traffic terminated after 80 seconds, and for the last 20 seconds where 
the RT flow from node 0 to node 1 was the only traffic present, the delay went 
back to almost 0 milliseconds throughout the simulation. 
 
In Figure 7.6, the throughput of the FTP traffic from the same simulation can 
be viewed. The low delay experienced with SWAN in the second interval (20-
40 seconds), could be explained by the behavior of the FTP throughput. As 
mention previous in this paper, SWAN is using the AIMD rate controller to 
regulate Best-Effort traffic. When node 2 starts to send FTP traffic after 20 
seconds, the rate controller will only allow this flow to utilize the remaining 
bandwidth not used by the RT flow. Thus it was not making any disturbance 
on the RT session.  
 
The reason why the delay was raised so heavily in the next interval (40-60 
seconds), is probably because the node 0 was starting to send FTP traffic to 
node 2, and node 0 was not aware of the fact that node 2 is utilizing all the 
“free” bandwidth for best-effort traffic. All nodes get its measure from the MAC 
delay, and at the moment of initiating this FTP session, node 0 has no 
measure of the MAC delay. Therefore it probably misconceives the situation 
and thinks it can utilize the “remaining” bandwidth. Node 0 starts to send a 
burst of FTP packets, before it gets measurement of the excessive delay. 
When the delay gets excessive, node 0 adjust its transmission rate quickly. 
This was probably the reason why the delay jumps so high and then 
immediately backed off to a much lower level. The reason why the delay 
again reach a high peak in the forth interval (60-80 seconds) I have no good 
explanation for. 
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Figure 7.6: Throughput of the greedy FTP traffic 
 
 
A solution to solve the problem of a node initiates a session with best-effort 
traffic without a MAC delay measurement, could be to in some way to retrieve 
this information from its most adjacent neighbor nodes. How this could be 
implemented I leave for future development of the SWAN mechanism. 
 
Without the SWAN mechanism, there is no organized mechanism trying to 
prior, or in any way put any limitation on the traffic, except from the upper 
physical bandwidth limitation. As we can see from Figure 7.5, as long as there 
is at least one greedy FTP flow present, the TCP throughput was close to the 
physical limit of 3 Mbps measured in previous simulations. Here all the 
packets are equally competing for the bandwidth and as we can se from 
Figure 7.4 and 7.5, the delay was approximately doubled for the RT session. 
As reasonable to expect, this happens when the number of FTP flows was 
increased from 1 to 2 sessions, and at the same time no TCP throughput was 
increased. 
 
Finally, some statistics in numbers: As expected the delay upon initiating a 
Real-Time session using SWAN was higher than without SWAN; the first RT 
packet was delayed 24.47 milliseconds, compared to 5.61 milliseconds 
without SWAN. The max delay of one single RT packet was 193.73 
milliseconds with SWAN, and 181.55 milliseconds without SWAN. Also as 
expected, the average delay using SWAN; 48.92 milliseconds, was lower than 
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without SWAN; 62.46 milliseconds. Also, the total TCP throughput was lower 
with SWAN; 11 725 Kb, than it was without SWAN; 16 351 Kb. 

7.2.2.2  Additional Traffic Exchange with RT destination 
Similar to the simulation above, another simulation was accomplished; instead 
of sending FTP traffic between the RT source (node 0), and the external one 
(node 2), a “2-way” connection between the external node, and the RT 
destination node (node 3) was set up. All network parameters where as in the 
previous simulations; the only difference was the swapping of the source and 
destinations nodes of the FTP traffic. So, here the RT connection from node 0 
to node 1 also went throughout the simulation period. After 20 seconds, node 
2 started to aggregate FTP traffic towards the RT destination node (node 1) 
and after another 20 seconds node 1 started aggregating FTP traffic back to 
node 2. For the next 20 seconds there was a “2-way” FTP connection 
between node 1 and node 2, until the FTP traffic from node 2 cease, after 60 
seconds of the simulation time. After 80 seconds, the other FTP connection 
also terminates, and finally the simulation ends after 100 seconds. This 
simulation was also run separate for both voice and video. 
 
Even though it still exist a start-up delay using the SWAN mechanism, in this 
simulation the average delay started at less than 10 milliseconds, with a fast 
decrease to only a few milliseconds. After 20 seconds, when node 2 started 
its FTP session to node 1, the average RT delay was increased by only a 
small fraction, and the delay was still down to only a few milliseconds. When 
the second FTP session was initiated by node 1, the delay seems to be 
doubled, but still the delay was very low. In this interval, it oscillated around 5 
milliseconds (40-60 seconds). When node 2 terminated its FTP session after 
60 seconds, the delay suddenly made a jump to about 13 milliseconds, and 
then a quick decrease down to only 2-3 milliseconds, where it stayed until 
node 1 also terminated its FTP session, and the delay decreased further to 
only a couple of milliseconds for the rest of the simulation period. 
 
Without the SWAN mechanism, the simulation results shows a flat line, at only 
1-2 milliseconds for the RT delay in the first 40 seconds. After 40 seconds, the 
second FTP session was initiated. When the first FTP session was terminated 
after 60 seconds it does not seems to affect the delay at all. In fact, the delay 
oscillated around 6 milliseconds, with some high peaks until the second FTP 
session also terminated after 80 seconds. For the rest of the simulation 
period, the only traffic present is the RT flow, and then the RT delay went 
back to only 1-2 milliseconds.  
 
In Figure 7.7, the FTP throughput for this simulation can be viewed. Without 
the SWAN mechanism, the FTP session from node 2 to node 1 was not 
admitted to transmit at all. This seems very strange, and at first glance this 
could be due to a one-time error in this simulation, but the same thing also 
occurred during simulations of video. So, this clearly explains why the delay at 
the same period stayed at that low level. In the same period of the simulation 
with the SWAN mechanism, everything seems to work fine, and the FTP 
throughput was increased using the AIMD mechanism. After 40 seconds, the 
second FTP session started to generate traffic from node 1 to node 2. Then 
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the FTP throughput was fully utilized, and stayed just below 3Mbps, until this 
session ceased after 80 seconds. The behavior of the FTP throughput in the 
same period in the simulation using SWAN shows that the FTP traffic is 
controlled by the AIMD controller. The throughput drops certain times when 
the traffic gets excessive, and then it was raised linearly, without much 
disturbance to the RT flow.   
 
 

 
 

Figure 7.7: Delay of 32 Kbps Audio stream with packet size of 80 byte 
 
 
To enumerate the statistics of this simulation, the delay for the first packet 
was the same as in the previous simulation, both with and without SWAN. 
This is exactly as anticipated, because in both simulations, only RT traffic was 
present in the first 20 seconds interval. Surprisingly, the average delay was 
down to only 3.03 milliseconds, which is very satisfying for the demands of RT 
applications. This was achieved both with and without the use of the SWAN 
mechanism. Also, the maximum delay of one single packet was much lower in 
these simulations. With SWAN, the maximum delay was 77.62 milliseconds 
and without SWAN the maximum delay was slightly lower; 62.58 milliseconds. 
On the other hand, the achieved FTP throughput was decreased; 11 006 Kb 
without SWAN, and as expected, slightly less with the usage of the SWAN 
mechanism; 10 374 Kb. 
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Figure 7.8: Throughput of the FTP traffic 
 
 

7.2.3 Variable packet size test 
As part of the preliminary tests, before running larger simulations scenarios 
like those posted in [3], it was desirable to find out how the performance 
varied with the size of the data packet. Applications like voice and video 
usually have different packet size. Also, in a Real-Time session the packet 
size can vary with different compressions, hence it is interesting to find out 
how the different packet size influence the performance, and in which 
situations different packet size triggers excessive delay. In an environment 
with high density of nodes, and an increasing amount of competing data 
flows, I wanted to show that this different type of data traffic have different 
behaviour. It was also desirable to show that different packet also needs to be 
treated separately in a QoS mechanism.  
 
In this simulation, 40 nodes were present in the same BSA, so all the nodes 
shared the same 11 Mbps radio channel. Also, the Admission Control rate 
was set to 2000 Kbps and the Threshold rate was set to 4000 Kbps when the 
SWAN modules where turned on. The simulations lasted for a period of 100 
seconds. 
 
In 6 separate simulations, each with different packet size, the tests was 
executed in the same simulation environment. Results from three of the test 
are shown and discussed below. At time 0, 5, 10 and 15 a pair CBR sessions 
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was initiated. These CBR flows, one in each direction between a pair of 
nodes, was sent at a rate of 50 packets every second. In addition to the CBR 
traffic, one single greedy FTP session was also initiated every 10 seconds, 
from the 10th to 90th second of the simulation period, see table 7.1 for more 
details. Each FTP session has its own transmitter/receiver pair.   
 
 

Time in 
seconds 

5 10 15 20 30 40 50 60 70 80 90 

CBR 2 2 2         
FTP  1  1 1 1 1 1 1 1 1 

 
Table 7.1: Initiation time of CBR/FTP flows 

 
 
The first simulation (see Figure 7.9) started with CBR traffic on 80 bytes. For 
the first 20 seconds of the simulation period, the average RT delay was kept 
very low both with and without the SWAN mechanism. Then if we look at the 
simulation with the SWAN mechanism turned off; after 20 seconds, when all 
the 6 CBR flows was transmitting, and the second FTP session was initiated, 
the delay started to grow up to such a level where Real-Time traffic no longer 
could be supported properly. Throughout this simulation, the delay continued 
to grow and when the simulation ends it had reached almost 3000 
milliseconds. With the SWAN mechanism turned on the delay was kept very 
low throughout the simulation only with some exceptions ranging up to 100-
200 milliseconds. Promisingly, the delay was kept below the upper limit of 
acceptable delay stated by the ITU in [16]. The SWAN mechanism was 
performing very well in this simulation environment, with a packet size on 80 
bytes. 
 

 
Figure 7.9: Average delay of CBR on 80 bytes (Voice) 

 
 
In the next two simulations, with the packet size of hence 150 and 200 bytes, 
the simulation where carried out in the same simulation environment. In those 
simulations, the results were not much different from the one with a packet 
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size of 80 bytes, except for the last 10 seconds of those simulations. For this 
last period, the delay starts to increase fast using the SWAN mechanism.  
 
 

 
 

Figure 7.10: Average delay of CBR on 250 bytes 
 
 
When the packet size was increased to 250 bytes the performance start to 
change radically. Without SWAN, the result was almost the same as in all the 
previous simulations. When running simulations with the SWAN mechanism, 
the delay started to grow after 40 seconds when all the 6 CBR sessions were 
running and the second FTP session was initiated. For the next 30 seconds 
the delay lied about 300 milliseconds with some minor variations, but the 
delay was below the limit of supporting RT traffic in this 30 seconds interval. 
After 70 seconds of this simulation the delay again started to increase. 
Actually it increases linearly from about 300 milliseconds to about 1400 
milliseconds where the simulation ends at 100 seconds. For this last 30 
seconds the network is poorly able to support any RT traffic at all. Another 
simulation where the packet size was set to 300 bytes where also 
accomplished. In that simulation, the delay when running with the SWAN 
mechanism was very excessive and closing in on the high delay explored 
without the SWAN mechanism.  
 
The largest packet size used in these simulations was 512 bytes, which was 
the same packet size used for simulating video traffic. In the simulation 
without the SWAN mechanism, the measured delay was much like the delay 
experienced during the previous simulations; the delay was low until it starts 
to rise after about 20-30 seconds. Then the delay became so excessive, that 
hardly any properly functioning of RT traffic could be supported. 
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Figure 7.11: Average delay of CBR traffic on 512 bytes (video) 
 
 
If we look at the graph in Figure 7.11, we can see that the experienced delay 
in the simulations with the SWAN mechanism has changed radically. In this 
simulation there are certain differences which separate the experienced 
results from all the analogous and previous simulations. When running 
simulations with the SWAN mechanism, the average RT delay was getting 
excessive within the first 5 seconds. Then the average RT delay smoothed 
out, and stabilized at an acceptable low level. After 20 seconds, the average 
RT delay started growing at almost the same rate as it grew without the 
SWAN mechanism. Even though the average RT delay lays 100-200 
milliseconds lower with the SWAN mechanism, it gets too excessive after 
about 25 seconds. From that time and throughout the rest of the simulation, 
the RT delay is so high that functioning of any RT application could not be 
properly supported.  

7.3 Summary 
In any simulations it is important to be aware of the weaknesses and 
limitations of the experiment tools and the aberrations this may lead to in the 
results. Before the simulations in [3] were recreated, some preliminary 
simulations was accomplished. First, the throughput of the wireless link using 
different type of traffic was tested. As expected, the throughput was far from 
the theoretical capacity of 11 Mbps. In these simulations, the SWAN 
mechanism was had slightly less throughput than without any QoS 
mechanism. 
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Section 7.2.2, introduced additional FTP traffic from an external node, when to 
nodes where having a Real-Time session. In these simulation, devastating 
impact on the experienced performance where shown when an external node 
started to exchange BE traffic with the source node of the RT session. 
However, this effect was not seen when the external node exchanged BE 
traffic with the destination node of the RT session. In these simulations, there 
were some differences in the behavior with or without the SWAN mechanism, 
but none could be said to perform better than another. The simulations from 
this section also showed us that there could be some problems when a best-
effort session is initiated without any measurement of the MAC delay. The 
transmitting node misconceives the situation, but if the MAC delay could be 
retrieved from the most adjacent neighbors, this situation could probably be 
avoided. 
 
Section 7.2.3, contained simulations with variations of the packet size of the 
CBR traffic. From these simulations, one can clearly see that for an Ad Hoc 
network, with the SWAN turned on, the performance is dependent on the 
packet size, when different nodes are present and transmitting in the same 
BSA. Even when treated equal by the SWAN mechanism, it is clear that 
applications like Real-Time video or voice, have different needs and different 
behavior preferences. Therefore, the SWAN mechanism should be able to 
differentiate Real-Time in different service classes (like the DiffServ 
mechanism) to better satisfying this needs, so it could deliver an overall 
improved performance to all applications. Also, from this simulations, where 
different packet size gives different performance, one can conclude that 
SWAN also should be able to let applications on the edge nodes, adjust their 
transmitting rate using compression, when congestion is experienced and the 
delay get too excessive. Then, a heavily loaded network can be released from 
its strain, and the delay might reach a level where the Quality of Service could 
be satisfied for most or all of the applications. The results from these 
simulations also show us that SWAN is performing very well in this scenario 
where the CBR packet size was kept low. When the packet size was 
increased, SWAN was not performing any better, than without any QoS 
mechanism.  
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8 Simulation scenarios for SWAN 
This chapter presents the different simulations scenarios used both to 
recreate the simulations scenarios from the SWAN articles and in further 
testing of the SWAN mechanism. The simulations can be divided in two broad 
categories; the simulations in a Single Shared Channel and the simulations in 
a Multi Hop situation. 

8.1 Single Shared Channel Simulation (Description) 
In this simulation scenario all nodes were within transmission range of every 
other node, thus al nodes shared the same 11 Mbps wireless transmission 
channel. In this scenario no intermediate routing was performed in order to 
reach other nodes, but the AODV routing protocol was still up and running. 
Also, the RTS/CTS mechanism was switched on during these simulations. 
The simulation area was a 150 m * 150 m flat square, and the transmission 
range of each node was 250m. The Admission Control rate was set to 2000 
Kbps and the Threshold rate was set to 4000 Kbps. Every simulations 
consisted of UDP real-time traffic; 4 voice flows, 4 video flows versus a 
different number of TCP background traffic. The background traffic was 
modeled as a pair of 2, 4, 6, 8, 10 or 12 FTP flows. The simulation time was 
set to 100 seconds.  
 
This test was carried out with two different scenario setups. One simulation 
setup where all the flows were evenly distributed, and where each flow had its 
own receiver/transmitter pair. This simulations setup is later referred to as 
Single Shared Channel 1. The other simulation setup, includes the same 
amount of flows, but with fewer nodes so that more flows share the same 
transmitter/receiver pair. This is referred to as Single Shared Channel 2.  
 
These simulation setups closely match the setups of the simulations carried 
out in the SWAN articles. The purpose of this simulations test was mostly to 
recreate the simulations, and verify the validness of the results published in 
these articles.  The purpose of having two different simulations setups, was to 
se how SWAN behave in situations where the ratio of flows/node where 
moderate or high.  
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8.1.1 Single Shared Channel scenario 1 (SSC1) 
In this simulation scenario every flow had its own transmitter/receiver pair of 
nodes, which made up the total number of 40 nodes, as illustrated in Figure 
8.1. Even though the simulations posted in the SWAN articles have been 
modeled with 50 nodes, there is no need for any “silent” nodes. That means, 
only nodes either transmitting or receiving data traffic are present in the 
simulation scenario. 
 
Nodes with even number are transmitting and nodes on unequal numbers are 
receiving data traffic. Nodes 0 to node 7 are transmitter/receiver pairs of video 
traffic. Nodes 8 to node 15 are transmitter/receiver pair of voice. The rest of 
the nodes are transmitting/receiver pair of greedy FTP traffic. This is the 
nodes from 16 to node 39. In SSC1 all data traffic was simultaneously initiated 
at the start of the simulation and stopped when the simulations ended. 
 
 

 
 

Figure 8.1: Single Shared Simulation Scenario 1 
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8.1.2 Single Shared Channel scenario 2 (SSC2) 
In this simulation scenario the total number of nodes is reduced to only 8 
nodes, but more data traffic are distributed on each node. The first four pair of 
nodes are both transmitting and receiving video and voice. This is a likely 
situation in a video conference situation, likely to occur in a rescue area. Here 
people using such applications on an end node are able to see and speak to 
the other opponent, at the same time.  
 
Background traffic like FTP is also likely to be present in such situation. 
Therefore nodes 4 to nodes 7, was heavily stressed with the task of both 
transmitting and receiving FTP traffic. Nodes 4 to nodes 7 where transmitting 
or receiving from 0-3 different nodes at the same time. All the different traffic 
flows where in the same BSA.  
 
 

 
 

Figure 8.2: Single Shared Simulation Scenario 2 
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8.2 Multi Hop Simulation 
In a multi hop scenario the receiving node is not within the radio transmission 
range of the transmitting node. In order to reach the receiver, the transmitting 
node has to pass its data packet to the next intermediate node lying on the 
path between the transmitter and receiver.  
 
The simulations of multi hop scenarios have been divided into two main 
simulation scenario categories. The first scenario is very similar to the 
scenario simulated in SSC1, except that all data traffic has to go through one 
intermediate node to reach its final destination. The second simulation 
scenario of multi hop contained less data traffic, but the transmitting and 
receiving nodes is moved further apart from each other and the data traffic 
has to go through a longer path of intermediate nodes to reach its destination. 

8.2.1 Multi Hop Scenario 1 (MH1) 
In this simulation scenario, the transmitting node is not able to reach the 
receiving node directly. Therefore the AODV routing protocol is used to keep 
track of the next hop information. The transmission range is still 250 meter 
and each transmitter/receiver pair is spaced by 260 meter. The capacity of the 
wireless medium is 11 Mbps and the RTS/CTS mechanism is turned on 
during the simulations. The simulation area is a 1500 m x 300 m flat square, 
and the CBR (video and voice) and FTP sessions are evenly distributed in the 
simulation area. Also, SWAN’s Admission Control rate is set to 2000 Kbps 
and the Threshold rate is set to 4000 Kbps in the SWAN mechanism. Every 
session has its own transmitter/receiver pair. Every simulations consisted of 
UDP real-time traffic; 4 voice flows, 4 video flows versus a different number of 
TCP background traffic. The background traffic is modeled as a pair of 2, 4, 6, 
8, 10 or 12 FTP flows. The simulation time is set to 100 seconds. All data 
traffic is simultaneously initiated at the start of the simulation and stopped 
when the simulations ends.   
 
Nodes with even numbers are transmitting, and nodes with unequal numbers 
are receivers of data traffic. Nodes 0 to node 23 are handling FTP traffic, 
nodes 24 to node 31 are handling video traffic, and nodes 32 to node 39 are 
handling voice traffic. 
 
The simulation of MH1 is very similar to the one of SSC1. Both the number of 
nodes, and the number of traffic flows are the same in these two simulation 
scenarios. The difference between MH1 and SSC1 is that the nodes are 
spread over a wider area in MH1 and then is dependent of intermediate 
routing in order to send data traffic. A consequence of the wide distribution of 
nodes is that the interference between the nodes radio signal probably will be 
reduced, and hence improve the performance of both Real-Time and best 
effort traffic. On the other hand, the fact that the traffic has to go over a longer 
path will probably decrease the performance and lower the Quality of Service. 
The purpose of these simulations is to se how a wireless network performing 
in a multi hop situation, both in only “Best-Effort service” and in the presence 
of the SWAN mechanism. 
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Figure 8.3: Multi Hop Scenario 1 
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8.2.2 Multi Hop Scenario 2 (MH2) 
In this simulation scenario the mobile nodes are organized as a 5 x 4 grid, 
with the total number of 20 nodes. Both vertically and horizontally, the nodes 
are spaced by 200 meters. The simulation area is a 1000 m * 800 m flat 
square. The routing protocol used is the AODV routing protocol. The 
bandwidth capacity is 11 Mbps, and the RTS/CTS mechanism is turned on 
during the simulations. The radio transmission range is 250 meter, the 
Admission Control rate is set to 2000 Kbps, and the Threshold rate is set to 
4000 Kbps. The total simulation time is 100 seconds. 
 
Compare to the previous simulation (MH1) this simulation contains fewer 
flows, but more hops to reach its final destination. The purpose of this 
simulation is to se how a greater number of intermediate hops in a traffic path 
impact the performance in a wireless network running the SWAN mechanism. 
 
 

 
 

Figure 8.4: Multi Hop Scenario 2 
 
 
When simulating the simulation scenario of MH2, 6 different simulations was 
carried out with different combinations on aggregating the data traffic. From 
the previous simulations, we know that Voice and Video traffic have different 
characteristics. The shortest path from each corner nodes diagonally spaced 
is minimum over 7 links, through 6 intermediate nodes. In all different 
combination one FTP flow runs from the upper middle node to the lower 
middle node. The crossing FTP session intersects all the available paths for 
CBR sessions (from Sx to Rx, or the reverse path) with FTP background traffic. 



 63 

All the traffic flows is aggregated from the beginning to the end of the 
simulation period of 100 seconds. 
 
In the first combination, only aggregated video and FTP traffic is aggregated. 
The upper left node is transmitting video traffic to the lower right node, and the 
lower left node is transmitting to the upper right node. 
 
In the second combination, video was now left out and replaced by voice 
traffic. The upper left node was now transmitting voice traffic to the lower right 
node, and the lower left node was transmitting to the upper right node. 
 
In the third combination of MH2, video traffic flowing was going in both 
directions of the nodes. Then the upper left node was both sending and 
receiving traffic from the lower right node. Also, the lower left node was also 
sending and receiving traffic from the upper right node. 
 
The fourth combination was similar to the third, except that the video traffic 
was replaced by voice traffic. The FTP traffic was still going from the upper 
middle node to the lower in the middle. 
 
The fifth traffic scenario was a combination of the first and second 
aggregation.  Here, both video and voice was flowing from the upper left node 
to the lower right node. Also, both video and voice traffic was flowing from the 
lower left node to the upper right node. The FTP traffic was still present. 
 
Finally, the last aggregation scenario was a combination of the 3rd and 4th 
aggregation. Here both voice and video traffic was flowing in both directions of 
the Sx/Rx pair. In addition to the FTP traffic from the upper to the lower middle 
node, both video and voice traffic was going to and from the upper left node to 
the lower right node. In addition, both video and voice traffic was flowing from 
the lower left node to the upper right node. 
 
These different combinations of the aggregated data traffic in MH2 where 
pretty similar to each other. Therefore, the result from the simulations, in 
chapter 9, only presents the most interesting of these simulations. 
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9 Tests and Results 
This chapter presents the result from simulations of several different 
scenarios concerning the performance of the SWAN network module.  

9.1 Single Shared Channel Simulation 

9.1.1 Simulation of SSC1  

Throughput 
From the simulation of SSC1, figure 9.5 shows the average Best-Effort (FTP) 
throughput of each node, versus the different number of on going FTP 
sessions. As expected, and also stated in [3] the total throughput of Best-
Effort (FTP) traffic in the network, was higher with the SWAN control 
mechanism turned off, than it was when SWAN in use. This is true no matter 
how many FTP traffic flows running in the background. (0-12 FTP flows) 
 

 
 

Figure 9.1: Average TCP throuhtput vs number of TCP flows 
 
 When comparing figure 9.1 to the one posted in the SWAN articles [1] and 
[3], the average TCP throughput received in this simulation (SSC1) is clearly 
much below the TCP throughput shown in the SWAN articles (see figure 5.2). 
Actually, the TCP throughput from SSC1, presented in figure 9.1 is only about 
one half of the TCP throughput presented in the SWAN articles.  
 
The total throughput of each type of data traffic from the simulations where 
only two FTP sessions was running, are presented in hence, Figure 9.2 
without SWAN, and Figure 9.3 with SWAN. Even thought the throughput of 
video traffic was slightly more stable without the SWAN mechanism, the 
overall received throughput of video traffic in these simulations was at the 
same level as when the SWAN mechanism was used. For voice traffic, the 
received throughput was also at the same level when the SWAN mechanism 
was in use, as it was when the SWAN was not used. Though, a more stable 
throughput for video was now seen in the result from the simulation where the 
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SWAN mechanism was running.  As stated above, the FTP throughput was 
higher, but the FTP throughput was also more stable in the simulation without 
the SWAN mechanism.  
 

 
Figure 9.2: Throughput - SWAN off, 2 TCP flows 

 
In the simulation without SWAN and where 12 FTP traffic flows where 
present, both video and voice traffic experienced much lower throughput, than 
in the simulations with fewer FTP sessions present. When the SWAN 
mechanism is not used all the data packets is treated equally as Best-Effort 
packets. At the same time, in this simulation the FTP session are sending 
even greedier. As a result; the TCP traffic is actually given more of the total 
bandwidth “cake” and the total TCP throughput in this simulation where higher 
than in the simulation with only 2 FTP flows.  
 

 
 

Figure 9.3: Throughput - SWAN on, 2 TCP flows 
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In the simulations where the SWAN mechanism where turned on, the total 
TCP throughput was decreased from a level around 1500 Kbps, to a level 
where it oscillate between 1300-1500 Kbps. Video and voice traffic was much 
higher and more stable in the simulation where the SWAN mechanism was 
controlling the network. The total video and voice throughput was also closer 
to the received throughput in the simulations where only two FTP sessions 
was present. This is due to video and voice traffic being prioritized in the 
SWAN mechanism. 
 

 
 

Figure 9.4: Throughput - SWAN off, 12 TCP flows 
 
In SSC1, the total throughput of all the data traffic with SWAN off, varies from 
2.0 to 2.4 Mbps. The total throughput with SWAN on, varies from 1.5 to 1.9 
Mbps. Comparing this results to the results of the available bandwidth, shown 
in figure 7.1 and figure 7.2; when running the simulation without SWAN, 60-70 
percent of the available bandwidth is utilized, while running with SWAN, only 
45 to 60 percent of the channel is utilized.  
 

 
 

Figure 9.5: Throughput - SWAN on, 12 TCP flows 
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Delay 
When it comes to delay in the simulations of SSC1, the result shows that the 
SWAN mechanism was able to give a much lower and often, more stable 
delay for the Real-Time traffic, compared to the delay experienced when 
SWAN was turned off.  
 
 

 
 

Figure 9.6: Average RT delay, 2 TCP flows 
 
 
In the simulation with 2 FTP background traffic flows, the average RT delay 
ranges from about 600 milliseconds, up to almost 1200 milliseconds, when 
SWAN was not used. When the SWAN mechanism was turned, on the delay 
is noteworthy reduced; the RT delay now ranges from 200-300 milliseconds 
and only up to 600-700 milliseconds.    
 

 
 

Figure 9.7: Average RT delay, 12 TCP flows 
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In the simulations where 12 FTP sessions where present as background 
traffic, the divergence between the experienced delay with and without SWAN 
was much higher than in the simulations with only 2 FTP flows. The RT delay 
without the SWAN mechanism was extremely high. It ranged from about 1500 
milliseconds in the lower end, up to 4000 milliseconds in the upper. When the 
same simulation was carried out with the SWAN mechanism turned on, the 
delay laid pretty stable around 600 milliseconds. 
 
 

 
 

Figure 9.8: Average end-to end delay (SWAN on / SWAN off) vs. number of TCP flows 
 
 
In figure 9.8, the average end-to-end Real-Time delay versus, a raising 
number of TCP flows present in the simulation area, is shown. In this 
simulation, the idea was to recreate the same simulation, and then see if 
similar result as those posted in [1] and [3] could be recreated. When 
comparing these results (figure 5.1 vs. figure 9.8), the plot of the graphs is 
very familiar, but still the results are indeed very different. In figure 5.1 the 
scale of the delay axis is in tens of milliseconds, while my delay results plotted 
in figure 9.8, is in thousands of milliseconds. The gap between these 
measurements is tremendous. This is most likely explained by the fact that 
the delay measured and shown in figure 5.1 is not the end-to-end delay, but 
indeed the average RT delay measured at the MAC layer. 
 
The average end-to-end delay with the SWAN mechanism was relatively 
stable around 500 milliseconds, while delay in the simulation without SWAN 
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grew linearly up to almost 2700 milliseconds. Even though the delay was 
much lower for the SWAN mechanism, the result from this simulation shows 
clearly that the end-to-end delay of this simulation is way beyond the 
maximum delay that can be handled by a Real-Time application. ITU-T’s 
recommendation [16] states an upper limit of delay on 400 milliseconds for 
any type of applications, while 150 milliseconds is the recommended upper 
limit of end-to-end delay for a Real-Time application. 

9.1.2 Simulation of SSC2 

Throughput 
From the simulation of SSC2, figure 9.9 shows the average throughput of 
Best-Effort (FTP) traffic versus a raising number of background FTP sessions. 
As expected, the simulation of SSC2 shows that the TCP throughput with 
SWAN was lower than when running simulations without SWAN. The overall 
average TCP throughput in SSC2 lies close upon the result gained in the 
simulations of SSC1. 
 
 

 
Figure 9.9: TCP throughput vs.  number of TCP flows 

 
 
In the simulation of SSC2, when only two FTP sessions was running as 
background traffic (see figure 9.10 and figure 9.11), the received throughput 
for voice traffic was almost the same in the simulation without SWAN, as it 
was in the one with the SWAN mechanism turned on. For video traffic, the 
throughput was actually to some extend more unstable with SWAN, than it 
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was without SWAN, but the average throughput was very close in those two 
simulations. Also, as one can anticipate from the construction of the SWAN 
network model, the throughput for the TCP traffic was much lower in the 
simulation when the SWAN mechanism was turned on, compared to the 
simulations running without SWAN. 
 

 
Figure 9.10: Throughput - SWAN off, 2 TCP flows 

 
In the simulations where the number of FTP flows was increased to 12 (see 
figure 9.12 and figure 9.13), the throughput for both voice and video was 
slightly higher in the simulations where the SWAN mechanism was turned on, 
compared to the simulation without the SWAN mechanism. Even so, in both 
simulations the total throughput stayed around 100 Kbps for voice, and 500-
600 Kbps for video. When it comes to the throughput for the FTP traffic, the 
throughput now as in previous simulations was heavily decreased when the 
SWAN mechanism was switched on. This result is in sharp contrast to the 
analogous simulations in SSC1, where the TCP throughput lied around 1500 
Kbps both with and without SWAN. 
 

 
Figure 9.11: Throughput - SWAN on, 2 TCP flows 
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Figure 9.12: Throughput - SWAN off, 12 TCP flows 
 
 
Compared to SSC1, the simulation where the SWAN mechanism was not in 
use, the average TCP throughput with the all different number of TCP 
background traffic, ranges from 3 to 50 percent lower than the average TCP 
throughput in SSC1. At the same time, when running with SWAN, the average 
TCP throughput of SSC2 ranges from 4 percent higher to 24 lower than in 
SSC1 (see figure 9.1 and figure 9.9). These results could imply that it might 
be more difficult to utilize the wireless channel when the density of flows on 
each node is high, and hence the workload on each node also is high. This 
was the case when SSC2 was compared to SSC1. It could also imply that 
SWAN does not handle this higher density very well. 
 
 

 
 

Figure 9.13: Throughput - SWAN on, 12 TCP flows 
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The total average throughput of all traffic in SSC2 ranges from 2.0 to 2.2 
Mbps in the simulation without SWAN. With SWAN, this total average 
throughput ranged from 1.0 to 1.6 Mbps. The total utilization of the channel is 
then 60-70 percent without SWAN, which is the same as in the simulation of 
SSC1. When the SWAN mechanism was turned on, the utilization of the 
bandwidth was down to 30-50 percent, which is less than in SSC1. 

Delay 
In the simulation of SSC2 the difference of the RT delay with and without 
SWAN was not as high as experienced in the SSC1 simulation. Actually, with 
only a few FTP background traffic flows present, the delay was higher when 
the SWAN mechanism was used than it was without the SWAN mechanism. 
In figure 9.14 one can se that the RT delay with SWAN was almost the same 
as in SSC1 (see figure 9.8). In the simulation of SSC2, the average RT delay 
without SWAN was heavily decreased compared to SSC1. SWAN was 
performing slightly better, and the average RT delay experienced in the 
simulation with the SWAN mechanism was mainly below the delay 
experienced without SWAN. 
 

 
Figure 9.14: Average end-to end delay (SWAN on/SWAN off) vs. TCP flows 

 
In the simulations with only 2 FTP background flows (see figure 9.15), the 
average RT delay without the SWAN mechanism laid mostly around 500 
milliseconds, while the delay with the SWAN mechanism turned on ranged 
from 300 up to 1400 milliseconds. The delay experienced in the simulation 
with the SWAN mechanism, was very unstable, and most of the time it was 
higher than the simulation without SWAN.  
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It seems like that in the simulation scenario of SSC2, the performance of the 
SWAN mechanism compared to having no QoS mechanism, is higher when 
the number of background traffic present is increased (compare Figure 9.15 
with Figure 9.16). Indeed, this was also the case in the simulation of SSC1. 
The simulation where 12 FTP sessions was present as background traffic 
flows can be viewed in figure 9.16. Even thought the RT delay with SWAN 
ranged from 400 up to 1200 milliseconds, most of the simulation time, the 
delay laid below the delay experienced without the SWAN mechanism. 
Without SWAN, the delay laid just below 800 milliseconds except in the very 
first part of the simulation. 
 

 
Figure 9.15: Average RT delay - 2 TCP flows 

 
These simulations showed that the RT delay for the SWAN mechanism was 
slightly lower than the delay without SWAN, but the result from the simulation 
of SSC2 shows that the improvement with SWAN is not enough to properly 
support Real-Time traffic. The average Real-Time traffic delay for SWAN 
when 2 or more TCP background traffic is introduced ranges from 550 to 800 
milliseconds. This is 3-5 times higher than the upper limit of the ITU-T 
recommendation.    

 
Figure 9.16: Average RT delay - 12 TCP flows 
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Even though the simulation scenario of SSC2 varies a little bit from those in 
described in the SWAN articles [1] and [3], the results obtained in this 
simulations has a large aberration from the result posted in the SWAN 
articles. The experienced delay in both SSC1 and SSC2 are in order of 
magnitude of 100 of milliseconds, while the result posted in the SWAN articles 
are in order of magnitude of tens of milliseconds. This further confirms that the 
delay measured in the SWAN articles are not the end-to-end delay, but the 
delay experienced at the MAC layer.   
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9.2 Multi hop Simulation 

9.2.1 Simulation of MH1 

Throughput 
In the simulation of MH1, Figure 9.17 shows the average Best-Effort 
throughput for FTP traffic of each node, versus an increasing number FTP 
sessions. Here, the TCP throughput was only slightly higher without SWAN, 
compared to the simulation where the SWAN mechanism was turned on. The 
major drawback in the simulation of this scenario was the extremely low TCP 
throughput received both with and without SWAN. The average TCP 
throughput ranged from about 40 Kbps up to 120 Kbps. The graph is only 
slightly decreasing, so the raising number of TCP background traffics, does 
not seem to impact the throughput in the same manner as in SSC1 (see figure 
9.1).  
 
 

 
 

Figure 9.17: TCP Throughput vs. number of TCP flows 
 
 
In the simulations of MH1 with only two FTP flows in the background, video 
and voice traffic received approximately the same throughput with or without 
SWAN (Figure 9.18 and figure 9.19). This was approximately the same 
throughput which also was received in the analogous simulation without multi-
hop in SSC1 (see figure 9.2 and figure 9.3). When it comes to the throughput 
of the FTP traffic, the results show a different behavior with or without the 
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SWAN mechanism. Without SWAN, the throughput was raised to almost 1000 
Kbps for the first five seconds, then it dropped down below 500 Kbps. 
Throughout the rest of the simulation time, the TCP throughput showed a very 
unstable behavior. It stayed mostly below 500 Kbps and several times the 
throughput was almost 0 Kbps. With SWAN the TCP throughput is more 
stable, but at the same time much lower.   
 
 

 
 

Figure 9.18: Throughput - SWAN off, 2 TCP flows 
 
In the simulation where the number of FTP sessions was increased to 12, the 
throughput for both video and voice was just slightly below the throughput 
received in the simulations where only two FTP flows were present as 
background traffic. This is true both with and without the SWAN mechanism. 
Due to the similarity of these similar results, the graphs from the simulations 
with 12 FTP sessions are not present in this paper.  
 

 
 

Figure 9.19: Throughput - SWAN on, 2 TCP flows 
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Delay 
From the result gained in the simulations of MH1, it is clear that the 
experienced Real-Time delay in average was lower when the SWAN 
mechanism was running compared to the simulation where the SWAN 
mechanism not was providing any QoS guarantees. The average RT delay 
when SWAN was not running, was in range of 80 milliseconds below, and up 
to 800 milliseconds above, the average RT delay experienced when the 
SWAN mechanism was providing soft Quality of Service guarantees (see 
figure 9.20).  
 
Compared to the result from SSC1, the average RT delay in MH1 is not 
growing linearly when the SWAN mechanism not was running, which is the 
case in SSC1. When 4 or more FTP flows was present as background traffic, 
the average RT delay in MH1 is less than half of that experienced in the 
simulations of SSC1.  
 
 
 

 
 

Figure 9.20: Average end-to-end delay vs TCP flows 
 
 
With the SWAN mechanism present, the average RT delay in MH1 was 
slightly above that delay experienced in SSC1. When no FTP flows was 
present, the average RT delay was more than 400 milliseconds in MH1, but 
no substantial delay is experienced with 0 FTP flows in SSC1. For the 
presents of 2 and up to 10 FTP flows, the average RT delay was 
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approximately at the same level as in SSC1. When 12 FTP background traffic 
flows was added to the simulation, the average RT delay was more than 150 
milliseconds higher in MH1 than in the analogous simulation in SSC1. 
 
 

 
 

Figure 9.21: Average RT delay, 2 TCP flows 
 
 
Even when the SWAN mechanisms improved performance, having the Real-
Time traffics delay in mind, the delay is still too high to give the stable and 
robust network performance a Real-Time application truly need. 
 
 

 
 

Figure 9.22: Average RT delay, 12 TCP flows 
 
 
When the SWAN mechanism was up and running, the simulations where 
either 2 or 12 FTP flows was running as additional background traffic, the RT 
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delay was very close to the delay experienced when not running the SWAN 
mechanism. In figure 9.21, the graph show the RT delay when 2 FTP flows 
was running as disturbing background traffic. Here, the delay mainly stayed in 
the ranges from 300 up to 500 milliseconds.  
 
In figure 9.22, one can se the result of the analogous simulation with 12 FTP 
flows as disturbing background traffic. Still the delay was pretty much at the 
same level whether the SWAN mechanism was running or not. But now the 
delay was much higher than in the simulations displayed in Figure 9.21. The 
RT delay range from 400 and up to more than 1200 milliseconds.  
 
To get a deeper view of the experienced Real-Time delay, the delay of video 
and voice is present as individual plots in the graph in Figure 9.23. From this 
graph, it looks very clear that voice and video traffic have different behavior 
characteristics. With the SWAN mechanism, the video traffic (blue line) 
experienced an average delay of 400-500 milliseconds when the number of 
TCP background traffic flows where 10 or less. With the presents of 12 FTP 
flows the average delay for video was about 750 milliseconds.  
 

 
 

Figure 9.23: Average end-to-end delay Voice/Video vs. TCP flows 
 
 
The average delay of video traffic in the simulation where the SWAN 
mechanism where not present (red line) was highly variable. When no FTP 
flows where present, the experienced video delay where almost 600 
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milliseconds. With a raising number of FTP background traffic flows, the 
average video delay varies from 300 and up to 1000 milliseconds. 
 
When the SWAN mechanism was not used to assure the Quality of Service, 
the voice delay (green line) started at about 500 milliseconds, when no FTP 
flows was present, and up to its highest at 1200 milliseconds, when 10 FTP 
flows where present. In the analogous simulation where the SWAN 
mechanism was used, the voice delay (purple line) ranged at a lower level. 
The delay ranged from 400 milliseconds and up to just above 800 
milliseconds at it’s highest. 
 
From figure 9.23 we can see that the average delay is higher for voice traffic 
than for the video traffic, both with and without the SWAN mechanism. This 
clearly shows that the performance characteristics of voice and video traffic is 
highly different, and need different treatment in a data network. This is not the 
case in the resent SWAN network model. 

9.2.2 Simulation of MH2 
In the simulations of the Multi-Hop scenarios, six separate simulations with 
different combination of traffic aggregation were accomplished. Because 
some of them are analogous, only four of these simulations are present in this 
chapter. 

9.2.2.1 Delay and Throughput 
In the first simulation of MH2, only video traffic where aggregated in addition 
to the crossing FTP background traffic flow. The delay observed in this 
simulation, is present in figure 9.24, and from that graph we can see that the 
average delay of the two video streams in this simulation was highly variable. 
Even though the average delay measured each second was around the 
recommended upper limit of delay for any data traffic, stated by the ITU-T in 
[16] for most of the simulation period, it was also way beyond that limit several 
times. Both with and without SWAN, the average delay throughout the 100 
seconds simulation period was high above ITU-T’s recommended limit of 
delay for Real-Time applications.  
 
The strange incident in these simulations was that the introduction of the 
SWAN mechanism did not seem to improve the QoS. Indeed, it seemed that 
the experienced performance while using the SWAN mechanism, gave us 
even worse results than the result gained in simulations running without any 
QoS mechanisms. With the SWAN mechanism, the average Real-Time delay 
measured once each second, ranged from almost nothing up to 1300 
milliseconds. Without the SWAN mechanism, the result where to some 
extends actually better. Then the average delay ranged from about 50 
seconds at it lowest, and up 1150 milliseconds at its highest peak. 
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Figure 9.24: Average delay of Video streams ech second 
 
 
As observed in many in the previous simulations with the SWAN mechanism, 
the start up delay in the very first seconds was very high. The delay of the first 
packet was actually 5 times higher with the SWAN mechanism than it was 
without it. Also, the maximum delay of one single packet, experienced in this 
simulation, run with the SWAN mechanism, was 72 % higher than the delay 
experienced without the SWAN mechanism.  
 
 

 
 

Figure 9.25: Average TCP throughput 
 
 
When it comes to the average delay throughout the simulation period, the 
divergence in the experienced delay was not as high as experienced with the 
first packet delay and the maximum packet delay, but still the SWAN 
mechanism gave higher output values. The average delay of the 100 seconds 
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simulation period was 389 milliseconds without the SWAN mechanism and 
440 milliseconds when the SWAN mechanism was used. This is shown in 
Table 9.1. 
 
 
 First packet 

delay 
Max delay Average delay TCP throughput 

SWAN off 86.79 ms 2264.42 ms 388.59 ms 5376 Kb 
SWAN on 450.44 ms 3894.96 ms 440.14 ms 5124 Kb 

 
Table 9.1: Measurement from MH2, simulation 1 

 
 
Even though the TCP total throughput was slightly higher without the SWAN 
mechanism in these simulations, the achieved TCP throughput was 
approximately the same. Without the SWAN mechanism, the total received 
TCP throughput was 5376 Kb. With the SWAN mechanism, the TCP 
throughput received was 5124 Kb. This gave an average TCP throughput on 
51-54 Kbps.  A graphical presentation of the TCP throughput can be viewed in 
figure 9.25. 
 
In the second simulation of MH2, the video traffic was replaced by voice 
traffic. The FTP background traffic was still present. The results from these 
simulations, was somehow different from result of the previous simulations. 
From the graph in figure 9.26, we can observe that the average Voice delay 
each second, for long periods, was more stable in this simulation, compared 
to the delay experienced in the previous simulation.  
 
 

 
 

Figure 9.26: Average delay of Voice streams 
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Figure 9.27: Average TCP throughput 
 
 
The average video traffic delay without the SWAN mechanism was highly 
unstable in the first 15 seconds of the simulation period. In this interval it 
oscillates between 100 and 800 milliseconds. The average delay of the first 
packet reached only 82 milliseconds. After that it stayed around 250 
milliseconds throughout the simulation period, except for the very last 
seconds where the delay became excessive and reached almost 600 
milliseconds. The highest delay of one single packet without the SWAN 
mechanism was 1771 milliseconds in this simulation.  
 
With the SWAN mechanism, the delay was also very unstable in the first 15 
seconds of the simulation. The delay of the first packet was 190 seconds, and 
for a very few seconds of this 15 seconds interval, the delay reached an 
extremely high peak of 7756 milliseconds. For the next 35-40 seconds, the 
average delay stayed at a very low level at less than 50 milliseconds. Then it 
started to bounds at a high frequency again. It oscillates from very low, to an 
extremely high delay, throughout most of the simulation period. With voice 
traffic the average delay of the 100 seconds simulation period was much 
lower than in the analogous simulation with video traffic. Without the SWAN 
mechanism this average delay was 261 milliseconds and even lower with the 
SWAN mechanism; 217 milliseconds. This is shown in Table 9.2. Even 
though this is still above the most critical limit of delay for Real-Time 
streaming, this looks more promising, especially in the stable periods.  
 

 
 First packet 

delay 
Max delay Average delay TCP throughput 

SWAN off 82.20 ms 1771.47 ms 261.12 ms 29460 Kb 
SWAN on 190.16 ms 7456.00 ms 216.76 ms 4296 Kb 

 
Figure 9.28: Measurement from MH2, simulation 2 
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The lower average delay with the SWAN mechanism came with an 
unreasonably high price to the TCP throughput, see figure 9.27. In these 
simulations, the TCP throughput was at a pretty fair level without the SWAN 
mechanism. The total amount of 29460 Kb FTP traffic was received, which 
gave an average TCP throughput on 295 Kbps. With the SWAN mechanism, 
only 4296 Kb FTP traffic was transferred in the simulation period, and 
therefore the average TCP throughput was down to only 43 Kbps.  
 
In the third and forth simulations of MH2, with video and voice traffic 
respectively, the Real-Time traffic went in both directions, between the two 
pair of transmitting/receiving nodes. The FTP session was also crossing the 
Real-Times flows traffic paths in these simulations. Due to the analogy of 
these simulations with video and voice traffic, only the results from the 
simulations with video traffic are present in this chapter. 
 
The average delay of the four video flows, measured once every second, can 
be viewed in figure 9.28. The average delay was not only highly unstable, but 
also at an unusually high level, way above the critical limit of 400 milliseconds 
stated by ITU-T. Both with and without the SWAN mechanism, the average 
video delay ranged from almost 0 milliseconds in some few periods, up to 
more than 5000 milliseconds at the highest peaks. 
 
 

 
 

Figure 9.29: Average delay of Video streams 
 
 
In this traffic scenario, the result from the simulation with the SWAN 
mechanism was slightly better than the one without any QoS mechanisms, 
except from the start up delay. With the SWAN mechanism, the delay of the 
first packet was 20 times higher than the simulation without the SWAN 
mechanism. The plot of the average video delay with the SWAN mechanism 
is also climbing at a faster rate in the very first second of the simulation, than 
what is the case without the SWAN mechanism. The maximum delay for one 
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single video CBR packet in the simulation without SWAN was 12300 
milliseconds. With the SWAN mechanism, this maximum delay was also 
extremely high, but was here reduced to 10285 milliseconds. 
 
 

 
 

Figure 9.30: Average TCP throughput 
 
 
The average video delay throughout the simulation period of 100 seconds 
was; 1955 milliseconds without the SWAN mechanism, and 1824 milliseconds 
with the SWAN mechanism. The average delay is shown in Table 9.3. This 
average delay is way beyond any limits of being able to support Real-Time 
streaming.  
 
 
 First packet 

delay 
Max delay Average delay TCP throughput 

SWAN off 21.49 ms 12299.97 ms 1954.79 ms 12 Kb 
SWAN on 425.14 ms 10185.10 ms 1823.94 ms 168 Kb 

 
Table 9.2: Measurement from MH 2, simulation 3 

 
 
In addition to this bad result for the experienced delay, the simulations of this 
scenario also show terrible results concerning the TCP throughput (see figure 
9.29). The total TCP throughput of the simulation period of 100 seconds was 
only 12 Kb without the SWAN mechanism. Even though the total TCP 
throughput was 14 times higher in the simulation with the SWAN mechanism 
it is still too low to be at any acceptable level for the throughput of the Best-
Effort service class. 
 
Both the fifth and sixth traffic scenario of the simulations of MH2 was 
combinations of the previous simulations of MH2. In these simulations, both 
video and voice traffic was present simultaneously. The fifth simulation had a 
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one way transmission of Real-Time traffic. Here the traffic paths of the Real-
Time traffic were from the left to the right side of the simulation area, 
presented in Figure 8.4. In the sixth and last simulation of MH2, the traffic 
paths of the Real-Time flows where two ways and the video and voice traffic 
was flowing in both directions between the two diagonal node pairs. Hence, 
the total number of flows, include the FTP session, was 9 flows. Due to the 
analogy of the fifth and sixth simulation, only the sixth traffic scenario is 
present in this chapter. The main difference of the result from the simulations 
of these traffic scenarios was that the sixth traffic scenario had worse 
performance than the fifth, due to a more dense traffic situation.  
 
 

 
 

Figure 9.31: Average delay - Real-Time traffic 
 
 
From figure 9.34 we can see that the average delay of the Real-Time traffic 
for the 8 RT flows. Not only was the Real-Time delay much higher, but also 
much more unstable than in the previous simulations. It is hard to believe that 
any RT traffic streams can work properly in such a heavily strained network. 
 
In these simulations, the differences between the simulation with the SWAN 
mechanism, and the one without SWAN, was not of any convenient matter to 
make any difference to the user’s experience of the Quality of Service. 
Though the performance was not exactly the same, but the introduction of the 
SWAN mechanism did hardly made any difference on improving the network 
performance.  
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Figure 9.32: Average TCP throughput 
 
 
The average Real-Time traffic delay for the total simulation period, 
experienced while the SWAN mechanism not was running, was 2169 
milliseconds. With the SWAN mechanism the same delay was lower, but still, 
as high as 1995 milliseconds. The highest maximum delay experienced by a 
single data packet in these simulations was highest with the SWAN 
mechanism running; 12740 milliseconds. Without SWAN, this maximum delay 
for a single data packet reached 11538 milliseconds. Just as experienced 
many times in previous simulations, the startup delay was very high using 
SWAN. The delay of the first packet was now 6 times higher in the simulation 
running SWAN, than in the one without SWAN. 

 
 

 First packet 
delay 

Max delay Average delay TCP throughput 

SWAN off 70.50 ms 11537.62 ms 2168.78 ms 348 Kb 
SWAN on 426.23 ms 12739.76 ms 1995.25 ms 252 Kb 
 

Table 9.3: Measurement from MH2, simulation 3 
 
 
Also as experienced in the previous simulation, the TCP throughput in these 
simulations was completely terrible, see figure 9.35. The total TCP traffic 
transferred in the simulation without SWAN was only 348 Kb, and even lower 
in the one using SWAN; 252 Kb. Hence, this gave a TCP throughput on only 
3.5 Kbps without SWAN, and 2.5 Kbps in the simulation running SWAN. 
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9.2.3 Summary of simulations and test results 
From the simulations of SSC1 I found out that the total TCP throughput was 
lower in mine simulations, analogous to the one present in [3]. During these 
simulations, I also experienced that the TCP throughput was more unstable, 
when the SWAN mechanism was used. As expected, and also present in [3], 
the delay experienced by voice or video traffic is mostly lower simulations 
where the SWAN mechanism is in use. The overall utilization of the available 
throughput is also inferior in the simulations with the SWAN mechanism. In 
the benefit of the SWAN mechanism, is the low end-to-end delay for Real-
Time traffic. With the SWAN mechanism, and especially in a network with 
many simultaneous competing traffic flows, the delay is much lover than the 
delay experienced without any QoS mechanism. The drawback is that the 
average end-to-end delay still is too high to support Real-Time traffic properly. 
Another major discovery in the simulation of SSC1 is the gap between the 
results in [3] and my own result. The result presented in [3] is most likely not 
the end-to-end delay, but the delay experienced at the MAC layer. 
 
The FTP throughput was lower in the simulations of SSC2 than in SSC1. This 
could imply that the SWAN mechanism is not so good in network scenarios 
where the ratio of RT traffic on each node is high. It could also imply that it is 
more difficult to utilize the wireless channel when the RT traffic distributed on 
each node is denser. In the simulations of SSC2, the experienced RT delay 
was lower with SWAN than without SWAN. The drawback in these 
simulations was that the experienced RT delay with the SWAN mechanism 
was much higher than in the analogous simulation in SSC1. The result from 
SSC1 and SSC2 could also imply that the SWAN mechanism is working much 
better when the number of FTP background traffic is high. The simulations of 
SSC2 shows us that the network performance due to RT traffic is better with 
the present of the SWAN mechanism, but the performance is not good 
enough to meet the requirement from ITU-T [16]. Further, the simulations of 
SSC2 confirm that the delay present in the SWAN articles is not the end-to-
end RT delay, but the RT delay experienced at the MAC layer. 
 
The multi-hop simulations in MH1 show that the TCP throughput is much 
lower than in the analogous simulations where all the nodes in the network 
share the same wireless channel, e.g., SSC1. The simulations of MH1 also 
showed that with the SWAN mechanism, a lower delay was experienced 
compared to simulations where the SWAN mechanism not was used. Still, the 
major drawback of these results is that the experienced delay in a multi-hop 
scenario such as MH1, the delay is too high for Real-Time applications. 
Another experience of the simulations of MH1 was that the average RT delay 
was increased, when the number of FTP background traffic flows was 
increased. One important discovery from the simulations of MH1 was the 
different performance characteristics for voice and video traffic. The different 
characteristics of video and voice traffic emphasize that they should be 
treated differently in a computer network. This is not the case in the today’s 
SWAN model.  
 
The simulations of the multi-hop scenario labeled as MH2, the introduction of 
the SWAN mechanism does not seem to have any significant impact on 



 90 

improving the QoS. In the simulations of MH2, SWAN gave a better result in 
the simulation of voice traffic than in the simulations with video traffic. With 
voice traffic, the delay was not only lower, but the delay was also for long 
periods much more stable than it was with video traffic. Thus, SWAN’s effort 
to handle voice traffic better than a network without any QoS mechanism 
came at a high price to the TCP traffic; the average throughput was 7 times 
higher without the SWAN mechanism. The introductions of two-way traffic 
paths for the Real-Time traffic in the simulations of MH2 raised the average 
delay 5-10 times compared to the previous simulation of MH2, which only had 
one-way paths for the RT traffic. Even though the delay was very high both 
with and without the SWAN mechanism, SWAN seems to better handle the 
situations with an increased number of RT flows, and where RT traffic is going 
in both directions between the affected nodes. In all the simulations of MH2, 
the start-up delay when using the SWAN mechanism is always very high. 
Also, the presents of the SWAN mechanism seems to lower the delay to 
some extents, but not enough, so it will be of any significant matter from the 
user’s perspective.    
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10 Conclusion 
This chapter will conclude the work with this thesis, and presents possible for 
a future QoS mechanism based on the SWAN network model. 

10.1 Concluding remarks 
The increased popularity of wireless networks and the widespread usage of 
multimedia applications call for strictly management of the time variable 
available wireless channel. State of the art within wireless ad hoc network is 
not an efficient utilization. Multimedia applications have to rely upon Best-
Effort service, which basically is no Quality of Service at all. A supplementary 
QoS mechanism is most likely to be needed to achieve the goals of reliable 
multimedia applications in Ad Hoc networks. The SWAN network model is one 
step towards such a goal. 
 
From the simulations studies I gained knowledge about many of the problems 
concerning Quality of Service in Ad Hoc network and particularly the problems 
related to the implementation of the SWAN network model. In this section I 
will present the most important issues in this context. 
 

• In my early simulations I found problems with the performance when a 
source node of Real-Time traffic, was given an extra task of an 
additional session of data transfer with an external node. This could be 
a problem related to the network simulator used, or it could be a 
problem in the real world. If the latter is the case, this is a serious 
problem. Then, action has to be taken upon exhaustive testing and 
solving this case. 

• In most of my simulations the end-to-end delay experienced while the 
SWAN mechanism was used to ensure the Quality of Service was 
lower than when no QoS mechanism was used. However, the 
difference in the experienced delay with or without the SWAN 
mechanism was not of such significance magnitude that the Quality of 
Service was considerably improved. Another major drawback was that 
most of the end-to-end delay measured in the simulations was beyond 
the critical limit of end-to-end delay of one way transmission for any 
data applications stated by ITU in [16]. 

• My suspicions regarding the delay present in the SWAN articles [1] and 
[3] not being the end-to-end delay, but the delay measured at the MAC 
layer was correct. After several simulations I found a huge gap 
between my end-to-end delay and the delay presented in those 
articles. After sending several e-mails to the people behind the SWAN 
model, this was confirmed.  

• The simulations also revealed that when a Best-Effort traffic session 
was initiated without any measurement of the MAC delay, the SWAN 
mechanism in the transmitting node misconceives the situation and 
believes it has more available bandwidth than it actually has. This issue 
needs more exhaustive testing and needs to be addressed if it turns 
out to be a major problem. 

• Another drawback of the SWAN implementation discovered in the 
simulations is the extremely high “start-up” delay experienced in the 
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very first seconds of a simultaneous initiation of Real-Time traffic. This 
is due to the probe mechanism in SWAN which needs feedback from 
the probe message before a node is admitted to transmit such data 
packet. 

10.2 Further Studies 
This section presents areas which are open for more research and needs to 
be addressed in a successful Quality of Service model for the future. First 
some issues discovered during the simulations studies in this thesis are 
presented. Second, new proposals to a future QoS model for Ad-Hoc 
networks gained in theoretical analysis of the SWAN network model are 
presented. 
  

• The issue concerning the discovery of high rise in the delay, when a 
RT source is involved in transmission of additional traffic certainly 
needs further testing either in ns-2 or in a lab network. 

• It is of great importance to a Real-Time application of keeping the end-
to-end delay below 150 milliseconds. Today, this situation is simply not 
good enough, and more research is needed to gain additional 
decrease in the delay and also in having a more stable delay over time. 

• The simulation studies also revealed there could be situations where 
nodes misconceive the available bandwidth due to erroneous 
measurement of the Mac delay. This needs more testing, and certainly 
needs to be fixed in the implementation if it turns out to be a serious 
problem. 

• In times of an emerging congestion situation, any computer network 
will have advantage of a congestion avoidance mechanism, which 
informs the transmitting node about the upcoming difficulties in the 
network. Proper action for a transmitting node could be to lower the 
transfer rate, and hence lower the quality of the multimedia streams. In 
the resent SWAN model there is no such mechanism, but in a new 
QoS model for Ad Hoc networks, a congestion avoidance mechanism 
like this should be incorporated. 

• In any computer network a great variety of applications and hence a 
great variety in the types of data packet using the network is common. 
These different types of data packets have different characteristics and 
also different requirements. Some packet may also be more important 
than others. To satisfy these requirements, an advanced scheduling 
mechanism which differentiates among the packet types is needed. 
The resent SWAN model contains only a simple scheduling 
mechanism which does not fully cover this requirement. 

• With the recent year’s successful work on increasing the bandwidth 
capacity in wireless networks, the distance to the wired counterpart 
have been diminished. It is also believed that IEEE has plans of 
increasing the bandwidth of the 802.11 standard to 308 Kbps within 
this year. This bandwidth enhancement could make the need for an 
admission controller superfluous, if enough resources will always be 
available. A removal of the Admission control mechanism in SWAN will 
probably eliminate most of the start-up delay experienced with SWAN.  
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• A future QoS model must be able to dissolve congestion in a rapid 
manner. In the SWAN mechanism, measurement shows that it took 4-6 
seconds before the Real-Time rate to reach below the Admission 
control rate. This may be to slow when some applications are delay 
sensitive in order of milliseconds. Fast congestion recovery has to be 
addressed in future implementations. 

• The addressing of “false admission” is also mention as a problem in the 
SWAN mechanism. I have suggested an approach where all nodes are 
informed about congested network situations. In this approach, there is 
no need for an intelligent mechanism in the network interior, because 
this task could easily be taken care of by the transmitting nodes, 
without any large increase of the complexity. 

 
The popularity of wireless network shows that this technology is here to stay. 
Only the future will show the limitations. However, more effort has to be 
accomplished in many fields, in order to have a more complete solution. 
Quality of Service is definitely one area that needs more research and 
development to satisfy the many requirements. The Comet’s groups Stateless 
Wireless Ad hoc Network model is one good proposal, but not a complete 
model. However, it is a giant leap in the right direction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 94 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 95 

11 REFERENCES 
[1] G.-S. Ahn, A. T. Campbell, Andras Veres and Li-Hsiang Sun, "Supporting 
Service Differentiation for Real-Time and Best Effort Traffic in Stateless 
Wireless Ad Hoc Networks (SWAN)", IEEE Transactions on Mobile 
Computing, September 2002.    
 
[2] A. Veres, A.T. Campbell, M. Barry and L-H. Sun, “Supporting Service 
Differentiation in Wireless Packet Networks Using Distributed Control”, IEEE 
Journal of Selected Areas in Communications, Special Issue on Mobility and 
Resource Management in Next-Generation Wireless Systems, Vol. 19, No. 
10, pp. 2094-2104, October 2001. 
 
[3] G.-S. Ahn, A. T. Campbell, Andras Veres and Li-Hsiang Sun, “SWAN: 
Service Differentiation in Stateless Wireless Ad Hoc Networks", Proc. IEEE 
INFOCOM'2002, New York, New York, June 2002. 
 
[4] Gahng-Seop Ahn, Andrew T. Campbell, Andras Veres and Li-Hsiang Sun, 
"SWAN", draft-ahn-swan-manet-00.txt, Work in Progress, October 2002. 
 
 [5] Crow, B.P., Widjaja, I, Kim, J.G., and Sakai, P.T.,: “IEEE 802.11 Wireless 
Local Area Networks”, IEEE Commun. Magazine, vol. 35, pp. 116-126, 
Sept.1997. 
 
[6] Mohammad Ilyas: “The Handbook of Ad Hoc Wireless Network”, CRC 
Press. 
 
[7] Heegard, C., Coffey, J.T., Gummadi, S., Murphy, P.A., Provencio, R., 
Rossin, E.J., Schrum, S., and Shoemaker, M.B.: “High-PerformanceWireless 
Ethernet”, IEEE Commun. Magazine, vol. 39, pp. 64-73, Now. 2001. 
 
[8] Matthew S. Gast: “802.11 Wireless Networks”, O’Reilly 
 
[9] Upkar Varshney: “The Status and Future of 802.11 Based WLANs” 
 
[10] P. Berthou, T. Gayraud, O. Alphand, C. Prudhommeauz, M. Diaz: “A 
Multimedia Architecture for 802.11b networks” WCNC 2003 - IEEE Wireless 
Communications and Networking Conference, vol. 4, no. 1, Mar. 2003 
pp. 1742-1747 
 
[11] P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum, L. 
Viennot: “Optimized Link State Routing Protocol for Ad Hoc Networks” IEEE 
INMIC, 2001. Hipercom Project, INRIA Rocquencourt. 
 
[12] Ying Ge, Thomas Kunz, Louise Lamont: “Quality of Service Routing in 
Ad-Hoc Networks Using OLSR” Proceedings of the 36th Annual Hawaii 
International Conference on System Sciences (HICSS'03), Track 9, Volume 9. 
 
[13] Daqing Gu and Jinyun Zhang: “QoS Enhancement in IEEE802.11 
Wireless Local Area Networks”, IEEE Communications Magazine, pp. 120 – 
124, June 2003. 



 96 

 
 
[14] Zhigang Wang, MengChu Zhou and Nirwan Ansari: “Ad-hoc Robot 
Wireless Communication” Systems, Man and Cybernetics, 2003. IEEE 
International Conference, 5-8 Oct. 2003, Volume: 4,  On page(s): 4045- 4050 
vol.4 
 
[15] A. Roche, C. B Westphall and Graf von Mecklenburg: “Quality of Service 
for Ad Hoc Network” XII International Conference of the Chilean Computer 
Science Society (SCCC'02) , 11 06 - 11, 2002, Copiapó, Atacama, CHILE  
 
[16] International Telecommunication Union (ITU), ITU-T Recommendation 
G.114: “Series G: Transmission systems and media digital systems and 
networks” 
 
[17] G. H. Forman and J. Zahorjan, "The Challenges of Mobile Computing," 
IEEE Computer, vol. 27, no. 4, 1994 
 
[18] D. Cavin et al., "On the accuracy of MANET simulators" Proc. ACM 
Workshop on Princ. Mobile Computing (POMC'02), Oct. 2002, pp. 38-43. 
 
[19] The ns-2 home page: The Network Simulator - ns-2, 
[http://www.isi.edu/nsnam/ns/] 
 
[20] Pawlikowski it al: “On credibility of simulation studies of 
telecommunication networks”. IEEE Communications Magazine 40 
 
[21] J. L. Sobrinho and A. S. Krishnakumar: “Quality-of-Service in ad hoc 
Carrier Sense Multiple Access Wireless Networks”, IEEE JSAC, vol. 17, no. 8, 
Aug. 1999, pp.1353-1414. 
 
[22] Stefan Mangold, Sunghyun Choi, Peter May, Ole Klein, Guido Hiertz, 
Lothar Stibor: “IEEE 802.11e Wireless LAN for Quality of Service”, in Proc. 
Eur. Wireless'02, vol. 1, Feb. 2002, pp.  32-39.  
 
[23] http://security.zhwin.ch/ITG_WLAN_Theory.pdf  “Wireless LAN” 
 
[24] Youssef Iraqi and Raouf Boutaba: “Resource Management issues in 
Future Wireless Multimedia Networks”, The International Journal of High 
Speed Networking, volume 9 number3 pp. 231-260, 2000. 
 
[25] Y. Murat Erten and Emrah Tomur: “A Layered Architecture for Corporate 
802.11 Wireless Networks” Wireless Telecommunications Symposium, 2004 
Publication Date: 14-15 May 2004, pp. 123- 128. 
 
[26] F. Ferreri, M. Bernashi and L. Valcamonici: “Access points vulnerabilities 
to DoS attacks in 802.11 networks”, Proceedings of WCNC2004, IEEE 
Wireless Communications and Networking Conference, Atlanta (Georgia-
U.S.), 2004. 
 



 97 

[27] [http://moment.cs.ucsb.edu/AODV/aodv.html#Description] 
 
[28] Common Wireless Ad Hoc Network Usage Scenarios - 
http://www.flarion.com/ans-research/Drafts/draft-irtf-yang-ans-scenarios-00.txt 
 
[29] RFC 2501 - Mobile Ad hoc Networking (MANET): Routing Protocol 
Performance Issues and Evaluation Considerations. 
 
[30] Harpreet S. Arora: “Towards Achieving QoS Guarantees in Mobile Ad 
Hoc Networks”, Masters Thesis, Drexel University, Department of Computer 
Science, Philadelphia, PA, November 2003. 
 
[31] Saurabh Jain and Dharma P. Agrawal: “Wireless community networks”, 
IEEE Computer, Vol. 36, No. 8, August 2003, pp. 90-92. 
 
[32] http://planetmath.org/encyclopedia/AdHoc.html 
 
[33] http://www.wordiq.com/definition/List_of_Latin_phrases 
 
[34] RFC 3917: “Requirements for IP Flow Information Export” (IPFIX) 
 
[35] Policy Based Quality of Service - www.csd.uch.gr/~hy536/PB.pdf 
 
[36] RFC 1633: Integrated Services in the Internet Architecture: an Overview 
 
[37] Constant Gbaguidi, Hans J. Einsiedler, Paul Hurley, Werner 
Almesberger, and Jean-Pierre Hubaux: “A Survey of Differentiated Services 
Proposals for the Internet”, Technical report No. SSC/1998/020, April 1998. 
 
[38] Xipeng Xiao and Lionel M. Ni: “Internet QoS: A Big Picture”, IEEE 
Network, vol. 13, no. 2, Mar./Apr. 1999. 
 
[39] RFC 2475: An Architecture for Differentiated Services 
 
[40] RFC 3086: Definition of Differentiated Services Per Domain Behaviors 
and Rules for their Specification 
 
[41] RFC 2597: Assured Forwarding PHB Group 
 
[42] RFC 2598: An Expedited Forwarding PHB 
 
[43] H. Dong, I. D. Chakares, C. –H. Lin, A. Gersho, E. Belding-Royer, U. 
Madhow, J. D. Gibson: “Speech Coding for Mobile Ad Hoc Networks” 
Proceedings of the Asilomar Conference on Signals, Systems, and 
Computers, Pacific Grove, CA, November 2003. 
 
[44] RFC 3819: Advice for Internet Subnetwork Designers 
 
[45] IETF Internet-draft: “Using Radius for PE-Based VPN Discovery”, draft-
heinanen-radius-pe-discovery-03.txt  



 98 

 
[46] RFC 2026: The Internet Standards Process -- Revision 3 
 
[47] Lee, S.B., Ahn, G.S., Campbell, A.T., “Improving UDP and TCP 
performance in Mobile Ad Hoc Networks with INSIGNIA”, June 2001, pp 156-
165, IEEE Communication Magazine 
 
[48] M. C. Domingo and D. Remondo: “A Cooperation Model between Ad Hoc 
Networks and Fixed Networks for Service Differentiation”, Proceedings of the 
4th International IEEE Workshop on Wireless Local Networks (WLN). IEEE, p. 
692-693. 
 
[49] Zeinalipour-Yazti Demetrios: “A Glance at Quality of Services in Mobile 
Ad-Hoc Networks”, Technical report, University of California-Riverside, 2001. 
 
[50] S. Chakrabarti and A. Mishra, “QoS Issues in Ad Hoc Wireless 
Networks”, IEEE Communications Magazine, vol. 39, no. 2, pp. 142-148, 
February 2001. 
 
[51] Andrew S. Tanenbaum: “Computer Networks”, 4th edition. Pearson 
Education, Inc. 
 
[52] Janusz Gozdecki, Andrezej Jajszczyk, and Rafal Stankiewitz, “Quality of 
Service Terminology in IP Networks”, IEEE Communications Magazine, pp 
153-159, March 2003. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 99 

12 Appendix A 
 

                  CBR  packet size: 80 byte                                                     CBR packet size: 150 byte 
 

 
                        CBR packet size: 200 byte                                                     CBR packet size: 250 byte 

 

 
                         CBR  packet size: 300 byte                                                   CBR packet size: 512 byte (Video 
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13 Appendix B 
Number of 
TCP flows 2 4 6 8 10 12 
SWAN 
off 

609 
Kbps 

425 
Kbps 

295 
Kbps 

232 
Kbps 

210 
Kbps 

128 
Kbps 

SWAN 
on 

388 
Kbps 

237 
Kbps 

176 
Kbps 

145 
Kbps 

121 
Kbps 

114 
Kbps 

Table SSC1: Average TCP throughput of each node 
 
Number of 
TCP flows 2 4 6 8 10 12 
SWAN 
off 

561 
Kbps 

397 
Kbps 

259 
Kbps 

199 
Kbps 

160 
Kbps 

133 
Kbps 

SWAN 
on 

192 
Kbps 

228 
Kbps 

124 
Kbps 

104 
Kbps 

 72 Kbps   61 
Kbps 

Table SSC2: Average TCP throughput of each node 
 
 
Number of 
TCP flows 0 2 4 6 8 10 12 
SWAN 
off 

 2.25 ms 818.15 ms 1562.96 
ms 2003.96 ms 3357.00 ms 2665.89 ms 2893.88 ms 

SWAN 
on 

51.28 ms 452.57 ms 544.75 ms 631.13 ms 638.27 ms 672.49 ms 680.46 ms 

Table SSC1: Average Real-Time delay 
 
 
Number of 
TCP flows 0 2 4 6 8 10 12 
SWAN off 2.19 ms 446.16 ms 717.89 ms 693.93 ms 717.28 ms 715.37 ms 721.12 ms 

SWAN on 8.94 ms 734.73 ms 607.75 ms 554.17 ms 639.76 ms 593.14 ms 590.26 ms 
Table SSC2: Average Real-Time delay 
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14 Appendix C 
Scripting files for SSC2 in ns-2: 
 
# ======================================================================================== 
# Define options 
# ======================================================================================== 
set val(chan)           Channel/WirelessChannel    ;# channel type 
set val(prop)           Propagation/TwoRayGround   ;# radio-propagation model 
set val(netif)          Phy/WirelessPhy            ;# network interface type 
set val(mac)            Mac/802_11                 ;# MAC type 
set val(ifq)            Queue/DropTail/PriQueue    ;# interface queue type 
set val(ll)             LL                         ;# link layer type 
set val(ant)            Antenna/OmniAntenna        ;# antenna model 
set val(ifqlen)         50                         ;# max packet in ifq 
set opt(seed)  0.0                        ;# don't know what this is ??? 
set val(x)              1000                        ;# x-coord of simulation field 
set val(y)              800                        ;# y-coord of simulation field 
set val(rp)             AODV                       ;# Routing protocol 
set val(energymodel)    EnergyModel                ;#???????????????????????????? 
set val(initialenergy)  100                        ;# Initial energy in Joules 
set val(progress)       4                          ;# progress markers 
set val(nn)             20                         ;# number of mobilenodes 
set val(nodes)          "nodes20_1000x800_wireless.tcl" 
set val(traffic)        "traffic20_1000x800_wireless.tcl" 
set val(stop)           100.0                      ;# stop simulation at this time 
# ======================================================================================== 
# options for SWAN module 
# ======================================================================================== 
set opt(swan_rc)        "ON"            ;# rate controller ON/OFF 
set opt(swan_ac)        "ON"            ;# admission controller ON/OFF 
set opt(dir)            "result/test"   ;# result directory 
set opt(band)           "100Kb"         ;# initial rate 
set opt(ssthresh)       "1Mb"           ;# slow start threshold 
set opt(segment)        "50Kb"          ;# increment segment (c) 
set opt(mdrate)         "50"            ;# decrement rate (r) 
set opt(gap)            "1.2"           ;# gap control (g) 
set opt(minband)        "100kb"         ;# minimum rate 
set opt(acrate)         "2000Kb"        ;# admission control rate 
set opt(thrate)         "4000Kb"        ;# threshold rate 
# ======================================================================================== 
# aditional SWAN stuff 
# ======================================================================================== 
set AgentTrace   OFF 
set RouterTrace   OFF 
set MacTrace   OFF 
 
LL set mindelay_  50us 
LL set delay_   25us    ;# link-level overhead 
LL set bandwidth_  0 ;# not used 
LL set off_prune_  0 ;# not used 
LL set off_CtrMcast_  0 ;# not used 
 
Agent/Null set sport_  0 
Agent/Null set dport_  0 
 
Agent/CBR set sport_  0 
Agent/CBR set dport_  0 
 
Agent/TCPSink set sport_ 0 
Agent/TCPSink set dport_ 0 
 
Agent/TCP set sport_  0 
Agent/TCP set dport_  0 
Agent/TCP set packetSize_ 1460 
 
Queue/DropTail/PriQueue set Prefer_Routing_Protocols    1 
# ======================================================================================== 
 
########################################################################## 
# unity gain, omni-directional antennas                                  # 
# set up the antennas to be centered in the node and 1.5 meters above it # 
########################################################################## 
Antenna/OmniAntenna set X_ 0 
Antenna/OmniAntenna set Y_ 0 
Antenna/OmniAntenna set Z_ 1.5 
Antenna/OmniAntenna set Gt_ 1.0 
Antenna/OmniAntenna set Gr_ 1.0 
########################################################################## 
# Initialize the SharedMedia interface with parameters to make           # 
# it work like the 914MHz Lucent WaveLAN DSSS radio interface            # 
########################################################################## 
Phy/WirelessPhy set CPThresh_ 10.0 
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Phy/WirelessPhy set CSThresh_ 1.559e-11 
Phy/WirelessPhy set RXThresh_ 3.652e-10 
Phy/WirelessPhy set Rb_ 11*1e6 
Phy/WirelessPhy set Pt_ 0.2818 
Phy/WirelessPhy set freq_ 914e+6  
Phy/WirelessPhy set L_ 1.0 
Phy/WirelessPhy set bandwidth_ 11e6 
########################################################################## 
# Initialize the 802.11 MAC                                              # 
########################################################################## 
Mac set bandwidth_ 11e6 
 
 
########################################################################################### 
# ========================================================================================# 
# Main Program                                                                            # 
# ======================================================================================= # 
########################################################################################### 
 
########################################################################################### 
# Initialize Global Variables                                                             # 
########################################################################################### 
 
# Creating an instance of the simulator 
set ns_  [new Simulator] 
 
# set up topography object that keep track of mobile nodes within the topologica boundary 
set topo       [new Topography] 
 
#set god_ [new God] 
 
#makedir $opt(dir) 
########################################################################################### 
# Settup trace support                                                                    # 
########################################################################################### 
 
# open a files for writing that is going to be used for the nam and trace data 
#set tracefd     [open trace40_150x150_wireless.tr w] 
#set namtrace    [open out40_150x150_wireless.nam w] 
 
set tracefd     [open trace20_1000x800_wireless.tr w] 
set namtrace    [open out20_1000x800_wireless.nam w] 
 
# Provide the topography object with x and y co-ordinates of the boundary 
$topo load_flatgrid $val(x) $val(y) 
 
$ns_ trace-all $tracefd 
$ns_ namtrace-all-wireless $namtrace $val(x) $val(y) 
 
########################################################################################### 
# Create God object (General Operations Director)                                         # 
# used to store global information about the state of                                     # 
# the environment, network or nodes                                                       # 
########################################################################################### 
create-god $val(nn) 
 
########################################################################################### 
# Create channel #1                                                                       # 
########################################################################################### 
set chan_1_ [new $val(chan)] 
 
########################################################################################### 
#  Create the specified number of mobilenodes [$val(nn)] and "attach" them                # 
#  to the channel.                                                                        # 
#  Here two nodes are created : node(0) and node(1)                                       # 
########################################################################################### 
 
########################################################################################### 
# configure node                                                                          # 
###########################################################################################    
$ns_ node-config -adhocRouting $val(rp) \ 
    -llType $val(ll) \ 
    -macType $val(mac) \ 
    -ifqType $val(ifq) \ 
    -ifqLen $val(ifqlen) \ 
    -antType $val(ant) \ 
    -propType $val(prop) \ 
    -phyType $val(netif) \ 
     -channel $chan_1_ \ 
    -topoInstance $topo \ 
    -agentTrace ON \ 
    -routerTrace ON \ 
    -macTrace ON \ 
    -movementTrace OFF \ 
                  -energyModel $val(energymodel) \ 
     -initialEnergy $val(initialenergy) 
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########################################################################################### 
# Create val(nn) mobile nodes                                                             # 
########################################################################################### 
for {set i 0} {$i < $val(nn) } {incr i} { 
    set node_($i) [$ns_ node]           
    $node_($i) random-motion 0  ;# disable random motion 
} 
 
########################################################################################### 
# Set lossmonitor for the different nodes                                                 # 
########################################################################################### 
for {set i 0} {$i < $val(nn)} {incr i} {   
     
    set x [expr $i % 2] 
     
    if { $x > 0} { 
 puts "putting lossmonitor on node $i"    
 set loss_($i) [new Agent/LossMonitor] 
    } else { 
 # denne skal bort senere 
 puts "putting lossmonitor on node $i"  
 set loss_($i) [new Agent/LossMonitor] 
    } 
} 
 
########################################################################################### 
# Loading scenario file                                                                   # 
########################################################################################### 
puts "Loading nodes scenario file..." 
source $val(nodes) 
puts "Load complete..." 
 
########################################################################################### 
# Loading traffic file                                                                    # 
########################################################################################### 
puts "Loading connection pattern..." 
source $val(traffic) 
puts "Load complete..." 
 
######################################################################### 
# trigger shaper & utilization monitor every second                     # 
######################################################################### 
 
for {set i 0} {$i <= $val(stop)} {incr i 1} { 
    for {set j 0} {$j < $val(nn) } {incr j} { 
 $ns_ at $i "$node_($j) shape 1" 
 $ns_ at $i "$node_($j) monitor c1" 
    } 
} 
 
########################################################################################### 
# Define node initial position(size) in nam                                               # 
########################################################################################### 
for {set i 0} {$i < $val(nn)} {incr i} {    
    # 20 defines the node size in nam, must adjust it according to your scenario 
    # The function must be called after mobility model is defined 
    $ns_ initial_node_pos $node_($i) 60 
} 
########################################################################################### 
# Tell nodes when the simulation ends                                                     # 
########################################################################################### 
for {set i 0} {$i < $val(nn) } {incr i} { 
    $ns_ at $val(stop).000000001 "$node_($i) reset"; 
} 
 
########################################################################################### 
# stoping procedure                                                                       # 
########################################################################################### 
proc stop {} { 
    global ns_ tracefd namtrace th_put_vi th_put_vo th_put_ftp val recv_ftp 
    $ns_ flush-trace 
 
    close $tracefd  
    close $namtrace 
    
    exit 0 
} 
########################################################################################### 
# simulation counter                                                                      # 
########################################################################################### 
for {set i 1} {$i <= $val(progress)} {incr i} { 
    set t [expr $i * $val(stop) / ($val(progress) + 1)] 
    $ns_ at $t "puts \"completed through $t secs...\"" 
} 
 
########################################################################################### 
# starting procedures                                                                     # 



 104 

########################################################################################### 
#$ns_ at 0.0 "record_thput" 
#$ns_ at 100.0 "stop" 
$ns_ at $val(stop) "stop" 
$ns_ at $val(stop).00000001 "puts \"NS EXITING...\" ; $ns_ halt" 
 
########################################################################################### 
# start the simulation                                                                    # 
########################################################################################### 
puts "Starting Simulation..." 
$ns_ run 
 
########################################################################################### 
#                                                                                         # 
#                                     END OF THE SCRIPT                                   # 
#                                                                                         # 
########################################################################################### 
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############################################################################# 
# Provide initial (X,Y, for now Z=0) co-ordinates for mobilenodes           # 
############################################################################# 
set god_ [God instance] 
 
################################################################################# 
# Node initial position                                                         # 
################################################################################# 
 
# nodes 0-3 
$node_(0) set X_ 0.0 
$node_(0) set Y_ 0.0 
$node_(0) set Z_ 0.0 
 
$node_(1) set X_ 0.0 
$node_(1) set Y_ 200.0 
$node_(1) set Z_ 0.0 
 
$node_(2) set X_ 0.0 
$node_(2) set Y_ 400.0 
$node_(2) set Z_ 0.0 
 
$node_(3) set X_ 0.0 
$node_(3) set Y_ 600.0 
$node_(3) set Z_ 0.0 
 
# nodes 4-7 
$node_(4) set X_ 200.0 
$node_(4) set Y_ 0.0 
$node_(4) set Z_ 0.0 
 
$node_(5) set X_ 200.0 
$node_(5) set Y_ 200.0 
$node_(5) set Z_ 0.0 
 
$node_(6) set X_ 200.0 
$node_(6) set Y_ 400.0 
$node_(6) set Z_ 0.0 
 
$node_(7) set X_ 200.0 
$node_(7) set Y_ 600.0 
$node_(7) set Z_ 0.0 
 
# nodes 8-11 
$node_(8) set X_ 400.0 
$node_(8) set Y_ 0.0 
$node_(8) set Z_ 0.0 
 
$node_(9) set X_ 400.0 
$node_(9) set Y_ 200.0 
$node_(9) set Z_ 0.0 
 
$node_(10) set X_ 400.0 
$node_(10) set Y_ 400.0 
$node_(10) set Z_ 0.0 
 
$node_(11) set X_ 400.0 
$node_(11) set Y_ 600.0 
$node_(11) set Z_ 0.0 
 
# nodes 12-15 
$node_(12) set X_ 600.0 
$node_(12) set Y_ 0.0 
$node_(12) set Z_ 0.0 
 
$node_(13) set X_ 600.0 
$node_(13) set Y_ 200.0 
$node_(13) set Z_ 0.0 
 
$node_(14) set X_ 600.0 
$node_(14) set Y_ 400.0 
$node_(14) set Z_ 0.0 
 
$node_(15) set X_ 600.0 
$node_(15) set Y_ 600.0 
$node_(15) set Z_ 0.0 
 
# nodes 16-19 
$node_(16) set X_ 800.0 
$node_(16) set Y_ 0.0 
$node_(16) set Z_ 0.0 
 
$node_(17) set X_ 800.0 
$node_(17) set Y_ 200.0 
$node_(17) set Z_ 0.0 
 
$node_(18) set X_ 800.0 
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$node_(18) set Y_ 400.0 
$node_(18) set Z_ 0.0 
 
$node_(19) set X_ 800.0 
$node_(19) set Y_ 600.0 
$node_(19) set Z_ 0.0 
 
 
################################################################################# 
# Node movement                                                                 # 
################################################################################# 
 
#$ns_ at 5.0 "$node_(24) setdest 20.0 120.0 15.0" 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
# ====================================================================== 
# Traffic Model 
# ====================================================================== 
 
set pareto1 [new RandomVariable/Pareto] 
$pareto1 set avg_ 10 
$pareto1 set shape 1.2 
 
set pareto2 [new RandomVariable/Pareto] 
$pareto2 set avg_ 10 
$pareto2 set shape 1.2 
 
set uniform [new RandomVariable/Uniform] 
$uniform set min_ 0 
$uniform set max_ 1 
 
set udp_cnt 0 
set tcp_cnt 0 
 
 
proc create-video-connection { src dst stime} { 
    global ns_ node_ val uniform udp_cnt loss_ 
    set j [expr $stime + [$uniform value] ] 
 
    set udp_($udp_cnt) [new Agent/UDP] 
    $ns_ attach-agent $node_($src) $udp_($udp_cnt) 
 
    # set null_($udp_cnt) [new Agent/Null] 
    # $ns_ attach-agent $node_($dst) $null_($udp_cnt) 
    $ns_ attach-agent $node_($dst) $loss_($dst) 
 
    set cbr_($udp_cnt) [new Application/Traffic/CBR] 
 
    $cbr_($udp_cnt) set packetSize_ 512 
    $cbr_($udp_cnt) set interval_ 0.02 
    $cbr_($udp_cnt) set random_ 1 
    $cbr_($udp_cnt) set maxpkts_ 15000 
    $cbr_($udp_cnt) attach-agent $udp_($udp_cnt) 
 
    #$ns_ connect $udp_($udp_cnt) $null_($udp_cnt) 
    $ns_ connect $udp_($udp_cnt) $loss_($dst) 
 
    $ns_ at $j "$cbr_($udp_cnt) start" 
    $ns_ at 1000 "$cbr_($udp_cnt) stop" 
 
    puts "at $j | SRC($src) | DST($dst) | Video($udp_cnt) | lossMonitor: loss($dst)" 
    incr udp_cnt 
} 
 
proc create-voice-connection { src dst stime} { 
    global ns_ node_ val uniform udp_cnt loss_ 
    set j [expr $stime + [$uniform value] ] 
 
    # This creates an instance of the UDP agent 
    set udp_($udp_cnt) [new Agent/UDP]                 
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    # This is a common command used to attach any <agent> to a given <node>   
    $ns_ attach-agent $node_($src) $udp_($udp_cnt)     
 
    # Creates an instance of the Null agent 
    set null_($udp_cnt) [new Agent/Null]       
 
    # Put receiving node on the Null agent  
    $ns_ attach-agent $node_($dst) $null_($udp_cnt)    
 
    # Put the receiving node on the LossMonitor agent 
    $ns_ attach-agent $node_($dst) $loss_($dst)       
 
    # setup a CBR traffic flow for the udp agent 
    set cbr_($udp_cnt) [new Application/Traffic/CBR]   
 
    # Constant size of packets generated 
    $cbr_($udp_cnt) set packetSize_ 80   
 
    # Interval between packets 
    $cbr_($udp_cnt) set interval_ 0.02         
 
    # Whether or not to introduce random noice in the scheduled departure times 
    $cbr_($udp_cnt) set random_ 1        
 
    # Maximum number of packets to send  
    $cbr_($udp_cnt) set maxpkts_ 15000              
    
    $cbr_($udp_cnt) attach-agent $udp_($udp_cnt) 
 
    # setup an end-to-end connection between two agents (at the transport layer) 
    $ns_ connect $udp_($udp_cnt) $null_($udp_cnt)     
    $ns_ connect $udp_($udp_cnt) $loss_($dst)  
 
    # Causes the source to start generating packets at $i sec 
    $ns_ at $j "$cbr_($udp_cnt) start"                 
 
    # Causes the source to stop generating packets at time 1000 sec 
    $ns_ at 1000 "$cbr_($udp_cnt) stop"                
 
    puts "at $j | SRC($src) | DST($dst) | Voice($udp_cnt) | lossMonitor: loss_($dst)" 
    incr udp_cnt 
} 
 
proc create-ftp-connection { src dst stime} { 
    global ns_ node_ val uniform tcp_cnt loss_ 
    set j [expr $stime + [$uniform value] ] 
 
    # create sender agent 
    set tcp_($tcp_cnt) [new Agent/TCP/Reno]       
 
    # Put sender on node $node_($src) 
    $ns_ attach-agent $node_($src) $tcp_($tcp_cnt)   
 
    # Create receiver agent 
    set null_($dst) [new Agent/TCPSink]            
 
    # Put receiver on node $node_($dest) 
    $ns_ attach-agent $node_($dst) $null_($dst)     
  
    # Put the receiving node on the LossMonitor agent 
    $ns_ attach-agent $node_($dst) $loss_($dst)       
 
    # Create an FTP source "application" 
    set ftp_($tcp_cnt) [new Application/FTP]            
 
    # The size in bytes to use for all packets from this source 
    $ftp_($tcp_cnt) set packetSize_ 512                 
 
    # The upper bound on the advertised window for the TCP connection 
    $ftp_($tcp_cnt) set window_ 32         
 
    # The initial size of the congestion window on slow-start 
    $ftp_($tcp_cnt) set windowInit_ 16      
 
    # The maximum number of packets generated by the source    
    $ftp_($tcp_cnt) set maxpkts_ 1000000                
 
    # Associate FTP with the TCP sender 
    $ftp_($tcp_cnt) attach-agent $tcp_($tcp_cnt)        
     
    # Astablish TCP connection 
    $ns_ connect $tcp_($tcp_cnt) $null_($dst)      
 
    # Arrange for FTP to start at time $j sec 
    $ns_ at $j "$ftp_($tcp_cnt) start"        
 
    # Arrange for FTP to stop at time 1000 sec 
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    $ns_ at 1000 "$ftp_($tcp_cnt) stop"                 
 
    puts "at $j |SRC($src) | DST($dst) | FTP($tcp_cnt) | lossMonitor: loss_($dst)" 
    incr tcp_cnt 
} 
 
# Video 
create-video-connection 0 19 0 
create-video-connection 3 16 0 
create-video-connection 19 0 0 
create-video-connection 16 3 0 
 
# Voice 
create-voice-connection 0 19 0 
create-voice-connection 3 16 0 
create-voice-connection 19 0 0 
create-voice-connection 16 3 0 
 
# 2 TCP flows 
create-ftp-connection 8 11 0 
#create-ftp-connection 2 3 0 
# 4 TCP flows 
#create-ftp-connection 4 5 0 
#create-ftp-connection 6 7 0 
# 6 TCP flows 
#create-ftp-connection 8 9 0 
#create-ftp-connection 10 11 0 
# 8 TCP flows 
#create-ftp-connection 12 13 0 
#create-ftp-connection 14 15 0 
# 10 TCP flows 
#create-ftp-connection 16 17 0 
#create-ftp-connection 18 19 0 
# 12 TCP flows 
#create-ftp-connection 20 21 0 
#create-ftp-connection 22 23 0 
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15 Appendix D 
Python script files for analysis: 
 
#!/usr/bin/env python 
 
import sys, re, math, os, shutil 
 
print "script to make plotfile for gnuplot" 
 
 
# reading infile and outfile 
try: 
    infilename = sys.argv[1] 
    outfilename = sys.argv[2] 
    no_tcp_flows = sys.argv[3] 
except: 
    print 'Usage:', sys,argv[0], 'infile_tcp outfile_tcp 
no_of_tcp_flows' 
    sys.exit(1) 
 
 
out_vi = 'vi_cbr_plott.out' 
out_vo = 'vo_cbr_plott.out' 
 
 
# open files 
ifile = open( infilename, 'r') # r for reading 
ofile = open(outfilename, 'w') # w for writing 
 
vi_ofile = open(out_vi, 'w') 
vo_ofile = open(out_vo, 'w') 
 
 
# initaitions 
counter = 0 
 
vi_pac_interval = 0 
vo_pac_interval = 0 
# tcp 
total_pac_interval = 0 
 
total_thput = 0 
vi_total = 0 
vo_total = 0 
case = "tmp1" 
 
 
 
 
# kan putte pÃ¥ en for-lÃ¸kke her som gÃ¥r 6 ganger (2-4-6-8-10-12 
tcp flows) 
 
# read line by line: 
for line in ifile: 
 
    pattern1 =\ 
            r"r\s(\d+)\.\d+\s_(\d+)_\s.*" 
 
    pattern2 = \ 
            r"r\s\d+\.\d+\s_\d+_\sAGT\s{2}---\s\d+\stcp\s(\d+)\s.*" 
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    pattern3 = \ 
            r"r\s\d+\.\d+\s_\d+_\sAGT\s{2}---\s\d+\scbr\s(\d+)\s.*" 
 
 
    #pattern2 = \ 
    #        r"s\s\d+\.\d+\s_\d+_\sAGT\s{2}---\s\d+\stcp\s(\d+)\s.*" 
     
    #pattern1 =\ 
    #         r"s\s(\d+)\.\d+\s.*" 
     
     
    match1 = re.search(pattern1, line) 
 
    if match1: 
        time = float(match1.group(1)) 
        node = int(match1.group(2)) 
             
        if time > counter: 
            counter = counter + 1 
 
            total_in_Kbps = total_pac_interval * 8 / 1000 
            total_pr_flow = total_in_Kbps / int(no_tcp_flows) 
 
            vo_in_Kbps = vo_pac_interval * 8 / 1000 
            vi_in_Kbps = vi_pac_interval * 8 / 1000  
             
            #print "-------------------------------------------------
-----------------------------------------------" 
            #print "line: %s" % (line) 
            #print "tid: %g" % (time) 
            #print "%d total average throughput: %d Kbps | average 
throughput for each flow: %d Kbps" % 
(counter,total_in_Kbps,total_pr_flow) 
            #print "voice byte: %d:" % (vo_pac_interval) 
            #print "Voice: %d Kbps" % (vo_in_Kbps) 
            #print "Video: %d Kbps" % (vi_in_Kbps) 
 
            # write output to plott-file 
            ofile.write('%d %d\n' % (counter,total_in_Kbps)) 
            vi_ofile.write('%d %d\n' % (counter,vi_in_Kbps)) 
            vo_ofile.write('%d %d\n' % (counter,vo_in_Kbps)) 
             
            total_pac_interval = 0 
            vo_pac_interval = 0 
            vi_pac_interval = 0 
             
        match2 = re.search(pattern2, line) 
        if match2: 
            #time = float(match.group(1)) 
            packet = int(match2.group(1)) 
            # received packet are 20 bytes higher than the one sent 
(bug in ns-2) 
            packet = packet - 20 
 
            # collect total throughput on tcp 
            total_thput = total_thput + packet 
 
            total_pac_interval = total_pac_interval + packet 
 
        match3 = re.search(pattern3, line) 
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        if match3: 
            #print "line: %s" % (line) 
            #node = int(match3.group(1)) 
            cbr_packet = int(match3.group(1)) 
            #print "cpr:packet: %d" % (cbr_packet)   
            cbr_packet = cbr_packet - 20 
             
            if (node == 33 or node == 35 or node == 37 or node == 
39): 
                # voice 
                #print "VOICE node: %s | line: %s" % (node,line) 
                vo_pac_interval = vo_pac_interval + cbr_packet 
                vo_total = vo_total + cbr_packet 
                #print "node%d: cbr_packet: %d voice" % 
(node,cbr_packet) 
            else: 
                #print "VIDEO node: %s | line: %s" % (node,line) 
                vi_pac_interval = vi_pac_interval + cbr_packet 
                vi_total = vi_total + cbr_packet 
                #print "node%d: cbr_packet: %d video" % 
(node,cbr_packet) 
 
            cbr_packet = 0 
         
counter = counter + 1     
total_in_Kbps = total_pac_interval * 8 / 1000 
total_pr_flow = total_in_Kbps / int(no_tcp_flows) 
 
vo_in_Kbps = vo_pac_interval * 8 / 1000 
vi_in_Kbps = vi_pac_interval * 8 / 1000  
#print "-------------------------------------------------------------
-----------------------------------"         
#print "%d total average throughput: %d Kbps | average throughput for 
each flow: %d Kbps" % (counter,total_in_Kbps,total_pr_flow) 
 
# write last interval output to plott-file 
ofile.write('%d %d\n' % (counter,total_in_Kbps)) 
vi_ofile.write('%d %d\n' % (counter,vi_in_Kbps)) 
vo_ofile.write('%d %d\n' % (counter,vo_in_Kbps))     
 
# get the throughput in Kbps 
total_thput = total_thput * 8 / 1000 / (counter + 1) 
vi_total = vi_total * 8 / 1000 / (counter + 1) 
vo_total = vo_total * 8 / 1000 / (counter + 1) 
print "--------------------------------------------------------------
----------------------------------" 
print "total average TCP throughput: %g Kbps" % (total_thput) 
print "total average Video throughput: %g Kbps" % (vi_total) 
print "total average Voice throughput: %g Kbps" % (vo_total) 
# get the average throughput on each flow 
total_thput = total_thput / int(no_tcp_flows) 
print "average TCP throughput for each flow: %g Kbps" % (total_thput) 
print "--------------------------------------------------------------
----------------------------------" 
 
ofile.close() 
vi_ofile.close() 
vo_ofile.close() 
 
# run the outputfile in gnuplot 
f = open(case + '.gnuplot', 'w') 
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f.write(""" 
set title 'Throughput (Kbps)'; 
set yrange [0:2000]; 
set term png small color; 
set output 'MH1_on_th12.png'; 
""") 
 
f.write("plot '%s' title 'TCP' with lines, '%s' title 'Video' with 
lines, '%s' title 'Voice' with lines;\n" % 
(outfilename,out_vi,out_vo)) 
#f.write("plot '%s' title 'TCP' with lines;\n" % (outfilename)) 
f.close() 
cmd = "gnuplot -geometry 800x600 -persist " + case + ".gnuplot" 
failure = os.system(cmd) 
if failure: 
    print "running gnuplot failed"; sys.exit(1) 
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#!/usr/bin/env python 
 
import sys, re, math, os, shutil 
 
print "script to make plotfile for gnuplot" 
 
# reading infile and outfile 
try: 
    #infilename = sys.argv[1] 
    no_nodes= sys.argv[1] 
    seconds = sys.argv[2] 
except: 
    print 'Usage:', sys,argv[0], '<number of nodes> <seconds 
simulated>' 
    sys.exit(1) 
 
 
 
 
SwanOff_infile = 'AGT_SWANoff_'+no_nodes+'_' 
SwanOn_infile = 'AGT_SWANon_'+no_nodes+'_' 
infile_end = '.tr' 
ofile_end = '.out' 
 
#s_list = [] 
#counter = 0 
total_delay = 0 
 
 
def put_in_list(dsec,seq): 
    #s_list[seq] = dsec 
    s_list.append(dsec) 
                         
def check_sendt(seq): 
    return s_list[seq] 
    
 
# loop for SWAN on/off 
for i in range(0,2,1): 
    if (i == 0): 
        print "j = %d" % (i) 
        infilename = SwanOff_infile 
    if (i == 1): 
        print "j = %d" % (i) 
        infilename = SwanOn_infile 
 
    no_flow = 0 
    ofile = open(infilename + ofile_end, 'w') 
    vi_ofile = open('vi_' + infilename + ofile_end, 'w') 
    vo_ofile = open('vo_' + infilename + ofile_end, 'w') 
     
    # loop for diffrent number of TCP flows 
    for j in range(7): 
             
        #no_flow = no_flow + 2 
        no = no_flow 
 
        s_list = [] 
        counter = 0 
        total_delay = 0 
        max_delay = 0 
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        vi_tot_delay = 0 
        vo_tot_delay = 0 
        vi_count = 0 
        vo_count = 0 
         
        ifile = open( infilename + str(no) + infile_end, 'r') # r for 
reading 
         
        # read line by line: 
        for line in ifile: 
             
            pattern0 = \ 
                     r"s\s(\d+\.\d+)\s_(\d+)_\sAGT\s{2}---
\s(\d+)\s.*" 
             
            pattern1 = \ 
                     r"r\s(\d+\.\d+)\s_(\d+)_\sAGT\s{2}---
\s(\d+)\scbr\s(\d+)\s.*" 
             
            match0 = re.search(pattern0, line) 
             
            if match0: 
                sendt = float(match0.group(1)) 
                s_node = int(match0.group(2)) 
                s_seq = int(match0.group(3)) 
                 
                # call function put_in_list(s_dsec,seq) 
                put_in_list(sendt,s_seq) 
                 
            match1 = re.search(pattern1, line) 
             
            if match1: 
                received = float(match1.group(1)) 
                r_node = int(match1.group(2)) 
                r_seq = int(match1.group(3)) 
                packet = int(match1.group(4)) 
                 
                # call fuction check_sendt(r_dsec,seq) 
                sendt_sec = check_sendt(r_seq) 
                delay = received - sendt_sec 
                msec_delay = delay * 1000 
 
                if packet < 110: 
                    #voice 
                    vo_tot_delay = vo_tot_delay + msec_delay 
                    vo_count = vo_count + 1 
                else: 
                    vi_tot_delay = vi_tot_delay + msec_delay 
                    vi_count = vi_count + 1 
                     
 
                if msec_delay > max_delay: 
                    max_delay = msec_delay 
 
                    #if max_delay > 2700: 
                        #print "new max delay: %f" % (max_delay) 
                        #print "sendt: %f | received: %f | node: %d | 
seq: %d | delay: %f | delay in millisec: %f msec" % 
(sendt_sec,float(received),r_node,r_seq,delay,msec_delay) 
                total_delay = total_delay + msec_delay 
                counter = counter + 1 



 115 

                 
        avg_delay = total_delay / counter 
        vi_avg_delay = vi_tot_delay / vi_count 
        vo_avg_delay = vo_tot_delay / vo_count 
        print "------------------------------------------------------
---------------------------------------------------------------------
-" 
        print "avg delay %s TCP flows: avg_delay: %f msec | max delay 
%f | Video: %f | Voice: %f" % 
(str(no),avg_delay,max_delay,vi_avg_delay,vo_avg_delay) 
 
        ofile.write('%d %f\n' % (no_flow,avg_delay)) 
        vi_ofile.write('%d %f\n' % (no_flow,vi_avg_delay)) 
        vo_ofile.write('%d %f\n' % (no_flow,vo_avg_delay)) 
        no_flow = no_flow + 2 
    ofile.close() 
    vi_ofile.close() 
    vo_ofile.close() 
     
case = 'avg_rt_delay' 
case_vivo = 'avg_vivo_delay' 
 
# run the outputfile in gnuplot 
f = open( case + '.gnuplot', 'w') 
f.write(""" 
set title 'RT delay vs. number of TCP flows'; 
set yrange [0:1500]; 
set xrange [0:12]; 
set ylabel 'Delay in milliseconds'; 
set xlabel 'Number of TCP flows'; 
set term png small color; 
set output 'avg_rt_delay.png'; 
""") 
 
f.write("plot '%s' title 'SWAN off' with lines, '%s' title 'SWAN on' 
with lines;\n" % (SwanOff_infile+ofile_end,SwanOn_infile+ofile_end)) 
 
f.close() 
cmd = "gnuplot -geometry 800x600 -persist " + case + ".gnuplot" 
failure = os.system(cmd) 
if failure: 
    print "running gnuplot failed"; sys.exit(1) 
 
# second plot 
vivo = open( case_vivo + '.gnuplot', 'w') 
vivo.write(""" 
set title 'Video/Voice delay vs. number of TCP flows'; 
set yrange [0:1500]; 
set xrange [0:12]; 
set ylabel 'Delay in milliseconds'; 
set xlabel 'Number of TCP flows'; 
set term png small color; 
set output 'avg_vivo_delay.png'; 
""") 
 
vivo.write("plot '%s' title 'Video SWAN off' with lines, '%s' title 
'Voice SWAN off' with lines, '%s' title 'Video SWAN on' with lines, 
'%s' title 'Voice SWAN on' with lines;\n" % 
('vi_'+SwanOff_infile+ofile_end,'vo_'+SwanOff_infile+ofile_end,'vi_'+
SwanOn_infile+ofile_end,'vo_'+SwanOn_infile+ofile_end)) 
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vivo.close() 
cmd2 = "gnuplot -geometry 800x600 -persist " + case_vivo + ".gnuplot" 
failure = os.system(cmd2) 
if failure: 
    print "running gnuplot failed"; sys.exit(1) 
 
 
 
 
 
 
 


