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Chapter 1

Introduction

1.1 Medical ultrasound

The first ultrasound used in medicine was developed in 1947. It was not until
about 1975 it became popular as a diagnostic technology. The introduction of
B-mode imaging and real-time imaging was decisive. Today it is the most used
diagnostic imaging system after X-ray.

Ultrasound has several advantages compared to other imaging methods.
First, the equipment is smaller and cheaper than i.e. Magnetic Resonance. Be-
cause of the mechanical vibrations made by ultrasound it is possible to create
localized heating. This heating may be used to heal certain diseases. If ultra-
sound is used with care, it is harmless. It is also possible to use Doppler motion
to measure blood velocities, which do not exist in other forms of medical ima-
ging systems. It is also non-invasive.

On the other hand there are disadvantages too. The penetration is shallow,
about 10-15 cm. It is not possible to image through bones, which makes it
difficult to image some objects.

1.2 Ultrasound imaging and nonlinear effects

The application of ultrasound in biomedical ultrasonic imaging requires strin-
gent demands of image quality. Image quality is measured by contrast, axial
and lateral resolution. It is important to get the best resolution and the highest
contrast possible.

A lot of research has been done to improve image quality. Recently, it was
discovered that finite-amplitude or nonlinear acoustics is a better way to model
propagation in tissue [7]. This method is referred to as harmonic imaging. It
is done by transmitting at one frequency and receive at the double. Images are
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shown to have higher contrast and the lateral resolution is better. On the other
hand, the penetration is shallower compared to linear propagation because of
heavier attenuation at high frequencies.

1.3 Method used for modeling

To better understand the nonlinear effects, they are described mathematically
and simulated on different transducers. Then it is possible to look at properties
of the beam patterns to evaluate image quality.

There are different approaches to model wave propagation. In this thesis,
one of the best methods for nonlinear propagation is used. It is the angular
spectrum method combined with a frequency domain solution to Burgers equa-
tion to handle the generation of higher harmonics. This method can be used
with non-axisymmetric sources and it is not restricted to a parabolic approxim-
ation.

1.4 Work in this thesis

This work is a continuation of another Cand. Scient. thesis, “Linear and nonlin-
ear propagation of limited diffraction beams” by Johan-Fredrik Synnevåg, [19].
The referred thesis was restricted to circular symmetric sources. The simulator
developed here is extended to non-symmetric sources. The starting point was
a program received from Kai Thomenius, [20], which simulated a transducer
using this technique. This program was modified to be able to simulate more
general geometries.

Some 2D sparse arrays have been tested to see how good the image is with
harmonic imaging in this case. The layouts have been chosen from an article
written by Sverre Holm and Andreas Austeng [2]. They have tried to find the
best sparse geometries for conventional ultrasound imaging.

Chapter two is an overview of ultrasound imaging used for medical pur-
poses. Chapter three reviews the important properties of sound and sound
propagation. A thorough derivation of the important Rayleigh-Sommerfeld in-
tegration formula is presented. Chapter four is devoted to the angular spectrum
method. It is a description of the linear part of the algorithm implemented.
Next, in chapter five, nonlinear acoustic is dealt with. Chapter five discusses
the implementation and verifies the model. In chapter seven the simulation res-
ults are presented. The last chapter concludes the work done in this thesis and
proposes some points for further investigation.
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Chapter 2

Ultrasound imaging

Images made by ultrasound shows tissue structures and the images are in this
case discussed for medical purposes. Ultrasound is the name of mechanical vi-
brations with frequencies higher than humans can hear. In medical ultrasound
used today these frequencies are typically 2-10 MHz.

It started as a simple method, but today advanced techniques are used. A lot
research has been done in developing electronic arrays used for beam forming.
Optimal processing requires good mathematical models of the signal. Also
electronic beam forming with arrays requires skills in three-dimensional wave
propagation, as described in the next chapter.

2.1 History

The first ultrasound developed showed the intensity along a fixed beam. This is
called the A-mode. Development continued by scanning a plane, first by mech-
anically moving the probe. However, moving was too slow for moving organs
like the heart, so the M-mode was invented. This mode was made possible by
electronic focusing. A pulse-echo technique was developed in 1948-49, and
Doppler shift used to measure the velocity of blood was presented in 1957.
Real time two-dimensional imaging was introduced in late sixties, early seven-
ties.

Great progress in the area of integrated circuits, as well computer and dis-
play technology has made it possible to experiment and develop three dimen-
sional imaging. This is still a field of intensive research. The speed of sound
restricts the time it takes to capture an image and this is further limited in the
case of moving objects. Data recordings from the heart has to be done at the
same phase and ECG is used to synchronize the fire of pulse and the same
phase of the heart.
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2.2 Waves

Waves are good carriers of information if they are cleverly coded with adequate
data. This requires an understanding of the physical process that generates
and influences the wave as it propagates. In ultrasound, waves are transmitted
towards a system, and the scattered waves are studied to obtain information
about the system.

2.3 Resolution and frequency

Resolution of an ultrasound image is proportional to the wavelength or in-
versely proportional to the frequency. Therefore, to get good resolution one
should use as high a frequency as possible. Unfortunately, attenuation in-
creases with frequency, but harmonic imaging has made it possible to get better
resolution and contrast.

2.4 Transducers

To measure and create waveforms one has to use a sensor. In ultrasound these
sensors are called transducers. A transducer are converting one energy form
into another. An ultrasound transducer is made of a plate of piezoelectric ma-
terial with thin metal electrodes on each face. Voltage is coupled to the elec-
trodes and this increases or decreases its thickness. Energy is transformed from
acoustic vibrations into an electric voltage at the receiving end. Electric voltage
is used to generate waves.

To get a good image, one wishes to send a delta impulse into the body and
measure the impulse response from the tissue. This is impossible because of
physical limitations. The transducer will oscillate for a while. This is called
ringing. The longer the pulse time period, the shorter the frequency will be.

2.4.1 Arrays

Transducers used in medical ultrasound are compound of a various number of
elements in different ways. A way to put together these sensors gives a certain
network and is called an array. These arrays should be made in a clever way to
get a good ultrasound image. It is possible to divide medical transducers into
different classes.
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Figure 2.1: Linear and curvilinear arrays.

Phased linear arrays

These transducers are characterized by putting the elements in one direction.
This is illustrated in figure 2.1. To radiate most energy in the forward direc-
tion, an inter-element distance smaller thanλ/2 is required. This also prevents
grating lobes, which is described later in this chapter. It is possible to make
an appropriate delay on the elements to focus to a point or steer the beam in a
certain direction. To get an adequate aperture a large number of elements are
required. It is typically 64 to 128 elements and the width of the transducer are
10 to 20 mm. at 5 MHz.

Switched linear and curvilinear arrays

To avoid the long delays required for the previous type, only some elements
may be used at each recording. It is then possible to sweep the beam ho-
rizontally. When the beam direction is normal to the array, the requirement
of small element spacing can be given up. Then the elements can be several
wavelengths long. This type of transducer is most used for flow imaging and
Doppler measurements in vessels that are parallel to the skin.

To permit shaping of the array, the curvilinear array is introduced. If the
array is concave-shaped, then the rectangular image format is changed to a
sector like format. This is illustrated to the left in figure 2.1. The size of
transducer can be reduced since the beam from this transducer is transferred
more to the sides. This is especially advantageous when imaging the heart or
when imaging a fetus.

Annular arrays

An array of concentric rings is called the annular array. The rings can be
delayed differently to make a focus point. The advantage of the annular ar-
ray is the symmetry. The beam is equal in all radial directions from the center
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Figure 2.2: Example of delay focusing.

point.

2.4.2 Focusing

It is possible to focus energy in one certain point in space. This is done for
example by shaping the transducer into a part of a spherical shell. Another
way is to make a parabolic time delay of the elements. Diffraction gives us an
unsharp focus. Sidelobes generate acoustic noise since they detect targets that
are not along the beam direction. This noise causes a reduction in the contrast
resolution. Contrast resolution is the ability to detect weak targets close to a
strong one.

Wavelength is a critical parameter. If the diameter is constant and the fre-
quency increases, the beam will be narrower. This delay focusing is not as
sharp as geometrical focus. Apodization can be used to get lower sidelobes,
but this will increase the mainlobe, so there is a trade-off between sidelobe
level and mainlobe width.

An example of focusing by delay is shown in figure 2.2. The elements
at the left edge has to be fired first because the distance to the focal point is
longest in that direction.

2.4.3 Pulse echo imaging

When the ultrasound pulse hits a boundary between two tissue structures the
pulse will be partially reflected and partially transmitted. Reflection depends
on the difference between the impedances of the two materials. In soft tissue,
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reflection is small. In bones and dense tissue almost everything is reflected.
Modern electronics permits us to measure structures in soft tissue.

A-mode

This transmits a pulse and picks up the backscattered signal with the same
transducer. The A-mode is displayed on an oscilloscope. Multiple reflections
(reverberations) are an important factor that reduces image quality.

Time lag until the reflected pulse is received is

τ =
2r

c
(2.1)

wherer is the distance into the tissue from the transducer face andc is the
sound speed. Range resolution is defined as

∆r =
cTp
2

=
c

2Bw

(2.2)

whereTp is the length of transmitted pulse andBw is the bandwidth of the
pulse. This pulse is always a few oscillations long because of the ringing.

Attenuation occurs due to three different factors:

1. Absorption of wave energy to heat (strongest attenuation factor).

2. Reflection and scattering.

3. Diverging regions of the beam.

Attenuation in human tissue is approximately 1 dB/cm/MHz one way of
propagation.

Distant targets receives a much weaker signal than near targets. The signal
has to be amplified due to the depth and this is called time gain compensation
(TGC). One wishes to use high frequencies to get good resolution, but they
are more heavily attenuated so frequencies between 2.5-10 MHz are used de-
pending on how deep the target is. The best possible resolution at the different
depths are chosen.

M-mode

This is used of moving objects like the heart. Depth is shown in one axis,
while the other axis represents time. Gray-scale represents the amplitude. The
advantage of M-mode is that it is easy to see the movement of cardiac walls
and valves.
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Two dimensional (2D) amplitude imaging

This method scans a plane and show amplitude as gray scale. This makes it
possible to scan sections of organs and display them in two dimensions. The
scanning can be done by mechanically moving the transducer or swept over by
steering the beam trough the scanning plane.

2.4.4 Resolution

The point targets smear out in the image. Point targets define the spatial resol-
ution limit of the imaging system. Resolution along the direction of the beam
is called the radial resolution and is determined by the length of the transmitted
pulse. The resolution transverse to the beam is called the lateral resolution and
is determined by the with of the beam.

If point targets are so close that they are covered by the same pulse, an
interference is generated in the image. When these interferences occur in ho-
mogeneous tissue, the image gets a texture that is different from a sum of the
individual images.

The time,T , it takes to generate an image is equal to the time per beam,Tb,
multiplied by the number of beams,N . To collect data from depthR it takes
2R/c seconds to transmit and receive the data. In addition an extra period of
time,T0, has to be added to be sure that the pulse is sufficiently attenuated. The
frame rate is then

frame rate=
1

T
=

1

NTb
=

1

N(2R/c+ T0)
. (2.3)

With a depth of 16 cm and 128 beams, the frame rate is 30 frames per
second, which is acceptable for cardiac imaging. For greater depths, the num-
ber of beams has to be reduced, or a lower frame rate has to be accepted. Since
the beam width increases with lower frequencies, it can compensate for the
depth, or the image can be narrower.

2.4.5 Signal compression and processing

To visualize weak targets side by side the strong ones, a compression has to be
done. This is similar to what the eye does to enable us to see in shadow and
bright light. In ultrasound this compression is done by showing the image in
logarithmic scale.

The gray scale does not have to be a linear mapping between input amp-
litude and the amplitude to display. If a small area in the input signal is of
interest, then the gray scale mapping can be steep in that area so as to cover
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more colors. An example of this being used, is where one wants to see the
ventricle of the heart better.

2.4.6 Three-dimensional (3D) imaging

Ultrasound imaging in three dimensions was proposed already in the fifties, but
available technology made it possible to process and display the large amount
of data.

Todays computer technology is more fit for the requirements of this method.
There are some fundamental limitations that make real-time imaging difficult.
The speed of sound implies that scanning an image must take some time. To
collect data at a depth of 15 cm one beam takes about 200µsecs. A total of
100×100 beams requires 2 secs. to collect. For stationary objects, this is not
a problem. But with moving objects, such as the heart, care must be taken. It
is necessary to collect the data when the heart is in the same position, since
recording have to be taken over several heart cycles. To trigger the recording
at the correct times requires a stable heart rate, and the heart’s position in the
chest, due to breathing, must also be accounted for.

2.5 Beam forming

The elements of the transducer introduces flexibility of the beam. It is possible
to focus the beam or steer the beam to another direction. This is an important
technique to improve the image.

2.6 Sparse arrays

The most used 1-D arrays are the phased arrays with distance between elements
d = λ/2. The array-pattern has a falling sidelobe level. In ultrasound this level
has to be as low as possible to avoid noise in the images. There has been done
a lot research in finding the array with best properties.

When extending to 2-D arrays, the element number increases greatly. It is
hard to produce arrays that satisfy the sampling theorem in both dimensions.
There are also too many channels to handle in a dense 2-D array. Therefore it
is necessary to remove some elements. This process is called thinning. A raise
in sidelobe level and mainlobe width has to be accepted because the sampling
theorem is no longer fulfilled. There are many ways of choosing the array
pattern and it is hard to find an optimal solution. This thesis does not deal with
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algorithms for finding optimal layouts, but simulates nonlinear propagation of
some known and assumed good geometries.

2.6.1 Grating lobes

If the element distance is periodic with element distanced > λ/2, grating lobes
appear. Grating lobes are lobes that look like a main lobe, but is located at an
angle different from zero. This results in energy transmitted to unwished dir-
ections. It makes beam forming not optimal, and should therefore be avoided.
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Chapter 3

Waves and acoustic propagation

The goal of signal processing is to extract as much information as possible from
our environment. In this case information is carried with propagating waves. It
is therefore important to understand and describe mathematically the universal
physical laws that underlie propagation.

Waves are important carriers of information. As the wave is propagating,
the shape is preserved, and this is the core of using waves as carriers of inform-
ation. Our ears are sensors for sound waves and by processing this information
we are extremely good at estimate direction of sound.

3.1 Principles of sound theory

Sound can be regarded as a disturbance propagating in a medium. This dis-
turbance is a traveling wave. A known example is a stone dropped into water.
Then there will be a disturbance spread from where the stone got into the water.
In this case the disturbance is transverse to the propagating wave and this type
of waves is called shear or transversal waves. Another important example of
transverse waves is electro-magnetic waves. The electric field is transversal to
the propagation direction and the magnetic field is perpendicular to the elec-
tric field again. The other type of waves are longitudinal waves. In the case
of ultrasound these are pressure waves propagating in tissue. Only transversal
waves are of interest in ultrasound because the medium are assumed to be non-
viscous1. Shear waves are heavily attenuated, so the assumption are valid.

A sound wave needs a medium to propagate in. This is different from
electro-magnetic waves, which can propagate in vacuum. A sound wave is an
oscillatory motion with small amplitude in a compressible fluid2. At each point

1No internal friction in the medium
2Liquids and gases
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wavefront
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Figure 3.1: Wave propagation phenomena.

in the fluid, the sound wave causes alternate compression and rarefaction.

In fluid dynamics, which concerns the study of the motion of fluids, it is
common to consider the phenomena as macroscopic. Thus fluid is regarded as
a continuous medium. It means that any small volume element contains a very
great number of molecules. Small volume elements are small compared to the
medium, but large compared to molecules. This is the main assumption for the
derivation of the following equations.

3.1.1 Reflection

Reflection is an important physical property that is explored in ultrasound. The
transducer is transmitting a pulse and is receiving the reflection of the wave.
Different acoustic impedance in the medium causes different amount of reflec-
tion of energy. If the impedance is small between two points, then the reflection
is weak and the transmission further into the tissue is large. On the other hand,
if the impedance is large, then almost all energy is reflected. This happens typ-
ically in ultrasound when waves hits bones. Almost no energy is transmitted
further into tissue and this is the reason for not being able to image behind
bones.

A basic case of reflection is illustrated in figure 3.1(a). It is assumed that
all energy is reflected. Wavefronts hits the wall and changes the propagation
direction. Then they are traveling back to the source.

12



3.1.2 Diffraction and Huygens’ principle

When a plane wave is going through an aperture like the situation in fig-
ure 3.1(b) it is not propagating like an plane wave any more. It is deflected
to a circular wave. This phenomenon is called diffraction. The amount of
diffraction depends on the size of the aperture measured in wavelengths. If
the aperture size is fixed and the frequency is increased, then the diffraction is
decreasing. The aperture gets larger measured in wavelengths when the fre-
quency increases. For instance, light has very high frequency and therefore it
is diffracted little and the shadow edges are sharper.

This phenomenon was explained by Christian Huygens in the year 1678
[8]. Hugyens tried to develop a simple theory to explain why shadow edges
were not sharp. If a light source is placed in front of an opaque screen with
an aperture and the light intensity is observed a distance behind the screen,
then it is not a sharp edge where the geometrical shadow starts. Actually, an
interference pattern can be observed if the measurements are done exact.

Huygens postulated that each point on the wavefront can be considered as
a new source of a secondary spherical disturbance. This simple idea is known
as Huygens’ principle and it was later given a mathematical foundation. One
result is the Rayleigh-Sommerfeld diffraction formula

s(~x) =
1

jλ

∫∫
A

s(~xh)
exp{jkr}

r
cos θ dA. (3.1)

The integral is taken over the apertureA, anddA represents an infinitesimal
patch of area located at the position~xh within the hole. The variableθ repres-
ents the angle between the vector normal to the plane and the vector joining the
aperture patchdA and the position~x. This is shown in figure 3.2.

A more throughout derivation of this equation is presented later in this
chapter.

3.1.3 Phase and wavelength

An example of a wave can be a pure sinusoid. Points that are in the same
position and are propagating in the same direction are in phase. The distance
between two consecutive phase fronts is called a wavelength and is denoted by
λ. There is a relation between velocityc, wavelength, and frequency

λ =
c

f
. (3.2)

This means that if the sound velocity are doubled, then the wavelength is
also doubled. Both, the velocity and the frequency has to be known to calculate
the wavelength.
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A

~x = (x, y, r)

~xh = (x̃, ỹ, 0)
(0, 0, r)θ

Figure 3.2: Coordinate system for Rayleigh-Sommerfeld diffraction formula.

3.1.4 Dispersion

Dispersive waves have frequency-dependent propagation characteristics. Un-
fortunately, this occurs frequently in the nature. Propagation velocity are de-
pendent of the frequency. Different frequencies have different velocities and
this causes distortion of the wave.

Evanescent waves

Some solutions to the dispersion relation are not real-valued, and when they are
pure imaginary, the solution of the wave equation has a real negative exponent.
The positive solution is physically impossible, because the wave can not grow
as it is propagating. Because of this exponentially decaying, the solution is
called an evanescent wave.

3.2 Derivation of the wave equation

An important and fundamental equation in array signal processing is the wave
equation. Sometimes it is referred to as the equation in signal processing. In
this section the linear three-dimensional wave equation in homogeneous me-
dium is treated. To start the derivation, two fundamental equations from fluid
dynamics are needed.
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3.2.1 Fundamental equations of fluid dynamics

These two equations are called the equation of continuity and Euler’s equation.
The first is derived and the latter are presented without a derivation.

LetV0 be some volume in space. The mass of fluid in this volume is
∫
ρdV ,

whereρ is the fluid density and the integration is taken over the volumeV0.
The mass of fluid flowing in unit time through an elementdf of the surface
bounding this volume isρv · df . The magnitude of the vectordf is equal to the
area of the surface element, and its direction is along the normal. By convention
df is chosen to be the outward normal. Thenρ~v · df is positive if the fluid is
flowing out of the volume, and negative if the flow is into the volume. The total
mass of fluid out of the volumeV0 in unit time is therefore

Mout =

∮
ρv · df (3.3)

where the integration is taken over the whole closed surface surrounding
the volume in question.

The decrease per unit time in the mass of fluid in the volumeV0 can be
written

− ∂

∂t

∫
ρdV. (3.4)

Equating these expressions we have

∆M(V0) =
∂

∂t

∫
ρdV = −

∮
ρvdf . (3.5)

By Green’s formula this surface integral can be transformed to a volume
integral ∮

ρvdf =

∫
∇(ρv)dV (3.6)

where∇ is divergence. Then∫ [
∂ρ

∂t
+∇(ρv)

]
dv = 0. (3.7)

Since this equation must hold for any volume, the integrand must vanish

∂ρ

∂t
+∇(ρv) = 0. (3.8)

This is the equation of continuity and it says that net ratio that flows into a
fixed volume equals the mass increase in the volume.
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The second equation is Euler’s equation of motion of non-viscous fluids

ρ
∂~v

∂t
= −∇p. (3.9)

where∇ is the Laplace operator

∇ =
∂

∂x
+

∂

∂y
+

∂

∂z
(3.10)

A derivation of this can be found in i.e. [12].

3.2.2 Wave equation

From the two fundamental equations in the previous section, we can study flow
of compressive fluids with small oscillations. With no sound present a fluid has
an equilibrium state that is described with a constant pressurep0, densityρ0 and
velocity~v0. These are functions in space and time(x, y, z, t) and they describe
the fluid state entirely. A disturbance (wave) can be regarded as a perturbation
from this equilibrium state.

p = p0 + p′, ρ = ρ0 + ρ′, ~v = ~v0 + ~v′ (3.11)

wherep′, ρ′ and~v′ denotes small perturbations (p′ � p0 andρ′ � ρ0) in
pressure, density and velocity respectively. If the relationp

p0
� 1 is not valid,

the disturbance is large and non-linear effects has to be considered. This is
treated further in chapter 5.2.

By assuming constant specific entropy we have from the equation of state
that p is a function ofρ, p(ρ). Then a Taylor expansion about zero of the
pressure can be written as

p′(ρ) =

(
∂p

∂ρ

)
0

ρ′ +
1

2

(
∂2p

∂ρ2

)
0

(ρ′)2 + . . . (3.12)

By retaining only the first term, we get a linear approximation to equa-
tion (3.7) and equation (3.9).

∂p′

∂t
+ ρ0∇~v′ = 0 (3.13)

ρ0
∂~v′

∂t
= −∇p′ (3.14)

If we let c2 = (∂p
∂ρ

)0, wherec is the speed of sound, we have from equa-
tion (3.12)
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p′ = c2p′ (3.15)

and

1

c2

∂p′

∂t
+ ρ0∇~v′ = 0. (3.16)

By taking the time derivative of equation (3.16) this is the result

1

c2

∂2p

∂t2
+ ρ0∇

(∂~v′
∂t

)
= 0 (3.17)

and by using equation (3.14) this is

1

c2

∂2p′

∂t2
−∇∇p′ = 0 (3.18)

or rearranged to the more familiar equation

∇2p′ − 1

c2

∂2p′

∂t2
= 0. (3.19)

This is the wave equation in three dimensions. By replacing∇ we get(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+

∂2

c2∂t2

)
p′ = 0 (3.20)

3.3 Solution of wave equation

There are many ways to solve the wave equation. The rest of this chapter
presents two solutions of the equation. First, a separable solution is assumed.
At last a general solution is derived.

3.3.1 Separable solution

A common way to solve differentional equations are to assume a separable
solution. The solution should have the form

s(x, y, z, t) = f(x)g(y)h(z)p(t). (3.21)

Exponential functions are convenient to solve differential equations, and it
is assumed thats(x, y, z, t) has the form

s(x, y, z, t) = Aej(ωt−kxx−kyy−kzz). (3.22)
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When this equation is replaced into the wave equation and thes-function is
cancelled, this relation appears

k2
x + k2

y + k2
z =

ω2

c2
. (3.23)

As long as this constraint is satisfied, the signal satisfy the wave equation.
It can be shown thatc denotes the speed of sound [11].

The wave equation is a linear equation, which means that ifs1(~x, t) and
s2(~x, t) are two solutions to the wave equation, then a linear combination
as1(~x, t) + bs2(~x, t)3 is also a solution. Then more complicated solutions can
be found by combining solutions on the form

s(~x, t) = s(t− ~α · ~x) =
∞∑
−∞

Sne
jnω0(t−~α·~x). (3.24)

This is a harmonic series. Because of the Fourier theory, an arbitrary peri-
odic waveforms(u) with periodT = 2π/ω0 can be written by such a series.
Therefore every signal is a solution to the wave equation.

3.3.2 Rayleigh-Sommerfeld integral

In this section a method to calculate the field distribution in a point, which
is called Rayleigh-Sommerfeld integral, is derived. The radiation source can
have an arbitrary shape in the plane. Apodization functions are also included
in the equation. This method is used in Ultrasim, a matlab toolbox developed
at the University of Oslo.

First, Kirchoff’s solution of the problem is presented and then the Rayleigh-
Sommerfeld integral is derived from this. The idea of Rayleigh-Sommerfeld
integral was described in section 3.1.2 and here is the more throughout deriva-
tion given.

The field is determined by the source and the medium. It is assumed that
the medium is isotropic and homogeneous. This means that the waves propag-
ate equal in all directions. In addition the diffraction aperture must be large
compared by a wavelength and the field must not be observed too close to the
aperture. Diffraction is sound waves ability to bend around corners or to spread
when propagating through a little hole or aperture and this was described in
section 3.1.2.

3a andb are scalars
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Monochromatic waves

First, a scalar functionu(P, t) is introduced which denotes the disturbance in
positionP = (x, y, z) at timet. In this case it is sound pressure, but the theory
is also available for electric or magnetic field strengths. For monochromatic4

waves this type of waves can be described with the function.

u(P, t) = U(P ) cos[2πft+ φ(P )] (3.25)

U(P ) denotes the amplitude andφ(P ) the phase at positionP and fre-
quencyf . This can be written in a more compact form by using complex
notation.

u(P, t) = Re[U(P )e−j2πft] (3.26)

whereU(P ) is the following complex function

U(P ) = U(P )ejφ(P ) (3.27)

Since the disturbance,u(P, t), represents a wave, it has to satisfy the wave
equation 3.20. A sufficient description of the disturbance when the time is
known, isU(P ). It is thus sufficient to consider onlyU(P ) further. If u(P, t)
is replaced in the wave equation, the result is

(∇2 + k2)U = 0 (3.28)

where

k = 2π
f

c
=

2π

λ
. (3.29)

Equation (3.28) is called Helmholtz equation. To calculate the field in a
given observation point, we need Green’s theorem.

Green’s theorem

Let U(P ) andG(P ) be two complex-valued functions and letS be a closed
surface surrounding a volumeV . If U andG, and their first and second partial
derivate are single-valued and continuous within and onS, then we have

∫∫∫
V

(G∇2U−U∇2G)dv =

∫∫
S

(
G
∂U

∂n
−U

∂G

∂n

)
ds (3.30)

4Means one frequency.

19



where ∂
∂n

signifies a partial derivative in the outward normal direction at
each point onS.

This theorem is in many respects the foundation of scalar diffraction theory.
We will now use the theorem with a special choosen Green’s function (G).

G(P1) =
ejkr01

r01

(3.31)

whereP1 is an arbitrary point onS ′ (defined in equation (3.32)) andr01

denotes the length of the vector~r01 from P0 to P1. To use Green’s theorem,
the pointP0 has to be avoided sinceG(P0) is not defined. It can be done by
introducing a spherical surface surroundingP0, Sε (the symbolε denotes the
radius). This is shown in figure 3.3. Green’s theorem is used on the volume,
V ′, betweenS andSε. It is illustrated by the shaded area in the figure. The
surface of integration is then

S ′ = S + Sε. (3.32)

S

P0

V ′
ε

~n

~nSε

P1

Figure 3.3: Surface of integration

The functionsU andG has to satisfy Helmholtz equation (3.28).

(∇2 + k2)U = 0 (∇2 + k2)G = 0 (3.33)

∇2U = −k2U ∇2G = −k2G. (3.34)

If this is used in left side of Green’s theorem, we get
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∫∫∫
V ′

(G∇2U−U∇2G)dv = −
∫∫∫
V ′

(GUk2 −UGk2)dv ≡ 0 (3.35)

when we know also from the theorem that

∫∫
S′

(
G
∂U

∂n
−U

∂G

∂n

)
ds = 0 (3.36)

or

−
∫∫
Sε

(
G
∂U

∂n
−U

∂G

∂n

)
ds =

∫∫
S

(
G
∂U

∂n
−U

∂G

∂n

)
ds. (3.37)

We have an expression for the partial derivative toG in the normal direction

∂G(P1)

∂n
= cos(~n,~r01)

(
jk − 1

r01

)
ejkr01

r01
(3.38)

wherecos(~n,~r01) denotes cosine to the angle between the outward normal,
~n, and the vector~r01.

WhenP1 are onSε, we getcos(~n,~r01) = cos(π) = −1 and the equations
can be simplified to

G(P1) =
ejkε

ε
og

∂G(P1)

∂n
=
ejkε

ε

(
1

ε
− jk

)
(3.39)

If we let ε be arbitrary small, we get

∫∫
Sε

(
G
∂U

∂n
−U

∂G

∂n

)
ds = lim

ε→0
4πε2

[
∂U(P0)

∂n

ejkε

ε
−U(P0)

ejkε

ε
(
1

ε
− jk)

]
= −4πU(P0).

(3.40)

If this is substituted into equation (3.37), we get

U(P0) =
1

4π

∫∫
S

(
∂U

∂n

ejkr01

r01

−U
∂

∂n

ejkr01

r01

)
ds. (3.41)
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This equation is called Helmholtz and Kirchhoffs integral theorem.
This is the general theory. To get a step further, some additional assump-

tions have to be done.
The integral theorem can be used to consider diffraction of a plane screen.

If we consider an infinite opaque screen with a small aperture, equation (3.41)
can be used to calculate the field in a pointP0 behind the screen. A surface
that is easy to calculate have to be chosen. A good choice for the surface is
a circle with radiusR surroundingP0 on the screen, and this surface is called
S2. To get a closed surface a new surface is added along the screen (S1). The
construction is shown in figure 3.4. It can be shown that the contribution from
S2 is zeros whenR→∞, [8]. Then it is sufficient to integrate the surface over
S1. To simplify the expression a step further, Krichhoff did two assumptions.

S2

R

S1∑
~n

~r01 P0

Figure 3.4: Diffraction of a plane screen.

1. Across the surfaceΣ, the field distributionU and its derivative∂U
∂n

are
exactly the same as they would be in the absence of the screen.

2. Over the portion ofS1 that lies in the geometrical shadow of the screen,
the field distributionU and its derivative∂U

∂n
are identically zero.

These assumptions are not correct. In the first it is claimed that removing
the screen does not influence the field. This is not completely valid because the
screen will influence at the edges. To the other assumption it can be said that the
shadow is not perfect behind the screen because the field is some wavelengths
behind.

If we in addition assume that the wavelength is a lot smaller that the size
of the aperture, then these assumptions are reasonable. The special effects
can be neglected, just like these assumptions does. Experiments show good
agreements with the two assumptions.
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Rayleigh-Sommerfeld integral

The two assumptions that Kirchhoff made, are shown to be incompatible. They
can not be true simultaneous. Then it was interesting to search for a better
mathematical model, such that this contradiction was removed. This work was
done by Sommerfeld.

The problem was a result that says if a potential function and its derivate
disappears on a finite curve, then it has to disappear in the whole plane. This
means that the assumption that the field is zero behind the screen gives a zero-
field at the whole screen. The physical situation shows that this is not the case.

Sommerfeld did not need to assume boundary conditions at both, in the
disturbances and the normal derivative at the same time. This was done by
choosing another Green’s function. Consider again the equation

U(P0) =
1

4π

∫∫
S1

(
∂U

∂n
G−U

∂G

∂n

)
ds. (3.42)

We wish a Green’s function that is valid in this equation and in addition
eitherG or ∂G

∂n
disappears over the whole surfaceS1. Then the discrepancy to

Kirchhoff will disappear.
Sommerfeld showed that there exists a Green’s function that satisfies these

requirements. He thought thatG is constructed from two point-sources,P0

andP̃0. These sources are mirrored, so they are located at different sides of the
screen and has equal distance from the screen. They have the same wavelength,
λ, and oscillates with 180◦ phase difference. This means that the field onS1 is
zero, since the two sources cancel each other there. The new Green’s function
is given by

G_(P1) =
ejkr01

r01

− ejkr̃01

r̃01

(3.43)

herer01 denotes the distance from̃P0 to P1. The expression to the normal
derivate toG_ are given by

∂G_
∂n

= cos(~n,~r01)

(
jk − 1

r01

)
ejkr01

r01
− cos(~n, ~̃r01)

(
jk − 1

r̃01

)
ejkr̃01

r̃01
.

(3.44)
At a point,P1, onS1 we have

r01 = r̃01 (3.45)

cos(~n,~r01) = − cos(~n, ~̃r01) (3.46)

23



then we get this result at the chosen surface

G_(P1) = 0 (3.47)

∂G_(P1)

∂n
= 2 cos(~n,~r01)

(
jk − 1

r01

)
ejkr01

r01

. (3.48)

By substitution ofG_ with G in equation (3.42), we get

U(P0) =
1

4π

∫∫
S1

−U(P1)

[
2 cos(~n, vecr01)

(
jk − 1

r01

)
ejkr01

r01

]
ds. (3.49)

This expression can be simplified by assuming thatr01 � λ.

U(P0) =
1

jλ

∫∫
S1

U(P1)
ejkr01

r01

cos(~n,~r01)ds (3.50)

Now Kirchhoffs second assumption can be used onU alone. This leads to

U(P0) =
1

jλ

∫∫
Σ

U(P1)
ejkr01

r01

cos(~n, ~r01)ds. (3.51)

By using a source in a point,P2, to the left of the screen, that has distance
r21 to the pointP1 and are sending out a frequency

U(P1) =
ejkr21

r21
(3.52)

then the Rayleigh-Sommerfeld integral is

U(P0) =
1

jλ

∫∫
Σ

U(P1)
ejk(r21+r01)

r21r01
cos(~n,~r01)ds. (3.53)
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Chapter 4

Angular spectrum method

In this chapter we will take another approach to the problem of scalar diffrac-
tion. This method is called the angular spectrum and is closely related to linear
time-invariant filters. Implementation is much easier with this approach and
it is a widely used method to simulate acoustic fields. The idea is to look at
the Fourier transform with respect to a specially chosen plane. The Fourier-
components can be regarded as plane waves traveling in different directions.
The field can be calculated by summarizing the contributions from the differ-
ent components.

The problem considered, is to calculate the beam pattern of a transducer.
As an input to the algorithm, the initial velocity pressure in a certain plane is
given. From this it is possible to calculate the field of a parallel plane at an
arbitrary distance. This is referred to as forward projection of acoustic field
data [18]. The theory may be applied to field pressure distribution as well.

4.1 Background

There are various methods to solve the forward projection problem. These can
be divided into two main categories:

1. Time-domain solutions.

2. Frequency-domain solutions.

An example of the first method is the Rayleigh integral formula, which was
derived in section 3.3.2. Methods in the second category are mainly based on
the Fourier transform.

The angular spectrum method was originally developed as a technique to
model the propagation from a known field distribution to a parallel plane a
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certain distance away. To simulate realistic acoustic propagation, a number of
effects have to be included. It is important to consider attenuation, dispersion,
diffraction, refraction and phase distortion. All these phenomena are included
in the model. Also nonlinear acoustic propagation was incorporated in the
model and this is discussed in chapter 5. Multiple reflections are not developed
by using the angular spectrum method yet. In this work, only a point scatterer
is considered.

The name angular spectrum itself explains the physical interpretation of
the method. Different components of the Fourier transform can be explained
as plane waves propagating in different directions.

4.2 Definition of angular spectrum

We will consider a wave in space that is traveling in a positivez-direction.
First, we have to consider thexy-plane. The complex field in this plane can be
denoted byU(x, y, 0). The objective is to find the field,U(x, y, z), at a new
pointP0 with coordinates(x, y, z).

In thexy-plane the functionU gets the two-dimensional Fourier transform

A0(fX , fY ) =

∞∫∫
−∞

e−j2π(fXx+fY y)dxdy. (4.1)

The Fourier transform decomposes a complicated function into a collec-
tion of simpler complex-exponential functions. The inverse transform of the
spectrum is given by

U(x, y, 0) =

∞∫∫
−∞

A0(fX , fY )ej2π(fXx+fY y)dfXdfY . (4.2)

The equation for a unit-amplitude plane wave traveling in the direction
cosine(α, β, γ) is

B(x, y, z) = ej
2π
λ

(αx+βy+γz) (4.3)

where

γ =
√

1− α2 − β2. (4.4)
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This means that in the planez = 0, the complex exponential function
ej2π(fXx+fY y) can be regarded as a plane wave traveling in direction cosine(α, β, γ),
where

α = λfX β = λfY γ =
√

1− (λfX)2 − (λfY )2. (4.5)

The complex amplitude of the plane wave component isA0(fX , fY )dfXdfY
evaluated at(fX = α/λ, fY = β/λ). Therefore the function

A0

(
α

λ
,
β

λ

)
=

∞∫∫
−∞

U(x, y, 0)e−j2π(α
λ
x+β

λ
y)dxdy (4.6)

is called the angular spectrum to the disturbanceU(x, y, 0).

4.3 Calculating field by angular spectrum

The problem now is to find the fieldU in a plane parallel with thexy-plane,
but at a distancez from it. The angular spectrum toU(x, y, z) is given by

A

(
α

λ
,
β

λ
; z

)
=

∞∫∫
−∞

U(x, y, z)e−j2π(α
λ
x+β

λ
y)dxdy. (4.7)

We wish to find a relation betweenA0(α
λ
, β
λ
) andA(α

λ
, β
λ
; z). To find this

relation, we note thatU can be written as the inverse transform

U(x, y, z) =

∞∫∫
−∞

A

(
α

λ
,
β

λ
; z

)
ej2π(α

λ
x+β

λ
y)d

α

λ
d
β

λ
. (4.8)

In additionU has to satisfy the Helmholtz equation (3.28) in all source
free points. By applying this to equation (4.8),A has to satisfy the differential
equation

d2

dz2
A

(
α

λ
,
β

λ
; z

)
+

(
2π

λ

)2

[1− α2 − β2]A

(
α

λ
,
β

λ
; z

)
= 0. (4.9)

This second order differential equation has an elementary solution
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A

(
α

λ
,
β

λ
; z

)
= A0

(
α

λ
,
β

λ

)
ej

2π
λ

√
1−α2−β2z. (4.10)

Since there is a square root function in the complex exponential function,
three cases have to be considered. The first case is whenα andβ satisfies

α2 + β2 < 1. (4.11)

Then the effect of propagation over the distancez is a change of the relative
phase of the different components in the angular spectrum. Since every plane
wave is propagating at different angles, they are traveling different distances to
a given observation point and relative phase-delays are introduced.

Whenα andβ are such that

α2 + β2 > 1 (4.12)

another explanation is needed. In this case the square root in equation (4.10)
is purely imaginary, and the equation can be written as

A

(
α

λ
,
β

λ
; z

)
= A0

(
α

λ
,
β

λ

)
e−µz (4.13)

where

µ =
2π

λ

√
α2 + β2 − 1. (4.14)

Sinceµ is a positive integer, these wave components are strongly attenuated
in the wave propagation. These components of angular spectrum are called
evanescent waves.

The borderline case

α2 + β2 = 1 (4.15)

corresponds to plane waves that are perpendicular to thez-axis and are not
contributing to a gain inz-direction.

The conclusion is that the disturbance observed in(x, y, z) can be written
as an initial angular spectrum by inverse-transforming equation (4.10). This
gives

U(x, y, z) =

∞∫∫
−∞

A0

(
α

λ
,
β

λ

)
ej

2π
λ

√
1−α2−β2zej2π(α

λ
x+β

λ
y)d

α

λ
d
β

λ
. (4.16)
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4.4 Diffraction by linear time-invariant filter

Again, we are considering the spreading of a wave from the planez = 0 to a
parallel plane with distancez. The disturbanceU(x, y, 0) in the plane can be
regarded as a mapping of the propagation phenomenon to a new fieldU(x, y, z).
It will be shown that the propagation phenomenon behaves like a linear, time-
invariant system, and can be characterized by a simple transfer function.

The linearity has already been discussed. It follows directly from the linear-
ity of the wave equation. The time-invariant property can be shown by deriving
an expression of the transfer function. If there exists a transfer function, then
the system has to be time-invariant and the result follows.

To find a transfer function, the angular spectrum is considered. Instead of
using the angular spectrum as a function of direction cosine(α, β), the spatial
spectrum (fX , fY ) is used. The relation between these representations is given
by equation (4.5).

Let the spatial spectrum toU(x, y, z) be represented byA(fX , fY ; z), while
the spectrum toU(x, y, 0) can be written asA0(fX , fY ). ThenU(x, y, z) can
be expressed by

U(x, y, z) =

∞∫∫
−∞

A(fX , fY ; z)ej2π(fXx+fY y)dfXdfY . (4.17)

In addition, from equation (4.16) we have

U(x, y, z) =

∞∫∫
−∞

A0(fX , fY )ej2π
z
λ

√
1−(λfX)2−(λfY )2

ej2π(fXx+fY y)dfXdfY .

(4.18)

A comparison of these equations shows that

A(fX , fY ; z) = A0(fX , fY )ej2π
z
λ

√
1−(λfX)2−(λfY )2

(4.19)

and the propagation phenomenon can be regarded as the transfer function
H given by

H(fX , fY ) =
A(fX , fY ; z)

A0(fX , fY )
= ej2π

z
λ

√
1−(λfX)2−(λfY )2

(4.20)

If the distancez is at least some wavelengths, then the evanescent waves
can be neglected and we have the transfer function
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H(fX , fY ) =

{
ej2π
√

1−(λfX)2−(λfY )2
f 2
X + f 2

Y <
1
λ2

0 otherwise
(4.21)

Until now, the equations have been presented in the frequency domain.
Another method to find the propagation function is given in [22]. In this article
the functions are in the spatial domain and the exact equation for the Rayleigh-
Sommerfeld integral is

U(P0) =
1

jλ

∫∫
S1

U(P1)
ejkr01

r01

cos(~n,~r01)ds+
1

2π

∫∫
S1

U(P1)
ejkr01

r2
01

cos(~n,~r01)ds.

(4.22)

The pointP1 is on the aperture and the new point to evaluate isP0. By
changing to Cartesian coordinates with the equations

r01 =
√

(x0 − x1)2 + (y0 − y1)2 + z2 and z = r01 cos(~n,~r01)
(4.23)

we get

U(x0, y0, z) =
1

jλ

∫∫
x1y1

U(x1, y1)
r01 cos(~n, ~r01)ejk

√
(x0−x1)2+(y0−y1+z2)2

(x0 − x1)2 + (y0 − y1)2 + z2
dx1dy1

+
1

2π

∫∫
x1y1

U(x1, y1)
r01 cos(~n, ~r01)ejk

√
(x0−x1)2+(y0−y1)2+z2

((x0 − x1)2 + (y0 − y1)2 + z2)3/2
dx1dy1.

(4.24)

This is a convolution integral and can be written as

U(x0, y0, z) = U(x, y, z) ∗ h(x, y, z) (4.25)

where

h(x, y, z) =
1

jλ

∫∫
x1y1

z

x2
1 + y2

1 + z2
ejk
√
x2

1+y2
1+z2

dx1dy1

+
1

2π

∫∫
x1y1

z

(x2
1 + y2

1 + z2)3/2
ejk
√
x2

1+y2
1+z2

dx1dy1.

(4.26)
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This is the exact solution to the problem. It is used to simulate fields where
the propagation distance is small and the last expression can not be neglected.
To derive the transfer function from the last equation, the second expression
is neglected. This is done because propagation over greater distances are as-
sumed.

4.5 Simulation using the angular spectrum method

The Christopher and Parker articles, [5] and [6], describes how to simulate a
field from circular transducers using the angular spectrum. The implementation
used here is an extension to non-symmetric sources.

It is straightforward to extend the formulas to non-symmetric sources. It
requires a lot of more calculation compared to the symmetric ones. A complete
description of the field is present when the field distribution is known along
the radius in the symmetric case. But when extending to non symmetric, the
whole field has to be considered, which leads to one additional dimension in
the calculations.

4.5.1 Linear propagation

There exists two different approaches to the propagation problem. The dif-
ference is whether the harmonic point pressure is going to be sampled in the
frequency domain or in the spatial domain. An analytically derived expression
for the radial pressure field in a planez1, due to a harmonic point pressure
source in a parallel planez0, is

h(z, r) = − 1

2π

(
j2π

f

c
− 1

d

)
ejkd, (4.27)

where

z = z1 − z0, d =
√
r2 + z2, k = 2π(f/c). (4.28)

The radial normal velocity field in the planez1 due to the field inz0 can
be derived. Since this function is radially symmetric, an analytical Hankel
transform ofh(z, r) can be derived.

H(z, R) =

{
ej2πz
√

(f/c)2−R2
, |R| 6 f/c,

e−2πz
√
R2−(f/c)2

, |R| > f/c.
(4.29)

The variableR is the spatial frequency. And is defined as
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R =
f

c
sin θ (4.30)

whereθ is the complex angle between a plane and the propagating plane
wave. The angle is zero when the plane wave is normal to the plane.

Sampling equation (4.27) and then taking the discrete Hankel transform are
referred to as spatially sampled convolution (SSC). Sampling directly equa-
tion (4.29) is called frequency sampled convolution (FSC). Theoretically these
are equivalent, but there are significant differences due to the finite length dis-
crete transform operations used. The SSC algorithm consists of the following
steps:

1. Select a radius,rd, greater than the source radiusa over which cor-
rect field propagation results are desired. This determines the minimum
transform extent asT > rd + a. The radius has to be large enough to
contain most of the energy in the field.

2. Select a spatial sampling rate,ψ, which exceeds the Nyquist require-
ments of the highest expected spatial frequency emitted from the source.
This article proposes a sampling rate of4 × f/c, as this ensures finely
sampled output and the inclusion of any significant evanescent waves.
The number of radial samples is thenN = ψ × T .

3. Using the above specifiedN andT , compute the specified samples of
function s(z0, r). Call these complex valuessd(i), i = 1, . . . , N − 1.
Compute the DHT of thesesd values. Call the complex transform output
valuesSd(m), m = 1 . . . , N − 1.

4. Again using the same definition ofN and T , compute the specified
samples ofh(z1−z0, r), wherez1−z0 is the desired propagation distance.
Call these valueshd(i), i = 1, . . . , N − 1. Compute the DHT of these
hd values. Call these complex transform output valuesHd(m), m =
1, . . . , N − 1.

5. Compute the complex productSd(m)×Hd(m), m = 1, . . . , N−1. Now
compute the inverse DHT of this product to obtain the desired com-
plex field result. Call these normal velocity field resultsud(z1, i), i =
1, . . . , N − 1.

6. Now theud values can be examined as real and imaginary components,
or by computing their magnitude and phase. Note the field samples de-
scribingrd < r < T contain “wraparound error,” from the transform-
based convolution.
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θ

Figure 4.1: Geometry used for ray theory.

The FSC algorithm differs only in point 4. The FSC algorithm is then the
same, except

4’. Using the previously determinedN andT , directly sampleH(z1−z0, R)
to obtainĤd(m)m = 1, . . . , N − 1. Now use these values as theHd

values where used in the SSC algorithm.

Ray theory truncation for the FSC algorithm

The FSC algorithm described above can be greatly improved with a ray theory
interpretation of theh−H transform pair. Ray theory suggests that the lateral
spatial frequency,η, of the field in the planez1 at point (ri, z) is given by [5]

ηmax = (f/c) sin(θmax). (4.31)

The angleθmax is the most distant source contributing to the field at point
(ri, z). Huygen’s principle is used to find this maximum lateral spatial fre-
quency. The most distant source is chosen to the most distant point in the
field. This is illustrated in figure 4.1. The new sampling rate can be applied
to the SSC-algorithm by computing fewer samples ofh(z, r), or to the FSC-
algorithm by truncatingH(z, R) so the maximum frequency is given by equa-
tion (4.31). The latter method is used in this implementation and it is referred
to as the ray theory-updated FSC-algorithm (RFSC).
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4.5.2 Inclusion of attenuation

When simulating the beam pattern in tissue, or when using pulsed beams, it is
important to consider attenuation. In water the attenuation is so small that it
can be neglected.

The attenuation is frequency-dependent. Higher frequencies are more at-
tenuated than lower, because the lower ones have less energy. Attenuation for
spherical or plane waves can be modeled by the expression

A = e−αf
n·d (4.32)

whereA denotes the attenuation coefficient andd denotes the distance
propagated in the medium. This expression is valid for weak attenuation, which
meansα/k � 1. Typical values forn, are 1 for water and 2 for tissue. It should
be noted that a newα has to be calculated for each occasion. The value ofα
is not very informative. Therefore it is more usual to use a parameter that de-
scribes the attenuation asx dB/cm/MHz (denoted byadB). This is an easy
recalculation, and the resulting equation are

α =
adB
20
· ln(10). (4.33)

The attenuation-factor can be applied to both the point spread functionh
and the propagation functionH. Here, it is applied to the propagation function

Ha(z, R) = H(z, R)× e−α·freq·100·zinc/106

. (4.34)

4.6 A complete model

Realistic calculation of beam patterns requires consideration of diffraction, at-
tenuation and nonlinear effects. Here it is assumed that the medium is homo-
geneous and isotropic. This means that the characteristics of the medium is
independent of position and propagation direction. The model can be extended
to multilayer, but this is not considered here.

Nonlinear effects are dealt with in chapter 5. An illustration of the process
is given in figure 4.2. Figure 4.3 gives an impression of the field that is cal-
culated. First, every harmonic is carried one step further. Then the nonlinear
effects are calculated, and this is repeated until the desired distance has been
reached.

It is important to make small steps, so the nonlinear effects are realistic. It
will be shown later that it is also important to make the spatial extent of the
field large enough.

The main stages of the simulation process are

34



r

u

r

u

r

u

∆z

Linear substep Nonlinear substep
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Figure 4.3: Calculated fields.
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1. Calculate the initial velocity of the transducer.

2. Calculate the propagation function for every harmonic with the desired
propagation distance. Multiply with the attenuation coefficient, if de-
sired.

3. Fourier transform the velocity matrices.

4. Multiply every propagation-matrix with every velocity-matrix for the
harmonics. This multiplication is elementwise. This is the linear propaga-
tion step.

5. Inverse transform the velocity field.

6. Use the Burgers equation to account for nonlinear propagation.

7. Repeat step 3-6 until the desired distance is obtained.

36



Chapter 5

Nonlinear acoustics

Although nonlinear acoustics is an old field, it is mainly in the last 50 years
it has been developed. Only in the last years it has been used in algorithms.
The nonlinear wave equation was developed at the same time as the linear one,
about 1750 [9]. For the first 200 years the progress was very slow. There are
two main reasons for this. First, linear acoustics provided for sufficiently good
modeling. This is due to the use of infinitesimal acoustics, but in the past dec-
ades it was realized that finite acoustics was needed. Second, the mathematical
tools needed to handle nonlinearity were not developed. In the last decades is
has been a lot of research and progress in the field of nonlinear acoustics.

5.1 Nonlinear effects in ultrasound

In the years since it was first proposed to use higher harmonics for ultrasound
imaging in about 1980, several manufacturers of medical ultrasound have in-
troduced harmonic imaging. This new feature gives better spatial resolution
and higher contrast in images, which results in an improvement of diagnostic
information.

Ultrasound in biomedical research has relied on convenient assumptions of
infinitesimal acoustics. Some of the assumptions are not valid at most of the
frequencies and intensities used today. Two questionable assumptions are:

1. The transmitted frequency is the only frequency in the medium.

2. Raising the source amplitude by a certain factor, raises the amplitude in
the medium by that factor.

The reason why these assumptions are invalid is the existence of is non-
linear disturbance as the wave propagates. The invalidity of the first assump-
tion was discovered with contrast agents. Contrast agents are small gas-filled
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micro-bubbles. They are injected into the blood to enhance ultrasound images.
It was assumed that only contrast agents produced energy at the second har-
monic. It is claimed in [3] that it is not only contrast agents that produce higher
harmonics. By taking advantage of this, better images can be achieved with
harmonic imaging.

5.2 Nonlinear wave equation

The usually assumed linearity of acoustic pressurep with excess densityρ
is only an approximation valid at infinitesimal amplitudes. A more accurate
pressure density relationship is given by the series expansion

p = c2
0ρ +

1

2

c2
0

ρ0

(B
A

)
ρ2 + . . . (5.1)

wherec0 is the infinitesimal sound speed constant (phase velocity),ρ0 the
static density andB/A is the second order parameter of nonlinearity. Retention
of only the first term in equation (5.1) leads to linear acoustics. Keeping the
first two terms enables one to deal with problems in nonlinear acoustics.

The derivation of the nonlinear wave equation is rather complicated, and
it is beyond the scope of this text. A derivation can be found in [15], and the
nonlinear wave equation is

∂2φ

∂t2
− c2

04φ =
∂

∂t

[
(∇φ)2 +

B/A

2c2
0

(∂φ
∂t

)2]
. (5.2)

where4 denotes the Laplace operator andb is known at the absorption
coefficient given by

b =
1

ρ0

(
ζ +

4

3
η +

( 1

cv
− 1

cp

)
κ
)

(5.3)

whereζ andη are shear and bulk viscosities,κ is the coefficient of thermal
conductivity, andcp andcv are the specific heats.

A direct solution to this complex equation is probably not possible. A lot
of approximations and simplifications have been made to be able to solve this
equation. A variation of Burger’ equation is used in this case.

5.3 Harmonic imaging

Harmonic imaging is a new method used to improve the quality of ultrasound
images. The idea is to listen for sound bursts at twice the transmitted frequency.
This has resulted in an improvement in spatial and contrast resolution.
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Conventional ultrasound imaging has traditionally both transmitted and re-
ceived the signal at the same frequency. The returned signal is less intense
because it loses strength as propagates in tissue. Part of this energy is transmit-
ted to higher frequencies. The returned signal consists of many frequencies.

Higher harmonics are generated by interactions with contrast agents and
with tissue. Contrast agents are micro-bubbles injected into the blood for dif-
ferent purposes. These can be used to see the veins clearer. Two kinds of
responses are generated from the bubbles. First, because of acoustic imped-
ance, the pulse is reflected in the same way as from a bone. But the important
response for harmonic imaging is the vibration generated by the shock from
the pulse. This vibration generates a harmonic signal at twice the frequency
of the original ultrasound pulse. Thus, when listening at twice the transmitted
frequency, the strong signals are from the micro-bubbles. It is then possible
to determine the location of the bubbles. Using bubbles is not the only way
higher harmonics can be generated. It is important to note that a clean sine
wave sent to the body will be distorted and changed by the properties of the
tissue through which it travels. When tissue is compressed, the speed of sound
generally increases in the compressed area. On the other hand, when the tissue
is relaxed, the speed of sound decreases. Since a sound wave in the body is
a pressure wave, this pressure wave exposes the body to different pressures.
Since the speed of sound varies at different parts of the waveform, the clean
sine wave is distorted. Different tissues distort the wave in different ways. For
instance, fat tends distort the wave in this way much more significantly than
muscle, liver or kidney tissue does.

Distortion of the sound wave is dependent on how far the wave has traveled.
In the nearfield no harmonics have been generated. After a while harmonics
are increasing. Then comes a period of unchanged harmonics. Finally the
harmonics are attenuated and harmonics are decreasing and in the far field it is
only an attenuated version of the fundamental frequency.

A comparison between fundamental and harmonic imaging is shown in
figure 5.1. The harmonic image is shown to left and the fundamental image
is shown to the right. It is an image of a liver. The harmonic image has more
contrast and the texture is smoother, but the penetration is shallower compared
to the fundamental image.

5.4 Harmonic generation

As stated previously in section 3.1.4, the speed of propagation is not constant.
It depends on the frequency. At appreciable intensities, the velocityv at a point
x on an acoustical waveform becomes
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Figure 5.1: Comparison between fundamental and harmonic imaging.

v(x) = c0 +
(

1 +
1

2

B

A

)
u(x) (5.4)

whereu(x) is the particle velocity at that point. This means that the signal
speed depends not only on the infinitesimal sound speed constant, but also on
the local particle velocity, via the parameter of nonlinearity. Here it is seen
that the velocity,v(x), can be supersonic (greater thatc0). The distortion is
cumulative and is illustrated in figure 5.2. Different stages of disturbance are
shown. First, in part (a), the wave is a pure sinusoidal wave. As the wave is
penetrating into the medium disturbance increases. At some time the waveform
are approaching a shock wave. This is not desirable in medical ultrasound,
because it can cause damage to tissue. Later, the higher harmonics are heavily
attenuated and the waveform is the same as the excited waveform with smaller
amplitude.

Distortion of the waveform in the time domain causes the generation of
higher components in the frequency domain. Because these components are
harmoniously related, it is called harmonic generation.

Figure 5.2 shows different stages of the disturbance. Five main stages are
illustrated.

1. Near Field : No harmonics are being generated. The signal has not
traveled enough to be distorted.
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Figure 5.2: Different stages of disturbance as the wave propagates. (a) illus-
trates the excited waveform and in (b) is is slightly disturbed. (c) shows a
sawtooth waveform and (d) is attenuated version of the original wave.

2. Near Mid Field : Harmonics are increasing. Harmonics are beginning to
be produced as signal travels through tissue.

3. Mid Field : Harmonics are unchanging. Additional harmonics are gen-
erated and attenuated in equal proportion.

4. Far Mid Field : Harmonics are decreasing. Harmonics being attenuated
faster than they are produced.

5. Far Field : Fundamental frequency only. Higher harmonics are attenu-
ated and no new harmonics are being produced because the fundamental
frequency has insufficient energy.

It is useful to think of this concept in terms of Fourier analysis. A funda-
mental result of this theory is that an arbitrary function,f(x), can be decom-
posed into a sum of harmonic complex exponential functions

f(x) =

∞∑
k=−∞

cke
jkx. (5.5)

The valuesck are called the spectral components of the function.

5.5 Harmonic simulation using Burgers equation

To derive the equation that models harmonic generation, a plane wave trav-
eling in z-direction is considered. The change of particle velocity,U , can be
approximated by a truncated power series in the form
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U(z + ∆z, t) = U(z, t) +
∂U

∂z
∆z. (5.6)

The higher order terms have been neglected. This is valid if the step size
(∆z) is chosen to be small. To obtain the differential change of particle velocity
with respect toz, the following version of Burgers’ equation can be used

∂U

∂z
=
βω0

c2
0

U
∂U

∂τ
+ Γ

∂2U

∂τ 2
(5.7)

wherec0 is the infinitesimal bulk wave velocity (dispersion is neglected),
β is the first nonlinear term in the pressure-density relation, andω0 is the an-
gular frequency.Γ = βU0ω0/c

2
0α is a constant related to the thermo-viscous

dissipation of the transmission medium, andτ = ω0t − kz, wherek is the
wavenumber. A continuous wave can be expressed as a Fourier series

U =

∞∑
n=−∞

une
jn(ω0t−kz+φ) (5.8)

whereφ is an arbitrary phase constant,un is the real amplitude of thenth
harmonics andj =

√
−1. A more compact form of the above equation is

U =
∞∑

n=−∞

1

2
Une

jnτ (5.9)

whereUn = une
inφ is half the complex amplitude. The derivation in [10] is

missing the half factor as noted by [21]. Since the spectral decomposition ex-
tends from−∞ to∞, Un is only half the amplitude. The derivation is correct,
but there is an inconsistency in the notation. A property used to make simpli-
fications later isUn = U∗−n, where∗ represents the complex conjugate. Now it
is possible to find an expression for the differential change of thenth harmonic
by substituting equation (5.9) into equation (5.7). With a rearrangement this
can be expressed as

∂Un
∂z

= j
βω0

4c2
0

∞∑
m=−∞

(n−m)Un−mUm −
U0

α
n2Un. (5.10)

The second term represents viscous losses having a quadratic dependency
on frequency. The attenuation is included in the linear substep, so it is omitted
in the further derivation.

To facilitate calculation by a computer, the summation term can be changed
so that
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∂Un
∂z

= j
βω0

4c2
0

(
n−1∑
k=1

kUkUn−k +
∞∑
k=n

nUkU
∗
k−n

)
(5.11)

The infinite series has to be truncated and a finite number of harmonics,N ,
must be chosen.

The production of higher harmonics is a continuous process. The interac-
tion between the different harmonics is given by the frequency domain solution
the Burgers’ equation. This equation updates the accretion and depletion of
harmonics for each∆z step. The equation in article [6] is

un(z + ∆z, i) = u′n(z + ∆z, i) + j
βf∆z

2c2

( n−1∑
k=1

ku′ku
′
n−k (5.12)

+
N∑
k=n

nu′ku
′∗
k−n

)
, n = 1, 2, . . . , N (5.13)

whereβ is the nonlinear parameter andun(z + ∆z, i) denotes thenth term
in anN term complex Fourier series. This series describes the temporal normal
velocity waveform and theith radial field sample in the planez + ∆z. In the
bracket summation term theu′k(z + ∆z, i) terms have been abbreviated by
dropping the(z + ∆z, i) designation. The frequency has been chosen in the
last equation by the relationω = 2π · f .
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Chapter 6

Implementation and verification

In this chapter the implementation and verification of the simulator is dis-
cussed. Some problems have to be overcome, and these are discussed first.
The second part of this chapter consists of testing the simulator with real ex-
amples. It is shown to be in good agreement with measured values.

6.1 Implementation

There were many things to consider when implementing the simulator on a
computer. The main challenge in this implementation was to reduce the memory
usage. The program ran on a computer with large memory (reiknivel with 1
GB RAM). The execution time was also long, about 6-7 hours for the main
simulations.

Some methods were not working correct in this program, and they are de-
scribed in this first section. The phase front curvature was found not to be stable
in this case, and a different form of attenuation was used. Finally a review of
fast Fourier transform is presented.

6.1.1 Memory usage

The simulator requires a lot of computer memory to run. This is because the
chosen simulation field has to be large enough to contain the most energy of the
field. The main simulation is done in about 400 mm in bothx andy-directions
with a sampling rate of 0.308 mm. This implies a matrix of 1280 by 1280
samples of one harmonic. Since matlab operates only on double precision1,
this requires about 32 MB memory when the values are complex numbers.
Such a matrix is needed for each harmonic. The propagation function is of the

1Requires 8 bytes to store a real number
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exact same size. The propagation function could be calculated each time as
needed, but this increases the computation time since this function is needed
in each step of propagation. Saving it to disc once and then reading it into
memory each time it was used, would also take too much time.

The goal was to reduce the memory usage as much as possible so as to be
able to compute a pulsed wave. This has not been done in this thesis, but the
program is ready to do this kind of simulation. The reduction of memory was
achieved by using matrices declared used for different purposes at the different
stages in the program. The listing is given in the appendix. The goal was to not
exceed 128 MB, so the program could run on a parallel computer with 128 MB
at the nodes. This has not been tested, but the program is close to this limit.

6.1.2 Phase front curvature

A correction term is proposed in [6]. This is a term that better accounts for
wave or phase front curvature within the nonlinear substep. The∆z is replaced
with ∆z/ cos(θ[u1(z, i)]) andun(z, i) is replaced byun(z, i)/cos(θ[u1(z, i)]),
where

θ[u1(z, i)] =
d

dr

[
tan−1

(Im[u1(z, r)]

Re[u1(z, r)]

)]
r=ri

(6.1)

This equation assumes circular symmetry, butr could be replaced byx and
y. It is a challenging equation to implement. It was tested to estimate the deriv-
ative by a bilinear interpolation in the radial direction. The noise from Fourier
transform made theRe/Im factor rather arbitrary. Whencos θ was very small,
artificial sources were introduced in the calculations. This is because division
of a small number gives a large one. These numbers became new sources in the
simulations. This method had to be left out of the calculations. The simulation
results were shown to be very good in the test examples, so this will not restrict
the model.

6.1.3 Attenuation

The attenuation was implemented as described in section 4.5.2. Article [5] pro-
poses to include attenuation in the point spread function or in the propagation
function. The latter is implemented by the equation

Ha(z, R) = H(z, R)× e−αfn{z/ cos[sin−1(Rc/f)]} (6.2)

The expression in the curly brackets may look complicated, but it is just
a calculation of the distanced in figure 6.1. The inner expression (in square
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Figure 6.1: Travelling distance for waves.

brackets) isθ solved from equation (4.30). It is more correct to apply the
attenuation inH instead ofh, because the evanescent waves are neglected in
h, and therefore they will not have any attenuation ifh is used.

The implementation of this equation gave a larger attenuation when the
radius was increasing. This could not be correct, and the approach described
in section 4.5.2 was used.

6.1.4 Modification of the propagation function

Waag et al. [22] suggest an attenuation of the propagation function. This
method was tested and in this case there was also a great attenuation at a larger
radius. Grating lobes were suppressed, so this cosine taper window was not
included in the model.

6.1.5 Fast Fourier transform

he main computation in the simulator is the Fourier transform. More than 90
% of the execution time is spent on transforming or inverse transforming. An
efficient algorithm for implementing Fourier transform has been used. This is
called fast Fourier transform. It is based on a so-called successive doubling
method. Therefore it is important to use a power of two, or as many equal
prime factors as possible, as the length of transform. Therefore the number
1280 = 28 · 5 has been chosen. Furthermore the selected number generates
matrices small enough to satisfy the memory requirements.

The discrete Fourier transform (DFT) is defined as
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X[k] =

N−1∑
n=0

x[n]W kn
N , k = 0, 1, . . . , N − 1, (6.3)

whereWN = e−j(2π/N). The inverse transform is

x[n] =
1

N

N−1∑
k=0

X[k]W−kn
N , n = 0, 1, . . . , N − 1. (6.4)

Since these equations only differ in the sign of the exponentWN and a
scalar number, the computational procedures developed below applies to both
with small modifications.

The crucial step is to use the complex conjugate symmetry and periodicity
equations

W
k[N−n]
N = W−kn

N = (W kn
N )∗ (6.5)

W kn
N = W

k(n+N)
N = W

(k+N)n
N (6.6)

The idea is to successively divide the DFT into smaller DFT computations.
The decimation-in-time algorithm will be considered whenN is an integer
power of 2. By using equation 6.3 as a starting point and separatingx[n] into
its even- and odd-numbered points, we get

X[k] =
∑

n even

x[n]W nk
N +

∑
n odd

x[n]W nk
N (6.7)

Changing variablesn = 2r whenn is an even number andn = 2r+1 when
n is an odd number leads to the equation

X[k] =
∑(N/2)−1

r=0 x[2r]W 2rk
N +

∑(N/2)−1
r=0 x[2r + 1]W

(2r+1)k
N (6.8)

=
∑(N/2)−1

r=0 x[2r](W 2
N)rk +W k

N

∑(N/2)−1
r=0 x[2r + 1](W 2

N)rk. (6.9)

SinceW 2
N = WN/2, the above equation can be simplified to

X[k] =
∑(N/2)−1

r=0 x[2r]W rk
N/2 +W k

N

∑(N/2)−1
r=0 x[2r + 1]W rk

N/2 (6.10)

= G[k] +W k
NH [k]. (6.11)

G[k] and H[k] are two(N/2)-point DFT. It is required that these are com-
puted with valuesk = 0, 1, . . . , N − 1. But since they are periodic ink with
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periodN/2, it is sufficient to compute whenk is between 0 and(N/2)− 1. A
more thorough derivation can be found in [16].

Another advantage is that the calculations can be done in-place. This means
that it is not necessary to copy the data into another matrix.

6.2 Verification

It is important to check that the algorithm is correctly implemented. This check
has been done by some examples. First, the linear substep was tested, then the
full nonlinear program was tested.

6.2.1 Linear substep

To check the linear substep, the algorithm was configured using an example
from article [5]. This was a 3 MHz circular piston with radius 10 mm. The
acoustic medium is water with sound velocityc = 1500 m/s. In water the
attenuation is so small that it can be neglected, as was done in this case. Radial
extent of correctness was set tord = 3 cm, which led to a transform extent of
T = 4 cm since the source had 1 cm radius. Sampling rate was proposed to
beΨ = 4 × f/c and this was 80 samples/cm in this case. The initial acoustic
peak intensity was set to 0.1 W/cm2. This algorithm requires the input field in
normal velocity. A variation of the impedance equation gave the result

u0 =

√
I

ρ · c =

√
0.1 · π

103 · 1500 · π(10−2)2
= 2.6cm/s (6.12)

Christopher et. al. [5] have used the efficient discrete Hankel transform,
(DHT). This method takes advantage of circular symmetry, and can only be
used with circular symmetric transducers. Another method has been used here;
the more general discrete Fourier transform. By using this method, any trans-
ducer geometries can be simulated, including the non-symmetric ones. The
normal velocity field has been evaluated for two different propagation dis-
tances.

First, the propagation distance was∆z = 0.5 mm. The result is shown
in figure 6.2(a). Compared to the article, there are some disturbances at dis-
tances greater than about 10 mm. This discrepancy can be explained by the
fact that different approaches were used. This algorithm has disturbance from
quantization of the circular transducer. This is illustrated in figure 6.3.

Points on a square grid with this sampling rate will not be completely circu-
lar. A comparison of the discrete Fourier transform versus the discrete Hankel
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(b) z = 200 mm.

Figure 6.2: Normal velocity field simulation from an unfocused piston trans-
ducer with radius 10 mm. Normal velocity is plotted along the radial distance,
and the propagation distance is given under the figures.
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Figure 6.3: Discretization of 10 mm with sampling interval used in the linear
example. It is shown in a 0 -45◦ sector. All other cases are symmetric.
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Figure 6.4: Comparison between Fourier and Hankel transform of the source.

transform used by Synnevåg , [19], is shown in figure 6.4.

The Fourier transform is calculated from the two-dimentional field with
the piston in the center and the spatial extent as stated above. In this case the
Fourier transform is circular symmetric, so it is shown along one axis. The
Fourier transform has disturbances and these are especially evident at values
greater than about 10 cyc/cm. Therefore one expects inaccurate results where
the differences are greatest between the Fourier and the Hankel transform. This
is verified in figure 6.5, where the field distributions are plotted in dB-scale.
Different sampling intervals have been tested to see if this can improve the
results. It is clear that the results are better as the sampling rate increases.
However, there is not much to gain by changing from 80 to 160 samples/cm.
When the sampling rate is increasing, the computation requires more memory
and calculation time, so there is a trade-off. The disturbances are relative small,
about -40 dB, so they are not contributing significantly to the results.

The second test is to propagate the field with∆z = 20 cm. This is shown
in figure 6.2(b). In this case the results are worse, especially at large radius.
The reason for this is that the propagation function has a smaller radius and
therefore the quantization error is larger. This leads to more noise and the res-
ults are not very accurate. Propagation distances of this order are not important
in this thesis, because the distance between the fields has to be small to model
nonlinear effects.
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Figure 6.5: Logarithmic plot of propagation withz = .5 mm. with different
sampling rates. Sampling rates are described under the figures.
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Figure 6.6: Multistep propagation with nonlinear modelling. The curves are
the three first harmonics. Highest amplitude are the first, second in the middle
and the lowest are the third.

6.2.2 Nonlinear substep

Nonlinear simulation is done by using Burgers equation. Since it is an approx-
imation to the nonlinear wave equation, small steps have to be taken. Baker
et al. have measured three harmonics (figure 1 in their article) in water and
simulated it with the model based on a parabolic approximation to the nonlin-
ear wave equation. The results are shown to have good accuracy. The general
program used here produced the same results, and this is shown in figure 6.6.

GE Vingmed Ultrasound has measured two harmonics in a water tank. The
program produced the results shown in figure 6.7. The simulation results are
good. The signals are weak for the second harmonic, so it is difficult to model
it accurately. But the results show good agreements with the measured values.
The specification of this transducer is 2.3 MHz transmitted frequency. Eleva-
tion focus is 80 mm and azimuth focus is 90 mm. Azimuth aperture is 11/2 and
elevation aperture is 17/2 and it is a dense array. The discrepancy of the first
harmonic can be explained by a slightly wrong propagation velocity. Different
initial pressures were tested because it was an unknown parameter. The shapes
became almost equal with an initial pressure equal to 600 kPa. The simulated
are slightly displaced, probably due to a not correct sound speed.
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6.2.3 Aliasing and grating lobes

A type of aliasing occurs when the field is not large enough in the spatial di-
mension compared to the depth of the field. In figure 6.8(a) an example is
shown. As described earlier, the filtering process is not correct at the edges.
When a large amount of energy are reaching the edges, it is aliased back and it
looks like a reflection. The incorrect field at the edges are included in the figure.
The simulation was done with the Vernier transducer shown in figure 6.8(b).

The angle of grating lobes can be calculated and in this case it is

θ = arcsin
( 1

.622λ · 3 · .65

)
· 180

π
= 55.5◦. (6.13)

The factors 3 and 0.65 are used because the transmitted frequency is0.65 ·
3 MHz and .622 is the pitch2.

Simulated values are found to be 55◦. Experiments are done with focusing
is set to 80 mm, and also with no focusing. Both cases show a small discrep-
ancy (about .4◦), and grating lobes are independent of focusing. The focusing
does not move the grating lobes, they are only smoothed. Anxz-plane is shown
in figure 6.9.

2It is the distance between elements measured in wavelength
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Figure 6.8: Example of aliasing.

θ = arctan
(44.2396

30

)
· 180

π
= 55.9◦ (6.14)

The simulator has been tested against Ultrasim and it shows good results.
In figure 6.10 the same transducer is simulated with the two methods. The
grating lobes are theoretically at 53.5◦. With the simulator it is 54.2◦ and with
Ultrasim it is 58.4◦.
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Figure 6.9: Focused and unfocused transducer with grating lobes
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Figure 6.10: Vernier Rx transducer simulated at y = 0mm, z= 80mm
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Chapter 7

Simulation

Since it is very expensive to produce a new transducer, a common way to test
the performance is to simulate its behavior. In this chapter various layouts
for a 2D transducer are simulated in water to see which strategy is best with
nonlinear wave propagation. During the simulations a new phenomenon was
discovered.

7.1 Response from a point scatterer

A first order approximation to calculate the pulse-echo response is used. It is
based on the product of the continuous wave of the transmit and the receive
responses, [17].

The two-way response was calculated by assuming nonlinear propagation
towards a point scatterer, and linear propagation back to the transducer. The
linear propagation of the reflected beam is a valid assumption. The reason for
this is that the reflected signal is so weak that it generates almost no distortion
of this signal. Simulation of the receiving frequency is set to the double of the
transmission frequency because it is the second harmonic that is interesting to
study. This way to calculate the pulse-echo is valid in the focus of the beam.
The examples have focus set to 80 mm. The transmission and receiving fields
are multiplied and are in focusz = 80 mm.

The field is propagated stepwise as shown in figure 4.3. The sampling rate
in thez-direction is not necessarily an integer multiple of the focus. Therefore
the closest field to the focus field1 is chosen. Since the sampling frequency is
high, the closest field is very near to the focus plane. In these examples the
closest plane is 79.95 mm (=205 · .39 mm).

1The field containing the focal point.
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Figure 7.1: Comparison between fundamental and harmonic imaging.

Transmit (Tx) Receive (Rx)
1 Non-linear (f0) Linear (2 · f0)
2 Linear (f0) Linear (f0)

Table 7.1: Methods for comparing harmonic and conventional response.

7.2 Conventional and harmonic imaging

A way to compare harmonic imaging with fundamental imaging is shown in
table 7.1. The first case is simulated with nonlinear propagation and the second
case is with conventional imaging. Linear propagation of the reflected wave is
assumed also here. The receive and transmit field are multiplied and the two
methods are compared in figure 7.1 by using a Vernier transducer. This is
the worst case plot. This means that the largest value from all directions is
chosen. From the figure it is seen that the sidelobes are lower when using
harmonic imaging. This implies better image quality. The mainlobe width is
also narrower, and this will be discussed later.
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7.3 Nonlinear grating lobes

When using the nonlinear simulator, there was found a new grating lobe in
the second harmonic. No reports of this lobe had been found in the existing
literature. This new lobe is a kind of grating lobe and appears at half of the
sinus to the angle of the fundamental.

It is known that fingers are created at the second harmonic. The first report
on fingers is from 1973. It was experimentally found by Lockwood et al. [14],
and later numerically by Tjøtta et al. [4]. Fingers appear at the second harmonic
and they are the lobes that appear approximately when the fundamental is zero.
This is shown in figure 7.6(b).

More examples of nonlinear grating lobes are shown later and the phe-
nomenon is illustrated in figure 7.2. The scaling of the images is reduced to
-25 dB in the first harmonic figure and -50 dB in the second harmonic. This
has been done to make the grating lobes appear clearer since noise is removed.
The lobes in the middle of the second harmonic are the nonlinear grating lobes.
The phenomenon resembles fingers. The ratio between sine to the grating lobe
and this nonlinear grating lobe is found to be .49 in this example. The other
examples also show that this angle is approximately half of the fundamental.

7.4 Simulation of 2D sparse arrays

The main simulations are concentrated on a project, which objective was to lay
the foundation of a real-time 3D imaging ultrasound system. Part of this pro-
ject has been done at this University, specifically the construction of the sparse
transducer for fundamental imaging. Transducer geometries that were used
were developed in an Esprit project called “Real-Time 3D Ultrasound Imaging
System with Advanced Transducer Arrays (NICE)”. All the transducers con-
sidered in this section are evaluated in the project. Nonlinear propagation was
not considered in the project.

When using harmonic imaging, the transmitted frequency has to be lowered
because the double frequency has to be within the transducer bandwidth. This
has not been done in these simulations because the grating lobes are moved to
other locations and it is not possible to compare with conventional imaging.

This section presents the results of different geometries that are tested with
nonlinear wave propagation. The second harmonic is studied with sparse ar-
rays. Austeng et al. have tried to find the best possible sparse geometries for
conventional imaging.

The specifications used here are the same as those used in the project.
The center frequency is 3 MHz and 308µm pitch (0.6 times the nominal
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(b) Second harmonic.

Figure 7.2: Nonlinear grating lobes
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wavelength) and the 2D array has 50x50 elements. No apodization is used, and
the corner elements are removed to approximate a circular array. The paramet-
ers used in this simulation are summarized in table 7.2. Only the geometry is
changed in the different simulations.

To prevent the formation of grating lobes and high sidelobes, it is necessary
to have a maximum of 1/2 wavelength (λ/2) spacing between the elements.
Using 2-D arrays, the number of elements could be as high as approximately
16000 elements, and it is impossible to fabricate such an array by using existing
technology. Removing elements is a way of overcoming this problem. This
process is called thinning. This will cause the probe to be undersampled.

A lot of considerations have to be taken when designing sparse arrays.
First, there is an enormous amount of different layouts. The problem of se-
lecting a relatively few number of 50x50 elements has an enormous number
of solutions. It is impossible to go through every possible layout. Therefore,
much effort has been made to develop the best possible sparse array. Some
additional constraints can be set to further simplify the transducer design. An
example of this is to reduce the number of overlapping elements between the
transmission and the reception layouts. Then the same element is not used
for transmission and reception. By using this separation, the elements are less
complex and can be produced cheaper.

7.4.1 Vernier

The Vernier transducer is an example of a sparse periodic array. As described
earlier, grating lobes appear when using sparse periodic arrays. It is shown that
the number of elements can be reduced by a factor of six with little effect on
the beam forming properties of the array, [13].

The idea of designing Vernier transducers is to use different layouts for
transmission and reception. In this example, every second element is removed
at transmission, and every third element is removed at reception. This is done
because the grating lobes of transmission and reception will not be located in
the same direction. The two-way response is calculated by multiplying trans-
mission and reception fields. Grating lobes can be reduced if the other response
is low in that direction. The optimal scenario would be to have a zero in the
direction where the other geometry has a grating lobe. Then the grating lobe
will be suppressed and the noise from this direction will be as small as pos-
sible. The layouts for this transducer at transmission and reception are shown
in figure 7.3.

The simulation results for first and second harmonics are shown in fig-
ure 7.4. It is a cross-section of the focal planez = 80 mm. It is worth noting
that the second harmonic has a scaling down to -100 dB, while the funda-
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Transducer:
Beam type CW

Radius 7.5 mm
Initial pressure 600 kPa

Frequency 3 MHz
Elevation focus 80 mm
Azimuth focus 80 mm

Wavelength 0.5133 mm
Medium:

Velocity of sound 1540 m/s
Non-lin. parameter (beta)3.5

Attenuation 0 dB/cm/MHz
Number of harmonics 4

Number of lateral samples640
Density 1000 kg/m3

Maximum depth 100 mm
Sampling inz 0.39 mm

Sampling inx andy 0.308 mm

Table 7.2: Simulation parameters.
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Figure 7.3: Vernier transducer used at transmission (a) and reception (b).
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mental shows values to -50 dB. The second harmonic has lower sidelobes than
the fundamental. Grating lobes in the second harmonic are not as significant
as in the fundamental, so better image quality is expected. Nonlinear grating
lobes appear nearer the main lobe, so this has to be taken into consideration.
The fingers should be close to a zero in the reception beam pattern.

In figure 7.5 the first and second harmonics are shown along thez-axis in
they = 0 plane. The generation of fingers is shown in the beam pattern of the
second harmonic. The grating lobes are found in the outer areas of thex-axis.
Closer to the mainlobe the nonlinear grating fingers can be found. A plot along
thex-axis in focus is shown in figure 7.6. The upper figure shows the fingers
clearly. The first and second harmonics are shown together. The lower figure is
just a zooming of the center to show fingers and demonstrate that the mainlobe
width of the second harmonic is narrower. This property, in addition to lower
sidelobe levels, is the reason for using harmonic imaging.

The two-way response from a point scatterer is shown in figure 7.7(a). The
grating lobes are now suppressed, and there are only some small fingers close
to the mainlobe at level -80 dB. These small fingers is caused by the nonlinear
grating lobes.

A conventional two-way response is shown in figure 7.7(b). The grating
lobes appear and the mainlobe is larger.

An improved Vernier layout was suggested in the article [1] by changing the
transmit layout. Now every third element is turned off and the two in between
are used. This is shown in figure 7.7(c). The two-way response is shown in
figure 7.7(d). Grating lobes appear in the same locations, but they are lowered
somewhat to -90 dB. This layout is also more convenient to use in harmonic
imaging because in this case more energy is transmitted into tissue. This is an
advantage because the generation of higher harmonics requires more energy.

The conventional back-scattered image is shown in figure 7.8. The non-
linear grating lobes are not appearing by using conventional imaging. The
mainlobe width are also greater than by using harmonic imaging.

7.4.2 Diagonal

Periodicity by the diagonal axes have also been tested. The first of these is
shown in figure 7.9. Every second element has been removed. The transmit
array is not sparse along the diagonals and the element pitch along these axes
is
√

2 · 0.622λ. The receive array is the same Vernier transducer with every
third element removed.

Simulation in this case is given in figure 7.10. There are no grating lobes
visible in this case, and the sidelobe level is small. Some disturbance can be
seen along the diagonal axes.

63



−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

x [mm]

y 
[m

m
]

Beampattern for VernTx, first harmonic

−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

(a) First harmonic.

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

x [mm]

y 
[m

m
]

Beampattern for VernTx, second harmonic

−150 −100 −50 0 50 100 150

−150

−100

−50

0

50

100

150

(b) Second Harmonic.

Figure 7.4: First and second harmonics in focal plane z=80 mm of a Vernier
transducer. 64
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Figure 7.5: First and second harmonics iny = 0 plane.
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Figure 7.6: Zoomed version of plot (a).
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(b) Conventional two-way response from a point scatterer.
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Figure 7.7: Improved Vernier.
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Figure 7.8: Conventional two-way response from a point scatterer.
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Figure 7.9: Diag first example.
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(a) DiagTx.
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(b) Second harmonic.

Figure 7.10: First and second harmonics in focal planez = 80 mm.
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The beam patterns are shown in figure 7.11 and the two-way response is
shown in figure 7.12(a). The beam pattern for the second harmonic appears to
have a greater mainlobe, but this is not the case. Different scaling of the color
bars makes the second harmonic look broader compared to the first.

A comparison between harmonic (figure 7.12(a)) and conventional (fig-
ure 7.12(b)) shows that harmonic has narrower mainlobe. The nonlinear grat-
ing lobes are also visible in the harmonic image.

Another way of combining diagonal symmetric periodic layouts is to use
figure 7.9(a) as transmit array and figure 7.7(c) to receive the signal. This
layout has more active elements.

Simulation in this case is given in figure 7.12.

The beam patterns in this case are almost equal to the previous example,
so they are not repeated. Figure 7.11 can be considered again. The two-way
response is shown in figure 7.13. Compared to the improved Vernier, this sim-
ulation has some more disturbance.

The conventional two-way image in figure 7.14 has grating lobes and larger
mainlobe width compared to the harmonic image.

7.4.3 Axial dense-periodic transducer

Another way to consider the layouts is to let them be dense in one direction
and sparse in the other. To suppress the grating lobes, the dense and sparse
axes are changed in the receiving and transmitting part. This is illustrated in
figure 7.15.

The simulation for these layouts is shown in figure 7.16. The same image
scaling is used as in the previous example. It is seen that there are no grating
lobes since it is along thex-axis and the sidelobe level is almost constant. The
second harmonic has a smaller area with high sidelobes.

In this case the beam pattern in they = 0 plane is given by figure 7.17.
There are no fingers apparent in the second harmonic image.

The two-way response from a point scatterer is shown in figure 7.18(a).
This shows a little more disturbance compared to the Vernier transducer. Both
the fundamental and second harmonic have high sidelobe levels, in the same
area. When one multiplies these to form the backscattered wave, it generates a
high sidelobe level.

The conventional two-way response is shown in figure 7.18(b). Compared
to the harmonic image, the mainlobe width is smaller and the sidelobe levels
are generally lower.
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(a) DiagTx.
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(b) Second harmonic.

Figure 7.11: First and second harmonics in focal planez = 80 mm.
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(a) Harmonic two-way response from a point scatterer.
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(b) Conventional two-way response from a point scatterer.
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(c) DiagTx.
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(d) Second harmonic.

Figure 7.12: First and second harmonics in focal planez = 80 mm.
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Figure 7.13: Harmonic two-way response from a point scatterer.
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Figure 7.14: Conventional two-way response from a point scatterer.
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Figure 7.15: Axial dense-periodic transducer used at transmission and recep-
tion.
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(a) AxdpTx.
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(b) Second harmonic.

Figure 7.16: First and second harmonics in focal planez = 80 mm.
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(a) First harmonic.
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(b) Second harmonic.

Figure 7.17: First and second harmonics iny = 0 plane.
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(a) Harmonic two-way response from a point scatterer.
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(b) Conventional two-way response from a point scatterer.
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Figure 7.18: Binned transducer used at transmission and reception.

7.4.4 Binned transducer

Non-overlapping random layouts have the advantage that they separate trans-
mit and receive elements. Rectangular binned arrays are constructed by divid-
ing the array into equal-size bins, and then an element is chosen at random
within each bin. This prevents the existence of grating lobes, but the sidelobe
level is generally higher.

The transmit and receive layouts are constructed with a bin size of 2x2
elements. When the receive layout is chosen, there is a restriction on the receive
layout. It is not allowed to use the same element as was chosen in the transmit
array. This makes the layout non-overlapping. The transducer geometry in this
case is shown in figure 7.18.

The simulation for these layouts is shown in figure 7.19. The same image
scaling is used as in the previous examples. It is seen that there are no grating
lobes and the sidelobe level is almost constant. The second harmonic has a
smaller area with high sidelobes.

In this case the beam pattern in they = 0 plane is given in figure 7.20.
There are no fingers in the second harmonic in this case either.

The two-way harmonic response from a point scatterer is shown in fig-
ure 7.21(a). The conventional two-way response is shown in figure 7.21(b).
The mainlobe width is greater and the sidelobe level is higher compared to the
harmonic image.
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(a) BinTx.
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(b) Second harmonic.

Figure 7.19: First and second harmonics in focal planez = 80 mm.
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(a) First harmonic.
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(b) Second harmonic.

Figure 7.20: First and second harmonics iny = 0 plane.
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(a) Harmonic two-way response from a point scatterer.
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(b) Conventional two-way response from a point scatterer.
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Figure 7.21: Polar transducer used at transmission (a) and reception (b).

7.4.5 Polar binned transducer

Another approach, called polar binned, is to choose elements in a binned way
along rays from the center to the edges. The receive array was constructed
by rotating the rays half the angle between two adjacent rays. The transducer
geometry in this case is shown in figure 7.21.

The simulation for these layouts is shown in figure 7.22. The results do not
differ much from those of the binned simulation.

In this case the beam pattern iny = 0 plane is given in figure 7.23.
The two-way response from a point scatterer is shown in figure 7.24(a).

The backscattered beam pattern looks like the binned case, but the sidelobe
level is slightly lower.

7.4.6 Worst case comparison

The worst case comparison of all the simulations is shown in figure 7.24 and
figure 7.25. The second figure is a zooming of the first since it is only interest-
ing to study the signals down to about -80 dB.

It is a bit unfair to compare all the different geometries. They have different
amount of active elements and this implies that the costs of the transducer
varies. Also the flexibility of choosing the sparseness is a factor to consider.

The Vernier transducers are used with the sparseness factor ofp = 3 and
p = 2. These are the lowest possible values for using different layouts for
transmission and reception. Diagonal and Vernier transducers consist of the
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(a) PolTx.
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(b) Second Harmonic.

Figure 7.22: First and second harmonics in focal planez = 80 mm.
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(a) First harmonic.
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(b) Second harmonic.

Figure 7.23: First and second harmonics iny = 0 plane.
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(a) Harmonic two-way response from a point scatterer.
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(b) Conventional two-way response from a point scatterer.
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Layout Tx Rx Overlapping elements Sum(Class)
Axial Dense Periodic 880 880 428 1760(3)
Diagonal 2 877 796 396 1673(3)
Improved Vernier 421 796 182 1217(2)
Diagonal 1 877 208 99 1085(2)
Binned 447 447 0 894(1)
Polar Binned 484 361 0 845(1)
Vernier 421 208 48 629(1)

Table 7.3: Number of elements in the different layouts.

largest number of elements considered here. Therefore, they are expected to
give good performance, and this is shown in the figure.

Other types of transducers are the binned and the polar binned. They have
an approximately constant sidelobe level. This is advantageous since there is
no worst direction. Also, it is easy to define the sparseness factor with the polar
binned layout. The number of elements in each direction and the number of
directions can be chosen. This makes it possible to design a transducer with a
certain number of elements.

Table 7.3 shows the number of elements used in transmission and reception
showed for the different layouts. The number of overlapping elements is also
included.

The unnormalized pressures are shown in figure 7.26. The levels are not
normalized to see how much energy in the main lobe that is generated from
each simulation. The level depends on how many elements that are used. This
is the number of transmission elements added by the number of reception ele-
ments. The highest number generates the highest pressure, but the Diagonal 1
has higher pressure than the Improved Vernier despite the latter has 132 more
active elements.

Figure 7.29 demonstrates that the mainlobe width of the conventional are
larger than harmonic imaging. This figure shows the binned transducer, but
this is generally the case.

It is difficult to chose a best layout, but the axial dense-periodic array are
probably best from the figure 7.25. The Vernier and improved Vernier are also
good. The Diagonal 1 and Diagonal 2 suffer from high grating lobes.

Austeng et al. [2] suggest to form three groups to compare the layouts re-
gardless of design method. The first group consists of design with less than
906 elements. Simulations in this first class is Binned, Polar and Vernier. The
latter has generally lower sidelobes and can be considered as the best in this
class.
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Conventional Harmonic
Transducer -6 dB -50 dB -6 dB -50dB
Axial Dense Periodic 0.9758 5.6022 0.8791 2.9985
Diagonal 2 0.9756 5.5300 0.8740 2.9837
Improved Vernier 0.9704 5.5994 0.8707 2.9912
Diagonal 1 0.9616 5.4896 0.8645 2.8866
Binned 0.9761 5.7330 0.8747 3.0225
Polar Binned 1.0064 3.8841 0.9356 3.4742
Vernier 0.9747 5.6107 0.8825 2.8626

Table 7.4: Mainlobe beam width comparison of conventional and harmonic
imaging.

In the second group each design has sum of elements approximately equal
to 1300. The layouts simulated are Diagonal 1 and improved Vernier. The
improved Vernier has generally lower sidelobe level so it is better than the
Diagonal 1.

The last group has sum of more than 1673 elements. The Axial dense-
periodic and Diagonal 2 are simulated in this group. The first has, as discussed
previously, generally lower sidelobe level.

In table 7.4 is harmonic and conventional imaging compared. The -6 dB
level of the harmonic is some smaller than the conventional. This will improve
the resolution some. The more striking result is that the -50 dB level of the
harmonic is half the level of the conventional. This will give an improvement
of the contrast resolution in the images.
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Figure 7.24: Worst case for all the harmonic simulations.
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Figure 7.25: Worst case for all the harmonic simulations (zoomed version of
the previous figure).
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Figure 7.26: Worst case pressure comparison for all the harmonic simulations.
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Figure 7.27: Worst case for all the fundamental simulations.
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Figure 7.28: Worst case for all the fundamental simulations (zoomed version
of the previous figure).
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imaging.
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Chapter 8

Conclusion and further work

The aim of this thesis has been to extend the angular spectrum algorithm to
non-symmetric sources. Burgers equation was used to simulate nonlinear wave
propagation. This was then implemented in matlab and verified on measured
fields. Finally, some new transducers were simulated which may be used for
real-time 3-D imaging. The

The challenges of implementation has been to reduce the memory usage
and the execution time.

The simulations are restricted to water, and only continuous waves are sim-
ulated. The simulator is ready to be used on pulsed waves, but a parallel com-
puter, to handle the large calculations, was not ready in time. A parallel version
of fast Fourier transform was used, so all that is needed is a parallel computer
with large enough nodes.

When it was decided to use continuous wave, the field sizes was extended
to use as much memory as possible without allowing the computer to swap
memory to disc. It was possible to simulate the field in focus to in about 45◦.

Fingers appear on the second harmonic where the fundamental is zero. This
was verified in the simulations carried out. A new type of finger has been
observed when grating lobes were studied. The second harmonic had a grating
lobe at the half of sine to the angle of the fundamental. This has also been
measured of NTNU in Trondheim by professor Hans Torp and it is not been
reported in the literature before. The practical concern is to make sure that
grating lobes are not in the same direction as this new grating lobe appears.

The comparison between conventional and harmonic imaging shows that
the contrast is improved. The mainlobe width is slightly smaller with harmonic
simulation, but the sidelobe level is lower.

Generation of harmonics depends heavily on the initial pressure of the
source. In this thesis the simulations have used mainly one initial pressure,
and it would be interesting to experiment with other pressures and see how this

97



influences harmonic generation.
Also, it would be interesting to simulate pulsed waves. This should not be

too difficult to do now, as computer capacity is increasing. This can be done by
sampling a pulsed wave in the frequency domain and simulating the different
continuous waves with the appropriate weighting.

The transducers used in this thesis are not steered to an angle, and this
could be another thing to investigate. When steering is used, non-physical
angles appear in the observed field and grating lobes may appear.

It would also be interesting to explore simulation with other values of theβ-
parameter. Nonlinear propagation with tissue- and fat-values could be studied.
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Appendix A

Matlab code

Here is the Matlab (version 5.3) code given.
Some code to generate the figures are listed first, and then the simulator is

given.

A.1 Script for generating figures

This is the matlab script for generating some of the figures used in this thesis.

file = ’vern’ ;
file2 = ’ Vern’ ;

fn1 = strcat(strcat(’/local/tmp/hfjelles/’ ,file)...
,’Tx600t_cr_1_0.07995.dta’ );

fn2 = strcat(strcat(’/local/tmp/hfjelles/’ ,file)...
,’Tx600t_cr_2_0.07995.dta’ );

h1 = read_h3(fn1,1280);
h2 = read_h3(fn2,1280);

nx = 98.6*2:.308:98.6*2.308;

figure(1)
imagesc(nx,nx,20*log10(abs(h1)/max(abs(h1(:)))));
caxis([ 50 0]);
colorbar;
str = strcat(strcat(’Beampattern for ’ ,file2),’Tx, first harmonic’ );
title(str);
xlabel(’x [mm]’ );
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ylabel(’y [mm]’ );
wf = strcat(file,’Txfoc80_1’ );
print(’ depsc’ ,wf);

figure(2)
imagesc(nx,nx,20*log10(abs(h2)/max(abs(h2(:)))));
caxis([ 100 0]);
colorbar;
str = strcat(strcat(’Beampattern for ’ ,file2),’Tx, second harmonic’ );
title(str)
xlabel(’x [mm]’ );
ylabel(’y [mm]’ );
wf = strcat(file,’Txfoc80_2’ );
print(’ depsc’ ,wf);

fn1 = strcat(strcat(’/local/tmp/hfjelles/’ ,file),...
’Rx600_cr_1_0.07995.dta’ );

k1 = read_h3(fn1,1280);

figure(3)
imagesc(nx,nx,20*log10(abs(k1)/max(abs(k1(:)))));
caxis([ 50 0]);
colorbar;
str = strcat(strcat(’Beampattern for ’ ,file2),’Rx, first harmonic’ );
title(str);
xlabel(’x [mm]’ );
ylabel(’y [mm]’ );
wf = strcat(file,’Rxfoc80_1’ );
print(’ depsc’ ,wf);

nz = 0:.39:100;

fn1 = strcat(strcat(’/local/tmp/hfjelles/’ ,file),’Tx600t1.dta’ );
fn2 = strcat(strcat(’/local/tmp/hfjelles/’ ,file),’Tx600t2.dta’ );
f1 = read_h(fn1,1280,256);
f2 = read_h(fn2,1280,256);

figure(4)
imagesc(nx,nz,20*log10(abs(f1)/max(abs(f1(:)))));
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caxis([ 50 0]);
colorbar;
str = strcat(strcat(’Beampattern for ’ ,file2),’Tx first harmonic’ );
title(str);
xlabel(’x [mm]’ );
ylabel(’z [mm]’ );
wf = strcat(file,’Txfoc80b_1’ );
print(’ depsc’ ,wf);

figure(5)
imagesc(nx,nz,20*log10(abs(f2)/max(abs(f2(:)))));
caxis([ 100 0]);
colorbar;
str = strcat(strcat(’Beampattern for ’ ,file2),’Tx second harmonic’ );
title(str);
xlabel(’x [mm]’ );
ylabel(’z [mm]’ );
wf = strcat(file,’Txfoc80b_2’ );
print(’ depsc’ ,wf);

figure(6)
b = k1.*h2;
imagesc(nx,nx,20*log10(abs(b)/max(abs(b(:)))));
caxis([ 100 0]);
colorbar;
str = strcat(’Twoway beampattern for ’ ,file2);
title(str);
xlabel(’x [mm]’ );
ylabel(’y [mm]’ );
wf = strcat(file,’two’ );
print(’ depsc’ ,wf);

figure(7)
b = h1.*h2;
imagesc(nx,nx,20*log10(abs(b)/max(abs(b(:)))));
caxis([ 100 0]);
colorbar;
str = strcat(’Twoway beampattern (conventional) for ’ ,file2);
title(str);
xlabel(’x [mm]’ );
ylabel(’y [mm]’ );
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wf = strcat(file,’twoc’ );
print(’ depsc’ ,wf);

A.2 Simulations

The calls to the simulator is shown for some examples below.

% Parker linear, article

as_main(3e6,1,Inf,Inf,0,0,10e3,100,1,1500,...
’parker_l_ex1_’ ,200e 3,200e3,0, 40e 3,...
.125e 3,200e3,’parker linear’ ,’y’ );

% Parker, nonlinear article

as_main(2.25e6,1,Inf,Inf,0,0,19e3,1000,4,1486,...
’parker_nl_ex2_’ ,750e 3,.5e 3,0, 200e 3,(5/8)*1e 3,...
[750e 3;2],’parker nonlinear example’ ,’y’ );

% Vingmed

as_main(2.3e6,1,80*1e3,90*1e 3,0,0,11/2*1e3+i*17/2*1e 3,...
1000,4,1486,’kk05tst2_’ ,100e3,.5e 3,0, 61.76e3,...
.193*1e 3,[],’KK 05 vingmed transducer’ ,’y’ );

% Vernier

dir = pwd;
cd ˜/hfag/andreas
load VernTx.txt;
weight = [zeros(1,50);VernTx;zeros(1,50)];
cd(dir);
as_main(3e6,1,80e3,80e 3,50,0,7.5e3,600,4,1540,...

’vernTx600t’ ,100e 3,.39e 3,weight,...
98.6*1e 3*2,.308*1e 3,[80e 3;3],’vernTx’ ,’n’ );

% (For conventional imaging)
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dir = pwd;
cd ˜/hfag/andreas
load VernTx.txt;
weight = [zeros(1,50);VernTx;zeros(1,50)];
cd(dir);
as_main(3e6,2,80e3,80e 3,50,0,7.5e3,600,1,1540,...

’vernTx600c’ ,100e 3,.39e 3,weight,...
98.6*1e 3*2,.308*1e 3,[80e 3;3],’vernTx’ ,’n’ );

A.3 Angular spectrum simulator

The program can be divided into these main stages:

• Calculate initial velocity field at transducer face.

• Calculate the propagation function

• Display parameters

• Start of main loop

1. Linear substep

2. Nonlinear substep

3. Write to disc

function as_main(freq,send,e_foc,a_foc,tr_sz,att,...
rad,in_pres,Nmax,c,f_name,z_max,z_inc,weight,...
x_min,delta,cr_sec,descr,p_f);

% Main program to calculate the field!
% (3 harmonics are automatically in xzplane are saved
% to /local/tmp/hfjelles)
%
% freq = design frequency [Hz]
% send = part of design frequency used as
% fundamental frequency
% e_foc = elevation focus [m]
% a_foc = azimuth focus [m]
% tr_sz = transducer size (NxN) 0 if piston
% rad = radius of transducer (complex number
% for rectangular) [m]
% in_pres = initial pressure [kPa]
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% Nmax = number of harmonics
% c = speed of sound [m/s]
% f_name = filename (concatunated with #harm.dta)
% z_max = distance to propagate [m]
% z_inc = distance between two parallell planes [m]
% weight = element weight if transducer is not piston
% x_min = minimum value in x and y direction (has to
% be negative) [m]
% delta = sampling in xyplane [m]
% cr_sec = vector of cross_sectional planes [m]
% (2. row # of harm to save)
% descr = description of geometry (text)
% p_f = propagation function attenuated at edge?
% ’y’ or ’n’

freq = freq*send; % Frequency [Hz]
rho = 1000; % density [kg/mˆ3]
alpha = 2.5e14; % attenuation coefficient [Np/(m*Hzˆ2)]
n_f = 2; % exponent of frequency in attenuation

% expression
q = 0.35; % excess attenuation factor
B_by_A = 11; % value for fat
lambda = c / freq;% wavelength [m]

x_max = x_min delta;
y_min = x_min;
y_max = y_min delta;

a_focus = a_foc;
e_focus = e_foc;

values_x = x_min:delta:x_max;
values_y = y_min:delta:y_max;
N = length(values_x);

beta = 3.5; % beta factor (nonlinear parameter)

for ii=1:max(3,Nmax),
eval([’u_s_’ int2str(ii) ’ = complex(zeros(N));’ ]);

end;

for ii=1:Nmax,
eval([’field_’ int2str(ii) ’ = complex(zeros(N));’ ]);
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eval([’prop_func_’ int2str(ii) ’ = complex(zeros(N));’ ]);
end;

% *****************************************
% Calculate initial field of the transducer
% *****************************************

del_ele = zeros(1,N);
del_az = zeros(1,N);
if (e_foc < Inf)

del_ele = sqrt((values_x.ˆ2)’+e_focus.ˆ2) e_foc;
else

del_ele = del_ele’;
end;
if (a_foc < Inf)

del_az = sqrt((values_x.ˆ2)’+a_focus.ˆ2) a_foc;
else

del_az = del_az’;
end;
u_s_3 = del_ele * ones(1,N) + (del_az * ones(1,N))’;
clear del_az del_ele;
u_s_2 = exp(i*2*pi*freq/c*u_s_3);
if (tr_sz ˜= 0)

u_s_1(N/2 tr_sz/2+1:N/2+tr_sz/2,N/2tr_sz/2+1:N/2+...
tr_sz/2) = 1;

indx = find(u_s_1 == 1);
u_s_1(indx) = reshape(weight,[tr_sz*tr_sz 1]).*1/c*...

in_pres;
else

if (imag(rad) == 0)
u_s_3 = sqrt((ones(length(values_y),1)*values_x).ˆ2 ...

+ ((ones(N,1)*values_y)’).ˆ2);
u_s_1(find(u_s_3<=rad)) = 1/c*in_pres;

else
u_s_3 = ones(length(values_y),1)*values_x+i*...

(ones(N,1)*values_y)’;
u_s_1(find(real(u_s_3)< imag(rad) & ...

real(u_s_3)> imag(rad) & imag(u_s_3)< ...
real(rad) & imag(u_s_3)> real(rad))) = 1/c*in_pres;

end;
end;
u_s_1 = u_s_1.*u_s_2;
u_s_1 = fftshift(u_s_1);
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fftw2(u_s_1,1)
field_1 = fftshift(u_s_1);

disp([’FFT size ’ , num2str(N)])
go2 = N / 2; % index to center of field

% eq(5) in Parker nonlin
for m = 1:Nmax

b(1,m) = n_f + q * (m 1) / Nmax;
end;

n_steps = fix(z_max / z_inc); % number of steps
z_step = z_inc * (1:n_steps);
index_range = go2:go2 1;
x_vals = index_range * delta; % x positions [m]
y_vals = x_vals; % y positions [m]
x_min = min(x_vals);
x_max = max(x_vals);
wndw_size = x_max x_min;
wo2 = wndw_size / 2;

u_s_1 = ones(N,1) * ((N/2:N/2 1) / (N * delta));
u_s_2 = u_s_1’;
u_s_1 = u_s_1.ˆ2;
u_s_2 = u_s_1’;
u_s_3 = u_s_1 + u_s_2;

% ****************************************
% Calculate propagation function & weights
% ****************************************

if (p_f == ’y’ )
border = 0.75 * ( x_min);
wid = x_min border;
u_s_2 = sqrt((ones(length(values_y),1)*values_x).ˆ2 + ...

((ones(N,1)*values_y)’).ˆ2);
for m = 1:N,

in = find(u_s_2(m,:)<= border);
if isempty(in) == 0,

u_s_1(m,in) = ones(size(in));
end;
in2 = find(u_s_2(m,:)> border);
if isempty(in2) == 0,
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u_s_1(m,in2) = zeros(size(in2));
in3 = find((u_s_2(m,:)<= x_min) & ...

(u_s_2(m,:)> border));
if isempty(in3) == 0,

u_s_1(m,in3) = 0.5*(1+cos(pi*(...
abs((u_s_2(m,in3)border)/wid))));

end;
end;

end;
else

u_s_1(:) = 1;
end;

for m = 1:Nmax,
mf_c = m * freq / c;
arg = sqrt(mf_cˆ2 u_s_3);
eval([’prop_func_’ int2str(m) ...

’ = u_s_1.*exp(i * 2*pi * z_inc *arg)’ ...
’.*exp( att*freq*m/(1e6*20)*100*log(10)*z_inc);’ ]);

end;

fprintf(’Finished \n’ );

cent_pt = round(N/2);

save_dir = ’/local/tmp/hfjelles/’ ;
file_1 = strcat(strcat(save_dir,f_name),’1.dta’ );
file_2 = strcat(strcat(save_dir,f_name),’2.dta’ );
file_3 = strcat(strcat(save_dir,f_name),’3.dta’ );

fid1 = fopen(file_1,’w’ );
fclose(fid1);
fid1 = fopen(file_1,’a’ );
fid2 = fopen(file_2,’w’ );
fclose(fid2);
fid2 = fopen(file_2,’a’ );
fid3 = fopen(file_3,’w’ );
fclose(fid3);
fid3 = fopen(file_3,’a’ );

st = ’’ ;
for m = 1:Nmax 1,

st = strcat(st,’field_’ ,int2str(m),’,’ );

111



end;
st = strcat(st,’field_’ ,int2str(Nmax));

% Display parameters

fprintf([ ’ \t TRANSDUCER (’, descr ,’): \n’ ]);
fprintf([ ’ \tBeam type = ’ , ’CW’ , ’ \n’ ]);
fprintf([ ’ \tRadius = ’ ...

, num2str(rad*1e3),’mm\n’ ]);
fprintf([ ’ \tInitial pressure = ’ ...

, num2str(in_pres),’kPa \n’ ]);
fprintf([ ’ \tFrequency = ’ ...

, num2str(freq/1e6) ...
’MHz(’ ,num2str(freq/(send*1e6)),...
’MHz,’ ,num2str(send),’) \n’ ]);

fprintf([ ’ \tElevation focus = ’ ...
, num2str(e_foc*1e3),’mm\n’ ]);

fprintf([ ’ \tAzimuth focus = ’ ...
, num2str(a_foc*1e3),’mm\n’ ]);

fprintf([ ’ \tWavelength = ’ ...
, num2str(c/freq*1e3),’mm\n’ ]);

fprintf([ ’ \t MEDIUM: \n’ ]);
fprintf([ ’ \tVelocity of sound = ’ ...

, num2str(c), ’m/s \n’ ]);
fprintf([ ’ \tNon lin. (beta) = ’ ...

, num2str(beta),’ \n’ ]);
fprintf([ ’ \tAttenuation = ’ ...

, num2str(att), ’dB/cm/MHz \n’ ]);
fprintf([ ’ \t# harmonics = ’ ...

, num2str(Nmax),’ \n’ ]);
fprintf([ ’ \t# lateral samples = ’ ...

, num2str(N/2), ’ \n’ ]);
fprintf([ ’ \tDensity = ’ ...

, num2str(rho), ’kg/mˆ3 \n’ ]);
fprintf([ ’ \tMaximum depth = ’ ...

, num2str(z_max*1e3)’mm\n’ ]);
fprintf([ ’ \tSampling in z = ’ ...

, num2str(z_inc*1e3)’mm\n’ ]);
fprintf([ ’ \tSampling in x&y = ’ ...

, num2str(delta*1e3)’mm\n’ ]);
fprintf([ ’ \tAtt of propfunc = ’ , p_f ’, \n’ ]);

% ********************
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% Start of propagation
% ********************

fprintf(’Loop over z values ... \n’ );

for idx = 1:n_steps,

% Temporary, used only in the next line
u_s_1 = ones(N,1)*x_vals * 100000;

% u_s(2,:,:) is now the spatial frequency (wavenumber)
u_s_2 = (sqrt((u_s_1.ˆ2) + ...

(u_s_1.ˆ2)’))/(abs(min(x_vals))*100);

% **************
% Linear substep
% **************

for m = 1:Nmax,
% FFT of field
eval([’u_s_1 = field_’ int2str(m) ’;’ ]);
% propagation function
eval([’u_s_3 = prop_func_’ int2str(m) ’;’ ]);
% RFSC truncation
inx = find(u_s_2<= ((((freq*m)/(c)) * ...

sin(atan(( x_min)/z_step(idx))))));
if (isempty(inx) == 0)

u_s_2(:,:) = 0;
u_s_2(inx) = u_s_3(inx);

end;
u_s_3 = (u_s_1 .* u_s_2);
eval([’field_’ int2str(m) ’ = u_s_3;’ ]);

end

for m = 1:Nmax,
eval([’field_’ int2str(m) ’ = fftshift(field_’ ...

int2str(m) ’);’ ]);
end;

eval([’fftw2(’ st ’, 1)’ ]);

for m = 1:Nmax,
eval([’field_’ int2str(m) ’ = fftshift(field_’ ...
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int2str(m) ’);’ ]);
end;

% *****************
% Nonlinear substep
% *****************

for m = 1:Nmax,
u_sum = zeros(N);
for nn = 1:m 1,

eval([’u_sum = u_sum + nn * field_’ int2str(nn) ...
’ .* field_’ int2str(m nn) ’;’ ]);

end;
for nn = m+1:Nmax,

eval([’u_sum = u_sum + m * field_’ int2str(nn) ...
’ .* conj(field_’ int2str(nn m) ’);’ ]);

end;
eval([’u_s_’ int2str(m) ’ = u_sum;’ ]);

end;

nl_coeff = i * beta * pi * freq * z_inc / (2 * cˆ2);

for m = 1:Nmax,
eval([’field_’ int2str(m) ’ = field_’ int2str(m) ...

’ + nl_coeff * u_s_’ int2str(m) ’;’ ]);
end;

% ************
% Save to disc
% ************

fwrite(fid1,c/rho*real(field_1(cent_pt,:)),’double’ );
fwrite(fid1,c/rho*imag(field_1(cent_pt,:)),’double’ );
if (Nmax > 1)

fwrite(fid2,c/rho*real(field_2(cent_pt,:)),’double’ );
fwrite(fid2,c/rho*imag(field_2(cent_pt,:)),’double’ );

end;
if (Nmax > 2)

fwrite(fid3,c/rho*real(field_3(cent_pt,:)),’double’ );
fwrite(fid3,c/rho*imag(field_3(cent_pt,:)),’double’ );

end;

t = [];
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if (size(cr_sec,1)> 0)
t = find((z_step(idx)z_inc/2 <= cr_sec(1,:)) & ...

(z_step(idx)+z_inc/2> cr_sec(1,:)));
end;
if (t),

for ii = 1:cr_sec(2,t);
file_nm = strcat(strcat(strcat(strcat(strcat(strcat(...

strcat(’/local/tmp/hfjelles/’ ),...
f_name),’_cr_’ ),num2str(ii)),’_’ ),num2str(...
z_step(idx))),’.dta’ );

fid = fopen(file_nm,’w’ );
fclose(fid);
fid = fopen(file_nm,’w’ );
eval([’fwrite(fid,c/rho*real(field_’ ,int2str(ii),...

’(:)),’’double’’);’ ]);
eval([’fwrite(fid,c/rho*imag(field_’ ,int2str(ii),...

’(:)),’’double’’);’ ]);
fclose(fid);

end;
end;

for m = 1:Nmax,
eval([’field_’ int2str(m) ’ = fftshift(field_’ ...

int2str(m) ’);’ ]);
end;

eval([’fftw2(’ st ’,1);’ ]);

for m = 1:Nmax,
eval([’field_’ int2str(m) ’ = fftshift(field_’ ...

int2str(m) ’);’ ]);
end;

fprintf(’Inx finished : %d \n’ ,idx);
end;
fclose(fid1);
if (Nmax > 1),

fclose(fid2);
end;
if (Nmax > 2)

fclose(fid3);
end;
fprintf(’Finished \n’ );
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