
Abstract

This thesis investigates the efficiency of extent-based allocator de-
sign to satisfy file allocation requests in a CDN proxy cache. The al-
locator is based on the method inspired by the memory allocators,
where free space is managed in chunks of varying size, or extents.
The design is tested in a simulation, where a trace of allocation and
deallocation events from a content server was submitted to the al-
locator. Content serves of this type experience high demands on
throughput, so their file system must store files in the most effi-
cient way possible. The bottleneck for content retrieval often lies
on data transfer rates of the hard disks used in the server. To
facilitate fastest possible transfer of a file, it must be read sequen-
tially, in one operation. At the same time, given the large quantity
of file, which are present on such servers, space wastage due to in-
complete utilisation of large allocation units is not desirable. Our
allocator design tries to achieve both, to a certain extent, mutu-
ally exclusive goals. The design was implemented and the results
we obtained in the course of simulation, show that we managed
to achieve these goals, creating an allocator that displays proper-
ties, favourable for contiguous file placement, while keeping space
wastage at its minimum. Additionally, the allocator is memory-
efficient and has small bookkeeping and computational overhead.
The use of our allocator in a CDN proxy file system will allow to
keep the data transfer throughput at maximum speed, while util-
ising the storage space in an efficient manner. The reader of this
thesis will learn about the allocator semantics and have a detailed
introduction into a specific allocation algorithm, QuickFit. This
study outlines several venues of improvement and opens for a fur-
ther empirical study of complete system, based on the allocator
presented in this thesis.
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Chapter 1

Introduction

1.1 Motivation

The motivation for this study lies in the nature of the majority of
the modern file systems, which use a fixed block size defined at
the time of file system creation. These blocks are then used in-
dependently of the actual request sizes. This leads to either (1)
wastage of storage space or (2) slower system performance. In the
first case extra storage is wasted when the request size is not an
exact multiple of block size. This situation is known as internal
fragmentation. If the block size is set to a very small value to min-
imise internal fragmentation, then the second case occurs, as a file
needs to be split over a larger number of blocks, leading to addi-
tional bookkeeping overhead, associated with location and reading
of individual blocks before the complete file is read or written.

CDN proxy caches present an especial challenge. The load on the
file system as the expected throughput is very high, requiring an
efficient, preferably contiguous, placement of files. At the same
time such caches operate with a very large number of files, making
it undesirable to waste space by using larger blocks.

1.2 Problem Description

The original goal of this thesis was to make a design suggestion
to a file system, where block sizes could be varied on the fly and
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to investigate the performance implications compared to the tra-
ditional fixed block size approach. During the research phase we
came across a work by A. Iyengar et al. [IJC02], where a design,
very similar to our own intended concept, was already outlined.

The allocation algorithm used in Iyengar’s system comes from the
memory storage Ph.D research done by C. B. Weinstock [Wei76].
In the conclusion of his thesis, Weinstock states that it would be
interesting to analyse the application of dynamic storage allocation
(DSA) techniques in a file system context. Further the author says
that “it is clear that many of the techniques explored in this the-
sis are applicable to file systems, but the use of I/O devices will
no doubt affect the relative performance of the methods”. We have
therefore shifted the attention of this thesis to investigate the appli-
cability of DSA techniques to a disk allocator, while concentrating
on the methods proposed by Weinstock and Iyengar. The applica-
tion field of our thesis was at the same time narrowed down to the
context of a CDN proxy cache file system.

Over time there has been done a lot of research in the area of file
systems, ranging from simple data storage to the more complex
journalling and database file systems. Much of this research re-
sulted in actual implementations, which are in widespread use to-
day. At the same time, and in parallel, there were conducted many
research projects on memory allocation, for example in heap mem-
ory management, where space efficiency was prioritised. Though
having many common denominators, these fields of research have
seldom crossed.

In this thesis examine one system which uses aspects of both do-
mains. Based on the concepts presented in that system, we pro-
pose several improvements, which are then implemented and eval-
uated by the means of simulation with favourable results.

1.3 The Structure of the Thesis

In this work we will be looking into usability, application areas
and strategy variations of a special type of an allocator, which uses
extents for space allocation.

In Chapter 2 we will look at the task of a CDN proxy, defining at
the same time the requirements placed on its file system. We will
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also briefly describe two file systems, which can be used in a CDN
proxy.

Several storage allocation concepts, which an allocator works with,
are presented in Chapter 3. Then, in Chapter 4 we describe Quick-
Fit allocation technique. First a general description is given, fol-
lowed by a presentation of Iyengar’s allocator. The chapter is fin-
ished with the detailed presentation of the variation of the QuickFit
used in our allocator.

Chapter 5 presents the layout of a file system, concentrating on the
design of the allocator. This chapter also outlines the context for
the simulation.

The implementation details of the allocator and its simulation driver
are presented in Chapter 6. For each allocator component we first
describe the data structures, following up with a description of how
our design translates into code.

Chapter 7 first gives an overview of evaluation tests, that our allo-
cator is subjected to. The each test is described in great detail and
the results are presented and analysed.

Finally, Chapter 8 summarises the work and the results and pre-
sents the possibilities for future development.

The appendixes include a glossary over the terminology used in the
thesis (Appendix A), a presentation and analysis of the allocation
trace used in the simulation (Appendix B), the complete source
code of the allocator and the simulator (Appendix C) and several
sample outputs of the simulation runs (Appendix D).
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Chapter 2

File System Requirements for
a CDN Proxy Cache

In this chapter we will set the framework for the thesis. We first
present the concepts describing a file system. We then present the
demands placed on a file system serving in a CDN proxy cache. The
chapter is concluded with a short presentation of two files systems,
which can satisfy such demands.

2.1 Basic Concepts

2.1.1 File

The definition of the term file varies depending on the perspective
from which we look at it. An application knows how to interpret
data stored within such object and can make decisions as to how
the object should be accessed. A file system, on the other hand,
would see the same file as an unstructured object, a sequence of
bytes, holding no particular meaning. This is a definition covering
most traditional file systems and is not entirely true in the case
when we talk about database file systems or multimedia systems,
which have some knowledge about the properties of the stored ob-
jects. This distinction is important as a file system can adopt a
more intelligent placing policy, should it have the knowledge of a
file’s characteristics. These include the life expectancy of a file, its
intended usage frequency and expected growth.
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2.1.2 File System

The primary goals of a file system are to store a file in such a way
that:

1. it utilises the available storage space efficiently;

2. it is stored and retrieved with highest possible throughput;

3. it can be located by some meaningful reference;

The way in which the different file systems achieve this varies, and
many systems add other functions depending on the area of appli-
cation.

It is worth noticing that the first and the second goals are conflict-
ing. Finding the best placement for a file incurs additional compu-
tational overhead, whereas fast placement strategies often lead to
considerable storage wastage, as we will see in Chapter 3.

Another task of a file system is to access the hardware, where the
particular files are stored. In the prehistoric days of 1970’s and
early 1980’s the main type of storage media was a variety of floppy
disks. File systems were expected to interface the hardware on a
low level, computing such parameters as sectors tracks and inter-
leaving [Roa76]. Later hardware implemented much of the low-level
control in its firmware, masking the actual physical placement of
data from the file systems. Furthermore, in most modern oper-
ating systems, the hard disk device drivers are no longer part of
the file system. A file system is thus presented with a logical ad-
dressing interface to a hard disk, such as Linear Block Addressing
(LBA). Many hard disks still provide a Cylinder-Head-Sector (CHS)
addressing mode, but the values used, no longer correspond to the
physical geometry of the media and therefore provide no real value
for the file systems, when it comes to determining the best place-
ment with regard to such variables as rotational delay. It means
that newer file systems mostly have to map the blocks associated
with a file to the LBA value, which is then passed to the device
driver or directly to the hardware. The use of LBA will be discussed
later in Section 3.1.

A good file system must also show a substantial degree of fault
tolerance. The information that has been committed to the hard

6



disk, must be located even after a system failure, when some of the
bookkeeping data might be corrupted.

2.1.3 Dynamic Files

Not all files’ sizes are known at the time of creation. We think it
would be correct to note that the majority of files will constantly
grow in size or will undergo random writes. The following two sec-
tions investigate this problem in more detail.

Growing Files

Most files grow as they are written resulting in the need to allo-
cate additional space. The most obvious solution to the problem
is to postpone the write operation and thus the determination of
the space requirements until later. It is done in delayed allocation
in XFS [SDH+96] or Optimised Batch Allocation in the techniques
described by Iyengar et al. in [IJC03, page 16].

However, the technique does not represent the ultimate solution,
as writes cannot be postponed indefinitely. Relying on delayed allo-
cation for too long will lead to extensive data loss in case of system
failure. It also increases memory needed for buffers. Therefore,
buffered data must be written back to disk at short intervals. At a
moment of such combined write operation up to several files might
still be growing in size. It is beyond the scope of this thesis give
a solution to the presented problem, though two possible solution
might be:

Reallocation of the file to another extent or

Extension of the size of the currently allocated extent, possibly
after some prior defragmentation.

Sparse Files

Many of the aspects of growing files apply also for sparse files. This
type of files do not get allocated disk space for areas that have not
been written thus resulting in internal “holes”. Sparse files usually
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result when the file pointer is pointed after the current end of file,
and some data is written at that position. First of all, it must
be carefully evaluated if the system should support sparse files in
the first place. If used, sparse files can lead to increase in file
fragmentation when the holes are written to and additional space
needs to be allocated out of order with the previously allocated
extents.

If the sparse file support is implemented, it is probably best to
let the files become fragmented and fill the holes by the means of
allocating new extents and linking them in the correct order. If a
file becomes too fragmented, it can be individually defragmented
by a background housekeeping process.

2.1.4 Buffer Cache

The buffer cache implementation on a particular operating sys-
tem can lead to a complication if a file system is to incorporate an
extent-based allocator. For example, Linux buffer cache [MEC+]
expects a file system to set a system wide block size upon mount.
This presents a problem as the variation in extent sizes might po-
tentially be unlimited.

Linux buffer cache has a feature that can potentially be exploited
to implement a work-around – buffer block grouping that allows
one to group cache blocks so that they be written in one physical
operation. Thus, if buffer cache block size is set to the smallest
possible extent size – the grain size (see Section 3.1) and then the
grains are grouped, we can achieve a logical extent representation
in the buffer cache.

2.1.5 CDN Proxy Cache

The task of a Content Delivery Network (CDN) proxy is to act as a
middleman between the content server and a population of clients.
Proxy caches are responsible for storing copies of the content from
the central server, thus creating a distributed access point to the
content being served.

All proxy caches have several common properties [Dav99]:
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1. Reduction in the content server’s link bandwidth consump-
tion. By moving the content closer to the consumer, there are
fewer request/response and data packets travelling from the
server.

2. Elimination of access bottleneck and reduction in server load.
Only proxy caches make direct requests to the server if the
requested content is missing or becomes outdated. As once
cache serve multiple users, the access point to the content
server and the request load becomes distributed among the
proxies.

3. Reduction in response latency, since the proxies are located
closer to the clients.

4. Increase in fault tolerance. Even when the central server is
temporarily down, its contents is cached and still available to
the clients.

Proxy caches incorporate several different methods to keep their
content up to date and report content usage back to the central
server. If the content becomes obsoleted or missing, a proxy has
two choices. It can forward a request to the central server. Alter-
natively, the request can be forwarded to a another proxy at the
higher of equal level in the hierarchy [Dav99], as shown in Fig-
ure 2.1.

In this thesis we design an allocator, aimed to be used with a web
proxy cache file system.

Web proxies have several demands and constraints placed upon
them. As we have learnt from the analysis of the web access logs
(see Appendix B), web caches operate with predominantly small-
and medium-sized files. These files are requested with hight fre-
quency and the clients expect very short response times. The files
must therefore be organised in such manner that they are read
from the heard disk at a maximum transfer rate. This can be
achieved if each file occupies one contiguous segment of space. Ad-
ditionally, files belonging to the similar request groups (i.e. to the
same web page), should be placed physically close together. The
allocator must therefore support some form of spatial awareness.

When the cached content becomes obsoleted, the proxies replace
their copies with a new version of the same file. Similarly, if the
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Content server

Client content requests

Figure 2.1: Proxy cache hierarchy

requested file is not present in the cache, it must fetch a new file
and store it locally. If the free space becomes scarce or if some
file are not requested for a long period of time, the proxy cache,
must purge the files to free storage space. This indicates that the
stored content is very dynamic, with frequent replacements and
little correlation between the expected lifetimes of individual files.

2.2 Related Work

2.2.1 XFS File System

XFS [SDH+96,MEC+] is used in IRIX on Silicon Graphics comput-
ers. It was designed by Silicon Graphics as a further development
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Figure 2.2: XFS architecture

of the Extent File System (EFS), when it became clear that EFS did
not scale well to meet the new application demands, such as:

• fast crash recovery,

• ability to support large file systems,

• ability to support large, contiguous files and large directories,

• ability to support a large number of files.

XFS uses B+ trees throughout the whole system. In XFS, extent is a
contiguous number of free or used blocks. Each extent can contain
a different number of blocks with a maximum of two million blocks,
based on a 21 bit length field for the extent.
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Allocation Groups

XFS introduces Allocation Groups (AG) to manage the file system
more efficiently. Unlike cylinder groups in FFS, AGs are not de-
signed to achieve greater locality. AGs can be considered as parti-
tions inside a single file system - each AG has its own data struc-
tures for metadata and can be updated independently of other AGs,
allowing for parallelism in file system management.

AGs have a maximum size of four gigabytes and in this way also
reduce the address space for the metadata as pointers can be 32-
bit values relative to the AG start. This saves space in metadata
structures as XFS is a full 64-bit file system.

Free Space Management

To keep track of free space XFS uses a set of two B+ trees for
each AG. Both B+ trees keep the descriptors of free extents as their
entries. However, one of the trees is indexed by the starting block,
and the other by the length of the free extent. The extents can
contain different number of blocks. This allows efficiently finding
the best match based on the type of allocation.

Support for Large Files, Directories and File Counts

XFS supports 64-bit address space for each file. This presents a
problem if files are indexed by blocks. XFS solves this by using
extent maps, where an extent is a number of contiguous blocks
allocated to a file. However, in larger files with sparse allocation,
the extent count can overflow the space left in the XFS inode. In
this case, the remaining extent descriptors are managed through
a B+ tree rooted in the inode. This allows XFS to handle millions
of extents each of which can be of a different size at the cost of an
increase in computational complexity.

Furthermore, XFS supports a very large number of files. In [SDH+96],
it is stated that the only real limit to the number of files is the
available space in the file system. This is achieved by dynamically
allocating inodes as they are required on the fly. As in previous
cases, each AG manages its inodes separately from other AGs. A
B+ tree is used to keep track of chunks of inodes, each containing
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64 entries. The inodes themselves can be either in use or free. Vir-
tually, this strategy allows for allocation of an unlimited number of
inodes at the cost of implementation complexity. Inode allocation,
storage, and program interfacing are just some of the issues that
must be addressed.

Directories in XFS use B+ trees to store information about files.
The keys for these trees are file names, which vary in size from 1
to 255 bytes. File names are hashed into 4-byte values which are
used as the actual keys for the B+ tree. The duplicate keys are
resolved by placing such directory entries next to each other in the
tree. Each directory entry contains the full name of a file along
with the inode number. This solution increases complexity of the
directory implementation, but improves the performance.

Variable Block Sizes

It must be noted that the block size in XFS is determined at the
time of file system creation. XFS supports a wide range of block
sizes from 512 bytes to 64 kilobytes.

Fault Tolerance

The system uses write-ahead logs to keep track of metadata trans-
actions. This makes error recovery after a crash faster as it only
need to recreate the system structures from the last checkpoint.
A full-fledged system scanning can, nevertheless, be required in
cases when logs or random blocks are corrupted due to hardware
or software failures.

Performance

XFS employs delayed allocation techniques in which the blocks on
the disk are reserved for the data in the buffer cache but are not
allocated until the data are flushed. In this way, XFS is allowed to
build larger extents before writing the data on disk, thus ensuring
that files are stored as contiguously as possible. It is especially
well-suited for random access pattern of write operations.
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Delayed allocation in combination with the allocation of B+ trees
has the added benefit of keeping the file system fragmentation low
by finding the best fitting free extents for the data as it is accumu-
lated in the buffer cache.

2.2.2 PMFLF

Iyengar et al. presented in [IJC03] a new approach to organising
files, which is very different from the traditional file system and
database storage approaches. The storage management system is
centred around an allocator, which is based on QuickFit allocation
technique, borrowed from memory management systems. The file
system itself keeps tracks of the allocated objects by the means of
an on-disk hash table.

PMFLF is designed as a “parasitic” storage manager, intended to
make use of an underlying file system to interact with the hard-
ware. Its main strength lies in its allocator design, which we will
present in great detail in Section 4.2.

2.3 Summary

XFS has a robust and efficient design. It, however, relies strongly
on delayed allocation to make the optimal placement decisions,
which leads to high memory consumption for buffers. In this the-
sis we will introduce allocation hint to provide an alternative way
of providing the allocator with additional information to make its
placement decisions. As XFS uses B+ trees for all internal data
management, it leads to a complex design and implementation. In
this thesis, we will use a lighter, but equally efficient data structure
– skip lists. Throughout this thesis we will be using several terms,
introduced by XFS. Among these are the notions of extents and 64
bit addressing. We will, however allow extents to use 63 bits for
their size description, whereas XFS limits extent sizes to 21 bits.

PMFLF, while having a relatively efficient design, still keeps several
of the aspects of the memory allocation domain, which are either
sub-efficient or directly counter-productive in the disk space al-
location context. Some of these aspects are the lack of ability to
fragment files over several extents and a separate treatment of the

14



wilderness (see Section 3.3). We will be addressing these issues in
the following chapters.
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Chapter 3

Storage Allocation Concepts

In this chapter we explain the terminology used in describing the
various parts of the allocation process.

3.1 Extent Size and Grain Size

The allocator manages free space in contiguous chunks, which we
call extents. An extent is a sequence of one or more consecutive
sectors on disk. The size of an extent is an integral multiple of grain
size and is expressed in the number of grains it occupies. Likewise,
an extent’s starting address is expressed in the zero-based number
of grains, counting from the start of the partition. This addressing
mode coincides with Linear Block Addressing (LBA) mode used in
hard disks. The grain size is determined at file system creation
time and cannot be adjusted afterwards.

The smaller the grain size is, the less of internal fragmentation
(see Section 3.6.1) we experience. The ideal theoretical minimum
grain size corresponds to the extent header size plus one byte of
payload. Though the internal fragmentation will be non-existent in
such scenario, this solution is not practical, because all hard disks
perform their operations in integral number of sectors. To reflect
the operations of the underlying storage media, i.e. hard disks, the
system shall use the same grain size as the sector size – 512 bytes.

Modern hard disks can be several hundred of gigabytes in size.
Furthermore, it is possible to create logical volumes, which span
several physical disks, for example RAID system, whose size can
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AS Size field 63 bits long

Figure 3.1: Tagged Size (TS) header format

exceed a terabyte marker. The current trend is a continuous in-
crease in storage capacity. Our system must be able to adapt to
this development. We therefore choose to use 64 bit addresses.
Extent size will be limited to 63 bits as explained in the next sec-
tion. Both values are expressed in grains and not in bytes. This
design decision allows us to have extents of up to 263 grains of 512
bytes, equalling 4.2 million petabytes.

3.2 Extent Header

The information about an extent size as well as any additional in-
formation about the state of an extent has to be stored at some
location on disk. The additional information we have to store cur-
rently includes only allocation status (AS) of an extent. The allo-
cation status of an extent is a bit field, which is set to 0 when an
extent is free, otherwise it has the value of 1.

The on-disk extent headers can either be physically grouped to-
gether or stored within each extent. The first option leads to scala-
bility problems as extent header area must be initialised to be able
to accommodate a predefined number of headers. When the pre-
allocated space for extent headers is used, additional space must
be allocated, leading to increase in bookkeeping complexity. The
headers of adjacent extents will also become physically separated
on the disk as new extents are created by splitting the old ones.

Iyengar et al. [IJC03] store extent headers within the extents and
propose a Tagged Size (TS) method for the header format. This
method is depicted in Figure 3.1 and will also be used in our work.
The most significant bit is used for the AS field, while the remaining
63 bits accommodate the extent size information.
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3.3 Wilderness

The as of yet untouched space at the end of a partition is called
wilderness [Ste83] (also called tail in some literature). This region
can be treated in several ways, depending on the adopted allocation
policy.

For example, we can always allocate from the wilderness when no
exact fit is found, thus carving into the free space and splitting
it into smaller chunks. This method is advantageous when the
majority of allocation requests are from a small set of sizes. As
extents are freed, the pool of free extents that are likely to satisfy
the upcoming requests becomes sufficiently large.

Conversely we can attempt to allocate from the already existing free
extents, performing splitting and coalescing as necessary and using
wilderness allocation as a last resort. The latter is known as wilder-
ness preservation heuristic [KV85,WJNB95]. We will, however, see
in Section 4.2, Figure 4.5, that wilderness does not always need to
be the largest free extent.

We now examine some mechanisms to represent the wilderness.

In the simplest form, a pointer to the beginning of the wilderness
can be kept by the system both on disk and in memory and up-
dated each time a wilderness allocation is performed. To reduce
the number of disk accesses the update of on-disk pointer is de-
ferred and occurs once after a certain number of updates. This
approach is taken by the authors of [IJC03]. The issue of error
handling caused by crashes will be discussed in Section 3.4.

Another way is to introduce wilderness flag, which marks the header
of the wilderness “extent” and allows the allocation algorithm to
treat it in a special way.

Finally, we can avoid treating wilderness in a special way, by ac-
knowledging that it can be considered as a very large regular ex-
tent. If we choose the strategy to always split the smaller extents
before the larger ones are taken (within a reasonable threshold, as
will be discussed in Section 4.3.2), then the wilderness preserva-
tion heuristic will be obeyed automatically. That way we do not
need to keep wilderness flag or to specify wilderness size anywhere
other than in the standard extent header, corresponding to the last
extent in a partition. This will make the system simpler in both
design and implementation.
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This last mechanism is our preferred way of treating wilderness in
our allocation system. This method is the opposite of what is done
in [IJC03], and is explained in detail in Sections 4.2 and 4.3.3.

3.4 Error Recovery Mechanism

While discussing deferred updating of wilderness pointer, Iyen-
gar et. al mention [IJC03] an error detection mechanism – code
bytes. It is described only briefly. From what can be understood
from the paper, code bytes are a part of the header and their value
is set when an extent is allocated. Their value in unallocated ex-
tents is left undefined by the paper, but it would be reasonable
to assume that the code bytes are cleared along with the AS field
when an extent is freed1. It is not said how many bytes are used
and the only selection criteria for their value is that the probability
of having the same sequence in the data field should be low.

In our opinion, computational and storage overhead, introduced by
the code bytes outweighs their benefit in the marginal increase in
safety they provide. Code bytes seem to be suited best for identify-
ing the start of the wilderness. Even then, there is a possible sce-
nario, leading to failure. After a failure. the proposed algorithm as-
sumes the wilderness pointer to be invalid and searches the wilder-
ness for the first allocated extent. A random bit sequence in the
wilderness can coincide with the chosen code bytes, thus mark-
ing an “extent” as allocated when it is not. Though the authors
are aware of this situation, they state that only a small amount of
space would be lost due to the erroneous allocation and the price
of the persistent storage is relatively low.

The authors however do not seem to be aware that quite significant
amount of space can be wasted, should a misinterpretation occur.
This is due to the fact that the size field of the misinterpreted “ex-
tent” would contain garbage, whose numeric value can be quite
large. Another scenario, which leads to failure and which is not
described by [IJC03] is the following: Consider an extent that has
been allocated from the wilderness and then deallocated. Several

1It is indirectly stated by the following sentence in [IJC03]: "When a block is
allocated from the tail, both the AS field and code bytes are modified on disk to
indicate that the block is allocated."
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more extents are then allocated from the wilderness. Before the
wilderness pointer is updated on disk, the system crashes. During
the rebuild phase, the old wilderness pointer points to the unal-
located extents, which the system might interpret as the start of
wilderness. All the allocated extents after the first one then risk be-
ing re-allocated, thus corrupting the data already stored in them.
This problem can be circumvented by using different code bytes
for “taken from wilderness, unallocated” and “taken from wilder-
ness, allocated” extents. The downside is that the probability of
occasional appearance of code values in the data of the wilderness
increases respectively. This probability could be made less than
the probability of failure at the expense of disk space.

If the authors only introduced code bytes to facilitate deferred wilder-
ness pointer writing, we perceive it as a too costly a work-around
in terms of space consumed in each header. There exist more el-
egant and fail-safe techniques to perform error recovery, such as
journalling. We therefore choose not to implement code bytes, but
rather treat the wilderness as an ordinary extent.

3.5 Boundary Tags

Memory allocators with general coalescing often implement a me-
chanism, known as boundary tags [Knu73], where a block header
is duplicated in the footer, which is consulted whenever an adjacent
block is to be coalesced. While this mechanism improves locality of
reference in the memory scenario, when applied to a disk manager,
it introduces additional costly disk accesses, which are needed to
update the footer. As we plan to perform deferred on-demand coa-
lescing only when no sufficiently large extents can be located and
are going to use coalescing-by-sorting technique (described in Sec-
tion 4.3.4), boundary tags become redundant.

3.6 Fragmentation Types

As we discussed above, one of the primary functions of an allo-
cator is to ensure space usage with as small wastage as possible.
Fragmentation can serve as a measure of success in this task. We
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Figure 3.2: Internal fragmentation

discern between three types of fragmentation: internal fragmenta-
tion, external fragmentation and file fragmentation. The first two
types refer to free space fragmentation and arise from inability to
reuse existing free space [WJNB95,Bec82]. They are common for
both hard space- and memory management systems. In contrast,
the third type is specific for disks and does not fall under the def-
inition given in [WJNB95] as it, strictly speaking, does not lead to
waste of free space, but degrades performance of file accesses. Be-
low we give the detailed descriptions of the different fragmentation
types.

3.6.1 Internal Fragmentation

Internal fragmentation arises when an allocator serves a larger ex-
tent than was requested, because the extent cannot be split. This
happens, for example, when the newly-created free extent would
be too small or, more frequently after rounding up the requests
to some integral value [Ran69]. Some space remains unused, but
tied up inside the extent. This gives the origin to the name internal
fragmentation. The situation is shown in Figure 3.2.

This type of fragmentation is common for both file- and memory
management systems, but its causes are somewhat different. In
most modern file systems, some level of internal fragmentation is
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always present as these systems use blocks of fixed size. A file sys-
tem is therefore unable to adjust the amount of allocated space to
the actual requests2. Some authors also count the space wasted
on bookkeeping of extent data structures as part of internal frag-
mentation [WJNB95].

As an example, in a file system with a block size set to 2048 bytes,
both requests for 500 bytes and 3000 bytes would produce internal
fragmentation. In the first case 2048 − 500 = 1548 bytes would be
lost, while the loss in the second case is 2048 − (3000 − 2048) = 1096
bytes in the second block. In general, internal fragmentation has
also a far greater impact on the space utilisation in a file system
as files have a longer life span than memory objects. The memory
management systems are usually able to split blocks to meet the
requests more accurately. Updates of the in-memory headers are
also much cheaper than the on-disk updates.

Another cause for internal fragmentation is allocator’s policy of be-
ing conservative with splitting in order to avoid external fragmen-
tation.

3.6.2 External Fragmentation

External fragmentation occurs, when an allocator has free extents
at its disposal, but none of the extents is large enough to satisfy
a request and there are no adjacent free extents to merge to form
a bigger contiguous free extent [Ran69, Bec82]. This situation is
depicted in Figure 3.3. The typical cause for external fragmentation
is when allocated extents of different sizes are deallocated after
varying intervals of time.

This type of fragmentation is characteristic of the memory man-
agement systems. There, the allocator semantic promises that the
returned space is contiguous. If merging of extents is not possible
due to the allocator policy or the lack of adjacent free extents, then
the storage is considered full even if the total number of free bytes

2Several file systems introduce mechanisms to reduce internal fragmentation.
ReiserFS has a mechanism, caller tail packing, where data belonging to the last
block or to files, which occupy less than a complete block are place together
with meta-data. A similar mechanism for small file storage is adopted by NTFS.
Both solution incur additional bookkeeping performance overhead and lead to
increase in file fragmentation.
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Figure 3.3: External fragmentation

could have served the request. While the internal fragmentation
gradually saps the resources, the external type leads to an abrupt
failure of a system, when some larger requests have to be rejected.
It must be noted that the degree of external fragmentation in mem-
ory systems is dependent on the allocator policy and the chain of
requests [WJNB95].

However, in the overwhelming majority of modern file systems it is
possible to spread files over several extents. The external fragmen-
tation is therefore replaced by another kind – file fragmentation,
which is described in the next section.

3.6.3 File Fragmentation

As suggested in the previous section, file system allocators have an
extra degree of freedom in object placement as they are allowed to
scatter files over several extents. This is shown in Figure 3.4. Note
that file fragmentation can arise in both extent-based and block-
based systems.

Noticeably, there were file systems, which used contiguous file
placement and did not allow file fragmentation. Among these are
such legacy systems as RT11, NorthStarDOS and UCSD-Pascal
[Roa76]. ISO9660 or CDFS, used with optical media, such as CD-
ROMS, is an example of a newer file system.

File fragmentation, while effectively eliminating the external one,
introduces a set of complications of its own. First, free space is
still wasted – though negligibly – in the form of extra housekeeping
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Figure 3.4: A simple case of file fragmentation

overhead at the file system layer. Second, sequential reading of a
file is slower as all file fragments must be located and retrieved in a
series of independent disk search operations, incurring extra seek
time. Lastly, there is almost no correlation between spatial place-
ment of extents and their deallocation times. Once a fragmented
file is deleted, it is not likely that the adjacent extents, belonging
to other files, will be freed as well, opening up the possibility for
coalescing, before the next allocation request. This would prevent
a subsequent contiguous allocation and further reinforce file frag-
mentation.

To illustrate this, consider Figure 3.4. If file ’A’ is deleted, extents
1, 3, 4 and 7 will be freed. Though extents 3, 4 and 5 can be coa-
lesced, file ’B’ continues to be in the way of coalescing of extents 1
and 7. Moreover, a new allocation request for extents previously be-
longing to file ’A’ can come long before file ’B’ ever becomes deleted.

3.6.4 Conclusion

In this section we have looked at three types of fragmentation.
These types are for the most part mutually exclusive in that an
attempt to minimise one type, often results in increase of the other.
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Figure 3.5: External fragmentation case, solvable by coalescing

A theoretical system that splits extents to the minimum size of 1
byte to avoid internal fragmentation will later be faced with a severe
case of external one as smaller allocated objects become deleted at
different moments in time.

Conversely, a system that avoids splitting extents at all costs, does
preserve many large contiguous areas and is thus less likely to be
faced with external fragmentation, while wasting a lot of space in
internal one. It has in fact been shown in an empirical study of
first-fit and best-fit allocators [Ran69] that it does not pay off to
combat external fragmentation by rounding up requests to larger
block sizes, as it leads to an even more severe case of internal
fragmentation.

File fragmentation is in the first place used to combat external one,
but has the disadvantages of (1) increasing the internal fragmenta-
tion by using an additional header for each extent, and (2) slowing
down file access.

3.7 Defragmentation

As stated above, one of the important roles of an allocator is to
combat fragmentation. It is done either implicitly, through the
strategic choices made during the allocation phase, or explicitly,
by performing housekeeping tasks.
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3.7.1 Coalescing

During coalescing, adjacent free extents are merged to form a larger
free extent. This operation can either be performed immediately af-
ter each deallocation to eliminate external fragmentation preemp-
tively, or – as is done in most cases – deferring coalescing until the
external fragmentation condition arises.

A typical case of external fragmentation, where coalescing would
solve the problem is shown in Figure 3.5. In this scenario, enough
space is available for the next request after extents 5 and 6 are
merged during the coalescing procedure.

There are two types of cost associated with immediate coalescing.
First, it adds computational complexity to the freeing stage as the
neighbours of the just freed extent must be located and evaluated
whether they are free as well.

Second, a less apparent cost comes from a highly probable redun-
dancy of this task. Quite often the extents of a particular size or
size range are needed. Especially in memory systems, there is a
higher probability that smaller-sized blocks will be requested than
large-sized ones, as the majority of programs display a tendency to
require allocation of objects of small sizes [WJNB95]3.

Coalescing several small extents will therefore often have an ef-
fect that the newly-merged large extent has to be immediately split
again to satisfy subsequent small-sized requests. In Section 7.2.6
we will investigate whether the same is true for our allocator.

3.7.2 Splitting

Another tool is splitting and it is used to combat internal fragmen-
tation. Extents that are too large to serve a particular request are
split into two smaller extents, one of which is returned to the pool.
It is up to a specific allocator’s policy to decide whether (1) an extent
should be split to match the request exactly, or (2) the allocation
request is rounded to the next higher multiple of grain size. Some

3This can be exemplified by the memory usage by our allocator. Some of the
structures, for which it has to request memory are: extent headers, whose size
is 16 bytes; the skip list header structures, whose size is 37 bytes; and skip list
nodes, whose size varies between 8 and 136 bytes, depending on the type of the
skip list (for implementation details, see Appendix C).
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allocator policies can also decide if an extent should be split at all,
based on the size of the remainder. This is known as acceptable

wastage and is presented in detail in Section 4.3.2.

3.7.3 Relocation

As a rule, memory management systems cannot relocate objects
to form larger contiguous free blocks. They simply do not have
enough information to know where the object about to be relocated
is referenced, and are therefore unable to update all references af-
ter a relocation. Object, or more precisely, extent relocation is,
however, the approach taken by many file systems to combat file
fragmentation. There are three ways perform defragmentation, de-
pending on the desired outcome and the available time [Nor03].

We describe defragmentation for the sake of completeness, as we
are not using defragmentation in our allocator design. The allo-
cator does not have sufficient information about the usage of the
allocated extents to perform defragmentation. Defragmentation is
therefore the task of an external program, acquainted with both
the file system and the allocator internals.

Defragmentation by relocation can be performed following these
conditions:

1. a file is allocated for which no contiguous extent exists – free
space must be compacted on the fly;

2. background defragmentation when disk activity and system
load are below a certain threshold;

3. a user-requested defragmentation.

An algorithm described by K. Lund in his Master’s Thesis [Lun97,
chapter 9.2], is especially applicable in the first case as defragmen-
tation must be performed as fast as possible and with the least
impact on the system performance.

We discern between the following strategies for file defragmenta-
tion:
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File defragmentation

File defragmentation does not aim at coalescing the free space. The
files on a device are made contiguous, but are scattered throughout
the whole partition, leaving the free space equally – or even more
– fragmented. This method is relatively fast, but tends to worsen
fragmentation in the long run as it leaves many small scattered free
extents, which are later filled by fragmenting newly allocated files.
It is best applicable to the systems with relatively constant content.

Free space defragmentation

The next method is free space defragmentation, which moves al-
located extents to create one contiguous area of free space. Free
space defragmentation is by several degrees faster than file defrag-
mentation, but it only ensures that the files stored directly after
the defragmentation process are contiguous. In contrast to the
previous method, this one tends to worsen the fragmentation for
the files already stored on a medium. It can nevertheless be useful
if implemented appropriately, so as not to touch the files that are
already contiguous. Free space defragmentation is the solution to
the external fragmentation problem, presented in Figure 3.3.

File defragmentation with free space coalescing

File defragmentation with free space coalescing is the slowest, but
the most thorough method, combining the strong sides of the two
mentioned above. It completely reorganises the data on a storage
device. As a result, all the files are made contiguous and grouped
together in one section of a partition. Consequently, the remaining
space is also compacted allowing subsequently allocated files to be
contiguous too. There are several variants of this method, depend-
ing on where the files are placed. The files can either be placed at
the start of the partition in a random order or spread over several
groups, depending on the expected frequency of use. Due to the
slowness of analysis and relocation processes this method is less
suitable for use in a running system.
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3.8 File Fragmentation and Multi-Extent

Allocation

In an ideal case only one extent should be used for each file. This
is however only possible as long as two conditions are met:

1. file size is known beforehand and

2. there is enough contiguous space or space that can potentially
be coalesced to satisfy a request.

If either of the conditions is not met, the file might be spread over
several extents. If the first condition does not hold, the system
can potentially allocate too little space, so that if a file grows at
a later point, there might not be enough space to accommodate
it contiguously. This potentially leads to the situation where the
second condition does not hold.

Though our target system has file sizes that are given at the time of
creation, the life time expectancy of each individual file is still not
known. After a sufficiently large number of file creations and dele-
tions, the second condition might not hold. We are therefore forced
to consider situations where the allocator has to allocate several
extents for a single file to avoid external fragmentation, which in-
troduces file fragmentation.

3.9 Summary

In this chapter we have presented the key concepts that are used
in allocator design. These include both the parameters that an
allocator works with and measures of allocators ability to efficiently
manage the pool of storage space. We will be using these concepts
in the next chapter, where we present an existing allocator design,
and introduce our own improved allocator.
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Chapter 4

Free Space Allocation
Technique –
Algorithm and Analysis

This chapter presents the free space allocation technique, which is
used in this thesis – QuickFit.

4.1 QuickFit

The original version of Quick Fit algorithm can be found in Ph.d.
thesis of C.B Weinstock [Wei76]. Weinstock and Wulf later pre-
sented the pseudo code of a modified version of QuickFit [WW88],
where coalescing and splitting were removed from the algorithm.
The same paper shows the application areas of QuickFit and ar-
gues for its efficiency in those cases. The algorithm was later
adapted by Iyengar et al. [IJC03] for use in a disk storage allocator.

Quick Fit uses segregated free lists to store the references to free
extents. Segregated lists is a general name for any free extent man-
agement structure, where free extents are assigned to different lists
according to some policy. In our case, segregation criteria is the
size of the extents.

There are two types of lists - quick lists (also called exact lists) and a
misc list. Up to a certain threshold, there is a quick list for each ex-
tent size. Extents exceeding a threshold are grouped within a single
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Figure 4.1: Optimal file size distribution for QuickFit

list - a misc list. This design is based on the assumption that file
size distribution follows probability density of Pareto distribution,
shown in Equation 4.1, which is skewed and heavily tailed (see Fig-
ure 4.1). The distribution functions has two parameters. Following
Iyengar’s paper, we choose a = 0.5 and b = 512, which is our grain
size.

P (x) =
aba

xa+1
for x ≥ b (4.1)

We will come back to the question of optimal file size distribution
in Appendix B.

In addition, Quick Fit assumes that the number of allocations and
deallocations is approximately equal over time. Taking into ac-
count the file size distribution, most of the free extents will be
small, and thus placed in one of the quick lists. The few larger
extents will be placed in the misc list, obviating the need for quick
lists corresponding to larger extents, most of which would be empty.
If the file size distribution is Gaussian, we can introduce a misc list
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for sizes less than some threshold. In this case, the quick lists are
covering the centre of the size distribution. The as yet unallocated
space is called wilderness (also called tail in some literature) and is
treated differently. This is the characteristic of the original Quick
Fit design, presented by Weinstock [Wei76].

The algorithm maintains an array of pointers to quick lists (Figure
4.2). Free extents below a certain threshold are placed on their
respective lists (threshold being 10 grains in this example), and
larger extents are placed in a single misc list. The algorithm is
separately keeping track of the wilderness which, in this example,
starts at 221st grain and is 29 grains in size.

If the number of large free extents becomes significant, a further
optimisation is to use several misc lists, ordered by size ranges.
This will reduce the number of extents to be searched within each
misc list, but will increase the computational complexity of locating
the appropriate misc list. This approach is used by [IJC03] in their
Persistent Multiple Free List Fit (PMFLF) (discussed in more detail in
Section 4.2) implementation as shown in Figure 4.6. The design
decision is heavily dependent on the expected allocation and deal-
location patterns. The ideal start of the misc lists and the size of
each misc list range must be determined by the number of extents
in each quick and misc list, which should be roughly equal. With
only one misc list and the assumption of the Pareto file size dis-
tribution, the system can auto-balance the number of quick lists
so as to keep the size of the misc list within the reasonable length
limit. Auto-balancing is more difficult to maintain when multiple
misc lists have to be factored in.

4.2 Analysis of the Allocation Algorithm

Used in PMFLF

Before we list the steps of our improved extent location algorithm,
we will go through the steps of PMFLF algorithm, pointing out some
of the weaknesses and possible improvements. The algorithm dis-
tinguishes between requests for small and large extents. An extent
request is considered to be large if its size exceeds the last index of
the quick list array. Please note that in Figures 4.3 and 4.4, we give
the unmodified text as it is presented in [IJC03]. The term “block”
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Figure 4.2: The classic QuickFit allocation scheme
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in that paper is used in the same sense as the term “extent” in our
thesis. The same applies for the term “tail”, which is the same as
the term “wilderness”.

Let us consider Figure 4.3, where PMFLF algorithm for small extent
requests is given. Our first observation comes in step 2. By sat-
isfying a request from the wilderness, the algorithm systematically
chops up the larger free area into smaller sections, thus increas-
ing the probability that a future large request will not have enough
space to be satisfied. The algorithm works for a system where re-
quests are predominantly small and with little variation in size.

The authors justify wilderness allocation by stating that updat-
ing wilderness pointer is less costly than splitting due to defer-
ring updates of the wilderness pointer on disk, therefore spreading
the cost over several wilderness pointer operations. It is however
not given that enough wilderness allocation requests would come
during the deference time span. Also, extent splitting cost can be
amortised by a careful design of the lazy writer in the Media I/O
Layer.

There is another argument against wilderness allocation. Given a

For a request for a small block of size s, quick lists are searched in
the following fashion:

1. If the quick list for block of size s is nonempty, allocate the first

block from the list. This involves modifying in-memory data
structures and a single disk access for modifying the AS field
for the block.

2. If the previous step fails, satisfy the request from the tail.

3. If the previous step fails, examine lists containing larger blocks

until a free block is found. This search is conducted in ascend-
ing block size order beginning with the list storing blocks be-
longing to the next larger block class.

4. If the previous step fails, coalesce all adjacent free blocks and
go to step 1.

Figure 4.3: PMFLF algorithm for small blocks
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sufficiently large number of allocation and deallocation operations,
wilderness might no longer be the largest consecutive area of free
space. This scenario is illustrated in Figure 4.5.

Step 3 presents the next problem - it does not state splitting cri-
teria. If the wilderness is exhausted and no smaller blocks are
present, the algorithm can potentially go through all misc lists,
eventually locating a very large block for this small request. As no
splitting is specified by the algorithm, the amount of wasted space
could be extremely large, if the variation in the size of free extents
is large.

Finally, step 4 opens a possibility for an infinite loop if, after the co-
alescing, there is still no consecutive free space available to satisfy
the request.

We now continue to Figure 4.4 and look at which steps are taken
to satisfy requests for large extents. In step 4, we again see that
wilderness allocation is preferred. The same objections as for the
small extent allocation are also applicable here. Step 5 continues

The following strategy is used for allocating a large block of size s:

1. Determine the misc list for block of size s, li.

2. Allocate the first block in li of size t where s ≤ t ≤ s + w without
splitting. (note: w is AWP)

3. If the previous step fails, allocate the smallest block on li of size
t where s < t. Split the block into fragments of size s and t − s,
and return the fragment of size t − s to an appropriate free list.

4. If the previous step fails, satisfy the request from the tail.

5. If the previous step fails, and i < n, search misc lists starting

with list li+1 in ascending order. Use the methods of steps 2
and 3 to search each list until an appropriate free block is lo-
cated.

6. If the previous step fails, coalesce all adjacent free blocks and
go to step 1.

Figure 4.4: PMFLF algorithm for large blocks
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Figure 4.5: Wilderness size reduction

then searching the remaining misc lists if the wilderness space is
exhausted.

4.3 Improved Extent Allocator

Our design is based on the design of PMFLF, with some exten-
sions and is shown in detail in Figure 4.6. All lists are organised
as Skip list structure [Pug89]. First comes an array of pointers to
quick lists. The array is indexed by the size of extents in grains.
This array also contains entries to the empty lists. Thus, given
the grain size, locating an appropriate quick list requires constant
time. We also have a list of ranged misc lists. Extents within each
misc list are sorted first by size and then by address. Search time
for a given extent size in each misc list is O(log n). The additional
search cost comes from the need to locate the correct misc list.
This cost is O(log m), where m is the number of misc lists. No tail
pointer is kept, since the unallocated space at the end of the stor-
age is treated as an ordinary extent. In this way we are maintaining
wilderness preservation heuristic (see Section 3.3).

4.3.1 Allocation Hints

The allocation algorithm accepts a size parameter, which tells it
how much space to allocate. In addition two hint parameters –

37



50 71 90 104 127 161 184 190110 125 131 142 1480 73 81 200 221 250

Shaded extents are allocated.

A − Linear extent address.

S − Extent size.
a skip list
− Slashed arrow represents

For simplicity, this diagram uses
grain size of 1.

Array of pointers to quick lists

List of pointers to misc lists

S:21 ; A:50 S:21 ; A:200 S:23 ; A:16120−24

S:29 ; A:22125−29

S:6 ; A:104 S:6 ; A:142 S:6 ; A:184

1021 62313611421561492 8 21 29

S:9 ; A:81

S:2 ; A:71 S:2 ; A:125

S:11 ; A:131 S:14 ; A:9010−14

8

1

2

3

4

5

6

7

9

Figure 4.6: Optimised QuickFit allocation scheme
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locality and continuity – can be provided. The locality hint is a lin-
ear address, so that the function attempts to allocate a new extent
in the closest possible vicinity after the given hint address. This
is useful if additional extents need to be allocated for a growing
file. Continuity hint instructs the function to perform a more rigor-
ous search for a contiguous extent, rather than returning several
fragments. The cost in using continuity hint is an increase in allo-
cation time. Both hints are treated in the best effort manner and
no guarantees are given that the allocated extent would satisfy the
criteria passed in the hints.

4.3.2 Acceptable Wastage Parameter

One of the parameters used by the extent allocation algorithm is
the acceptable wastage parameter (AWP). It determines whether an
extent will be split to satisfy a later smaller request or not. If the
extent is not split, some storage space is lost to internal fragmen-
tation. The reason behind this parameter is that splitting incurs
an additional disk access which is needed to write the header of a
newly created extent. As persistent storage is relatively cheap, but
slow, high-end applications might prefer to waste some space over
using additional time for disk operations. The AWP must, however,
be carefully chosen, otherwise too much space can become wasted.

Iyengar et al. [IJC03] do not specify the size of this parameter or
how it is calculated. We treat AWP as an absolute value, counted
in the number of grains of acceptable wastage. Our experiments
offer some insight into this matter (see Section 7.2.4).

4.3.3 New Allocation Algorithm

We now present our modified algorithm for finding one or more
extents to satisfy a request of size s. Even though we use ranged
misc lists, we will not distinguish between requests for small and
large extents, and will not be treating them differently as it is done
in PMFLF.

The extents on quick lists are sorted by address. Those belonging
to misc lists are first sorted by size and then by address. All size
and address calculations are performed in grains.
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We maintain two allocator-global variables that are used by the
allocation, freeing and coalescing algorithms.

• Coalesced flag indicates whether the coalescing algorithm has
been performed recently. This flag is set by executing the co-
alescing algorithm (see Chapter 4.3.4), and cleared on freeing
of every extent..

• Free space counter holds the current information about the
total amount of free space, counted in grains.

The algorithm is divided into three phases. First comes the Free

list location phase, where it is decided whether a request can be
satisfied by allocating exactly one extent, and which free list should
be used in that case. Phase two is the Single-extent allocation phase

and finally there is the Multi-extent allocation phase, which is used
when no single extent is large enough to satisfy the request. The
algorithm returns an error, if it is unable to satisfy the request, or
a list of one or more extents, whose total size is greater than or
equals to the requested size.

Phase 1: Free list location

1. Adjust the size of a request, converting it from bytes to grains
and compensating for the space needed for the extent header.
For example, with 512 byte grain size and an 8 byte header, a
request for 510 bytes is first adjusted by 8 bytes to 518 bytes
and then it is rounded up to the next higher multiple of grain
size, which is 1024 bytes in this example. It is then converted
to a request for 2 grains of space. By checking the global free
space counter, determine whether the request is satisfiable
with at least one extent.

2. If the continuity hint is given and coalesced flag is not set,
coalesce all adjacent extents that are currently present on the
free lists.

3. For the request of s grains, determine the free list that might
contain an extent of t grains, where t ≥ s. For quick lists, it is
enough to consult the entry st index s in the array of quick list
pointers. For misc lists, we check that the size of the largest
extent in the list is larger than s.
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4. If the quick list is empty or no sufficiently large extents are
present in the misc list, search through the following lists in
sequence, until a list with a suitably large free extent is found.

5. If the last list is reached and no candidate list is still located
and coalesced flag is not set, coalesce all adjacent extents and
go to step 3.

6. If step 5 was executed and still no fitting blocks were located,
use multi-extent allocation. Otherwise use single extent allo-
cation.

Phase 2: Single-extent allocation

Phase 1 has found a free list containing a sufficiently large extent
of at least t grains in size.

1. If the locality hint is given, find the first extent in the list found
in phase 1, whose address is greater than or equal to the one
given in the hint. If none is found or when no locality hint is
given, use the extent that best fits the provided size.

2. Split the located extent if AWP + s < t and return the remain-
der to the appropriate free list in the sorted order (coalesced
flag remains unchanged). Return allocated extent and exit.

Phase 3: Multi-extent allocation

1. Check against the global free space counter that there is enough
free space available for the remaining request size and an ex-
tent header. If not, free all extents allocated so far, and return
an error.

2. Find the list containing the largest available free extent. If the
locality hint is given, search the whole list for an extent, whose
address is within the shortest distance after the address in
the hint. Without locality hint use the largest extent. Let the
extent’s size be t.
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3. If s > t, more extents are still required, so continue to step 4.
Otherwise, split the last allocated extent if AWP + s < t and
put the remainder to the appropriate free list in the sorted
order (coalesced flag remains unchanged).

4. Allocate the extent and add it to the return list of allocated
extents. If their total size is equal to or greater than the orig-
inal request size, return the list of allocated extents and exit.
Otherwise decrease s by t and repeat step 1.

This algorithm is reasonably fast as the more time-consuming steps,
such as coalescing, misc list handling and multi-extent allocation,
only have to be taken in the exceptional situations. It tries to main-
tain spatial locality of the allocated extents if instructed so. The
overhead is purely computational and does not incur any addi-
tional media accesses.

The algorithm still uses deferred coalescing, except for the conti-
nuity hint, when it performs coalescing prior to the location of the
extent. The coalesced flag is preserved until any extent is returned
to the pool, so that coalescing can be avoided for at least some
consecutive allocations. Our algorithm performs coalescing before
entering the multi-extent allocation phase. The only real use for
the preemptive coalescing is when used in conjunction with the
locality hint. In that case preemptive coalescing can increase the
probability that a contiguous run of space would be found close
to the hinted address. For the coalescing algorithm see Section
4.3.4. The in-depth analysis of effects of coalescing can be found
in Sections 7.2.1 and 7.2.6.

Wilderness preservation heuristic [KV85, WJNB95] is observed in
that the algorithm always tries to use smaller extents before split-
ting larger ones, while the largest extent is always used last. For
multi-extent allocation phase the algorithm tries to use largest pos-
sible extents in an attempt to reduce the overall number of frag-
ments.

The algorithm offers minimal fault tolerance by always keeping the
state of the in-memory data structures consistent with the on-disk
state. It, for example, reverts to a consistent state if a request can-
not be satisfied. We cannot, however, avoid inconsistency, should
a system failure occur during the multi-extent allocation phase or

42



free lists

Coalescing is performed
free lists

16 2212

16

22

12 46

8

46

8

Figure 4.7: Schematic representation of coalescing

when returning the list of allocated extents to the File Link Layer1

from either of the allocation phases. In those cases, one or more
extents are marked as allocated on disk, but never reach the File
Link Layer. The responsibility for recovering such lost extents lays
on the File Link Layer.

4.3.4 Coalescing Algorithm

In [IJC03] the authors do not explicitly specify the coalescing algo-
rithm. The original design by Weinstock [Wei76] has a specification
of coalescing (or collapsing as it is denoted in his work). That algo-
rithm is, however, targeted at main memory allocation and is not
suitable for disk space allocation. There, the algorithm rebuilds
the free lists from scratch, using the information in the headers
and coalescing adjacent blocks as it finds them. This algorithm re-
quires a media access for each retrieved block and is therefore not
suitable for slow hard disks.

Below we are going to present a fast coalescing algorithm, which

1For description see Section 5.2.
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does not require copying of the in-memory structures and keeps
disk accesses to the minimum. A schematic result of running the
coalescing algorithm is depicted in Figure 4.7. The size of the ith

extent is denoted as Si, and its address as Ai.

1. Build coalescing list c of all free extents, sorted by address.
The extent headers are moved from their free lists to c. For this
purpose we are using a skip list and insertion sort method.
Due to the skip list data structure [Pug89], insertion sort
runs efficiently in O(n log n) time.

2. Traverse c from start to end and coalesce adjacent extents
using the following sub-algorithm. Start with i pointing to the
first element in c:

(a) Exit to step 3 if i is the last extent in c. Set j to i + 1.

(b) If Aj = Ai + Si then j is adjacent to i, in which case:

• let Si = Si + Sj;

• mark extent i as modified in memory;

• if j was the last extent, go to step 3 otherwise let j =
j + 1 and repeat step 2(b).

(c) When a non-adjacent extent is found:

• return extent i to the appropriate free list and update
its on-disk header if the extent was modified;

• let i = j;

• repeat step 2(a).

3. Return extent i to the appropriate free list and update its on-
disk header if the extent was modified. Finish.

We use the initial state of the QuickFit structures presented in Fig-
ure 4.6 and illustrated the steps taken by the coalescing algorithm
in Figure 4.8.

One of the strengths of this algorithm is that no copying of extent
headers is performed, thus not requiring any additional space for
coalescing.

Disk accesses to update the on-disk extent headers are performed
only when necessary – once for each modified extent header, after
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all adjacent headers have been identified. The algorithm does not
destroy the on-disk representations of the freed headers.

The algorithm is fault tolerant. Should a system failure occur dur-
ing its execution, all the on-disk headers will still have valid values.
We can use Figure 4.8 for an illustration. Suppose a failure occurs
at the point, where extent with address 81 was being coalesced.
Then, only extent header with address 50 was ever committed to
disk with its new size of 23. During the reconstruction process it
will be treated as a single extent, preceding the one with address
81. Thus all extents which headers were not committed before the
failure will remain not coalesced.

4.4 Summary

In this chapter we have investigated QuickFit – the existing alloca-
tion algorithm, found in PMFLF. We then introduced a wide range
of modifications which will improve the efficiency of the allocator,
while reducing the complexity of design. In the next chapters we
continue with the design of a system, which incorporates our im-
proved allocator. We will the implement and test our design to
verify the positive effect of our modifications.
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Figure 4.8: The steps of the coalescing algorithm
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Chapter 5

Design

5.1 System Overview

In this chapter we give a short presentation of the system’s param-
eters. In the next chapter each component is described in more
detail.

Design goals of the Extent-Based Disk Allocator are:

• It should be implementable and efficient on hard disks, with
support for Linear Block Addressing (LBA). Most, if not all,
modern hard drives hide the physical details of the media,
providing the operating system with a linear addressing inter-
face.

• We target high-end systems with fast data transfer rates and
processing times to absorb the expected housekeeping over-
head.

• The system would be used in the environments where file size
is fairly homogeneous. In such an environment the fragmen-
tation would have least impact on the allocator performance.

We are going to use a layered model, shown in Figure 5.1, which
also lists functions, belonging to each layer. Following sections
describe the layers in more detail.
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Disk

qf_mkpart() − qf_start() − qf_stop()

Alloaction Layer
qf_alloc() − qf_free()

open() − read() − write() − lseek() − close() − unlink()

File Link Layer

put_range() − get_range()

Media I/O Layer

Figure 5.1: The layered model

5.2 File Link Layer

The File Link Layer maintains the data structures responsible for
associating (linking) files with their corresponding extent(s). It re-
ceives the usual file system calls and communicates with the in-
tended subsystems. Read operations communicate directly to the
Media I/O Layer. Likewise write requests, unless they require
growing of a file, in which case the Allocation Layer is first invoked,
and then the extent obtained from the allocation is filled with data
and sent for I/O. File creation and deletion always go through the
Allocation Layer.
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File Link Layer accepts open(), read(), write(), lseek(), close() and un-
link() requests. They are typically invoked from the corresponding
system calls, after routing through the Virtual File System (VFS)
layer1.

We describe these functions here for the purpose of completeness
and from the allocator’s point of view. We are only going to imple-
ment the allocator and test it by means of simulation. The simu-
lation driver will only have the rudimentary functionality of open()
and unlink() functions, which correspond to the events present in
the allocation trace. For a complete picture of a file system, the
reader is referred to [Tan01].

5.2.1 open()

open() has two sub-functions.

• If a file does not exist, open() initialises bookkeeping struc-
tures, internal to the File Link Layer. In some cases, the size
of the file to be created is known beforehand, as for example
when we wish to copy a file. In such situation a special variant
of open() function, which accepts size as one of its parameters,
can be used. This variant would beforehand allocate the ex-
tents needed to store the specified amount of data. This is in
effect what is done by the simulation driver in response to the
allocation operation command of the trace.

• If a file already exists, the File Link Layer creates an inode
in memory and associates it with the file’s on-disk represen-
tation. An inode contains addresses of the extents associ-
ated with the file, a read/write permissions field, a file pointer
to the next I/O operation and any additional attributes that
might be needed for housekeeping purposes. In this simula-
tion the inode is limited to holding a unique file ID number
and a list of allocated extents, associated with that file.

5.2.2 write()

write() is the most complex function. If enough space is allocated

1Not discussed in this thesis
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for the data to be stored (e.g.: file pointer points to the middle of
the file), then we see which portions of the extents needs to be
updated and send corresponding requests to the Media I/O Layer.
If all or some of the data are targeted to the area outside the extents
already allocated, then an extent of a certain size is requested from
the Allocation Layer. It should be noted here that Allocation Layer
may return more than one extent if it does not manage to find a
contiguous region. The returned extent is linked with the file and
its address along with the data to be written is sent to the I/O
Layer.

It is File Link Layer’s responsibility to determine the size of the ex-
tent to be allocated, with regard to possible overbooking of space,
if the file is known to be a growing one. For example, if a file was
extended more than certain number of times during some period
of time, such a file is marked as "growing". The extents of growing
files could then be allocated aggressively, meaning more space is
allocated for such a file than initially requested. This strategy in-
tends to lessen file fragmentation of growing files as storage space
will already be allocated for a certain number of subsequent writes.
The same strategy can be applied to the first write operation of any
file in case the newly-created file will be a growing one. When
a file stops growing, then it can be truncated to free the unused
overbooked space. This strategy is used to some degree in Linux’
ext2fs.

None of this advanced functionality will be implemented for our
simulation as it does not affect the performance of the allocator
itself. The allocator will only provide an implementation of locality
and continuity hints, which can potentially be used by an advanced
implementation of the write() function in some future study, which
would aim at investigating the performance of a file system using
our allocator.

5.2.3 read()

The task of read() is rather simple. It finds which extent holds the
desired data by going through the size attributes of the extents
that comprise the file. It then sends extent address, offset into the
extent, data length and target buffer to the Media I/O Layer. As we
do not operate with payload data in our simulation, this function
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does not need to be implemented.

5.2.4 lseek()

lseek() function updates the current file offset in a file’s inode,
which indicates where the next read or write operation will take
place. No changes to the allocation structures are made. Neither
this function will be implemented for the simulation.

5.2.5 close()

close() marks a file’s control record as closed and removes it from
the list of the open inodes. It can then instruct Media I/O Layer to
flush its cache of modified information. If the file was marked as
growing and its allocation was performed in an overbooking man-
ner close() can in addition truncate the file and return the remain-
der to the Allocation Layer. The close() function will not be imple-
mented in the simulator.

5.2.6 unlink()

unlink() instructs the Allocation Layer to free the extents associated
with the file, and then removes the internal structures representing
the file. It is the Allocation Layer’s responsibility to call the Media
I/O Layer to update the extents’ headers.

If a file is still opened when unlink() is called, the function should
fail. It is the simplest solution and the one used in Microsoft Win-
dows. Alternatively we could mark the file as deleted, but defer the
actual deletion until the last reference to the file is closed. This
approach is used in various UNIX flavours, but is more difficult to
implement.

As there are no open or close operations in the trace, unlink() just
deallocates extents.
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5.3 Allocation Layer

The Allocation Layer is responsible for keeping track of the free ex-
tents and performing the housekeeping operations on them, such
as splitting and coalescing. Allocation Layer services the requests
from File Link Layer and returns a list of one or more free extents
to it.

Allocation Layer has two functions, which execute all the requests
from the File Link Layer, based on the supplied parameters. These
functions are qf_alloc() and qf_free(). In addition, qf_start() and
qf_stop() are called during system start-up and shut-down. A par-
tition is created using function qf_mkpart().

5.3.1 qf_mkpart()

qf_mkpart() is responsible for creating and initialising a partition. It
reserves a grain-sized extent for internal data – a superblock, which
is used by qf_start() and qf_stop(). This includes the information
about the first extent containing saved state, a flag indicating the
validity of the saved state and a flag saying whether the partition
was unmounted cleanly.

As our simulator does not support stopping and restarting of the
trace execution, the implementation of qf_mkpart() will only include
the initialisation of the in-memory representation of a partition.
This means that some of the functionality of qf_start() (described
next) and qf_mkpart() is merged.

5.3.2 qf_start()

qf_start() is the function that would typically be called at file system
mount. It first tries to restore the free lists from the data saved dur-
ing the shut-down process and then clears the on-disk flag which
is marking the saved data as valid. This is done so that an eventual
crash at a later point would lead to data reconstruction.

If the saved data are not initially marked as valid, qf_start() recon-
structs the free lists by traversing all the extents on the hard disk.
It starts with the first extent header of the partition. If the AS field
indicates that the extent is free, it is added to the appropriate free

52



list, based on its size. Then the next extent is located by adding
size value of the current extent to the current extent address. This
continues until the end of the partition is reached.

Finally, the extents used for the restoration space are themselves
put into the free list. The system state is then changed to mounted.

We will not be implementing this function in our simulation as we
leave it to future work to analyse the effects of saving the allocator’s
state to disk.

5.3.3 qf_stop()

The task of qf_stop() is to save the state of the allocator before a file
system is unmounted. The space for the saved state is allocated
by the allocator itself, and the address of the first extent is stored
in the superblock extent reserved by qf_mkpart(). If there is not
enough free space, the allocator cannot save its state and will have
to go through a slower reconstruction process during the startup.

The function first marks the saved state to be read by qf_start() as
invalid. It then writes extent headers from all free lists to the disk.
Finally the saved state is marked as valid. This way we ensure that
the free lists are reconstructed from the saved state only if they
were completely committed to disk. A failure, preventing a quick
reconstruction of free lists can arise if there is not enough hard disk
space to write all the header information or if the system crashes
due to, for example, a power failure during the commit phase.

As the last step, the system state is changed to unmounted to indi-
cate that all on-disk extent headers are in a consistent state. This
happens even if the function was unable to save the restoration
data.

We will not be implementing qf_stop() in our simulator.

5.3.4 qf_alloc()

qf_alloc() satisfies the allocation requests. It uses a variation of the
Quick Fit algorithm as described in Section 4.3.3 and the coalesc-
ing algorithm described in Section 4.3.4.
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Figure 5.2: A schematic representation of extent freeing

5.3.5 qf_free()

qf_free() is supplied with a list of extents that are to be freed. The
function locates an appropriate free list for each extent and inserts
the extent into it, observing sorting criteria. The AS field of the on-
disk header is cleared through the Media I/O Layer. The allocator-
global coalesced flag (see Section 4.3.3) is cleared for the benefit of
the allocation algorithm. Note that the extents are not coalesced at
this point, which is schematically illustrated in Figure 5.2.

5.4 Media I/O Layer

The Media I/O Layer receives requests from the upper layers and
writes and reads extents or their parts from the hard disk. Typi-
cally it would interact with the buffer cache of the operating sys-
tem. If buffer cache is not available, it can include a variation of
a lazy writer to allow grouping of write operations by performing
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them in bursts.

All requests to the layer are in the form of extent address, offset into

extent, data length and data pointer tuple. As extents can be very
large, it is not practical to perform writes on a whole extent. A min-
imum disk transaction size must still be observed, so no request
can be smaller than one sector in size.

The layer contains two functions: get_range() and put_range(). Tho-
ugh we will describe much of the functionality of a complete ver-
sion, the implementation is kept as simple as possible due to the
goals of our allocator simulation.

5.4.1 get_range()

get_range() reads the requested amount of bytes from the disk and
places the data in the provided buffer. Data are read in an aligned
manner in complete grains to guarantee sector alignment. The
requested subset of data is then copied to the target buffer and
returned to the calling layer. This function will not be needed for
the purpose of the simulation as our version of the allocator only
performs write operations.

5.4.2 put_range()

put_range(), just like get_range() performs I/O transaction in inte-
gral numbers of grains. It means that, for example, to write an
extent header, a total of 512 bytes need to be written to the disk.
Another implication is that if only a portion of the grain is to be
modified, then the complete grain has to be read from the disk,
modified in memory and then written back. In some situations,
when old content of the grain is unimportant, the read operation
can be omitted. To signal this, put_range() accepts an extra param-
eter, telling it whether the write operation will be performed in a
destructive manner. The destructive writing is used, for example,
when the Allocation Layer updates the on-disk extent headers be-
cause the contents of the extents is meaningless prior to allocation
and is no longer needed after freeing.

A form of a “lazy writer” can also belong to this function, if the
underlying operating system does not implement a buffer cache.
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In [IJC03] the authors describes it as Optimised Batch Allocation
(OBA). They, however, logically place this mechanism at the Alloca-
tion Layer level. Several allocation requests are accumulated, but
no extent assignments are performed. After a certain period of time
all free extents in the lists are combined into a single list, sorted by
size and all the backlogged allocations are executed from this list
against a single sorted list of free extents. This effectively degrades
Quick Fit algorithm to a linear Best Fit implementation.

For the purpose of this simulation put_range() will be kept as simple
as possible. We do not perform any writing at all, but instead count
the number of disk accesses that would have been performed.

5.5 Summary

In this chapter we introduced the design for our improved allocator
and a surrounding file system. As the primary goal of this thesis
is the design and evaluation of an allocator, we kept the discus-
sion of the file system functionality to the minimum, concentrating
on those functions, which will be implemented in the simulation
driver. In the next chapter we present implementation detail for
each function of the allocator and the simulation driver, using the
outlined design presented in this chapter.
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Chapter 6

Implementation

In this chapter we describe the implementation of our allocator.
The reader is referred to Appendix B for the presentation of the
properties of the allocation trace in use. The source code listings
are available in Appendix C. The specifics of the trace will dictate
some of the implementation characteristics of our allocator.

We will start with an overview of the system and a presentation of
once central data structure, used throughout the entire simulator
– Skip Lists. We will then continue with describing data structures
and implementation details of each part of the allocator.

6.1 Overview

Based on the goals of our simulation we consider it sufficient to im-
plement a fully-functional extent management part of the allocator
with some rudimentary interfacing to the Media I/O layer. The im-
plementation of the simulator follows the general layered layout we
presented in Chapter 5.1.

The File Link layer is represented by the trace driver. Because we
do not have any data to be stored in the files, it is sufficient for the
trace driver to perform a series of qf_alloc() and qf_free() calls. The
driver also initialises the allocator with a certain amount of free
space through a call to qf_mkpart() function.

As the trace is executed in one continuous operation, we do not
need to implement the functionality of the qf_start() and qf_stop()
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functions. The impact of stopping the execution on the placement
decisions after a restore is left for future work.

The allocation and deallocation operations that the allocator is re-
quested to perform, always result in one type of disk write oper-
ations – extent header updates. As disks vary in size and per-
formance parameters, it is more accurate and reproducible for our
allocator to count the number of write requests that have to be per-
formed as a result of a trace operation. The Media I/O layer there-
fore implements only a rudimentary put_range() function, which
increments a write operation counter.

We use Skip lists [Pug89] to organise all internal data structures of
both the simulation driver and the allocator itself. Skip lists have
several desirable properties, comparable to other data structures,
such as balanced binary search trees. At the same times they
are easy to implement and maintain. The reader is referred to
Appendix C.2.2 for the implementation details.

6.2 Simulation Driver Implementation

6.2.1 Data Structures

The trace driver keeps track of the individual “files” in the sim_file
structure. It contains a copy of the create trace event, which holds
the information about the file size and the file’s ID number. The
sim_file structure also contains a pointer to a skip list of allo-
cated extents, associated with this file. This structure corresponds
to the inode structure of a File Link Layer.

1 // From storage_types .h :

2 #define OP_CREATE 1
3 #define OP_DELETE 2
4 #define FL_REPLACED 16
5 #define FL_DELMOD 32
6

7 struct al loc_trace {
8 unsigned int f i l e _ i d ;
9 unsigned int size ; //set to 0 i f operation is " delete "

10 unsigned char f lags ; //Contains OP_ and FL_ f lags

11 } __attr ibute__ ( ( packed ) ) ;
12
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13 //From simalloc .h :

14 struct sim_f i le {
15 struct al loc_trace at ;
16 struct skip_ l is t ∗ext ;
17 } ;

The Memory Statistics Module

As part of the simulation, the driver gathers statistics about mem-
ory consumption by the allocator and the driver itself. For this
purpose we have written wrapper functions for malloc() and free(),
called stat_malloc() and stat_free(). In addition to the usual param-
eters accepted by the underlying functions, the wrapper functions
take in a parameter of memstat_t type (shown below), which tells
the wrapper function which part of the program issued the call:

1 typedef enum {
2 MEM_IGNORE, //Al l skip l i s t s are traced by default . This class

3 //is used i f we want to disable tracing .

4 MEM_MLL, //The l i s t of misc l i s t s

5 MEM_QLISTS, //Quick l i s t s

6 MEM_MLISTS, //Misc l i s t s

7 MEM_EXTENT, //In−memory extent headers

8 MEM_COAL, //Coalescing master l i s t

9 } memstat_t ;

The module keeps an array of meminfo structures, containing a
structure for each of the categories in the memstat_t type.

1 struct meminfo {
2 uint64_t running ;
3 uint64_t max;
4 uint64_t to ta l ;
5 FILE ∗malloc_f i le ;
6 FILE ∗ f r e e _ f i l e ;
7 } ;

All pointers to allocated memory, along with their sizes are kept in
a dedicated skip list, which is ordered by memory address values.
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6.2.2 Implementation Details

The trace driver consists of three central functions – trc_driver(),
create_file() and delete_file().

First, the main() function initialises all the parts of the simula-
tor, memory statistics module (described later) and the media I/O
interface. It also creates a new partition with the user-provided
size and AWP values by calling the qf_mkpart() function. Finally
trc_driver() function is called.

trc_driver() is a loop which reads an event from the trace and calls
either create_file() or delete_file() depending on the operation stored
in the trace’s flags field. The function also collects statistics about
the maximum amount of disk space that would be needed at any
given time.

The create_file() function creates a new sim_file object and calls
qf_alloc() to request the extents for this file. It then stores the struc-
ture in a skip list of active files, which is sorted by the file ID num-
ber.

The delete_file() function locates and removes a file with the given
ID number from the list of active files. The extents, which belonged
to that file are then returned to the free pool by calling qf_free()
function. Finally, the memory occupied by the sim_file structure
is freed.

The Memory Statistics Module

The stat_malloc() function first passes the call to the usual malloc().
It then creates an entry consisting of the returned address and the
size and stores that entry in a skip list. The total and the maximum
memory consumption by the provided category is calculated and
stored in the appropriate entry of the meminfo structure. If writing
of statistics to file is enables, the current memory consumption by
the particular category is written to disk.

The stat_free() retrieves the memory node information from the skip
list, using the provided address as a key. The sizes values of the
provided category are updated and an eventual write out of the
new memory consumption to disk is performed. It then calls the
standard free() to free the memory referenced by the pointer.

60



6.3 Allocator Implementation

6.3.1 Data Structures

The central structure of the allocator is the qf_allocator struc-
ture. It holds an array of skip lists, representing the quick lists of
the algorithm. All free lists originate in this structure. The Quick
lists are implemented an array of skip lists, ql. The pointers to the
misc lists are organised in the mll skip list – a list of misc lists.
The boolean coalesced flag corresponds to the one mentioned in
the algorithm and determines if the coalescing procedure should be
run. Finally, the free member holds a continuously updated infor-
mation about the amount of space available for allocation, which
is counted in grains.

Each misc list is rooted in misc_list structure, which contains a
skip list of free extents assigned to the misc list and the starting
value of the misc list size range. The pointers to the instances
of this structure are stored in the nodes of mll skip list of the
qf_allocator structure.

All the free lists hold pointers to the extent structure at their
nodes. The structure describes and extent by its size and its ad-
dress.

At this point we must also note that all addresses and sizes use a
user-defined type asize_t, which is 64 bits in size in the current
implementation, but can easily adjusted for other purposes. All
addresses and sizes used internally in the allocator are counted in
grains.

1 //From common.h :

2 typedef enum {
3 FALSE,
4 TRUE,
5 } bool_t ;
6

7 typedef uint64_t asize_t ; // Address size in grains

8

9 struct extent {
10 asize_t s ize ;
11 asize_t address ;
12 } ;
13
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14 //From al locator .h :

15 struct misc_l ist {
16 asize_t range_idx ;
17 struct skip_ l is t extents ;
18 } ;
19

20 struct qf_al locator {
21 struct skip_ l is t ql [NUM_QUICK_LISTS] ;
22 struct skip_ l is t mll ;
23 bool_t coalesced ;
24 asize_t free ; // Number of f ree grains

25 } ;

6.3.2 Implementation Details

The implementation of the allocator closely followed our proposed
design of Section 5.3 as well as the algorithms described in Sec-
tions 4.3.3 and 4.3.4. The implementation is modular and uses
many helper functions to perform frequent or common tasks, such
as removing an extent from a free list or splitting an extent. Below
we will describe some of the central parts of the allocator imple-
mentation.

Initialisation

The allocator is initialised in function qf_mkpart(). The function
first initialises the qf_allocator structure and all its permanent
skip lists. It then proceeds to creating a new extent with the pro-
vided size and a starting address of 0. The size of a new virtual
partition provided to the function is in bytes, so it is converted to
grains before the wilderness extent is created. Finally the extent is
stored in an appropriate free list by a call to the general store_ext()

function.

Allocation

The implementation of function qf_alloc() and its helper functions
closely follows the allocation algorithm described in Section 4.3.3.
The function is provided with a request for desired size in bytes,
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along with a continuity hint and a locality hint. The locality hint is
a grain (or LBA) based address, so qf_alloc() does not need to con-
vert it. The size value is, on the other hand, adjusted as described
in the algorithm, taking into account the size required to store the
extent header.

A preliminary check is then made to ensure that the request can
be satisfied at all. It is easier to perform than catching failure
conditions in several different helper functions, which are called
during the allocation process.

The function then takes the steps described in the allocation algo-
rithm, calling helper functions to perform an eventual coalescing
and branching off to a single-extent or a multi-extent allocation.

Single-extent Allocation

The function for single extent allocation, single_alloc(), locates a
suitable extent in the provided candidate free list and returns it
as the only node of the provided skip list. We use a skip list for
both single-extent and multi-extent allocation to provide a uniform
interface to the File Link Layer.

The function is provided in the desired size in grains, as calculated
by the qf_alloc() function.

Depending on the type of the candidate free list, either find_ext_ql()

or find_ext_ml() helper functions is called. The distinction is made
because of the different search criteria for the two types of the lists.

• find_ext_ql() returns the first extent on the quick list if no lo-
cality hint is given. With locality hint, it performs a skip list
search, finding an extent which address is greater than or
equal to the provided locality address.

• find_ext_ml() is more complex. Without locality hint, it distin-
guishes between the cases of being invoked from multi_alloc()
and single_alloc(). In the first case it simply returns the last
extent on the misc list, which is, by sorting invariant, is the
largest one. In the latter case, is searches the skip list for any
extent which size is greater than or equal to the provided size
parameter. With the locality hint, find_ext_ml() acts the same,
independently from where it was called. It first uses skip list
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search to quickly locate the first extent of a suitable size and
address. It then proceeds traversing the skip list node for
node, trying to find an even better locality match at the cost
of returning a larger extent than requested.

Before returning the located extent, a final comparison is made
to ensure that the extent is not too large. If it is larger than the
boundary of the AWP parameter, the extent is split, using a helper
function.

Multi-extent Allocation

The function multi_alloc() is also written to closely follow the pro-
posed algorithm.

The size parameter, received by the function is in bytes, because we
cannot determine beforehand how many extents will be needed to
satisfy the request and the on-disk space consumed by each extent
has to be taken into account on the fly.

The whole function is a single do...while loop, which allocates
individual extents in a fashion, similar to the single-extent alloca-
tion method, until the total size of the allocated extents is equal to
or greater than the provided size. The last extent might need split-
ting if it exceeds the boundaries set by AWP. The body of the loop
is divided into three distinct phases.

In the first phase we check if there are enough grains to accommo-
date the remaining bytes and a header. If we are out of disk space,
the return list must be cleared and deleted as some extents might
have been already allocated prior to the failure.

In the second phase we locate a candidate free list with the largest
possible extent. The candidate list can either be a quick- or a misc
list. We then use either find_ext_ql() or find_ext_ml() to retrieve and
extent of desired size and location. These functions were described
in the previous, Single-extent Allocation, section.

In the third phase we perform size comparisons to see if more ex-
tents are needed. In case the extent is last one, we additionally
check if splitting needs to be done. Finally, the allocated extents
are added to the provided skip list.
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Deleting and Storing of the Extents

The extents are removed from their free lists by a call to delete_ext()

function. This function first removes the extent from its skip list
and then checks if it was the last extent on a misc list, in which
case the misc list itself is deleted from the list of misc lists. The
commit parameter is used to determine whether the changes should
be written to disk. We do not want to do an excessive header up-
date if an extent splitting is about to occur, because the splitting
function will need to update the extent header anyway. The on-
disk headers are neither updated if the extents are removed for the
purpose of coalescing.

The function store_ext() is responsible for placing a newly-freed ex-
tent in an appropriate free list, creating a new misc list if it is
needed. In the end the function makes an update of the on-disk
header. The boolean parameter commit governs that action. It is
kept for the benefit of the coalescing function to avoid an extra disk
access if an extent is returned to a free list without being modified.

Both functions adjust the free member of the qf_allocator struc-
ture, thus keeping the free space counter up to date.

Freeing

When a file is deleted, qf_free() function is called with the return
list of extents as its parameter. The function goes through the list,
moving the extents from it to the appropriate free lists. In the end
the return list itself is deleted.

The qf_free() function can also be called inside the allocator from
multi_alloc(), if that function fails to acquire enough extents to sat-
isfy a request and must abort the allocation process.

Splitting

Both single_alloc() and multi_alloc() call split_ext() function to trim
down the provided extent to a new size and write that size to the
on-disk header. The remainder is placed in an appropriate free list
by a call to store_ext() function.
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Coalescing

The flow of the coalesce() function follows closely the algorithm pro-
vided in Chapter 4.3.4. We use a skip list, which we call a clist to
created an address-sorted sequence of all extents on the free lists.
The sorting process is basically an implementation of an insertion
sort algorithm. The sorting time is, however, O(n logn), thanks to
the properties of the skip lists. The on-disk headers of the extents
are not touched during this phase, so an eventual failure will not
affect the integrity of the system.

Next we coalesce the extents and move them to the appropriate
free lists. We instruct th store_ext() function to update the on-disk
header of the returned extent only in case it was modified by being
merged with other extents.

We use a one-pass implementation of the algorithm. It is safe to
use as long as we do not clear the on-disk headers of the merged-
in extents. If the obsoleted extent headers are to be cleared, we
need a more time consuming two-pass implementation to ensure
fault-tolerance, marking the extents as freed and modified in the
first pass, while using the second pass to write out modified ex-
tents before the freed ones are cleared. That way, if a crash occurs
during the second pass, the integrity of the on-disk headers would
be preserved.

Finally the coalesced flag of the qf_allocator structure is set
and the now empty clist is deleted.

Header updating

All header updates are executed through functions read_hdr() and
write_hdr(). In the current implementation, read_hdr() is never used
by the allocator and has therefore only a rudimentary call to the
Media I/O Layer. The write_hdr() function is fully implemented. It
first scrambles the size and the allocation status values as shown
in Figure 3.1 in Chapter 3.2. It then call the put_range() function
of the Media I/O Layer to commit the header in a destructive way.
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6.4 Media I/O Layer Implementation De-

tails

The Media I/O Layer’s two interface functions are put_range() and
get_range(). Both functions are implemented in a rudimentary
fashion, updating the write and read counters respectively.

The put_range() function, has the parameters describing the disk
address and the size of the data to be written and a pointer to the
data itself. In addition, it has a boolean destructive flag. If set,
the function will not preserve the remaining contents of a grain if
only a portion of that grain need to be modified. This a normal
case for the allocator – when an extent is allocated, it does not yet
have any payload, so overwriting the bytes after the header is not
dangerous. Similarly, when an extent is freed, its payload is no
longer needed and can be destroyed.

As the get_range() function is never called either directly or through
the put_range() function, its counter will always remain zero in our
simulator.

6.5 Summary

In this chapter we presented the implementation of the allocator,
based on our improved design, along with the simulation driver
and statistics collection modules, which we will use to evaluate our
implementation in the next chapter. Our implementation is mod-
ular, simple and is easy to maintain. Whereas XFS claims to use
approximately 50000 lines of C code [SDH+96], our implementa-
tion uses 2200 lines for the allocator and the supporting system.
Even if the File Link and Media I/O layers were fully implemented,
we doubt that the complete system would have used more than
20000 lines of code.

This implementation will be thoroughly evaluated using a wide va-
riety of tests presented in the next chapter.
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Chapter 7

Evaluation

7.1 Evaluation Parameters

Based on the trace characteristics described in the previous chap-
ter, we can now perform the evaluation of our allocator’s perfor-
mance. We start by describing the adjustable parameters of the
allocator, then continue to presenting the properties of the allo-
cator that we wish to evaluate. We finish this chapter with the
presentation of the evaluation results.

7.1.1 Adjustable Parameters

The allocator has four degrees of freedom, which can be modified
to adjust its performance:

• grain size;

• the size of the partition;

• acceptable wastage parameter (AWP) value and

• the activation of the coalescing code.

We use a constant grain size and set it to the hard disk sector
size value of 512 bytes. We will now look at each of the remaining
parameters and define the values to be used with the simulation.
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The Size of the Partition

The partition size value is a parameter that affects the performance
of the allocator in the strongest way. Given enough space, all re-
quests from the trace can be satisfied by allocating new extents one
after another. This way, the simulation will not be affected by the
other two parameters.

For this simulation we define four partition size classes. All sizes
are relative to the maximum number of bytes of disk space re-
quested by the simulation driver at any given time – the peak load
of the trace. When describing the simulations we will always state
which partition class was used.

The peak load of our trace, adjusted for header size and minimum
internal fragmentation wastage is 9683949 grains or 4728.49MB.
This value was obtained by running the simulator with the esti-
mated1 maximum allocated bytes value, as reported by the trace
generation program and AWP set to zero.

The partition size classes and their sizes in megabytes are:

Huge partition size set to the double of the peak load or 9458MB.

This partition class can be seen as a “generous corporate com-
pany” class, where a system administrator always has re-
sources to install additional hard disks long before they are
needed.

Large partition is 10% larger than required by the trace. It is
5201MB in our simulation.

This class represents a “good administrator”, who never lets
the system run out of space completely, but at the same time
is not willing to waste money to buy new hard disks before
they are needed.

Medium partition provides 1% more space than the maximum trace
load. It is 4776MB in our simulation.

This class is for a “lazy administrator”, who checks on the
system once a month to see if it is still running and installing

1The estimation process of the trace generator does not have access to the
deletion time of a file until the complete log is parsed. It therefore treats all not
replaced files as though they live until the end of the simulation, thus producing
a large overestimation. See output from trace generator in Appendix D.1.2
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the new disk capacity at the last possible moment. Or maybe
the said administrator never gets the funding he asks about?

Minimum partition has only enough space to satisfy the peak load,
rounded up to the nearest megabyte. It is 4729MB in our
simulation.

This is a scenario, where a company decided that they do
not need an administrator at all, and after firing him, they
promptly forget about the system needs and allow it run com-
pletely dry.

The partition size is controlled at run time by -p parameter passed
to the simulator program.

Acceptable Wastage Parameter

AWP has the second strongest influence on the space utilisation
as it consciously increases the internal fragmentation. Most of the
tests will be run with no wastage, that is AWP set to zero. Only the
tests designed to evaluate the impact of AWP on system utilisation
will change AWP to other values. We will however never use AWP
that is greater than 18 grains due to reasons described in Section
7.2.4.

AWP is set during run time by the -w parameter. If omitted, zero
AWP is assumed.

Coalescing Off Parameter

The presence of coalescing is the last parameter of our allocator,
which can be changed. Coalescing can be considered as one of the
more costly operations, both in terms of computational demands
and the number of disk accesses. We shall investigate this by turn-
ing the coalescing procedure off while keeping other parameters
unchanged and observe the effects.

Coalescing can be turned off at run time bu supplying the -nc
parameter on the simulator’s command line.
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7.1.2 Overview of Measurements

There are many aspects of the allocator that can be measured.
We decided to perform measurements which show the effects of
the above-mentioned parameters in the clearest manner. These
measurements are:

• Memory consumption of the various allocator categories as
the simulation is progressing.

• The allocator’s computational overhead, measured in the time
needed to complete the simulation for each partition class.

• The number of write operations as a function of initial free
space.

• Impact of AWP on the number of write operations when the
partition size and coalescing state are held constant.

• Internal fragmentation as a function of trace execution pro-
gression.

• Internal fragmentation at peak allocation load.

• File fragmentation as a correlation between the number of ex-
tents allocated and the number of files in the trace.

• The efficiency of the coalescing algorithm, counting further:

– the number of calls to the coalescing function;

– the number of extents merged for each call

– coalescings resulting in single-extent allocations;

– coalescings, where multi-extent allocation was still needed
and

– coalescings avoided due to setting of the coalesced status
flag (see Section 4.3.4).

• The impact of coalescing in the near-exhaustion case on the
file fragmentation and the number of write operations.

• The state of the free disk space pool as the simulation pro-
gresses.

In the next section we will describe each test in more detail and
present the evaluation results.
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7.2 Test Results

This section covers the evaluation tests performed to examine the
efficiency of our allocator. For each test we first describe its pur-
pose, then present its parameters and finally give the results along
with a short analyses.

All tests were run on Cygwin_NT 5.1 with a 3,2GHz Pentium 4HT
CPU and one gigabyte of physical memory.

7.2.1 Memory Usage

In this test we examine the allocator’s memory consumption. We
are interested in both the final state and the development through-
out the simulation run. For this purpose, we instruct the memory
module to dump the running consumption of memory by various
part of the simulation to files as memory allocations and frees oc-
cur.

For this test we are going to run the simulation with Large partition
size class, AWP set to 0 and coalescing enabled. Large partition size
is chosen because the simulation is expected to make use of all its
components, without placing excessive stress on them.

We can expect a small variation in memory load from test run to
test run, due to the random nature of skip list node allocation. The
results presented here are from one representative test run.

When collecting data about the memory load, we take note at what
time during the execution a particular measurement was taken.
In this case, we measure the time in memory management events,
where an event counter is advanced during each call to stat_malloc()

or stat_free(), independent of which allocator component initiated
the call. That way we can easily consolidate data collected from
various parts of the allocator into combined graphs.

Moreover, we must use memory management events, as there is
no one-to-one correlation between memory usage events and the
events in the trace. For example, a coalescing causes several thou-
sand memory events in free lists, extent headers and the coalesc-
ing list categories. A coalescing is, however, initiated by one trace
event. If trace events were used, all the dynamics of memory usage
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Figure 7.1: Memory usage for coalescing

would have been lost. Therefore, all memory usage graphs have
these memory management events along their X-axis.

Tracking memory consumption gives us an additional bonus – we
can indirectly visualise the inner workings of the allocator as it
executes the trace and point out the various stages of the allocation
process. This feature of the memory consumption analysis is so
useful, that we will be referring to these graphs in the later test of
the specific allocator sub-systems.

After approximately half way through trace execution the total amount
of memory consumed by the allocator reaches a steady state, where
the number of memory allocations and deallocations is approxi-
mately equal.
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Coalescing List

On Figure 7.1 we can see five spikes, three of which come back-
to-back at the right-hand-side of the graph. The number of spikes
tells us that coalescing was performed five times, while the height
of the spikes reflects the total number of extents that had to be
sorted and coalesced. In the worst case, the coalescing list con-
sumed 25000 bytes. However large this number seems, we must
remember that the free lists are emptied during the coalescing and
consume less memory. We shall see it in the correlation analysis.

The fact that the subsequent coalescings used about half as much
space can be explained by a supposition that fewer free extents
managed to accumulate since the previous one. Here we must also
draw attention to the fact that the first coalescing occurred more
than half way through the trace execution, as it can be seen from
the event counter2. Free disjoint extents had therefore much longer
time to accumulate before the first coalescing took place.

We will see this graph again when looking at the memory usage
correlation between various parts of the allocator.

List of Misc Lists

Another interesting part of the allocator, which consumes little
memory, but greatly reflects the flow of the simulation, is the list
of misc lists.

As we recall, misc lists are themselves stored on a dynamically
adjusted list. When a misc list becomes empty, it is deleted and
removed from the list of misc lists. From Figure 7.2 we can see
that this tactic pays off as the size of the list does decrease during
some parts in the middle of the simulation.

2Though there is no one-to-one correlation between file and memory alloca-
tion and deallocation events, the majority of file allocation will result in one
memory operation, when an extent is removed from a quick list without split-
ting. Likewise, the majority of file freeing will result in one memory operation,
when one extent is moved to its designated free list. The exceptions, where ad-
ditional memory operations are required are not numerous. Such operations
are: 1) multi-extent allocation and freeing; 2) misc list administration, resulting
in manipulation of the list of misc lists; 3) splittings and 4) coalescing. We can
therefore read from the memory consumption graphs an approximate position of
the file event trace execution progression.
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Figure 7.2: Memory usage by the list of misc lists

The graph displays several distinctive features. We shall now look
at each of them.

Between events 5.37 · 106 and 5.39 · 106 we observe a sudden increase
in the memory consumed by the list of misc lists. This is magnified
in Figure 7.3. This can happen during a sequence of extent alloca-
tions, where after each splitting the free portion of an extent would
have such an inconvenient size that it has to be placed on its own
misc list. This supposition is supported by the fact that the load
on the list decreases steadily and relatively fast after that, meaning
that many of the spread-sized extents came in use short time after
the burst.

We observe that prior to the burst the majority of splittings resulted
in new extents either being placed on the same misc lists or moved
to the quick lists. This will be more obvious when we examine the
correlation graph later in this chapter.

The next interesting group of events is the effect of coalescing on
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Figure 7.3: Memory usage by the list of misc lists (burst magnifi-
cation)

the size of the list of misc lists. Figure 7.2 clearly shows three
anomalies, where the size of the list drops almost to zero. At these
points, the coalescing list was constructed, leading to the emptying
and deletion of the misc lists. We said earlier that the list of misc
lists emptied almost to zero, because the header of that list is never
freed and still consumes some memory.

The first two occurrences of coalescing show that there is no corre-
lation between coalescing and the resulting memory consumption
by the list of misc lists. This is confirmed when we examine the
third occurrence closely. It consists of three consecutive coalesc-
ings, as seen in the magnification in Figure 7.4, where coalescing
event curve is superimposed over the sawtooth-like curve of the list
of misc lists. The graph shows that only after the first coalescing in
this series, there were less lists in use than before. We have, how-
ever, observed an opposite trend too, while doing test repetitions.
We explain this phenomenon with the probabilistic nature of skip
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Figure 7.4: Memory usage by the list of misc lists (coalescing se-
quence magnification)

lists, where the level of the list – and thus the memory consump-
tion of individual nodes – can vary from run to run3. This theory
is supported when we, in the next section, examine the memory
consumption by the extent headers and discover that the two last
coalescings did not lead to any significant change in the number of
extents.

Continuing to examine Figure 7.4, we observe another interesting
fact. The misc lists start to get emptied and deleted from the list of
misc lists approximately half-way through the coalescing process,
or, in other words, almost at the very end of coalescing list con-
struction. That means that the overwhelming majority of extents
reside on quick lists and the misc lists are very sparsely populated.

Observe, that while the coalescings seem to come back-to-back,

3Random number generator is re-initialised with the system time value on
initialisation of each skip list.
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there must have been at list one call to qf_free() between them,
otherwise the coalescing algorithm would not have been invoked
(see Chapter 4.3.4).

After the last coalescing, the load on the list of misc lists continues
to steadily grow, until it sharply reaches its maximum at the end
of the simulation. We never explicitly free memory consumed by
the lists and extents at the end of the simulation. The graph in
Figure 7.2 ends therefore at its peak, when all extents were freed,
and a considerable number of those had to be placed in a wide
variety of misc list ranges. Had we freed the memory at the end of
simulation, we would have observed a steadily descending ramp,
reaching zero value in the end.

Extent Headers

Extent header have the highest memory consumption, claiming as
much as 830KB of memory, as can be seen from the upper graph of
Figure 7.5. In that figure we combine the memory load for extents
in the upper curve with the memory load on the coalescing list in
the lower curve to illustrate the impact of coalescing on the number
of extents. The figure shows the memory consumed by all extents
– both those residing on the free lists and those allocated and sent
to the File Link Layer.

During the first part of the simulation, the number of splittings is
dominating, leading to a rapid increase in extent header memory
consumption. Some of the increase shows burst properties, espe-
cially the one after event number 1.1 · 107. We can suppose that
those parts of the trace were dominated by allocation and had few
or no file deletions, leading to consumption of all available extents
and a constant need to create new ones.

The coalescing had a strong effect on the number of extent, when
it was performed for the first time, leading to a 19% drop in mem-
ory consumption. The subsequent coalescings did not have the
same effect. If we examine the magnification of the three consec-
utive coalescings in the lower graph of Figure 7.5, we can see that
the subsequent two coalescings seemingly did not have any effect
whatsoever. In fact, when we inserted additional probes and re-run
the trace, we discovered that those two coalescings managed to find
only two pairs of adjacent extents each. The reduction in memory

79



0 0.5 1 1.5 2 2.5

x 10
7

0

1

2

3

4

5

6

7

8

x 10
5

Event counter

B
yt

es
 u

se
d

Extent headers
Coalescing list

Three consecutive coalescings,
magnified in the graph below 

2.018 2.02 2.022 2.024 2.026 2.028 2.03 2.032 2.034 2.036 2.038 2.04

x 10
7

0

1

2

3

4

5

6

x 10
5

Event counter

B
yt

es
 u

se
d

Extent headers
Coalescing list

N
ot

ic
ea

bl
e 

re
du

ct
io

n 
in

   
 

ex
te

nt
 h

ea
de

r 
m

em
or

y 
us

ag
e 

T
w

o 
ex

te
nt

 h
ea

de
rs

 fr
ee

d 
−

   
   

  
un

no
tic

ea
bl

e 
re

du
ct

io
n 

by
 1

6 
by

te
s

T
w

o 
ex

te
nt

 h
ea

de
rs

 fr
ee

d 
−

   
   

  
un

no
tic

ea
bl

e 
re

du
ct

io
n 

by
 1

6 
by

te
s

Figure 7.5: Memory usage by the extent headers in combination
with coalescing
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consumption was so negligible – only 16 bytes in each case – that
it is not visible on the graphs.

These observations have two important consequences:

1. With a large enough distance between coalescings, they have
a significant positive effect on the memory consumption. Co-
alescings should therefore be performed on a regular basis.

2. When the distance between coalescings is too small, coalesc-
ings do not have any positive effect on the memory consump-
tion, and can even in some cases worsen it, if the recon-
structed free skip lists assume a higher level. It also intro-
duces an unnecessary computational overhead.

Further evaluation of the coalescing algorithm can be found in Sec-
tion 7.2.6.

Memory Consumption by the Free Lists

Finally, we present the memory used by the free lists. It is done
in conjunction with the other memory consumption to set it into
proportion. We shall first look at the graph in Figure 7.6, where
memory usage both the list of misc lists and the misc lists them-
selves are shown. The upper curve represents the misc lists. As
the two curves have an order of magnitude difference in memory
consumption, we use logarithmic scale on the Y-axis to allow for
comparisons of the two curves. Note that both curves almost mir-
ror each other’s in their progression, which strongly suggests that
there is seldom more than a couple of extents on each misc list at
any given time.

We now go on to Figure 7.16, which is comprised of two graphs,
showing the first and the second part of trace execution. We split
the diagram into two parts partly to bring out the details and partly
because the program used to generate the graphs could not handle
the complete data set in one go. From top to bottom, the upper red
curve is the memory consumed by the extent headers, the next,
black, curve is the memory consumption of the quick lists. Lower
still, the magenta curve represent the memory requirement for the
misc lists, while the blue curve going along the X-axis represents
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the list of misc lists. The spiky green curve is our familiar footprint
of the coalescing procedure.

First, we analyse the upper graph. Memory consumption of all
the components grows, though at different rates. Quick lists are
the most used, while the misc lists do not become loaded in any
significant way until after event 0.5 · 107, which is clearly visible in
Figure 7.6. This can be explained with a supposition that several
large files from the Helix server become freed at that moment.

The sudden burst in the number of extents is not immediately re-
flected in the load on the quick lists, meaning that we were right
in our previous assumption that most of the newly-created extents
were claimed a very short time after their creation.

In the second part of the trace execution, we again pay close at-
tention to the effects of coalescing. Observe that coalescing first
happened after more than approximately half-way through the ex-
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Figure 7.7: Memory usage by all components in the large partition
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ecution. The first three coalescings had a large positive impact on
the free list memory consumption, especially for the quick lists,
visibly reducing their memory demand. The effect is actually pro-
portional to the one experienced by the extent headers, which again
shows that the majority of the extents resided on quick lists. In Fig-
ure 7.7 we again give a magnification of the coalescing sequence,
now taking into view the effect on the free lists.

Finally, towards the end of the simulation, more files become freed
than created. This gives a steady increase of the load on both free
list types, while the number of extents remains fairly constant. It
is interesting to examine the very end of the lower graph of Figure
7.16. There we indirectly can see the final distribution of extent
sizes as quick lists occupy an order of magnitude more space than
the misc lists.
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Total Memory Consumption

Huge Large Medium Minimum

Misc lists 56776 55412 54280 53548
Quick lists 654260 491608 452016 476760
List of misc lists 4412 4336 4076 4340
Coalescing list 0 252152 129160 130164
Extent headers 888832 825056 649184 650784

Total 1604280 1193040 1123088 1149928

Table 7.1: Maximum memory consumption

The peak load on each allocator element in each of the partition
size classes is summarised in Table 7.1. It can be summed up by
a single phrase: “Bigger is not necessarily better”, at least when
it comes to the memory consumption by our allocator. The huge
partition size, contrary to our expectations, produced the greatest
memory load. After we examined the effects of coalescing on the
extent header and quick list memory consumption, the reason for
this behaviour becomes clear. In this class, the coalescings are
never performed, which is witnessed by the zero-memory load of
the coalescing list. In this case the number of extents increases
unchecked, leading to a significantly larger memory load on all the
parts of the allocator. This assumption is supported by Figure 7.15.
There is not much difference in the memory consumption between
the huge and large partition classes during the first part of the
trace execution. They start to deviate from each other after the
first coalescing. By the end of the execution, extent headers occupy
about 900KB memory. Given that each extent header uses 16 bytes
of memory, the allocator has to keep track of about 56000 extents.

Medium partition size has the best overall memory consumption
footprint, most probably thanks to the relatively frequent coalesc-
ings (see Figure 7.17).

We can deem this allocator design memory-efficient, when look-
ing at the total number of bytes required to hold the internal data
structures during the execution of a relatively large trace. Even in
the worst case, the allocator does not consume more than 1.6MB
of main memory. This summary does not take into account the
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memory consumed by the return lists and the trace driver as they
logically belong to the higher – File Link – layer.

For comparison purposes we present the total main memory con-
sumption graphs for all partition size classes in Figures 7.15, 7.16,
7.17 and 7.18.

7.2.2 Computational Overhead

Partition size User time

Huge 9m32.326s
Large 9m13.983s
Medium 9m54.562s
Minimum 10m11.061s

Table 7.2: Computational overhead

We measure the approximate value for the computational overhead
by using UNIX time command and evaluating the time spent by the
simulator in user mode. The test is done once for each partition
size class, with AWP set to zero. All statistics collection modules
are disabled, so that their overhead does not affect the timing.

Since the simulation driver has a constant overhead, the variation
in execution times results from the time spent in the allocator it-
self4.

As we can see from Table 7.2, the computational overhead gener-
ally increases with the decrease in the size of the free space pool,
because the allocator has a progressively more complex task of
finding a suitable extent. The observed increase in execution time
for the huge partition class can be explained by the absence of co-
alescing. As we will see in Section 7.2.1, after the coalescings the
allocator has fewer extents to search through, thus reducing the
computational overhead.

Taking into account that the allocator has to dispatch over 14.3
million trace events, the displayed performance is very good even
in the worst case scenario. When the time used by the simulation

4By deactivating the allocator, we measures that the simulation driver uses
an average of 1m20.436s to read and process trace events.
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driver is deducted from the running time of the minimum partition
size class simulation, the allocator manages to perform approxi-
mately 54100 requests per second.

7.2.3 Write Operations Count and the Initial Free

Space

Even the best memory footprint would not help an allocator to do
its job efficiently, if it has to perform an excessive number of disk
accesses to maintain the allocation state. Our allocator was care-
fully designed to minimise the required number of write operations.

Number of
write opera-
tions

Increase, rela-
tive to huge
partition class

Operations per
file

Huge 28762752 — 2.00387
Large 28768461 5709 2.00467
Medium 28768861 6109 2.00429
Minimum 28781595 18843 2.00518

Table 7.3: Write operation count for four partition sizes

Table 7.3 shows the number of write operations that the allocator
had to perform, depending on the partition size class. At this stage,
the AWP was set to zero, resulting in the maximum utilisation of
free space.

The number of write operations can seem immensely large until we
take into account the fact that there is a total of 14353600 unique
files in the trace. In the third column of Table 7.3, we see how many
write operations on average were required to allocates extents to
each file. Even in the worst case, only marginally more than 2
write operations are required to manage a file. Considering that
one operation is needed to allocate one extent and one operation is
needed to free an extent, that leaves us with an average of 0.00518
operations per file spent on splitting, coalescing and multi-extent
allocation in the worst case scenario.

The variation between the partition classes is not very pronounced,
but the trend is clear – the less space there is, the more write op-
erations are required. There are two factors that play in. Firstly,
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Figure 7.8: Write operation count at different partition sizes

we have an increase in coalescing activity, which results in an ad-
ditional write operation for every updated extent. Secondly, with
less space, the allocator is more likely to use a larger number of
small extents in multi-extent allocation, resulting in more frequent
splittings.

To verify this trend we performed 42 test runs5, where partition
size was incremented from the minimum until 6779MB in 50MB
steps. The result of these runs is shown in Figure 7.8. The Y-axis
shows the increase in the number of write operations, relative to
the theoretical minimal case of two write operations per file.

The middle section of the figure shows that the number of write op-
erations keeps at a somewhat steady level, increasing and decreas-
ing seemingly at random, most probably depending on the order in
which extents get allocated. The anomalies come in the beginning
and the end of the graph. In the first run, the allocator had so little
space to manage, that it was forced to perform exceedingly frequent

5The number was chosen using a certain well-defined answer.
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Figure 7.9: Number of write operations at different AWP settings

splittings and coalescings. Note here, how much difference 50MB
of additional free space had in the near exhaustion case. For parti-
tion sizes above 6500MB, all requests could be satisfied by a single
extent, thus totally avoiding coalescings and further decreasing the
number of write operations to the minimum.

In this section we have seen that the allocator performs remarkably
well even in a high-stress scenario.

7.2.4 Acceptable Wastage Parameter

Setting AWP to any positive non-zero value affects the effective par-
tition size, potentially reducing the amount of space available for
allocation in the process of said allocation.

We have run a test, where AWP was increased from zero to 17
grains in one grain steps. The test was repeated for all partition
classes and the results are presented in Figure 7.9. Here we again
used the increase in the number of write operations relative to the
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theoretical minimal case of two operations per file as the measure
along th Y-axis.

Because AWP reduces the available space and the minimum par-
tition class was already operating at the limit, not surprisingly,
the allocator failed to provide space for that class already at AWP
set to one. With sufficiently large AWP value, any initial partition
size would prove to be too small and lead to a failure. In fact, the
medium partition class failed at AWP equalling 18.

This leads us to the first interesting observation. The number of
disk write operations was fairly constant after AWP size of 4. It
went, however, slightly up for the medium class during the two
test runs preceding the failure, while remaining constant for the
other two classes. This is comparable with the behaviour of the
minimum class at AWP zero, where the number of write operations
was significantly larger than for the other classes.

AWP was in the first place introduced to reduce the number of disk
accesses. It manages to do just so, as we can see from the first four
test runs. At AWP of 4 grains the number of extra writes operations
is almost halved. After AWP of 4 grains there is, however, no added
benefit in increasing that value. As we saw from the case of the
medium partition class, excessively large AWP can even lead to
increased disk activity and to a subsequent allocation failure.

Based on these observations, we can suggest that AWP of 4 gives
an optimal disk access performance for the allocator an it should
not exceed this value.

7.2.5 Fragmentation

One of the key goals of the design of our allocator, was to keep all
types of fragmentation at the lowest possible value. In this chapter
we will see how the allocator manages this task.

File fragmentation

As we mentioned earlier, file fragmentation arises whenever the
contents of a file has to be split over several extents. We call the
additionally required extents as excess extents. File fragmentation
can be measured in two ways:
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1. we can measure it as an average number of extents per file, or

2. alternatively, we can measure the percentage of split files, rel-
ative to the total number of files in the system.

These two ways of measurement yield different results. Consider
a system with 100 files and 150 allocated extents, where only one
file is split over 51 extents. By our definition, there are 50 excess
extents in the system. If we use the first way of measurement, we
can conclude that file fragmentation level is 1.5 extent per file6. The
second way of measurement tells us, however, that fragmentation
level is only 1%.

We choose the first way of measurement as we perceive it to be
more accurate, when it comes to reflecting the overall performance
degradation incurred by file fragmentation. This method also co-
incides with external fragmentation measurement method used
in [IJC03]. As file fragmentation is just another aspect of exter-
nal fragmentation, this makes our measurements comparable.

Excess extents Average Worst

Huge 0 1.00000000 1.00000000
Large 34 1.00000237 1.00000341
Medium 105 1.00000732 1.00001053
Minimum 6454 1.00044964 1.00082787

Table 7.4: File fragmentation depending on the size of the partition

In Table 7.4 we show the file fragmentation values, along with the
number of excess extents for each partition class at AWP 0. The
total number of files in the simulation trace is 14353600. When
fragmentation level is 1, each file is placed in exactly one extent,
as seen in the case of the huge partition class. For the minimum
partition class, we see that the worst fragmentation level is almost
twice as high as the average case, most probably occurring when
the majority of the large files from the Helix server had to be allo-
cated.

When we look at the general case, we see that at fragmentation
ratio of 1.00082787 extents per file in the worst case, the level of
file fragmentation is exceptionally low for all classes.

6Which is equivalent to 50%.
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Figure 7.10: File fragmentation at different AWP settings

File fragmentation for all partition classes and AWP settings is pre-
sented in Figure 7.10. The first impression we get while examining
the figure, is that the level of file fragmentation is not very depen-
dent on the AWP setting and the size of the partition. In fact, it is
only when the free space starts reaching a critically low level, that
we experience the highest level of file fragmentation.

Note the lonely marker for the minimum partition size class at
AWP 0. It is located in the upper left corner of the graph at a
remarkable distance from the prevailing trend. We can also see the
same situation when the medium partition size starts experiencing
more file fragmentation as it comes closer to the point of free space
exhaustion, starting at AWP 15.

Otherwise, the file fragmentation holds itself at a constant level,
showing that the allocator is for the most part capable of satisfying
requests with just one extent.
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Internal fragmentation at Peak Load

Extra bytes used Internal fragmentation

Huge 7979580 1.00161197
Large 7979580 1.00161197
Medium 7980092 1.00161207
Minimum 8030780 1.00162231

Table 7.5: Average internal fragmentation at peak load depending
on the size of the partition

The value for internal fragmentation is calculated, dividing the
number of allocated bytes by the number of bytes requested at
peak allocation. Note that this also includes the disk space used
for the extent headers. The measurements are performed for all
partition size classes with AWP varying from 0 to 17. As it was
mentioned in the previous section, tests with AWP > 0 fail to com-
plete for the minimum partition class.

Table 7.5 shows the number of additional bytes used to satisfy a
peak sum of requests for 4950202308 bytes for each partition size
class at AWP set to zero grains. The fragmentation is almost equal
for all partition classes, but is slightly more pronounced for the
minimum class, which is directly tied to the experienced higher
level of file fragmentation. This is due to the fact that in our mea-
surement of internal fragmentation, we also include space used for
the on-disk extent headers. As file fragmentation increases, so does
the need to store additional header information. Without this fac-
tor, the internal fragmentation levels for all partition classes would
have been equal.

Interestingly, the actual minimum internal fragmentation is not
much larger than our estimation done during the trace analysis in
Appendix B.2.3

What influences the internal fragmentation the most is the extra
storage allocated due to increase in the value of the Acceptable
Wastage Parameter. This dependency is shown in Figure 7.11.

We can see that the internal fragmentation level increases almost
linearly with the increase in AWP. The slope becomes slightly steeper
after AWP passes 4 grains. At 15 grains of AWP, the internal frag-
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Figure 7.11: Internal fragmentation at different AWP settings

mentation passes the 1.0100 marker7, meaning that more than
50MB of storage becomes wasted. This is, by far, not acceptable.
As we saw from the write count analysis of Figure 7.9, there is lit-
tle to gain from setting AWP to a larger value than 4 grains, and
the improvement in write access performance experienced from in-
creasing AWP from 3 to 4 grains is relatively limited. Coupled with
the knowledge of the linear increase ratio in internal fragmenta-
tion, these experiments suggest that the value of three grains in the
Acceptable Wastage Parameter is, indeed, acceptable and gives an
optimal balance between wasted space and gained write through-
put.

Internal Fragmentation Throughout the Trace Execution

In the previous section we looked at the fragmentation level at peak
allocation. This type of measurement give the best average statis-

7Equals to 1% internal fragmentation.
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Figure 7.12: Internal fragmentation level throughout the trace ex-
ecution

tics, but hides possible anomalies.

We have therefore run an additional simulation with large partition
size class and AWP set to zero grains and measured the level of
internal fragmentation after each allocation. The results are pre-
sented in Figure 7.12. To enhance the readability of the long-term
fragmentation levels, the Y-axis of the graph was limited to display-
ing the internal fragmentation ratio of up to 1.012.

We can conclude from the graph that the level of internal fragmen-
tation was fairly stable, oscillating around our previously-measured
peak load fragmentation. The anomalies occur in the beginning
and in the end of the simulation, where only a handful of files are
managed. In those cases the fragmentation level can become heav-
ily skewed if the majority of files are below one grain in size.

As the number of files grows, so does the statistical base, leading
to the more representative measurement in the middle section of
the graph.
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Figure 7.13: Coalescing performance at different partition sizes

7.2.6 Coalescing Measurements

We have already seen some of the effect coalescing has in the chap-
ter covering memory load measurement. Here, we will give more
data on coalescing performance and its impact on the system.

Operation Counts

As we saw from Figure 7.8, the number of write operations dropped
strongly after the partition size reached approximately 6500MB.
We theorised that it was caused by the absence of coalescings after
that particular partition size. Here we use the same data as the
ones collected for the write test to show how coalescing performed
in the same conditions.

The situation is shown in Figure 7.13. The upper curve shows the
total number of coalescings that had to be performed throughout
the whole simulation at each partition size. Our assumption that
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the number of coalescings is reduced with partition size increase is
affirmed. As expected, we see that after the partition size reached
6500MB, no coalescings had to be performed at all.

Our initial measure of coalescing efficiency, was the number of
multi-extent allocations that could be avoided after the coalescing.
As we see from the middle curve, the coalescing had the best effect
for partition sizes above 6150MB, where each coalescing resulted
in a subsequent single-extent allocation. In general, we never had
more than three successful coalescings in any single test, even in
those cases when coalescing operations were numerous. Having
said that, there was never a single case where coalescing function
would not have found at least one extent to merge.

This leads us to believe that the more free space there is, the higher
the probability that a coalescing would achieve the desired goal.
Based on this observation, we will propose for the future work to
add high- and low coalescing count watermarks to avoid too fre-
quent coalescings (see Section 8.2).

Our rudimentary coalescing avoidance system – the coalesced flag
(see Chapter 4.3.3 for details) – had any effect only 1

3
of the times.

Each of those times it prevented only a single coalescing, as seen
from the lower curve in Figure 7.13.

Disabling Coalescing in the Near Exhaustion Scenario

We re-run the simulation with partition size class set to minimum
and AWP set to zero grains, but this time disabling the coalescing
function. Our aim with this test is to see how much influence the
coalescing had on the resource utilisation and allocation efficiency.

The results of this test are summarised in Table 7.6. By disabling
the coalescing function we avoid 15 coalescings and do not use any
memory for the coalescing lists. On the other hand all other parts
of allocator have experienced an increase in load. Additionally,
the simulation itself took about 25% longer time to run without
coalescing, strongly suggesting that the computational overhead
used by the coalescing function pays off in the longer run.

Both internal fragmentation and the number of write operations
increased as the files, which could be allocated one extent, now
had to have several extents associated with them.
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Coalescing On Coalescing Off Increase

Peak internal
fragmentation

1.00162231 1.00164621 1.47%

File fragmenta-
tion (avg.)

1.00044964 1.00148262 229.73%

Number of write
operations

28781595 28805418 0.08%

Total memory
consumption

1142884 1639544 43.89%

List of misc
lists

4100 5612 36.87%

Quick lists 471328 684924 45.32%
Misc lists 52176 58512 12.14%
Extent headers 650784 890496 36.83%
Coalescing list 129448 0 -100.00%

Table 7.6: Effects of disabling the coalescing in the near exhaustion
scenario

The same applies for file fragmentation level, which increased by a
whole 229.73%. This clearly illustrates that even a small number
of coalescings are extremely beneficial.

As the number of extents grows, so does the memory space require-
ment for extent headers and the load on the free lists. In this case
both extent headers and quick lists accounted for the major part of
the 45.32% increase in memory consumption. This trend is similar
to the one observed in our tests performed with the huge partition
class, where no coalescings were required.

We can conclude that far from improving system performance, the
disabling of the coalescing functions places a higher toll on all al-
locator components.

7.2.7 Free Space Management Dynamics

To see how the pool of free disk space is managed throughout the
whole simulation, we took measurements of the number of free
grains each time an extent was either taken from the pool or re-
turned to it. This test was run with large partition class and AWP
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Figure 7.14: Management of the pool of free disk space

set to 0 grains. The free space management dynamics is illustrated
in Figure 7.14.

These measurements include both removal of extents for the pur-
pose of coalescing and before splitting. Thus, both operations are
reflected in the graph.

The beginning of the simulation is dominated by a large amount of
splittings, where an entire large extent is removed from the pool,
split, and then a slightly smaller remainder extent is returned to
the pool. This is the illustration of allocation from wilderness. We
see this as a filled black area on the graph. This area is in fact
a rapid alternation between zero and maximum number of free
grains.

A similar phenomenon occurred just before event 0.5 · 107, where a
series of allocations were performed by splitting a large extent into
progressively smaller extents, without actually touching the largest
extent(s) in the pool. The filled area does therefore not go below
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4 · 106 grains. The algorithm proposed by Iyengar et al in [IJC03]
would have used wilderness allocation also in this case.

After that, several large files were allocated, resulting in a large
drop in the amount of free space.

From there on, the allocation went largely without splittings, sat-
isfying the requests from the free lists. We say that the allocator
reached a steady state.

At event 1.5 · 107 the coalescings started to be performed, emptying
the pool and then returning it to the previous state as far as the
number of free grains is concerned.

After event 2 · 107 the allocator enters the final phase of the simula-
tion, where space freeing is dominating.

7.3 Summary

We have performed a score of evaluation measurements of our al-
locator’s performance. Some tests can be compared to the ones
performed for PMFLF, while other are unique to our system.

The comparable results cover the measurement of the fragmenta-
tion levels. Our system outperforms PMFLF in this field. The best
measure internal fragmentation of PMFLF is 1.03000 [IJC03, Ta-
ble 6], while the worst level of internal fragmentation in our al-
locator was 1.00162, which means that our allocator performed
185 times better than PMFLF. This is especially interesting when
we take into account the file size distribution that our allocator
and PMFLF had wot work with. The file size distribution presented
for PMFLF [IJC03, Figure 25] had the majority of files, which are
smaller than 20000 bytes, whereas our file size distribution had
a wider range of predominant sizes, reaching as high as 100000
bytes (see Appendix B.2.2). This means that our allocator had to
make harder placement decisions than PMFLF.

File fragmentation cannot be compared directly as PMFLF does not
support fragmenting of files. If we, on the other hand, recall that
file fragmentation is another aspect of external fragmentation, we
can cautiously compare these values. We can see from [IJC03,
Figure 14] and [IJC03, Figure 17] that external fragmentation in
PMFLF starts at approximately 1.05 and increases with variation of
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the allocator parameters, going as high as 2.0 for with a sufficiently
large number of replacements. Our allocator keeps file fragmenta-
tion below 1.00005 and only comes as high as 1.00045 when the
storage space is close to exhaustion. As our system supports file
fragmentation, it can utilise storage space much more efficiently.
At the same time, the low level of file fragmentation indicates that
this feature is used sparingly.

Our other measurements do not have counterparts in PMFLF. We
therefore leave it to future work to perform in-depth comparison
studies of the two systems. Our results, however, indicate that the
new allocator performs well in all aspects and can be integrated
with some existing file system or used in design of a whole new
file system for application, which place strict demands on space
utilisation, speed and memory efficiency.
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Figure 7.15: Memory usage of the huge partition class
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Figure 7.16: Memory usage of the large partition class
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Figure 7.17: Memory usage of the medium partition class
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Figure 7.18: Memory usage of the minimum partition class
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Chapter 8

Conclusions

8.1 Summary of Contributions

This thesis has two major contributions:

• modifications of the allocator design proposed in [IJC03], and

• extensive evaluation of the allocator’s performance.

We have proposed, implemented and tested an allocator design,
which uses QuickFit allocation scheme and is based on extents.
This design allows us to manage free space in an efficient manner.
This goal is achieved by allowing the allocator to maintain a list
of contiguous segments of free space instead of disjoint blocks of
equal size.

QuickFit was originally designed to internally use simple data struc-
tures, such as a singly-linked list. Our use of skip lists opens for a
more efficient organisation of data and a faster implementation of
the allocator’s sub-algorithms.

By not keeping track of wilderness as a separate entity, but treat-
ing it as any other free extent and not distinguishing between small
and large allocation requests, we have simplified the allocator im-
plementation with no adverse effects.

Our second major contribution lies in the extensive tests performed
to evaluate all aspects of the allocator’s performance. We have eval-
uated not only how the allocator manages free disk space, but also
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its own impact on the overall system performance, by measuring
its memory consumption and the required disk operation overhead
needed to manage the free space pool. The evaluations were per-
formed using an allocation trace, extracted from the real file access
events and file size distribution.

The evaluations showed that the allocator performs well in all tests.
It has a very small memory footprint, even when the number of op-
erations is very large. The allocator keeps both internal- and file
fragmentation at very low values. In many cases the fragmenta-
tion is more than 100 time lower than in comparable systems. It
manages to achieve this without an excessive number of disk op-
erations, maintaining the average number close to the minimum
of two disk operations per file. The allocator also has a low com-
putational overhead, even when the pool of free space is close to
exhaustion.

In conclusion, we have designed and implemented and allocator,
which in out tests outperforms comparable systems. At 2000 lines
of C code, it is easy to implement and maintain. Its modular design
allows for an easy incorporation into existing file systems for use
in CDN proxy caches.

8.2 Future Work

In this thesis we worked with many aspects of our extent-based al-
locator. However, there are many possibilities for further improve-
ment and fine tuning of the allocator. Some of the work that can
be done to improve performance is also beyond the scope of this
thesis because it touches on the areas used by other layers of a file
system. Below, we present an overview of what further work can
be done with the allocator and the surrounding system.

It would be interesting to compare the efficiency of our algorithm
to the one presented in [IJC03] with regard to placement decisions
and their impact on fragmentation. As this system is designed in a
layered fashion, it would be easy to replace the optimised allocator
with PMFLF. The same sets of allocation requests can then be run
through both implementations and resulting allocation decisions
compared.
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The allocator is not aware of the data being written to the extents
which it returns. It is not even aware if the extents from two dif-
ferent allocations might be used to store data from the same file.
Such knowledge is, however, important should the space requests
from growing files be managed optimally. For this purpose our al-
locator implements the continuity and locality hints. Because of
the properties of the traces that we have at our disposal, we never
make use of those hints. We feel, however, that investigating the
effects of hints provided from the File Link layer on the allocation
decisions can be a topic of a separate study.

The trace used in our study required a little over 4,6GB of space to
be managed by the allocator. This also imposed a natural limit on
the maximum number of extents present on free lists at any given
time. As the result, the maximum memory footprint of the alloca-
tor was also limited and never exceeded manageable bounds. On
partitions with several terabytes of data consisting of both small
and large files, the memory requirement could become unmanage-
able. In such environment it would be reasonable to purge parts
of the free lists to disk, if they become too long. This has several
implications:

• not all extents will be available for analysis, so the allocation
requests would return sub-optimal results;

• the coalescing would run sub-optimally as fetching extent head-
ers from disk for the purpose of coalescing can be prohibitively
expensive;

• the allocator would have to use additional disk space for its
own needs. The requirements on the bookkeeping disk space
cannot be determined at the time of partition creation and
must be satisfied on the fly.

This scenario presents enough materials for a study in its own
right.

Currently, the simulation is run in one continuous session. In real
life, a file system needs to be mounted an unmounted as a system
is brought to a halt or restarted. This can be simulated by fully
implementing functions qf_start() and qf_stop() and stopping the
simulation at several arbitrary points. The state of the allocator
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then has to be written to disk, using the allocator itself to provide
the space for the state information. Providing space for internal
structures will alter the state of the allocator and affect the next
allocation after resume point, creating a cascade effect.

The logarithmic search and insertion times of skip lists open for a
possibility to replace several misc lists with a single misc list as it
was presented in Weinstock’s [Wei76] work. Splitting of a misc list
into a set of ranged misc lists was in the first place introduced by
Iyengar [Iye96] as a crude form of a skip list, allowing the alloca-
tor to find the needed subset in a fast manner. This suggestion is
backed by our observation in Section 7.2.1, that individual misc
lists seldom hold more than a few extents each. As both the list of
misc lists and the misc lists themselves are organised in skip lists,
merging them will still retain the logarithmic operation times, while
substantially reducing the complexity of the allocator implementa-
tion. We leave it to future work to investigate if this assumption
holds.

The next suggestion for future work development, comes with re-
gard to the coalescing algorithm. Based on the evaluation of its
consequences on performance and resource utilisation, we can
propose a change in our design for the activation of the coalesc-
ing algorithm. Recall that currently, the algorithm is only activated
if at least one extent freeing occurred since the last coalescing. We
propose adding a high and low watermarks for the number of free-
ing operations. Avoiding coalescing if the low watermark is not
reached and forcing a coalescing if the freeing counter exceeds the
high watermark. An eventual work, based on this suggestion must
find the suitable values for the watermarks and investigate the im-
pact on the whole system by this change in design.
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Appendix A

Glossary

Block In this paper a block is a fixed-size unit, used in the context
of hard disk storage allocation. A block’s size is a multiple of
hard disk sector size.

Boundary tags A memory allocation mechanism used to simplify
the process of locating neighbouring blocks for the purpose of
coalescing.

Coalescing An allocation algorithm used to satisfy relatively large
request, where no sufficiently large contiguous extent is present,
by merging two or more neighbouring extents.

Code bytes An error detection facility, which is used to recover the
start of wilderness after a system failure if deferred wilderness
pointer updates were used.

Exact list A variation of segregated free lists, where each lists holds
extents of exactly the same size.

Extent A dynamically adjustable hard disk unit, occupying one or
more consecutive sectors.

Extent header Bookkeeping information stored within the first 64
bits of an extent. Typically used to store size and allocation
status information.

External fragmentation occurs when no single fragment of free
space is sufficient to satisfy a request even though the sum of
all free space fragments exceeds the request size.
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File A sequence of bytes, spread over one or more extents and
associated with a set of metadata to facilitate and easy access
to the data.

File fragmentation Splitting of a file over several extents. Can
lead to increase in overhead fragmentation and degradation of
contiguous read performance. We measure it as the difference
between the number of files and the number of extents used
to store those files, calculated as a percentage value of the
latter.

Grain size All extent sizes are a multiple of the grain size. Grain
size typically equals the smallest transaction unit size for the
intended storage media, which is a sector of 512 bytes in the
case of disks and 1 byte in case of memory management sys-
tems.

Growing file Files that increase their size after they are created.
The majority of files fall under this category.

Internal fragmentation Occurs when a request size is smaller than
extent size or not a multiple of a grain size. We measure it as
a percentage of total allocated space, not use to store payload
information.

LBA Linear Block Addressing is an addressing mode used by hard
disks to address sectors by their number, as opposed to spec-
ifying cylinder, track and head parameters.

Megabyte of MB is a measure of information capacity, consisting
of 1024 bytes.

Minimum extent size The size of the header and at least one byte
of payload, rounded up to the nearest grain size.

Misc list A variation of segregated fits scheme, where each list
holds extents which are within a certain size range.

Payload The application data to be stored by a file system.

Quick list See Exact list.

Relocation Technique used to reduce file fragmentation, where
file’s extents are moved to become physically contiguous.
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Segregated free lists Free extent handling technique, where ex-
tents of specific sizes are kept within their own designated free
lists. QuickFit allocation scheme uses segregated free lists.

Sparse file File that contain holes, for which no actual storage
space is allocated during a write operation to a further lo-
cation in file. The size of a holes is a multiple of grain size.
The techniques saves space, but can potentially worsen file
fragmentation, should a write operation be performed within
the hole.

Splitting An allocation technique used to satisfy relatively small
requests without undue wastage of space to internal fragmen-
tation.

Storage overhead Space wasted due to bookkeeping data, such
as block bitmaps and extent headers. It becomes more pro-
nounced as the overhead to payload ratio increases.

Wilderness The as yet untouched by the allocation algorithm re-
gion of storage space. Can be also used as an abstraction to
denote the largest free extent available for allocation.

Wilderness preservation heuristic The technique used to ensure
that the largest contiguous extent is split only as the last re-
sort, thus increasing the probability that large requests can
be satisfied at a later point.
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Appendix B

Allocation Trace

B.1 Web Log and Trace Characteristics

All evaluations of the allocator performance are based on the data
collected from the logs of web and streaming servers of the La
Nueva España newspaper [LNE]. The web logs were parsed to gen-
erate a trace of creation and deletion requests..

The trace contains a sequence of allocate and delete events. All
events are associated with a file Id number. Allocate events have in
addition the information about the file size and two bit flags. The
first flag indicates whether a particular file entry is later replaced
with a new one of another size. The other bit flag says if a file
entry’s deletion time was adjusted. These bits are used by our
analysis tools and are not parsed by the allocator. The trace does
not give any indication as to what and how often something is being
written to or read from those files.

A file’s creation time is determined by the first occurrence of a
URL in the logs. As the web logs do not contain explicit deletion
times, we have to estimate those, based on the access information,
available from the logs. Deletion times are set as follows:

1. if the same instance of a file is referenced more than once, the
last reference is treated as a file’s deletion time;

2. if a file instance is replaced by a new one, the file’s deletion
event is recorded prior to replacement;
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3. if a file is never referenced again before the end of the log, its
deletion time is set to 2/3 of the distance between the last
event and the creation event. It is in this case that we set the
deletion adjustment bit flag.

We can alternatively set the deletion instance of the last case to the
end of the trace, in which case all files that are not replaced will
be kept until the end of simulation. We leave it to future work to
investigate the consequences of such choice.

The two web logs that we parse and merge represent the files fetched
from an HTTP server and from a Helix server. Files from the HTTP
server are HTML text files and miscellaneous images, which size
seldom exceeds one megabyte. Helix files, on the other hand, are
comparatively large, often spanning tens of megabytes.

The trace is executed in one session, without any stops. We leave
it to future work to analyse possible implications of trace execution
suspension with the following preservation of the internal allocator
state.

B.2 Trace Analysis

The allocation trace was analysed for replacement and size distri-
butions. Here we present the key characteristics of this trace.

The initial web log contained over 138.8 million entries. Of these
entries, there are only 14.35 million operations that we treat as
allocations, covering 67929 unique file URLs. The remaining en-
tries are either invalid or discarded read operations. 1.78 million
allocations are of zero-length lifetime type, meaning that those al-
locations are immediately followed by a deallocation.

B.2.1 Replacement Distribution

As we just saw, there are many more allocations than the actual
unique file names, which means that the majority of operations are
replacements. By replacement we mean a situation when a file is
deleted to be immediately replaced by another file with the same
URL name, but a new file size.
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Figure B.1: File replacement distribution
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In fact, there are 14.28 million replacements. When we look at the
replacement distribution in the upper graph of Figure B.1, we can
describe it as “spiky”, meaning that a minority of files are respon-
sible for the largest number of replacements. Only 1975 files ever
get replaced, while 10 of those files are responsible for the over-
whelming majority of replacements, which is clearly seen in the
lower logarithmic graph of Figure B.1.

The maximum space used to accommodate the allocated files at
any given time is 4,61GB. However, the cumulative size of all allo-
cation requests throughout the whole simulation is 51.20GB.

B.2.2 File Size Distribution

Analysing size distribution of the traces, we distinguish between
distribution of all allocation sizes and the final snapshot of allo-
cations, using the replacement flag stored in the generated trace.
We denote the first version as with replacements (WR) and the sec-
ond version as no replacements (NR) respectively. WR distribution
can be treated as a cumulative load on the allocator throughout the
whole of the execution. We consider and describe the WR distribu-
tion as the most interesting for us because it covers all the requests
that will go through the allocator. NR distribution is interesting in
its own right as a one-time snapshot of the allocation state once
there are no more pending allocation requests in the queue. We
will use it to estimate the expected internal fragmentation in Sec-
tion B.2.3.

Over 50% of all allocations in the trace are for files which are
smaller than 576 bytes, and would thus fit within two grains, when
the grain size is set to 512 bytes. Almost 4% of the files in the trace
are 258 byes, making that a dominating file size. There are 46702
unique file sizes, with an average file size being 3829 bytes. The
largest allocation in the trace is for 902726025 bytes or 861MB.
The upper graph of Figure B.2 shows the file size distribution of
all the files in the trace. The file distribution in this trace clearly
approximates the probabilistic Pareto distribution presented in Fig-
ure 4.1 from Chapter 4.1. To visualise it even more, we created a
magnified section of the lower file sizes, shown in the lower graph of
Figure B.2. From this graph we can see that the most frequent file
sizes are below 100000 bytes. After 400000 bytes we observe a re-

120



0 1 2 3 4 5 6 7 8 9 10

x 10
8

0

1

2

3

4

5

6
x 10

5

N
um

be
r 

of
 fi

le
s

File size (bytes)

0 1 2 3 4 5 6

x 10
5

0

1000

2000

3000

4000

5000

6000

7000

8000

N
um

be
r 

of
 fi

le
s

File size (bytes)

Figure B.2: File size distribution

121



0 2 4 6 8 10 12 14 16 18

x 10
5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

6

Index of used 512 byte interval

F
ile

 c
ou

nt
 w

ith
in

 a
n 

in
te

rv
al

Figure B.3: File size distribution in 512 byte intervals

duction in the number of occurrences of even the single instances
of some file sizes. The number of occurrences drops dramatically
after approximately 100MB.

We then study the distributions grouped into 512 byte large bins,
taking into account that additional 8 bytes will be spent for header
information. At this stage we assume that enough space is pro-
vided to always allocate one extent for each file.

The graph in Figure B.3 shows that the grouped distribution fol-
lows the general file size distribution. The intervals after the 20000th

are very sparsely populated.

The most interesting characteristics of the grouping become appar-
ent when we magnify the graph and view the load on the first 2000
intervals, while truncating the view at 6000 occurrences. This is
shown in the upper graph of Figure B.5. Both figures are derived
from the WR distribution and show clearly which free lists were the
most frequently used. We can therefore view this 512 byte group-
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Figure B.4: The load on misc lists accommodating 200 intervals

ing as a fair representation of the expected load on the free lists
in our allocator. The part of the graph displaying the most load
would correspond to the quick list segment of the allocator, while
the remaining part would be covered by misc lists.

Looking at the lower graph of Figure B.5, we can state that the
upper boundary of quick lists should be set to 150 intervals, as
those intervals will be the most populated ones. To determine the
range of the individual misc lists, we have to look the expected
number of extents within each misc list at that range. From the
lower graph we can see that there is an average of 15 occurrences
per interval after the 150th interval. This means that we can expect
3000 extents within a 200 interval group in the worst case. This
is confirmed by Figure B.4, which shows the load on the first 100
misc lists. Using 200 intervals per misc list, we get a decreasing
load, starting with approximately 3000 extents in the second misc
list. The first misc list has a lower number of extents, because some
of the extents from that range belong to the quick list segment.
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Figure B.6: The load on misc lists accommodating 20 intervals

Given that the most loaded quick lists can have up to 4 million
extent stored in them in the worst case, 3000 extents does not
seem like a large value.

We have, however, to take into account the algorithmic specifics of
fetching an extent from a misc list (see Chapter 4.3.3). Whereas
the first available extent is fetched from a quick list, misc lists
are searched for the best fit, with a possible addition of the best
address locality. It is therefore in the interest of allocation speed
performance to keep misc lists as short as possible, balancing the
number of misc lists and their length. As we cannot avoid having a
large number of misc lists that contain only one or two large-sized
extents, we have to concentrate on optimising the load on the misc
lists containing medium-sized extents.

From Figure B.4 we can see that in our scenario of 200 intervals
per misc lists, only the first 10 misc lists out of 265 non-empty ones
have any significant load. Searching for the correct misc list is less
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expensive as searching within a misc list, so reducing the size of
each misc list, while doubling the number of misc lists, until they
are approximately equal would be beneficial for the extent search
times. At the same time we can expect that the number of misc lists
containing only one or two extents will remain fairly constant as the
distance between the large-sized extents is larger than our initial
range size. Given the above data, we can calculate that the optimal
misc list range size would be approximately 20 intervals per misc
list. This situation is shown in Figure B.6, where we display the
load on the first 800 misc lists. In this scenario, the first 85 misc
lists are the most loaded, containing up to 470 extents in the worst
case and 99 extent on average. The total number of non-empty
misc lists has increased to 614 misc lists. It represent an increase
by 2.3 times, while the average load on the most used misc lists
was reduced by 7.2 times. Given that searching within the misc
lists requires an extra comparison, compared to the search of an
appropriate misc list itself, we can expect a roughly sevenfold gain
in misc list search times.

B.2.3 Expected Internal Fragmentation

We can estimate that the internal fragmentation ratio will be ap-
proximately 1.001306 bytes allocated over bytes requested. It is
done by analysing the expected final state of the free lists in NR
distribution, with grain size set to 512 bytes and extent header
overhead set to 8 bytes.
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Appendix C

Source Code

C.1 Common Code

These files are used both by the trace generator, the allocator and
the file size analysis suite.

C.1.1 storage_types.h

1 #ifndef STORAGE_TYPES_H
2 #define STORAGE_TYPES_H
3
4 /∗
5 ∗ An entry in a raw cleaned binary trace ( input )
6 ∗/
7 struct raw_trace {
8 unsigned char url [ 8 ] ;
9 unsigned int bytes_sent ;

10 unsigned short status ;
11 } __attribute__ ( ( packed ) ) ;
12
13
14 /∗
15 ∗ The entr ies for the the binary al locat ion trace . Operation code is
16 ∗ part of the flags member . The flags for the al loc_t race struct ’ s
17 ∗ states member . Only used for s t a t i s t i c a l purposes . Bi t 1 is set i f
18 ∗ the f i l e entry was replaced by another size . Bi t 5 is set i f
19 ∗ deleted value is adjusted
20 ∗/
21 #define OP_CREATE 1
22 #define OP_DELETE 2
23 #define FL_REPLACED 16
24 #define FL_DELMOD 32
25
26 struct al loc_trace {
27 unsigned int f i l e _ i d ;
28 unsigned int size ; //set to 0 i f operation is " delete "
29 unsigned char f lags ; //Contains OP_ and FL_ flags
30 } __attribute__ ( ( packed ) ) ;
31
32 #endif

C.1.2 libarg.h
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1 #ifndef __LIBARG_H_
2 #define __LIBARG_H_
3
4 #ifndef BOOL_T
5 #define BOOL_T
6 typedef enum {
7 FALSE,
8 TRUE,
9 } bool_t ;

10 #endif
11
12 //Prototype of the only function
13 bool_t parseArgs( int argc , char ∗∗argv ,
14 const char ∗name, bool_t isSwitch , char ∗∗par ) ;
15
16 #endif

C.1.3 libarg.c

1 /∗
2 ∗ Standard argument parsing routine
3 ∗/
4
5 #include <string .h>
6
7 #include " l ibarg .h"
8
9 /∗

10 ∗ The function goes through the arguement l i s t in search of argument
11 ∗ ’name ’ . I f the argument exists , TRUE is returned . I f isSwitch f lag
12 ∗ is not set , then the argument is parametric and the function
13 ∗ returns the parameter to the argument in ’∗par ’ ( the next entry in
14 ∗ the l i s t ) . I f parameter does not ex is t TRUE is s t i l l returned , but
15 ∗ ∗par is set to NULL.
16 ∗/
17 bool_t parseArgs( int argc , char ∗∗argv ,
18 const char ∗name, bool_t isSwitch , char ∗∗par ) {
19 register int i ;
20
21 //Nu l l i f y the return parameter i f i t is given .
22 i f ( par != NULL)
23 ∗par = NULL;
24
25 for ( i = 1; i < argc ; i ++) {
26 i f ( strcmp (name, argv [ i ] ) == 0 ) {
27 i f ( ! isSwitch && ( argv [ i +1] != NULL ) ) {
28 ∗par = argv [ i +1] ;
29 }
30 return TRUE;
31 }
32 }
33
34 return FALSE;
35 }
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C.2 Allocator

The allocator is spread over several source files, following the lay-
ered design and the principals of modularity. Header files are used
to bind the various parts of the code together. skiplist.c con-
tains all the code needed for Skip list management. simalloc.c
is the simulation driver, which reads the trace and issues the al-
location and deallocation requests to the allocator. I represents
a rudimentary File Link layer implementation. allocator.c and
alloc_helper.c contain the main and auxiliary functions of the
Allocation layer implementation. media.c holds the two functions
of the Media I/O layer. memory.c and alloc_stat.c contain the
code for collection of statistical information used in our evalua-
tions.

C.2.1 common.h

1 #ifndef COMMON_H
2 #define COMMON_H
3
4 #include <stdint .h>
5
6 //#define DEBUG
7
8 #ifndef BOOL_T
9 #define BOOL_T

10 typedef enum {
11 FALSE,
12 TRUE,
13 } bool_t ;
14 #endif
15
16 typedef uint64_t asize_t ; // Address size in grains
17
18 /∗
19 ∗ Parameters describing an extent . Both extent and address sizes are
20 ∗ grains ( which are equal to LBA values ) .
21 ∗/
22 struct extent {
23 asize_t s ize ;
24 asize_t address ;
25 } ;
26
27 void errstop ( char ∗msg, int code ) ;
28
29 #endif

C.2.2 skiplist.h

1 #ifndef SKIPLIST_H
2 #define SKIPLIST_H
3
4 #include "common.h"
5 #include "memory.h" //For prototype of stat_∗
6
7 typedef enum {
8 SL_OK,
9 SL_MEM_EXHAUSTED,

10 SL_DUPLICATE_KEY,
11 SL_KEY_NOT_FOUND,
12 SL_PAST_LAST_NODE
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13 } statusEnum_t;
14
15
16 struct sk ip_ l i s t {
17 struct l ist_node ∗hdr ; // l i s t Header
18 struct l ist_node ∗ni l ; // Portable impl , is set == hdr
19 struct l ist_node ∗ last ; //Fast access to the last element
20 int l i s tLeve l ; // current l eve l of l i s t (0 to
21 // MAXLEVEL−1)
22 int maxLevel ; // Portable , dynamic adjustment
23 char dupAllowed ; //Boolean saying i f dupliactes are
24 //allowed
25
26 //Pointer to comparison function
27 int (∗compfunc ) ( const void ∗ , const void ∗ ) ;
28
29 int maxListLevel ; //S t a t i s t i c a l info
30 memstat_t mem_stat ;
31 void ∗in fo ; //Pointer to optional assosiated
32 //data
33 } ;
34
35
36 //A node in a skip l i s t . Sorting key is the data f i e l d or a part of i t .
37 struct l ist_node {
38 void ∗data ;
39 struct l ist_node ∗forward [ 1 ] ; //Forward pointer ( s )
40 } ;
41
42 /∗
43 ∗ The generic implementation of SkipList functions . One of the status
44 ∗ values is returned . delete ( ) and find ( ) return the data portion of
45 ∗ the deleted or located node . The status resul t is returned in ’ res ’
46 ∗ f i e l d . Result must always be examined On SL_KEY_NOT_FOUND, find ( )
47 ∗ returns the next entry in the l i s t .
48 ∗

49 ∗ Comparison function is expected to return an integer <, == or >
50 ∗ than 0 , depending on the comparison resul t of the data members of
51 ∗ the l is t_node structure . As comparison is performed on the data
52 ∗ memeber leve l , which can contain one or more key values , the key
53 ∗ parameter to the delete ( ) and find ( ) functions is a dummy data
54 ∗ structure , equal to the one stored in the l is t_node structure , and
55 ∗ i n i t i a l i s e d with the desired search c r i t e r i a .
56 ∗/
57
58 statusEnum_t s l _ i n i t L i s t ( struct sk ip_ l i s t ∗sl ,
59 int maxLevel , memstat_t memStat, bool_t dupAllowed ,
60 int (∗compfunc ) ( const void ∗ , const void ∗ ) ) ;
61 bool_t s l _de lL i s t ( struct sk ip_ l i s t ∗sl ) ;
62 statusEnum_t sl_insert_node( struct sk ip_ l i s t ∗sl , void ∗newEntry ) ;
63 void ∗sl_delete_node( struct sk ip_ l i s t ∗sl , void ∗key , statusEnum_t ∗res ) ;
64 void ∗sl_find_node ( struct sk ip_ l i s t ∗sl , void ∗key , statusEnum_t ∗res ) ;
65 inl ine bool_t sl_isEmpty ( struct sk ip_ l i s t ∗sl ) ;
66 inl ine void ∗sl_ f i rstElem( struct sk ip_ l i s t ∗sl ) ;
67
68
69 /∗ This function breaks encapsulation , but is needed by the al locator
70 ∗ to e f f i c i e n t r y traverse the l i s t of misc l i s t
71 ∗/
72 struct l ist_node ∗sl_ f ind_l istnode ( struct sk ip_ l i s t ∗sl , void ∗key ,
73 statusEnum_t ∗res ) ;
74
75 #endif

C.2.3 skiplist.c

1 #include <stdl ib .h>
2 #include <stdio .h>
3 #include <time .h>
4 #include <string .h>
5 #include <assert .h>
6
7 #include " sk ip l i s t .h"
8
9 /∗

10 ∗ Adapted general SkipList management functions .
11 ∗/
12
13 static int get_ leve l ( struct sk ip_ l i s t ∗sl ) ;
14
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15 /∗ Inser t a f i l e entry into a given SkipList ∗/
16 statusEnum_t sl_insert_node( struct sk ip_ l i s t ∗sl , void ∗newEntry ) {
17 int i , newLevel ;
18 struct l ist_node ∗∗update ;
19 struct l ist_node ∗x ;
20
21 //Dynamically i n i t i a l i z e update array
22 update = malloc ( sizeof ( struct l ist_node ∗) ∗ ( sl−>maxLevel + 1 ) ) ;
23 i f ( update == NULL) {
24 return SL_MEM_EXHAUSTED;
25 }
26
27 /∗ f ind where key belongs ∗/
28 x = sl−>hdr ;
29 for ( i = sl−>l i s tLeve l ; i >= 0; i−−) {
30 while ( ( x−>forward [ i ] != sl−>n i l ) &&
31 sl−>compfunc( x−>forward [ i ]−>data , newEntry) < 0)
32 x = x−>forward [ i ] ;
33 update [ i ] = x ;
34 }
35
36 /∗ Checking for duplicates ; ignore i f allowed f lag is set . ∗/
37 i f ( ! sl−>dupAllowed ) {
38 x = x−>forward [ 0 ] ;
39 i f ( ( x != sl−>n i l ) && ( sl−>compfunc( x−>data , newEntry) == 0 ) ) {
40 free ( update ) ;
41 return SL_DUPLICATE_KEY;
42 }
43 }
44
45 /∗ Create and inser t a new node in the skip l i s t . ∗/
46 newLevel = get_ leve l ( s l ) ;
47
48 i f ( newLevel > sl−>l i s tLeve l ) {
49 update [ newLevel ] = sl−>n i l ; //NOTE! Only works with " f ixed dice "
50 sl−>l i s tLeve l = newLevel ;
51 i f ( sl−>l i s tLeve l > sl−>maxListLevel )
52 sl−>maxListLevel = sl−>l i s tLeve l ;
53 }
54
55 /∗ make new node ∗/
56 x = stat_malloc ( sizeof ( struct l ist_node ) +
57 newLevel ∗ sizeof ( struct l ist_node ∗ ) , sl−>mem_stat ) ;
58 i f ( x == NULL) {
59 free ( update ) ;
60 return SL_MEM_EXHAUSTED;
61 }
62
63 x−>data = newEntry;
64
65 /∗ update forward l inks ∗/
66 for ( i = 0; i <= newLevel ; i ++) {
67 x−>forward [ i ] = update [ i ]−>forward [ i ] ;
68 update [ i ]−>forward [ i ] = x ;
69 }
70
71 /∗ I f the new node is the last one , update the t a i l pointer ∗/
72 i f ( x−>forward [0 ] == sl−>n i l )
73 sl−>last = x ;
74
75 free ( update ) ;
76
77 return SL_OK;
78 }
79
80
81 /∗
82 ∗ Delete a node corresponding to the provided t i ck from the skip l i s t
83 ∗ and then return the associated f i l e structure . I f none found , NULL
84 ∗ pointer is returned .
85 ∗/
86 void ∗sl_delete_node( struct sk ip_ l i s t ∗sl , void ∗key , statusEnum_t ∗res ) {
87 int i ;
88 struct l ist_node ∗∗update ;
89 struct l ist_node ∗x ;
90 void ∗tmp;
91
92 assert ( res != NULL) ;
93
94 //Dynamically i n i t i a l i z e update array
95 update = malloc ( sizeof ( struct l ist_node ∗) ∗ ( sl−>maxLevel + 1 ) ) ;
96 i f ( update == NULL) {
97 ∗res = SL_MEM_EXHAUSTED;
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98 return NULL;
99 }

100
101 /∗ f ind where data belongs ∗/
102 x = sl−>hdr ;
103 for ( i = sl−>l i s tLeve l ; i >= 0; i−−) {
104 while ( ( x−>forward [ i ] != sl−>n i l ) &&
105 ( sl−>compfunc( x−>forward [ i ]−>data , key ) < 0 ) )
106 x = x−>forward [ i ] ;
107
108 update [ i ] = x ;
109 }
110 x = x−>forward [ 0 ] ;
111 i f ( ( x == sl−>n i l ) || sl−>compfunc( x−>data , key ) != 0 ) {
112 free ( update ) ;
113 ∗res = SL_KEY_NOT_FOUND;
114 return NULL;
115 }
116
117 /∗ I f the node to be deleted is the last one , update the t a i l pointer ∗/
118 i f ( x−>forward [0 ] == sl−>n i l )
119 sl−>last = update [ 0 ] ;
120
121
122 /∗ adjust forward pointers ∗/
123 for ( i = 0; i <= sl−>l i s tLeve l ; i ++) {
124 i f ( update [ i ]−>forward [ i ] != x ) break ;
125 update [ i ]−>forward [ i ] = x−>forward [ i ] ;
126 }
127
128 /∗ salvage data before the node is deleted ∗/
129 tmp = x−>data ;
130
131 stat_ free ( x , sl−>mem_stat ) ;
132
133 /∗ adjust header l eve l ∗/
134 while ( ( sl−>l i s tLeve l > 0)
135 && ( sl−>hdr−>forward [ sl−>l i s tLeve l ] == sl−>n i l ) )
136 sl−>l i s tLeve l−−;
137
138 free ( update ) ;
139 ∗res = SL_OK;
140 return tmp;
141 }
142
143
144 void ∗sl_find_node ( struct sk ip_ l i s t ∗sl , void ∗key , statusEnum_t ∗res ) {
145 int i ;
146 struct l ist_node ∗x = sl−>hdr ;
147
148 /∗ f ind node containing data ∗/
149
150 assert ( res != NULL) ;
151
152 for ( i = sl−>l i s tLeve l ; i >= 0; i−−) {
153 while ( ( x−>forward [ i ] != sl−>n i l )
154 && ( sl−>compfunc( x−>forward [ i ]−>data , key ) < 0 ) )
155 x = x−>forward [ i ] ;
156 }
157
158 x = x−>forward [ 0 ] ;
159 i f ( x != sl−>n i l ) {
160 i f ( sl−>compfunc( x−>data , key ) == 0 ) {
161 ∗res = SL_OK;
162 } else {
163 ∗res = SL_KEY_NOT_FOUND;
164 }
165 return x−>data ;
166 }
167
168 ∗res = SL_PAST_LAST_NODE;
169 return NULL;
170 }
171
172
173 /∗ Specially modified function ! Returns a ∗l is t_node∗ , which data
174 ∗ entry is ∗greater or equal∗ to the provided key ! Used to quickly
175 ∗ locate the f i r s t suitable l i s t of misc l i s t s .
176 ∗/
177 struct l ist_node ∗sl_ f ind_l istnode ( struct sk ip_ l i s t ∗sl , void ∗key ,
178 statusEnum_t ∗res ) {
179 int i ;
180 struct l ist_node ∗x = sl−>hdr ;
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181
182 assert ( res != NULL) ;
183
184 /∗ f ind node containing data ∗/
185
186 for ( i = sl−>l i s tLeve l ; i >= 0; i−−) {
187 while ( ( x−>forward [ i ] != sl−>n i l )
188 && ( sl−>compfunc( x−>forward [ i ]−>data , key ) < 0 ) )
189 x = x−>forward [ i ] ;
190 }
191
192 x = x−>forward [ 0 ] ;
193 i f ( x != sl−>n i l ) {
194 ∗res = SL_OK;
195 return x ;
196 }
197
198 ∗res = SL_PAST_LAST_NODE;
199
200 return NULL;
201 }
202
203
204
205 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
206 ∗ i n i t i a l i z e skip l i s t ∗

207 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
208 statusEnum_t s l _ i n i t L i s t ( struct sk ip_ l i s t ∗sl ,
209 int maxLevel , memstat_t memStat, bool_t dupAllowed ,
210 int (∗compfunc ) ( const void ∗ , const void ∗ ) ) {
211 int i ;
212
213 memset ( sl , 0 , sizeof ( struct sk ip_ l i s t ) ) ;
214
215 sl−>hdr = stat_malloc ( sizeof ( struct l ist_node ) +
216 maxLevel ∗ sizeof ( struct l ist_node ∗ ) , memStat ) ;
217
218 i f ( sl−>hdr == NULL) {
219 return SL_MEM_EXHAUSTED;
220 }
221
222 sl−>n i l = sl−>hdr ;
223 sl−>last = sl−>hdr ;
224 sl−>mem_stat = memStat;
225 sl−>maxLevel = maxLevel ;
226 sl−>compfunc = compfunc;
227 sl−>dupAllowed = dupAllowed ;
228 sl−>maxListLevel = 0;
229 sl−>hdr−>data = NULL;
230
231 for ( i = 0; i <= maxLevel ; i ++)
232 sl−>hdr−>forward [ i ] = sl−>n i l ;
233
234 srand ( time (NULL ) ) ;
235
236 return SL_OK;
237 }
238
239
240 bool_t s l _de lL i s t ( struct sk ip_ l i s t ∗sl ) {
241 i f ( ! sl_isEmpty ( s l ) )
242 return FALSE;
243
244 stat_ free ( sl−>hdr , sl−>mem_stat ) ;
245
246 return TRUE;
247 }
248
249
250 inl ine bool_t sl_isEmpty ( struct sk ip_ l i s t ∗sl ) {
251 return sl−>hdr−>forward [0 ] == sl−>n i l ;
252 }
253
254
255 inl ine void ∗sl_ f i rstElem( struct sk ip_ l i s t ∗sl ) {
256 assert ( ! sl_isEmpty ( s l ) ) ;
257 return sl−>hdr−>forward[0]−>data ;
258 }
259
260 /∗ Determine random leve l for the new skip l i s t node . " Fix the dice "
261 ∗ by allowing the new leve l to be at most one more than the current
262 ∗ l eve l of the l i s t .
263 ∗/
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264 static int get_ leve l ( struct sk ip_ l i s t ∗sl ) {
265 int newLevel ;
266
267 for (
268 newLevel = 0;
269 rand ( ) < RAND_MAX/2
270 && newLevel < sl−>maxLevel
271 && newLevel <= sl−>l i s tLeve l ;
272 newLevel ++) ;
273
274 return newLevel ;
275 }

C.2.4 simalloc.h

1 #ifndef SIMALLOC_H
2 #define SIMALLOC_H
3
4 /∗ Data structures used to represent allocated f i l e s : i . e . a l inked
5 ∗ l i s t of extents assosiated with a f i l e , as well as a copy of i t s
6 ∗ corresponding al locat ion trace entry .
7 ∗/
8
9 #include " sk ip l i s t .h"

10
11 struct sim_f i le {
12 struct al loc_trace at ;
13 struct sk ip_ l i s t ∗ext ;
14 } ;
15
16 //Function prototypes
17 void errstop (char ∗msg, int code ) ;
18 void trc_dr iver (char ∗ f i l e ) ;
19 void crea te_ f i l e ( struct sk ip_ l i s t ∗sl , struct al loc_trace ∗at ) ;
20 void de le te_ f i l e ( struct sk ip_ l i s t ∗sl , struct al loc_trace ∗at ) ;
21
22 #endif

C.2.5 simalloc.c

1 #include <stdl ib .h>
2 #include <stdio .h>
3 #include <string .h>
4 #include <assert .h>
5
6 #include " . . /common/storage_types .h"
7 #include " . . /common/l ibarg .h"
8
9 #include "common.h"

10 #include " simalloc .h"
11 #include " alloc_exports .h"
12 #include "memory.h"
13 #include " sk ip l i s t .h"
14 #include "media .h"
15 #include " a l loc_stat .h"
16
17
18 void errstop (char ∗msg, int code ) {
19 fpr in t f ( stderr , "\n\nSimalloc stopped with code %d:\n\t%s\n" , code , msg) ;
20 exi t ( code ) ;
21 }
22
23
24 /∗
25 ∗ Comparison function for the dr iver skip l i s t
26 ∗/
27 int filecomp (const void ∗val1 , const void ∗val2 ) {
28 i f ( ( ( struct sim_f i le ∗) val1)−>at . f i l e _ i d >
29 ( ( struct sim_f i le ∗) val2)−>at . f i l e _ i d )
30 return 1;
31
32 i f ( ( ( struct sim_f i le ∗) val1)−>at . f i l e _ i d <
33 ( ( struct sim_f i le ∗) val2)−>at . f i l e _ i d )
34 return −1;
35
36 return 0;
37 }
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38
39
40 int main ( int argc , char ∗∗argv ) {
41 char ∗param;
42 char ∗ f i l e ;
43 bool_t no_coal ;
44 uint32_t psize = 0;
45 uint32_t awp = 0;
46
47 //Read the f i l e name containing the trace .
48 parseArgs ( argc , argv , "−f " , FALSE, &f i l e ) ;
49
50 no_coal = parseArgs ( argc , argv , "−nc" , TRUE, NULL) ;
51
52 //Read the size of the par t i t i on ( in MB)
53 i f ( parseArgs ( argc , argv , "−p" , FALSE, &param) && (param != NULL ) ) {
54 psize = ato l (param) ;
55 }
56
57 //Read the size of the Acceptable Wastage Parameter
58 i f ( parseArgs ( argc , argv , "−w" , FALSE, &param) && (param != NULL ) ) {
59 awp = atol (param) ;
60 }
61
62 i f ( ( psize == 0) || ( f i l e == NULL ) ) {
63 pr int f ( "Usage : %s −f t r a c e f i l e −p part_size [−w AWP_size ] [−nc]\n"
64 "\tThe part i t ion size is in megabytes and must be > 0.\n"
65 "The −nc parameter stands for \"no coalescing \" and turns\n"
66 " o f f that feature .\n" ,
67 strrchr ( argv [0 ] , ’/ ’ ) +1 ) ;
68 exi t ( 1 ) ;
69 }
70
71 // I n i t i a l i s e al locator s t a t i s t i c s co l l e c t i on system
72 as_ini t ( ) ;
73
74 // I n i t i a l i s e memory management s t a t i s t i c a l inter face
75 stat_mem_init ( ) ;
76
77 // I n i t i a l i s e Media I/O layer ( the counters )
78 mediaInit ( ) ;
79
80 // I n i t i a l i s e the al locator with a given par t i t i on size and AWP
81 qf_mkpart ( ( uint64_t ) psize ∗ 1048576LL , awp, no_coal ) ;
82
83
84 //Run the simulation
85 trc_dr iver ( f i l e ) ;
86
87
88 //Pr int memory usage s t a t i s t i c s
89 stat_mem_print ( ) ;
90
91 return 0;
92 }
93
94
95 void crea te_ f i l e ( struct sk ip_ l i s t ∗sl , struct al loc_trace ∗at ) {
96 struct sim_f i le ∗tmp;
97 statusEnum_t res ;
98
99 tmp = stat_malloc ( sizeof ( struct sim_f i le ) , MEM_IGNORE) ;

100 i f ( tmp == NULL)
101 errstop ( "Out of memory in crea te_ f i l e\n" , 1 ) ;
102
103 memcpy(&(tmp−>at ) , at , sizeof ( struct al loc_trace ) ) ;
104
105 //This counter must come before the al locat ion request for the
106 //running internal fragmentation stat pr intout to work.
107 as_add_to_max_bytes ( at−>size ) ;
108
109 tmp−>ext = qf_al loc ( at−>size , FALSE, 0 ) ;
110
111 i f ( tmp−>ext == NULL) {
112 errstop ( " Allocator is out of space ! " , 9 ) ;
113 }
114
115 //Place the f i l e into the f i l e queue , sorted by f i l e ID number.
116 res = sl_insert_node( sl , tmp ) ;
117 i f ( res != SL_OK) {
118 errstop ( " Driver : Insertion of a f i l e fa i l ed ! " , res ) ;
119 }
120 }
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121
122
123 void de le te_ f i l e ( struct sk ip_ l i s t ∗sl , struct al loc_trace ∗at ) {
124 struct sim_f i le ∗tmp;
125 struct sim_f i le key ;
126 statusEnum_t res ;
127
128 key . at . f i l e _ i d = at−>f i l e _ i d ;
129
130 //Remove the f i l e with the give id from the l i s t
131 tmp = sl_delete_node( sl , &key , &res ) ;
132
133 //Free a l l extents occupied by the f i l e
134 i f ( res == SL_OK) {
135 as_sub_from_max_bytes( tmp−>at . s ize ) ;
136 qf_ free ( tmp−>ext ) ;
137 stat_ free ( tmp, MEM_IGNORE) ;
138 } else {
139 errstop ( " Cr i t i ca l error in de l e t e_ f i l e ( ) . \n" , res ) ;
140 }
141 }
142
143
144 /∗
145 ∗ The main dr iver a l locat ion /deallocation loop is here
146 ∗/
147 void trc_dr iver (char ∗ f i l e ) {
148 FILE ∗ f in ;
149 struct al loc_trace at ;
150 struct sk ip_ l i s t f i l e _ l i s t ;
151 int c_total , c_single , c_avoid , c_nomerge ;
152
153 c_tota l = c_single = c_avoid = c_nomerge = 0;
154
155 i f ( ( f in = fopen ( f i l e , " r " ) ) == NULL) {
156 errstop ( "Cannot open input trace !\n" , 2 ) ;
157 }
158
159 i f ( s l _ i n i t L i s t(& f i l e _ l i s t , 20,
160 MEM_IGNORE, FALSE, &filecomp ) ) {
161 errstop ( "Out of memory in trc_dr iver " , 1 ) ;
162 }
163
164 for ( ; ; ) {
165 //Read event from the trace un t i l done.
166 i f ( fread (&at , sizeof ( struct al loc_trace ) , 1 , f in ) != 1 ) {
167 break ;
168 }
169
170 //Perform the required operation
171 i f ( at . f lags & OP_CREATE ) {
172 as_count_fi les ( ) ;
173 crea te_ f i l e (& f i l e _ l i s t , &at ) ;
174 } else i f ( at . f lags & OP_DELETE) {
175 de le te_ f i l e (& f i l e _ l i s t , &at ) ;
176 }
177 } // for ( ; ; )
178
179 qf_cleanup ( ) ;
180
181 fpr in t f ( stderr , " Trace request high watermark: %l lu bytes\n" ,
182 as_get_max_bytes ( ) ) ;
183 fpr in t f ( stderr , " Adjusted al locator high watermark: %l lu grains\n" ,
184 as_get_max_grains ( ) ) ;
185 fpr in t f ( stderr , " Internal fragmentation ( avg . at peak load ) : %.8Lf\n" ,
186 as_get_ifrag_avg ( ) ) ;
187
188 fpr in t f ( stderr , "\nNumber of f i l e s in the trace : %l lu \n" ,
189 as_get_fi le_count ( ) ) ;
190 fpr in t f ( stderr , " Total number of extents allocated : %l lu\n" ,
191 as_get_ext_count ( ) ) ;
192 fpr in t f ( stderr , "Number of multi−extent al locat ions : %l lu\n" ,
193 as_get_multiallocs ( ) ) ;
194 fpr in t f ( stderr , " F i le fragmentation ( avg . extents / f i l e ) : %.8Lf\n" ,
195 as_get_ffrag_avg ( ) ) ;
196 fpr in t f ( stderr , " F i le fragmentation (max. extents / f i l e ) : %.8Lf\n" ,
197 as_get_ffrag_max ( ) ) ;
198 fpr in t f ( stderr , " F i le fragmentation ( by multi−ext . f i l e count ) : "
199 "%.8Lf percent\n" ,
200 ( ( long double ) as_get_multiallocs ( ) ∗ 100) /
201 ( long double ) as_get_fi le_count ( ) ) ;
202
203 fpr in t f ( stderr , "\nTotal write requests : %l lu\n" , g_write_count ) ;
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204
205 as_get_coal_status(&c_total , &c_single , &c_avoid , &c_nomerge ) ;
206
207 fpr in t f ( stderr , "\nTotal coalescings : %d\n" , c_tota l ) ;
208 fpr in t f ( stderr , " Coalescings leading to single al locat ion : %d\n" ,
209 c_single ) ;
210 fpr in t f ( stderr , " Coalescigs with no mergings : %d\n" , c_nomerge ) ;
211 fpr in t f ( stderr , " Avoided coalescings : %d\n" , c_avoid ) ;
212 }

C.2.6 alloc_exports.h

1 #ifndef ALLOC_EXPORTS_H
2 #define ALLOC_EXPORTS_H
3
4
5 /∗
6 ∗ Function prototypes . q f _a l l o c returns a sk ip l i s t containing one or
7 ∗ more extents . This is done for s imp l i c i ty . This way we do not need
8 ∗ to keep a ’ next ’ pointer in the in−memory extent descriptors and we
9 ∗ can re−use the exis t ing infrastructure .

10 ∗/
11 void qf_mkpart ( uint64_t part_size , unsigned int awp_size , bool_t no_coal ) ;
12 void qf_start ( void ) ;
13 void qf_stop ( void ) ;
14 struct sk ip_ l i s t ∗qf_al loc ( as ize_t byte_size , bool_t cont_hint ,
15 asize_t loc_hint ) ;
16 void qf_ free ( struct sk ip_ l i s t ∗ext ) ;
17 void qf_cleanup ( void ) ;
18
19 #endif

C.2.7 allocator.h

1 #ifndef ALLOCATOR_H
2 #define ALLOCATOR_H
3
4 #include "common.h"
5 #include " sk ip l i s t .h"
6
7 #define NUM_QUICK_LISTS 150 //QL array dimention
8 #define GRAIN_SIZE 512 //In bytes
9 #define MISC_RANGE 20 //Based on the trace character is t ics , described

10 //in thesis
11
12 //Maximum par t i t i on size in bytes
13 #define MAX_PART_SIZE (GRAIN_SIZE ∗ sizeof ( as ize_t ) )
14 #define HEADER_SIZE ( sizeof ( as ize_t ) )
15
16 /∗
17 ∗ This data structure describes the propert ies of a misc l i s t and
18 ∗ contains the skip l i s t of extents stored within the mic l i s t . I t is
19 ∗ stored as a l is t_node data member of the q f _a l l o ca tor . ml sk ip l i s t .
20 ∗/
21 struct misc_l ist {
22 asize_t range_idx ;
23 struct sk ip_ l i s t extents ;
24 } ;
25
26
27 //Skip l i s t leve ls − these are zero−based
28 #define COAL_LEVEL 32
29 #define QL_LEVEL 20
30 #define ML_LEVEL 16
31 #define MLL_LEVEL 6
32 #define RES_LEVEL 1
33
34 /∗ Global structure containing QuickFit headers
35 ∗

36 ∗ Each quick l i s t is a skip l i s t of extents , sorted by address in
37 ∗ asceding order .
38 ∗

39 ∗ Misc l i s t s is a low−height skip l i s t of misc_ l is t structurs , sorted
40 ∗ by range index in ascending order .
41 ∗

42 ∗ Misc l i s t s themselves are sorted f i r s t by size in descending order ,
43 ∗ then by address , in ascending order .
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44 ∗

45 ∗ See the algorithm descr ipt ion for the exlanation of the coalesced
46 ∗ f lag .
47 ∗/
48 struct qf_al locator {
49 struct sk ip_ l i s t ql [NUM_QUICK_LISTS] ;
50 struct sk ip_ l i s t mll ;
51 bool_t coalesced ;
52 asize_t free ; // Number of f ree grains
53 } ;
54
55 extern struct qf_al locator g_qfa l loc ;
56
57 /∗ Comparison function prototypes ∗/
58 int ql_comp ( const void ∗val1 , const void ∗val2 ) ;
59 int ml_comp( const void ∗val1 , const void ∗val2 ) ;
60 int mll_comp(const void ∗val1 , const void ∗val2 ) ;
61
62 /∗ Helper function prototypes ∗/
63 void delete_ext ( struct sk ip_ l i s t ∗ l i s t , struct extent ∗ext , bool_t commit ) ;
64 void store_ext ( struct extent ∗ext , bool_t commit ) ;
65
66 struct sk ip_ l i s t ∗f ind_cand_list (const asize_t s ize ) ;
67 struct extent ∗ f ind_ext_ql ( struct sk ip_ l i s t ∗candidate , as ize_t loc_hint ) ;
68 struct extent ∗find_ext_ml ( struct sk ip_ l i s t ∗candidate , as ize_t loc_hint ,
69 asize_t s ize ) ;
70
71 inl ine asize_t mll_range_idx( as ize_t s ize ) ;
72 inl ine asize_t size_in_grains ( as ize_t byte_size ) ;
73
74 void sp l i t _ex t ( struct extent ∗ext , as ize_t new_size ) ;
75
76 /∗ Wrapper functions that ca l l media I/O layer ∗/
77 int write_hdr ( struct extent ∗ext , bool_t i s _ f r ee ) ;
78 int read_hdr ( struct extent ∗ext ) ;
79
80 /∗ Parts of the thesis algorithm present in al locator . c ∗/
81 void coalesce ( void ) ;
82 void single_al loc ( struct sk ip_ l i s t ∗result ,
83 struct sk ip_ l i s t ∗candidate , as ize_t size ,
84 asize_t loc_hint ) ;
85
86 bool_t multi_alloc ( struct sk ip_ l i s t ∗result , as ize_t byte_size ,
87 asize_t loc_hint ) ;
88
89 #endif

C.2.8 allocator.c

1 #include <assert .h>
2 #include <stdl ib .h>
3 #include <stdio .h>
4
5 #include " a l locator .h"
6 #include " alloc_exports .h"
7 #include " a l loc_stat .h"
8
9 //The declaration of the main al locator structure

10 struct qf_al locator g_qfa l loc ;
11
12 //The global AWP value
13 unsigned int g_awp;
14 bool_t g_no_coal ;
15
16 /∗
17 ∗ The task of qf_mkpart is to i n i t i a l i s e a l l f ree l i s t s , misc_ l is t l i s t
18 ∗ and the wilderness . This function is called once at the star t of
19 ∗ the simulation . The par t i t i on size provided is in bytes .
20 ∗/
21 void qf_mkpart ( uint64_t part_size , unsigned int awp_size , bool_t no_coal ) {
22 int i ;
23 struct extent ∗ext ;
24
25 g_awp = awp_size ;
26 g_no_coal = no_coal ;
27
28 g_qfa l loc . coalesced = TRUE;
29 g_qfa l loc . f ree = 0;
30
31 // I n i t each quick l i s t
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32 for ( i = 0; i < NUM_QUICK_LISTS; i ++) {
33 i f ( s l _ i n i t L i s t (&( g_qfa l loc . ql [ i ] ) , QL_LEVEL,
34 MEM_QLISTS, FALSE, &ql_comp ) == SL_MEM_EXHAUSTED) {
35 errstop ( "Out of memory in qf_mkpart " , 1 ) ;
36 }
37 }
38
39 // I n i t i a l i s e the l i s t of misc l i s t s
40 i f ( s l _ i n i t L i s t (&( g_qfa l loc . mll ) , MLL_LEVEL,
41 MEM_MLL, FALSE, &mll_comp) == SL_MEM_EXHAUSTED) {
42 errstop ( "Out of memory in qf_mkpart " , 1 ) ;
43 }
44
45 // I n i t i a l i z e the misc l i s t , which wi l l contain one or more
46 // ’ wilderness ’ extents .
47 ext = stat_malloc ( sizeof ( struct extent ) , MEM_EXTENT) ;
48 i f ( ext == NULL ) {
49 errstop ( "Out of memory in qf_mkpart " , 1 ) ;
50 }
51
52 ext−>size = part_size / GRAIN_SIZE ;
53 ext−>address = 0;
54
55 #ifdef DEBUG
56 fpr in t f ( stderr , "Legend:\tA : − Allocate ,\n"
57 "\tF : − Free ,\n"
58 "\tC : − Coalesce (+ is helped ; − is no change) ,\n"
59 "\t$ − Split ,\n"
60 "\t§ − Store ,\n"
61 "\ts : − single extent al locat ion\n"
62 "\tm: − multi extent al locat ion\n\n" ) ;
63
64 fpr in t f ( stderr , " In i t : %l lu\n" , ext−>size ) ;
65 #endif
66
67 store_ext ( ext , TRUE) ;
68 }
69
70
71 /∗
72 ∗ Implementation of the improved QuickFit a l locat ion algorithm , as
73 ∗ described in the thesis .
74 ∗/
75 struct sk ip_ l i s t ∗qf_al loc ( as ize_t byte_size , bool_t cont_hint ,
76 asize_t loc_hint ) {
77 struct sk ip_ l i s t ∗candidate = NULL;
78 struct sk ip_ l i s t ∗result ;
79 asize_t grain_size ;
80
81 #ifdef DEBUG
82 fpr in t f ( stderr , "A: %lluB/" , byte_size ) ;
83 #endif
84
85 /∗ Step 0 − Adjust the size , converting i t from bytes to grains and
86 ∗ adding one grain i f the adjusted size does not f i l l an exact
87 ∗ number of grains . This re−calcu lat ion is used to determine i f we
88 ∗ can use single−extent a l locat ion and is passed to s ing le_al loc ( )
89 ∗ function .
90 ∗/
91 grain_size = size_in_grains ( byte_size ) ;
92
93 #ifdef DEBUG
94 fpr in t f ( stderr , "%l lug\n" , grain_size ) ;
95 #endif
96
97 /∗ Check i f we can possibly sat is fy the request . Forward error
98 ∗ correct ion . The request might s t i l l f a i l i f multi−extent
99 ∗ al locat ion is used .

100 ∗/
101 i f ( grain_size > g_qfa l loc . f ree ) {
102 fpr in t f ( stderr , "Out of space ! Remaining grains : %llu , needed %llu\n" ,
103 g_qfa l loc . free , grain_size ) ;
104 return NULL;
105 }
106
107 /∗ Create and i n i t i a l i s e the skipList , which wi l l contain the resul t
108 ∗ extents . We use the same comparison fanction as the QuickLists ,
109 ∗ sor t ing the extents by address .
110 ∗/
111 result = stat_malloc ( sizeof ( struct sk ip_ l i s t ) , MEM_IGNORE) ;
112 i f ( ( result == NULL) ||
113 ( s l _ i n i t L i s t ( result , RES_LEVEL,
114 MEM_IGNORE, FALSE, &ql_comp ) == SL_MEM_EXHAUSTED) ) {
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115 errstop ( "Out of memory in qf_al loc ! " , 2 ) ;
116 }
117
118 //Step 1
119 i f ( cont_hint && ! g_qfa l loc . coalesced ) {
120 coalesce ( ) ;
121 }
122
123 //Step 2 & 3 − locate candidate l i s t
124 candidate = find_cand_list ( grain_size ) ;
125
126 //Step 4
127 i f ( ( candidate == NULL) && ! g_qfa l loc . coalesced ) {
128 coalesce ( ) ;
129 candidate = find_cand_list ( grain_size ) ;
130
131 i f ( candidate != NULL) {
132 as_count_coal_single ( ) ;
133 }
134
135 #ifdef DEBUG
136 i f ( candidate != NULL) {
137 fpr in t f ( stderr , "C:\ t+\n" ) ;
138 } else {
139 fpr in t f ( stderr , "C:\ t−\n" ) ;
140 }
141 #endif
142
143 } else {
144 i f ( candidate == NULL) {
145 as_count_coal_avoided ( ) ;
146 }
147
148 #ifdef DEBUG
149 i f ( candidate == NULL) {
150 fpr in t f ( stderr , "C:\ tesc\n" ) ;
151 }
152 #endif
153 }
154
155 //Step 5
156 i f ( candidate != NULL) { // Al locate from the candidate l i s t
157 single_al loc ( result , candidate , grain_size , loc_hint ) ;
158 } else {
159 // Use multi−block al locat ion , using byte size . I f i t fa i l s , FALSE
160 // is returned , in wich case , mul t i_a l loc ( ) has emptied and freed
161 // the incomplete resul ts l i s t .
162 i f ( ! multi_alloc ( result , byte_size , loc_hint ) )
163 return NULL;
164 }
165
166 //Pr int internal fragmentation to f i l e ( i f activated ) .
167 as_pr int_ i f rag ( ) ;
168
169 return result ;
170 }
171
172
173 /∗
174 ∗ Return a l l extents from a deleted f i l e to the i r respective free
175 ∗ l i s t s .
176 ∗/
177 void qf_ free ( struct sk ip_ l i s t ∗ex t_ l i s t ) {
178 struct extent ∗ext ;
179 statusEnum_t res ;
180
181 //The l i s t MUST contain at least one extent .
182 assert ( ! sl_isEmpty ( ex t_ l i s t ) ) ;
183
184 /∗
185 ∗ Remove extent from the return l i s t one by one and inser t them
186 ∗ in to the appropriate f ree l i s t s .
187 ∗/
188 do {
189 #ifdef DEBUG
190 fpr in t f ( stderr , "F: " ) ;
191 #endif
192 ext = sl_ f i rstElem( ex t_ l i s t ) ;
193 sl_delete_node( ex t_ l i s t , ext , &res ) ;
194 i f ( res != SL_OK) {
195 errstop ( " Error deleting extent from return l i s t ! " , res ) ;
196 }
197
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198 store_ext ( ext , TRUE) ;
199
200 as_sub_from_max_grains( ext−>size ) ;
201 } while ( ! sl_isEmpty ( ex t_ l i s t ) ) ;
202
203 g_qfa l loc . coalesced = FALSE;
204
205 i f ( ! s l _de lL i s t ( ex t _ l i s t ) ) {
206 errstop ( " Failed to delete return l i s t ! " , 1 ) ;
207 }
208
209 stat_ free ( ex t _ l i s t , MEM_IGNORE) ;
210 }
211
212
213 /∗
214 ∗ This function can contain some operations , l i ke s t a t i s t i c s
215 ∗ co l l e c t i on , which we want to perform before the al locator
216 ∗ datatstructures are destroyed .
217 ∗/
218 void qf_cleanup ( void ) {
219
220 }
221
222
223 /∗
224 ∗ This is the implementation of the coelescing algorithm as described
225 ∗ in the thesis .
226 ∗/
227 void coalesce ( void ) {
228 struct sk ip_ l i s t c l i s t ;
229 struct extent ∗ext , ∗base_ext , ∗tmp_ext ;
230 struct misc_l ist ∗ml_tmp ;
231 int i ;
232 statusEnum_t res ;
233 bool_t commit;
234 bool_t nomerge = TRUE;
235
236 #ifdef DEBUG
237 fpr in t f ( stderr , "C:\ ts ta r t\n" ) ;
238 #endif
239
240 /∗ Define BEAUTIFUL_COALESCING for a visual pr intout of how many
241 ∗ extents were coalesced and at which posi t ions . Makes for a nice
242 ∗ pattern : )
243 ∗/
244 #ifdef BEAUTIFUL_COALESCING
245 fpr in t f ( stderr , "C: " ) ;
246 #endif
247
248 //Do nothing i f coalescing was turned o f f by the dr iver .
249 i f ( g_no_coal )
250 return ;
251
252 as_count_coal_total ( ) ;
253
254 /∗ Create a sk ip l i s t , which wi l l hold a l l in−memory extent headers ,
255 ∗ sorted by address (we use ql comparison function ) . NOT
256 ∗ IMPLEMENTED: The leve l of coalescing skip l i s t can be determined
257 ∗ dynamically based on the to ta l number of extents in a l l f ree
258 ∗ l i s t s , i f such a value is maintained.
259 ∗/
260 i f ( s l _ i n i t L i s t(& c l i s t , COAL_LEVEL,
261 MEM_COAL, FALSE, &ql_comp ) == SL_MEM_EXHAUSTED) {
262 errstop ( "Out of memory in coalesce " , 1 ) ;
263 }
264
265 /∗ Traverse a l l quick l i s t s and move the extents to the coalescing
266 ∗ l i s t , taking care of dele t ing list_nodes and re−i n i t i a l i s i n g the
267 ∗ ql in the end . Both here and for the misc l i s t s we use
268 ∗ delete_ext ( ) with noCommit f lag no set . The changes to the
269 ∗ headers are therefore not written to the disc (when/ i f that part
270 ∗ is implemented ) .
271 ∗

272 ∗ This is basicly an inser t ion sort , with an improtant di f ference :
273 ∗ The propert ies of skip l i s t give us a running time of O( n∗log n )
274 ∗/
275 for ( i = 0; i < NUM_QUICK_LISTS; i ++) {
276 while ( ! sl_isEmpty (&( g_qfa l loc . ql [ i ] ) ) ) {
277 ext = sl_ f i rstElem(&( g_qfa l loc . ql [ i ] ) ) ;
278 delete_ext (&( g_qfa l loc . ql [ i ] ) , ext , FALSE) ;
279 res = sl_insert_node(& c l i s t , ext ) ;
280 i f ( res != SL_OK) {
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281 errstop ( " Error inserting extent in coalesce ! " , res ) ;
282 }
283 } ; //while
284 } // for
285
286
287 //Now we do the same for the misc l i s t s
288 while ( ! sl_isEmpty(&g_qfa l loc . mll ) ) {
289
290 //Get the f i r s t l i s t on mll . As delete_ext ( ) removes empty misc
291 // l i s t s , the f i r s t ml can be d i f f e ren t on the next i t e ra t i on .
292 ml_tmp = sl_ f i rstElem(&( g_qfa l loc . mll ) ) ;
293
294 //Get the f i r s t extent on the misc l i s t , and move i t to the
295 //coalesce l i s t , not committing on−disk headers .
296 ext = sl_ f i rstElem(&(ml_tmp−>extents ) ) ;
297 delete_ext (&(ml_tmp−>extents ) , ext , FALSE) ;
298 res = sl_insert_node(& c l i s t , ext ) ;
299 i f ( res != SL_OK) {
300 errstop ( " Error inserting extent in coalesce ! " , res ) ;
301 }
302 } ; //while more misc l i s t s on mll
303
304 /∗ Coalesce the extents and return them to the appropriate f ree
305 ∗ l i s t s . This on−pass implementation is not faul t−to lerant , i f the
306 ∗ merged−in headers are cleared on the f ly . We need a two−pass
307 ∗ implementation to ensure faul t−tolerance , marking the extents as
308 ∗ freed and modified in the f i r s t pass , while using the second pass
309 ∗ to write out modified extents _before_ the freed ones are
310 ∗ cleared . That way, i f a crash occurs during the second pass , the
311 ∗ i n t eg r i ty of the on−disk headers would be preserved .
312 ∗

313 ∗ The on−pass implementation is safe to use as long as we do not
314 ∗ c lear the on−disk headers of the merged−in extents .
315 ∗/
316
317 base_ext = sl_ f i rstElem(& c l i s t ) ;
318 sl_delete_node(& c l i s t , base_ext , &res ) ;
319 i f ( res != SL_OK) {
320 errstop ( " Error emptying coalesce l i s t ! " , res ) ;
321 }
322
323 commit = FALSE;
324 while ( ! sl_isEmpty(& c l i s t ) ) {
325 tmp_ext = sl_ f i rstElem(& c l i s t ) ;
326 sl_delete_node(& c l i s t , tmp_ext , &res ) ;
327 i f ( res != SL_OK) {
328 errstop ( " Error emptying coalesce l i s t ! " , res ) ;
329 }
330
331 i f ( base_ext−>address + base_ext−>size == tmp_ext−>address ) {
332 //Adjacent , merge .
333 base_ext−>size += tmp_ext−>size ;
334 commit = TRUE;
335 nomerge = FALSE;
336
337 /∗ OPTIONAL: Clear the on−disk header of tmp_ext∗/
338
339 #ifdef BEAUTIFUL_COALESCING
340 fpr in t f ( stderr , "+" ) ;
341 #endif
342
343 stat_ free ( tmp_ext , MEM_EXTENT) ;
344 } else {
345 //tmp_ext is not adjacent , f lush and forward the base_ext
346 store_ext ( base_ext , commit ) ;
347 commit = FALSE;
348 base_ext = tmp_ext ;
349
350 #ifdef BEAUTIFUL_COALESCING
351 fpr in t f ( stderr , " " ) ;
352 #endif
353 }
354 } ;
355 store_ext ( base_ext , commit ) ;
356
357 i f (nomerge ) {
358 as_count_coal_nomerge ( ) ;
359 }
360
361 i f ( ! s l _de lL i s t(& c l i s t ) ) {
362 errstop ( " Failed to delete coalescing l i s t ! " , 1 ) ;
363 }
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364
365 g_qfa l loc . coalesced = TRUE;
366
367 #ifdef BEAUTIFUL_COALESCING
368 fpr in t f ( stderr , "\n" ) ;
369 #endif
370 }
371
372
373 /∗
374 ∗ Perform the single extent a l locat ion from a free l i s t of any type
375 ∗/
376 void single_al loc ( struct sk ip_ l i s t ∗result ,
377 struct sk ip_ l i s t ∗candidate , as ize_t size ,
378 asize_t loc_hint ) {
379 struct extent ∗ext ;
380 statusEnum_t res ;
381
382 i f ( ( ( struct extent ∗) s l_ f i rstElem( candidate))−>size <= NUM_QUICK_LISTS) {
383 ext = f ind_ext_ql ( candidate , loc_hint ) ;
384 } else {
385 ext = find_ext_ml ( candidate , loc_hint , s ize ) ;
386 }
387
388 i f ( ext−>size > size + g_awp ) {
389 //Remove the extent from the candidate l i s t . Do not commit header
390 //changes as they wi l l be update in sp l i t _ex t ( ) anyway
391 delete_ext ( candidate , ext , FALSE) ;
392 sp l i t _ex t ( ext , s ize ) ;
393 } else {
394 //Remove the extent from the candidate l i s t and commit header changes
395 delete_ext ( candidate , ext , TRUE) ;
396 }
397
398 as_add_to_max_grains ( ext−>size ) ;
399 as_count_ext ( ) ;
400
401 res = sl_insert_node( result , ext ) ;
402 i f ( res == SL_MEM_EXHAUSTED) {
403 errstop ( "Out of memory in single_al loc ! " , 2 ) ;
404 }
405
406 #ifdef DEBUG
407 fpr in t f ( stderr , "\ts : %l lu\n" , ext−>size ) ;
408 #endif
409
410 }
411
412
413 /∗
414 ∗ Perform a multi−extent a l locat ion . The provided size is in
415 ∗ bytes . The function does i t s own recalcu lat ion to grains for each
416 ∗ new allocated extent .
417 ∗/
418 bool_t multi_alloc ( struct sk ip_ l i s t ∗result , as ize_t byte_size ,
419 asize_t loc_hint ) {
420 //struct l is t_node ∗ln_tmp ;
421 struct sk ip_ l i s t ∗candidate = NULL;
422 struct extent ∗ext ;
423 statusEnum_t res ;
424 asize_t payload_byte_size , rem_byte_size;
425 bool_t done = FALSE;
426 int i ;
427
428 as_count_multiallocs ( ) ;
429
430 // I n i t i a l i s e the remaining byte size and other variables
431 rem_byte_size = byte_size ;
432 ext = NULL;
433
434 do {
435 /∗ We f i r s t check i t there is enough free space to go on at the
436 ∗ next i t e ra t i on . I f not , we must return a l l extents allocated so
437 ∗ far and signal a fa i lu re .
438 ∗/
439 i f ( size_in_grains ( rem_byte_size ) > g_qfa l loc . f ree ) {
440 fpr in t f ( stderr , "Out of space ! Remaining grains : "
441 "%llu , needed %llu\n" ,
442 g_qfa l loc . free , size_in_grains ( rem_byte_size ) ) ;
443 qf_ free ( result ) ;
444
445 #ifdef DEBUG
446 fpr in t f ( stderr , "\tm: fa i l ed\n" ) ;
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447 #endif
448
449 return FALSE;
450 }
451
452 /∗ Step 8 ∗/
453
454 /∗ Check i f the l i s t of misc l i s t s is empty . I f i t is , we can only
455 ∗ al locate from the ql ( taking the f i r s t non−empty l i s t with the
456 ∗ largest blocks ) .
457 ∗/
458 i f ( sl_isEmpty (&( g_qfa l loc . mll ) ) ) {
459 for ( i = NUM_QUICK_LISTS− 1; i >= 0; i−−){
460 i f ( ! sl_isEmpty (&( g_qfa l loc . ql [ i ] ) ) ) {
461 candidate = &(g_qfa l loc . ql [ i ] ) ;
462 break ;
463 }
464 }
465 ext = f ind_ext_ql ( candidate , loc_hint ) ;
466 } else {
467 //Use the last misc l i s t in mll
468 candidate =
469 &( ( ( struct misc_l ist ∗ ) ( g_qfa l loc . mll . last−>data))−>extents ) ;
470
471 //Size 0 − any size wi l l do
472 ext = find_ext_ml ( candidate , loc_hint , 0 ) ;
473 }
474
475 //Get the number of bytes of payload this extent can contain .
476 payload_byte_size = ext−>size ∗ GRAIN_SIZE − HEADER_SIZE;
477
478 /∗ I f the remainder is greater than the payload , subtract the
479 ∗ payload size from the remainder , and do another interat ion .
480 ∗/
481 i f ( rem_byte_size > payload_byte_size ) {
482 rem_byte_size −= payload_byte_size ;
483
484 //Remove the extent from the candidate l i s t and commit header
485 //changes .
486 delete_ext ( candidate , ext , TRUE) ;
487
488 } else { //The extent is the last one in the chain
489
490 //Check i f we need to s p l i t i t .
491 i f ( ext−>size > size_in_grains ( rem_byte_size ) + g_awp ) {
492 //Remove the extent from the candidate l i s t . Do not commit
493 //header changes as they wi l l be update in sp l i t _ex t ( ) anyway
494 delete_ext ( candidate , ext , FALSE) ;
495
496 //Sp l i t leaving enough grains to store the remainder
497 sp l i t _ex t ( ext , size_in_grains ( rem_byte_size ) ) ;
498 } else {
499 //Remove the extent from the candidate l i s t and commit header
500 //changes .
501 delete_ext ( candidate , ext , TRUE) ;
502 }
503
504 //Signal stop condit ion .
505 done = TRUE;
506 }
507
508 //Sta t i s t i cs
509 as_add_to_max_grains ( ext−>size ) ;
510 as_count_ext ( ) ;
511
512 //Add the extent to the resul ts l i s t
513 res = sl_insert_node ( result , ext ) ;
514 i f ( res == SL_MEM_EXHAUSTED) {
515 errstop ( "Out of memory in multi_alloc ! " , 2 ) ;
516 }
517
518 assert ( res == SL_OK) ; //Duplicate key is impossible
519
520 #ifdef DEBUG
521 fpr in t f ( stderr , "\tm: %l lu\n" , ext−>size ) ;
522 #endif
523
524 } while ( ! done ) ; /∗ Step 10 end ∗/
525
526 return TRUE;
527 }

144



C.2.9 alloc_helper.c

1 #include <assert .h>
2 #include <stdl ib .h>
3 #include <stdio .h>
4
5 #include " a l locator .h"
6 #include " a l loc_stat .h"
7 #include "media .h"
8
9 //#define STAT_USE

10
11
12 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ Al locator Helper Functions ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
13
14
15 /∗
16 ∗ Delete the extent from the free l i s t . I f the extent was the last
17 ∗ one in a misc l i s t , the delete that misc l i s t from mll . The ca l l e r
18 ∗ is responsible for f ree ing the extent i t s e l f .
19 ∗/
20 void delete_ext ( struct sk ip_ l i s t ∗ l i s t , struct extent ∗ext , bool_t commit ) {
21 struct extent ∗tmp;
22 struct misc_l ist dummy, ∗ml_tmp ;
23 statusEnum_t res ;
24
25 //Delete the extent from the l i s t .
26 tmp = sl_delete_node( l i s t , ext , &res ) ;
27 assert ( res == SL_OK) ;
28 assert ( ext == tmp ) ;
29
30 // I f i t was the last extent in a misc l i s t , delete the misc l i s t
31 //from mll .
32 i f ( ( ext−>size > NUM_QUICK_LISTS) && sl_isEmpty ( l i s t ) ) {
33 dummy. range_idx = mll_range_idx ( ext−>size ) ;
34 ml_tmp = sl_delete_node(&( g_qfa l loc . mll ) , &dummy, &res ) ;
35
36 i f ( res != SL_OK)
37 errstop ( " L ist error in delete_ext ! " , res ) ;
38 assert ( res == SL_OK) ;
39
40 i f ( ! s l _de lL i s t (&(ml_tmp−>extents ) ) ) {
41 errstop ( " Failed to delete misc l i s t ! " , 1 ) ;
42 }
43
44 stat_ free (ml_tmp, MEM_MLISTS) ;
45 }
46
47 /∗ I f the extent was not deleted for the sake of coalescing , write
48 ∗ i t s header down to disk and mark i t as ’used ’ .
49 ∗/
50 i f ( commit ) {
51 write_hdr ( ext , FALSE) ;
52 }
53
54 g_qfa l loc . f ree −= ext−>size ;
55
56 as_print_pool_use ( g_qfa l loc . free , ext−>size , FALSE) ;
57 }
58
59
60 /∗
61 ∗ This function stores an extent in an appropriate f ree l i s t . I t
62 ∗ f i r s t decides i f an extent belongs to a quick l i s t . I f i t is so , an
63 ∗ inser t function ca l l is performed. I f the extent belongs to a misc
64 ∗ l i s t , the function f i r s t checks i f the the appropriate misc l i s t
65 ∗ exis ts . I f not , i t f i r s t creates the header for that l i s t and then
66 ∗ inser ts the extent in the misc l i s t .
67 ∗/
68 void store_ext ( struct extent ∗ext , bool_t commit ) {
69 statusEnum_t res ;
70 struct misc_l ist dummy;
71 struct misc_l ist ∗tmp;
72
73 #ifdef DEBUG
74 fpr in t f ( stderr , "\t§ %l lu\n" , ext−>size ) ;
75 #endif
76
77 //Check i f the extent belongs to a quick l i s t
78 i f ( ext−>size <= NUM_QUICK_LISTS) {
79 sl_insert_node(&( g_qfa l loc . ql [ ext−>size − 1 ] ) , ext ) ;
80 } else {
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81 // I t is a misc l i s t , then . We f i r s t check i f the appropriate misc
82 // l i s t ex is ts .
83 dummy. range_idx = mll_range_idx( ext−>size ) ;
84 tmp = sl_find_node (&( g_qfa l loc . mll ) , &dummy, &res ) ;
85 i f ( res == SL_MEM_EXHAUSTED) {
86 errstop ( "Out of memory in store_ext ! " , 1 ) ;
87 }
88
89 //Create new misc l i s t i f i t is not already present .
90 i f ( res != SL_OK) {
91 tmp = stat_malloc ( sizeof ( struct misc_l ist ) , MEM_MLISTS) ;
92 i f ( ( tmp == NULL) ||
93 ( ( s l _ i n i t L i s t (&(tmp−>extents ) , ML_LEVEL, MEM_MLISTS, FALSE,
94 &ml_comp) == SL_MEM_EXHAUSTED) ) ) {
95 errstop ( "Out of memory: Cannot create misc_ l ist " , 1 ) ;
96 }
97 tmp−>range_idx = mll_range_idx( ext−>size ) ;
98
99 //Inser t the misc l i s t in to the l i s t of the misc l i s t s

100 i f ( sl_insert_node(&( g_qfa l loc . mll ) , tmp) != SL_OK) {
101 errstop ( " Fatal error in sl_inser_node " , res ) ;
102 }
103 }
104
105 //We can now inser t an extent into the misc l i s t .
106 i f ( sl_insert_node(&(tmp−>extents ) , ext ) != SL_OK) {
107 errstop ( " Fatal error in sl_inser_node " , res ) ;
108 }
109 }
110
111 //Commit the extent header to disk and mark i t as ’ f ree ’ .
112 i f ( commit ) {
113 write_hdr ( ext , TRUE) ;
114 }
115
116 //Update the free space counter
117 g_qfa l loc . f ree += ext−>size ;
118
119 as_print_pool_use ( g_qfa l loc . free , ext−>size , TRUE) ;
120 }
121
122
123
124
125 /∗
126 ∗ Find a candidate free l i s t , which might contain an extent of
127 ∗ desired size .
128 ∗/
129 struct sk ip_ l i s t ∗f ind_cand_list (const asize_t s ize ) {
130 struct sk ip_ l i s t ∗candidate = NULL;
131 struct misc_l ist dummy, ∗ml;
132 struct l ist_node ∗mll_node ;
133 struct extent ∗ext ;
134 asize_t cand_size ;
135 statusEnum_t res ;
136
137 cand_size = size ;
138
139 /∗ F i rs t we go through a l l quick l i s t s , s tat ing with the given index ∗/
140 while ( cand_size <= NUM_QUICK_LISTS) {
141 candidate = &(g_qfa l loc . ql [ cand_size − 1 ] ) ;
142 assert ( candidate != NULL) ; //Cannot have un in i t ia l i sed ql ’s
143
144 // I f the l i s t is empty , t ry the next one ( can happen for q l )
145 i f ( sl_isEmpty ( candidate ) ) {
146 cand_size ++;
147 } else {
148 return candidate ; // Otherwise make an early ex i t : )
149 }
150 } ;
151
152 /∗ No candidate found among ql ’s , search ml ’ s ∗/
153
154 /∗
155 ∗ We do a raw misc l i s t search . F i r s t we use a spec ia l ly modified
156 ∗ SkipList f ind function to locate the f i r s t misc l i s t , which range
157 ∗ is greater or equal to the cand_size .
158 ∗

159 ∗ From there on we examine the last extent in each subsequent misc
160 ∗ l i s t , s tar t ing with the returned ml_node . We return the
161 ∗ misc_ l is t , which contains an extent with size >= ’ size ’
162 ∗ parameter . By the sor t ing invariant for misc l i s t s , the last
163 ∗ extent is the largest one .
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164 ∗/
165
166 // Locate the f i r s t non−empty l is t_node
167 dummy. range_idx = mll_range_idx ( cand_size ) ;
168 mll_node = sl_ f ind_l istnode (&( g_qfa l loc . mll ) , &dummy, &res ) ;
169
170 // Check i f no suitable misc l i s t s found
171 i f ( res == SL_PAST_LAST_NODE) {
172 return NULL;
173 }
174
175 /∗ From here , traverse mll node for node . I f the misc l i s t provided
176 ∗ by sl_ f ind_ l is tnode ( ) does not contain extents of desired size ,
177 ∗ the next l i s t w i l l . The code in while { } is executed at most two
178 ∗ times .
179 ∗/
180 while ( mll_node != g_qfa l loc . mll . n i l ) {
181 ml = ( struct misc_l ist ∗ ) ( mll_node−>data ) ;
182 candidate = &(ml−>extents ) ;
183
184 //Verify invariant : empty misc l i s t s are deleted from mll
185 assert ( ! sl_isEmpty ( candidate ) ) ;
186
187 //Check the size inequity and return i f matches
188 ext = candidate−>last−>data ;
189 i f ( ext−>size >= size ) {
190 return candidate ;
191 }
192
193 //Advance to the next misc l i s t in mll sk ip_ l i s t
194 mll_node = mll_node−>forward [ 0 ] ;
195 } ;
196
197 return NULL;
198 }
199
200
201
202 /∗
203 ∗ This function finds a required extent from a quick l i s t , based on
204 ∗ the provided size and l o c a l i t y information . This function is used
205 ∗ both by single_al loc ( ) and mult i_a l loc ( )
206 ∗/
207 struct extent ∗ f ind_ext_ql ( struct sk ip_ l i s t ∗candidate , as ize_t loc_hint ) {
208 struct extent ∗ext = NULL;
209 struct extent dummy;
210 statusEnum_t res ;
211
212 assert ( candidate != NULL) ;
213 assert ( ! sl_isEmpty ( candidate ) ) ;
214 assert ( ( ( struct extent ∗) s l_ f i rstElem( candidate))−> size <=
215 NUM_QUICK_LISTS) ;
216
217 /∗ Without the l o c a l i t y hint get the f i r s t extent on the quick l i s t ,
218 ∗ otherwise do an address search , get t ing the extent which address
219 ∗ is >= loc_hint .
220 ∗/
221 i f ( loc_hint == 0 ) {
222 ext = sl_ f i rstElem( candidate ) ;
223 } else {
224 dummy. address = loc_hint ;
225 ext = sl_find_node ( candidate , &dummy, &res ) ;
226 i f ( res == SL_PAST_LAST_NODE) {
227 ext = candidate−>last−>data ;
228 }
229 }
230
231 return ext ;
232 }
233
234
235 /∗
236 ∗ This function finds a required extent from a misc l i s t , based on
237 ∗ the provided size and l o c a l i t y information . This function is used
238 ∗ both by single_al loc ( ) and mult i_a l loc ( )
239 ∗/
240 struct extent ∗find_ext_ml ( struct sk ip_ l i s t ∗candidate , as ize_t loc_hint ,
241 asize_t s ize ) {
242 struct l ist_node ∗ln_tmp ;
243 struct extent ∗ext = NULL, ∗best_ext ;
244 struct extent dummy;
245 asize_t best_val ;
246 statusEnum_t res ;
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247
248 assert ( candidate != NULL) ;
249 assert ( ! sl_isEmpty ( candidate ) ) ;
250 assert ( ( ( struct extent ∗) s l_ f i rstElem( candidate))−> size >
251 NUM_QUICK_LISTS) ;
252
253 /∗ Without the l o c a l i t y hint : I f the size value is 0 , the function
254 ∗ is called from mult i_a l loc ( ) , in which case get the largest
255 ∗ extent on the misc l i s t ( which is the last one ) , otherwise do a
256 ∗ best f i t search on the misc l i s t .
257 ∗/
258 i f ( loc_hint == 0 ) {
259 i f ( s ize == 0 ) {
260 ext = candidate−>last−>data ;
261 } else {
262 dummy. s ize = size ;
263 dummy. address = 0;
264 ext = sl_find_node ( candidate , &dummy, &res ) ;
265 i f ( res == SL_PAST_LAST_NODE) {
266 ext = candidate−>last−>data ;
267 }
268 }
269 } else {
270 /∗ We quickly locate the f i r s t _ l i s t node_ which contents is
271 ∗ suitable . From there we search the l i s t for the c losest
272 ∗ l o c a l i t y address . With size == 0 we wi l l i m p l i c i t l y star t from
273 ∗ the f i r s t node with the best l o c a l i t y .
274 ∗/
275 dummy. size = size ;
276 dummy. address = loc_hint ;
277 ln_tmp = sl_ f ind_l istnode ( candidate , &dummy, &res ) ;
278 i f ( res == SL_PAST_LAST_NODE) {
279 ln_tmp = candidate−>last ;
280 }
281
282 //Seach the remaining nodes for the address , with the shortest
283 //distance from loc_hint .
284 best_ext = ln_tmp−>data ;
285 best_val = best_ext−>address − loc_hint ;
286
287 while ( ln_tmp−>forward [0 ] != candidate−>n i l ) {
288 ext = ln_tmp−>data ;
289
290 i f ( ext−>address − loc_hint < best_val ) {
291 best_ext = ext ;
292 best_val = ext−>address − loc_hint ;
293 }
294
295 i f ( best_val == 0)
296 break ;
297
298 ln_tmp = ln_tmp−>forward [ 0 ] ;
299 } ;
300 ext = best_ext ;
301 }
302
303 return ext ;
304 }
305
306
307
308 /∗
309 ∗ This function sp l i t s the supplied extent , reducing i t to the given
310 ∗ size and returning the remainder to the appropriate f ree l i s t .
311 ∗/
312 void sp l i t _ex t ( struct extent ∗ext , as ize_t new_size ) {
313 struct extent ∗tmp;
314
315 assert ( new_size < ext−>size ) ;
316
317 #ifdef DEBUG
318 fpr in t f ( stderr , "\t$\n" ) ;
319 #endif
320
321 tmp = stat_malloc ( sizeof ( struct extent ) , MEM_EXTENT) ;
322 i f (tmp == NULL) {
323 errstop ( "Out of memory: Cannot create new extent during sp l i t " , 1 ) ;
324 }
325
326 tmp−>size = ext−>size − new_size ;
327 tmp−>address = ext−>address + new_size ;
328
329 store_ext ( tmp, TRUE) ;
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330
331 ext−>size = new_size ;
332
333 //Update the on−disk header with the new size value and mark i t as
334 // ’ not f ree ’ .
335 write_hdr ( ext , FALSE) ;
336 }
337
338
339
340 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
341 ∗ Comparison functions ∗

342 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
343
344 /∗ Comparison function for the entr ies in a quick l i s t ∗/
345 int ql_comp ( const void ∗val1 , const void ∗val2 ) {
346 i f ( ( ( struct extent ∗) val1)−>address > ( ( struct extent ∗) val2)−>address )
347 return 1;
348
349 i f ( ( ( struct extent ∗) val1)−>address < ( ( struct extent ∗) val2)−>address )
350 return −1;
351
352 return 0;
353 }
354
355 /∗ Comparison function for the entr ies in a misc l i s t ∗/
356 int ml_comp( const void ∗val1 , const void ∗val2 ) {
357 const struct extent ∗m1 = ( struct extent ∗) val1 ;
358 const struct extent ∗m2 = ( struct extent ∗) val2 ;
359
360 i f (m1−>size > m2−>size )
361 return 1;
362
363 i f (m1−>size < m2−>size )
364 return −1;
365
366 // I f the sizes are equal , then we sort by address . Both values in
367 //ascending order .
368 i f (m1−>size == m2−>size ) {
369 i f (m1−>address > m2−>address )
370 return 1;
371
372 i f (m1−>address < m2−>address )
373 return −1;
374 } // i f sizes are equal
375
376 return 0;
377 }
378
379 /∗ Comparison function for the entr ies in a l i s t of misc l i s t s ∗/
380 int mll_comp( const void ∗val1 , const void ∗val2 ) {
381 i f ( ( ( struct misc_l ist ∗) val1)−>range_idx >
382 ( ( struct misc_l ist ∗) val2)−>range_idx )
383 return 1;
384
385 i f ( ( ( struct misc_l ist ∗) val1)−>range_idx <
386 ( ( struct misc_l ist ∗) val2)−>range_idx )
387 return −1;
388
389 return 0;
390 }
391
392
393
394 /∗ Calculate to which misc l i s t an extent of given size belongs . ∗/
395 inl ine asize_t mll_range_idx( as ize_t s ize ) {
396 assert ( s ize > NUM_QUICK_LISTS) ;
397 return ( s ize − NUM_QUICK_LISTS) / MISC_RANGE;
398 }
399
400
401 /∗
402 ∗ Calculate how many grains are need to accomodate the given number
403 ∗ of bytes , should everything f i t in to a single extent .
404 ∗/
405 inl ine asize_t size_in_grains ( as ize_t byte_size ) {
406 return ( byte_size + HEADER_SIZE) / GRAIN_SIZE +
407 ( ( ( ( byte_size + HEADER_SIZE) % GRAIN_SIZE ) == 0) ? 0 : 1 ) ;
408 }
409
410
411 /∗
412 ∗ The function updates the on−disk header , writ ing out the size and
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413 ∗ the al locat ion status .
414 ∗/
415 int write_hdr ( struct extent ∗ext , bool_t i s _ f r ee ) {
416 asize_t header ;
417
418 //We scramble the header and then write i t out
419 header = ext−>size | ( ( as ize_t ) i s _ f r ee << ( sizeof ( as ize_t ) ∗ 8 − 1 ) ) ;
420
421 put_range ( ext , 0, HEADER_SIZE, &header , TRUE) ;
422
423 return 0;
424 }
425
426
427
428 /∗
429 ∗ ext parameter provides the address from which the extent header is
430 ∗ to be read . The information is read to a temporary buffer . I t is
431 ∗ then discrambled and copied to the extent parameter ( the last step
432 ∗ is not implemented in th is simulation ) .
433 ∗/
434 int read_hdr ( struct extent ∗ext ) {
435 asize_t header ;
436
437 get_range ( ext , 0, HEADER_SIZE, &header ) ;
438
439 /∗ Discramble and copy , possibly returning the free status as part of
440 ∗ the return value . NOT IMPLEMENTED.
441 ∗/
442
443 return 0;
444 }

C.2.10 media.h

1 #ifndef MEDIA_H
2 #define MEDIA_H
3
4 #include "common.h"
5
6 extern uint64_t g_read_count , g_write_count;
7
8 /∗
9 ∗ Stub functions for the media I/O layer .

10 ∗/
11
12 void mediaInit ( void ) ;
13 int put_range (const struct extent ∗ext , as ize_t of fset ,
14 asize_t length , void ∗data , bool_t destructive ) ;
15 int get_range (const struct extent ∗ext , as ize_t of fset ,
16 asize_t length , void ∗data ) ;
17
18 #endif

C.2.11 media.c

1 #include <stdio .h>
2 #include <stdl ib .h>
3
4 #include "media .h"
5
6 uint64_t g_read_count , g_write_count;
7
8 void mediaInit ( void ) {
9 g_read_count = g_write_count = 0;

10 }
11
12
13 /∗
14 ∗ Extent header in the f i r s t parameter provide extent ’ s star t ing
15 ∗ address . Extent ’ s size can be used for sanity check .
16 ∗/
17 int put_range (const struct extent ∗ext , as ize_t of fset ,
18 asize_t length , void ∗data , bool_t destructive ) {
19
20 /∗ Check i f wee need to fetch a grain to preserve i t s
21 ∗ contents . Between zero and two read operations might be needed ,
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22 ∗ depending on the alignment of data .
23 ∗/
24 i f ( ! destructive ) {
25 get_range ( ext , o f fset , length , data ) ;
26 }
27
28 g_write_count++;
29 return 0;
30 }
31
32
33
34 int get_range ( const struct extent ∗ext , as ize_t of fset ,
35 asize_t length , void ∗data ) {
36
37 g_read_count++;
38 return 0;
39 }

C.2.12 memory.h

1 #ifndef MEMORY_H
2 #define MEMORY_H
3
4 /∗ Wrapper function for malloc and free intended to measure memory
5 ∗ consumption of the various parts of the al locator .∗
6 ∗/
7
8 typedef enum {
9 MEM_IGNORE, //A l l skip l i s t s are traced by default . This class is

10 //used i f we want to disable trac ing .
11 MEM_MLL, //The l i s t of misc l i s t s
12 MEM_QLISTS, //Quick l i s t s
13 MEM_MLISTS, //Misc l i s t s
14 MEM_EXTENT, //In−memory extent headers
15 MEM_COAL, //Coalescing master l i s t
16 } memstat_t ;
17
18
19 //Total number of entr ies in memstat_t
20 #define MEM_LAST 6
21
22 void stat_mem_init ( void ) ;
23 void stat_mem_print ( void ) ;
24 void ∗stat_malloc ( s ize_t size , memstat_t infotype ) ;
25 void stat_ free ( void ∗ptr , memstat_t infotype ) ;
26
27 #endif

C.2.13 memory.c

1 #include <stdl ib .h>
2 #include <stdint .h>
3 #include <stdio .h>
4 #include <string .h>
5 #include <malloc .h>
6
7 #include "memory.h"
8 #include " sk ip l i s t .h"
9

10 //Undefine th is to exclude memory usage s t a t i s t i c s co l l e c t i on .
11 //#define STAT_MEMORY
12
13 //Undefine to avoid writ ing memory al locat ion /deallocation to the
14 //respective f i l e s .
15 //#define STAT_MEM_FILE
16
17 //This is used to keep track of the allocated memory sizes
18 struct sk ip_ l i s t g_mem_list;
19
20 struct mem_data{
21 size_t s ize ;
22 void ∗ptr ;
23 } ;
24
25 struct meminfo{
26 uint64_t running;
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27 uint64_t max;
28 uint64_t to ta l ;
29 FILE ∗memory_file ;
30 } ;
31
32 char ∗g_statnames [MEM_LAST] = { " ignored " ,
33 " misc l ist l i s t " ,
34 " quick l i s t s " ,
35 "misc l i s t s " ,
36 " extent headers " ,
37 " coalescing l i s t " } ;
38
39 struct meminfo g_meminfo[MEM_LAST ] ;
40
41 uint64_t g_access_count ;
42 uint64_t g_running , g_max, g_tota l ; //Used for cumulative usage
43
44
45 /∗ Comparison function for memory module , ordering the entr ies by
46 ∗ address .
47 ∗/
48 int mem_comp(const void ∗val1 , const void ∗val2 ) {
49 i f ( ( ( struct mem_data ∗) val1)−>ptr > ( ( struct mem_data ∗) val2)−>ptr )
50 return 1;
51
52 i f ( ( ( struct mem_data ∗) val1)−>ptr < ( ( struct mem_data ∗) val2)−>ptr )
53 return −1;
54
55 return 0;
56 }
57
58
59 /∗ I n i t i a l i s e a l l memory tracking tructures ∗/
60 void stat_mem_init ( void ) {
61 #ifdef STAT_MEMORY
62 statusEnum_t res ;
63
64 memset ( g_meminfo, 0, sizeof ( struct meminfo) ∗ MEM_LAST ) ;
65
66 g_access_count = 0;
67 g_running = g_max = g_tota l = 0;
68
69 #ifdef STAT_MEM_FILE
70 char tmp[256] ;
71
72 //Start ing count from 1 − MEM_IGNORE excluded
73 for ( int i = 1; i < MEM_LAST; i ++) {
74 spr int f ( tmp, "%s .mem" , g_statnames [ i ] ) ;
75 g_meminfo[ i ] . memory_file = fopen (tmp, "w" ) ;
76 }
77 #endif //STAT_MEM_FILE
78
79 //Must be called at the very end of i n i t i a l i s a t i o n
80 res = s l _ i n i t L i s t(&g_mem_list , 38, MEM_IGNORE, FALSE, &mem_comp) ;
81 i f ( res != SL_OK) {
82 errstop ( "Memory module fa i l ed !\n" , res ) ;
83 }
84
85 #endif //STAT_MEMORY
86 }
87
88
89 /∗ Pr int the co l lec ted s t a t i s t i c s ∗/
90 void stat_mem_print ( void ) {
91 #ifdef STAT_MEMORY
92 int i ;
93
94 fpr in t f ( stderr , "\n∗∗∗ Memory usage ∗∗∗\n\n" ) ;
95
96 fpr in t f ( stderr , " Total access count : %l lu\n" , g_access_count ) ;
97 fpr in t f ( stderr , " Total usage hight watermark: %l lu\n" , g_max ) ;
98 fpr in t f ( stderr , " Total usage throughput: %l lu\n\n" , g_tota l ) ;
99

100
101 //Start ing count from 1 − MEM_IGNORE excluded
102 for ( i = 1; i < MEM_LAST; i ++) {
103 fpr in t f ( stderr , "%s high watermark: %l lu\n" ,
104 g_statnames [ i ] , g_meminfo[ i ] .max) ;
105 fpr in t f ( stderr , "%s throughput: %l lu\n" ,
106 g_statnames [ i ] , g_meminfo[ i ] . t o ta l ) ;
107 }
108 #endif
109 }
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110
111
112
113 void ∗stat_malloc ( s ize_t size , memstat_t infotype ) {
114 #ifdef STAT_MEMORY
115 void ∗tmp;
116 struct mem_data ∗md;
117 statusEnum_t res ;
118
119 tmp = malloc ( s ize ) ;
120
121 //Prevent recursion
122 i f ( infotype != MEM_IGNORE) {
123 i f ( (md = malloc ( sizeof ( struct mem_data) ) ) == NULL) {
124 errstop ( "Memory module fa i l ed !\n" , 99);
125 }
126
127 md−>size = size ;
128 md−>ptr = tmp;
129 res = sl_insert_node(&g_mem_list , md) ;
130 i f ( res != SL_OK) {
131 errstop ( "Memory module fa i l ed !\n" , res ) ;
132 }
133
134 g_access_count++;
135 g_running += size ;
136 g_tota l += size ;
137 g_meminfo[ infotype ] . running += size ; //malloc_usable_size ( tmp ) ;
138 g_meminfo[ infotype ] . t o ta l += size ; //malloc_usable_size ( tmp ) ;
139
140 #ifdef STAT_MEM_FILE
141 fpr in t f ( g_meminfo[ infotype ] . memory_file , "%l lu\t%l lu\n" ,
142 g_access_count , g_meminfo[ infotype ] . running ) ;
143 #endif //STAT_MEM_FILE
144
145 i f ( g_running > g_max)
146 g_max = g_running ;
147
148 i f ( g_meminfo[ infotype ] . running > g_meminfo[ infotype ] .max)
149 g_meminfo[ infotype ] .max = g_meminfo[ infotype ] . running;
150 }
151
152 return tmp;
153 #else
154 return malloc ( s ize ) ;
155 #endif
156 }
157
158
159 void stat_ free ( void ∗ptr , memstat_t infotype ) {
160 #ifdef STAT_MEMORY
161 struct mem_data ∗md, dummy;
162 statusEnum_t res ;
163
164 //Prevent recursion
165 i f ( infotype != MEM_IGNORE) {
166 dummy. ptr = ptr ;
167 md = sl_delete_node(&g_mem_list , &dummy, &res ) ;
168 i f ( res != SL_OK) {
169 errstop ( "Memory module fa i l ed !\n" , res ) ;
170 }
171
172 g_access_count++;
173 g_running −= md−>size ;
174 g_meminfo[ infotype ] . running −= md−>size ; //malloc_usable_size ( ptr ) ;
175
176 free (md) ;
177
178 #ifdef STAT_MEM_FILE
179 fpr in t f ( g_meminfo[ infotype ] . memory_file , "%l lu\t%l lu\n" ,
180 g_access_count , g_meminfo[ infotype ] . running ) ;
181 #endif //STAT_MEM_FILE
182 }
183
184 #endif //STAT_MEMORY
185 free ( ptr ) ;
186 }

C.2.14 alloc_stat.h

1 #ifndef ALLOC_STAT_H
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2 #define ALLOC_STAT_H
3
4 #include "common.h" //For asize_t
5
6 void as_ini t ( void ) ;
7
8 void as_add_to_max_grains ( as ize_t grains ) ;
9 void as_sub_from_max_grains( as ize_t grains ) ;

10 uint64_t as_get_max_grains( void ) ;
11
12 void as_count_ext ( void ) ;
13 uint64_t as_get_ext_count ( void ) ;
14 void as_count_fi les ( void ) ;
15 uint64_t as_get_fi le_count ( void ) ;
16 long double as_get_ffrag_avg ( void ) ;
17 long double as_get_ffrag_max( void ) ;
18
19 void as_print_pool_use ( as ize_t free , as ize_t d i f f , bool_t op ) ;
20
21 void as_count_coal_total ( void ) ;
22 void as_count_coal_single ( void ) ;
23 void as_count_coal_nomerge ( void ) ;
24 void as_count_coal_avoided ( void ) ;
25 void as_get_coal_status( int ∗tota l , int ∗single , int ∗avoided ,
26 int ∗nomerge ) ;
27
28 void as_add_to_max_bytes ( as ize_t bytes ) ;
29 void as_sub_from_max_bytes( as ize_t bytes ) ;
30 uint64_t as_get_max_bytes( void ) ;
31 long double as_get_ifrag_avg ( void ) ;
32
33 void as_pr int_ i f rag ( void ) ;
34
35 void as_count_multiallocs ( void ) ;
36 asize_t as_get_multiallocs ( void ) ;
37
38 #endif

C.2.15 alloc_stat.c

1 #include <stdl ib .h>
2 #include <stdio .h>
3 #include <string .h>
4 #include <stdint .h>
5
6 #include " a l loc_stat .h"
7 #include " a l locator .h"
8
9 struct astat {

10 asize_t grains_running ;
11 asize_t grains_max;
12 asize_t ext_count ;
13 asize_t f i le_count ;
14 FILE ∗pool ;
15 int coal_tota l ;
16 int coal_single ;
17 int coal_avoided ;
18 int coal_nomerge ;
19 FILE ∗ i f rag ;
20 asize_t bytes_running;
21 asize_t bytes_max ;
22 asize_t multi_allocs ;
23 long double ffrag_max ;
24 } ;
25
26
27 struct astat g_al loc_stat ;
28
29
30 void as_ini t ( void ) {
31 bzero(&g_alloc_stat , sizeof ( struct astat ) ) ;
32
33 #ifdef POOL_USE
34 g_al loc_stat . pool = fopen ( " f ree pool . stat " , "w" ) ;
35 #endif
36
37 #ifdef IFRAG
38 g_al loc_stat . i f rag = fopen ( " internal frag . stat " , "w" ) ;
39 #endif
40 }
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41
42
43
44 /∗∗ Count the allocated grains ∗∗/
45
46 void as_add_to_max_grains ( as ize_t grains ) {
47 g_al loc_stat . grains_running += grains ;
48
49 i f ( g_al loc_stat . grains_running > g_al loc_stat . grains_max)
50 g_al loc_stat . grains_max = g_al loc_stat . grains_running ;
51
52 }
53
54 void as_sub_from_max_grains( as ize_t grains ) {
55 g_al loc_stat . grains_running −= grains ;
56 }
57
58 uint64_t as_get_max_grains ( void ) {
59 return g_al loc_stat . grains_max;
60 }
61
62
63
64 /∗∗ Sta t i s t i cs of F i l e Fragmentation ∗∗/
65
66 void as_count_ext ( void ) {
67 long double tmp;
68
69 g_al loc_stat . ext_count++;
70
71 //Recalculate maximum f i l e fragmentation . F i l e count is updated from
72 //the simulation dr iver pr ior to any ca l l to th is function .
73 tmp = ( long double ) g_al loc_stat . ext_count /
74 ( long double ) g_al loc_stat . f i le_count ;
75
76 i f ( tmp > g_al loc_stat . ffrag_max )
77 g_al loc_stat . ffrag_max = tmp;
78 }
79
80 uint64_t as_get_ext_count ( void ) {
81 return g_al loc_stat . ext_count ;
82 }
83
84 void as_count_fi les ( void ) {
85 g_al loc_stat . f i le_count++;
86 }
87
88 uint64_t as_get_fi le_count ( void ) {
89 return g_al loc_stat . f i le_count ;
90 }
91
92 long double as_get_ffrag_avg ( void ) {
93 return ( long double ) g_al loc_stat . ext_count /
94 ( long double ) g_al loc_stat . f i le_count ;
95 }
96
97 long double as_get_ffrag_max( void ) {
98 return g_al loc_stat . ffrag_max ;
99 }

100
101
102
103 /∗∗ I f activated , dump free pool status to f i l e . ∗∗/
104 void as_print_pool_use ( as ize_t free , as ize_t size , bool_t op ) {
105 #ifdef POOL_USE
106 fpr in t f ( g_al loc_stat . pool , "%l lu\t%c\t%l lu\n" ,
107 free , op ? ’+ ’ : ’− ’ , s ize ) ;
108 #endif
109 }
110
111
112
113 /∗∗ A set of functions counting coalescings ∗∗/
114 void as_count_coal_total ( void ) {
115 g_al loc_stat . coal_tota l ++;
116 }
117
118 void as_count_coal_single ( void ) {
119 g_al loc_stat . coal_single ++;
120 }
121
122 void as_count_coal_nomerge ( void ) {
123 g_al loc_stat . coal_nomerge++;
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124 }
125
126 void as_count_coal_avoided ( void ) {
127 g_al loc_stat . coal_avoided++;
128 }
129
130 void as_get_coal_status( int ∗tota l , int ∗single , int ∗avoided ,
131 int ∗nomerge ) {
132 ∗t o ta l = g_al loc_stat . coal_tota l ;
133 ∗single = g_al loc_stat . coal_single ;
134 ∗avoided = g_al loc_stat . coal_avoided ;
135 ∗nomerge = g_al loc_stat . coal_nomerge ;
136 }
137
138
139
140 /∗∗ Sta t i s t i cs of Internal Fragmentation ∗∗/
141
142 void as_add_to_max_bytes ( as ize_t bytes ) {
143 g_al loc_stat . bytes_running += bytes ;
144
145 i f ( g_al loc_stat . bytes_running > g_al loc_stat . bytes_max )
146 g_al loc_stat . bytes_max = g_al loc_stat . bytes_running;
147
148 }
149
150 void as_sub_from_max_bytes( as ize_t bytes ) {
151 g_al loc_stat . bytes_running −= bytes ;
152 }
153
154 uint64_t as_get_max_bytes( void ) {
155 return g_al loc_stat . bytes_max ;
156 }
157
158
159 long double as_get_ifrag_avg ( void ) {
160 return ( ( long double ) g_al loc_stat . grains_max ∗ GRAIN_SIZE ) /
161 ( long double ) g_al loc_stat . bytes_max ;
162 }
163
164
165 /∗∗
166 Col lec t and dump to f i l e running internal fragmentation
167 s t a t i s t i c s
168 ∗∗/
169 void as_pr int_ i f rag ( void ) {
170 #ifdef IFRAG
171 fpr in t f ( g_al loc_stat . i f rag , "%.8Lf\n" ,
172 ( ( long double ) g_al loc_stat . grains_running ∗ GRAIN_SIZE ) /
173 ( long double ) g_al loc_stat . bytes_running ) ;
174 #endif
175 }
176
177
178
179 /∗∗
180 Count the al locat ion requests that had to be s p l i t over several
181 extents
182 ∗∗/
183
184 void as_count_multiallocs ( void ) {
185 g_al loc_stat . multi_allocs ++;
186 }
187
188 asize_t as_get_multiallocs ( void ) {
189 return g_al loc_stat . multi_allocs ;
190 }

C.2.16 Makefile

1 CC_OPTS = −O3 −Wall
2 LD_OPTS = −O3
3 LIBS = simalloc . o memory. o al locator . o sk ip l i s t . o \
4 alloc_helper . o al loc_stat . o media . o l ibarg . o
5 PROG = simalloc
6
7 # Uncomment the f i r s t line to co l l ec t memory usage information
8 # Uncomment both l ines to addit ional ly dump memory usage dynamics
9 # to f i l e

10 MEMSTAT = −DSTAT_MEMORY
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11 #MEMSTAT += −DSTAT_MEM_FILE −std=c99
12
13 # Uncomment the following line to print the running status of free
14 # space pool to f i l e .
15 #STAT_OPTS = −DPOOL_USE
16
17 # Uncomment the following line to print the running status of internal
18 # fragmentation ( in percent ) . IFRAG and POLL_USE can be used at the
19 # same time or indiv idual ly .
20 #STAT_OPTS += −DIFRAG
21
22 # Uncomment the following line to print the operations performed by
23 # the al locator to stderr in a human−readable format (debug
24 # information ) .
25 #CC_OPTS += −DDEBUG
26
27 .PHONY: a l l clean realclean
28
29 a l l : $ (PROG)
30
31 clean :
32 rm −f ∗.o ∗~
33
34 realclean : clean
35 rm −f $ (PROG) $ (PROG) . exe
36 rm −f ∗.stackdump core
37
38
39 simalloc : $ ( LIBS )
40 gcc $ (LD_OPTS) −o $@ $( LIBS )
41
42 simalloc . o : simalloc . c . ./common/storage_types .h simalloc .h \
43 alloc_exports .h memory.h sk ip l i s t .h common.h media .h \
44 . ./common/l ibarg .h al loc_stat .h
45 gcc $ (CC_OPTS) −c $<
46
47 al locator . o : a l locator . c memory.h al locator .h alloc_exports .h \
48 common.h sk ip l i s t .h al loc_stat .h
49 gcc $ (CC_OPTS) −c $<
50
51 alloc_helper . o : alloc_helper . c memory.h al locator .h common.h \
52 sk ip l i s t .h media .h al loc_stat .h
53 gcc $ (CC_OPTS) −c $<
54
55 al loc_stat . o : a l loc_stat . c a l loc_stat .h common.h
56 gcc $ (CC_OPTS) $ (STAT_OPTS) −c $<
57
58 memory. o : memory. c memory.h
59 gcc $ (CC_OPTS) $ (MEMSTAT) −c $<
60
61 sk ip l i s t . o : sk ip l i s t . c sk ip l i s t .h memory.h common.h
62 gcc $ (CC_OPTS) −c $<
63
64 media . o : media . c media .h common.h
65 gcc $ (CC_OPTS) −c $<
66
67 l ibarg . o : . . /common/l ibarg . c . ./common/l ibarg .h
68 gcc $ (CC_OPTS) −c $<
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C.3 Trace Generator

The trace generator has two main programs. clean_trace.cc
parses the binary HTTP and Helix server logs and generates a tem-
porary merged log, filtering the entries which are not relevant for
the purpose of our simulation. mkalloctrc.c then read the tem-
porary cleaned log and generates a trace of allocation and deallo-
cation events as described in Appendix B. print_repl.cc parses
the binary replacement log produced by mkalloctrc.c and prints
it in text form, optionally showing the URL strings.

C.3.1 client_event.h

Only two structures are used from client_event.h. These structures
describe each entry of the raw binary HTTP and Helix server logs.
These logs are parsed to generate our allocation trace.

1 struct http_event {
2 double abstime ; // loca l time !
3 unsigned char url [ 8 ] ;
4 unsigned int cl ient_ ip ;
5 unsigned int protocol ;
6 unsigned int bytes_sent ;
7 unsigned int session_id ;
8 unsigned short method ;
9 unsigned short status ;

10 unsigned short session_state ;
11 unsigned short unused ;
12 } __attribute__ ( ( packed ) ) ;
13
14 struct helix_event {
15 http_event http ;
16 unsigned int f i l e _ s i z e ;
17 float f i l e _ t ime ;
18 float time_sent ;
19 float elapsed_time ;
20 } __attribute__ ( ( packed ) ) ;
21
22 #define ST_STAT( st ) ( st & 0xFFF )

C.3.2 clean_trace.cc

1 #include " . . / scr ipts/client_event .h"
2 #include " . . / scr ipts/stt/stage_bdb_map.h"
3 #include " assert .h"
4 #include <stdio .h>
5 #include <stdl ib .h>
6 #include <string .h>
7 #include <l imits .h>
8
9 #include " . . /common/storage_types .h"

10 #include " . . /common/l ibarg .h"
11
12 #define TIME_MAX_VAL ( ( double )LONG_MAX ∗ (double )1000)
13
14 inl ine int isValidURL(const char ∗url ) {
15 i f ( url [ s tr len ( url ) − 1] == ’ ? ’ )
16 return 1;
17 else
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18 return 0;
19 }
20
21 int main ( int argc , char ∗∗argv ) {
22 struct http_event ht_ev ;
23 struct helix_event hx_ev ;
24 struct raw_trace rt ;
25 FILE ∗ht_ f i l e , ∗hx_f i le , ∗out_ f i l e ;
26 char ∗param;
27 unsigned long long invalid_count , status_count , total_count;
28
29 invalid_count = status_count = total_count = 0;
30
31 /∗ Parse the arguements ∗/
32 h t _ f i l e = hx_f i le = out_ f i l e = NULL;
33
34 i f ( parseArgs ( argc , argv , "−t " , FALSE, &param) && (param != NULL ) ) {
35 i f ( ( h t _ f i l e = fopen (param, " r " ) ) == NULL) {
36 print f ( "Cannot open binary http trace !\n" ) ;
37 return 1;
38 }
39 }
40
41 i f ( parseArgs ( argc , argv , "−x" , FALSE, &param) && (param != NULL ) ) {
42 i f ( ( hx_f i le = fopen (param, " r " ) ) == NULL) {
43 print f ( "Cannot open binary helix trace !\n" ) ;
44 return 1;
45 }
46 }
47
48 i f ( parseArgs ( argc , argv , "−o" , FALSE, &param) && (param != NULL ) ) {
49 i f ( ( ou t_ f i l e = fopen (param, "w" ) ) == NULL) {
50 print f ( "Cannot open output f i l e !\n" ) ;
51 return 1;
52 }
53 }
54
55 /∗ Must be the last arg check as param value is used la te r ∗/
56 parseArgs ( argc , argv , "−d" , FALSE, &param) ;
57
58 i f ( ( param == NULL) ||
59 ( out_ f i l e == NULL) ||
60 ( ( h t _ f i l e == NULL) && ( hx_f i le == NULL ) ) ) {
61 pr int f ( "Usage :\n%s [−t http_trace | −x helix_trace | both ] "
62 " −d hash_db −o out_trace\n" , argv [ 0 ] ) ;
63 return 1;
64 }
65
66 /∗ Open the URL database. ∗/
67 bdb db (param, DB_UNKNOWN, DB_RDONLY) ;
68 bdb_map<url_key , char∗> hash_url (db ) ;
69
70 // I n i t i a l i s e the times with maximum possible values for the ben i f i t
71 //of comparison in the case when we read only one f i l e .
72 ht_ev . abstime = hx_ev . http . abstime = TIME_MAX_VAL;
73
74
75 /∗ Read the f i r s t entr ies of both input f i l e s∗/
76 i f ( h t _ f i l e != NULL) {
77 i f ( fread(&ht_ev , sizeof ( struct http_event ) , 1 , h t _ f i l e ) != 1 ) {
78 pr int f ( "Empty f i l e ?\n" ) ;
79 return 1;
80 }
81 total_count++;
82 }
83
84 i f ( hx_f i le != NULL) {
85 i f ( fread(&hx_ev , sizeof ( struct helix_event ) , 1 , hx_f i le ) != 1 ) {
86 pr int f ( "Empty f i l e ?\n" ) ;
87 return 1;
88 }
89 total_count++;
90 }
91
92 /∗ The main processing loop ∗/
93 for ( ; ; ) {
94 //Compare times of the two events an prepare for output the
95 //ear l i es t one .
96 i f ( ht_ev . abstime < hx_ev . http . abstime ) {
97 rt . bytes_sent = ht_ev . bytes_sent ;
98 rt . status = ST_STAT( ht_ev . status ) ;
99 memcpy( ( char ∗) r t . url , ( const char ∗) ht_ev . url , 8 ) ;

100
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101 /∗ Read the next http event∗/
102 i f ( fread (&ht_ev , sizeof ( struct http_event ) , 1 , h t _ f i l e ) != 1 ) {
103 /∗ Reset the impoortant structures i f EOF reached∗/
104 fc lose ( h t _ f i l e ) ;
105 h t _ f i l e = NULL;
106 ht_ev . abstime = TIME_MAX_VAL;
107 fpr in t f ( stderr , " Http done " ) ;
108 } else {
109 total_count++;
110 }
111 } else {
112 rt . bytes_sent = hx_ev . f i l e _ s i z e ;
113 rt . status = ST_STAT( hx_ev . http . status ) ;
114 memcpy( ( char ∗) r t . url , ( const char ∗)hx_ev . http . url , 8 ) ;
115
116 /∗ Read the next hel ix event∗/
117 i f ( fread (&hx_ev , sizeof ( struct helix_event ) , 1 , hx_f i le ) != 1 ) {
118 /∗ Reset the impoortant structures i f EOF reached∗/
119 fc lose ( hx_f i le ) ;
120 hx_f i le = NULL;
121 hx_ev . http . abstime = TIME_MAX_VAL;
122 fpr in t f ( stderr , " Helix done " ) ;
123 } else {
124 total_count++;
125 }
126 }
127
128 /∗ Check i f reached EOF on both inputs ∗/
129 i f ( ( h t _ f i l e == NULL) && ( hx_f i le == NULL) )
130 break ;
131
132 const char ∗urlstr = hash_url . get (∗ ( url_key∗)&rt . url ) ;
133 i f ( ! ur lstr ) {
134 print f ( " url hash not found . SHOULD NOT HAPPEN!\n" ) ;
135 return 2;
136 }
137
138 i f ( total_count % 10000 == 0 ) {
139 fpr in t f ( stderr , " . " ) ;
140 }
141
142 i f ( ( r t . status != 304) && ( rt . status != 200) ) {
143 status_count ++;
144 continue ;
145 }
146
147 /∗ Zero−length 200 entr ies are preserved in case they are needed
148 ∗ l a t e r .
149 ∗/
150
151 i f ( ! isValidURL( ur lstr ) ) {
152 invalid_count ++;
153 continue ;
154 }
155
156 i f ( fwr i te (&rt , sizeof ( struct raw_trace ) , 1 , out_ f i l e ) != 1 ) {
157 print f ( " Error writing to trace !\n" ) ;
158 break ;
159 }
160 } // for
161
162 print f ( "\n%llu to ta l entries found.\n"
163 "%l lu discarded due to wrong status value , \n"
164 " of the remaining entries %l lu discarded "
165 "due to URL l imitat ion .\n"
166 "%l lu val id entries remain.\n" ,
167 total_count , status_count , invalid_count ,
168 total_count − ( status_count + invalid_count ) ) ;
169
170
171 fpr in t f ( stderr , "\n" ) ;
172 fc lose ( out_ f i l e ) ;
173
174 return 0;
175 }

C.3.3 mkalloctrc.h

1 #ifndef MKALLOCTRC_H
2 #define MKALLOCTRC_H
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3
4
5 /∗
6 ∗ Structures used to represent f i l e events and skip l i s t entr ies .
7 ∗ Skip l i s t is used to store f i l es , ordered by i t s URL hash value .
8 ∗ Only " inser t " operation is implemented as we never search for or
9 ∗ delete from the skip l i s t . Each entry in the skip l i s t can

10 ∗ represent several f i l es , as a f i l e can be created , deleted and then
11 ∗ a f i l e with the same name, but of d i f f e ren t size can be created in
12 ∗ i t s place . For th is purpose we keep a pointer to the last , act ive
13 ∗ f i l e in the f i l e node . The remaining , inacive f i l e s are only
14 ∗ accessible through the next pointers in the f i l e entry structures .
15 ∗ When al locat ion trace is f ina l ly commited to disk , we traverse the
16 ∗ l i s t using a spec ia l ly maintained next pointer , which orders the
17 ∗ f i l e s by the i r creation " t i ck " time .
18 ∗/
19
20 /∗ Skip l i s t maximum height , based on the expected number of nodes in
21 ∗ the l i s t and the used leve l probabi l i ty factor :
22 ∗ 2^MAXLEVEL approx .= number_of_nodes
23 ∗ leve ls range from (0 . . MAXLEVEL)
24 ∗/
25
26
27 /∗
28 ∗ Structure describing a f i l e , by i t s name and containing a pointer
29 ∗ to the last instance of that f i l e .
30 ∗/
31 struct f i le_node {
32 struct f i l e _ent ∗ f i l e ; //The last act ive f i l e
33 unsigned long replacements; //Number of f i l e replacements within
34 //a node .
35 unsigned char url [ 8 ] ; //Sorting key
36 } __attribute__ ( ( packed ) ) ;
37
38
39 /∗
40 ∗ F i l e entry propert ies that describe a f i l e . In_ t i ck is only used to
41 ∗ calcu late a f i l e ’s out_ t ick in cer ta in cases − i t is never stored .
42 ∗/
43 struct f i l e _ent {
44 unsigned int size ;
45 unsigned long in_t ick ;
46 unsigned long out_tick ;
47 unsigned char states ;
48 } ;
49
50 /∗ Function prototypes ∗/
51 struct f i l e _ent ∗new_entry ( struct raw_trace ∗trc ,
52 struct f i l e _ent ∗prev_ f i l e ) ;
53 int insert ( struct raw_trace ∗trc ) ;
54 void build_data (char ∗filename ) ;
55 void repl_dist (char ∗filename ) ;
56 void al loc_trc (char ∗filename ) ;
57
58 #endif

C.3.4 mkalloctrc.c

1 #include <stdl ib .h>
2 #include <stdio .h>
3 #include <string .h>
4 #include <time .h>
5
6 #include " . . /common/storage_types .h"
7 #include " sk ip l i s t .h"
8
9 #include " mkalloctrc .h"

10
11 /∗
12 ∗ Global values
13 ∗/
14
15 //Two skip l i s t s are maintaind :
16 struct sk ip_ l i s t g _ f i l e _ l i s t ;
17 // , whick is ordered by URL and contains the information about the
18 //current ly act ive f i l e s and
19
20 struct sk ip_ l i s t g_ent_ l is t ;
21 // , whic is a l i s t of f i l e entr ies . Every f i l e entry is placed here ,
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22 //based on i t s inser t ion t i ck time .
23
24 //Each time a new f i l e instance is observed , the t icks counter is
25 //advanced by one .
26 unsigned long g_ticks ;
27
28 unsigned long g_replacements , g_discarded ;
29 //high watermarks
30 unsigned long long g_allocated_max ;
31
32
33 /∗
34 ∗ Compare functions for the skip l i s t s :
35 ∗/
36
37 /∗ F i l e l i s t : ∗/
38 int f i le l is t_comp ( const void ∗val1 , const void ∗val2 ) {
39 return memcmp( ( ( struct f i le_node ∗) val1)−>url ,
40 ( ( struct f i le_node ∗) val2)−>url ,
41 8 ) ;
42 }
43
44
45 /∗ Entry l i s t : ∗/
46 int entlist_comp ( const void ∗val1 , const void ∗val2 ) {
47 i f ( ( ( struct f i l e _ent ∗) val1)−>in_t ick >
48 ( ( struct f i l e _ent ∗) val2)−>in_t ick )
49 return 1;
50
51 i f ( ( ( struct f i l e _ent ∗) val1)−>in_t ick <
52 ( ( struct f i l e _ent ∗) val2)−>in_t ick )
53 return −1;
54
55 return 0;
56
57 }
58
59 /∗ Entry l i s t , compare by out_t ick : ∗/
60 int entlist_delcomp ( const void ∗val1 , const void ∗val2 ) {
61 i f ( ( ( struct f i l e _ent ∗) val1)−>out_tick >
62 ( ( struct f i l e _ent ∗) val2)−>out_tick )
63 return 1;
64
65 i f ( ( ( struct f i l e _ent ∗) val1)−>out_tick <
66 ( ( struct f i l e _ent ∗) val2)−>out_tick )
67 return −1;
68
69 return 0;
70
71 }
72
73
74
75 /∗ Create a new f i l e entry and i n i t i a l i s e i t with data from the raw
76 ∗ trace . Global t i ck is incremented here !
77 ∗/
78 struct f i l e _ent ∗new_entry ( struct raw_trace ∗trc ,
79 struct f i l e _ent ∗prev_ f i l e ) {
80 struct f i l e _ent ∗tmp_ent ;
81 static unsigned long long allocated_running = 0;
82 statusEnum_t res ;
83
84 i f ( ( tmp_ent = malloc ( sizeof ( struct f i l e _ent ) ) ) == NULL) {
85 fpr in t f ( stderr , "Out of memory in new_entry\n" ) ;
86 exi t ( 1 ) ;
87 }
88
89 g_ticks ++;
90
91 tmp_ent−>size = trc−>bytes_sent ;
92 tmp_ent−>in_t ick = g_ticks ;
93 tmp_ent−>out_tick = 0;
94 tmp_ent−>states = 0;
95
96 res = sl_insert_node(&g_ent_ l is t , tmp_ent ) ;
97 i f ( res != SL_OK) {
98 fpr in t f ( stderr , " Error inserting new node in new_entryt ( ) . \n" ) ;
99 exi t ( res ) ;

100 }
101
102 //In case of replacement , uncondit ionally set the delet ion time of
103 //the previous instance of the f i l e to the preceeding t i ck time .
104 i f ( p rev_ f i l e != NULL) {
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105 allocated_running −= prev_f i le−>size ;
106 prev_f i le−>states |= FL_REPLACED;
107 prev_f i le−>out_tick = g_ticks − 1;
108 }
109
110 //Compute high watermarks for the number of bytes allocated .
111 allocated_running += trc−>bytes_sent ;
112 i f ( allocated_running > g_allocated_max )
113 g_allocated_max = allocated_running ;
114
115 return tmp_ent ;
116 }
117
118
119 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
120 ∗ al locate node for data and inser t in l i s t ∗

121 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
122 int insert ( struct raw_trace ∗trc ) {
123 struct f i le_node dummy;
124 struct f i le_node ∗x ;
125 statusEnum_t res ;
126
127 // Check i f the f i l e with the given URL is already present
128 memcpy(dummy. url , trc−>url , 8 ) ;
129 x = sl_find_node (& g _ f i l e _ l i s t , &dummy, &res ) ;
130
131 // I f not , we inser t a new f i le_node
132 i f ( res != SL_OK) {
133 /∗ I f resent of an un in i t ia l i sed entry − ignore ∗/
134 i f ( trc−>status == 304){
135 g_discarded ++;
136 return 0;
137 }
138
139 /∗ make new node ∗/
140 x = malloc ( sizeof ( struct f i le_node ) ) ;
141 i f ( x == NULL) {
142 fpr in t f ( stderr , "Out of memory in insert .\n" ) ;
143 exi t ( 1 ) ;
144 }
145
146 memcpy( x−>url , trc−>url , 8 ) ;
147 x−>f i l e = new_entry ( trc , NULL) ;
148 x−>replacements = 0;
149
150 res = sl_insert_node(& g _ f i l e _ l i s t , x ) ;
151 i f ( res != SL_OK) {
152 fpr in t f ( stderr , " Error inserting new node in insert ( ) . \n" ) ;
153 exi t ( res ) ;
154 }
155
156 } else {
157 // The URL node already exists − check the act ive f i l e .
158 switch ( trc−>status ) {
159 case 200:
160 //In case the f i l e size changed, inser t a new f i l e entry at the
161 //same node ; the old entry becomes only reachable through
162 // e n t _ l i s t sk ip l i s t .
163 i f ( x−>f i l e −>size != trc−>bytes_sent ) {
164 g_replacements++;
165 x−>replacements++;
166 x−>f i l e = new_entry ( trc , x−>f i l e ) ;
167 return 0;
168 }
169 /∗ else FALLTHROUGH and update ∗/
170 case 304:
171 x−>f i l e −>out_tick = g_ticks ;
172 return 0; //nothing to inser t
173 default :
174 fpr in t f ( stderr ,
175 "Switch in insert : unreachable reached ( status = %d) .\n"
176 "Raw trace is corrupt !\n" , trc−>status ) ;
177 exi t ( 1 ) ;
178 } ; //switch
179 }
180
181 return 0;
182 }
183
184
185 /∗
186 ∗ Go through the binary f i l t e r e d weblog and generate f i l e entr ies .
187 ∗/
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188 void build_data (char ∗filename ) {
189 FILE ∗ f in ;
190 unsigned long discarded_zero ;
191 unsigned long long total_count = 0;
192 struct raw_trace rt ;
193
194 fpr in t f ( stderr , "Reading raw trace and building datastructures " ) ;
195
196 i f ( ( f in = fopen ( filename , " r " ) ) == NULL) {
197 fpr in t f ( stderr , "Cannot open binary f i r l t e r e d trace !\n" ) ;
198 exi t ( 1 ) ;
199 }
200
201 discarded_zero = 0;
202 for ( ; ; ) {
203 i f ( fread (&rt , sizeof ( struct raw_trace ) , 1 , f in ) != 1 ) {
204 fpr in t f ( stderr , "done.\n\n" ) ;
205 break ;
206 }
207
208 total_count++;
209 i f ( total_count % 10000 == 0)
210 fpr in t f ( stderr , " . " ) ;
211
212 i f ( ( r t . bytes_sent == 0) && ( rt . status == 200))
213 discarded_zero++;
214 else
215 insert(&rt ) ;
216
217 } // for
218
219 fc lose ( f in ) ;
220
221 print f ( " Total entries in raw trace :\ t\t%l lu \n" , total_count ) ;
222 print f ( " Creation operations :\ t\t\t%lu\n" , g_ticks ) ;
223 print f ( "Replacements found :\ t\t\t%lu\n" , g_replacements ) ;
224 print f ( " Discarded not al loc ’ ed 304 entries :\ t%lu\n" , g_discarded ) ;
225 print f ( " Discarded 0−length fs i ze 200 entries :\ t%lu\n" , discarded_zero ) ;
226 print f ( " Skipl ist : f i lenode l i s t l e v e l :\ t\t%d\n" ,
227 g _ f i l e _ l i s t . maxListLevel ) ;
228 print f ( " Skipl ist : unique f i l e URLs:\ t\t%lu\n" ,
229 g_ticks − g_replacements ) ;
230 print f ( " Estimated maximum allocated bytes :\ t%l lu\n" , g_allocated_max ) ;
231
232 }
233
234
235 /∗
236 ∗ Linearly go though the filename l i s t and pr int replacement
237 ∗ d is t r ibu t i on .
238 ∗/
239 void repl_dist (char ∗filename ) {
240 FILE ∗fout ;
241 char ∗name_tmp;
242 unsigned long i , del_adjusted = 0;
243 struct l ist_node ∗ln_tmp ;
244 struct f i le_node ∗fn_tmp ;
245
246 fpr in t f ( stderr , " Writing replacement distr ibut ion f i l e . . . " ) ;
247 name_tmp = malloc ( str len ( filename + 7 ) ) ;
248 spr int f (name_tmp, "%s . rdist " , filename ) ;
249
250 i f ( ( fout = fopen (name_tmp, "w" ) ) == NULL) {
251 fpr in t f ( stderr , "Cannot open output rdist f i l e !\n" ) ;
252 exi t ( 1 ) ;
253 }
254 free (name_tmp ) ;
255
256 i = 0;
257
258 /∗ We dump a l l f i l e nodes to a binary f i l e ( the value in the f i l e
259 ∗ member obviously becomes meaningless ) . Another appl icat ion is used
260 ∗ to generate an ASCII f i l e containing the number of replacements
261 ∗ along with the corresponding URL names.
262 ∗/
263 ln_tmp = g _ f i l e _ l i s t . hdr−>forward [ 0 ] ;
264 while ( ln_tmp != g _ f i l e _ l i s t . n i l ) {
265 fn_tmp = ( struct f i le_node ∗ ) ( ln_tmp−>data ) ;
266 fwri te ( fn_tmp , sizeof ( struct f i le_node ) , 1 , fout ) ;
267
268 /∗ In the process we also adjust the delet ion times i f i t is the
269 ∗ last f i l e in the log .
270 ∗/
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271 i f ( fn_tmp−>f i l e −>out_tick == 0 ) {
272 del_adjusted++;
273 fn_tmp−>f i l e −>states |= FL_DELMOD;
274 fn_tmp−>f i l e −>out_tick =
275 fn_tmp−>f i l e −>in_t ick + ( ( g_ticks − fn_tmp−>f i l e −>in_t ick )/3)∗2;
276 }
277
278 ln_tmp = ln_tmp−>forward [ 0 ] ;
279 } ;
280
281 fc lose ( fout ) ;
282 fpr in t f ( stderr , " done.\n" ) ;
283
284 print f ( "\nAdjusted 0−length l i fe t imes :\ t\t%lu\n" , del_adjusted ) ;
285 }
286
287
288 /∗
289 ∗ Generate the al locat ion trace i t s e l f
290 ∗/
291 void al loc_trc (char ∗filename ) {
292 FILE ∗fout ;
293 struct f i l e _ent ∗fe_in , ∗fe_out ;
294 struct l ist_node ∗ln_in , ∗ln_out ;
295 struct al loc_trace at ;
296 unsigned long del_rest = 0;
297
298 struct sk ip_ l i s t d e l _ l i s t ;
299 statusEnum_t res ;
300
301 fpr in t f ( stderr , " Sorting deletion times . . . " ) ;
302
303 /∗ We f i r s t re−sor t f i l e entr ies by the delet ion t i ck . Several
304 deletions can f a l l on the same t i ck . Af ter the resorting , the
305 same nodes are present in both l i s t s . ∗/
306 i f ( s l _ i n i t L i s t(& de l _ l i s t , 32, TRUE, &entlist_delcomp ) != SL_OK) {
307 fpr in t f ( stderr , " Error while i n i t i a l i s i n g deletion l i s t !\n" ) ;
308 exi t ( 1 ) ; ;
309 }
310
311 ln_in = g_ent_ l is t .hdr−>forward [ 0 ] ;
312 while ( ln_in != g_ent_ l is t . n i l ) {
313 res = sl_insert_node(& de l _ l i s t , ln_in−>data ) ;
314 i f ( res != SL_OK) {
315 fpr in t f ( stderr ,
316 " Error while inserting entry into deletion l i s t .\n" ) ;
317 exi t ( res ) ;
318 }
319
320 ln_in = ln_in−>forward [ 0 ] ;
321 } ; //while
322
323 fpr in t f ( stderr , "done.\n" ) ;
324
325 print f ( " Skipl ist : en t l i s t l i s t l e v e l :\ t\t%d\n" , g_ent_ l is t . maxListLevel ) ;
326 print f ( " Skipl ist : d e l l i s t l i s t l e v e l :\ t\t%d\n" , d e l _ l i s t . maxListLevel ) ;
327
328 fpr in t f ( stderr , " Writing al locat ion trace " ) ;
329
330
331 i f ( ( fout = fopen ( filename , "w" ) ) == NULL) {
332 fpr in t f ( stderr , "Cannot open output f i l e !\n" ) ;
333 exi t ( 1 ) ;
334 }
335
336 /∗ We now go through a l l reg is tered t icks again , writ ing to the
337 ∗ trace f i r s t an al locat ion command, followed by zero or more
338 ∗ deallocation commands.
339 ∗/
340 ln_in = g_ent_ l is t .hdr−>forward [ 0 ] ;
341 ln_out = d e l _ l i s t . hdr−>forward [ 0 ] ;
342 while ( ln_in != g_ent_ l is t . n i l ) {
343 //Bit 1 is set i f the f i l e entry was replaced by another size .
344 //Bit 5 is set i f deleted value is adjusted
345 fe_ in = ( struct f i l e _ent ∗ ) ( ln_in−>data ) ;
346 at . f lags = fe_in−>states | OP_CREATE;
347 at . s ize = fe_in−>size ;
348 at . f i l e _ i d = fe_in−>in_t ick ;
349 fwri te (&at , sizeof ( struct al loc_trace ) , 1 , fout ) ;
350
351 //Now locate and write a l l de le t ion events for th is t i ck
352 at . f lags = OP_DELETE;
353 at . s ize = 0;
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354 while ( ( ln_out != d e l _ l i s t . n i l ) &&
355 ( ( ( struct f i l e _ent ∗ ) ( ln_out−>data))−>out_tick ==
356 fe_in−>in_t ick ) ) {
357
358 fe_out = ( struct f i l e _ent ∗ ) ( ln_out−>data ) ;
359
360 //Count remaining zero−length l i f e t imes
361 i f ( fe_out−>in_t ick == fe_out−>out_tick )
362 del_rest++;
363
364 at . f i l e _ i d = fe_out−>in_t ick ;
365 fwri te (&at , sizeof ( struct al loc_trace ) , 1 , fout ) ;
366
367 ln_out = ln_out−>forward [ 0 ] ;
368 } ; //while ( ln_out . . .
369
370 i f ( fe_in−>in_t ick % 10000 == 0)
371 fpr in t f ( stderr , " . " ) ;
372
373 ln_in = ln_in−>forward [ 0 ] ;
374 } ; //while ( ln_ in . . .
375
376 fc lose ( fout ) ;
377 fpr in t f ( stderr , " done.\n\n" ) ;
378 print f ( "Remaining 0−length l i fe t imes :\ t\t%lu\n" , del_rest ) ;
379 }
380
381
382 int main ( int argc , char ∗∗argv ) {
383 g_discarded = g_replacements = 0;
384 g_ticks = 0;
385 g_allocated_max = 0;
386
387 i f ( argc != 3 ) {
388 fpr in t f ( stderr ,
389 "Argument mismatch\nUsage : %s in_trace out_trace\n" ,
390 strrchr ( argv [0 ] , ’/ ’ ) +1 ) ;
391 exi t ( 1 ) ;
392 }
393
394 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
395
396
397 i f ( ( s l _ i n i t L i s t(& g _ f i l e _ l i s t , 20, FALSE, &f i le l is t_comp ) != SL_OK) ||
398 ( s l _ i n i t L i s t(&g_ent_ l is t , 32, FALSE, &entlist_comp ) != SL_OK) ) {
399 fpr in t f ( stderr , " Error while i n i t i a l i s i n g l i s t s !\n" ) ;
400 return 1;
401 }
402
403
404 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
405
406 build_data ( argv [ 1 ] ) ;
407
408 /∗∗ Pr int replacement and adjust del times ∗∗∗∗∗∗∗∗/
409
410 repl_dist ( argv [ 2 ] ) ;
411
412 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
413
414 al loc_trc ( argv [ 2 ] ) ;
415
416 return 0;
417 }

C.3.5 print_repl.cc

1 #ifdef WITH_URLS
2 #include " . . / scr ipts/client_event .h"
3 #include " . . / scr ipts/stt/stage_bdb_map.h"
4 #endif
5
6 #include <stdio .h>
7 #include <stdl ib .h>
8 #include <string .h>
9

10 #include " mkalloctrc .h"
11 #include " . . /common/l ibarg .h"
12
13 int main ( int argc , char ∗∗argv ) {
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14 struct f i le_node fnode ;
15 FILE ∗ i n _ f i l e = NULL;
16 char ∗param;
17 unsigned long l imit = 0;
18
19 /∗ Parse the arguements ∗/
20 i f ( parseArgs ( argc , argv , "−f " , FALSE, &param) && (param != NULL ) ) {
21 i f ( ( i n _ f i l e = fopen (param, " r " ) ) == NULL) {
22 fpr in t f ( stderr , "Cannot open binary replacement log !\n" ) ;
23 return 1;
24 }
25 }
26
27 /∗ Lower boundary for the number of replacements ∗/
28 i f ( parseArgs ( argc , argv , "−l " , FALSE, &param) && (param != NULL ) ) {
29 l imit = ato l (param) ;
30 }
31
32 #ifdef WITH_URLS
33 /∗ Must be the last arg check as param value is used la te r ∗/
34 parseArgs ( argc , argv , "−d" , FALSE, &param) ;
35
36 i f ( ( param == NULL) || ( i n _ f i l e == NULL ) ) {
37 fpr in t f ( stderr , "Usage :\n%s −f replacement_log −l lower_limit "
38 "−d hash_db\n" , argv [ 0 ] ) ;
39 return 1;
40 }
41
42
43 /∗ Open the URL database ∗/
44 bdb db (param, DB_UNKNOWN, DB_RDONLY) ;
45 bdb_map<url_key , char∗> hash_url (db ) ;
46 #else
47 i f ( i n _ f i l e == NULL) {
48 fpr in t f ( stderr , "Usage :\n%s −f replacement_log −l lower_limit \n" ,
49 argv [ 0 ] ) ;
50 return 1;
51 }
52 #endif
53
54 //Read the log and output the text version on stdout
55 for ( ; ; ) {
56 i f ( fread(&fnode , sizeof ( struct f i le_node ) , 1 , i n _ f i l e ) != 1 ) {
57 fpr in t f ( stderr , "Reading done.\n\n" ) ;
58 break ;
59 }
60
61 i f ( fnode . replacements < l imit )
62 continue ;
63
64 #ifdef WITH_URLS
65 const char ∗urlstr = hash_url. get (∗ ( url_key∗)&fnode . url ) ;
66 i f ( ! ur lstr ) {
67 fpr in t f ( stderr , " url hash not found . SHOULD NOT HAPPEN!\n" ) ;
68 return 2;
69 }
70
71 print f ( "%lu\t%s\n" , fnode . replacements , ur lstr ) ;
72 #else
73 print f ( "%lu\n" , fnode . replacements ) ;
74 #endif
75 } //for ( ; ; )
76
77 return 0;
78 }

C.3.6 Makefile

1 PROGS=mkalloctrc clean_trace pr int_repl print_repl_nourl
2 CC_OPTS=−Wall −g
3
4 .PHONY: a l l clean realclean remake
5
6 a l l : $ (PROGS)
7
8 remake: realclean a l l
9

10 clean :
11 rm −f ∗.o ∗~
12 rm −f core ∗.stackdump
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13
14 realclean : clean
15 rm −f $ (PROGS)
16
17
18 clean_trace : clean_trace . cc . ./common/storage_types .h l ibarg . o
19 g++ −Wall −O2 −I/usr/pkg/include −L/usr/pkg/ l ib −o $@\
20 clean_trace . cc . ./ scr ipts/stt/stage_bdb . o l ibarg . o −ldb4_cxx
21
22 print_repl : pr int_repl . cc mkalloctrc .h l ibarg . o
23 g++ −Wall −O2 −DWITH_URLS −I /usr/pkg/include −L/usr/pkg/ l ib −o $@\
24 print_repl . cc . ./ scr ipts/stt /stage_bdb . o l ibarg . o −ldb4_cxx
25
26 print_repl_nourl : pr int_repl . cc mkalloctrc .h l ibarg . o
27 g++ −Wall −O2 −o $@ print_repl . cc l ibarg . o
28
29 mkalloctrc : mkalloctrc . c . ./common/storage_types .h sk ip l i s t .h \
30 mkalloctrc .h sk ip l i s t . o
31 gcc −O3 $(CC_OPTS) −o $@ mkalloctrc . c sk ip l i s t . o
32
33 sk ip l i s t . o : sk ip l i s t . c sk ip l i s t .h
34 gcc $ (CC_OPTS) −c $<
35
36 l ibarg . o : . . /common/l ibarg . c . ./common/l ibarg .h
37 g++ $ (CC_OPTS) −c $<
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C.4 File Size Distribution Analyser

This is the source code of our suite used to evaluate file size dis-
tribution. fsize_sys.c and fsize_trc.c contain functions to
collect information either from an existing file system or from a
trace. They make use of functions found in fsize_scan.c to parse
and present the raw information. fsize_stat.c holds the func-
tions that read the output produced by either fsize_sys.c or
fsize_trc.c and gathers statistical information about the file size
distribution. If instructed, it can also group file sizes into bins,
thus simulating the segregation behaviour of QuickFit allocation
algorithm and allowing us to forecast the expected load on the
quick lists.

C.4.1 fsize_scan.h

1 #ifndef FSIZE_SCAN_H
2 #define FSIZE_SCAN_H
3
4 unsigned long glob_count ;
5
6 struct statentry {
7 unsigned long grain_size ;
8 unsigned long count ;
9 struct statentry ∗forward [ 1 ] ; /∗ skip l i s t forward pointer ∗/

10 } ;
11
12 //Skip l i s t datastructures
13 #define MAXLEVEL 25
14
15 struct SkipList {
16 struct statentry ∗hdr ; /∗ l i s t Header ∗/
17 int l i s tLeve l ; /∗ current l eve l of l i s t ∗/
18 } SkipList ;
19
20 //SkipList g _ l i s t ; /∗ skip l i s t information ∗/
21
22 #define NIL l i s t −>hdr
23
24 //Function prototypes
25 void errstop ( char ∗msg, int code ) ;
26 void insert_count ( struct SkipList ∗ l i s t , unsigned long grain ) ;
27 void printstat ( struct SkipList ∗ l i s t ) ;
28 void i n i t L i s t ( struct SkipList ∗ l i s t ) ;
29
30 #endif

C.4.2 fsize_scan.c

1 #include <stdl ib .h>
2 #include <stdio .h>
3 #include <time .h>
4
5 #include " fsize_scan .h"
6
7 void errstop ( char ∗msg, int code ) {
8 fp r in t f ( stderr , " fsize_scan stopped with code %d:\n\t%s\n" , code , msg) ;
9 exi t ( code ) ;

10 }
11
12 void printstat ( struct SkipList ∗ l i s t ) {
13 struct statentry ∗tmp;
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14
15 //Pr int s t a t i s t i c s to stdout and free entr ies
16 tmp = l i s t −>hdr−>forward [ 0 ] ;
17 do {
18 i f ( tmp−>count != 0 ) { //Exclude head entry i f empty
19 fpr in t f ( stdout , "%lu\t%lu\n" , tmp−>grain_size , tmp−>count ) ;
20 }
21
22 tmp = tmp−>forward [ 0 ] ;
23 } while ( tmp != NIL ) ;
24
25 fpr in t f ( stderr , "\nTotal f i l e s scanned: %lu\n" , glob_count ) ;
26 }
27
28
29 /∗∗ Skip L is t Functions ∗∗/
30
31
32 /∗ Determine random leve l for the new skip l i s t node. " Fix the dice "
33 ∗ by allowing the new leve l to be at most one more than the current
34 ∗ l eve l of the l i s t .
35 ∗/
36 static int get_ leve l ( struct SkipList ∗ l i s t ) {
37 int newLevel ;
38
39 for (
40 newLevel = 0;
41 rand ( ) < RAND_MAX/2
42 && newLevel < MAXLEVEL
43 && newLevel <= l i s t −>l i s tLeve l + 1;
44 newLevel ++) ;
45
46 return newLevel ;
47 }
48
49
50
51 void insert_count ( struct SkipList ∗ l i s t , unsigned long grain ) {
52 int i , newLevel ;
53 struct statentry ∗update [MAXLEVEL+1] ;
54 struct statentry ∗x ;
55
56 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
57 ∗ al locate node for data and inser t in l i s t ∗

58 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
59
60 /∗ f ind where key belongs ∗/
61 x = l i s t −>hdr ;
62 for ( i = l i s t −>l i s tLeve l ; i >= 0; i−−) {
63 while ( x−>forward [ i ] != NIL
64 && x−>forward [ i ]−>grain_size < grain )
65 x = x−>forward [ i ] ;
66 update [ i ] = x ;
67 }
68
69 // I f the entry already exists , update i t s count .
70 x = x−>forward [ 0 ] ;
71 i f ( x != NIL && x−>grain_size == grain ) {
72 x−>count++;
73 return ;
74 }
75
76 /∗ determine leve l ∗/
77 newLevel = get_ leve l ( l i s t ) ;
78 i f ( newLevel > l i s t −>l i s tLeve l ) {
79 for ( i = l i s t −>l i s tLeve l + 1; i <= newLevel ; i ++)
80 update [ i ] = NIL ;
81 l i s t −>l i s tLeve l = newLevel ;
82 }
83
84 /∗ make new node ∗/
85 x = malloc ( sizeof ( struct statentry ) + newLevel ∗

86 sizeof ( struct statentry ∗ ) ) ;
87
88 i f ( x == NULL) {
89 print f ( "Out of memory in insert .\n" ) ;
90 exi t ( 1 ) ;
91 }
92
93 x−>grain_size = grain ;
94 x−>count = 1;
95
96 /∗ update forward l inks ∗/
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97 for ( i = 0; i <= newLevel ; i ++) {
98 x−>forward [ i ] = update [ i ]−>forward [ i ] ;
99 update [ i ]−>forward [ i ] = x ;

100 }
101 }
102
103
104 void i n i t L i s t ( struct SkipList ∗ l i s t ) {
105 int i ;
106
107 l i s t −>hdr = malloc ( sizeof ( struct statentry ) + MAXLEVEL ∗

108 sizeof ( struct statentry ∗ ) ) ;
109 i f ( l i s t −>hdr == NULL) {
110 print f ( " insu f f i c i en t memory ( i n i t L i s t )\n" ) ;
111 exi t ( 1 ) ;
112 }
113 for ( i = 0; i <= MAXLEVEL; i ++)
114 l i s t −>hdr−>forward [ i ] = NIL ;
115 l i s t −>l i s tLeve l = 0;
116
117 srand ( time (NULL ) ) ;
118 }

C.4.3 fsize_sys.c

1 /∗
2 ∗ Col lec t the f i l e count information for each of the sizes present in
3 ∗ a system , star t ing from a spec i f ied locat ion .
4 ∗/
5
6 #include <stdl ib .h>
7
8 #include <sys/stat .h>
9 #include < fcnt l .h>

10
11 #include <sys/types .h>
12 #include <dirent .h>
13
14 #include <unistd .h>
15
16 #include <stdio .h>
17 #include <string .h>
18
19 #include " fsize_scan .h"
20
21 void statdir ( char ∗dir , struct SkipList ∗ l i s t ) {
22 DIR ∗ f d i r ;
23 struct dirent ∗dentry ;
24 struct stat buf ;
25 char ∗fname;
26 static int depth = 0;
27
28 //Attempt opening the given directory
29 i f ( ( f d i r = opendir ( dir ) ) == NULL)
30 return ;
31 else
32 depth++;
33
34 //Set cut−o f f for progress repor t ing
35 i f ( depth < 4)
36 fpr in t f ( stderr , "Reading %s\n" , dir ) ;
37
38 //The big loop to read a l l d i rec tory entr ies
39 while ( ( dentry = readdir ( fd i r ) ) != NULL) {
40 //Prepend the f i l e name with a f u l l path
41 fname = malloc ( str len ( dir ) + str len ( dentry−>d_name ) + 2 ) ;
42 spr int f ( fname, "%s/%s " , dir , dentry−>d_name ) ;
43
44 //Get f i l e info without fol lowing symbolic l inks ,
45 //thus reading info only once per f i l e .
46 ls ta t ( fname, &buf ) ;
47
48 //Recursevly read subdirector ies .
49 //Exclude ’ procfs ’ , ’ . ’ and ’ . . ’
50 i f ( S_ISDIR ( buf . st_mode ) && ( s t rs t r ( fname, "/proc/" ) == NULL) &&
51 ! ( dentry−>d_name [0 ] == ’ . ’ &&
52 ( dentry−>d_name [1 ] == ’ . ’ || dentry−>d_name [1 ] == ’\0 ’ )
53 ) ) {
54 statdir ( fname, l i s t ) ;
55 }
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56
57 //Only read the size of regular f i l e s
58 i f (S_ISREG( buf . st_mode ) ) {
59 insert_count ( l i s t , (unsigned long ) buf . st_s ize ) ;
60 glob_count++;
61 }
62
63 free ( fname ) ;
64 } //while
65
66 closedir ( fd i r ) ;
67 depth−−;
68 }
69
70
71 int main ( int argc , char ∗∗argv ) {
72 struct SkipList l i s t ;
73
74 i f ( argc < 2)
75 errstop ( " Insuf f ic ient number of atrguments. Usage : \n"
76 "\tfsize_scan root_dir " , 1 ) ;
77
78 i n i t L i s t(& l i s t ) ;
79
80 //Col lec t s t a t i s t i c s
81 statdir ( argv [1 ] , &l i s t ) ;
82 pr intstat(& l i s t ) ;
83
84 return 0;
85 }

C.4.4 fsize_trc.c

1 /∗
2 ∗ Col lec t the f i l e count information for each of the sizes present in
3 ∗ a given al locat ion trace .
4 ∗/
5
6 #include <stdl ib .h>
7
8 #include <sys/stat .h>
9 #include <fcnt l .h>

10
11 #include <sys/types .h>
12 #include <dirent .h>
13
14 #include <unistd .h>
15
16 #include <stdio .h>
17 #include <string .h>
18
19 #include " fsize_scan .h"
20
21 #include " . . /common/l ibarg .h" //For argument parsing
22 #include " . . /common/storage_types .h"
23
24 int g_with_replacements ;
25
26 void stattrc ( FILE ∗f in , struct SkipList ∗ l i s t ) {
27 struct al loc_trace at ;
28
29 fpr in t f ( stderr , "Reading trace f i l e .\n" ) ;
30 for ( ; ; ) {
31 i f ( fread (&at , sizeof ( struct al loc_trace ) , 1 , f in ) != 1 ) {
32 fpr in t f ( stderr , "Reading done.\n\n" ) ;
33 break ;
34 }
35
36 //Ignore " detele " operation entr ies
37 i f ( at . f lags & OP_DELETE)
38 continue ;
39
40 i f ( g_with_replacements ) {
41 insert_count ( l i s t , at . s ize ) ;
42 glob_count++;
43 } else {
44 //Depending on the option , ignore entr ies with " replaced " b i t set
45 i f ( ! ( at . f lags & FL_REPLACED) ) {
46 insert_count ( l i s t , at . s ize ) ;
47 glob_count++;
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48 }
49 }
50 } //for
51 }
52
53
54 int main ( int argc , char ∗∗argv ) {
55 struct SkipList l i s t ;
56 char ∗param;
57 FILE ∗ f in = NULL;
58
59 g_with_replacements = parseArgs ( argc , argv , "−r " , TRUE, NULL) ;
60
61 //Read the f i l e name containing data .
62 i f ( parseArgs ( argc , argv , "−f " , FALSE, &param) && (param != NULL ) ) {
63 i f ( ( f in = fopen (param, " r " ) ) == NULL) {
64 errstop ( "Cannot open input trace !\n" , 2 ) ;
65 }
66 }
67
68 i f ( f in == NULL)
69 errstop ( " Insuf f ic ient number of atrguments.\n"
70 "Usage :\ t f s i z e_ t rc −f t r a c e f i l e [−r ]\n"
71 "−r switch denotes i f the replaced f i l e s "
72 "should be counted in .\n" ,
73 1 ) ;
74
75
76 i n i t L i s t (& l i s t ) ;
77
78 //Col lec t s t a t i s t i c s
79 stattrc ( f in , &l i s t ) ;
80 pr intstat(& l i s t ) ;
81
82 return 0;
83 }

C.4.5 fsize_stat.c

1 /∗
2 ∗ Parse the information co l lec ted by fsize_scan and present
3 ∗ s t a t i s t i c a l information about f i l e size dist r ibut ion , based on
4 ∗ storage al locat ion granularity size . , suitable for p l o t t ing . Also
5 ∗ presents the to ta l s information .
6 ∗/
7
8 #include <l imits .h>
9 #include <stdio .h>

10 #include <stdl ib .h>
11 #include <string .h>
12
13 #include " . . /common/l ibarg .h" //For argument parsing
14
15 #define MBYTES( x ) ( ( x)/1048576.0)
16 #define GBYTES( x ) ( ( x)/1073741824.0)
17
18 struct statentry {
19 unsigned long grain_size ;
20 unsigned long count ;
21 struct statentry ∗next ;
22 } ;
23
24 void errstop ( char ∗msg, int code ) {
25 fpr in t f ( stderr , " f s i z e_s ta t stopped with code %d:\n\t%s\n" , code , msg) ;
26 exi t ( code ) ;
27 }
28
29
30 /∗ Adjust the size of the request up to the nearest multiple of the
31 ∗ grain size , taking into account the space required for the extent
32 ∗ header .
33 ∗/
34 inl ine unsigned long long adjust_size (unsigned long long fs ize ,
35 unsigned long header_size ,
36 unsigned long grain_size ) {
37 //return ( ( fs ize + header_size ) / grain_size ) ∗ grain_size + grain_size ;
38 return f s i z e + header_size ;
39 }
40
41
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42 void co l l ec t _s ta t ( FILE ∗f in , unsigned long grain_size ,
43 unsigned long mlist_s , unsigned long header_size ) {
44 unsigned long long f s i z e = 0, fcount = 0;
45 unsigned long cur_grain , glob_count , acc , mean, qlist_count , mlist_acc ;
46 unsigned long long sum, sumgr;
47 int res = 0;
48 struct statentry ∗head , ∗cur , ∗prev , ∗max;
49
50 fpr in t f ( stdout , "#Grains\tCount\t\ t i s t a r t\t− istop\n" ) ;
51
52 //Read stdin ( or a given f i l e ) and condense s t a t i s t i c s for spec i f ied
53 //grain size . We jump over the f i r s t l i ne containig 0−length f i l e s
54 //as they do not count in the s t a t i s t i c s for no space is allocated
55 // for such f i l e s .
56 i f ( fscanf ( f in , "%l lu\t%l lu \n" , &fs ize , &fcount ) == EOF) {
57 errstop ( "Not enough input data ! " , 2 ) ;
58 }
59
60 i f ( f s i z e == 0 ) {
61 i f ( fscanf ( f in , "%l lu\t%l lu\n" , &fs ize , &fcount ) == EOF) {
62 errstop ( "Not enough input data ! " , 2 ) ;
63 }
64 }
65
66 fs i ze = adjust_size ( fs ize , header_size , grain_size ) ;
67
68 cur = prev = head = max = malloc ( sizeof ( struct statentry ) ) ;
69
70 acc = glob_count = mean = qlist_count = mlist_acc = 0;
71 sumgr = sum = 0;
72
73 cur_grain = 1;
74
75 for ( ; ; ) {
76 //Switch to the next grain i f the newly−read f i l e size overflows
77 //the old one or the last entry is read from f in ; pr int the
78 //accumulated s t a t i s t i c s for the old grain .
79 i f ( ( acc && ( f s i ze > cur_grain ∗ grain_size ) ) || ( res == EOF) ) {
80 fpr in t f ( stdout , "%lu\t%lu\t\t%lu\t− %lu\n" ,
81 cur_grain , acc ,
82 cur_grain ∗ grain_size − grain_size + 1,
83 cur_grain ∗ grain_size ) ;
84
85 //Compute bytes allocated for f i l e s using the given grain size .
86 sumgr += (unsigned long long ) acc ∗ cur_grain ∗ grain_size ;
87
88 cur−>grain_size = cur_grain ;
89 cur−>count = acc ;
90 cur−>next = NULL;
91
92 //Compute the grain with the largest number of f i l e s in i t
93 i f (max−>count < acc ) {
94 max = cur ;
95 }
96
97 //Add a new quick l i s t or increase the number of f i l e s in the
98 //misc l i s t , depending on the f i l e s ’ size .
99 i f ( cur_grain ∗ grain_size < mlist_s ) {

100 qlist_count ++;
101 } else {
102 mlist_acc += acc ;
103 }
104
105 //break the for ( ; ; ) loop in case of last entry
106 i f ( res == EOF) break ;
107
108 cur = malloc ( sizeof ( struct statentry ) ) ;
109 prev−>next = cur ;
110 prev = cur ;
111
112 acc = 0;
113
114 //Calculate next grain size
115 cur_grain = fs i ze / grain_size ;
116
117 } //end commit and advance
118
119 //Update counters and read next l i ne only i f the previously read
120 //values f i t in to the current grain , otherwise scan unt i l a
121 // f i t t i n g grain is found .
122 i f ( ( f s i z e > cur_grain ∗ grain_size − grain_size ) &&
123 ( f s i ze <= cur_grain ∗ grain_size ) ) {
124 acc += fcount ; //Accumulator for the current grain
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125 glob_count += fcount ; //Total number of f i l e s
126 sum += fcount ∗ f s i z e ; //Total number of bytes
127
128 res = fscanf ( f in , "%l lu\t%l lu\n" , &fs ize , &fcount ) ;
129 fs i ze = adjust_size ( fs ize , header_size , grain_size ) ;
130 } else {
131 cur_grain++;
132 }
133 } //for ( ; ; ) loop broken af ter last time through is processed
134
135 //Calculate mean grain size
136 cur = head ;
137 mean = 0;
138 do {
139 mean += cur−>count ;
140 i f (mean >= glob_count / 2 ) {
141 mean = cur−>grain_size ;
142 break ;
143 }
144 cur = cur−>next ;
145 } while ( cur != NULL) ;
146
147 fpr in t f ( stdout , "\n" ) ;
148 fpr in t f ( stdout ,
149 "# Total of %lluB / %0.3fMB / %0.3fGB in %lu f i l e s scanned.\n" ,
150 sum, MBYTES(sum) , GBYTES(sum) , glob_count ) ;
151 fpr in t f ( stdout ,
152 "# Average f i l e s ize :\ t\t%0.2Lf bytes\n" ,
153 sum / ( long double ) glob_count ) ;
154 fpr in t f ( stdout , "# 1 Grain =\t\t\t%lu bytes\n" , grain_size ) ;
155 fpr in t f ( stdout , "# Header s ize =\t\t\t%lu bytes\n" , header_size ) ;
156
157 i f ( grain_size == 1 ) { // Byte−l eve l menings are s l i gh t ly d i f f e ren t
158 fpr in t f ( stdout ,
159 "# Number of unique f i l e sizes :\ t%lu , "
160 " with %lu f i l e s above %lu bytes .\n" ,
161 qlist_count + mlist_acc , mlist_acc , mlist_s ) ;
162 fpr in t f ( stdout , "# 50%% of f i l e s are <=\t\t%lu bytes\n" , mean) ;
163 fpr in t f ( stdout , "# Most f i l e s are\t\t%lu bytes long (%lu f i l e s )\n" ,
164 max−>grain_size , max−>count ) ;
165 } else {
166 fpr in t f ( stdout , "# Number of Quick Lists :\ t%lu\n" , qlist_count ) ;
167 fpr in t f ( stdout ,
168 "# Misc List contains\t\t%lu blocks "
169 "above %lu bytes in size .\n" ,
170 mlist_acc , mlist_s ) ;
171 fpr in t f ( stdout , "# 50%% of f i l e s occupy <=\t%lu grains\n" , mean) ;
172 fpr in t f ( stdout , "# Highest f i l e count uses : \t "
173 "%lu grains in interval %lu−%lu bytes (%lu f i l e s )\n" ,
174 max−>grain_size ,
175 max−>grain_size ∗ grain_size − grain_size + 1,
176 max−>grain_size ∗ grain_size ,
177 max−>count ) ;
178 }
179 //Bytes allocated ( sumgr ) / bytes requested (sum)
180 fpr in t f ( stdout ,
181 "# Internal frag . rat io :\ t\t "
182 "%0.6Lf (%l lu al loc . / %l lu req . )\n" ,
183 ( long double )sumgr / sum, sumgr, sum) ;
184 fpr in t f ( stdout ,
185 "# Lost due to int . frag . :\ t "
186 "%lluB / %0.3fMB / %0.3fGB (%0.4Lf%%)\n" ,
187 sumgr − sum, MBYTES(sumgr − sum) , GBYTES(sumgr − sum) ,
188 (sumgr − sum) ∗ 100 / ( long double )sumgr ) ;
189 fpr in t f ( stdout , "\n" ) ;
190
191 }
192
193
194 int main ( int argc , char ∗∗argv ) {
195 FILE ∗ f in ;
196 int grain = 0;
197 unsigned long mlist = 0;
198 unsigned long header_size = 0;
199 char ∗param;
200
201 //Read the f i l e name containing raw data . I f the name is absent or
202 //is given as ’−’ then read stdin .
203 i f ( parseArgs ( argc , argv , "−f " , FALSE, &param) && (param != NULL ) ) {
204 i f ( strcmp (param, "−" ) == 0 ) {
205 f in = stdin ;
206 } else i f ( ( f in = fopen (param, " r " ) ) == NULL) {
207 errstop ( " Fi le not found\n" , 3 ) ;
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208 }
209 } else {
210 f in = stdin ;
211 }
212
213 //Read the grain size value . This value must be present .
214 i f ( parseArgs ( argc , argv , "−g " , FALSE, &param) && (param != NULL ) ) {
215 grain = atol (param) ;
216 i f ( grain <= 0 ) {
217 errstop ( " Invalid grain size . Must be > 0.\n" , 4 ) ;
218 }
219 } else {
220 errstop ( " Insuf f ic ient number of atrguments. Usage : \n"
221 "\ t f s i ze_s ta t −g grain_size [− f i n _ f i l e|−] "
222 "[−h header_size ] [−m miscl ist_s ize ]\n"
223 " I f no i n _ f i l e given , stdin is read .\n" , 1 ) ;
224 }
225
226
227 //Read the cut−o f f size for " misc l i s t " . The blocks larger than this
228 //size are placed in " misc l i s t " thus reducin the number of exact
229 //quick l i s t s in use . I f the value is not given , the program assumes
230 //the largest possible unsigned long value . I f a f i l e size exceeds
231 //this value i t w i l l always be placed in a " misc l i s t " .
232 i f ( parseArgs ( argc , argv , "−m" , FALSE, &param) && (param != NULL ) ) {
233 mlist = ato l (param) ;
234 } else {
235 mlist = ULONG_MAX;
236 }
237
238 //" Misc l i s t " size is corrected ( rounded down) to be a multiple of
239 //grain size .
240 mlist = ( mlist / grain ) ∗ grain ;
241
242
243 //Read the size of the header f i e l d that w i l l be ontained within
244 //the extent . I f absent , no header ( size 0) is assumed.
245 i f ( parseArgs ( argc , argv , "−h" , FALSE, &param) && (param != NULL ) ) {
246 header_size = ato l (param) ;
247 }
248
249 i f ( header_size + 1 > grain ) {
250 errstop ( "Grain size must be one larger than the header s ize\n"
251 "\tto allow for at least one byte of payload .\n" , 5 ) ;
252 }
253
254 co l l ec t _s ta t ( f in , grain , mlist , header_size ) ;
255
256 return 0;
257 }

C.4.6 Makefile

1 OPTS=−O3 −Wall
2 LIBS=l ibarg . o
3 PROGS=fs ize_sys f s i ze_ t rc f s i ze_s ta t
4
5 .PHONY: a l l clean realclean
6
7 a l l : $ (PROGS)
8
9 clean :

10 rm −f ∗.o ∗~
11 rm −f core ∗.stackdump
12
13 realclean : clean
14 rm −f $ (PROGS)
15
16
17 fs ize_sys : fs ize_sys . o fsize_scan . o
18 gcc $ (OPTS) −o $@ fsize_scan . o fs ize_sys . o
19
20 fs i ze_ t rc : f s i z e_ t rc . o fsize_scan . o $ ( LIBS)
21 gcc $ (OPTS) −o $@ $( LIBS ) fsize_scan . o f s i ze_ t rc . o
22
23 fs i ze_s ta t : f s i z e_s ta t . o $ ( LIBS )
24 gcc $ (OPTS) −o $@ $( LIBS ) f s i ze_s ta t . o
25
26
27 l ibarg . o : . . /common/l ibarg . c . ./common/l ibarg .h
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28 gcc $ (OPTS) −c $<
29
30 fs i ze_ t rc . o : f s i z e_ t rc . c fsize_scan .h . ./common/storage_types .h \
31 . ./common/l ibarg .h
32 gcc $ (OPTS) −c $<
33
34 fs ize_sys . o : fs ize_sys . c fsize_scan .h
35 gcc $ (OPTS) −c $<
36
37 fsize_scan . o : fsize_scan . c fsize_scan .h
38 gcc $ (OPTS) −c $<
39
40 fs i ze_s ta t . o : f s i z e_s ta t . c . ./common/l ibarg .h
41 gcc $ (OPTS) −c $<
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Appendix D

Program Outputs

D.1 Trace Generation

These are the summary outputs from trace generation programs.

D.1.1 Binary Server Log Parser

166260066 total entries found.
7412340 discarded due to wrong status value,
of the remaining entries 19970678 discarded due to URL limitation.
138877048 valid entries remain.

D.1.2 Allocation Trace Generator

Total entries in raw trace: 138877047
Creation operations: 14353600
Replacements found: 14285671
Discarded not alloc’ed 304 entries: 3580
Discarded 0-length fsize 200 entries: 80620
Skiplist: filenode listlevel: 16
Skiplist: unique file URLs: 67929
Estimated maximum allocated bytes: 13416369932

Adjusted 0-length lifetimes: 18720
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Skiplist: entlist listlevel: 22
Skiplist: dellist listlevel: 22
Remaining 0-length lifetimes: 1777651

D.2 Simulation Runs

Below you will find the summary outputs of simulation runs for
each of the partition classes, with AWP set to zero grains.

D.2.1 Minimum Partition Class

Trace request high watermark: 4950202308 bytes
Adjusted allocator high watermark: 9684049 grains
Internal fragmentation (avg. at peak load): 1.00162231

Number of files in the trace: 14353600
Total number of extents allocated: 14360054
Number of multi-extent allocations: 14
File fragmentation (avg. extents / file): 1.00044964
File fragmentation (max. extents / file): 1.00082787
File fragmentation (by multi-ext. file count): 0.00009754 percent

Total write requests: 28781595

Total coalescings: 15
Coalescings leading to single allocation: 2
Coalescigs with no mergings: 0
Avoided coalescings: 1

*** Memory usage ***

Total access count: 29362036
Total usage hight watermark: 1142884
Total usage throughput: 178156828

misclist list high watermark: 4100
misclist list throughput: 169896
quick lists high watermark: 471328
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quick lists throughput: 173904268
misc lists high watermark: 52176
misc lists throughput: 1869876
extent headers high watermark: 650784
extent headers throughput: 858416
coalescing list high watermark: 129448
coalescing list throughput: 1354372

D.2.2 Medium Partition Class

Trace request high watermark: 4950202308 bytes
Adjusted allocator high watermark: 9683950 grains
Internal fragmentation (avg. at peak load): 1.00161207

Number of files in the trace: 14353600
Total number of extents allocated: 14353705
Number of multi-extent allocations: 15
File fragmentation (avg. extents / file): 1.00000732
File fragmentation (max. extents / file): 1.00001053
File fragmentation (by multi-ext. file count): 0.00010450 percent

Total write requests: 28768861

Total coalescings: 16
Coalescings leading to single allocation: 2
Coalescigs with no mergings: 0
Avoided coalescings: 1

*** Memory usage ***

Total access count: 29365564
Total usage hight watermark: 1158728
Total usage throughput: 173996120

misclist list high watermark: 4064
misclist list throughput: 174536
quick lists high watermark: 489248
quick lists throughput: 169691108
misc lists high watermark: 52696
misc lists throughput: 1870104
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extent headers high watermark: 649184
extent headers throughput: 856384
coalescing list high watermark: 127648
coalescing list throughput: 1403988

D.2.3 Large Partition Class

Trace request high watermark: 4950202308 bytes
Adjusted allocator high watermark: 9683949 grains
Internal fragmentation (avg. at peak load): 1.00161197

Number of files in the trace: 14353600
Total number of extents allocated: 14353634
Number of multi-extent allocations: 6
File fragmentation (avg. extents / file): 1.00000237
File fragmentation (max. extents / file): 1.00000341
File fragmentation (by multi-ext. file count): 0.00004180 percent

Total write requests: 28768461

Total coalescings: 5
Coalescings leading to single allocation: 0
Coalescigs with no mergings: 0
Avoided coalescings: 1

*** Memory usage ***

Total access count: 29147995
Total usage hight watermark: 1212720
Total usage throughput: 174500444

misclist list high watermark: 4644
misclist list throughput: 146532
quick lists high watermark: 510588
quick lists throughput: 170957776
misc lists high watermark: 55792
misc lists throughput: 1768728
extent headers high watermark: 825056
extent headers throughput: 865824
coalescing list high watermark: 252344
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coalescing list throughput: 761584

D.2.4 Huge Partition Class

Trace request high watermark: 4950202308 bytes
Adjusted allocator high watermark: 9683949 grains
Internal fragmentation (avg. at peak load): 1.00161197

Number of files in the trace: 14353600
Total number of extents allocated: 14353600
Number of multi-extent allocations: 0
File fragmentation (avg. extents / file): 1.00000000
File fragmentation (max. extents / file): 1.00000000
File fragmentation (by multi-ext. file count): 0.00000000 percent

Total write requests: 28762752

Total coalescings: 0
Coalescings leading to single allocation: 0
Coalescigs with no mergings: 0
Avoided coalescings: 0

*** Memory usage ***

Total access count: 28894109
Total usage hight watermark: 1620824
Total usage throughput: 172674084

misclist list high watermark: 4276
misclist list throughput: 137928
quick lists high watermark: 670380
quick lists throughput: 169951304
misc lists high watermark: 57348
misc lists throughput: 1696020
extent headers high watermark: 888832
extent headers throughput: 888832
coalescing list high watermark: 0
coalescing list throughput: 0
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D.2.5 Minimum Partition Class with Coalescing Dis-

abled

Trace request high watermark: 4950202308 bytes
Adjusted allocator high watermark: 9684280 grains
Internal fragmentation (avg. at peak load): 1.00164621

Number of files in the trace: 14353600
Total number of extents allocated: 14374881
Number of multi-extent allocations: 42
File fragmentation (avg. extents / file): 1.00148262
File fragmentation (max. extents / file): 1.00273955
File fragmentation (by multi-ext. file count): 0.00029261 percent

Total write requests: 28805418

Total coalescings: 0
Coalescings leading to single allocation: 0
Coalescigs with no mergings: 0
Avoided coalescings: 0

*** Memory usage ***

Total access count: 28938307
Total usage hight watermark: 1639544
Total usage throughput: 174847004

misclist list high watermark: 5612
misclist list throughput: 152484
quick lists high watermark: 684924
quick lists throughput: 172066584
misc lists high watermark: 58512
misc lists throughput: 1737440
extent headers high watermark: 890496
extent headers throughput: 890496
coalescing list high watermark: 0
coalescing list throughput: 0
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