
Acknowledgement

This thesis is to mark the completion of my Master degree program at the
Department of Informatics, University of Oslo. Throughout the process,
I have engaged myself to the research topic as much as the educational
aspect of the work. Yet, I have been looking forward to this moment, when
those seemingly never-ending days of reading and writing finally come to
an end.

This work would not be possible without the kind support of my su-
pervisor, Sundeep Sahay, from whom I learn a great deal about the topic,
the research and writing process, and more subtly about the life of a re-
searcher.

My gratitude to Mr. Venkata Rao Mallineni and the staff at IndiSoft
who have been so kind and supportive during my fieldwork. Thanks also
to my good friends in Padmarao Nagar, with whom I had a great time
during my stay in Hyderabad, India.

I have enjoyed a constant moral support from my father Syahrir Ibrahim,
my mother Ratna Syahrir, and my two sisters Irwina and Iryani. To my un-
cle Tarmizi Taher and my aunt Djoesma Tarmizi, thank you for everything,
especially for opening the way.

Life as a student in the cold Norway has been warmed by my dear
friends from different countries, to name a few: Sudan, Ethiopia, India,
Norway and Indonesia. To Mohammed Sidahmed, thanks for listening.
To Sherly Saragih, thanks for always being there when I need it most.

Kringsjå, 1 November 2005

i

Contents

1 Introduction 1
1.1 The Significance of GSO . 1
1.2 Contemporary Views of Software Quality 3

1.2.1 What is Quality? . 4
1.2.2 Contemporary Approaches to Software Quality . . . 5

1.3 Quality Related Challenges in GSO 9
1.3.1 Outsourcing Context 10
1.3.2 Software Methodology Challenges in GSW 11
1.3.3 Standards and QMS in GSW 12

1.4 Objectives . 14
1.5 Structure of the thesis . 15

2 Literature Review and Proposed Quality Framework 16
2.1 Software and Its Dimensions 16

2.1.1 Product Dimension . 19
2.1.2 Process Dimension . 19
2.1.3 People Dimension . 20

2.2 Quality Measurement . 23
2.3 Software Engineering Methodologies: Building Quality? . . 25

2.3.1 Method or Methodology? 25
2.3.2 Examples of Software Methodologies 27
2.3.3 Common Practices in Software Development 35

2.4 Quality Management System (QMS) 38
2.4.1 ISO 9000 series . 38
2.4.2 Capability Maturity Model 39

2.5 Proposed Quality Framework 41
2.5.1 The Need for a Framework 41
2.5.2 Philosophical Underpinning 42
2.5.3 The Framework . 44

ii

CONTENTS iii

3 Research Methodology and Empirical Setting 47
3.1 Research Problem . 47

3.1.1 Objectives . 47
3.1.2 Personal Motivation & Perspective 48
3.1.3 Research Questions . 52

3.2 Interpretive Research . 52
3.2.1 What is an Interpretive Research? 52
3.2.2 Conducting Interpretive Research 53

3.3 Empirical Setting . 54
3.4 Research Experience . 55
3.5 Challenges & Limitations . 58

3.5.1 Limitations of data . 58
3.5.2 Data Analysis . 59

4 The Context 60
4.1 Software Industry in India . 60

4.1.1 Why India? . 60
4.1.2 The Pursuit of Quality 61
4.1.3 Software Practices in India 63

4.2 The company: IndiSoft . 64
4.3 The Ecosystem . 66
4.4 Development Life Cycle in the Organization 69
4.5 QMS in the Organization . 70

4.5.1 Organizational Structures 71
4.5.2 Responsibilities . 71
4.5.3 Processes and Resources 73
4.5.4 Procedures . 75
4.5.5 Measurements . 75

5 Case Study 1: Versatile Messaging System II 77
5.1 Project Description . 77

5.1.1 Project Management 78
5.2 Project Chronology . 78
5.3 Quality in VMS-2 Project . 83

5.3.1 Quality Practices . 83
5.3.2 Quality Stages . 85

6 Case 2: Point of Sale (POS) 92
6.1 Project Description . 92

6.1.1 Project Management 93
6.2 Project Chronology . 94

iii

CONTENTS iv

6.3 Quality in POS project . 103
6.3.1 Quality Practices . 103
6.3.2 Quality Stages . 106

7 Discussion 113
7.1 Comparison of the two case studies: VMS-2 and POS 113

7.1.1 Similarities . 113
7.1.2 Differences . 114

7.2 Quality determinants in GSW 114
7.2.1 Temporal Engagement with Client 115
7.2.2 Visibility of processes 116
7.2.3 Global Communication 116
7.2.4 Customer Consent . 117
7.2.5 Control . 117
7.2.6 Predictability . 118
7.2.7 Technical Competence 118
7.2.8 Accomodativeness . 118
7.2.9 Synergy between Methodology and QMS 118

7.3 Best practices . 119
7.3.1 Documentation . 119
7.3.2 Reporting . 119
7.3.3 Team building . 120
7.3.4 One channel communication with client 120
7.3.5 Combination of different practices 121

8 Conclusion 122

iv

List of Figures

2.1 CMM Staged Maturity Levels 40
2.2 Quality Framework . 44

3.1 Early problem formulation . 50
3.2 Current problem formulation 51
3.3 Research Activities . 56

4.1 Quality Certification . 62
4.2 SEI Quality Assessment . 62
4.3 Software Practices in India and other countries 63
4.4 The Structure of the Organization (Source: Quality Manual) 66
4.5 Quality Manuals . 71

5.1 VMS Chronology . 80
5.2 VMS Chronology (ctd.) . 81
5.3 Effort spent for VMS project 84
5.4 Quality Stages in VMS-2 Project 86

6.1 Inconsistency in POS project 95
6.2 POS Chronology . 96
6.3 POS Chronology (ctd.) . 97
6.4 POS Chronology (ctd.) . 98
6.5 POS Chronology (ctd.) . 99
6.6 POS Chronology (ctd.) . 100
6.7 POS Chronology (ctd.) . 101
6.8 Effort spent in POS project . 103
6.9 Quality Stages in POS Project 105

v

Chapter 1

Introduction

”The bitterness of poor quality remains long after the sweetness of
meeting the schedule has been forgotten (anonymous)”

This chapter presents the outline of the study which is aimed to under-
stand issues of quality in software development processes in the global
software outsourcing (GSO) context. In section 1.1, the significance of
GSO is presented. In section 1.2, contemporary views of software qual-
ity are discussed, started with defining the meaning of quality in general
followed by discussing the current approaches to software quality. In sec-
tion 1.3, quality related challenges in GSO are discussed. The objectives of
this research are presented in section 1.4. Finally, the structure of the thesis
is introduced in section 1.5.

1.1 The Significance of GSO

Global outsourcing is one of the fastest growing and evolving business
activities worldwide. Following the outsourcing of Eastman Kodak’s IT
operations in 1989, IT outsourcing in the US alone grew to $101bn by
2000 and has been predicted to reach $160bn by 2005. Global demand
has enabled several developing nations to transform key sectors of their
economies – something many other countries aspire to emulate. Skill short-
ages and the emergence of new low cost providers continue to fuel the
growth of outsourcing, while developments in information and commu-
nication technologies (ICT) are extending its scope [Sloper, 2004].

Currently, there are a large number of development methodologies and
approaches available to software practitioners. Yet, defective software is
common and high quality software is scarce. Many software projects con-

1

1.1. THE SIGNIFICANCE OF GSO 2

tinue to fail, despite the promising methodologies or approaches that they
use. Quality in software development is still an unresolved issue.

Lessons have been learnt from many failed software projects. For ex-
ample, Sierra – a UK-based software house – closed their Bangalore op-
eration, which had been set up with a high level of optimism and expec-
tation, and which failed to address challenges related to global outsourc-
ing such as distance in all its connotations – geographical, cultural, and
linguistic [Heeks et al., 2001]. A Russian-Norwegian software project had
to struggle out of a difficult period by overcoming the problematic areas
around knowledge management, especially related to domain knowledge,
language and project management [Imsland and Sahay, 2005].

Today, IT organizations can outsource two basic types of work: ex-
plicit functions relevant to the operations of IT (for example, software de-
velopment and infrastructure), and business operations that have a direct
impact on IT systems (for example, customer call centers and manufactur-
ing) [Laplante et al., 2004]. The first type, global software development,
also referred to as global software work, is the main focus of this study,
with an emphasis on issues relating to developing and assessing the qual-
ity of software.

Many people agree that quality has been an issue in software develop-
ment for years. A recent report states that after five decades of software
development, defective software is the norm, high quality software the
exception [Malloy and Voas, 2004]. There are two ways of constructing a
software design: One way is to make it so simple that there are obviously
no deficiencies, and the other way is to make it so complicated that there
are no obvious deficiencies [Jackson, 2004].

Most studies and methodologies to determine quality of software are
related to those built in co-located settings. Little is known about these is-
sues of quality in the context of software developed in globally distributed
contexts.

The thesis thus presents a study aimed at analysing the determinants
of software quality in global software development, and the ongoing chal-
lenges and approaches to achieve it. Empirical research has been per-
formed in a software company in India which develops software solutions
for the worldwide market. Two projects have been selected as case stud-
ies, which provide the empirical basis for the analysis. In the following
section, we will examine the contemporary views of software quality.

2

1.2. CONTEMPORARY VIEWS OF SOFTWARE QUALITY 3

1.2 Contemporary Views of Software Quality

This section briefly summarizes the current views of software quality, start-
ing with a general discussion on quality, followed by more specific de-
scription of some widely accepted approaches to quality.

Quality has always been the aim of any human endeavour whether it is
deliberately declared or implicitly taken for granted. An interesting exam-
ple is pointed out by Pyzdek (2003) that quality issues have been a matter
of great concern for people throughout recorded history. Quality issues
have been written in law since the Mesopotamian era. The Babylonian
king Hammurabi (1792-1750 BC) made Babylon the chief Mesopotamian
kingdom and codified the laws of Mesopotamia and Sumeria. The Code
of Hammurabi called for the death of builders whose building collapsed
and killed its occupants. No doubt the builders of the time took great care
to construct high quality structures! [Pyzdek, 2003]

Engineering or manufacturing is one of the human enterprises which
are particularly concerned with quality issues. Measures are taken to con-
trol every stage of the production system. They seem to follow the sim-
ple formula which is stated as ”with good raw materials as inputs, well-
calculated processes and accurate tools, quality of the products will be
assured”. For most cases, that formula works well in traditional manu-
facturing. Software development, which till not long ago was perceived
as a pure engineering enterprise, unfortunately does not share the same
prescription. Software development differs from traditional manufactur-
ing due to its unique characteristics imposed by the character of its prod-
uct: the software; and its processes such as the underlying development
methodology.

Software is a logical system element instead of physical; therefore it
implies the closeness between the creation (software) and the creator (pro-
grammer). Human and social elements play more influential roles in the
production of software than in hardware. Human tendency to produce er-
ror in their actions is reflected in software development and magnified in
larger projects involving more people, which eventually leads to the phe-
nomenon coined as ”software crisis”. Software crisis, observed for the first
time in the 60’s, refers to the inability to develop software on time, on bud-
get and within requirement([Brooks, 1987], [Feller and Fitzgerald, 2000],
[Bryant, 2000]). In this thesis, software crisis is perceived as the failure
to achieve the desired quality of the software product.

Software engineering was, at that time, the answer to ”the software
crisis”. The development of systematic procedures to produce structured
code, which became known as ’methodology’, was the first widespread

3

1.2. CONTEMPORARY VIEWS OF SOFTWARE QUALITY 4

attempt to take account of quality issues during software development.
However, this creation of methodologies still could not wipe out the soft-
ware crisis completely. The crisis was, and is, still there.

This thesis seeks to address the concerns of such a software crisis with
regard to the quality ideas in the context of global software outsourcing –
one of the current modes of working which poses new challenges to soft-
ware development. Before continuing that, in the next section, I would like
to briefly discuss the different perspectives on software and its quality. We
need to know more about what quality means to us before investigating
this matter in different contexts of software development.

1.2.1 What is Quality?

Before starting a discussion on quality, it would be practical to have a well-
established definition of it at our disposal. Unfortunately, quality is hard
to define, impossible to measure, but easy to recognize. It is generally
transparent when present, but easily recognized in its absence, for exam-
ple when a piece of software fails to perform properly.

Quality is not absolute; it means different things in different situations.
Quality is multidimensional; it has many contributing factors which are
not easily summarized in a simple, quantitative way as some aspects of
it can be measured while some others may not. Quality is subject to con-
straints; assessment of it in most cases cannot be separated from cost or
other critical resources such as people, tools, and time. Quality is about
acceptable compromises; where quality is constrained and compromises
are required, some quality criteria may be sacrificed more acceptably than
others. Further, quality criteria are not independent, but interact with each
other, often causing conflicts [Gillies, 1997].

The first principle of modern quality improvement is that ”the cus-
tomer is king!” Relatively-perceived quality is not the same thing as tradi-
tional ”conformance” quality. Many a company has struggled to obtain a
high conformance rate, only to be disappointed with the results in the mar-
ketplace. What matters is what your customers think about your quality
[Pyzdek, 2003].

Many people have attempted to define quality, which tend to be mostly
context-dependent, such as: ”the degree of excellence” (Oxford English
Dictionary, 1990); ”zero defect” [Crosby, 1979]; ”the totality of features and
characteristics of a product or service that bear on its ability to satisfy spec-
ified or implied needs” (ISO 1986); or the pragmatic one, ”quality is when
the customer comes back, not the product” [Frühauf, 1994]. Sommerville

4

1.2. CONTEMPORARY VIEWS OF SOFTWARE QUALITY 5

(2004) argues that good software should deliver the required functionality
and performance to the user and should be maintainable, dependable and
usable [Sommerville, 2004]. Kitchenham (1989) refers to software quality
as ’the fitness for needs’ and claims quality involves matching expecta-
tions. The definition recognizes two questions of quality software: (1) is it
a good solution? (2) does it address the right problem? These two ques-
tions are a good starting point for us to delve into the quality concept in
software [Kitchenham, 1989]. In the following section, current approaches
to software quality are examined.

1.2.2 Contemporary Approaches to Software Quality

In this subsection, a more specific discussion on quality in software devel-
opment is presented. Most software quality factors are directly measur-
able only after the software system has been deployed [Khoshgoftaar et al., 2004].
This is one of the reasons why software quality has to be approached in a
different manner than, say, traditional manufacturing.

Since quality happens to be difficult to define, I choose to learn from
how its development has been approached. In this section, two strands
in the development of ideas around quality and approaches within soft-
ware development will be examined: software engineering and quality
management system. Quality approach based upon software engineer-
ing seeks to apply rigorous engineering practices to software develop-
ment and the alternative is the application of quality management ideas
[Gillies, 1997].

As briefly mentioned earlier, software engineering was introduced in
the 60s – when the term ’software crisis’ was first coined – to try to for-
malize the development of software, using ideas from other engineering
disciplines. Software engineering is the processes, methods, and tools that
support a software development team in building a high-quality and use-
ful software system [Filman et al., 2004].

In general, most people view software engineering largely as a deter-
ministic technical enterprise with some human and social adjuncts, col-
lectively referred to as human factors. And, while our community is con-
stantly redefining and expanding the notion of human factors in software
engineering, a broader understanding of how the human and social envi-
ronment affects software engineering escapes us [Sharp et al., 2000].

Software Development Life Cycle (SDLC, also known as the waterfall model,
was, and possibly still is, the mainstream methodology in software engi-
neering. The processes prescribed by the methodology include require-

5

1.2. CONTEMPORARY VIEWS OF SOFTWARE QUALITY 6

ment specifications, design, development, and testing. There are also prac-
tices which support the aforementioned ones throughout its application
of those processes in a software project, i.e. software documentation. Sev-
eral alternatives to this mainstream approach have been developed such
as, to name a few, the prototyping, evolutionary model, object orienta-
tion and agile development. Within the domain of software engineering,
quality continues to remain an issue of concern. Although remedies such
as fourth generation programming languages, structured techniques and
object-oriented technology have been promoted, a ”silver bullet” has yet
to be found [Ward and Aurum, 2004].

Evolutionary process models were introduced because software, like all
complex systems, evolves over a period of time. Business and product re-
quirements often change as development proceeds, making a straight-line
path to an end product unrealistic. In these situations, software engineers
need a process model that has been explicitly designed to accommodate a
product that evolves over time. Evolutionary models are iterative. They
are characterized in a manner that enables software engineers to develop
increasingly more complete versions of the software. The intent of evo-
lutionary models is to develop high-quality software in an iterative and
incremental manner [Pressman, 2005] p.83.

Often, a customer defines a set of general objectives for software, but
does not identify detailed input, processing, or output requirements. In
such cases, and many other situations, the prototyping paradigm may of-
fer the best approach. Although prototyping can be used as a standalone
process model, it is more commonly used as a technique that can be im-
plemented within the context of other process models. It mainly assists
the software engineers and the customer to better understand what is to
be built when requirements are fuzzy [Pressman, 2005] p.83.

Some concerns about the evolutionary models, including prototyping,
have been expressed. First, they pose a problem to project planning be-
cause of the uncertain number of cycles required to construct the product.
Second, those models do not establish the maximum speed of the evolu-
tion. Third, software processes should be focused on flexibility, extensibil-
ity, and speed of development rather than on high quality [Pressman, 2005]
p.90. In my opinion, this evolutionary approach does address the process
and product dimensions of software by embracing iterative development
to reach high quality product, but it does not explicitly give much credit
for the role of people in the process, whereas people are assumed to act
accordingly to the prescribed steps in each iteration.

In early 2001, Agile Software Development was introduced by its sup-
porters with a promising claim of uncovering better ways of develop-

6

1.2. CONTEMPORARY VIEWS OF SOFTWARE QUALITY 7

ing software. They presented their values formulated as the following:
individuals and interactions over processes and tools, working software
over comprehensive documentation, customer collaboration over contract
negotiation, and responding to changes over following a plan. Various
lightweight methodologies which belong to this movement are: Adap-
tive Software Development, eXtreme Programming (XP), Scrum, Crys-
tal, Feature-Driven Development, Dynamic System Development Method
(DSDM), and ”pragmatic programming” (Cockburn 2001). One of the dis-
tinguishing characteristics of this methodology is its emphasis on the role of
people in software development. Despite this new and relatively fresh per-
spective on software development, Agile Development specifically men-
tions its limitation concerning its use in virtual teams in multi site devel-
opment, offshore development and distributed development. Virtual is a
euphemism to mean not sitting together.

Another approach to quality in software is the use of Quality Man-
agement System at the organizational level. Quality Management Sys-
tem – herewith referred by its acronym, QMS – is the organizational struc-
ture, responsibilities, procedures, processes and resources for implement-
ing quality management (ISO8042, 1986). QMS goes further than a method-
ology in ensuring that responsibility is clearly established for the pre-
scribed procedures and processes. If the methodology is intended to lay
down which procedures should be carried out, QMS should ensure that
the procedures are actually carried out to the required standard. At best,
it provides a disciplined and systematic framework; while at worst, it
can become a bureaucratic nightmare. Several standards are available
for quality management and process improvement such as ISO9000 and
CMM.

Gillies (1997) states that the main concern about the model of a qual-
ity system which forms the heart of ISO9001 is its emphasis on quality
control procedures and there is very little in it about establishing a human
quality culture. Without the establishment of a quality culture and a for-
mal requirement for procedures to facilitate the process, the vital process
of continuous improvement which takes quality management beyond the
recording of errors and performance may be omitted. Another common
complaint about ISO9001 is that it tends to fossilize procedures – making
them outmoded, rigid, or fixed – rather than encourage process improve-
ment.

Despite the problems of ISO standards, a range of standards and mod-
els have been developed which seek to provide the benefits of quality stan-
dards whilst recognizing different stages of development and the contin-
uous need to improve. Prominent among these efforts is the SEI’s Ca-

7

1.2. CONTEMPORARY VIEWS OF SOFTWARE QUALITY 8

pability Maturity Model (CMM). The CMM, developed by the Software
Engineering Institute (SEI) at Carnegie Mellon University in Pittsburgh, is
an approach for evaluating and measuring the maturity of the software
development process of organizations on a scale of 1 to 5. The purpose
of CMM Integration is to provide guidance for improving your organiza-
tions processes and your ability to manage the development, acquisition,
and maintenance of products or services. It has been used extensively for
avionics software and for government projects since it was created in the
mid-1980s. The Software Engineering Institute has subsequently released
a revised version known as the Capability Maturity Model Integration
(CMMI). Similar to the line of thought mentioned earlier in this section,
the basic premise underlying this model is that the quality of a software
product is largely determined by the quality of the software development
and maintenance processes used to build it. A maturity model is a method
for judging whether how and why processes are used, are characteristic of
a mature organization. Stage models offer insights into how computer-
based IT and managerial and organizational strategies evolve and mature
over time. According to stage models, organizations progress through a
number of successive, identifiable stages. Each stage reflects a particular
level of maturity in terms of the use and management of IT in the organi-
zation [Fairchild, 2004].

This maturity model is defined as a five-level framework for how an
organization matures its software processes from ad hoc, chaotic to ma-
ture, disciplined ones. The software process is defined as a set of activi-
ties, methods, practices, and transformations that people use to develop
and maintain software and the associated products. The model assumes
that as an organization matures, the software process becomes better de-
fined and more consistently implemented throughout the organization.
CMM, and other similar models such as Software Process Improvement
and Capability dEtermination (SPICE), etc, do not exclude ISO, but they
do provide a mechanism to improve the existing ISO practices. They allow
an organization to build an evolutionary path to the level of quality that
they wish to achieve.

To conclude, there are multiple views of software quality, and defining
quality is hard, measuring quality is impossible, but recognizing the pres-
ence of quality is easy – even more so with its absence. Therefore it is more
practical to examine the approaches to produce and implement quality.
The current view of software quality is marked by the perception of soft-
ware as a product resulting from careful processes which are conducted by
people. This perception will be discussed further in the following chapter
as the three dimensions of software. Concrete attempts to achieve quality

8

1.3. QUALITY RELATED CHALLENGES IN GSO 9

have been undertaken through methodologies and standard quality man-
agement systems which are based on one or more of those perceptions.
However, while the current challenge of the software crisis is not yet com-
pletely solved, our understanding of these issues in global software con-
text is very immature. I now discuss some of these issues in the following
section.

1.3 Quality Related Challenges in GSO

This section discusses the quality related challenges in global software out-
sourcing context. The context itself is briefly presented and then the afore-
mentioned approaches to software quality are re-examined with respect to
the contextual challenges.

Global Software Outsourcing is the offshore development of software
by personnel outside the client’s home country [Barret et al., 1997]. A naı̈ve
viewpoint may suggest that there is nothing new about software develop-
ment in a global outsourcing context. Software would always be software
regardless of the context and therefore all the methodologies to develop it
would always be applicable anytime and anywhere. The use of the Infor-
mation and Communication Technologies (ICT) to transfer all the neces-
sary material for the job – even the work itself – and the application of one
or more appropriate methodologies would, magically, produce quality re-
sults! A further argument is that people have been doing outsourcing in
traditional manufacturing such as automobile or other goods anyway. If
one can produce quality software in one place, why not reapply the exact
same way in another? Unfortunately, in reality it is not that simple.

Recent movements in software methodologies, such as Agile Develop-
ment, have identified the importance of people’s role and communication
processes in determining the success of software development. The reason
that many applications based upon traditional methodologies fail is partly
because those methodologies do not put people at the centre as one of the
determining roles, who actively conduct the process and produce results
bearing all their human psychological and social aspects. Methodologies
like SDLC take for granted that people will act uniformly to the prescribed
actions defined in the methodologies. Agile software development em-
phasizes communication as an important aspect of the process as in out-
sourcing. There are a variety of people involved in the work setting, and
without rich communication due to time and distance constraints. The fol-
lowing section will briefly examine the outsourcing context more closely,
followed by the elaboration of the challenges in applying the two quality

9

1.3. QUALITY RELATED CHALLENGES IN GSO 10

approaches presented before, namely Software Engineering and QMS.

1.3.1 Outsourcing Context

In this section, the context in which GSO takes place is presented. One key
domain of change characterized by globalization processes at the turn of
the twenty-first century is in the international business environment and
organizational forms which are being reshaped as part of a new scenario
that have diversely labelled as the ’new economy’, ’digital economy’, ’net-
work society’ or the ’information age’. The new economy is informational,
global, and networked – the characterization which refers to its funda-
mental distinctive features. It is informational because the productivity and
competitiveness of units or agents in this economy (be it firms, regions, or
nations) fundamentally depends upon their capacity to generate, process,
and apply efficiently knowledge-based information. It is global because
the core activities of production, consumption, and circulation, as well as
their components (capital, labour, raw materials, management, informa-
tion, technology, markets) are organized on a global scale, either directly
or through a network of linkages between economic agents. It is networked
because, under the new historical conditions, productivity is generated
through and competition is played out in a global network of interaction
between business networks [Castells, 2000].

Today’s global information economy strongly encourages forms of de-
velopment that bring together participants from across geographical loca-
tions, time zones, and business organizations [Yilmaz et al., 2004].

The new economy has enabled a new organizational form which en-
ables the conduct of Global Software Work (GSW) to emerge. GSW refers
to software work undertaken at geographically separated locations across
national boundaries in a coordinated fashion involving real-time or asyn-
chronous interaction [Sahay et al., 2003]. GSW can thus include work done
across global borders through, for example, outsourcing and work in a
global team within a multinational company.

GSW takes place within an extremely dynamic and diverse global mar-
ketplace that is populated by organizations, big and small, from countries
both developed and developing. Diversity, complexity and uniqueness
are inherent to GSW making them an exciting and relatively unexplored
domain of study [Sahay, 2003]. Sahay (2003) states that GSW is based on
the assumption that software projects can be subdivided into relatively
independent and autonomous modules, and pieces of work can be dis-
tributed and coordinated through the use of ICTs across the globe. The

10

1.3. QUALITY RELATED CHALLENGES IN GSO 11

modularization of work, its distribution across different development cen-
tres and subsequent integration requires standardization of various prod-
ucts, processes and also practices. Furthermore, the black-box approach –
that is, the use of formal project requirements to transfer knowledge about
the application problem domain from the client to the vendor organiza-
tion – has long been the mainstay of outsourced software development
[Tiwana, 2004]. In the next section, we examine the challenges in GSW,
starting with the application of software methodology.

1.3.2 Software Methodology Challenges in GSW

Applying a certain methodology slavishly does not ensure success in achiev-
ing quality, not to mention that no methodologies are able to guarantee
their successful application in all problem situations. The success or failure
of development efforts cannot be attributed exclusively to the use, misuse,
or nonuse of methodologies [Avison and Fitzgerald, 2003b]. In the GSW
context, this fact is magnified by its inherent constraints of time, space and
culture separation. Those constraints, again, reflect the importance of peo-
ple since they affect directly the people aspect of software development
– such as collaborative aspects in communication, as opposed to simply
exchanging information – more than the product or process aspects.

There has been a worldwide movement towards process improvement
and many different paradigms have been created that can potentially ben-
efit today’s software projects. More people realize that the success of soft-
ware projects and its quality management systems with an emphasis on
the process improvement depends, to a greater degree, on social factors.
The difficulties of achieving social acceptance for Software QMS will also
be exacerbated in the future by the increased globalization of the software
market and the use of cross-cultural development teams within multina-
tional companies. An integration of a disciplined approach, focusing on
repeatable processes and continuous improvements, together with an em-
phasis on people and culture within the organizational context will add
value to the software industry [Siakas, 2002].

As we know, human, social and cultural factors in software engineer-
ing are crucial factors. Software engineering’s very nature is mutually
shaped by the human and social world in which it exists [Sharp et al., 2000].
Sharp et al (2000) also states that a distinct culture of software engineering
transcends national, regional, and organizational cultures.

However, the latest trend of agile software development, which rec-
ognizes and emphasizes the importance of people and communication,

11

1.3. QUALITY RELATED CHALLENGES IN GSO 12

specifically states that the application of agile methodologies requires co-
location as the primary condition. For example, Cockburn (2001) states:
co-location is considered a critical element in Crystal Clear. Crystal Clear
is one part of Crystal methodology family which he proposed. Crystal
Clear is a light methodology for small teams (1-6 people). The weight of a
methodology is the product of its ”size” (the number of control elements,
e.g. deliverables, standard, activity, quality measures, and techniques de-
scription) and ”ceremony” (the amount of precision and the tightness of
tolerance in the methodology). A rule of Crystal Clear is that the entire
team must sit in the same or adjacent rooms, in order to take advantage
of the ”convection currents” of information and the ”osmotic communi-
cation” – analogies borrowed from fluid theory denoting the fluidness of
information [Cockburn, 2001]. Co-location is not possible in GSW, which
by its very nature is distributed, thus implying that such methodologies
are not applicable to the context.

Thus, methodologically speaking, there are two challenges in the GSW
context: (1) traditional methodologies, which emphasize control on mainly
the processes and products, are considered inadequate and problematic,
especially concerning the people aspect; (2) agile methodology is sim-
ply impossible to apply due to its conditional requirements of co-location.
From the academic point of view, those challenges present an interesting
area to study because they raise many questions such as: how far can tra-
ditional methodologies still help with the outsourcing project? One may
also speculate with the idea of creating another approach or methodology
for GSW or merely finding a certain way to tailor the available method-
ologies to suit the context. In the following section, another approach to
quality, i.e. standards and QMS, is presented.

1.3.3 Standards and QMS in GSW

In this thesis, the use of the terms standard and QMS are closely related
and interchangeable. When I use the term ”standard” I also mean ”quality
standard” because QMS in itself is a form of quality standard. Researchers
have shown that imposing standards in GSW is not an easy task. Sahay
(2003) has argued that GSW is based on the assumption that software
projects can be subdivided into relatively independent and autonomous
modules, and pieces of work can be distributed and coordinated through
the use of ICTs across the globe. The modularization of work, its distribu-
tion across different development centres and subsequent integration re-
quires standardization of various products (for example, the software de-

12

1.3. QUALITY RELATED CHALLENGES IN GSO 13

velopment environment used), processes (such as software development
methodologies) and also practices (such as reporting routines). In the con-
text of GSW, standards are conceptualized as a process of simplification
and abstraction with the aim to define and communicate significant as-
pects of the processes, artefacts and structures across time and space. The
aim is to enable some form of universalisation and mass production. This
process of standardization is extremely complex as it involves questions of
what and how much to standardize, so as to best develop a pragmatic bal-
ance between the need for universal templates with the demands of being
sensitive to local particularities.

In a global outsourcing relationship, a constant attempt is to build
and sustain a relationship by homogenizing operations to the extent that
the outsourcing and outsourced firms cannot be distinguished from each
other. For example, firms try to simplify and coordinate tasks by standard-
izing various processes of knowledge transfer, such as how project reports
are written, and the criterion to judge the quality of a developer’s work.
These standardized systems, often codified in manuals and databases, and
sometimes implicit and unwritten, serve as points of reference to coordi-
nate work across time and space. GSW reflects characteristics of other
forms of global work in general where the focus is on developing stan-
dardization, productivity, and efficiency. It involves the application of var-
ious kinds of knowledge systems including programming languages, soft-
ware development methodologies, project management techniques, and
the application domain. Different programming languages are used in
software development for both general purpose and specialized domains
[Sahay, 2003].

The quest for standardization reflects and is inscribed in the Software
Engineering tradition. Both standardization and software engineering at-
tempts to impart structure and predictability into processes to minimize
the heterogeneity of software work, for example, with the standardization
of development processes, methodologies and programming languages.
Furthermore, standards in GSW relationships are conceptualized to be
largely negotiated ’internally’ at the social, political, and cultural levels by
the involved parties. The interest in standards extends beyond the tech-
nical concerns of individual systems or the protocols to include the rela-
tionship in its totality, the standards for technical and physical artefacts,
software development processes, and other formal or informal manage-
ment practices. Again, this is because in software development, quality
of the software product cannot be decided until late in the development
cycle, thus the reliance has to be placed on process quality as an expected
means for achieving product quality.

13

1.4. OBJECTIVES 14

Standardisation in GSW is challenging because it is like shooting a
moving target. Sahay (2003) emphasizes the extremely dynamic nature
of standards and presents an analysis of some of the mechanisms through
which these changes take place. These mechanisms are shaped by individ-
ual actions, organizational policies, industry wide changes, and changing
expectations within a processual relationship. He shows the limits of what
can be standardized and how much. From the perspective of quality, this
insight can be related to the decisions to apply the available quality stan-
dards, such as ISO9000 series and CMM, to the GSW context. Practic-
ing managers are expected to know how much those standards may con-
tribute to the overall quality goals and to take necessary actions to fulfil
the gap.

This discussion adds one more question to answer in the pursuit of
quality: if possible at all, how effective can ISO, CMM or other QMS re-
lated approaches assure the quality achievement in GSW? In addressing
this, it will be useful to examine the software practices used in India, a
country considered a leader in GSW and also in having companies with a
high level of quality certification.

To conclude, this section has discussed some of the challenges in ap-
plying standard approaches to quality in the GSW context. GSW poses
some inherent constraints including, time differences, geographical sepa-
ration and cultural differences. These constraints have been the source of
challenges to the application of the present dominant approaches to qual-
ity: software engineering and QMS. In the following section, the research
objectives are introduced.

1.4 Objectives

Within the problem area described above, this thesis aims at the following:

”Identify and describe software quality determinants in global
software work.”

Field research was conducted in an Indian-based software company
providing for worldwide market. Data from two projects, which provide
the empirical basis of the analysis, have been collected along with the in-
terview and observation notes. The next section presents the structure of
the thesis.

14

1.5. STRUCTURE OF THE THESIS 15

1.5 Structure of the thesis

This chapter has provided the motivation and outline of this study. Chap-
ter 2 presents the literature review and the proposed quality framework.
The research methodology and empirical setting are described in chapter
3. The organization, as a context in which the two project case-studies took
place, is discussed in chapter 4. Chapter 5 and 6 are dedicated to each case
study, in which the project is described and the quality related activities
are identified. Chapter 7 presents the discussion and chapter 8 concludes
the thesis.

15

Chapter 2

Literature Review and Proposed
Quality Framework

This chapter presents a review of relevant literature and proposes a frame-
work to analyse quality practices. It begins with a discussion on software
and its dimensions in section 2.1. Section 2.2 discusses some quality mea-
surement efforts. In section 2.3, Software Engineering methodologies as
an attempt to achieve quality are examined; some widely known method-
olgies are presented including several common software practices across
those methodologies. Section 2.4 presents QMS, its elements and some
well-known examples. Finally, in section 2.5, a quality framework is pro-
posed for further use in the case-study analysis.

2.1 Software and Its Dimensions

This section introduces software as a multidimensional entity. In this the-
sis I delimit the scope of software here as the programming system prod-
uct as defined by [Brooks, 1995] as follows:

”a collection of interacting programs, coordinated in function
and discipline in format so that the assemblage constitutes an
entire facility for large tasks, which can be run, tested and ex-
tended by anybody (not only its author). It should be usable
in many operating environment. It is written in a generalized
fashion. It has been tested with a substantial bank of test case
including extensive testing with other system components in
all expected combinations and the result of the test should be
recorded. It should come with documentation. There is con-
formity of inputs and outputs with syntax and semantics with

16

2.1. SOFTWARE AND ITS DIMENSIONS 17

precisely defined interfaces. Its use of resource is well calcu-
lated. (p.6)”

This definition is somewhat exhaustive and covers some of the prac-
tices in software engineering such as testing, configuration and documen-
tation. However, this definition does not really show why software devel-
opment is different from traditional manufacturing or engineering which
is defined as ”the application of science and mathematics by which the
properties of matter and the sources of energy in nature are made useful
to people” (Merriam-Webster’s Collegiate Dictionary, 1997).

Software is vastly different from other things that human beings build:
it is primarily a logical rather than a physical system element. The charac-
ter of software development sometimes seems closer to mathematics and
art than most other engineering disciplines. Software is inherently an in-
tangible, intellectual development medium. No laws of physics govern
its behavior; it is both marvelously and dangerously malleable. For this
reason, it is critical that mature disciplines and processes be applied when
working with software [Ahern et al., 2003]. Because software is nonphys-
ical yet functionally behavioral, we suffer the challenge of attempting to
measure certain nonmeasurable attributes. Nonetheless, that’s all we can
currently do to argue for the stability, functionality, and sustainability of
the software over time [Voas, 2004].

Furthermore, software is developed or engineered, but it is not manu-
factured in the classical sense. As in hardware manufacturing, high qual-
ity is achieved through good design, but the manufacturing phase for
hardware can introduce quality problems that are nonexistent (or easily
corrected) as compared to software. Both activities are certainly depen-
dent on people (they are done by people!), but the relationship between
the people assigned to the tasks and the work accomplished is entirely
different. Both activities require the construction of a ”product”, but the
approaches are different. Software costs are concentrated in engineering,
and not for example in raw materials or heavy industrial equipments.
Software does not ”wear out”. It deteriorates due to change: during its
life, software will undergo change in which it is likely that errors will be
introduced. Provided that there is no changes in requirement during the
development, every software failure indicates an error in design or in the
process through which design is translated into machine-executable code
[Pressman, 2005].

As a human activity, programming involves and is influenced by hu-
man emotional elements, i.e. fun, boredom, etc, in the more apparent
way in dealing with the bliss and the woe of the activity. An individual’s

17

2.1. SOFTWARE AND ITS DIMENSIONS 18

personality affects his/her ability to perform a particular job assignment
[Cockburn, 2001].

Programming is fun because it gratifies creative longings built deep
within us and delights sensibilities we have in common with all humans.
Brooks (1995, p.7) describes the programmer in a beautiful and romantic
way as follows: ”the programmer, like the poet, works only slightly re-
moved from pure thought-stuff. He builds his castles in the air, from air,
creating by exertion of the imagination. Yet the program construct, unlike
the poet’s words, is real in the sense that it moves and works, producing
visible outputs separate from the construct itself.”

Beside the joys, there are also the woes of programming. Firstly, the
system produced is required to be, as much as possible, precise and error
less. Therefore the programmer is supposed to perform perfectly. Human
beings are not accustomed to being perfect, and few areas of human ac-
tivities demand it. Secondly, one rarely controls the circumstances of one’s
work; most often a programmer depends upon other people’s programs
including the mal-designed, poorly implemented, incompletely delivered
and poorly documented ones. Thirdly, finding bugs is not fun but it is in-
evitable. Debugging has a linear convergence: the last and difficult bugs
usually take more time to find than the first. Finally, the pressure of time
constraints: the product over which one has laboured so long appears
to be obsolete upon (or before) completion [Brooks, 1995]. In line with
this, people don’t work through their problems in a nice and tidy fashion.
Thus, legislating how a person is to solve problems often invites trouble
[Cockburn, 2001].

Besides, there are also external pressures for the profession and the
business in general such as the rapid development in the technology it-
self. Some reports suggest that the half-life —the time it takes for half an
engineer’s knowledge to become obsolete —is two to three years for soft-
ware [Costlow, 2003].

Looking over more closely the way software practitioners and researchers
view software, I propose three different dimensions in viewing software
and its development process. Emphasizing one dimension over the oth-
ers influences the way methodologies are tailored and eventually the way
quality is perceived. First, it is the product dimension where software is
mainly seen as a developed or engineered product. Second, it is the pro-
cess dimension where software is perceived as shaped by its process and the
only way to control and manage the outcome is by controlling and manag-
ing the process. Third, it is the people dimension where the roles of people
(and its human characteristics) involved in the production are recognized
and made central to the work setting and organization. In the real world,

18

2.1. SOFTWARE AND ITS DIMENSIONS 19

these dimensions are not strictly detached. In most cases, methodologies
need to be customized and tailored; and quality is often perceived based
on the combination of these dimensions, with varying degrees of empha-
sis.

2.1.1 Product Dimension

Viewing software as a product, or a programming system product [Brooks,
1995], allows and encourages software practitioners to take measures simi-
lar to traditional manufacturing in ensuring its quality. The measures then
are applied to the core ”engineering” tasks which develop the product,
spanning from the analysis of software requirements at the front end of
the development, to the software integration and testing at the concluding
end. Software is usually built on or by using existing software products
such as programming languages, development environments, etc., such
that the base product influences the end result by imposing technical con-
straints. I argue that the product oriented approach tries to guide quality
improvement by making product quality explicit. Raw material inputs,
for example user requirements, should strictly conform to the characteris-
tics compelled by the well-defined production process, i.e. methodologies,
testing, etc., using several accurately measured tools, i.e. development
tools and programming languages. In my point of view, applying this di-
mension strictly will simply dismiss the ”soft-ness” of software. Software
will be no different than hardware. One will tend to impose artificial ”laws
of physics” to the supposedly intangible and malleable entity, for example,
by exaggerating formality in the entire process production and expecting
such formality to enable repeatability of the process and result.

2.1.2 Process Dimension

The process dimension is recognized by those who argue that since soft-
ware is intangible, malleable and deteriorates due to changes caused by
mal-design, then the development of software pre-eminently requires ma-
ture disciplines and processes to ensure its quality. This approach does
not emphasise formality for the sake of repeatability. It tends to be ex-
haustive and very careful about the processes to ensure that all possibili-
ties of failure are avoided. It also relies on the quality of the process and
believes that a quality product can only be achieved by going through the
quality process. In other words, the process oriented approach tries to
improve product quality indirectly, by controlling and improving the soft-

19

2.1. SOFTWARE AND ITS DIMENSIONS 20

ware development process by assuming that there is a positive correlation
between process improvement and product quality.

Many authors share the idea of seeing software as mainly a process;
and it seems that this dimension is more popular, probably, due to its prac-
tical outcomes. The precise knowledge of software quality is usually not
available until very late (usually during operations and maintenance) in
the software life cycle. In contrast, software product and process met-
rics can be obtained relatively sooner than the software quality informa-
tion [Khoshgoftaar et al., 2004]. Software process is a series of actions that
should be taken in developing a software system, such as gathering the
requirements, analyzing the requirements, specifying the system, design-
ing the system, and so forth [Filman et al., 2004]. Most software processes,
in turn, break down these high-level actions to successively smaller ac-
tion granularities. Siakas (2002) also shares the argument that quality of
the software product cannot be decided until late in the development cy-
cle. During the 1990’s, an increased consideration was given to the pro-
cess used for software development and its potential to improve software
quality. The popularity of CMM, ISO 9000 series of standards and the
SPICE model are testament to the importance associated with a process-
orientation for Software Engineering [Ward and Aurum, 2004].

2.1.3 People Dimension

Recent trends in software methodology as well as in the development of
QMS recognize a new dimension in software by acknowledging and em-
phasizing the role of people, both as individuals and teams. As mentioned
before, the relation between the software and its creator is so close that hu-
man elements become highly influential to the outcome.

Emphasis on the role of people in software development is argued by
Cockburn (2001) who states:

”The last time people constructed a vocabulary for software de-
velopment was in the late 1960s, when they coined the phrase
software engineering, as both a wish and a direction for the
future. It is significant that at the same time the programming-
should-be-engineering pronouncement was made, Gerald Wein-
berg was writing The Psychology of Computer Programming.
In that book, software development does not look very much
like an engineering discipline at all. It appears to be something
very human-centric and communication-centric. Of the two,
Weinberg’s observations match what people have reported in

20

2.1. SOFTWARE AND ITS DIMENSIONS 21

the succeeding 30 years, and software engineering remains a
wishful term. (p.xviii)”

Cockburn (2001) elaborates the elements in a light-hearted section la-
belled ”elements of funkiness” as followed: humans are spontaneous, both
for good and for bad; we are happily contradictory; we are stuffed full of
personality which vary by hour, by day, by age, by culture, by tempera-
ture, by who else is in the room and so on.

This dimension is necessary to pay attention to especially when or-
chestrating a software development in a team in which people with differ-
ent psychological traits and social backgrounds work together. Cockburn
(2001) says that depending on almost anything, a person can be coopera-
tive with one person at one moment and belligerent the next moment or
with the next person.

Emphasising this dimension means focusing the ”soft-ness” of soft-
ware because human elements are those that make software different from
traditional engineering. It emphasizes the uncertain and dynamic ele-
ments in the project management which affect the outcomes. It is the
source of creativity and innovation as well as the potential for errors and
conflicts. However, it seems that this dimension is the most difficult to
maintain and manage.

Many people have recognized the importance of people’s roles and in-
teraction in software development, but little has been done to actually ad-
dress the issue in a more concrete manner. Methodologies and approaches
have been created to facilitate the human elements such as pragmatic pro-
gramming, programming in pairs, and other practices suggested by agile
software development. Besides, quality is not an objective entity. It is in
fact an agreement between the stakeholders of the project, so again, the
people dimension!

The Roles of Customer in Defining Quality

So far it has been admitted that there is no objective quality in software
project. Many authors on quality, in general or specific for software, shift
the focus to customers as having the primary role in determining the sub-
jective and contextual quality of a product or a project. If beauty is in the
eye of the beholder, then quality must be as well [Voas, 2004]. In his book,
Lila, An Inquiry into Morals (Bantam, 1991), Robert Pirsig defines qual-
ity as value – to somebody. This broad but useful definition implies that
each ”somebody” will have different ideas about value. Whenever sev-
eral people are involved with a software system, several different values

21

2.1. SOFTWARE AND ITS DIMENSIONS 22

will apply to that system [Robertson, 1995]. In market-driven software
business, customer wishes and product requirements are the two areas
that software companies must find and maintain the links to survive and
win the competition [Natt och Dag et al., 2005]. Attempts by several ma-
jor commercial software vendors to improve software quality with better
tools are potentially important, but tools will find only the more obvious
coding problems, such as syntax errors and usage inconsistent with pro-
gramming conventions [Vaughan-Nichols, 2003].

In the global outsourcing context, the importance of customer in defin-
ing quality is heightened. They are required to be more informed about
what they want and to produce better product specifications. The diffi-
culty is that requirements aren’t about the software but about the problem
world, which is always potentially complex, even for a system whose soft-
ware is itself quite simple [Jackson, 2004]. ”What offshore forces a com-
pany to do, is write a very detailed spec for a product,” Jeffrey Tarter, a
veteran software industry analyst and editor of the Softletter newsletter,
says. ”That form of discipline is incredibly valuable. It forces people to
consider every screen, the flow of the product, and which features are nec-
essary. This turns out to be why the Indian firms have been successful”
[McLaughlin, 2003] p.115. On the vendor side, it is useful and necessary
to facilitate the customer with methods that enable them to define the re-
quirements.

Meeting the requirements might be different from being fit for a pur-
pose, which can also be different from complying with the rules and reg-
ulations on how to develop and deploy the software. Yet we can think of
all three perspectives as ways to determine how to judge and assess soft-
ware quality [Voas, 2004]. Many people agree with the view that quality
is to meet user requirements: a ”high-quality” Web site is one that meets
its owner’s and users’ requirements [Mich et al., 2003]. Most activities to
improve software reliability focus on how developers can predict and pre-
vent defects by analyzing a customer’s view – the software’s field failure
rate [Wood, 2003]. Voas (2004) adds that software quality is nothing more
than a recipe. Some like it hot, sweet, salty, acidic, or greasy. The end user
is the restaurant patron. Season to taste.

The following section examines several widely known attempts to mea-
sure the quality of software.

22

2.2. QUALITY MEASUREMENT 23

2.2 Quality Measurement

This section discusses several approaches to measure quality in software.
Being a good solution to the right problem is our definition of quality soft-
ware so far. Let us scrutinize the development process further by exam-
ining the stakeholders involved in it. Software development is usually
involving stakeholders with different priorities and concerns such as: a
project manager who has the responsibility for the project on the supply
side, a business analyst who has to liaise with the users and should un-
derstand their needs better than anyone else amongst the suppliers, an
implementation programmer who writes the software, a quality editor who
detects departures from a quality solution, an end-user who has to use the
system in the end, a line manager who is the end-user’s boss and may be
the instigator of the project, and a project sponsor who pays the bill. Each
stakeholder has his or her own objectives from the project, often conflict-
ing with each other.

The overall quality may be judged in terms of how well each stake-
holder is satisfied at the end of the day. In an attempt to classify different
and possibly conflicting views of quality, Garvin (1984) has suggested five
different views of quality: (1) The transcendent view which relates qual-
ity to innate excellence; (2) The product-based view which views that it
costs money to build in quality which can be added to a product in two
ways, namely, by putting greater functionality and by taking greater care
in development which is leading to a higher quality solution; (3) The user-
based view quality which is defined in terms of giving the users what they
want or ”fitness for purpose”; (4) The manufacturing view quality which
is measured in terms of conformance to requirements; (5) The value-based
view to provide what the customers require at a price they can afford
[Garvin, 1984]. Further, Gillies (1997) adds another view that software
quality is actually about people. Tools, process and quality management
systems are all aids to enhancing quality, provided that the people are ca-
pable and motivated towards their effective use. The latter view empha-
sising the role of people is an important building block of this thesis and
will relate to other aspects of software development.

There have been attempts to concretize the notion of quality in order
to use it in practical situations. In order to compare quality in different sit-
uations, both qualitatively and quantitatively, people build models of qual-
ity which mainly deal with issues: what criteria of quality should be em-
ployed, how the criteria interrelate and how the associated metrics may be
combined into a meaningful overall measure of quality. A metric is a mea-
surable property which is an indicator of one or more of the quality crite-

23

2.2. QUALITY MEASUREMENT 24

ria. There are two types of software metrics: predictive and descriptive. A
predictive metric is used to make predictions about the software later in the
lifecycle, for example, structured ness is associated with maintainability of
the software product in use. A descriptive metric describes the state of the
software at the time of measurement, for example, reliability metric might
be based upon the number of system ”crashes” during a given period.

Many researchers have tried to study quality from various angles. Qual-
ity is measured by product failures in the field and user satisfaction is mea-
sured by customer feedback; and a conceptual model of software manage-
ment is one that simultaneously considers development cost, quality and
user satisfaction [Krishnan, 1993]. A study on the adaptation and use of
the Quality Function Deployment (QFD) – which is an implementation
vehicle of Total Quality Management (TQM) – for software development
by a major software vendor shows that QFD can be useful as a preceding
activity to Software Development Life Cycle processes as a front end re-
quirement solicitation technique that quantifiably solicits and defines crit-
ical customer requirements [Haag et al., 1996]. Customer perceived qual-
ity can be measured by various services and the probability of observ-
ing a software failure can be increased by using the deployment schedule,
hardware configuration and software platform [Mockus et al., 2005]. The
quality of outsourced IT services can be traced to attributes of services
such as tangibles, responsiveness, reliability, assurance and empathy; and
it was proposed that transaction cost economics (TCE) characteristics – fre-
quency, uncertainty, and asset specificity – of each service determine the
drivers of client satisfaction for that service [Das et al., 1999].

The -ilities (or software attributes) are a collection of closely related be-
haviors that by themselves have little or no value to the end users but that
can greatly increase a software application or system’s value when added.
Examples of these flavor-enhancing software -ilities include maintainabil-
ity, reliability, usability, efficiency, adaptability, availability, security, porta-
bility, scalability, safety, fault tolerance, testability, usability, reusability,
and sustainability [Voas, 2004]. The problem is that these attributes are
unlikely to be associated in any way with how the software is developed
since development standards seldom drill down low enough to provide
guidance needed to obtain particular degrees of any of these attributes.
That is why metrics and other measurement techniques are created: to try
to monitor and quantify those attributes.

Now, an approach to achieve quality through the software engineering
methodology is discussed in the following section.

24

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 25

2.3 Software Engineering Methodologies: Build-

ing Quality?

This section presents a literature review on software engineering method-
ologies and their common practices. The software engineering discipline
has been dubbed as one of the approaches to the quality software devel-
opment. As defined by the IEEE Standard 610.12, software engineering is
the application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software – that is, the appli-
cation of engineering techniques to software [Ahern et al., 2003].

2.3.1 Method or Methodology?

The development of systematic procedures to produce structured code,
which became known as ’methodology’, was the first widespread attempt
to take account of quality issues during software development. The term
’methodology’, which originally means the study of method, has passed
into computing jargon and has come to mean a systematic framework for
the development of software. In practice, it is often incorrectly used syn-
onymously with the word ’method’. Avison & Fitzgerald (2003) argue
that the ’philosophy’ element helps to distinguish ”methodology” from
”method”. The philosophy element refers to the underlying theories and
assumptions that the authors of the methodology believe in and that have
shaped the development of the methodology. They believe that the defini-
tion of a methodology should include specific reference to its philosophy
as this has a critical bearing on the understanding of a particular method-
ology. Generally, a good methodology for software development has a
number of characteristics such as: usability, integrity, adaptability to local
needs, clarity, and automation.

Software engineering was developed to address the problem of han-
dling complexity through a structured approach which is hoped to reduce
costs through increased productivity during initial development by re-
ducing errors. It was also intended to reduce ongoing maintenance costs
through making software more reliable. The introduction of software en-
gineering has clearly increased the quality of software in terms of techni-
cal parameters such as reliability and maintainability when measured in
a narrow technical way, and in terms of ’conformance to specifications’.
However, the underlying problem which software engineering was set up
to address was the cost of software maintenance resulting from error cor-
rection, failure to meet users’ initial needs, and failure to cope with evolv-

25

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 26

ing needs.
We can look closer to the development practices prescribed in method-

ologies available by using the software dimensions and show that some
practices are more focused on one dimension than the others. This way
of approaching those methodologies informs us both of their potential
and pitfalls in delivering successful projects. The elements of a software
methodology are presented in the subsection below.

Elements of Software Methodology

The elements of Software Methodology presented here referred to the work
of Cockburn (2003).

• ”Roles” refers to the position of the people employed in the team.
An interesting aspect to assess is why and how a role is defined in a
certain team.

• ”People” here refers to the personality trait of each person expected
for the roles in the team, i.e. a project manager should be good
with people, a user interface designer should have natural visual tal-
ents, and some empathy for user behaviour, an object-oriented pro-
gram designer should have good abstraction faculties, and a mentor
should be good at explaining things.

• ”Skills” refers to the personal prowess of a person needed for the
roles, which is a product of his training and talent. One can assess
how a team strives with skills which are not presently available.

• Teams are roles that work together under various circumstances. There
may be only one team on a small project. On a large project, there are
likely to be multiple, overlapping teams, some aimed at harnessing
specific technologies and some aimed at steering the project or the
system’s architecture.

• Tools refer to software, hardware and other tools that make the de-
velopment work possible.

• Techniques are the specific procedures people use to accomplish tasks.
Some apply to a single person, i.e. writing a use case, managing
by walking around, designing a class or test case, while others are
aimed at groups of people, i.e. project retrospectives and group plan-
ning sessions.

26

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 27

• Process refers to how activities fit together over time, often with pre-
and post-conditions for the activities.

• Activities refer to how the people spend their days, i.e. planning,
programming, testing, and meeting.

• Milestones are events marking progress or completion. Some mile-
stones are simply assertions that a task has been performed, and
some involve the publication of documents or code. A milestone
has two key characteristics: it occurs in an instant of time, and it is
either fully met or not.

• Work Products are what one constructs such as design cards (dispos-
able) or the usage manual or source code (relatively more perma-
nent).

• Standards here refer to the conventions the team adopts for particular
tools, work products, and decision policies.

• Quality measures refer to the degree of achievement of the activities
or the work products.

• Team values are value systems which govern the rest of the methodol-
ogy elements, for example, an aggressive team working on quick-to-
market values will work differently than a group that values families
and goes home at a regular time every night.

I do not suggest that every single methodology contains those ele-
ments. Some methodologies specify some of those elements more than
the others. In the following section, several examples of software method-
ologies are presented.

2.3.2 Examples of Software Methodologies

In this section, examples of popular software development methodologies
are presented – i.e. SDLC, evolutionary model (prototyping) and agile de-
velopment – followed by a general classification of methodologies based
on seven broad themes/approaches.

A. Software Development Life Cycle (SDLC)

SDLC was, and still is, the mainstream approach in software engineer-
ing. It has had an immense influence as a general approach to develop

27

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 28

software. Even though there are many variants, SDLC has the following
basic structure: (1) feasibility study, (2) system investigation, (3) system
analysis, (4) system design, (5) implementation, and (6) review and main-
tenance. These stages together are frequently referred to as ’conventional
system analysis’, ’traditional system analysis’, ’information system devel-
opment life cycle’, or, more frequently in the USA, as the waterfall model.
The term ’life cycle’ indicates the staged and linear nature of the process.
Further, by the time the review stages comes, the information system must
be found to be inadequate and it may not be long before the process starts
again with a feasibility study to develop another information system to
replace it [Avison and Fitzgerald, 2003a].

Avison and Fitzgerald (2003a) noted the benefits of SDLC as follows.
Methodologies incorporating this view of application development have
been well tried and tested. The use of documentation standards in such
methodologies helps to ensure that the specifications are complete, and
that they are communicated to the system development staff, the users in
the department, and the computer operations staff. It also ensures that
these people are trained to use the system. The education of users on sub-
jects such as the general use of computers is also recommended, and helps
to dispel fears about the effects of computers. Following such a methodol-
ogy also prevents, to some extent at least, missed cutover dates (the date
when the system is due to become operational) and unexpectedly high
costs and lower than expected benefits. At the end of each phase, the tech-
nologists and the users have an opportunity to review progress. By di-
viding the development of a system into phases, and further subdividing
them into more manageable tasks, along with offering improved training
and the techniques of communication, we have the opportunity for control
of the application development process.

However, Avison and Fitzgerald (2003a) also noted the criticisms of
SDLC, or, to be more precise, of the way in which it was used. These in-
clude: failure to meet the needs of management, instability, inflexibility,
user dissatisfaction, problem with documentation, lack of control, incom-
plete systems, application backlog, maintenance overload, problems with
the ’ideal’ approach, and emphasis on ’hard’ thinking. Some of the criti-
cisms will be elaborated below.

Inflexibility was the result of an output-driven design. The outputs that
the system is meant to produce are usually decided very early in the sys-
tems development process. Once the output is agreed, the inputs required,
the rest of the systems which convert the inputs to the outputs can all be
designed. However, changes to required outputs are frequent. And be-
cause the system has been designed from the outputs backwards, changes

28

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 29

in requirements usually necessitate a very large change to the system de-
sign. The changes therefore cause either a delay in the implementation
schedule or are left undone, leading to an unsatisfactory and inappropri-
ate system.

Documentation, even though it was mentioned as one of the benefits
above, is not ideal. The orientation of the documentation is frequently
towards the computer person and not the user, and this represents a po-
tential source of problems. The main purpose of documentation is that of
communication, and a technically-oriented document is not ideal. Docu-
mentation is often perceived as a time consuming and less creative activity.

Emphasizing ’hard’ thinking, the SDLC approach may make a number
of simplistic assumptions. It assumes that there are ’facts’ that only need
to be investigated and identified; it assumes that there can be a ’best solu-
tion’ identified that will ’solve the problem’; it assumes that this ’ideal so-
lution’ can be easily engineered by following a step-by-step methodology;
and, it assumes that the techniques offered will analyse and design all that
needs to be done. We are not engineering a simple mechanical object. The
world of information systems is concerned with organizations and people
as much as technology. The situations encountered are often ambiguous,
issue-laden, messy and problematical [Avison and Fitzgerald, 2003a].

It is interesting to note that after elaborating those criticisms, Avison
and Fitzgerald (2003a) advice us to treat the criticisms as potentials since
many organizations using the approach do not fall into all or even most of
the potential traps.

B. Prototyping and Evolutionary Models

Prototyping is an approach based on an evolutionary view of software
development, affecting the development process as a whole. Prototyping
involves producing early working versions (”prototypes”) of the future
application system and experimenting with them. Prototyping provides
a communication basis for discussions among all groups involved in the
development process, especially between users and developers. In addi-
tion, prototyping enables us to adopt an approach to software construction
based on experiment and experience [Lichter et al., 1993].

This approach has been particularly fruitful in participatory design,
where users are brought in very early in the design phase. A represen-
tation can be a vehicle for communication, a tangible ”placeholder” for
the real thing, which represents a proposed artifacts role in a real-world
situation. Designers and users can thus explore the user experience of a
system together, before it actually exists – even if it is only represented by

29

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 30

an empty cardboard box [Holmquist, 2005].
Furthermore, Holmquist (2005) argues that a prototype represents the

knowledge of function; it is a tangible artifact in which the necessary tech-
nology to achieve a particular functionality is implemented. However, the
prototype says next to nothing about whether it will result in a successful
product or systems. This is fine, the developer might argue, because these
properties are separate from the function – they are part of the interface
– and can be optimized now that the fundamental technical problem has
been solved. By its very existence, the prototype constitutes an existence
proof that a technology works.

As a representation, the prototype is a generator. A generator is at the
center of a process that generates inspiration and ideas – it is not an end
in itself. By making abstract thoughts concrete, and by providing a focus
for exploration and discussion, a generator can give rise to new insights.
What one should take away from a generator are ideas and inspiration,
which are potentially valuable. However, the designer should be aware
that this potential knowledge must be judged, validated and refined be-
fore being used or disseminated. Therefore, the value of representations
as generators lies in how much the designer can ultimately take away
from them, not the rigidity of the knowledge that went into creating them
[Holmquist, 2005].

Three major activities of the software development process can be in-
fluenced by the construction of prototypes: starting the project, analyz-
ing the business needs, designing and constructing the software system.
To illustrate the way in which we see the relationship between prototype
and these activities, Lichter et al (1993) distinguish between the following
kinds of prototypes:

A presentation prototype supports the initiation of a software project. It is
of major importance whenever an explicit contract is to be set up between
a client and a software manufacturer. In most cases the presentation pro-
totype is developed to show the users view of the envisaged system, i.e.
it will present important aspects of the user interface. Furthermore, if the
technical solution of a problem is unclear, the presentation prototype may
present functional details to convince the customer of the possibility of
solving his problem.

A prototype proper describes a provisional operational software system
that is constructed parallel to the information system model. A prototype
of this sort is generally designed to illustrate specific aspects of the user
interface or part of the functionality and helps to clarify the problem in
hand.

A prototype that is designed chiefly to help clarify construction-related

30

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 31

questions facing the development team is called a breadboard. A bread-
board is derived from the information system model or the software spec-
ification. This kind of prototype is also encountered in traditional software
projects, although the experimental approach associated with it is seldom
given explicit recognition. Users are generally excluded from the evalua-
tion of breadboards. To this extent, the use of breadboards is a restricted
form of prototyping.

If a prototype is used not only for experimental testing of an idea or for
”illustrative purposes,” but is actually used in the application area itself
as the core of the application system, it is known as a pilot system. In such
cases, there ceases to be any strict distinction between the prototype and
the application system. After reaching a certain degree of ”sophistication”
the prototype is implemented as a pilot system and enhanced in cycles.

Lichter et al (1993) distinguish between several different goals of pro-
totyping: (1) Exploratory Prototyping is used where the problem in hand is
unclear. Initial ideas are used as a basis for clarifying user and manage-
ment requirements with respect to the future system; (2) Experimental Pro-
totyping focuses on the technical implementation of a development goal.
An essential aspect here is the communication between users and devel-
opers on technical problems and questions about software ergonomics; (3)
Evolutionary Prototyping is a continuous process for adapting an applica-
tion system to rapidly changing organizational constraints. This means
that software development is no longer seen as a self-contained project,
but as a process continuously accompanying the application.

C. Agile Software Development

Agile challenges the bureaucratic application of previous methodologies
and the tendency of thinking that certain methodologies can be applied
to any project in any given context. It is based on two core ideas: (1)
different projects need different processes or methodologies and (2) fo-
cusing on skills, communication, and communities allows the project to
be more effective and more agile than focusing on processes. Using vo-
cabulary derived from the study of games, Agile Software Development
supporters have tried to reformulate software development as ”a (resource
limited) cooperative game of invention and communication. The primary
goal of the game is to deliver useful, working software. The secondary
goal, the residue, is to set up for the next game. The next game may be
to alter or replace the system or to create a neighbouring system” (p.31).
While denying the extra burden from conventional methodologies, they
consider methodologies to still serve several uses, namely: (a) introducing

31

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 32

new people to the process, (b) substituting people, (c) delineating respon-
sibilities, (d) impressing sponsors, and, (e) demonstrating visible progress
[Cockburn, 2001].

In Agile Development, its supporters re-examine the meanings of method-
ology and prescribe to tailor a methodology for each project. Quoting Maier
and Rechtin (2000), there are four categories of a methodology: (1) nor-
mative – based on solution or sequences of steps known to work for the
discipline, (2) rational – based on method and technique, (3) participative –
stakeholder based and capture aspects of customer involvement, and, (4)
heuristic – based on lessons learned. As a body of knowledge grows, sec-
tions of the methodology move from heuristic to normative and become
codified as standard solutions for standard problems. Cockburn (2001) ar-
gues that most of software development is still in the stage where heuristic
methodologies are appropriate. He identifies four challenges in designing
methodologies, namely: variations in people, variations across projects,
long debug cycles, and changing technologies.

Cockburn (2001) also states seven principles useful in designing and
evaluating methodologies: (1) interactive, face-to-face communication is
the cheapest and fastest channel for exchanging information, (2) excess
methodology weight is costly, (3) larger teams need heavier methodolo-
gies, (4) greater ceremony is appropriate for projects with greater critical-
ity, (5) increasing feedback and communication reduces the need for the
intermediate deliverables, (6) discipline, skills, and understanding counter
processes, formality, and documentation, and (7) efficiency is expendable
in non-bottleneck activities.

In my opinion, Agile Software Development is not exclusively sepa-
rated from traditional methodologies like SDLC. They, in fact, with their
multiple methodologies principles, benefit from the availability of numer-
ous ”non-agile” methodologies. This movement, I believe, is simply to
try to change the attitude towards software development by emphasizing
the role of people. Software is not merely about a product or process, but
it is about people doing the appropriate process which yields the desired
product.

Quality Practices in Agile Software Development

Huo et al (2004) specifically address the quality aspects in Agile method-
ology. They identify Agile practices that have quality assurance ”poten-
tials”, including:

• System metaphor is used instead of a formal architecture. It presents

32

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 33

a simple shared story of how the system works; this story typically
involves a handful of classes and patterns that shape the core flow of
the system being built. There are two main purposes for the metaphor.
The first is communication. It bridges the gap between developers
and users to ensure an easier time in discussion and in providing ex-
amples. The second purpose is that the metaphor contributes to the
team’s development of a software architecture. This practice helps
the team in architecture evaluation by increasing communication be-
tween team members and users.

• Having an On-site customer is a general practice in most agile meth-
ods. Customers help developers refine and correct requirements.
The customer should support the development team throughout the
entire development process.

• Pair programming means two programmers continuously working on
the same code. Pair programming can improve design quality and
reduce defects.

• Refactoring is a disciplined technique for restructuring an existing
body of code, altering its internal structure without changing its ex-
ternal behavior. Its heart is a series of small behavior preserving
transformations. Each transformation (called a ’refactoring’) does
little, but a sequence of transformations can produce a significant re-
structuring.

• Continuous integration, a popular practice among agile methods means
the team does not integrate the code once or twice. Instead the team
needs to keep the system fully integrated at all times. Integration
may occur several times a day. ”The key point is that continuous
integration catches enough bugs to be worth the cost”. Continuous
integration reduces time that people spend on searching for bugs
and allows detection of compatibility problems early.

• Acceptance testing is carried out after all unit test cases have been
passed. This activity is a dynamic QA technique. A Waterfall ap-
proach includes acceptance testing but the difference between agile
acceptance testing and traditional acceptance testing is that accep-
tance testing occurs much earlier and more frequently in an agile
development; it is not only done once.

Early customer feedback is one of the most valuable characteristics of agile
methods. The short release and moving quickly to a development phase

33

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 34

enables a team to get customer feedback as early as possible, which pro-
vides very valuable information for the development team [Huo et al., 2004].

QA techniques can be categorized into two types, static and dynamic.
The selection, objectives, and organization of a particular technique de-
pend on the requirements and nature of the project and selection is based
on very different criteria depending on the methodology used. Static tech-
niques do not involve the execution of code. Static techniques involve ex-
amination of documentation by individuals or groups. This examination
is assisted by software tools, e.g., inspection of the requirements specifica-
tion and technical reviews of the code [Huo et al., 2004].

Comparison of waterfall and agile methods has been done in litera-
ture. For example, Huo et al (2004) says that the waterfall model uses both
static and dynamic techniques, while agile methods mostly use dynamic
techniques.

Presenting Agile methods in this thesis serves several purposes includ-
ing illustrating the various attempts and recent innovations in methodol-
ogy world; to make comparisons with the established traditional waterfall
model; and to enable us to see the possibility of both approaches in the
global outsourcing context.

D. Other Methodologies

Since covering a broad range of the available methodologies is beyond the
scope of this thesis, here, classification of methodologies is presented as a
brief overview. Avison & Fitzgerald (2003b) classifies methodologies into
seven broad themes, and approaches:

Structured. The concepts of structured programming were applied to
analysis and design, and techniques (such as data flow diagramming) en-
abled the topdown analysis and representation of complex processes.

Data-oriented. The focus was understanding data as the key element
in a systems development, and the most important technique was entity-
relationship modeling.

Prototyping. The emphasis was building an approximation or represen-
tation of the system, allowing users to visualize and respond to it prior to
its physical implementation.

Object Orientation (OO). The identification of objects and attributes (in
whole or part) and classes helped provide the theoretical benefits of inher-
itance and reuse.

Participative. The crucial feature was involvement of users and other
stakeholders.

34

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 35

Strategic. The emphasis was the planning of information systems and
development of an information systems strategy to support and enable
the overall objectives of the business; business process reengineering is
sometimes viewed as a development approach focusing on strategy.

Systems. The complexities of human activity systems were addressed
by adopting a holistic view far beyond a systems single-application bound-
aries.

2.3.3 Common Practices in Software Development

In this section, common practices in software development are presented.
These practices are selected because they are part of various software method-
ologies; and they are particularly influential in quality achievement.

A. Software Testing

One widely used process that supports the construction of quality soft-
ware is testing, which executes the program with input data or test cases,
and then compares the output data to expected results [Malloy and Voas, 2004].
Software testing is to reveal bugs. Its role is limited purely to identify-
ing bugs, not diagnosing or correcting them (debugging) [Binder, 2000].
The test cases specify the state of the code being tested and its environ-
ment, the test inputs or conditions, and the expected results. A test suite
is a collection of test cases, typically related by a testing goal or imple-
mentation dependency. A test run is an execution of a test suite with its
results. Coverage is the percentage of elements required by a test strategy
that have been traversed by a given test suite. Regression testing occurs
when tests are rerun to ensure that the system doesn’t not regress after a
change [Bruegge and Dutoit, 2004]. In other words, the system passes all
the tests it did before the change [Crowther and Clarke, 2005].

Software testing practices consist of verification & validation (V & V)
testing and defect testing, and reflecting on the two dimensions. V & V
refers to the checking and analysis processes that ensures that software
conforms to its specification and meets the customers’ needs. It is a whole
life-cycle process. The goal of defect testing is to expose latent defects
in a software system before the system is delivered. This contrasts with
validation testing which is intended to demonstrate that a system meets its
specification. Validation testing requires the system to perform correctly
using given acceptance test cases. A successful defect test is a test which
causes the system to perform incorrectly and hence exposes a defect. This
emphasizes an important fact about testing. It demonstrates the presence,

35

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 36

not the absence, of program faults [Sommerville, 2004]. V & V is based
on the viewpoint that quality software is the result of a quality process
which is ensured by the testing process in the whole life-cycle, while defect
testing treats the software as a product to find its faults and errors.

Cleanroom software development is an example of V & V testing. It
refers to a software development philosophy that is based on avoiding
software defects by using a rigorous inspection process. The objective of
this approach to software development is to produce zero-defect software.
The name ’Cleanroom’ was derived by analogy with semiconductor fabri-
cation units. In these units (cleanrooms), defects are avoided by manufac-
turing in an ultra-clean atmosphere [Sommerville, 2004].

Functional or black-box testing is an example of defect testing. It is
an approach to testing where the tests are derived from the program or
component specifications. The system is a ’black box’ whose behaviour
can only be determined by studying its inputs and the related outputs.
Another name for this is functional testing because the tester is only con-
cerned with the functionality and not the implementation of the software
[Sommerville, 2004]. Another approach to testing is called white-box test-
ing (sometimes called glass-box testing). It is a test case design philosophy
that uses the control structure described as a part of component-level de-
sign to derive test-cases. Using white-box testing methods, the software
engineer can derive test cases that (1) guarantee all independent paths
within a module have been exercised at least once, (2) exercise all logical
decisions on their true and false sides, (3) execute all loops at their bound-
aries and within their operational bounds, and, (4) exercise internal data
structures to ensure their validity [Pressman, 2005].

B. Bug-fixing

Following testing is the debugging (or bug-fixing) practice. A bug is, by
definition, an unknown quantity [Dibling, 2005]. It is identified as a con-
sequence of successful testing, that is, when a test case uncovers an error,
debugging is an action that results in the removal of the error. Although
debugging can and should be an orderly process, it is still very much an
art. A software engineer, evaluating the results of a test, is often confronted
with a ”symptomatic” indication of a software problem. That is, the exter-
nal manifestation of the error and the internal cause of the error may have
no obvious relationship to one another. The poorly understood mental
process that connects a symptom to a cause is debugging. Commenting
on the human aspects of debugging, as argued by Pressman (2005):

36

2.3. SOFTWARE ENGINEERING METHODOLOGIES: BUILDING
QUALITY? 37

”Debugging is one of the more frustrating parts of program-
ming. It has elements of problem solving or brain teasers, cou-
pled with the annoying recognition that you have made a mis-
take. Heightened anxiety and the unwillingness to accept the
possibility of errors increases the task difficulty. Fortunately,
there a great sigh of relief and a lessening of tension when the
bug is ultimately corrected. (p.413)”

The last remark signifies the people dimension of software, especially the
psychological or emotional challenges one must undergo to accomplish
the task. There are several strategies and tactics in undertaking debug-
ging, namely: brute force, backtracking, cause elimination and binary par-
titioning. Each of these debugging approaches can be supplemented with
debugging tools that provide semi-automated support [Pressman, 2005].

C. Software Documentation

Another practice required from software developers is documentation.
Documentation standards in a software project that are particularly im-
portant as documents are the only tangible way of representing the software
and the software process. Standardized documents have a consistent ap-
pearance, structure and quality and should therefore be easier to read and
understand. There are three types of documentation standards: docu-
mentation process standards which define the process which should be
followed for document production; document standards which govern
the structure and presentation of documents; and, document interchange
standards which ensure that all electronic copies of documents are com-
patible. Documentation includes giving comments embedded in the source
code so that other developers are able to continue and maintain it, should
the first author of the code is no longer available. This approach is believed
to improve quality: ”Another alternative to improve software quality is by
using assertion while programming – a formal constraint on the behavior
of a software application, usually written as an annotation describing what
the application is supposed to do” [Malloy and Voas, 2004]. In general,
documentation is not the most favourable thing to do, especially for soft-
ware developers because it simply adds pressure to the already stressful
condition of their work, and it divides their time from things they consider
important – programming.

37

2.4. QUALITY MANAGEMENT SYSTEM (QMS) 38

2.4 Quality Management System (QMS)

There are four principal aspects to a QMS for software development: (1)
development procedures which includes the use of design and develop-
ment methodologies and tools, testing and associated staff training; (2)
quality control which includes many activities for the monitoring of qual-
ity during development; (3) quality improvement which includes all activ-
ities aimed at establishing a human quality culture amongst the staff; and
(4) quality assurance which becomes the monitoring of the quality system
itself to ensure that it is being carried out correctly.

Elements of Quality Management System

Drawing from Gillies (1997) I provide a description of the various elements
of the QMS:

• Organizational Structure refers to the mechanisms in the organization
or in the team which is assigned responsibility for quality.

• Responsibilities refer to the area of certain quality achievement in-
tended and the actor to whom that achievement is assigned.

• Procedures refer to sets of activities to be undertaken to achieve qual-
ity objectives.

• Processes refer to individual activities that can be combined to form
quality procedures.

• Resources refer to supplies of human, hardware, software or other
supports while conducting quality procedures.

Several standards are available for quality management and process
improvement such as ISO9000 and CMM. In the following sections those
two widely-used standards are discussed.

2.4.1 ISO 9000 series

Standards are generally defined in terms of a model of best practice, against
which all others may be compared. The ISO9000 series international stan-
dards were defined for quality management systems in 1979 and modi-
fied considerably in 1994. Among the standards, ISO9001 is generally the
standard applied within software development because it is intended for

38

2.4. QUALITY MANAGEMENT SYSTEM (QMS) 39

application where there is a significant design element. The standard is in-
tended to be realistic and implementable and, therefore, sets no prescrip-
tive quality performance targets, referring instead to standards agreed as
part of the contract with the customer and acceptable to them. The stan-
dard focuses upon ensuring that procedures are carried out and results are
documented in a systematic manner.

Generally, the changing process to comply with a certain standard re-
quires considerable efforts. Implementing Software Quality Assurance in
different types of organizations is a difficult and expensive task, requiring
another way of thinking and more activities to be performed by the em-
ployees than they are used to. Therefore, guidelines for careful adaptation
are required [Hosny, 2004]. However, the main concern of the ISO stan-
dards is that they do not provide a complete solution. Being prescriptive,
it does not specify any particular tools or methods at any stage; it does
not require any specific levels of performance, merely that an appropriate
level of performance is achieved consistently.

2.4.2 Capability Maturity Model

Since its initiation in 1986 – when Watts Humphrey, the SEI, and the Mitre
Corporation responded to a request by the U.S. federal government to cre-
ate a way of evaluating the software capability of its contractors – the
CMM has been intended to help software organizations improve along
an evolutionary path, growing from an ad hoc, chaotic environment to-
ward mature, disciplined software processes. SEI’s CMM has evolved into
CMM Integrated (CMMI) in which CMM for software process is still in-
cluded. CMMI consists of three source model disciplines, namely: Soft-
ware (SW-CMM), Software Engineering, and Integrated Product and Pro-
cess Development. A fundamental choice faces the user of a Capability
Maturity Model Integration (CMMI) model today is whether you use the
continuous or staged representation. The question relates to the architec-
tural structure of the model. One source model for CMMI, the CMM for
Software, is a ”staged” model. Another source model, the Systems Engi-
neering Capability Model, is a ”continuous” model. The third source, the
Integrated Product Development (IPD) CMM, is a ”hybrid” that combines
features of both the staged and continuous

The maturity dimension of a CMMI model is described in the staged
representation. Five levels of maturity exist, each of which indicates the
process maturity of the organization. Figure 2.1 below shows the maturity
levels (MLs) and their characteristics.

39

2.4. QUALITY MANAGEMENT SYSTEM (QMS) 40

Figure 2.1: CMM Staged Maturity Levels

CMMI models consists of materials which help you both evaluate the
content of your process and improve process performance. CMMI pro-
vides guidance for managerial processes. [Ahern et al., 2003]. The im-
provement information in CMMI models includes the creation of a viable,
improvable process infrastructure. To build this infrastructure, CMMI in-
cludes ways to get your organization to focus more on defining and fol-
lowing its processes, such as training and standardization, and the use of
measurement data to improve the process performance, innovate when
processes need to evolve, and ensure the ability to meet changing needs.

The fundamental organizational feature of all the CMMI models is the
”process area.” Not everything related to processes and process improve-
ment are included in a process-improvement model. Like its predeces-
sor models, CMMI selects only the most important topics for process im-
provement and then groups those topics into ”areas.” The Software CMM
focused primarily on process management. Among the ”key process ar-
eas” in the model, only one specifically targets the core engineering tasks,
which range from the analysis of software requirements at the front end
of development, to software integration and testing at the concluding end.
This key process area was called Software Product Engineering in the Soft-
ware CMM, and it dealt with tasks specific to software development. All
of the other SW-CMM key process areas were written such that they could

40

2.5. PROPOSED QUALITY FRAMEWORK 41

easily be applied to development work other than software. Along with
the success of the Software CMM in improving software development, this
flexibility may explain the interest in applying the CMM concepts to dis-
ciplines beyond software; much of what was believed to be good with the
Software CMM had a utility that was not restricted to just the software
area.

The software industry has adopted CMMI since early inception for
many reasons. Focusing on what the customer wants, rather than spend-
ing time fixing defects, inventing process, or perfecting tasks that are un-
necessary in the first place can be achieved in CMM level-5 organization.
Creativity is channeled into more effective and productive areas in high
maturity organization [Eickelman, 2003].

Now, that we have examined various approaches to software quality,
the next section presents a proposed quality framework which is then used
in the case study analysis.

2.5 Proposed Quality Framework

In this section, I propose a quality framework which takes into account
some of the approaches and criticisms of the current software methodolo-
gies and QMS, as well as the complexity and uniqueness of GSW. The next
subsection discusses the need for a framework, followed by a discussion
on its philosophical underpinning and an introduction to the framework
itself.

2.5.1 The Need for a Framework

Software development is a complex process, and conducting it in GSW
context makes it even more so. Observing quality in an ongoing GSW
is practically impossible. Furthermore, little has been done to examine
quality in GSW context in particular, which is so far believed to be dif-
ferent from the traditional co-located development. Therefore, we need a
framework to help us monitor the various elements involved in software
development projects which yield quality products. In doing so, we ex-
amine the well-established approaches around software and quality (i.e.
software methodologies and QMS) which inspire the development prac-
tices; and then try to see the intricate connections between the elements
of those approaches in action. The interrelations between those invariant
elements are possibly unique and dynamic in each project, and should be
treated as a different category of elements in the framework. Finally, the

41

2.5. PROPOSED QUALITY FRAMEWORK 42

two categories of elements (invariant and dynamic) are compiled in a sin-
gle quality framework. The framework includes different quality stages
in which the dynamic elements are intertwined throughout the projects.
Complete description of the framework is presented later in this section.

2.5.2 Philosophical Underpinning

There are various elements of quality which are relative – they mean dif-
ferent things in different situations – and unique for various events in a
project as well as in the organization. These uncertain events often co-exist
with the more invariant activities for which metrics and methodologies are
more useful to apply. The invariant elements in software development are
mostly derived from its product and process dimension – such as methods,
tools and processes – which have been the basis of many current develop-
ment methodologies. They are common and familiar because they have
been widely practiced. Besides, that approach has also been the founda-
tion for education and training new software practitioners. We can thus
safely assume that everyone involved in a software project, at least has an
idea what software is and what are the common practices in software de-
velopment like requirement engineering, design, testing, documentation,
project management, etc. This knowledge enables them to coordinate and
communicate, otherwise it will be impossible to conduct a software devel-
opment.

On the contrary, the uncertain elements are usually derived from the
people dimension of software involving activities such as communication
and coordination between people involved in the development. Therefore,
these elements should be handled with greater care in GSW due to the in-
herent challenges originated from the time, space and cultural separation.
They have to be specifically tailored for each individual project.

The use of methodology has been problematic. For many organiza-
tions, adoption of a methodology has not always worked out or been
the success its advocates touted. Real-world performance has led some
developers to reject methodologies in general terms and attack the con-
cepts (such as step-by-step development and meticulous documentation)
on which they are based. Many reasons for this developer backlash have
been suggested. The most common is probably disappointing produc-
tivity; another is that the methodologies are overly complex, usually de-
signed for the largest and most complex development projects. They may
lead to developing requirements to the ultimate degree, often over and
above what is legitimately required, sometimes encouraging users to cre-

42

2.5. PROPOSED QUALITY FRAMEWORK 43

ate unrealistic wish lists. They also require highly technical skills that can
be difficult and expensive for developers and end users to learn or acquire.
Moreover, the tools advocated by methodology proponents can be costly,
difficult to use, yet still not deliver enough benefit [Avison and Fitzgerald, 2003b]
p.81.

Furthermore, Avison & Fitzgerald (2003b) argue that methodologies
are often not contingent on the type or size of a project, nor upon the tech-
nology environment and organizational context. A methodology is often
said to be one-dimensional, that is, it adopts only one approach to the de-
velopment of projects that may well not address a particular organizations
underlying issues or problems. Few recognize or address the critically im-
portant social, political, and organizational dimensions of development.

In the proposed framework I try to incorporate the three-dimensional
perspective of software in the greater picture of GSW. I argue that people
dimension is the primary source for the relative quality elements which
are to be captured in the quality stages. Whereas, the other two dimensions
– process and product – provide the invariant elements as the minimal
requirement to work as a team, referred to in the framework as the source
for quality practices (see fig. 2.2). Related to the people dimension, in GSO
clients are usually separated by time, geographical and cultural diffences.
This fact plays an important role in the variable quality area. Project teams
along with the clients are forced in a novel way to identify what they want,
analyse its feasibility, determine how to achieve it, and therefore, identify
the criteria for success.

This framework is proposed to serve the following objectives. Firstly,
it should map out the practices derived from, or advised by, methodolo-
gies and QMS in those quality stages. Secondly, it should indicate in which
phases quality practice is highly, moderately or least critical. It may cap-
ture the differences of the phases in the GSW context in terms of its crit-
icality to the quality achievement. I suspect that some phases are proba-
bly more critical than their corresponding ones in co-located development.
Thirdly, it should show varying emphasis on both the human and cultural
factors as well as the technical ones in the various stages of the develop-
ment process. Some of the processes in software development are more
human-oriented than others. For example, requirement gathering is more
human-intensive than coding because with detailed and complete require-
ments, coding can become relatively a simple task of translating these re-
quirements into machine language. This task can be made possible by the
use of standards, programming conventions, and reuse of components.
The creative, or to be more precise, the uncertain part is more prevalent in
the analysis and design phase. Finally, it should show the proportion of

43

2.5. PROPOSED QUALITY FRAMEWORK 44

emphasis on the different software dimensions (product, process & peo-
ple) at individual phases.

2.5.3 The Framework

The framework is intended to describe how the software team strives to
achieve the quality goal. This framework consists of two primary com-
ponents, namely: the source for quality practices and the quality stages. This
framework also embraces the fact that it is hard to define software quality,
but it is possible to recognize the presence and, even more so, the absence
of quality. Therefore it collects all possible approaches which are aimed to
solicit the presence – and consequently avoid the absence – of quality at
any given time in the project. Quality practices refer to activities derived
from the available development methodologies and QMS, which are re-
garded here as the more invariant elements of the framework. Quality
stages refer to the phases in the development process in which those in-
variant elements are combined and managed to achieve quality goals. This
part of the framework, I believe, represents the more relative and unique
elements in a software development project. The framework is illustrated
with the figure 2.2 below, followed by a more detail description of the ele-
ments of the framework.

M

E

T

H

O

D

O

L

O

G

Y

Q

M

S

§ people

§ skills

§ roles

§ teams

§ tools

§ techniques

§ processes

§ activities

§ milestones

§ work products

§ standards

§ quality measures

§ team values

§ organizational structure

§ responsibilities

§ procedures

§ processes

§ resources

Definition

Implementation

Evaluation

M

E

T

H

O

D

O

L

O

G

Y

Q

M

S

§ people

§ skills

§ roles

§ teams

§ tools

§ techniques

§ processes

§ activities

§ milestones

§ work products

§ standards

§ quality measures

§ team values

§ organizational structure

§ responsibilities

§ procedures

§ processes

§ resources

Definition

Implementation

Evaluation

Figure 2.2: Quality Framework

Quality Practices

Quality practices are derived from the two main streams of software qual-
ity approach, i.e. software engineering methodology and QMS, as de-

44

2.5. PROPOSED QUALITY FRAMEWORK 45

scribed in the previous sections. A methodology is a description of con-
ventions of interaction between roles [Cockburn, 2003], and of the way to
achieve each action in a software process [Filman et al., 2004]. In this the-
sis I refer to a methodology as suggested by Cockburn (2003) which covers
the following elements: people, skills, roles, teams, tools, techniques, pro-
cesses, activities, milestones, work products, standards, quality measures,
and team values (See 2.3.2). QMS consists of organizational structure, re-
sponsibilities, procedures, processes and resources for implementing qual-
ity management (See 2.4.1). QMS is complementary to methodology since
it ensures that the procedures laid down by methodologies are actually
carried out to the required standards. The scope of the QMS is the organi-
zation, while methodology is the software project.

Quality Stages

The framework identifies three broad quality stages: definition, imple-
mentation, and evaluation. Each stage is mapped into the software devel-
opmental phases based on the prevalent common practices, i.e. definition
stage is mapped to analysis and design, which is mainly for simplification.
By doing so, I fully realise that it emphasises the product dimension with
its ”hard” thinking approach. This is inevitable since it is the dominant
approach at the moment. However, we can benefit from its intuitiveness
and simplistic assumptions. To lessen the strict ”step-by-step” approach,
as illustrated in fig. 2.2, the stages may be applied sequentially (static) or
iteratively (dynamic) depending on the approach of the project, whether
it is formal or agile. For either case we can try to adjust the quality stages
with the corresponding development processes that we use. The stages
are elaborated below.

• Quality Definition. This stage covers the various events from the
initial contact – between the customer and the organization or the
project team – until the detailed design document is agreed by both
parties and sent for construction. At the organization level, the in-
teraction may start earlier when the customer selects vendors by
looking at their presentations (advertisement, website, etc), at which
point the customer defines their own quality expectation and match-
ing it with the vendor’s cost, profile and reputation. Quality defini-
tion starts here during the process of matching the expectations and
the offer.

Conversely, when the customer sends their initial requirements the
vendor will consider it and match it with the available resources, at

45

2.5. PROPOSED QUALITY FRAMEWORK 46

which point the company considers the quality level that it can of-
fer accordingly. Appropriately matching the needs and the available
skills on hand determines the success of the project and therefore,
also the quality of the products.

In this phase, there is intensive interaction between customers and
the project team, which helps shape the mutual understanding of
the problem (requirement analysis) as well as the proposed solution
(design). This mutual understanding, in turn, becomes the basis for
the mutual agreement on quality definition. The phase ends when
the definition is agreed and ready to be implemented.

• Quality Implementation. This phase begins when the quality defi-
nition is available and lasts until the product delivery for acceptance
testing. In this phase, all the plans previously made, for example in
the form of analysis and design documents, are executed to produce
the desired product.

Communication with client may happen with less intensity, for ex-
ample, only when something unforeseen happens or when there is a
change of requirement. It all depends on how good, concrete and fi-
nal the quality definition is. In the outsourcing context, the activities
in the phase mainly take place on the provider side. Therefore, the
competence of the project team at the client side to execute the de-
veloping task with designated tools and methods plays an essential
role in determining the quality of the outcomes. After all, it is al-
ways prudent to involve the customer in the process by making the
whole process visible through status reports and occasional meetings
and/or communication.

• Quality Evaluation. This phase begins when the product is finished
and sent to the customer for acceptance testing and ends along with
the project sign off. Signing-off indicates the end of the temporary
contractual relationship between the customer and the project team.
This phase is important because it is actually the only time one can
know for sure the quality of software, i.e. by judging the available
finished product. Moreover, the customer’s responses to the soft-
ware developed are crucial in judging whether the product reaches
its quality goal or not. The former represents a more objective asses-
ment to quality, while the latter is the relative element drawn from
the people dimension (customer’s satisfaction).

46

Chapter 3

Research Methodology and
Empirical Setting

In this chapter, I present the research methodology and the empirical set-
ting on which this thesis is based. It starts with the research problem spec-
ification in section 3.1, including the research objectives, the personal mo-
tivation and perspectives, and the research questions. Section 3.2 intro-
duces the interpretive research approach used in this thesis. Section 3.3
describes the empirical research setting and activities. Section 3.4 presents
a brief account on the research experience. Finally, section 3.5 discusses
the challenges and limitation of this research.

3.1 Research Problem

3.1.1 Objectives

This thesis attempts to contribute to the understanding and finding of best
approaches in developing software quality in the GSW context. As previ-
ously mentioned, I am interested in identifying and describing different
determinants of software quality in distributed development by analysing
software outsourcing projects closely. Two existing software quality ap-
proaches, i.e. software methodologies and quality management standards,
will be the starting point of the pursuit. According to the project presenta-
tions, the organization believes that the two selected projects here are suc-
cessful – no complaints from the customers; therefore, we can learn what
criteria are applied and how the project team managed to deliver given
the constraints. I also want to explore the possibilities and/or urgency of
either creating a new, context-specific methodological approach or devel-

47

3.1. RESEARCH PROBLEM 48

oping a new standard that accommodates the constraints faced by GSWs.
It would be useful to know what can and should be prescribed to software
practitioners to overcome such challenges. A more personal perspective
on the matter is presented in the following section.

3.1.2 Personal Motivation & Perspective

By working on this thesis I learnt about how to conduct research as much
as the content of the research itself. I started timidly with a vague idea
about outsourcing and software engineering which mostly I had got from
theories and lectures in the university. My primary motivation was to
somehow get the theories I learned to be useful in practice. Early on, as
a student trained mostly in the technical discipline of computer science,
I realized that there should be a bridge between the academic approach
to outsourcing phenomena and the practitioners approach; practitioners
here referred specifically to the project managers and developers. Most
lessons I learned, described the phenomena of GSO, recognized and anal-
ysed some problems in it without actually prescribing something to solve
concrete technical problems – at least, it was from my humble point of
view. I naı̈vely desired that ”something concrete”. That was the reason
I took the angle of software methodologies in the context of outsourcing,
which I felt concrete enough to serve my motivation. My problem then
was to find a good entry point for my cause.

I narrowed down the scope of my general interest in software engi-
neering to software development in outsourcing context for several rea-
sons. Firstly, as a student coming from a developing country (Indone-
sia), I see software outsourcing as a good opportunity for such countries
to take part in the bigger scheme of the IT world. Sloper (2004) argues
that global demand has enabled several developing nations to transform
key sectors of their economies – something many others aspire to emu-
late. Software is leading the push to global job markets, creating a boon
for emerging countries. A number of large corporations have set up devel-
opment sites around the globe, making it possible to develop code around
the clock. These companies arguably can hire talent wherever it exists
[Costlow, 2003]. As a high technology, IT is relatively inexpensive to de-
velop in terms of physical infrastructure, compared to, for example, au-
tomobile or aeronautics industries. It is also people intensive. Countries
that can provide IT outsourcing imply having good potential in human re-
sources. Developing countries are in an unfortunate position if they have
to compete from scratch in terms of innovation in IT. By doing outsourc-

48

3.1. RESEARCH PROBLEM 49

ing, in a way, they learn by doing. Secondly, the more I study about dis-
tributed software development, the more I imagine that it would be the
mode of working in the future, at least in the IT-related industry. Not only
in the context of outsourcing, but it can also happen in different work-
ing areas, for example, in multinational companies. The outsourcing phe-
nomenon seems to keep growing. Recent news suggest that Europe is
finally jumping on the outsourcing bandwagon by, as noted by Consul-
tancy TPI of Woodland Tex., having awarded $ 41 billion in outsourc-
ing contracts in 2004, nearly twice the level of two years earlier. One of
the hottest nearby destinations for the work is Spain, where thousands of
young Europeans flock every year in search of sun and sangria – and jobs
[BusinessWeek, 2005].

Choosing quality as the research topic serves a twofold purpose. Firstly,
quality has been an unfulfilled goal for software development in general.
New methodologies are constantly created and QMS is being promoted to
ensure the quality achievement without a strong conviction of the results.
No methodologies can guarantee success to the project implementing it.
Software process improvement communities recognize that there is still
little knowledge of how prescribed methodologies and QMS might actu-
ally result in the software production. Secondly, quality is, and should
be, the main concern of the outsourcing providers even more. Technically
speaking, it is more challenging to develop software in an outsourcing
context. The reasons have been elaborated in other parts of this thesis
(See 1.2). Moreover, quality is important and necessary for survival in the
more competitive and global business world. Outsourcing relationships
are volatile. A competitive price cannot forever hold the relationship with
customers. Many people share this point of view that outsourcing needs
to be seen as a strategic management option, not just a way to cut costs
[La Ferla, 2004]. Laplante et al (2004) argue against the myth that out-
sourcing is cheap. Even in India – where the perceived difference in rela-
tive economy would suggest a lower labor cost – based on their collective
experience, the cost of a skilled developer is approximately estimated at
$25 per hour [Laplante et al., 2004].

The preliminary problem formulation, created before undertaking the
fieldwork, is illustrated in the following figure 3.1. I consider it useful to
show the development of the idea at that time.

Previously, I was suspecting that there was only one source of devel-
oping quality software namely the Software Engineering discipline. I in-
tended to study the way software project teams derived their practices,
which I thought at that time as ”simply” selecting the tools, methods, and
processes to develop a software solution to a given problem, complemented

49

3.1. RESEARCH PROBLEM 50

Figure 3.1: Early problem formulation

with a vague concept of quality focus. This model was also trying to capture
the challenges in an outsourcing context, which by then was formulated
as the influential factors of the provider, i.e. tacit knowledge, informal in-
formation and culture. This model turned out to be hard to relate to the
area of study and the quality concept.

As the study went on, the early model seemed inadequate to capture
the reality of the problem. Now, many people realize that Software En-
gineering has not fulfilled its promise of delivering ”good” software and
also that software is not merely about a product like other traditional man-
ufacturing products. Software Engineering is, in fact, not the only path to
better process and product. It is also difficult to see the hard evidence of
the influential factors (tacit knowledge, informal information and culture)
mentioned in the model in the technical level of analysis. Those factors
may be more obvious in the higher level of analysis, such as the study of
managerial issues or alliances between companies. All these lead to a new
problem formulation presented below (fig. 3.2).

In this model, a software project is not seen merely as a single, flat,
monolithic entity, but as a three dimensional one: product, process and
people. These dimensions can help to make sense of the latest trends of

50

3.1. RESEARCH PROBLEM 51

Outsourcing Context

Client

Provider

Natio n al Bo u nd arie s

Software Project

Process

Product

People

Software Methodology
Quality Management

System (QMS)

Quality Goal

Outsourcing Context

Client

Provider

Natio n al Bo u nd arie s

Software Project

Process

Product

People

Software Methodology
Quality Management

System (QMS)

Quality Goal

Figure 3.2: Current problem formulation

agile software development which emphasizes the role of people and the
fact that no single methodology can be applied to all projects. Each project
has its own combination of the people assigned, the selected process and
the nature of the product desired. Some elements of methodologies can
be tailored for each project because they are somewhat unique – at least
one dimension of it is unique: the people. This opens the door to the
investigation of different determinants of quality in the outsourcing con-
text since the work arrangement involves people from different cultural
backgrounds. Furthermore, this model recognizes two main strands of
quality approach in software development, namely: Software Methodol-
ogy (or Engineering, some might say) and Quality Management System.
These two approaches are complementary by nature, since the former is
prescriptive while the latter is enforcing the implementation of the former.
These arguments led to the formulation of my research questions which
are articulated below.

51

3.2. INTERPRETIVE RESEARCH 52

3.1.3 Research Questions

Referring to the objectives mentioned earlier, the research questions ad-
dressed in this thesis are formulated as follows:

• What are the determinants of software quality in global software
work?

• What practices can be suggested to deal with the challenges of achiev-
ing quality in such contexts?

The following section describes the approach used to provide the an-
swer to those research questions.

3.2 Interpretive Research

In this section, a brief discussion on interpretive research is presented
along with the way it guides this study.

3.2.1 What is an Interpretive Research?

First of all, this approach was selected because, as mentioned in 3.1.1, the
focus of this study was to understand a reality in which social and techno-
logical aspects were closely entangled. I share with Walsham (1993) that
interpretivism is an epistemological position which is concerned with ap-
proaches to the understanding of reality and asserting that all such knowl-
edge is necessarily a social construction and thus subjective [Walsham, 1993]
p.5. Our knowledge of reality is gained only through social constructions
such as a language, consciousness, shared meanings, documents, tools
and other artifacts. Interpretive approach does not predefine dependent
and independent variables, but focuses on the complexity of human sense
making as the situation emerges. It attempts to understand phenomena
through the meanings that people assign to them. This research is inspired
by the principles for interpretive field research as formulated by the two
authors [Klein and Myers, 1999].

Moreover, they argue that interpretive research can help IS researchers
to understand human thought and action in social and organizational con-
texts. This approach has the potential to produce deep insights into in-
formation systems phenomena including the management of information
systems and information systems development.

52

3.2. INTERPRETIVE RESEARCH 53

3.2.2 Conducting Interpretive Research

Klein & Myers (1999) propose a set of principles for the evaluation of in-
terpretive field research in information systems, which are derived from
the practice of anthropological research and the underlying philosophy
of phenomenology and hermeneutics. The principles are not like bureau-
cratic rules of conduct, because the application of one or more of them
still requires considerable creative thought. The authors do not suggest
that those principles are mandatory, eventhough they do not advocate ar-
bitrary selection either since the principles are, to some extent, interde-
pendent. In this thesis, those principles were regarded as an underlying
source of insights in conducting the research in various stages, for example:
the principle of contextualization inspired me to write chapter 4 which
described the contextual background of the case studies; the principle of
interaction between the researchers and the subjects motivated me to re-
flect on how I interacted with the people in research settings, which also
influenced the way I conducted the research; etc. Those principles were
not used as a step-by-step prescription or a check-list, and therefore, their
application was implicit throughout the study.

The principles are: (1) The Fundamental Principle of the Hermeneutic Cir-
cle which suggests that all human understanding is achieved by iterating
between considering the interdependent meaning of parts and the whole
that they form. This principle of human understanding is fundamental to
all the other principles; (2) The Principle of Contextualization which requires
critical reflection of the social and historical background of the research
setting, so that the intended audience can see how the current situation
under investigation emerged; (3) The Principle of Interaction Between the
Researchers and the Subjects which requires critical reflection on how the
research materials (or data) were socially constructed through the inter-
action between the researchers and participants; (4) The Principle of Ab-
straction and Generalization which requires relating the idiographic details
revealed by the data interpretation through the application of principles
one and two to theoretical, general concepts that describe the nature of
human understanding and social action; (5) The Principle of Dialogical Rea-
soning which requires sensitivity to possible contradictions between the
theoretical preconceptions guiding the research design and actual find-
ings (the story which the data tell) with subsequent cycles of revision; (6)
The Principle of Multiple Interpretations which requires sensitivity to possi-
ble differences in interpretations among the participants as are typically
expressed in multiple narratives or stories of the same sequence of events
under study; (7) The Principle of Suspicion which requires sensitivity to pos-

53

3.3. EMPIRICAL SETTING 54

sible biases and systematic distortions in the narratives collected from the
participants.

In order to construct an understanding of the data which mainly con-
sists of software documentation and some observations and interview notes,
I developed a framework which is elaborated in 2.5. This framework is
mainly based on the three dimensions of software. It is important to get
a more comprehensive picture of software development process with all
its actors and factors. This framework is used to map the data, dissect and
search for insights which may lead to the answer of the research problems.

In the next section, the empirical research setting is described along
with the research activities.

3.3 Empirical Setting

This section describes the empirical research setting. Two case-studies
have been conducted in an outsourcing supplier in India, IndiSoft1. In-
diSoft is a software company offering software solutions for the world-
wide market. The setting is selected for several reasons. Generally, India
is leading in software outsourcing business, and is therefore the best place
to learn about it. Specifically, IndiSoft has won an award for best prac-
tice in software development in 2002. Besides, the selected organization is
medium sized and has clear focus on the software production instead of
other outsourcing practices, such as call-centers, etc. For practical reason,
the scope of this study can therefore be narrowed down to the capacity
of the organization to handle projects. Access to the field site was gained
through my supervisor, and was fortunate that there were no significant
problems in gaining as well as maintaining access to the field site.

Initially, I intended to get a complete picture of how software was de-
veloped in all stages of its development by being with the development
team and conducting an in-depth case study of a project from its begin-
ning until its end. However, due to inevitable technical constraints, it was
not possible to gain such access. Different ways of collecting data from
previous projects were conducted instead. The data collected in this set-
ting were in the forms of:

• Interviews with managers and developers mainly on the general op-
erations in the company,

1a pseudo name

54

3.4. RESEARCH EXPERIENCE 55

• Observation notes of several sit-in sessions of individual develop-
ment tasks, project meetings and project management reviews meet-
ings, and

• Documentation of two completed projects structured in a repository
system, including Software Requirement Specification, Design doc-
uments, emails, chat transcripts, etc

The complete research activities are displayed chronologically in figure
3.3 below. In the next section, a brief introduction of the software industry
in India is presented.

Now, the research experience is presented in the following section.

3.4 Research Experience

In this section, the research activities are described. As a beginner re-
searcher, I found it interesting – at times, a bit frustrating – to learn that
the research experience is not necessarily going as planned and how one
should deal with such reality.

I ideally imagined that I would be able to be ”in” an outsourcing project.
Being ”in” here meant that I would be a silent observer, or Walsham’s out-
side observer [Imsland, 2003], following the team since the incoming of
the project request, team building, and until the completion of software
development life cycle. I planned to see how decisions would be made in
the team, among the developers and along with the customers. I wanted
to see the complete dynamics of the team.

I did not rely primarily on the use of interviews alone because in the
software projects there was much more happening that could not be ex-
pressed verbally by the actors. I assumed that programmers would be
good at what they did, but probably less able to express verbally what they
were doing. It might be just such a too careful approach, but I wished, a bit
ambitiously, to get the ”whole picture”. This was probably also because of
the naı̈ve tendency for something ”concrete” as I had mentioned already.

The ideal scenario turned out to be impossible to realize. At that time,
I didn’t have any idea of how conducting fieldwork would be like, what
strategy I should take in case the ideal scenario could not be done, and my
inadequate skills in expressing what I wanted to do to the organization
where I conducted fieldwork. This anecdote illustrates the reason. Several
times I was assigned to some managers who were instructed by their su-
perior to tell me the software processes used in the organization. I felt I
had stated my intention clearly enough: to observe the software processes

55

3.4. RESEARCH EXPERIENCE 56

Wrapping up

Bid Farewell

Week 4

(16-18 Nov)

Completed

- As permitted, researcher

opens each document and

saves it to storing device.

- Data is to be erased after
the completion of the

thesis writing

Project Documents Collection:

- access to VSS

- collect non-business related

information (as provided in the VSS –

supposedly not the complete version)
- projects: VMS and Point of Sale

Week 3

(8-10 Nov)

- note taking- PMR-75 meeting, one session, 4+ hrs

Completed

- Researcher sits in the

meeting

- Note taking and

recorded conversation

-Group meeting

o A 15-minute meeting of 3 team

members, one project, one

session

Completed

- Researcher sits with the

team member and

observes the activities: on

and off the screen

- Note taking and
recorded conversation

- Individual activities:

o Sanjeev (a pseudoname), one

project, construction phase, 4

sessions (@1.5-2.5 hrs)

o Rana (a pseudoname), several

projects, testing phase, 2 sessions
(@2-3 hrs)

Observation of on-going projects.

Activities observed:

Week 2

(1-6 Nov)

Completed

- Recorded Conversation

- Soft Copy of manuals,

project profiles

- Orientation

- Introduction to practice groups in

IndoSoft (SmartView & SmartBiz)

- General data gathering (manuals &

procedures)

Week 1

(25-30 Oct)

Status/MethodsActivities

Wrapping up

Bid Farewell

Week 4

(16-18 Nov)

Completed

- As permitted, researcher

opens each document and

saves it to storing device.

- Data is to be erased after
the completion of the

thesis writing

Project Documents Collection:

- access to VSS

- collect non-business related

information (as provided in the VSS –

supposedly not the complete version)
- projects: VMS and Point of Sale

Week 3

(8-10 Nov)

- note taking- PMR-75 meeting, one session, 4+ hrs

Completed

- Researcher sits in the

meeting

- Note taking and

recorded conversation

-Group meeting

o A 15-minute meeting of 3 team

members, one project, one

session

Completed

- Researcher sits with the

team member and

observes the activities: on

and off the screen

- Note taking and
recorded conversation

- Individual activities:

o Sanjeev (a pseudoname), one

project, construction phase, 4

sessions (@1.5-2.5 hrs)

o Rana (a pseudoname), several

projects, testing phase, 2 sessions
(@2-3 hrs)

Observation of on-going projects.

Activities observed:

Week 2

(1-6 Nov)

Completed

- Recorded Conversation

- Soft Copy of manuals,

project profiles

- Orientation

- Introduction to practice groups in

IndoSoft (SmartView & SmartBiz)

- General data gathering (manuals &

procedures)

Week 1

(25-30 Oct)

Status/MethodsActivities

Figure 3.3: Research Activities

in an on-going project. However, none of these managers as well as the
superiors had read my written proposal. They were informed about my

56

3.4. RESEARCH EXPERIENCE 57

research by somebody else in the company orally and also by me when we
were introduced. So, when I interviewed them, they told me what should
be done instead of showing it; and showed me what was written in the
manual instead of what happened in a particular project.

I never got to observe a project in the intended ideal manner. There
were no newly-started projects waiting for me. Even if there was, it would
take longer time than I had spared for the fieldwork. So, I learned, in-
stead, how to interact with the organization. Several interviews took place
with the managers and developers. It served mostly as a way for me to
get familiarized with the processes in the company. I observed individual
activities, such as coding and testing from several different projects; and
collective activities, such as team meetings and Project Management Re-
view. I came everyday to the office, stayed around the ”production” area,
did some observations and interviews, had lunch with them, etc. I knew
from my reading that culture is an important factor in outsourcing phe-
nomenon. By immersing myself with the life in the company I, naı̈vely,
hoped to get a glance of the ”cultural things”.

Again, because one of the research goals was to understand more about
GSW with the focus on issues of quality, I selected the interpretative re-
search approach which guided me both as a way to gather and interpret
the data. Interpretive studies assume that people create and associate
their own subjective and inter-subjective meanings as they interact with
the world around them. Interpretive researchers thus attempt to under-
stand phenomena through accessing the meanings participants assign to
them (Orlikowski and Baroudi 1991). Interpretive methods of research
start from the position that our knowledge of reality, including the do-
main of human action, is a social construction by human actors and that
this applies equally to researchers. Thus there is no objective reality which
can be discovered by researchers and replicated by others, in contrast to
the assumptions of positivist science (Walsham 1993).

The data is viewed as my own constructions of other people’s con-
structions of what they are up to. This refers to Geertz’s (1973) way of
looking at interpretive data as our own constructions of other people’s
constructions of what they and their compatriots are up to [Geertz, 1973].
Social processes are not captured in hypothetical deductions, covariances
and degrees of freedom. Instead, understanding social process involves
getting inside the world of those generating it (Orlikowski and Baroudi
1991).

This chapter is concluded with a reflection on the challenges and limi-
tations of the research are discussed in the following section.

57

3.5. CHALLENGES & LIMITATIONS 58

3.5 Challenges & Limitations

In this section, a reflection on the research activities is presented. Some
difficulties in organizing and understanding the data are also discussed.

3.5.1 Limitations of data

This research is primarily based on the analysis of documentations of post-
mortem projects. Later on it was realised that there seems to be a mismatch
between my intention – which is to get the whole picture of the project and
all its aspects, including the subtle, non-technical ones – and the form of
data available. On the one hand, the data can be considered complete in
representing the whole development process, but on the other hand, it
omits many lively aspects of the projects.

Reflecting on to the three software dimensions, it is now fully realized
that the project documentation is actually more focused on the process
dimension, as process is inevitably the most plausible thing to document.

Achieving the objective of getting the complete picutre of the project
is not an easy task because the data was not structured for this purpose.
The documents are technical and written while the development process
taking place; in most cases, the authors are the developers themselves. So,
it is natural that in the pace of work they are experiencing, there is not
enough time to ponder the historicity of the documents later on. For ex-
ample, minutes from chat sessions and meetings are recorded as it is. Only
some of the information contained in the minutes, mainly about the soft-
ware requirement, are extracted and summarised in a separate document.

I find many interesting occurences in the project by reading the actual
chat session or meeting minutes. This gives flesh to the skeleton of for-
mal, bureaucratic project documents. Combining the hard and soft as-
pects of the project shows how human being and technicalities entangle.
My biggest problem in trying to do so was to determine where to start. So,
I decided to use chronology, ordering everything in a timeline, as I believe
it is the most resonant way for human mind. It enabled me to create a
narrative out of the technical structures.

The next challenge was the volume of the documents. Technical doc-
uments usually follows a certain standards or templates which contains
many repetitive and irrelevant details for my cause. However, reading
them plainly is tedious and one may easily discard information as irrel-
evant too soon, especially when one has not determined which specific
aspects to look for. Taking plain notes does not help much either because
the documents were mostly in a summarized form. Doing so simply ends

58

3.5. CHALLENGES & LIMITATIONS 59

up in another set of condensed documents. Reflecting on that, I decided
to organize the data in the way that is described in the next section.

3.5.2 Data Analysis

I decided to use the Mind Map [Buzan, 1995] concept for note takings, as
it represents a powerful graphic technique which provides a universal key
to unlock the potential of the brain. It harnesses the full range of cortical
skills – word, image, number, logic, rhythm, colour and spatial awareness
– in a single, uniquely powerful manner. In so doing, it gives you the
freedom to roam the infinite expanses of your brain. The Mind Map can
be applied to every aspect of life where improved learning and clearer
thinking will enhance human performance [Buzan, 2004].

I then started to ”mind map” the ideas contained in the project doc-
umentation by structuring them in units of time: the week. To make it
possible to create large mind maps in an easier way, I used a computer-
based mind map tool. The best start, I decided, was to map the activities
recorded in the weekly status report to flesh out each week branch in the
map. It was then followed by getting into details for each project docu-
ments that were created, reviewed or approved by a certain point of time.
The software tool provided the facility to add long notes for any branch,
so I had the freedom to retain the actual text or make keywords out of it.

The strength of this mapping was the ability to lay out the whole prob-
lem in one single screen. In contrast with the paper-based mind mapping,
the software tools provided much flexibility which made this work less
painful, such us expanding or closing up a branch like the tree-structure
of the Windows explorer’s folders. One could create several maps to try
different structures which might reveal subtle aspects of the projects. I
would certainly recommend this way for future researchers who choose
to dig up the documentation of old projects.

59

Chapter 4

The Context

This chapter presents the context in which the case studies took place. The
organizational context is as important as the cases themselves because it
is the scope in which QMS operates. The information in this chapter is
mainly collected from the company presentations (powerpoint documents
and websites), observations and interviews. This chapter begins with sec-
tion 4.1 which briefly describes the larger context: the software industry
in India. Section 4.2 then introduces the organization, followed by the use
of ecosystem metaphor to describe its software development environment
in section 4.3. Section 4.4 introduces the development cycle utilized in
this organization. QMS elements in the organization is presented in the
following section 4.5.

4.1 Software Industry in India

In this section, a discussion on Indian software context is presented with
a focus on its emphasis on the pursuit of quality certification. Next, recent
trends of software development practices in the country are also shown.

4.1.1 Why India?

Leading consultancy firms such as Giga, Forrester Research and McKinsey
& Co. have cited various reasons for the increase of offshore outsourcing
by Multi National Companies (MNC) to India. India’s quality and cost ben-
efit edge is one of the major draws for these organizations. Giga predicts
that, compared to other competing countries such as China, Ireland, Israel,
and the Philippines, India will continue to dominate as the preferred off-
shore country. According to a study conducted by Forrester in November,

60

4.1. SOFTWARE INDUSTRY IN INDIA 61

2001, India’s edge over other competing nations in the IT outsourcing busi-
ness is based on the country’s decade old experience in this area, fluency
in the English language, supportive government policy infrastructure, and
high quality offerings.

Today, MNCs are rushing into India to stake a claim to the IT outsourc-
ing market. While a large number of companies are outsourcing their soft-
ware development to Indian companies, others are establishing a pres-
ence in India and participating actively in the software export game. The
MNC sector emerged as an important segment contributing Rs 9,855 crore
(USD 2,188 mill) of the total exports of Rs 35,600 crore (USD 7,905 mill) in
the year 2001-02, translating into 27% share of the total exports. (Source:
NASSCOM 1 – India’s National Association of Software and Service Com-
panies)

4.1.2 The Pursuit of Quality

According to NASSCOM, in the past few years, the Indian IT industry
has pursued the goal of attaining the highest international standards of
quality. A World Bank funded study conducted as early as 1992 to discuss
Indian software strategies had concluded that more and more vendors in
the US prefer to get their software development work undertaken in India
for its quality and cost advantage. I argue that quality certification has
become both a material and symbolic value to create trust between clients
and vendors.

Indian players have created a strong value proposition in the IT soft-
ware and services arena. India enjoys advantages of people sophistication
in terms of a very large pool of English speaking scientific personnel, var-
ied and extensive skill sets in terms of technology, and offering services
at globally competitive costs. India also boasts of vendor sophistication–
with more than 200 companies being quality accredited and serving the
needs of over 255 of the Fortune 500 companies. Today, the world looks
towards the Indian IT software and services industry for its good quality
and high price performance. According to McKinsey & Co., India has and
will continue to have a growing number of vendors successfully working
on complex projects across all areas of software and services, and perform-
ing at levels comparable to those of leading global players.

As of 31st March 2002, India had 42 companies at SEI CMM Level 5
assessment. The quality maturity of the Indian software industry can be
measured from the fact that already 316 Indian software companies have

1http://www.nasscom.org/artdisplay.asp?cat id=28 Accessed: 22/09/05

61

4.1. SOFTWARE INDUSTRY IN INDIA 62

acquired quality certifications and more companies are in the pipeline to
do so.

In March 2002, NASSCOM conducted a survey to ascertain the adop-
tion of international quality standards by IT software and services compa-
nies in India. An analysis of top 300 companies in India revealed in figures
4.1 and 4.2 below 2.

Figure 4.1: Quality Certification

Figure 4.2: SEI Quality Assessment

The other heartening feature of the industry has been the growing ac-
ceptance and adoption of the newly emerging People-Capability Maturity
Model (People-CMM) by the Indian software industry. For a country like
India, with its large assets in the form of skilled human resources, the rel-
evance of People CMM needs no emphasis. A large number of Indian
IT software and services companies have been quick to realize this and

2http://www.nasscom.org/artdisplay.asp?cat id=208 Accessed:
22/09/05

62

4.1. SOFTWARE INDUSTRY IN INDIA 63

have either implemented or initiated such certification programs. (Source:
NASSCOM 3)

4.1.3 Software Practices in India

This sub section briefly presents some findings in literature which illus-
trate the recent trends of software development practices in India. Cusumano
et al (2003) in their paper titled ”Software development worldwide: the
state of the practice” documents some of the Indian software practices and
compares them with those of other places in the world such as Japan, US
and Europe. The paper reports early descriptive results from a new global
survey of completed software projects that attempts to shed light on in-
ternational differences in the adoption of different development practices.
The practices are illustrated in the figure 4.3 below [Cusumano et al., 2003].

Figure 4.3: Software Practices in India and other countries

Most of the projects being studied (see fig. 4.3) use architectural, func-
tional, and design specification documents rather than just writing code
with minimal planning and documentation. These traditionally well-regarded
practices are especially popular in India, Japan, and Europe. India use
detailed design specifications very intensively, reported as 100 percent in
one study. Indian projects to some extent tend to vary with the use of daily

3http://www.nasscom.org/artdisplay.asp?cat id=35 Accessed: 22/09/05

63

4.2. THE COMPANY: INDISOFT 64

builds over a project’s life. India has a relatively high concentration of run-
ning regression tests on builds in projects. The use of paired testers and
paired programmer techniques are especially popular in India.

US programmers often have different objectives and development styles.
They tend to emphasize shorter or more innovative programs and spend
more time optimizing code, which ultimately reduces the number of lines
of code (LOC) and increases effort. The Indian organizations might well
have adopted the US-type programming style because they often have a
significant proportion of US clients and, besides, many Indians develop-
ers are educated in the US, which makes it easy to import US-centered
practices to India.

Cusumano et al (2003) conclude that there is some truth to the re-
cent speculation that Indian software companies are increasingly adopting
more formal quality management techniques. Finally, they say (p.33-34),
”Our data suggests that anecdotal evidence emerging about the process
and practice strengths developing in India are well founded. Above all,
our data shows that Indian organizations are doing an admirable job of
combining conventional best practices such as specification and review
with more flexible techniques that should let them respond more effec-
tively to customer demands. If the broader population can replicate this
trend, the Indian software industry will likely experience continued growth
and success [Cusumano et al., 2003].”

4.2 The company: IndiSoft

According to the company profile document, IndiSoft was established in
one of the major Indian IT centers to execute overseas software projects
and provide on-site support to its customers world-wide. Marketing is
carried through the strategic tie-ups and marketing associates based in
the United States, Europe and South-east Asia. The organization’s philos-
ophy is to provide high quality software solutions and professional assis-
tance to its clients in managing their Information Technology growth in an
optimized and cost effective way.

IndiSoft offers a complete range of software services to its customers
around the world. Some of the areas include: systems feasibility and re-
quirements studies, design and development of both applications and sys-
tems software, conversion, migration and maintenance of software across
different platforms and computer systems.

IndiSoft’s professionals were admitted by the company to own a wide
spectrum of skills. These professionals are recruited through rigorous test-

64

4.2. THE COMPANY: INDISOFT 65

ing and selection processes. The organization augments its human re-
sources base and skills spectrum at different levels from time to time. It
places great emphasis on training and developing its professionals on a
continuous basis to meet the skill demands of its projects and also to im-
prove the quality and productivity of its services to its customers. To ac-
complish this, it has established a training group. The training programs
are designed and implemented so as to ensure: proper induction of the
new employees, compliance with the skill proficiency requirements of the
project teams, and continuous updating of the skills in state-of-the art tech-
nologies and methodologies.

Stated in the Quality Manual – one of the major documents in the orga-
nization from which software practices are drawn – the company is over
10 years old, medium sized of around 200 employees. It has delivered 3000
man-year worth of projects. The organization is structured as in figure 4.4
below.

The structure of the organization (see fig. 4.4) is, I believe, a professional
bureaucracy – one of the five structures proposed by Mintzberg (1983).
”The Professional Bureaucracy relies for coordination on the standardiza-
tion of skills and its associated design parameter, training and indoctrina-
tion. It hires duly trained and indoctrinated specialists – professionals –
for the operating core, and then gives them considerable control over their
own work [Mintzberg, 1983] p.190.”

Being a professional bureaucracy as described above, it is implied that
IndiSoft professionals work relatively independently of their colleagues,
but closely with the clients they serve. According to Mintzberg (1983), the
structure of this organization is essentially bureaucratic; its coordination
is achieved by design, by standards that predetermine what is to be done.

Yet, the organizational structure is also simple and dynamic. It is sim-
ple because there are no layers between the CEO and the functional units
which share equal position in terms of coordination (see fig. 4.4). The
use of technology and the setting of the workplace, as I observed, also en-
ables more dynamic communication because it accomodates the current
ongoing projects. Some functions are always available, but the volume of
the work and the relations between the units are mainly affected by the
current projects.

This dependency on the projects makes the organization classify the
projects through several criteria, set up several divisions – which they
call Practice Groups – and develop standard procedures for each project
classification. As written in the company profile, the divisions are called:
SmartView, SmartBiz and System & Networking. One manager explained
that in general, the division of projects was made based on the time and

65

4.3. THE ECOSYSTEM 66

Chief Executive

Officer (CEO)

Management

Representative

(MR)

Quality In

charge

(QI)

Audit In

charge

(AI)

Customer

Relations

Executive (CRE)

Project

Manager

(PM)

Facilities

Management In

charge

(FMI)

Human

Resources In

charge

(HRI)

Pool of

Auditors

Project

Leader

(PL)

Team

Members

(TM)

Purchase

In Charge

(PI)

Physical

Facilities In

Charge

(PFI)

System

Administration In

charge

(SAI)

Training

In charge

(TI)

Human

Resources

Planning &

Allocation

In charge

(HRPAI)

Chief Executive

Officer (CEO)

Management

Representative

(MR)

Quality In

charge

(QI)

Audit In

charge

(AI)

Customer

Relations

Executive (CRE)

Project

Manager

(PM)

Facilities

Management In

charge

(FMI)

Human

Resources In

charge

(HRI)

Pool of

Auditors

Project

Leader

(PL)

Team

Members

(TM)

Purchase

In Charge

(PI)

Physical

Facilities In

Charge

(PFI)

System

Administration In

charge

(SAI)

Training

In charge

(TI)

Human

Resources

Planning &

Allocation

In charge

(HRPAI)

Figure 4.4: The Structure of the Organization (Source: Quality Manual)

the efforts required (long or short term) and the type of work (develop-
ment or maintenance). SmartView handles a relatively short term (about
1000 hours) development projects, SmartBiz takes care of long term de-
velopment projects which often require functional and domain expertise,
and System & Networking handles maintenance jobs, such as networking,
porting, etc.

4.3 The Ecosystem

In this section, the context is examined more closely using the ecosystem
metaphor which suggests that every element in it affects everything else.
Cockburn (2001) suggests the term ecosystem to describe the software
project team and its context. A software project sets up a small ecosys-

66

4.3. THE ECOSYSTEM 67

tem made up of personalities from diverse cultures. The ecosystem may
include: walls acting as barriers and open spaces as conduits, people in
their professional specialties acting as interacting subspecies, individuals
with strong personalities changing the way in which the ecosystem works.
He emphasizes that everything affects everything: the chairs, the seating,
the shape of the building, whether people share a native language, or even
the air conditioning.

I am going to expand the term ecosystem to the scope of the organi-
zation based on my observation in the field. I attended the office almost
regularly, like the other employees in the company, for four weeks. Some
employees referred to me as a trainee. I was given a table with a worksta-
tion where I could get access to standard facilities such as word processing,
internet, IP messenger, and the VSS system.

The company is located in a five-storey building which has two wings.
IndiSoft occupies the ground floor and the top floor. The rest of the place
in the building is occupied by other companies. The top floor is the office
for the Business Development (BD) unit. Some managers and BD staff
have their offices or tables on this floor. My workstation was located in the
BD staff office. As I observed, the production takes place on the ground
floor, on both wings. SmartBiz and SmartView share a wing and the other
one is for System & Networking. CEO and Group manager’s office are
also located in the ground floor. The setting suggests the closeness of the
highest power in management to the production units – just as hinted by
the organization structure (fig 4.4). Their presence is always apparent to
the software developers.

Internal communication system is established for effective implemen-
tation of the QMS. As written in the manuals, the quality procedure in-
cludes communications pertaining to: project status, performance of QMS,
meeting customer requirements, customer satisfaction levels, management
directives and decisions so as to ensure effective implementation of QMS.
Project Managers ensure that the related processes and plans are commu-
nicated to all personnel involved in the projects and others who are ex-
pected to follow the same. The internal communication across the orga-
nization occurs through media like emails, e-portal, notice boards, circu-
lars, status reporting (weekly/monthly), review meetings, management
reviews, intra-project meetings, open discussion with PL’s and PM’s of
different projects and management (Source: Quality Manual).

I noticed that the development room was divided by cubicles occupy-
ing the middle space and surrounded by meeting/training rooms, man-
agers’ room, etc. Each cubicle space is shared by three to four program-
mers with their own machine. Some of the cubicles are equipped with

67

4.3. THE ECOSYSTEM 68

telephones. Each workstation has an IP messenger connecting everybody
logged on the system.

During the observations, I noted that everybody seemed to be engaged
with their own assignments. Some of them, usually sharing two facing
cubicles containing 3 - 6 people, seemed to work together. It was often
the case with SmartBiz projects. Sometimes team meeting was scheduled
and took place in one of those well facilitated meeting rooms available.
The movements of people from one cubicle to another, discussing a piece
of code or clarification of testing activity, happened quite often without
getting too noisy. Often, one developer called another via IP messenger,
asking for something, and if it could not be settled online, one would just
visit the other’s cubicle. However, the seating arrangement did not reflect
the grouping of people based on the same project/task. One person whom
I observed was engaged in two different tasks from different projects in
one day. She was doing the testing for a project in the first half of the day,
and in the other half of the day, she was writing a use case for another
project in the early phase with someone who seemed to be junior in the
company.

People started working at 10.00 and finished quite late in the evening,
like after 18.00. However, sometimes, I found one developer, whom I ob-
served, was still online on the messenger very late till 22.00. I asked him
and found out that he was working and, now and then, he communicated
online with the client from the Middle East. The company seemed to tol-
erate and be flexible with the time difference with the customer. This par-
ticular developer had, on some occasions, to work on Sunday, because the
client’s ”weekend” was on Fridays. In the company, people worked from
Monday to Friday plus, every second Saturday.

On one Saturday, I had the opportunity to sit in a Project Review Meet-
ing. It started at 14.00 and continued until over 18.00. This meeting was
attended by all managers. The Head of Quality Department facilitated
the meeting by being the critic to the projects presented by the Project
Managers, while other managers observed and commented. The meeting
started with project presentations. The status of the project was examined;
risks and issues were addressed. While a project was being presented,
usually its team members and project leader were also present to help the
project manager answer the questions from the critics. I observe that this
meeting was very dynamic and it seemed important. People came and
went; those who had finished with their presentation might just leave and
continued with their work. Only the facilitators were present during the
whole meeting. Following the project presentations, there were presen-
tations of other non project-related divisions, such as Human Resources,

68

4.4. DEVELOPMENT LIFE CYCLE IN THE ORGANIZATION 69

Training Division, etc. In the meeting, people seemed to be open and,
sometimes, critical to the presentation in a constructive way. Often, the
CEO, who was sitting next to me, spotted other related issues from the
presentation which concerned the management in general; he, then, spoke
it out to the floor. In general, I felt the atmosphere was close and relaxed,
and not hierarchical as I had assumed it would be.

When a project was offered by a client, the BD unit would usually catch
it first. They would then discuss it together with the technical people,
usually the project manager from one of the practice groups. I observed,
indirectly while I was working in the same room on the 5th floor, that
the project manager would come upstairs and share his/her technical per-
spectives with the business oriented people. When the project proved fea-
sible, both technically and financially, then the project could be initiated
and – I playfully imagined – ”dropped down from heaven” to the ground
floor for production.

4.4 Development Life Cycle in the Organization

This section presents the standard development life cycle in the organiza-
tion as written in two manuals: Project Procedures and Software Project
Process, shown in fig 4.5 below. The organization calls their standard
processes as Development Life Cycle (DLC) which is a variant of SDLC (see
2.3.2). IndiSoft modifies the standard by including prototyping in the re-
quirement analysis phase. In the two case studies, I noticed that the DLC
term was stated in the project plan to indicate methodology used for those
projects. DLC generally consists of nine phases, namely:

1. Start up, in which project plan preparation and environment setup
take place.

2. Requirement Analysis, in which detail plan preparation, study of ex-
isting system and documents, prototyping and SRS preparation take
place.

3. High Level Design, in which decomposition of requirements, defi-
nition of system architecture, database/file system design, process
/data /object modeling, and prototype refinement take place.

4. Low Level Design, in which identification of low level components,
program/report/screen specification, interface definition, and test
plan preparation take place.

69

4.5. QMS IN THE ORGANIZATION 70

5. Software Construction, in which construction of the program code takes
place.

6. Integration and Testing, in which the integration of unit tested group
takes place.

7. Package & Release, in which installation of the product takes place.

8. Acceptance Testing, in which the team provides customer support.

9. Wind Up, in which release of resources and completion report take
place.

In the manuals, each phase and its corresponding activities are defined
in terms of their entry criteria, tasks, verification and validation proce-
dures, exit criteria and work products. Planning is an activity found in
every phase. In the startup phase, it is in the form of a project plan, while
in all other phases, it is the detailed plan for the phase. Each phase consists
of different number of tasks; the largest is the design phase with 8 activities,
while the shortest is acceptance testing with only 3 activities. The key roles
for each activity are also defined. It is usually either the client or IndiS-
oft or both. More than half of the activities require close relation between
the two. Only one activity is affected by the client alone, namely: User
Requirement Specification. There are three activities that span along the
whole phases, namely: Quality Management, Code Walkthrough, Testing,
Project Management, Review Meetings, Change & Configuration Manage-
ment, and Change Control.

4.5 QMS in the Organization

This section presents the QMS used in the organization. According to the
Quality Manual, QMS of the organization is defined and documented in
terms of Quality Policy, Quality objectives, Quality Manual and the asso-
ciated Procedures Manuals. The documentation is organized as shown in
fig 4.5 below. The information presented in this section is collected and
extracted from the manuals.

Quality Manual constitutes the apex manual (see fig. 4.5). It lays down
the quality policy, quality objectives and directives for procedures to be
evolved as addressed by the latest ISO 9001 standards. Software Project Pro-
cess (SPP) Manual defines the sequence and interactions of the processes to
be carried out for the projects or assignments undertaken by the organiza-
tion within the scope of the Quality System. Project Procedures (PP) Manual

70

4.5. QMS IN THE ORGANIZATION 71

Quality Manual

Software Project

Process Manual

(SPP)

Project Procedures

Manual (PP)

Support Activities

Procedures Manual

(SAP)

Guidelines and

Standards

Quality Manual

Software Project

Process Manual

(SPP)

Project Procedures

Manual (PP)

Support Activities

Procedures Manual

(SAP)

Guidelines and

Standards

Figure 4.5: Quality Manuals

covers the procedures to be followed while executing the activities related
to the processes defined in the SPP. Support Activities Procedures (SAP) Man-
ual covers all the procedures applicable to the support functions namely,
Quality Assurance Group, Audit Group, Human Resource Planning and
Allocation, Training, Purchase, and Infrastructure facilities. Guidelines and
Standards is about the guidelines and standards applicable across all activ-
ities. IEEE standards are adopted as guidelines for most of the activities.

4.5.1 Organizational Structures

As previously mentioned, the organizational structure (fig. 4.4) along with
the quality responsibility assignment is defined in the Quality Manual.
This matter has been discussed in section 4.2.

4.5.2 Responsibilities

Quality Manuals determines roles that are responsible and authorized in
the implementation of QMS. The roles are displayed in the organizational
structure (fig. 4.4). I would elaborate only those which are closely related
to the implementation of QMS in the project, including: Project Manager,
Project Leader, and Team Member.

A Project Manager (PM) is nominated by and reports to the CEO.
PM heads a set of projects and/or lines of business as assigned by the
CEO. Meeting overall project commitments and customer satisfaction is
his/her responsibility. PM manages project teams, project executions and
customer interactions. His/her responsibility includes among others: (1)
planning and initiating process for acquisition of resource and skill re-
quirements for projects; (2) suggesting methods, tools, methodologies, and

71

4.5. QMS IN THE ORGANIZATION 72

techniques to improve the process in consultation with the client when
needed; (3) ensuring effective implementation of quality system in the
projects; (4) reviewing the training requirements; (5) reporting status and
issues to the management; (6) initiating and participating in the joint re-
views with the clients; (7) handling non-conformities in the project; (8)
formal closure of the project; and (9) participating in the performance ap-
praisals of the personnel involved in the project. PM is authorized to,
among other things, coordinate with the customer, assign and delegate
responsibility and authority to the Project Leader, review and approve
detail plan of the project, approve changes in the requirements, approve
project related documents and deliverables, conduct progress review with
the Project Leader, and maintain required level of customer liaison for the
projects.

A Project Leader (PL) is nominated by HR Planning & Allocation In
charge (HRPAI). PL plans and executes the project according to the plan
and ensures the required product quality and process compliance is main-
tained. In doing so, PL is supported by the project team. He/she gives the
required technical support to the team. His/her responsibilities, among
other things, include: (1) planning the project in consultation with the PM;
(2) ensuring that the training requirements are identified and given; (3)
implementing the quality system in the project; (4) maintaining the con-
figuration management in the project; (5) interacting with the team con-
tinuously and conducting the team meetings as planned; (6) ensuring the
use of tools and techniques in the projects; (7) analysing the cause for non-
conformities and taking the required corrective and preventive actions; (8)
reviewing the project related documents and work done by the team; (9)
reporting to PM, client and management on the status of the project; (10)
collecting and analysing the planned metrics for the project and reporting
to the management; (11) participating in reviews and audits, and person-
nel performance appraisals; and (12) winding up the projects and handing
over the records and documents to PM for further action.

A Team Member (TM) is allocated by HRPAI and reports to PL. TM
carries out all the activities assigned throughout the projects life cycle, in-
cluding: analysis, design, construction, testing and validation, and any
other tasks assigned as per plan and reporting their status. His/her re-
sponsibilities are to: involve in the QA activities, comply with the defined
quality system in all their activities, adhere to standards, rules, practices
and conventions, generate the project quality records that are complete
and correct, participate in team meetings, and take timely and appropri-
ate corrective actions for non-conformities found in the work products and
the area of activities. TM is authorized to use suitable tools, methodolo-

72

4.5. QMS IN THE ORGANIZATION 73

gies, and techniques identified for the projects.

4.5.3 Processes and Resources

In the Quality Manual, the customer related processes are defined, includ-
ing determination and review of product related requirements, and cus-
tomer communication. The product requirements are analyzed from the
customer supplied user requirements document and through customer
interactions. These requirements include: functional and operational re-
quirements specified by the customer, requirements not specified by the
customer but necessary for intended or specified use, statutory and reg-
ulatory requirements related to the product, and any additional require-
ments determined by the organization. If user requirements document is
not supplied, the project team will produce one, in consultation with the
customer, to the required level of detail int he form of project proposal.

The user requirements document is reviewed internally before seeking
the customer’s confirmation. The review process ensures that the require-
ments are clear, issues identified earlier are resolved and the organization
has the capability to meet the contract obligations. The amendments to the
requirements are documented and are subject to the documented change
control procedure. Adequate control on making the relevant changes in
the project documentation, on account of changes in the requirements, and
informing all concerned project personnel is ensured through documented
procedures.

Communication with customer is conducted by the organization at var-
ious levels during the product realization process. Prior to project ini-
tiation – i.e. during the stage of handling customer inquiries, proposal
making, negotiations, contract finalization – communication is conducted
by a senior level person from the marketing group, authorized by the
management for this purpose. The responses to all tenders/ proposals
and contracts are, however, maintained at the organization level, with
the CEO or the designated person by CEO. During the project lifecycle,
the project manager is handling the customer communications on project
specific matters with the designated project in charge on the customer
side. This includes matters relating to product specifications, schedules,
progress reports, etc.

Joint reviews are arranged at least once every month to ensure faster
resolution of the issues, and to ensure that there is common understand-
ing between the customer and the team executing the project. Record of
evidence of all such communication will be available with the projects.

73

4.5. QMS IN THE ORGANIZATION 74

Any changes to the agreed upon requirements leading to changes to
the contract and billing are handled in close coordination with business
development group. The communications is handled by the project man-
ager, by default, or a designated person from the marketing group, as de-
cided by CEO. The decision is made to ensure the effectiveness in main-
taining customer satisfaction levels and sensitivities and for the best inter-
est of project execution activities. It will be ensured that both the project
manager and the marketing person are in accordance to all amendments
to the contracts.

The Quality Manual also defines the following processes concerning
design and development, such as, planning, inputs, outputs, review, veri-
fication and control.

A detailed project plan covers the design and development process,
which is reviewed and approved before initiating the process and updated
as the process progresses. It includes: all the major activities that form
part of this process and their sequence; review, verification and validation
tasks relevant to this process; roles, responsibilities and authorities for the
design and development process; support and resource requirements in-
ternally and on customer side; customer interaction requirements; metrics
mapping to the quality objectives of the project and their collection.

The Requirements Specification is the input for design and development
process which is provided by the customer or prepared by IndiSoft in con-
sultation with the customer. For the latter, the requirement specification
is reviewed internally before it is submitted to the customer for formal
approval. The Requirements Specification is written based on the user
requirements and it forms the basis for all the phases in the life cycle of
the product. It is written in an exhaustive manner and will include ap-
plicable information derived from previous similar product, if any, such
that it should enable error free design and development. Adequate con-
trols is maintained to track the traceability between the user requirements
accepted in the contract, quality objectives for the project, detailed re-
quirement specifications prepared during this process and the subsequent
stages in the product realization stages. The Requirement Specification
also covers the following features as applicable to the project: safety re-
quirements, user interface requirements, report layouts and contents, per-
formance requirements, reliability features, security and privacy features,
and regulatory and statutory requirements. All ambiguous or conflicting
requirements shall be resolved mutually with the client.

Design process follows the design consideration, associated design rules,
and applicable past experience. The project team selects an appropriate
systematic design methodology based on the project and contractual re-

74

4.5. QMS IN THE ORGANIZATION 75

quirements, which include testing and maintenance facilities. The design
phase output is documented in a design document in such a way that each
of the design elements is traceable to the requirement specification. The
design review ensures the conformance of the product with the defined
requirements and any deficiencies must be resolved before proceeding to
the next stage. The customer, if required contractually, approves the de-
sign document before it was executed.

Next, the design document becomes the basic input for the develop-
ment or construction activities. As you notice, the term construction and
development are used interchangeably. The construction phase utilizes
suitable methodologies, programming rules and languages, consistent nam-
ing and coding conventions and commentary rules, and follows any stipu-
lations in the contract. It also uses appropriate verification and validation
methods, and test plans identified in the Project Plan. The construction
process is reviewed and deficiencies found must be resolved before con-
tinuing to the next stage.

4.5.4 Procedures

The procedures for activities carried out throughout the execution of projects
or for support functions in the organization are defined in the Project Pro-
cedures Manual. The activities included in this manual are contract/proposal
review, project initiation, team building, defect handling, obtaining cus-
tomer sign off, change control, configuration control, code walk through,
software unit testing, preparation of user manual, system testing, final in-
spection, etc. The activities are described in terms of its purpose, scope,
entry criteria, responsibilities, procedures, verification and validation, exit
criteria and work products.

4.5.5 Measurements

The Quality Manual specifies measurements which ensures, as literally
written in the document, the product compliance and the process compli-
ance. All planned activities are monitored closely, while the product as
well as the process data is collected on a continuous basis, and reported to
the management periodically. This is done by using metrics which include
data reflecting the levels achieved of quality objectives and the customer
satisfaction. The metrics are analyzed at the project level as well as at the
organizational level. Project planning is supposed to identify the needs for
statistical tools and techniques for recording and analysis of measurement

75

4.5. QMS IN THE ORGANIZATION 76

data.
Customer perception is monitored continuously from the regular com-

munication, joint reviews, conference call minutes, etc. A role, Customer
Relations Executive (CRE), is dedicated to seek inputs from the customer
on regular basis, at least once every quarter on customer satisfaction lev-
els throughout the project. At the end of the project, formal feedback on
the project and the product is obtained objectively through surveys. CRE
is continuously informed by all projects about the customer complaints
or satisfaction reports/mails, while customer is informed by the status re-
port.

Internal Quality Audits, conducted by trained auditors, are performed
quarterly or earlier in such a way that every project and/or support group
is audited at least once every half year through planned arrangements. It is
also ensured that every project is audited at least once during its life cycle.
Internal Quality Audits is scheduled on the basis of status and importance
of the activity. The result is documented and brought to attention to the
personnel responsible for the audited area and timely corrective actions
are taken.

The Quality Manuals also specifies, separately, the monitoring and mea-
surement of process and product. Process monitoring and measurement
is conducted by Quality In-charge (QI) who ensures that: QMS is avail-
able to all personnel, required training is provided, and necessary support
for implementation on request is required. Furthermore, all projects and
function of the organization must ensure that documented system is im-
plemented and conduct periodic self-monitoring to ensure process com-
pliance.

Product monitoring and measurement is described as the followings.
All the defects reported by the peer and at all other levels within the
project, by the QA group, and by the customer, formally or informally,
are logged in the defect logs and monitored closely. The data collected
in the defect logs will be analyzed regularly and reported to the manage-
ment giving the product compliance levels. The projects are responsible to
monitor the product compliance levels and strive to continuously improve
upon the same.

76

Chapter 5

Case Study 1: Versatile Messaging
System II

This chapter presents the first case study: Versatile Messaging System
II. It starts with the project description in section 5.1, followed by the
chronology showing the week-by-week progress of the project in section
5.2, which is extracted from the weekly status report. Furthermore, the
quality framework is applied here to analyse the case in section 5.3.

5.1 Project Description

VMS-2 was a multi-tiered web-based application for communication, trans-
action and information portal developed for a US-based client, HealthCo1.
This application was to be used in a medical environment, such as a hos-
pital and a physician’s office, as a facility for the hospital staff, physicians
and non-physicians staff to send a page, text message to cell phone, email
and fax to each other. This application should be fast and reliable since it
was to be used in situations where time could be a very critical factor. Be-
sides, the system should be able to log all the occurring communications
for reports. The first version of the system had been developed previously
by IndiSoft. The project in question was to develop the second version of
it.

Briefly, the scope of the project was to develop the application in ASP
.NET (no information was available about the environment in which the
previous version was developed); change and add several functionalities;
make general changes; and design a new graphical user interface.

1A pseudo name

77

5.2. PROJECT CHRONOLOGY 78

According to the company presentation documents, which are usually
given to potential customers, IndiSoft had successfully developed VMS
such that it could provide the desired functionality such as: message pass-
ing using centralized web interface to the recipient. The features of VMS
were, among others, messaging (page, SMS, email) system between hospi-
tals and doctors, among doctors, and broadcasting to all registered users.

IndiSoft concluded, as written in the project presentation, that the re-
sulting system had the desired quality including: increasing productivity
and efficiency due to its less communication time required and lower oper-
ating cost, compatibility with existing assets, ease of use for all users, and
support standards to ensure long-term returns. Quantitative data describ-
ing the quality of the work was also available in the project documenta-
tion, recorded in the metrics, such as: schedule slippage, review effective-
ness, project rework, effort variance, compliance index and on-the-project
training.

5.1.1 Project Management

This brief section illustrates the way the project was managed, includ-
ing the use of documentation, methodology, technologies and tools. The
project team consisted of three people: a project manager, a project leader
and a team member. The project used, internally, several deliverables
to document the processes such as: Software Requirement Specification
(SRS), Software Design Document (SDD), Test Report, User Manual, Fi-
nal Inspection, Code Review Reports, Project Delivery Note, and Project
Completion Report.

The methodology or process model used in the project, as stated in the
Project Plan, was Waterfall Model, which actually was the IndiSoft’s own
version of the standard SDLC: the DLC (see 4.4). The application was de-
veloped on Windows 2000 Professional platform, using MySQL and SQL
Server 2000 database, ASP .NET language, and other tools such as Visual
InterDev 6.0, MS FrontPage 4.02, IIS 5.0 and Visual Source Safe 6.0. It was
developed by using four machines of P-III, 256MB RAM; 1 GB HDD. The
Visual Source Safe 6.0 was used as a tool for version control and docu-
ments archive.

5.2 Project Chronology

This section presents the case chronologically, which is resurrected from
the project documentation alone and with occasional references to the Project

78

5.2. PROJECT CHRONOLOGY 79

Procedures and Software Project Process manuals. The project took place
for around 15 weeks according to the available weekly status report. Ac-
cording to the project plan, the project was initiated in late August and was
expected to finish in mid December 2003. However, the weekly status re-
ports available in the archive were only until the third week of November.
Throughout the project, the team kept records of the effort in hours and
included them in the weekly status report so that the customer could keep
track of the activities and the effort spent on the project. I noticed from
the project documentation that there was a period (3 – 4 weeks) for user
acceptance testing during which the weekly status report was no longer
produced. According to one of the metrics, the total effort utilized in
this project was 1111 hours. The different development activities were
grouped into categories such as Project Management (PM), Product re-
lated (Pr), Quality Assurance (QA), Review & Meetings (RW), Training
(Tr) and Others (O). The complete list of activities is presented in figures
5.1 and 5.2 below.

Start-up Phase

The project was started right in the third week of August 2003. IndiS-
oft and HealthCo – the US-based client – had agreed on several matters
which made the project possible to execute, as recorded in the project doc-
umentation. The agreement was written in the formal contract that bound
the two parties. As prescribed by the Project Procedures, a review had
to be conducted to ensure that the scope was well-defined, the require-
ments were adequately defined and documented, and the responsibilities
of the client and Indisoft were clearly defined, both client and IndiSoft pos-
sessed the capability and resources to meet the contractual requirements,
and joint reviews and periodic progress reporting was established. Should
there be any corrective actions, the head of the Marketing Group and/or
Customer Relation Executive would take action. There was no written in-
formation about the contract review stage, however as with other projects,
this project should follow the procedures prescribed in the manual as elab-
orated above.

The scope of the project, defined at this stage, involved enhancing the
existing functionality of VMS-1 application developed by IndiSoft. The
proposed enhancements are divided into following categories: Paging re-
lated module changes, Physician on Call scheduling related changes, Master
Data entry related changes, general changes and migration of the appli-
cation from current databases MySQL 3.55.23 to MS SQL 2000 and GUI
redesigning.

79

5.2. PROJECT CHRONOLOGY 80

Figure 5.1: VMS Chronology

Project Initiation Form was written and became the official statement
signifying the approval and commitment of IndiSoft management to com-

80

5.2. PROJECT CHRONOLOGY 81

Figure 5.2: VMS Chronology (ctd.)

mence the project execution and activate the required resources. This form
was also the zero hour marking the point from which all the hourly effort
spent in the project would be counted. As written in the procedures, the
CEO would assign a Project Manager (PM) and introduced him to the cus-
tomer as he would be in charge of maintaining customer satisfaction and
comfort levels. The PM then would assign a Project Leader (PL) after con-
sulting it with the CEO and the human resource executives. The PL then
prepared a project profile. The Project Initiation form recorded the details
of the project such as client and project description, expected start and end
dates, estimated effort in person-months, and resource requirements.

The team was expanded by adding one Team Member to the already
available PM and PL, forming a group of three members. The human re-
source requirement plan was normally written by the PL, reviewed by the
PM and approved by the CEO. All team members would undergo a com-
prehensively planned project induction where all the necessary knowl-
edge of project generals and specifics were given through briefing, self
study material or training. There was no information whether the current
team members were involved in the development of previous version of
VMS; therefore I could not know how familiar the team members were
with the project before they were assigned. However, the training log did

81

5.2. PROJECT CHRONOLOGY 82

not register any induction training.
The Project Initiation form also mentioned the four-week User Accep-

tance Phase after the completion and testing of the system, as required by
client, in which at least one person would be assigned to assist the client.
The start-up phase took a relatively short time, one week, since it was sim-
ply marked as a formality. Everything needed to commence the project
had already been in place in this week and even the requirement analysis
had been started. This brings us to the next phase: analysis.

Analysis Phase

This phase started in the second week and ended in the fourth week (see
fig. 5.1). The analysis process went on evenly and the customer was ac-
tively involved. It took ”only” two drafts of SRS before the customer ap-
proved it. The drafts was written by the PL with assistance of the TM,
under the supervision of PM.

Design Phase

This phase lasted from the fifth to the ninth week (see fig. 5.1). In the
fifth week, the project entered the design phase as soon as the SRS was
reviewed and approved by the client. It was not clearly indicated who
was doing what in the documents. I assumed it was mostly done by the
PL and TM. In week 8 there was an email indicating a request for another
TM which was, I assumed, to assist the team in the growing volume of
work.

Construction Phase

This phase lasted from the ninth to the fourteenth week (see fig. 5.2). In
the ninth week, the construction phase was started right after the design
document was approved by the client. That particular week happened
to be the busiest week, in which the highest number of hours of efforts –
mostly on product related activities – was recorded.

Testing Phase

The testing phase started in the 14th week (see fig. 5.2). It was not indi-
cated in the documentation as to who conducted the testing; however, it
should be the responsibility of the team member and/or the Project Qual-
ity In charge, which was then reviewed by project leader. According to

82

5.3. QUALITY IN VMS-2 PROJECT 83

the manual, the test should be conducted in this manner: the programmer
ran the test sets and then fixed the bugs detected. For each test, he/she
should determine if the unit passed or failed based on the required result
specification. The observations should be recorded clearly in the test re-
port, including other defects found using other means such as stress test,
regression test, etc. Finally he/she should submit the unit test report and
the item tested to the originator.

Unfortunately, week 14 was the last week recorded in the weekly project
status reports, no more information was available after this period. The
missing information could be about what happened during the one month
free of charge support until the project sign off where all resources were
de-allocated and the project was officially closed.

Delivery and Acceptance Phase

According to the project documentation, the application was delivered
in the second week of December. The delivery included the complete
source code and database in zipped files as required by the client and sent
via mail. The delivery package was prepared by the PL and verified by
the PM. According to the metrics for schedule slippage, the project was
wound up by mid January 2004. Figure 5.3 illustrates the weekly effort for
the project.

5.3 Quality in VMS-2 Project

This section presents the VMS-2 project in greater details with the focus on
quality stages as defined the framework. Unlike the project description in
the previous sections, which illustrates the chronology of the project, this
section consists of vignettes illustrating the quality stages which is built
on the meetings notes, chat sessions script, and other documentation.

5.3.1 Quality Practices

So far there were no quality activities prescribed specifically by the method-
ology. All the practices mentioned were derived from quality manual doc-
uments, and we can infer that the VMS-2 project team worked based on
the guidelines written in the manuals. These quality manuals were actu-
ally the QMS of the organization which was based on the ISO 9001 stan-
dards and the SDLC/Waterfall methodology (See 3.1). This suggested that

83

5.3. QUALITY IN VMS-2 PROJECT 84

Time Dynamics

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Week

N
o

.
o

f
H

o
u

rs

Total Hours

Project Management

Product Related

QA

RW

Training

Others

Figure 5.3: Effort spent for VMS project

this project was conducted without the need for a specialized methodol-
ogy. Furthermore, it also showed that methodology and QMS could be
combined as a set of standard practices for the specific project as well as
the overall activities in the company.

Now, the invariant quality elements in the project, i.e. methodology
(see 2.3.2) are examined as follows. About people, there was no information
recorded about the personality traits of the people and their responsibili-
ties. About skills, this was identified when analysing initial requirements
and selecting team members. Training, briefing and self study were avail-
able to enhance the shortage of certain skills. In this project the training
covered some enrichment in ASP technology. Only one team was identi-
fied for VMS-2, and they did most of the developmental activities. Some
activities were conducted by external persons like for testing and auditing.
No specific roles in the development were assigned. All team members had
to be able to do any developmental task such as analysis, design, coding
and testing.

About tools, all software and hardware needed were identified early
in the startup phase. About techniques, the general techniques were all
prescribed in the guidelines as procedures, i.e. defect handling, etc. Some

84

5.3. QUALITY IN VMS-2 PROJECT 85

specific techniques for the project, like programming, were standardized
in the team. Processes and its pre-conditions and post-conditions in this
project were all following the guidelines. Activities – how people spend
their days (Cockburn 2001) – were specified in the detailed plan and made
visible to the customer with the weekly status reports. Milestones were
specified in the project plan along with the schedule. Change of schedule,
like the one happening in week twelve, was well-justified, i.e. needing
more time for preparing realistic data for testing. It was also with the
client’s approval.

Work products were defined in the project plan as deliverables. Client
deliverables included fully functional application code for the project, all
source code except code for any third party or IndiSoft components, and
application documentations (i.e. description of logical modules, compo-
nents & controls used in the system and their integration, code of doc-
ument describing the functionality of the components, installation docu-
ment and test report). Internal deliverables included: Test Reports, SRS,
SDD, User Manual, Final Inspection, Code review Reports, Project Deliv-
ery Note and Project Completion Report as a part of Internal Delivery.
About standards, only coding standards were specified. Quality Measures
were specified by the manuals, i.e. metrics, etc.

About team values, IndiSoft had its own company values which, as I ob-
served, was available as a ”quality statement”, which was also written on
a piece of paper hanging in all cubicles. Furthermore, I argue that the char-
acteristics and philosophy of SDLC helped forming the team values. Such
values were the importance of control, clarity and ’hard’ thinking which
assumed that there could be a ”best solution” to solve the problem which
could be engineered by following a step-by-step methodology. Now, that
we saw the end result, we could safely say that they did manage to do that
effectively.

The quality stages followed in the project can be illustrated in figure
5.4. The quality practices elaborated above are illustrated as the elements
of the two columns on the sides, while the quality stages, which are elabo-
rated in the next section, are illustrated sequentially confirming the use of
waterfall model.

5.3.2 Quality Stages

A. Quality Definition

In this quality definition stage, we looked for various events throughout
the analysis and design which denote the shaping of mutual quality per-

85

5.3. QUALITY IN VMS-2 PROJECT 86

Definition

Implementation

Evaluation

M

E

T

H

O

D

O

L

O

G

Y

Q

M

S

§ people

§ skills

§ roles

§ teams

§ tools

§ techniques

§ processes

§ activities

§ milestones

§ work products

§ standards

§ quality measures

§ team values

§ organizational structure

§ responsibilities

§ procedures

§ processes

§ resources

Definition

Implementation

Evaluation

M

E

T

H

O

D

O

L

O

G

Y

Q

M

S

§ people

§ skills

§ roles

§ teams

§ tools

§ techniques

§ processes

§ activities

§ milestones

§ work products

§ standards

§ quality measures

§ team values

§ organizational structure

§ responsibilities

§ procedures

§ processes

§ resources

Figure 5.4: Quality Stages in VMS-2 Project

spective of both the client and the project team. In this description, the
term ”quality” could be exchanged with other terms like ”product”, etc.,
because here, the need for quality product is assumed to be taken as a
matter of course. IndiSoft, presumably as other vendors, would surely try
their best to produce a quality product, therefore all decision and actions
taken here can be regarded as their effort towards quality realization. This
argument also applied to the customer because we assumed that they cer-
tainly desired a quality product. Note that although both parties wanted
the same thing, it did not necessarily mean that they, at this point, had the
same perception of what the product should be like. This was the whole
idea with the quality definition: the quality goal is shaped together by the
client and the vendor.

The quality definition started as early as the contractual stage where
the scope, initial requirements, responsibilities, capabilities and resources
from both the client and the vendor, and review and reporting mecha-
nisms were negotiated and agreed. As informed by a project manager,
VMS-2 project was classified into SmartView category which indicated
that IndiSoft had made a decision about the estimation of the effort and
time required to deliver quality.

I argue that VMS-2 project was assigned to IndiSoft for several reasons.
The first version of VMS was built by IndiSoft so it was a reasonable de-
cision to work with the same vendor again so that they did not need to
undergo the ”get-to-know-each-other-better” period. Or it could also be
interpreted that HealthCo was satisfied with the quality of the previous

86

5.3. QUALITY IN VMS-2 PROJECT 87

work and therefore willing to continue expanding the product with IndiS-
oft. Either way it was a good start for the quality definition process. If
we refer to the saying that ”quality is when the customer comes back, not
the product” [Frühauf, 1994], then this was the case for acceptable qual-
ity. The previous work was satisfactory, and the client wanted more of it.
However, as mentioned earlier, we can also argue that the client came back
because it was wise to give the work to someone who was already familiar
with it, rather than starting all over again with a new vendor.

The contractual stage took a considerable time because it was the time
when both parties should define the business side of the project. The cus-
tomer was forced to have a refined understanding of the requirement as
well as the capability and resources required. Both IndiSoft and the client
were already familiar with the system because they had had experience in
developing the first version. At this point, IndiSoft had already had quite
an idea of how the product should behave, referring to the past develop-
ment experience. And the customer, too, had the experience in using the
product. We can also say that both parties were alsofamiliar with each
other in terms of working styles, etc. This stage signified the initial con-
ception of quality.

The Project Initiation came after the contractual stage. Here the CEO
assigned a project manager (PM), introduced him to the client, and del-
egated the obligation of maintaining customer satisfaction and comfort.
”Comfort” could be the key word for quality here, because when cus-
tomer was happy, they were likely to cooperate better in the following
processes, have positive attitudes towards the process and eventually ac-
cept the product satisfactorily – without complaints.

The team building happened in the start-up phase. Here, as prescribed
by the QMS, the project leader would identify human resource require-
ments, reviewed by the project manager and approved by the CEO. This
showed how carefully the decisions were taken. All team members had to
be familiar with all general and specific aspects of the project which were
given through briefing, self study materials and training. This obviously
affected the quality of the work and, in turn, the product quality. In my
point of view, this was an indirect way to address the people dimension in
software, as was by ensuring the individuals involved had the necessary
skills specific to the problems and the generally required knowledge to be
able to work together as a team. Moreover, this decision was not drawn
from methodological steps, but from the QMS in the organization level.

Beside the issue of selecting the right individuals, the number of people
needed for the project was also a factor in quality definition because it
concerned the estimation of effort required for the project. The effort plan

87

5.3. QUALITY IN VMS-2 PROJECT 88

was derived from this agreed estimation and would be evaluated against
the actual effort utilized in the project.

In one early meeting that took place in the second week and attended
by the client and the team, several points were finalized, such as: client
would provide examples to help the team understand the necessity of
the product and its requirement; both parties agreed that new innova-
tive ideas should be incorporated to make the best product, and the scope
should not be restricted. Furthermore, technology, at this point, should
not be a concern. The focus should be on the maintainability of informa-
tion and ease of implementation. They agreed to add useful features to the
website like site map etc. Some other technical issues were also addressed
in the meeting. (Source: Summary Meeting Week 2)

Several points regarding the ”rules of the game” were also established
here, including: at the time of SRS approval, any issues involving ma-
jor design changes would not be entertained; any questions raised to the
client should be maintained as a query register that would get updated
as and when the questions were raised or solutions provided; and, the
possibility of maintaining vacation information was discussed.

The selection and use of technology solution in this project, such as
Windows 2000, MySQL, SQL Server, ASP .NET, etc, helped shape the qual-
ity perception by imposing external constraints such as licensing require-
ment, inherent capability of the technology, etc; and internal constraints
such as the human competence of those specific technologies that the or-
ganization had. In fact, according to the company presenation, IndiSoft
had an affiliation with the vendor(s) of the mentioned technologies. Fur-
thermore, the selection of peripheral technologies which affected the way
people worked, such as version control system, etc, added to the issue.
This was shown by the training request documentation which mentioned
the required training on the following technology specific items, includ-
ing: differences between ASP and ASP.NET; advantages ASP.NET had
over ASP; programming approach using ASP.NET and some online ex-
amples.

Also, several other activities were prescribed by the QMS such as the
following. Project management used deliverables, such as SRS and SDD,
to capture the definition of quality. Each phase was clearly defined in the
manuals with its entry and exit criteria implying that one should happen
after the previous one was completed. However, in real life some activities
from different phases could happen simultaneously, for example in the
VMS project, the preparation of the project plan was still in progress while
requirement analysis was started. This was allowed by the job distribution
in the team. The project planning was the responsibility of the PL, while

88

5.3. QUALITY IN VMS-2 PROJECT 89

requirement analysis could be started by anybody else in the team, most
likely to be the team member.

Stated in the review report, the project plan of the VMS project was
reviewed using a standard checklist consisting 63 item to ensure its com-
pleteness, and concluded to be satisfactory. It addressed all the necessary
points about processes and procedures. Project planning activity signified
the process dimension of software because it created the process roadmap
that the team would follow to achieve the project goals. It also addressed
the product dimension of software by mentioning and defining all com-
ponents necessary to build the end product, such as tools, techniques,
methodologies, etc. People dimension was also aimed well in the plan by
specifying human resource aspects including back up persons and leave
plans. The project plan was verified and validated through the mechanism
of review and approval.

Tasks were assigned and worked on efficiently, when one task was sub-
mitted for approval, the next one was started. The first draft of SRS took
only one week which was commented by the client and reworked imme-
diately. Minor design activities, such as the layout, was also started while
the analysis was conducted. It took two drafts before the SRS was ap-
proved. It was a detailed 93-page of document completed with visual aids
– screen shots and diagrams – describing the complete requirements. It
was designed so that the non technical customer may grasp as much as
possible. The preparation of the SRS from the beginning until the client
approval took place for four weeks. There were no serious problems in
communicating the requirements to the client or other technical difficul-
ties. This was another step towards the definition of quality. The client
and the vendor managed to agree on the quality criteria for the end prod-
uct. Layout design, previously mentioned, seemed to be treated as a side
job which could be done in parallel with the other larger activities.

While the analysis activities could be seen as ”formulating the prob-
lem”, the design activities could be seen as ”formulating the solution”,
including the need for tools, techniques, etc to implement it. The team
sent a part of SDD for approval as soon as it was completed. By doing
so, they showed that they were working on it and they gave a reasonable
time for the client to study and approve it. Testing was also planned and
designed at this point. Related to the subsequent programming activities,
coding standard definition was compiled, code walk through was defined,
pseudo code for complicated functionality was also created, etc.

According to the test plan document, the testing activity was to be
conducted as followings. The plan prescribed the overall strategy to be
adopted, the activities to be completed, the general resources required and

89

5.3. QUALITY IN VMS-2 PROJECT 90

the methods and processes to be used. It also detailed the activities, depen-
dencies and effort required. Three types of testing should be conducted,
including: unit testing to the smallest possible unit of the application; inte-
grated testing to the application after all the modules were integrated; and
system testing in which required conditions were tested to the complete
system.

The team managed to complete SDD in four weeks and shortly after
the approval continue with the construction phase. In the construction
phase, it seemed like VMS-2 project did not involve the client as much as
in the design process, except for some clarification on several complicated
modules. Probably the client was not very technical. In this case, it was
safe to say that the quality definition stopped at the analysis phase. It was
now up to the team, to the greater extent, to create a quality design to
comply with and implement the agreed requirements. An observation for
this quality stage: planning everything ahead seemed to be the maxim of
quality where control was the most predominant mode.

B. Quality Implementation

This stage started at the construction phase which, since all aspects of the
quality had been defined and agreed in the previous phases, ”only” trans-
lated all the design into the code. The process of writing code was guided
by the design document and coding standards, highly influenced by the
skill of the developers which had been addressed by careful selection and
training, monitored with quality assurance activities such as reviews, code
walkthroughs and later on with testings.

The quality manuals prescribed software unit testing. It combined test-
ing and debugging. So, a tester had to directly fix the bugs detected by the
testing. All observations were recorded for review. The tested items and
the report were submitted to the originator. It suggested that the tester
was not the person writing the code, most likely to be somebody outside
the team. Combining testing and debugging here was probably for prac-
tical reasons. By doing so, it would save time and resources. It was pos-
sible because all the cases, data and required results of the tests had been
specified in advance, even before the construction began. The testing was
conducted after the deployment of the application to the client for review.

In this quality implementation stage, several activities could be noted
as being prescribed by the QMS such as the following. Project Manage-
ment, as part of the QMS, prescribed the use of deliverables to monitor
the implementation of quality, such as reports on Testing, Code Review,
Final Inspection, Project Delivery and Completion, etc. Those deliverables

90

5.3. QUALITY IN VMS-2 PROJECT 91

served other purposes including maintaining the visibility of the process
to, primarily, the client.

There was not much to observe in this stage, presumably because the
process went smoothly. The weekly status reports were maintained to
make the activities visible to the client. Several emails inquiring about
some detailed technical clarification were available, none indicating any
serious problems.

C. Quality Evaluation

According to the portfolio in the company presentation, VMS-2 was re-
garded as a succesful project for the following reasons. The product worked
well with the designed solution of message passing and broadcasting through
a centralized web interface. It delivered the desired quality such as the in-
crease of productivity and efficiency through rapid processing time, com-
patibility with the client infrastructure, usability and support for long-
term investment by complying with standards.

The project was evaluated after it had been delivered to the customer,
or possibly after the signing off stage. VMS project had achieved a quality
level as indicated by the available metrics. It had only 11.59 % sched-
ule slippage in average, mostly in the design stage (31.82%) followed by
startup & analysis stage (25%); while the rest of the process had less than
1% schedule slippage. Those stages with high schedule slippage (design
and analysis) were very crucial in defining quality. Postponing the con-
struction until the requirements was thoroughly analyzed and the solution
well-designed, seemed to be the recipe to ensure quality. Quality practices
such as reviews were reported to have at an average 100% effectiveness. It
means all defects reported were fixed immediately and no longer detected
in the subsequent review. Rework in the project was 5.68% in average,
coding took 8.86% rework and project plan 2.5%. A project manager men-
tioned that 5% rework was the acceptable limit. ”More than that will give
us a hiccup (a common term I observed to be used across the organization,
referring to troubles in project management)”, he added.

Effort variance metrics showed that on average the plans differed from
the actual execution for 26.45%, with package and release stage scoring the
highest 150%, followed by integration & testing 25%. Construction scored
only 1.96%, compared to design (5.08%) and startup & analysis (3.13%).
The project spent 16 hours of training; 6 hours were for formal training in
ASP. NET and the other 10 hours were for self study on the same topics.
There was also another metric called Compliance-Index, which I am not
sure how to interpret.

91

Chapter 6

Case 2: Point of Sale (POS)

This chapter presents the second case: Point Of Sale. It starts with the
project description in section 6.1, followed by the chronology showing the
week-by-week progress of the project in section 6.2, which is primarily ex-
tracted from the weekly status reports. Problems concerning the data are
also mentioned. Finally, the quality framework is applied here to analyse
the case in section 6.3.

6.1 Project Description

The Point of Sales (POS)1 system was a total solution developed especially
for Retail Centers for a Canadian-based client, RetailSys2. It should pro-
vide the store retailers with an integrated accounting and management

1This is a common name for the software application, therefore no pseudonym used
here. The term is often used in connection with hardware and software for checkouts,
and in the case of variable locations, with wireless systems. POS systems evolved from
the mechanical cash registers of the first half of the 20th century. Examples of this type of
register were the NCR registers operated by a crank and the Burroughs registers which
were opperated by a lever. These registers recorded data on journal tapes or paper tape
and required an extra step to transcribe the information into the retailer’s accounting
system. The next step in evolution was to move to operation by electricity. An example
of this type of register was the NCR Class five cash register. In 1973 new registers that
were driven by computers were introduced. Such as the IBM 3653 Store System and the
NCR 2150. Other computer based manufacurers were Regitel, TRW, and Datachecker.
1973 also brought about the introduction of the UPC/EAN barcode readers on the POS
systems. In 1986 the POS systems became based on PC technology with the introduction
of the IBM 4683. By 2005 the retail POS systems are among the most sophisticated and
powerful computer networks in commercial use. Source: WIKIPEDIA (http://en.
wikipedia.org/wiki/Point of sale)

2A pseudo name

92

6.1. PROJECT DESCRIPTION 93

control system. These store centers needed to be more focused on ba-
sic Customer Relationship Managemet (CRM), Inventory Tracking, Sales Order
Processing, Purchase Order Processing and Accounting management. In order
to handle these areas effectively the system required specialized capabili-
ties and features.

The scope of the project was to re-develop the existing application with
enhanced features like implementing basic CRM, developing accounting
system, online credit card validations & Electronic Data Capture (EDC).
Additionally, the project team was to provide an integrated environment
with bar code readers, palm device application and poll display devices,
and furthermore, to make bug free application and provide customized
access to the end user by providing various security levels.

As stated in the company presentation, the team worked on the solu-
tions by addressing requirements efficiently which yielded in improved
customer service, better inventory control and reduced time in order pro-
cessing and accounting functions. At the same time the system was able
to take care about the network down time because of the well-designed
architecture. The accounting specific requirements of a POS Retailer were
well handled. The team also developed an enterprise wide solution for
POS terminals with connectivity to a central database. The front-end ap-
plication showed the functionalities for a clerk while the store database
showed interfaces for managerial functions. At the central level the data
were always synchronized with different stores; and user interfaces that
manipulated the data into reports were also provided.

According to the project description, POS was a desktop application
developed using the DOT NET technologies completed with MSDE at the
local database and MS SQL server 2000 at the central database. The envi-
ronment included MS Windows 2000 Server as the operating system, and
used Visual Studio.NET 2003 framework and XML parser.

IndiSoft concluded, in their project portfolio, that the client did not file
any complaints. The application was live and running, satisfying the cus-
tomer needs. IndiSoft were, therefore, proud of this product and strived
to remain responsive to their customers. Furthermore, quantitative data
were also available such as metrics, etc.

6.1.1 Project Management

The People

As mentioned in the project plan, the project team consisted of seven mem-
bers: a PM, a PL, several TMs (the numbers varied throughout the project),

93

6.2. PROJECT CHRONOLOGY 94

and another member who was responsible for business related issues and
customer correspondence. This was not the composition at the kickoff.
There was a takeover for PM role, and changing of team members along
the way. One of the risk factors encountered, which had high severity, in-
cluded team members leaving the organization or being on leave due to
unforeseen reasons. To mitigate such risk, some back up persons had been
prepared.

RetailSys was represented by three people: an on-site project manager,
a director, and a technical person. The on-site project manager usually
received all the questions and doubts from the project team in India and
consulted them to the customer.

The Technology

The methodology or process model used in the project, as stated in the
Project Plan, was Waterfall Model, which actually was its own version of
the standard SDLC: the DLC (see 4.4). The development was conducted
on Windows 2000 Professional platform using MS SQL Server /MSDE
database, MSXML 3.0 Parser, Visual Studio .NET 2003, and other tools
such as Visual Source Safe 6.0. It was performed by using four machines
of P-III, 256-512MB RAM.

The Process

The process dimension of the project is presented as the project chronology
in the next section.

6.2 Project Chronology

This section presents the case in a narrative which is resurrected from
purely project documentation. The project lasted for around 30 weeks.
There was inconsistent information on the project phases between the one
stated in the plan and in the weekly project status. I concluded that the
project has finished – underwent all the phases – like in the plan. How-
ever the chronology presented below followed the weekly status, thus, it
did not have the entire phases.

Inconsistency between the weekly project status and the plan is shown
in the figure 6.1 below.

94

6.2. PROJECT CHRONOLOGY 95

36

35

34

33

32

Unknown31

30

Integration & Testing stage 229

28

27

26

25

24

23

Construction Stage 2Acceptance
testing

Packaging and
release

22

21

Integration & Testing20

19

18

17

Stage 1: Construction until Deliverable16

15

14

13

SRS sign offStage 2: Construction until Deliverables12

Construction Stage 111

10

9

8

Design7

6

5

4

3

AnalysisAnalysis2

Startup/InitiationStartup/Initiation1

According to new scheduleAccording to Weekly status reportsAccording to planWeek

36

35

34

33

32

Unknown31

30

Integration & Testing stage 229

28

27

26

25

24

23

Construction Stage 2Acceptance
testing

Packaging and
release

22

21

Integration & Testing20

19

18

17

Stage 1: Construction until Deliverable16

15

14

13

SRS sign offStage 2: Construction until Deliverables12

Construction Stage 111

10

9

8

Design7

6

5

4

3

AnalysisAnalysis2

Startup/InitiationStartup/Initiation1

According to new scheduleAccording to Weekly status reportsAccording to planWeek

Figure 6.1: Inconsistency in POS project

Being aware of the inconsistency of the data, in this section, the project
chronology is presented using the weekly status reports as in fig. 6.2 – 6.7.

95

6.2. PROJECT CHRONOLOGY 96

Figure 6.2: POS Chronology

Start-up Phase

The project started in the last week of July 2003. As mentioned in the status
reports, the team was created with one of them as a domain expert, in this

96

6.2. PROJECT CHRONOLOGY 97

Figure 6.3: POS Chronology (ctd.)

97

6.2. PROJECT CHRONOLOGY 98

Figure 6.4: POS Chronology (ctd.)

98

6.2. PROJECT CHRONOLOGY 99

Figure 6.5: POS Chronology (ctd.)

99

6.2. PROJECT CHRONOLOGY 100

Figure 6.6: POS Chronology (ctd.)

case: Accounting. At this point, the team had done the pre-analysis on the

100

6.2. PROJECT CHRONOLOGY 101

Figure 6.7: POS Chronology (ctd.)

requirement specification from the customer. The Project Initiation form
was not available, so I could not inform the formal details of the projects,
the expected start and end dates, the estimated effort in person-month
and the resource requirement. That information was scattered elsewhere
in the documents, i.e. project proposal which was dated before the initia-
tion. According to the history of the document, its preparation started two
months before. It indicates that the interaction with the client had started
much earlier.

Right after the project was initiated, communication with the customer
took place frequently. Chat sessions happened almost everyday. Ques-
tions and answers also took place via emails. The questions were tech-
nical and detailed. Three customer representatives were involved in the
communication; sometimes separately and some other times together.

Analysis Phase

According to the weekly status reports, this phase started in the second
week, and ended in the eleventh week (see fig. 6.2 – 6.5). Unlike the sta-
tus report in VMS project, the one used in this project also mentioned the
identified issues/concerns, and risk. For example, in one of the weeks in
this phase, the issue was that the client had not sent the information on
the Canadian accounting system. The team identified risks such as: (1)
bar code reader and payment gateway integration were still in gray ar-
eas; impacting schedule; critical by 30 August; (2) availability of bar code
reader to the team; affecting schedule; to be provided by client; and (3)
deployment environment; affecting schedule; to be provided by client.

The weekly status reports also mentioned customer input which worked
as an acknowledgement (that the input had been received) as well as a re-

101

6.2. PROJECT CHRONOLOGY 102

minder for the customer of its promises and obligations. For example, in
the seventh week, these customer inputs were recorded:

”some answers were pending from the client like non functional
requirements, multiple currency support, pole display, etc; some
information on bar code reader and payment gateway integra-
tion had been provided but the team still needed to get full
information on this; availability of bar code reader to develop-
ment team – any emulator software would be recommended
in place of a physical device; availability of handheld device
specific information like (credit card related IC VERIFY soft-
ware) to cross check whether the suggested environment was
compatible; and handheld device availability for the team to
deploy and test the hand held device application.” [Weekly sta-
tus report, week 7]

This phase ended when the final version of SRS was approved by the
client. It was the compilation of all the modular analysis into one single
document.

Design Phase

This phase started in week 12 throughout the week 30. According to the
metrics data, the construction phase was delayed for more than a month.
The cause of the delay was the late approval of SDD by the client. How-
ever, it was interesting to notice that while waiting, the weekly status
reports kept reporting activities spent for this project, which sometimes
merely a repetition of the previous week with different number of hours.

Figure 6.8 displayed the weekly effort for the project. The data was
taken from the internal status report – it is the only available source de-
spite its inconsistency mentioned previously – and PMR documentation.
Following the procedures, the team grouped their activities into: project
management (PM), product related (Pr), Quality Assurance (QA), Review
Meetings (RW), training (Tr) and others (O).

The first 6 weeks, the weekly total effort exceeded 150 hours; most of
them even passed 200 hours. I believed this was because requirement
specification was the hardest and most intensive part of the project. In
each week throughout the project, most effort was spent on product re-
lated and other activities. It was unclear why activities categorized as
”others” was predominant, implying that the team was doing activities
which did not belong to the rest of the categories. What could that be?
”Other” activities maintained above 50 hours in most of the weeks. Is

102

6.3. QUALITY IN POS PROJECT 103

Efforts (hrs)

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Week

H
o

u
r

Total Hours

Project Management

QA

Prod Related

Training

Review

Others

Figure 6.8: Effort spent in POS project

this the source of overhead cost? These questions could have been ad-
dressed if the research had been conducted in a different way. The activ-
ities categorized as Project Management, QA and review never exceeded
50 hours/week. They mostly maintained far below that figure.

6.3 Quality in POS project

This section presents the POS project in a different manner by using the
quality framework (see 2.5). Unlike the project description which illus-
trates the chronology of the project, this section consists of vignettes il-
lustrating the quality stages which are built on the meetings notes, chat
sessions script, and other documentation. Due to the inconsistency of the
data, as shown in fig. 6.1, we can describe the quality definition stage in
greater details than the other stages.

6.3.1 Quality Practices

We can start observing the project by going through the invariant elements
of quality such as the methodology elements (see 2.3.2) as follows. Firstly,
there was no information recorded about the personality traits of the people
and their responsibilities. Required skills were identified when analysing
initial requirements and selecting team members. Training, briefing and
self study were available to enhance the shortage of certain skills. In

103

6.3. QUALITY IN POS PROJECT 104

this project the training covered some enrichment in Dot NET technology.
Only one team was identified for POS project, and they did most of the
developmental activities. Some activities were conducted by external per-
sons for testing and auditing. No specific roles in the development were
assigned. All team members had to be able to do any developmental task
such as analysis, design, coding and testing. This project used a domain
expert at the beginning of the project to support the requirement engineer-
ing activities.

About tools, all software and hardware needed were identified early
in the startup phase. About techniques, the general techniques were all
prescribed in the guidelines as procedures, i.e. defect handling, etc. Some
specific techniques for the project, like programming, were standardized
in the team. Processes and its pre-conditions and post-conditions in this
project were all following the guidelines. Activities – how people spend
their days (Cockburn 2001) – were specified in the detailed plan and made
visible to the customer with the weekly status reports. Milestones were
specified in the project plan along with the schedule. Change of schedule
or delay, which happened significantly in the project, was justified well,
i.e. the team was ready to wait for the client’s approval.

Work products were defined in the project plan as deliverables. Client
deliverables included fully functional application code for the project, all
source code except code for any third party or IndiSoft components, and
application documentations (i.e. description of logical modules, compo-
nents & controls used in the system and their integration, code of doc-
ument describing the functionality of the components, installation docu-
ment and test report). Internal deliverables included: Test Reports, SRS,
SDD, User Manual, Final Inspection, Code review Reports, Project Deliv-
ery Note and Project Completion Report as a part of Internal Delivery.
About standards, only coding standards were specified. Quality Measures
were specified by the manuals, i.e. metrics, etc.

About team values, IndiSoft had its own company values which, as I ob-
served, was available as a ”quality statement” written in a piece of paper
hangin in all cubicles as mentioned in the previous case study.

Figure 6.9 shows that this project experienced a significant delay from
quality definition stage to the implementation due to waiting for approval
of the SDD – the final quality definition to implement. It implied that, in
this project, one quality stage could not be started before the preceding
one had finished.

Judging from the process dimension, some observations were noted as
the following. Quality project and product were interchangeable. Quality
project was present only when the product was delivered as desired and

104

6.3. QUALITY IN POS PROJECT 105

Definition

Implementation

Evaluation

M

E

T

H

O

D

O

L

O

G

Y

Q

M

S

§ people

§ skills

§ roles

§ teams

§ tools

§ techniques

§ processes

§ activities

§ milestones

§ work products

§ standards

§ quality measures

§ team values

§ organizational structure

§ responsibilities

§ procedures

§ processes

§ resources

Definition

Implementation

Evaluation

M

E

T

H

O

D

O

L

O

G

Y

Q

M

S

§ people

§ skills

§ roles

§ teams

§ tools

§ techniques

§ processes

§ activities

§ milestones

§ work products

§ standards

§ quality measures

§ team values

§ organizational structure

§ responsibilities

§ procedures

§ processes

§ resources

Significant

delay from the

client side

Figure 6.9: Quality Stages in POS Project

as planned. The quality of POS project depended notably on the client.
It showed clearly that quality was not an objective entity, it was a matter
of compromise between the client and vendor. The project was considered
successful despite the long delay caused by the client. In this case the client
was not entitled to complain, and the vendor could not be complained
either because they had done their part well. It would have been different
if it happened otherwise. So, the same condition, i.e. delay in a certain
phase of the development, could to be perceived differently in terms of
quality.

This case signified that quality was in the eye of the beholder. The
vendor had obviously regarded this as a success. The client, however, did
not necessarily share the view since, I presume, that they had to pay for
the consequence of the delay. The end system might be of their desired
quality, but the overall project cost them more than it should have been. It
might be seen as a failure from their side since they had failed to follow
the agreed plan, which cancelled them the right to complain, at least, about
the time and cost of the project. The absence of complain could be seen as
one of the indicators of quality. Again, quality was hard to define, but its
presence or absence could be easily recognized. Quality (judgement) was
about acceptable compromise.

Judging from the product dimension, this project achieved its quality
goals. All workproducts, for internal as well external purpose, had been
delivered and no complaints had been noted about it. The product ori-
ented approach tried to guide the quality improvement by making the
product quality explicit; and this was exactly what the team had done.
They managed to produce documents indicating the product quality, such

105

6.3. QUALITY IN POS PROJECT 106

as SRS and SDD, in an exhaustive manner, by putting in all the details
and focusing the informative side with diagrams and examples. This had
impressed the client.

To judge from the people dimension was relatively more vague because
there was no ”hard” indicator about it. Since interpretive approach is used
here, I interpreted that the team had achieved the quality goal in the peo-
ple dimension for the following reasons. With all the activities described
above, the team members managed to collaborate and produce the result
as planned, they managed to maintain the communication with the client
in a close, polite and accommodative manner. Since I had no data about
the people in this project, all I could do was relating this with the observa-
tion I had done in the fieldwork. I noticed that, in general, people in the
company had a high work morale, discipline, positive attitude and were
accommodative to others. The team also managed to reduce the human
tendency to produce error in his actions by applying quality assurance in
the project. This was shown in the evaluation stage by the review effec-
tiveness of 100%.

6.3.2 Quality Stages

A. Quality Definition

The earliest contact made by the client, RetailSys, was recorded 5-6 weeks
before the project was initiated. RetailSys sent an early requirement spec-
ification of POS, describing: what POS was, the technology, overview of
the system, and the important modules including Order, Customer, Inven-
tory, and Tools/Reports. At that early stage, for example, the client specified
the technology as followed:

”It should provide the benefits of Windows programming tech-
nology, true client server database design, and be 100% open
to offer a business solution that is highly scalable, secure, re-
coverable and very fast. The system must be very easy to bring
back up if it crashes and should also analyze the data and self
correct after a crash. The system should allow the clerk to keep
selling even when the network is down. (Early Specification
Document)”

The specification, as quoted above, showed specific technologies which
the client perceived as the ”good” one for their cause. The selection, I
argue, would also determine the outcome of the project later on because

106

6.3. QUALITY IN POS PROJECT 107

of the limitation imposed by the technology. It also mentioned several
quality characteristics to be applied to the system, such as scalable, secure,
recoverable and fast.

After studying the initial requirement specification from the customer,
IndiSoft followed up with a project proposal which consisted of the fol-
lowing items: scope, which was derived from the client requirements, con-
sisting of the main features, enhanced features and additional features;
technology as previously elaborated in the previous section (see 6.1.1); their
understanding of the modules, proposed features, and solution for phase 1
and phase 2; and an effort estimation of 3126 person hours for 28 weeks. The
project was then initiated, and a team was built consisting of 5-6 people
(the number varied throughout the project). It included one person with
the domain knowledge. These activities illustrated the early exchange of
information between the client and vendor in shaping or negotiating the
basis for quality achievement.

The project plan was approved early in week 4. This document estab-
lished the ”rules of the game” officially. Schedules was mentioned in the
project plan and referred to the detail plan. Concerning communication,
the client and the project team agreed with two business days response
period.

”Response period from both sides (Client and Project Team) should
be two business days – (Project Plan)”

The early communication described above was just the beginning, in
the weeks to come POS team and RetailSys representatives communicated
intensively, mostly by chatting via public messenger application and emails.
The result of each question-and-answer session was documented and made
available to the whole team in the point-to-point basis that is easy to fol-
low, like this.

”

• PM acknowledged the receipt of answers to the questions
that were sent on 21 July 2003. However some of these
were not answered. Confirmations from the client were
pending. Client1 will get confirmations for these.

• PM asked the details of tint code. Client1 will get the de-
tails of Tint code from the client

• Client1 confirmed that tint codes (formula) would be stored
in customer history. Client1 would confirm the availabil-
ity of the same formula to other customers from the client.

107

6.3. QUALITY IN POS PROJECT 108

• Client2 reminded about the Project Plan and résumé’s of
team members. PM informed him that they would be
sent after approval from group manager. PM will take ap-
proval and send Project Plan and résumé’s.

(Summary Chat in Week 1)”

As prescribed in the manuals, it was a common practice in the orga-
nization that only PM had direct contact with the customer. This was to
ensure that there was no distortion in communication. This practice had
been tacit to the organization, but not so explicit to the client. It was no-
ticed quite late (in week 9) by the client representative.

”client@hotmail.com says:
Raju (not the real name), are you the only person on the chat from
IndiSoft?
PM@hotmail.com says:
yes.
client@hotmail.com says:
OK just wondering
(Chat session in Week 9)”

Questions and doubts from the other team members were compiled
in a document and sent to the client via email. The client would address
the questions or put on hold when he/she was in doubt. All these docu-
ments could be a reference for later purpose. The questions and answers
documents are like this:

”4) What are the processes involved in Order Deposit?
Will confirm with client tomorrow

5) Can there ever be a refund of deposit ???
Yes, for example a customer orders a certain wall paper and
puts down a deposit. The store owner later finds that the prod-
uct is discontinued so refunds the deposit.

6) What are the steps involved in Purchase Order?
Will confirm with client tomorrow

7) How do you handle enquiries ?
Don’t understand, please rephrase

(’Answer’ document in week 1)”

108

6.3. QUALITY IN POS PROJECT 109

The team gave a positive self assessment in their attempt to define
quality. This was recognized by the client as well as the IndiSoft manage-
ment. The quality of the work so far was appraised in the in Project Quar-
terly Review in week 11 which was attended by the CEO, Group Manager
and all team members.

All the requirements – as a result of a intensive and iterative process
of specification – were compiled in a single and complete SRS document.
It took some weeks to produce such a document. The team and the client
negotiated and agreed on how long they would spend time for it, which
was another instance of process transparency and client involvement in
every step of the journey.

”client@hotmail.com says:
Do you think 5 weeks is enough time for the SRS?
PM says:
for the preparation of entire SRS, 5 weeks is enough
PM says:
after having all the clarifications
client@hotmail.com says:
Good - I just have to get all of the answers to you quickly
PM says:
yes, that will be a great help to me and the team
(Chat Session in week 6)”

Yet, after the agreed time passed, the team impressed the client by pro-
ducing a long and detailed SRS, as shown in the chat session below. I
argue that this impression had a positive impact on the client’s perception
of IndiSoft.

”client2@hotmail.com says:
i think i must have used a whole tree to print out this SRS document!
PM@hotmail.com says:
It’s a detailed SRS
PM@hotmail.com says:
How is the overall SRS
client2@hotmail.com says:
very well done....good detail and examples
PM@hotmail.com says:
Thank you very much
(Chat Session in Week 9)”

109

6.3. QUALITY IN POS PROJECT 110

As mentioned earlier, in the weekly status reports, some issues and
risks were identified as a reminder. The team kept mentioning the is-
sues before it was resolved in the status report along with the critical time
which might affect the project schedule. Besides, they also proactively
asked about those issues during chat session as below:

”PM says:
how the integration with the Bar code Scanner should take place pl
client@hotmail.com says:
I will email you info on the bar code scanner tomorrow
PM says:
great, thanks
PM says:
we need some emulator software in place of a physical barcode reader,
what’s your idea
client@hotmail.com says:
That makes sense. I will have info tomorrow
PM says:
thanks
(Chat Session in week 6)”

During the project, the weekly status reporting had been a good prac-
tice to maintain transparency of process and client involvement. Even the
clients showed their appreciation of it – especially the format of the report
– as shown in the chat session below:

”PM says:
it’s nice that you have seen our project management tool too
client@hotmail.com says:
I was going to say I really like your weekly status report format
PM says:
oh! thanks for liking it
(Chat Session in week 5)”

The PM also tried to introduce the other project management tools and
practices such as chat summary, Q&A compilation, etc and encouraged
the client to use them, as illustrated below:

”PM says:
fine, how r u
client@hotmail.com says:
Good, yourself? I will have questions and answers for you tomorrow.

110

6.3. QUALITY IN POS PROJECT 111

Tonight I have nothing
PM says:
great, that’s fine Mary (not the real name), we have actually kept all
the queries and
PM says:
chat minutes in Project Managemet tool and sent you thru mail too,
pl see them
client@hotmail.com says:
I will look. Do you mind if we sign off until tomorrow?
(Chat Session in week 5)”

During the creation of the design document (SDD), the communication
was not as intensive as before. It seemed like the SRS creation (analysis)
was the culmination of quality definition stage with heavy client involve-
ment. According to the project documentation, the SDD was finally pro-
duced, and then, there was a significant delay between the design and the
construction process as mentioned in section 6.2.

B. Quality Implementation

As we have mentioned earlier, the status reports for the phases after week
30 (design) were not available. Very little information was available else-
where documenting what happened in this stage, as the following.

”

• So far coding has been completed for 28 Master Screens.

• Coding for Inventory Module will be completed by the
end of the Month.

• Coding for Core-POS Module started 2 days ago

• Purchase Module need to be started with in 4 days.

• Schedule for Phase-I has to be Prepared by the PL
(Summary Meeting week 31)

”

It showed that construction had been going on for quite some times
even though until week 30 the weekly status was still labeled ”Design
Phase”.

111

6.3. QUALITY IN POS PROJECT 112

C. Quality Evaluation

According to the portfolio in the company presentation, POS was regarded
as a succesful project for the following reasons. Beside the qualities men-
tioned in 6.1, the metrics data showed that the average schedule slippage
was 0%. The construction phase was actually delayed for more than a
month. This was due to delay from the client side causing the team to
wait for the approval of SDD. Therefore, the management considered this
as zero schedule slippage. The construction phase was actually finished
much earlier than the allocated time: - 69% schedule slippage. It showed
how well the team performed. It was also probably the reason why weekly
status report was not available after week 30, namely the rhythm of work
had changed due to the delay. Furthermore, as in VMS-2 project, when
SDD had been produced, the construction could go fast and smoothly.

Review effectiveness was 100%: one review found 9 defects which
were all fixed and passed the subsequent review. There was no rework
noted in the metrics. Effort variance was also 0% noted. The team used
437 hours for on-the-project training, including formal (90 hours) and in-
formal self study (347 hours).

112

Chapter 7

Discussion

This chapter is divided into sections which are addressing the research
questions posed earlier. Section 7.1 presents the similarities and differ-
ences of the two case studies. Section 7.2 discusses the quality determi-
nants in GSW. Section 7.3 suggests several best practices to global software
work with a focus on quality achievement.

7.1 Comparison of the two case studies: VMS-2

and POS

7.1.1 Similarities

Both the VMS-2 and POS projects used waterfall methodology and fol-
lowed the quality manuals in determining their rules of the game, i.e project
management, work products, processes, customer communication etc. The
teams did not tailor the methodologies and processes according to the
problems, which implied that they assumed the two problems could be
solved in a standard way.

The analysis showed that they had followed the same pattern in the
quality stages which are closely related to the choice of methodology and
process model. It also showed the blend of methodology and QMS. The
waterfall methodology had been institutionalized and standardized in the
QMS for all (most) projects in the organization.

Both projects used most of the technologies and platforms from the
same vendors. The success of the two projects indicated their competence
in those technologies.

113

7.2. QUALITY DETERMINANTS IN GSW 114

7.1.2 Differences

The obvious differences between the two projects were the size and the
complexity of the problem. The other differences were derived from them.
Firstly, they were categorized in different division (practice group) in the
company: VMS-2 was in SmartView, while POS was in SmartBiz (see 4.2).
Unlike VMS-2, POS project required more people including a domain spe-
cialist. Secondly, communication with client was more frequent and in-
tensive in POS than in VMS-2. Post mortem analysis of POS project was
more illustrative in terms of the communication between client and ven-
dor. Chat sessions were more frequent and well-documented. I believed
it was because the size and complexity of POS project required more in-
tensive communication. Finally, more risks and issues were identified
throughout the POS project than VMS-2.

7.2 Quality determinants in GSW

This section answers the first reseach question by discussing the quality
determinants in GSW context. Thus far, I still believe that quality is hard
to define but its presence or absence is easier to recognize. I departed from
the standpoint that quality had been achieved in the two case studies pre-
viously presented and analysed, and then tried to specify and discuss the
quality determinants found in those cases. In this thesis, quality determi-
nants refer to the important factors on which software practices in these
projects are more focused in order to achieve quality. Those can be the
positive factors which the software team must ensure its existence, or they
can also be the negative ones which must be avoided. These factors are
derived only from the practices observed and analysed in the thesis, therefore it
cannot claim a broad generalization. Moreover, some of those factors confirm
findings from previous studies (see 4.1.3).

Quality is in the eye of the beholders, which primarily here are cus-
tomers. The customers are the first to judge the quality of the project they
initiated. The indicators of the judgment are the customer’s acceptance,
appraisals and complaints. The presence of the first two and the absence
of the latter imply quality achievement. Thus, the following quality de-
terminants are derived from the practices which lead to customer satisfac-
tion.

114

7.2. QUALITY DETERMINANTS IN GSW 115

A. External Factors

7.2.1 Temporal Engagement with Client

In many outsourcing projects, the project teams (vendors) were engaged
with the client only as long as the project development is going on, with
possible time extension after the product was delivered and accepted. Be-
yond that was practically out of their concern. There was not much for the
project team to do when the product – their brain-child – was operational
in the client organization. Nevertheless, being operational was actually
the ultimate test for the product’s quality, namely to show its innate ex-
cellence (transcendence view of quality) and its actual fitness for purpose
(user-based view) (see 2.2).

The temporal engagement with client in the GSO context, in which
clients were beyond national boundaries, made the process dimension of
software development more predictable, and therefore feasible, to be the
basis for work arrangement to achieve quality than the other two dimen-
sions. Product dimension was less predictable because there was practi-
cally no way to know the product quality before it was being operational.
People dimension was even more difficult to foretell, as difficult as to pre-
dict social interaction between human inviduals in general. I believed it
was the reason why roles in the project team in the case studies were not
defined by the development activities, such as analyst, database designer,
user interface designer, programmer, but by the generic project manage-
ment activities, namely project manager, project leader and team member.
By doing so, it was easier to allocate people to different projects.

Nevertheless, engagement between the client and the vendor was pre-
requsite to the project, and therefore should be established. The engage-
ment manifested in different ways in each quality stage. In the quality
definition stage the engagement was manifested in the formal contractual
agreement which stated the scope of the project and the required con-
ditions from both sides; project plan which included the developmental
stages and milestones of the project; SRS which showed the agreement on
what problems to solve and SDD which shows the agreement on what so-
lutions to develop. In the quality implementation and evaluation stage,
the engagement manifested in the execution of the engagement defined in
the quality definition stage. Failure to meet the agreement would cause
problems to the project, such as the delay of SDD approval in POS project
which had caused a significant schedule slippage.

The temporality of the engagement was closely related to the cost of the
project. Time was the main unit for calculating the efforts and the cost of

115

7.2. QUALITY DETERMINANTS IN GSW 116

the project. Early in the project, an effort estimation was determined and
agreed. A plan was then made based on this estimation. For the vendor,
this estimation was important because it indicated their professionalism
and secured them the deal with the customer. For the customer, this esti-
mation was important because it indicated the approximation of cost they
had to pay.

7.2.2 Visibility of processes

The visibility of processes referred to the possibility for a customer to mon-
itor the activities at the production end, despite the challenges posed by
the time differences and the geographical separation across the national
boundaries. Being able to ”see” the process, the customer would trust the
vendor, be engaged in the project more closely, and eventually, together
with the team, help shape the end quality.

The visibility of processes facilitated the client and the vendor in the
quality stages, especially the quality definition. In the two case stud-
ies, this constituent was mainly provided by the vendor, as indicated by
the provision of communication infrastructure and, more importantly, the
willingness of the project management to open themselves – embodied
in different practices such as documentation and reporting, as elaborated
in the next section. The client might have some ideas about this factor,
but they did not always have the power to impose it to the client by, for
example, providing means of communication or enforcing related work
practices. Referring to the software dimensions, this determinant was ob-
viously a focus on the process dimension because from that perspective,
processes were the most (if not the only) visible – i.e. available, accessible
and reportable – elements throughout the project.

7.2.3 Global Communication

The global communication here referred to the ability and mechanism to
exchange information throughout a project between a vendor and a cus-
tomer which were globally separated. Communication was indeed an im-
portant element in software development. It occurred, not only between
the team members, but also between the team and the customer. This fac-
tor should be mutual, provided that the rules of the game were agreed in
advance. Loosing the richness of face-to-face communication in the global
setting (different location, time zone and culture) was the most widely
known challenge in GSW setting. Globally distributed teams must, there-

116

7.2. QUALITY DETERMINANTS IN GSW 117

fore, establish a way to overcome this challenge.
In our case studies, only the customers were separated from the rest of

the project teams. The project teams from the vendor site were co-located,
and therefore, they were able to benefit from the use of rich face-to-face
communication means. However, since the customers played an impor-
tant role in judging the quality of the project, it was important for the ven-
dor to provide the best communication mechanism as possible. This factor
was closely related to the previous one, visibility of processes, as the com-
munication process is essential in making the development process visible
to client. Furthermore, customer communication also took us to the next
important, and still closely related, factor: customer consent.

7.2.4 Customer Consent

The customer consent here referred to the customer’s approval and agree-
ment of what is done and proposed by the vendor. This determinant was
political and partial in nature because quality determination could be seen,
to some extent, as a power struggle in which two parties (vendor and cus-
tomer) managed, contrived or dealt to achieve common goals while pro-
tecting their own interests.

As shown in the POS project, obtaining customer consent was mostly
for the benefit of the team. The POS team could not be blamed of the sig-
nificant delay which occured (see 6.2). When done iteratively in the begin-
ning and end of every activity, the agreement bound the customer to the
current result before they move to the next activity. It also avoided blame
in different circumstances which might inflict the vendor’s interests.

B. Internal Factors

Beside the external factors mentioned above, quality was also determined
by the internal ones which are so apparent in the two projects, such as:

7.2.5 Control

It referred to the ability to exercise restraining or directing influence over
all the elements involved in the development, such as scope determina-
tion. In both projects, the teams managed to define the overall scope in the
beginning, followed by the more detailed ones in the subsequent stages.
Having a clear scope in each development phase allowed them to plan

117

7.2. QUALITY DETERMINANTS IN GSW 118

activities and risk mitigation, and eventually, influence the quality of the
outcome.

7.2.6 Predictability

It referred to the ability and necessity to declare or indicate as many things
as possible in advance. This determinant gave a way for the teams to antic-
ipate any future issues and risks, and to alert the client in a timely manner.
This determinant was closely related with the previous one: predictability
was made possible by the team’s ability to control or direct influence over
the development elements. I argued that this factor, as much as the previ-
ous one, was principally caused by the adoption of the waterfall method-
ology.

7.2.7 Technical Competence

It referred to the ability to use the tools, perform the techniques and apply
the methodology in any given stage of development to produce desired
results. It also included the way of making the competence available in
the organization through trainings, etc. The use of certain tools and tech-
nology in the project imposed their inherent constraints to the solution
which, in turn, influenced the quality of the product.

7.2.8 Accomodativeness

It referred to ability and willingness of the vendor to adapt to the client’s
non technical needs and conditions. This factor became more important
due to the conditions imposed by the global work setting, i.e. different
time zones, holidays related to local culture, etc. Working hour adjust-
ment, including willingness to work on weekends, was an example of
accommodativeness which was observed as one of the stroing points of
IndiSoft.

7.2.9 Synergy between Methodology and QMS

Based on the two case studies in IndiSoft, I realized that methodology
tailoring process was rather unlikely to happen in this organization. A
methodology consisted of process, method, tools and philosophical foun-
dation (Avison & Fitzgerald, 2003). Both projects showed the use of the

118

7.3. BEST PRACTICES 119

same philosophy, namely the underlying theories and assumptions of wa-
terfall methodology, and the quite similar sets of processes which only
varied in terms of length and complexity. They varied only in the use of
tools and technology which was specifically required by the problem do-
main. These variations could not be considered as methodology tailoring.

Instead, the methodology was standardized and combined with the
external standards, such as ISO, to make an overall quality management
system for the organization.

7.3 Best practices

In this section the practices which found in the case studies, especially
those focused on the quality determinants, are discussed. They are the
best practices which can be suggested for practical purposes.

7.3.1 Documentation

Documentation was the only tangible way of representing the software
and software processes. Referring to the temporal engagement with clients
(see 7.2.1), process dimension was the most, if not the only, feasible way
on which to base the software work. Therefore, documentation became a
very important practice. However, this was not a new thing in software
engineering. The problem was actually how to create a useful documenta-
tion which served the cause of the team as well as the customers. It should
not be an overhead activity for the developers, and it should be clear and
good enough for the customer to understand regerdless of their level of
technical knowledge. Concerning the main topic at hand, two major doc-
uments – SRS and SDD – played an important role in achieving the goal
of producing quality software.

The teams compiled those documents in an exhaustive manner attempt-
ing to cover the problem and solution domain as much as possible. This
way they helped the customer to be more involved in the development
process. It also reduced the uncertainty caused by the inherent intangibil-
ity of software. Other documentation, such as test plans & reports, code
walkthroughs, etc, facilitated the visibility of process (see 7.2.2).

7.3.2 Reporting

The reporting practice was not new either. The question was how to do
it effectively to overcome the non co-located situation. In the case stud-

119

7.3. BEST PRACTICES 120

ies, it was shown how effective a weekly report could be. The customers
appreciated it because it was brief and clear. I personally agree with that
since those weekly reports made it possible to reconstruct the project long
after it had finished. The report contained the following elements: what
had been done, what to do next, risk and issue, and alerts. The internal
version of status reports also registered the number of hours spent in the
week.

7.3.3 Team building

The teams in the case studies always consisted of two leaders (PM and PL)
and one or more team members (TM). The assignments were not based on
development roles such as analyst, designer, developer, tester, etc. Instead,
each team member, sometimes even PM and PL, should be able to function
as any of those roles. It enabled the team to assign development tasks more
dynamically and independent of the people.

The job distribution of the two leaders was a good practice to over-
come the distributed work. The two-layer team leadership enabled more
effective exercise of control both internally and externally. Communica-
tion was the key here. The PL communicated more with the team mem-
bers and managed the day-to-day life of the project. This gave more space
for the PM to focus on customer needs. Communication with client was
handled primarily by the PM.

7.3.4 One channel communication with client

Without the richness of face-to-face communication, the interaction be-
tween the client and the vendor became more challenging. In the worst
case it could fall into communication disasters – complication, distortion,
and misinterpretation – which would harm the project. Problem of iden-
tity and the limitation of the medium were some of the challenges in this
faceless communication. So, to avoid confusion of identity it was better
for the client to communicate only with the project manager during the
project. Shown in the chat script, after communicating for some time, the
relationship between the client and the PM become more personal. Yet,
the client realized, only after week 9, that she had been talking only with
the same person for so long.

120

7.3. BEST PRACTICES 121

7.3.5 Combination of different practices

As observed, IndiSoft combined good practices from different approaches.
Outsourcing projects could not be conducted merely by heuristic approach
as described by Agile Development. They should mix between the formal
and agile way of development. On the one hand, the organization main-
tained the traditional and conservative methodology (waterfall), while on
the other hand, they internally adopted agile practices such as creating
the ”ecosystem” (cubicle, ip messenger, information osmosis, etc). The
process dimension was formal (waterfall), but the the people dimension
was agile(dynamic assignment).

The organization also established a process which combined the ex-
ternal standard (ISO 9001) and the methodology (waterfall) as an answer
to the development challenges such as variation in people and variation
across projects. Recognizing the variety of projects they established two
practice groups (SmartView and SmartBiz) and applied the process ac-
cordingly. They managed to draw a balance between discipline, skills, and
understanding – the elements which are more emphasized in Agile Devel-
opment – and process, formality, and documentation. In fact, these cases
showed that QMS played a more central role in determining the success
of an outsourcing project than methodology per se.

121

Chapter 8

Conclusion

In this chapter, key messages and contributions of the study are presented,
grouped by the various targeted audience. This thesis provides contribu-
tion for various audience: IS researchers, methodology authors and soft-
ware outsourcing practitioners.

To IS Researchers

I enhance the notion of quality in software development and emphasize
its importance in the context of GSW. Although quality has been taken for
granted as an emerging outcome of a disciplined process, here it is seen
in a new and different way. Drawing from a richer view of software as
a multidimensional entity (product, process, people), quality can be seen
not just as a monolithic concept relying merely on the process view, but as
one consisting of invariant elements derived from common practices and
variable elements derived from negotiation between all actors involved in
the development process. This view of quality as well as the contemporary
approaches to it (software methodologies and QMS) are integrated in a
framework which can be useful to monitor, identify and analyse quality
issues in software projects.

To Methodology Authors

Using the multidimensional view of software, methodology authors can
devise a more comprehensive strategy to develop software by addressing
various issues of quality more closely. They are expected to be more aware
of the variable elements of quality and design the methodology accord-
ingly. And most importantly, drawing from the experience of distributed

122

123

(as opposed to co-located) development, they can include a strategy to re-
solve the inherent challenges posed by the distibuted context.

To GSO Practitioners

This thesis recommends best practices for GSO practitioners which are
drawn from succesful experiences in the case studies while recognizing
the importance of people dimension of software – i.e. customers – to
achieve such a success.

123

Bibliography

[Ahern et al., 2003] Ahern, D. M., Clouse, A., and Turner, R. (2003). CMMI
Distilled: A Practical Introduction to Integrated Process Improvement. Addi-
son Wesley, 2nd edition.

[Avison and Fitzgerald, 2003a] Avison, D. and Fitzgerald, G. (2003a).
Information systems development : methodologies, techniques and tools.
McGraw-Hill, London. TY - BOOK.

[Avison and Fitzgerald, 2003b] Avison, D. E. and Fitzgerald, G. (2003b).
Where now for development methodologies? Commun. ACM, 46(1):78–
82.

[Barret et al., 1997] Barret, M., Sahay, S., Hinings, B., and Krishna, S.
(1997). The process of building gso relationships: the experience of a
multinational vendor with indian contractors. In ICIS ’97: Proceedings of
the eighteenth international conference on Information systems, pages 500–
501, Atlanta, GA, USA. Association for Information Systems.

[Binder, 2000] Binder, R. (2000). Testing Object-Oriented Systems. Addison-
Wesley.

[Brooks, 1987] Brooks, F. P. (1987). No silver bullets: Essences and acci-
dents of software engineering. IEEE Computer, April 1987:10 – 19.

[Brooks, 1995] Brooks, F. P. (1995). The mythical man-month : essays on soft-
ware engineering. Addison-Wesley, Reading, Mass. TY - BOOK.

[Bruegge and Dutoit, 2004] Bruegge, B. and Dutoit, A. (2004). Object Ori-
ented Software Engineering Using UML, Pattern and Java. Pearson Prentice
Hall.

[Bryant, 2000] Bryant, A. (2000). It’s engineering jim , but not as we know
it: software engineering – solution to the software crisis, or part of the

124

BIBLIOGRAPHY 125

problem? In ICSE ’00: Proceedings of the 22nd international conference on
Software engineering, pages 78–87, New York, NY, USA. ACM Press.

[BusinessWeek, 2005] BusinessWeek (2005). Cafes, beaches, and call cen-
tres. BusinessWeek 5/12 September, page 23.

[Buzan, 1995] Buzan, T. (1995). The mind map book. BBC, London. TY -
BOOK.

[Buzan, 2004] Buzan, T. (2004). www.mind-map.com.

[Castells, 2000] Castells, M. (2000). The rise of the network society, volume 1
of The Information Age: Economy, Society and Culture. Blackwell Publish-
ers Ltd, Oxford. TY - BOOK.

[Cockburn, 2001] Cockburn, A. (2001). Agile software development.
Addison-Wesley, Boston, Mass. TY - BOOK.

[Cockburn, 2003] Cockburn, A. (2003). People and methodologies in software
development. Faculty of Mathematics and Natural Sciences, University
of Oslo, Oslo. TY - BOOK Delvis opptrykk av artikler.

[Costlow, 2003] Costlow, T. (2003). Globalization drives changes in soft-
ware careers. Software, IEEE, 20(6):14–16. TY - JOUR.

[Crosby, 1979] Crosby, P. B. (1979). Quality is free : the art of making quality
certain. McGraw-Hill, New York.

[Crowther and Clarke, 2005] Crowther, D. C. and Clarke, P. J. (2005). Ex-
amining software testing tools. Dr. Dobb’s Journal, #373 June(373):26 –
33.

[Cusumano et al., 2003] Cusumano, M., MacCormack, A., Kemerer, C.,
and Crandall, B. (2003). Software development worldwide: the state
of the practice. Software, IEEE, 20(6):28–34. TY - JOUR.

[Das et al., 1999] Das, A., Soh, C., and Lee, P. (1999). Client satisfaction
with outsourced it services: a transaction-cost approach. In Proceeding
of the 20th international conference on Information Systems, pages 518–523.
Association for Information Systems, Charlotte, North Carolina, United
States.

[Dibling, 2005] Dibling, J. (2005). Debugging production software. Dr.
Dobb’s Journal, #373 June:42–46.

125

BIBLIOGRAPHY 126

[Eickelman, 2003] Eickelman, N. (2003). An insider’s view of cmm level
5. Ieee Software, 20(4):79–81.

[Fairchild, 2004] Fairchild, A. (2004). Information technology outsourc-
ing (ito) governance: an examination of the outsourcing management
maturity model. In System Sciences, 2004. Proceedings of the 37th Annual
Hawaii International Conference on, pages 232–239. TY - CONF.

[Feller and Fitzgerald, 2000] Feller, J. and Fitzgerald, B. (2000). A frame-
work analysis of the open source software development paradigm. In
ICIS ’00: Proceedings of the twenty first international conference on Informa-
tion systems, pages 58–69, Atlanta, GA, USA. Association for Informa-
tion Systems.

[Filman et al., 2004] Filman, R. E., Elrad, T., Clarke, S., and Aksit, M.
(2004). Aspect-Oriented Software Development. Addison Wesley Profes-
sional.

[Frühauf, 1994] Frühauf, K. (1994). Software quality: Concern for people.
In 4th European Conference on Software Quality, VDF, Zurich.

[Garvin, 1984] Garvin, D. (1984). What does product quality mean? Sloan
Management Review, 4.

[Geertz, 1973] Geertz, C. (1973). The interpretation of cultures : selected es-
says. Basic Books, New York. TY - BOOK.

[Gillies, 1997] Gillies, A. (1997). Software quality: theory and management.
International Thomson Computer Press, London. TY - BOOK.

[Haag et al., 1996] Haag, S., Raja, M. K., and Schkade, L. L. (1996). Quality
function deployment usage in software development. Commun. ACM,
39(1):41–49.

[Heeks et al., 2001] Heeks, R., Krishna, S., Nicholson, B., and Sahay, S.
(2001). Synching or sinking: Global software outsourcing relationships.
IEEE Software, 18(2):54–60.

[Holmquist, 2005] Holmquist, L. E. (2005). Prototyping: generating ideas
or cargo cult designs? interactions, 12(2):48–54.

[Hosny, 2004] Hosny, H. (2004). The cmm software quality assurance pro-
cess scaled down for small organizations. In Electrical, Electronic and
Computer Engineering, 2004. ICEEC ’04. 2004 International Conference on,
pages 291–294. TY - CONF.

126

BIBLIOGRAPHY 127

[Huo et al., 2004] Huo, M., Verner, J., Zhu, L., and Babar, M. (2004). Soft-
ware quality and agile methods. In Computer Software and Applications
Conference, 2004. COMPSAC 2004. Proceedings of the 28th Annual Interna-
tional, pages 520–525 vol.1. TY - CONF.

[Imsland, 2003] Imsland, V. (2003). The role of trust in global software out-
sourcing relationships. V. Imsland, Oslo. TY - BOOK Hovedoppgave i
informatikk (Cand.scient.) - Universitetet i Oslo, 2003.

[Imsland and Sahay, 2005] Imsland, V. and Sahay, S. (2005). ’negotiat-
ing knowledge’: The case of a russian-norwegian software outsourcing
project. Scand. J. Inf. Syst., 17(1):101–130.

[Jackson, 2004] Jackson, M. (2004). Seeing more of the world [require-
ments engineering]. Software, IEEE, 21(6):83–85. TY - JOUR.

[Khoshgoftaar et al., 2004] Khoshgoftaar, T., Liu, Y., and Seliya, N. (2004).
A multiobjective module-order model for software quality enhance-
ment. Evolutionary Computation, IEEE Transactions on, 8(6):593–608. TY -
JOUR.

[Kitchenham, 1989] Kitchenham, B. A. (1989). Software quality assurance.
Microprocess. Microsyst., 13(6):373–381.

[Klein and Myers, 1999] Klein, H. K. and Myers, M. D. (1999). A set of
principles for conducting and evaluating interpretive field studies in
information systems. MIS Q., 23(1):67–93.

[Krishnan, 1993] Krishnan, M. S. (1993). Cost, quality and user satisfac-
tion of software products: an empirical analysis. In Proceedings of the
1993 conference of the Centre for Advanced Studies on Collaborative research:
software engineering - Volume 1, pages 400–411. IBM Press, Toronto, On-
tario, Canada.

[La Ferla, 2004] La Ferla, B. (2004). Offshore outsourcing: out of favour?
IEE Review, 50(3):26–27. TY - JOUR.

[Laplante et al., 2004] Laplante, P., Costello, T., Singh, P., Bindiganavile,
S., and Landon, M. (2004). The who, what, why, where, and when of it
outsourcing. IT Professional, 6(1):19–23. TY - JOUR.

[Lichter et al., 1993] Lichter, H., Schneider-Hufschmidt, M., and Zl-
lighoven, H. (1993). Prototyping in industrial software projects – bridg-
ing the gap between theory and practice. In Proceedings of the 15th in-

127

BIBLIOGRAPHY 128

ternational conference on Software Engineering, pages 221–229. IEEE Com-
puter Society Press, Baltimore, Maryland, United States.

[Malloy and Voas, 2004] Malloy, B. and Voas, J. (2004). Programming
with assertions: a prospectus [software development]. IT Professional,
6(5):53–59. TY - JOUR.

[McLaughlin, 2003] McLaughlin, L. (2003). An eye on india: outsourcing
debate continues. Software, IEEE, 20(3):114–117. TY - JOUR.

[Mich et al., 2003] Mich, L., Franch, M., and Gaio, L. (2003). Evaluating
and designing web site quality. IEEE Multimedia, 10(1):34–43.

[Mintzberg, 1983] Mintzberg, H. (1983). Structure in fives : designing effec-
tive organizations. Prentice-Hall, Englewood Cliffs, N.J.

[Mockus et al., 2005] Mockus, A., Zhang, P., and Li, P. L. (2005). Predictors
of customer perceived software quality. In Proceedings of the 27th interna-
tional conference on Software engineering, pages 225–233. ACM Press, St.
Louis, MO, USA.

[Natt och Dag et al., 2005] Natt och Dag, J., Regnell, B., Gervasi, V., and
Brinkkemper, S. (2005). A linguistic-engineering approach to large-scale
requirements management. Software, IEEE, 22(1):32–39. TY - JOUR.

[Pressman, 2005] Pressman, R. S. (2005). Software engineering : a practi-
tioner’s approach. McGraw-Hill Higher Education, Boston.

[Pyzdek, 2003] Pyzdek, T. (2003). Quality Engineering Handbook, 2nd Ed.
Marcel Dekker, Inc., New York - Basel, 2nd edition.

[Robertson, 1995] Robertson, S. (1995). Visibility: the key to quality im-
provement. Software, IEEE, 12(4):95–97. TY - JOUR.

[Sahay, 2003] Sahay, S. (2003). Global software alliances: the challenge of
’standardization’. Scand. J. Inf. Syst., 15(1):3–21.

[Sahay et al., 2003] Sahay, S., Nicholson, B., and Krishna, S. (2003). Global
IT outsourcing: software development across borders. Cambridge University
Press, Cambridge.

[Sharp et al., 2000] Sharp, H., Robinson, H., and Woodman, M. (2000).
Software engineering: community and culture. Software, IEEE, 17(1):40–
47. TY - JOUR.

128

BIBLIOGRAPHY 129

[Siakas, 2002] Siakas, K. (2002). What has culture to do with spi? In Eu-
romicro Conference, 2002. Proceedings. 28th, pages 376–381. TY - CONF.

[Sloper, 2004] Sloper, A. (2004). Meeting the challenge of outsourcing. En-
gineering Management Journal, 14(3):34–37. TY - JOUR.

[Sommerville, 2004] Sommerville, I. (2004). Software engineering.
Pearson/Addison-Wesley, Boston.

[Tiwana, 2004] Tiwana, A. (2004). Beyond the black box: knowledge over-
laps in software outsourcing. Software, IEEE, 21(5):51–58. TY - JOUR.

[Vaughan-Nichols, 2003] Vaughan-Nichols, S. (2003). Building better soft-
ware with better tools. IEEE JNL Computer, 36(9):12–14.

[Voas, 2004] Voas, J. (2004). Software’s secret sauce: the -ilities [software
quality]. Software, IEEE, 21(6):14–15. TY - JOUR.

[Walsham, 1993] Walsham, G. (1993). Interpreting information systems in
organizations. Wiley, Chichester. TY - BOOK.

[Ward and Aurum, 2004] Ward, J. and Aurum, A. (2004). Knowledge
management in software engineering - describing the process. In Soft-
ware Engineering Conference, 2004. Proceedings. 2004 Australian, pages
137–146. TY - CONF.

[Wood, 2003] Wood, A. P. (2003). Software reliability from the customer
view. IEEE JNL Computer, 36(8):37–42.

[Yilmaz et al., 2004] Yilmaz, C., Memon, A., Porter, A., Krishna, A.,
Schmidt, D., Gokhale, A., and Natarajan, B. (2004). Preserving dis-
tributed systems critical properties: a model-driven approach. Software,
IEEE, 21(6):32–40. TY - JOUR.

129

Glossary of Acronyms

• CMM: Capability Maturity Model

• CMMI: Capability Maturity Model Integration

• DLC: Development Life Cycle

• GSO: Global Software Outsourcing

• GSW: Global Software Work

• ICT: Information & Communication Technology

• ISO: International Organization for Standardization

• MNC: Multi National Company

• PL: Project Leader

• PM: Project Manager

• QFD: Quality Function Deployment

• QMS: Quality Management System

• SDLC: Software Development Life Cycle

• SPICE: Software Process Improvement and Capability dEtermina-
tion

• TCE: Transaction Cost Economics

• TM: Team Member

• TQM: Total Quality Management

• V&V: Verification & Validation

130

