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RESEARCH ARTICLE

Caught off Base: A Note on the Interpretation of Incremental Fit Indices

Saskia van Laar and Johan Braeken

University of Oslo

ABSTRACT
This note serves as a reminder that incremental fit indices are a form of standardized effect sizes and
hence, all reservations with respect to interpretations of standardized effect sizes also transfer to their
interpretation. Such a realization has major implications for the interpretation and use of incremental
fit indices, for the theoretical (im)possibility of default universal rules of thumb in their application,
and for simulation studies mapping incremental fit indices as if their value is comparable in an abso-
lute sense across any and all conditions. A small but illustrative working example centered around the
alleged impact of model type will drive these points home.

KEYWORDS
Baseline model;
determinant; incremental fit
index; model type; relative
model fit

Model fit assessment and model comparison remain univer-
sally important but also confusing topics in structural equa-
tion modeling (SEM). Tons of model fit tests and diagnostic
fit indices have been introduced for purpose of model fit
assessment—with Marsh et al. for instance already looking
at 29 fit indices early on in 1988 —and new developments
are abundant and extend fit indices beyond their initial
boundaries (e.g., non-normal data, bias-reduction; see for
example Raykov, 2005; Yuan & Bentler, 2000). Recent prac-
tice has arguably converged to reporting multiple fit indices
and following rules of thumb based on the work by Hu and
Bentler (1999), with the chisquare statistic (v2), Root Mean
Square Error of Approximation (RMSEA), and Comparative
Fit Index (CFI) among the popular indices to use and report
(Jackson et al., 2009). For model assessment guidelines and
rules of thumb for fit indices to work, they should be pro-
ven to function rather universally across a broad scope of
data and model characteristics. Yet, the extensive simulation
literature on this matter has already put forward many fac-
tors that are influencing the general applicability of the rules
of thumb (for a review, see e.g., Niemand & Mai, 2018)
leading to a general caution on their universality.

This general caution is also readily ignored in practice
where a binary search for adherence with the rules of thumb
for a range of fit indices is the factual norm. The latter
might come across as a surprise but is in line with
McDonald and Ho (2002) who state that “it is sometimes
suggested that we should report a large number of these
indices, apparently because we do not know how to use any
of them” (p. 72), resulting in a lack of deliberate decision
making. To make more informed decisions with respect to
the use of fit indices it is important to know how these fit

indices work. However, as Lai and Green (2016) point out
“the meaning of ‘good’ fit and how it relates to fit indices
are not well-understood in the current literature” (p. 234).

This manuscript sets out to remind/clarify what the
meaning of good fit is for incremental fit indices and what
implications this should have for their use in practice. The
alleged impact of model type on incremental fit indices is
used as a working example to elucidate the actual impact of
the baseline as opposed to the type of target model.

1. Incremental Fit Indices

Incremental fit indices, such as the Normed Fit Index (NFI:
Bentler & Bonett, 1980), Comparative Fit Index (CFI:
Bentler, 1990), or Tucker-Lewis Index (TLI: Tucker &
Lewis, 1973) are part of a family of relative fit measures for
structural equation modeling that involves locating a model
of interest within a continuum of models from the worst fit-
ting baseline model to the perfect fitting or saturated model.
Incremental fit indices are much like SEM counterparts of
r-square indices in linear regression.

r2YjX ¼ 1� SSerror
SStotal

NFIðm, bÞ ¼ 1� v2m
v2b

CFIðm, bÞ ¼ 1� km
kb

¼ 1� v2m�dfm
v2b � dfb

TLIðm, bÞ ¼ v2b=dfb�v2m=dfm
v2b=dfb � 1

effect size ¼
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1�misspecification of target model ‘m’ vs saturated model
misspecification baselinemodel ‘b’ vs saturated model

(1)

Note. r2YjX ¼ r-squared, relative reduction in prediction
error of Y given predictors X; SSerror ¼ error sum of
squares, sum of squared differences between each data point
yi and their estimated value ŷi; SStotal ¼ total sum of
squares, sum of squared differences between each data point
yi and the average �y; NFI¼Normed Fit Index;
CFI¼Comparative Fit Index; TLI¼Tucker-Lewis Index;
with km ¼ non-centrality parameter of a model of interest;
kb ¼ non-centrality parameter of a baseline model; v2m ¼
chisquare of a model of interest; v2b ¼ chisquare of a base-
line model; dfm ¼ degrees of freedom of a model of inter-
est; dfb ¼ degrees of freedom of a baseline model.

Equation (1) shows that each of the measures renorms
the misspecification of the target model1 in terms of the
magnitude of the corresponding misspecification of a base-
line model. In other words, the baseline model functions as
the standard of comparison.

1.1. Null Model as Baseline

When incremental fit indices are seen in practice, the
default baseline model is the null model where all manifest
variables are assumed to be uncorrelated. Hence, the core
component in the denominator of the incremental fit indi-
ces then becomes v20, the chisquare of the null model (with
degrees of freedom df0 ¼ IðI�1Þ=2Þ and I the number of
manifest variables). Under the default maximum likelihood
estimator, the latter chisquare reduces to minus the log
determinant of the observed correlation matrix � log jRj (up
to a sample size factor) (for the derivation, see Appendix
A). Thus, the standardized metric of the incremental fit
indices with null baseline is set by this determinant, a single
number representing a generalized measure of variance
across your entire dataset. By definition, the determinant of
a correlation matrix can be seen geometrically as the volume
of the swarm of standardized data points, with jRj ¼ 1 in
case of all zero-correlations (corresponding to a ‘ball’ in a
multidimensional plane) and with jRj ¼ 0 for a matrix with
perfect linear dependence (a ‘ball’ flattened along at least
one dimension). As Lai and Green (2016) correctly mention,
how the determinant changes as a function of a single par-
ticular correlation in the correlation matrix are generally
opaque. What is clear, however, is that the determinant is a
real multivariate measure and not simply represents the
magnitude of the average correlation, but more something
like the magnitude of the dominant correlation (the deter-
minant is equal to the product of eigenvalues of the correl-
ation matrix). Although perhaps not coming across as the
most intuitive metric, this determinant does form the core
of the standardized metric underlying the popular

incremental fit indices in structural equation modeling.
Thus, in essence, incremental fit indices are in fact a form
of standardized effect size measure, and hence, all reserva-
tions with respect to interpretations of standardized effect
size measures (e.g., Baguley, 2009) also transfer to their
interpretation. Such a realization has major implications for
the interpretation and use of incremental fit indices, for the
theoretical (im)possibility of default universal rules of
thumb in their application, and for simulation studies map-
ping incremental fit indices as if their value is comparable
in an absolute sense across any and all conditions. We will
drive these points home using a small but illustrative work-
ing example centered around the alleged impact of model
type and end with a brief discussion elaborating on these
implications.

2. Impact of Model Type?

Reviewing the literature for the differential impact of model
type on the behavior of fit indices leads to calls for caution
when intending to apply general cutoff criteria across differ-
ent model types. Considering a range of SEM models, Fan
and Sivo (2007) concluded for instance that CFI sampling
distributions are sensitive to differences in model type and
that this becomes more apparent with increased model mis-
specification. Similarly, in their famous benchmark study, Hu
and Bentler (1999) simulation results showed differences
between simple and more complex structured confirmatory
factor analysis models. When comparing simple and approxi-
mate simple structure factor models Beauducel and
Wittmann (2005) further observed differences among fit indi-
ces and what magnitude of secondary loading misspecifica-
tion they tolerate depending on the rule of thumb applied.

Changing the model type implies changing where the
correlation can be found in the model’s implied correlation
matrix. A one-factor model with equal loadings for 6
observed variables implies a homogeneous correlation all
across the 6-by-6 correlation matrix R1: In contrast, an
orthogonal two-factor model with independent cluster struc-
ture and equal loadings for each of the three variables per
factor imply a block-structured correlation matrix R2, with
0 correlation on the between-block cells and homogeneous
correlation for within-block cells (see Equation (2)).

R1 ¼

1 r r r r r
1 r r r r

1 r r r
1 r r

1 r
1

2
6666664

3
7777775

R2 ¼

1 r r 0 0 0
1 r 0 0 0

1 0 0 0
1 r r

1 r
1

2
6666664

3
7777775

(2)

So does the behavior of the incremental fit indices really
depend on which type of model is being considered?

2.1. Three Data-Generating Models

We will consider three data-generating population models
M1, M2, and M3. M1 is the aforementioned one-factor

1NFI uses absolute misspecification as given by the model’s chisquare to the
saturated model, CFI uses the model’s noncentrality parameter (k ¼ v2�df),
and TLI the ratio of chisquare to degrees of freedom of the model.
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model with equal factor loadings, and both M2 and M3 take
the form of the aforementioned orthogonal multi-factor
model with independent cluster structure and equal factor
loadings (see also Equation (2)). The difference between
models M2 and M3 is that in the former the degree of
multivariate dependence as given by the determinant of the
model-implied correlation matrix jRj is equal to that in
model M1, whereas in the latter the size of the within-block
correlation rb (or similarly, the square root of the homoge-
neous factor loading) is equal to that of model M1.

2.1.2. Study Design
2.1.2.1. Two Simulation Scenarios. To materialize this, con-
sider the following two scenarios where sample size n¼ 200,
number of variables I¼ 12, and degrees of freedom df ¼ 54:
Model M1 was set to have a within-block correlation of
rb ¼ :40 resulting in determinant jR1j ¼ :02 in scenario 1 or
a within-block correlation of rb ¼ :2 resulting in determin-
ant jR1j ¼ :27 in scenario 2. Building from there, Model M2
and M3 were set to contain B¼ 3 independent cluster
blocks with Ib ¼ 4 indicators per block (i.e.,
I ¼ 3� 4 ¼ 12), where for model M2 the within-block cor-
relation rb was set such that the determinant of its implied
correlation matrix would equal2 that of model M1 and for
model M3 the within-block correlation would simply be set
equal to that of model M1. Table 1 summarizes the relevant
features of the three data-generating models under both
scenarios. Notice that models M2 and M3 also have close to
equal average implied correlation (�r). The two scenarios
only differ in the amount of correlation present in the data.

2.1.2.2. Crossfitting: 3� 2 Conditions. For each data-gener-
ating model—M1, M2, and M3, 5,000 replicates were gener-
ated by simulating sample covariance matrices Sm drawn
from a Wishart distribution with population covariance
matrix composed from the I� I model-implied population
correlation matrix RM and I population variances sampled

from a uniform distribution on the interval ½:75, 2�: To each
replicate, both a one-factor model and an orthogonal three-
factor model with independent cluster structure were fitted
using maximum likelihood estimation. This cross-fitting
procedure results in having a correctly specified and one
misspecified model for each data-generating condition. Data
simulation and analyses were conducted in R (R Core
Team, 2020) through custom scripts in combination with
the lavaan package (Rosseel, 2012).

2.1.2.3. Study Objective. This study design will aid in gain-
ing insight into how different fit indices operationalize
“model fit” and in particular how incremental fit indices
should be interpreted as a function of their baseline when
dealing with both correctly as well as misspecified target
models. Note that the sample size and the number of varia-
bles are purposively kept constant to exclude potential con-
founding due to the model size effect on bias in the sample
chisquare (e.g., Moshagen, 2012).

3. Results

3.1. Correctly-Specified Models

3.1.1. Absolute Fit
Estimating correctly-specified model results in a sample
chisquare statistic v2m of the target model m to the saturated
model that has a near-zero value plus some upwards bias
that is a function of sample size and the number of variables
(Moshagen, 2012). The latter two data characteristics are
constant across the three data-generating model conditions,
which should result in similar bias magnitude. Hence, if we
fit correctly-specified models to data of each of the three
data-generating models, we would theoretically expect to see
the exact same central chisquare distribution to pop up for
the chisquare model fit statistic. Figure 1 illustrates and con-
firms these theoretical predictions based upon the 5000 rep-
licates. For the chisquare statistic v2m the distribution is
indeed equivalent up to minor Monte Carlo variation under
each of the three data-generating models when a correctly
specified model is fitted, with about 92.5% of the 5,000 rep-
lications per data-generating model resulting in a non-

Table 1. Study design: Two estimated models cross-fitted across three data-generating models.

Data characteristics Estimated model

Data-generating model df n I B Ib rb jRj �r Correctly specified Misspecified

Scenario 1

M1: one-factor 54 200 12 1 12 .40 .02 .40 One-factor Multi-factor
M2: multi-factor equal jRj 54 200 12 3 4 .53 .02 .14 Multi-factor One-factor
M3: multi-factor equal rb 54 200 12 3 4 .40 .11 .11 Multi-factor One-factor

Scenario 2

M1: one-factor 54 200 12 1 12 .20 .27 .20 One-factor Multi-factor
M2: multi-factor equal jRj 54 200 12 3 4 .30 .27 .08 Multi-factor One-factor
M3: multi-factor equal rb 54 200 12 3 4 .20 .55 .05 Multi-factor One-factor

Note. df degrees of freedom of the data-generating model [i.e., IðI þ 1Þ=2 sufficient statistics � 24 estimated parameters]; sample size n; I number of manifest
indicator variables; B number of independent cluster blocks; Ib number of indicators per block; rb within-block correlation; jRj determinant of the model-implied
population correlation matrix as an expression of the degree of multivariate dependence; �r average model-implied correlation. Non-zero factor loadings in data-
generating models are constrained to

ffiffiffiffi
rb

p
; estimated models have no such equality constraints. Multi-factor models are orthogonal with an independent cluster

structure (cf. blocks).

2Given the homogeneity within and across blocks, the required within-block
correlation can be obtained from the fact that the determinant for M2
reduces to the product of the within-block determinants and the relation
jRM1j ¼ ½1þ ðI�1Þrb�½1�rb�I�1(e.g., Graybill, 1983).
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statistically-significant chisquare statistic (i.e., v2m � 72:15,
the 5% critical value for df¼ 54). Withstanding the differ-
ence in the amount of data correlation between the scen-
arios, these results do apply to both scenario 1 and
scenario 2.

As a corollary, given that the RMSEA is a function3 of
only the target model’s chisquare, degrees of freedom, and
sample size, the same equivalence of distributions across the
three data generating model conditions also holds for this
member of the family of parsimony fit indices. For the
RMSEA, equivalent distributions were indeed observed (M
¼ .015, and SD ¼ .016, across all models) with values for
95% of the replicates falling in the interval ½:00, :05�:

3.1.2. Incremental Fit
The same equivalence of distribution across all of the data-
generating models does not apply for the incremental fit
indices, neither across scenarios nor within a scenario. For

instance, although the CFI is on average as high as .99 in
scenario 1, only the distribution under M1 and M2 is simi-
lar, but characterized by heavier tails in the case of M3 with
a lower adjacent4 CFI value of .95 and a minimum of .89
compared to a lower adjacent CFI value of .97 and a min-
imum of .94 for both M1 and M2 (see Figure 2). When
applying the commonly adopted .95 rule of thumb, this
would result in assessing 4% of the correctly specified M3
models as showing non-acceptable fit to the data, compared
to close to 0% for M1 and M2. With the lower amount of
data correlation in scenario 2, this pattern of findings repro-
duces but with larger sampling variation in CFI values
under all models, resulting in assessing 14 and 15% of repli-
cates under M1 and M2 as non-acceptable according to the
CFI � :95 rule of thumb with lower adjacent CFI values of
.92 and .92 and minima of .81 and .84 compared to 29% of
non-acceptably fitting replicates under M3 with lower adja-
cent CFI value of .85 and a minimum of .70.

Scenario 1 Scenario 2

C
orrectly specified

M
isspecified

one−factor multi−factor

equal |R|

multi−factor

equal rb

one−factor multi−factor

equal |R|

multi−factor

equal rb

20

40

60

80

100

200

400

600

800

Data−generating model

χ m2

Figure 1. v2 distribution under correctly- and misspecified models. The dotted line corresponds to the 5% critical value v2df¼54 ¼ 72:15 With v2m chisquare of the
model of interest; jRj determinant of the model-implied population correlation matrix as an expression of the degree of multivariate dependence; rb within-block
correlation. In both scenarios, sample size n¼ 200. The misspecified model is a multi-factor model for the one-factor model, and vice versa (see also Table 1).

3Root Mean Square Error of Approximation: RMSEA ¼
ffiffiffiffiffiffiffiffiffiffi
v2m�df

p
ffiffiffiffiffiffiffiffiffiffiffiffi
dfðn�1Þ

p :

4Lower Adjacent Value: the smallest observation above or equal to the lower
inner fence (i.e., first quartile minus the interquartile range) in a boxplot.
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The equivalence of CFI distributions under M1 and M2
is due to both having a similar CFI numerator (i.e., based
on the v2m of a correctly specified model with the same
degrees of freedom and equal sample size) and denomina-
tors with similar baseline value based on v20 ¼
� log ðjRjÞðn�1Þ, reflecting the degree of multivariate
dependence in the data (see Table 1). In contrast, M3 also
has a similar numerator but has a smaller baseline which
makes it harder to differentiate between the model of inter-
est and the baseline model, resulting in the heavier CFI tails
under M3. In scenario 2, with the amount of data correl-
ation being lower compared to scenario 1, the smaller base-
line for all three data-generating conditions amplifies the
variation in CFI including numerous observed values that
are not even in line with the common rule of thumb guide-
lines for correctly specified models.

Trends similar to CFI’s apply to other incremental fit
indices, but the increased sampling variance in scenario 2
and the heavier tail under M3 now apply to both the lower
and upper tail of the distribution as both TLI and NFI are,
in contrast to CFI, not restricted to an upper bound of 1. In

sum, these trends show that the degree of multivariate
dependence plays an integral part in the observed differen-
ces in CFI distribution, the performance of common rules
of thumb, and variation in the sampling distribution of the
incremental fit indices by changes in the baseline for com-
parison, regardless of changes in model type.

3.2. Misspecified Models

3.2.1. Absolute Fit
To consider misspecified models we fitted an orthogonal
multi-factor model with independent cluster structure to
data generated under M1 (one-factor model with equal
loadings), and a one-factor model to data generated under
models M2 and M3 (orthogonal multi-factor models with
independent cluster structure and equal loadings) (see Table
1). The resulting misspecified models, denoted by M10, M20,
and M30, have absolute misspecification as measured by v2M0

of a similar magnitude for M10 (v2M10 : M ¼ 395) and M30

(v2M30 : M ¼ 345), but about one and a half times larger mis-
specification for M20 (v2M20 : M ¼ 576) in scenario 1 (see left

Scenario 1 Scenario 2

C
orrectly specified

M
isspecified

one−factor multi−factor

equal |R|

multi−factor

equal rb

one−factor multi−factor

equal |R|

multi−factor

equal rb

0.7

0.8

0.9

1.0

0.25

0.50

0.75

Data−generating model

C
F

I

Figure 2. CFI distribution under correctly- and misspecified models. The dotted line corresponds to the commonly adopted .95 CFI rule of thumb. With jRj deter-
minant of the model-implied population correlation matrix as an expression of the degree of multivariate dependence; rb within-block correlation. In both scen-
arios, sample size n¼ 200. The misspecified model is a multi-factor model for the one-factor model, and vice versa (see also Table 1).
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panel of Figure 1). For scenario 2, the chisquare values were
reduced as they were bounded by the lower amount of data
correlation. Differences in chisquare values between models
were more compressed with M20 still the lowest
(v2M20 : M ¼ 215), now more closely followed by M10

(v2M10 : M ¼ 194), but still a good distance to M30

(v2M30 : M ¼ 123). Under each data-generating condition, the
misspecified model resulted in rejecting the chisquare test of
equal fit to the saturated model for almost exactly 100% of
the replicates.

In terms of parsimony-adjusted absolute fit as measured
by the RMSEA the chisquare values translated to an average
RMSEA of .18, .22, and .16 for M10 to M30, respectively
under scenario 1 and reduced to about half those values in
scenario 2 (with the lower amounts of data correlation) to an
average RMSEA of .11, .12, and .08 for M10 to M30, respect-
ively. As a consequence, applying the popular rule of thumb
of RMSEA below .08 in scenario 2 would wrongly assess M30

as an acceptable fitting model for 52% of the replicates.

3.2.2. Incremental Fit
When looking at incremental fit indices, the magnitude pat-
tern of misspecification shifts compared to the absolute fit
indices. For scenario 1, M10 results in higher incremental fit
values than both M20 and M30, and the latter two being
equal in size (e.g., see left panel of Figure 2; CFI : M ¼
:56, :34, &.35, respectively). The magnitude of CFI values
seems to imply that M10 is the least misspecified, and M20

and M30 the most misspecified among the three models
(i.e., M10<ðM20, M30Þ). In contrast, the magnitude order of
v2 indicated M30 and M10 to be the least misspecified and
M20 the most misspecified (i.e., ðM30,M10Þ<M20).

How can these irreconcilable differences in assessment of
the magnitude of model misspecification or model fit be
explained? Well, M20 and M30 are both one-factor models
wrongly fitted to data from a multi-factor, whereas M10 is a
one-factor model wrongly fitted to a multi-factor model,
and hence the obvious culprit for these CFI differences
must be the difference in model type? Yet, by making such
an inference, we would be caught off base by not accounting
for the nature of incremental fit indices and applicable base-
line differences. Whereas chisquare and RMSEA are more
absolute measures of misspecification (raw or parsimony-
adjusted), the incremental fit indices are relative measures
with the amount of absolute misspecification under the
baseline model as a standardized metric.

Although M10 and M30 have similar v2m values (i.e., basis
of the numerator in incremental fit indices) for the target
model, the baseline model in case of data generated under
M1 has a larger v20 value than under M3, leading to
M10>M30 in CFI value. Hence, relatively speaking in CFI
terms, the model M10 is less badly misspecified compared to
the baseline model for data from M1 than is the model M30

compared to the baseline model for data from M3.
Furthermore, a large v2m is divided by a large baseline chis-
quare in M20’s case and that happens to result in a CFI
value similar to dividing a smaller target model chisquare
by a smaller baseline chisquare in M30’s case.

In other words, by trying to compare CFI values across
models fitted on different datasets, we are looking at values
on different standardized metrics as if they were comparable
in an absolute sense and are now essentially ignoring the
fact that we are comparing different units, literally, percen-
tages of different baseline totals. Note that the same reason-
ing applies to scenario 2, although the pattern of
incomparable values across models differs.

4. Implications

What all of this hopefully clarifies, is that we should resist
the temptation to interpret values of incremental fit indices
as if they were comparable in an absolute sense because
they are only comparable in the case that their baselines are
comparable at the data level (e.g., for CFI the non-centrality
parameter of the baseline model kb) and not at the mere
conceptual level (i.e., it is not sufficient that both baseline
models are the null model). Such a realization has major
implications for the interpretation and use of incremental fit
indices, for the theoretical (im)possibility of default univer-
sal rules of thumb in their application, and for simulation
studies mapping incremental fit indices as if their value is
comparable in an absolute sense across any and
all conditions.

4.1. Theoretical (im)Possibility of Default Universal
Rules of Thumb

The fact that, in contrast to absolute fit indices, the distribu-
tion of incremental fit indices even varies across correctly
specified models of equal degrees of freedom and with equal
sample size (cf. compare top panels of Figures 1 and 2)
implies that adopting a universally applicable general cutoff
rule of thumb might not be the most fruitful idea for incre-
mental fit indices. This is not illogical. When placing a tar-
get model of interest along a relatively small baseline-to-
saturated continuum as in scenario 2 (i.e., in case of a null
baseline reflected by a small value of jRj), it will always be
closely fitting in absolute sense to both the baseline and the
saturated model, as all models are relatively alike. This
implies that model differentiation is unreliable in case of a
small baseline, incremental fit indices become less inform-
ative, and placing a fixed threshold for a universal rule of
thumb becomes nigh impossible (see also, van Laar &
Braeken, 2021). The opposite holds in the case of a
large baseline.

4.2. Baseline Differences as Confounder in
Simulation Studies

Realizing the non-ignorability of the baseline not only
applies to SEM practitioners in the field, but also to past
and future simulation studies where values of CFI, TLI, and
family are simply tracked regardless of baseline comparabil-
ity, leading to an obvious confound in their design, com-
parative statements, and recommendations for relative fit
measures. In general, we argue that to further advance our
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joint understanding of goodness-of-fit measures and their
behavior in practice within the SEM field, we need more
theoretically driven and less exploratory simulation studies.
The latter is too much at risk of making conclusions based
on artifacts in the chosen design factors. One element in an
exploratory study design potentially impacts many other
easily overlooked confounding factors under the hood.

4.3. Determinant Not Average Pairwise Correlation

In SEM, the relative model discrepancy to the null baseline,
in incremental fit indices stemming from the chisquare,
does not take into account the location of the correlation in
the data that your model fails to capture nor does it encode
how much of the average correlation your model has cap-
tured, but instead it encodes how much of the dominant
correlation (i.e., the determinant is the product of eigenval-
ues of R) in the data the model captures. The central role of
this determinant should revive some interest in understand-
ing classic measures of multivariate statistics (e.g.,
Anderson, 1958) to further our understanding of more
modern SEM practices. Whereas people in practice often
already find it hard to interpret the absolute magnitude of
variance, it is fair to say that even fewer people have a good
intuition about what a large or small determinant (i.e., gen-
eralized variance) is for their dataset.

Explicit reporting of this determinant5 jRj would help in
gaining some intuition on common reference values for this
data characteristic in your field of application and eventually
allow for a better interpretation of the relative and absolute
magnitude of incremental fit indices with the null model as
a baseline, even across datasets. By making the presence of
the core components of the null baseline explicit in the
reporting, the need to take it into account when interpreting
incremental fit indices also becomes explicit and non-ignor-
able (for a small reporting example and corresponding R
syntax, see Appendix B).

Note that this rationale with respect to interpretation is
not necessarily limited to incremental fit indices. There are
other fit measures it could be extended to, even though their
baseline for meaningful interpretation might be different.
For example, the Standardized Root Mean Square Residual
(SRMR) fit index is also a standardized measure, and hence
similar interpretation and practice recommendations should
apply here. The core difference to the incremental fit indices
considered here is that SRMR is residual-based and not
chisquare-based. As a consequence, SRMR’s metric is not a
function of the determinant but of the average observed
pairwise correlation �r: In our small working example, the
SRMR distributions for correctly specified models would
indeed be equivalent under M2 and M3, but not under M1,
as the former two have equal average correlation values but
differ from M1’s average correlation value. In other words,

SRMR evaluates fit in an average pairwise dependence sense,
in contrast to incremental fit indices who evaluate fit in
terms of multivariate dependence (i.e., jRj). Realizing this
difference helps in understanding what type of model fit
each fit index codes for. Yet for all standardized fit indices,
the base for interpretation needs to be taken into consider-
ation and absolute value judgments across any and all con-
ditions are not recommended.

4.4. Transferability

Although our working example is rather small, the underly-
ing principles should apply across different scenarios. Even
when extending the scope to models involving mean-struc-
ture, other baselines than the null model (e.g., Rigdon, 1998;
Widaman & Thompson, 2003), non-normality corrections,
or different estimation methods, the formulas for numerator
and denominator and the character and metric of the base-
line might slightly change, but the practical implication that
incremental fit indices are only large or small in comparison
to a data-specific baseline, and not a universal threshold ref-
erence value, will never disappear.

5. Practical Recommendation

CFI, TLI, and the entire incremental fit family are improp-
erly treated in the current all too common one-off model
assessment approach where they are seen as an absolute
value in a mere search for a model adequacy threshold
number. Instead, in a reasoned model comparison strategy,
incremental fit indices are a useful benchmark metric for
interpreting the relative magnitude (i.e., effect size) of the
paths in which the set of competing models differ. Thus, we
should strive to use incremental fit indices (Bentler &
Bonett, 1980) as intended, to evaluate the relevance of
cumulative theoretically motivated model restrictions in
terms of % reduction in absolute misspecification as meas-
ured by the adopted baseline model.
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Appendix A.

The Chisquare of the Null Model is Proportional to
Minus the log Determinant of the Observed
Correlation Matrix (v20 / 2 log jRj)
For the default CFI with a null model as baseline, the value of CFI is
based on the ratio of misspecification between the model of interest

and the null model:

CFIðm, 0Þ ¼ 1� km
k0

¼ 1� v2m�dfm
v20 � df0

(1)

Equation (1) shows how the misspecification of both models would
be estimated by their non-centrality parameter, being the difference
between the model’s chisquare of exact fit against the saturated model
and the model’s degrees of freedom. Focusing on the denominator of
CFI, the standard of comparison, and hence the core component of
CFI, is then v20�df0, the chisquare of the null model with degrees of
freedom df0 ¼ IðI�1Þ=2Þ and I the number of manifest variables. The
chisquare value of the null model can be rewritten as the product of
the sample size n and the minimum value F0 of the used fit function
to estimate the models (i.e., v20 ¼ F0ðn�1Þ).

Under maximum likelihood estimation, F0 is a function of the dis-
crepancy between the model-implied variance-covariance matrix R̂0

under the null model and the observed variance-covariance matrix S
(e.g., Bollen, 1989), where trðXÞ and jXj are respectively the trace and
determinant of a matrix X (cf. Equation (2)).

F0 ¼ log jR̂0j� log jSj þ trðSR̂�1
0 Þ�I (2)

¼ log jdiagðSÞj� log jSj þ trðSdiagðSÞ�1Þ�I (3)

¼ log jdiagðSÞj� log jSj þ I�I (4)

Key in getting to the expression for the chisquare v20 for the
null model as mentioned in the main text (i.e., � log jRj up to a
sample size factor), is that the minimal fit value F0 for the null
model can be further simplified using the fact that the model-
implied covariance matrix under the null model comes down to a
diagonal matrix diagðSÞ with the observed variances on the diagonal
(cf. Equation (3)). This results in SR̂

�1
0 leading to a matrix with all

ones on the diagonal such that the trace equals the number of
observed variables I and cancels out the subsequent – I term in the
expression for F0 (cf. Equation (4)).

Using the fact that the determinant of a matrix product can be split
into products of determinants, each of the remaining two log determi-
nants can be written out given that a variance-covariance matrix S is a
multiplicative function of a corresponding correlation matrix R and an
inverse diagonal matrix with standard deviations on the diagonal. Thus
we have

log jSj ¼ log j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðSÞ

p
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðSÞ

p
j (5)

¼ log j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðSÞ

p
j þ log jRj þ log j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðSÞ

p
j
(6)

¼ log
YI
j¼1

ffiffiffiffiffi
Sjj

p þ log jRj þ log
YI
j¼1

ffiffiffiffiffi
Sjj

p
(7)

¼ log
YI
j¼1

Sjj þ log jRj (8)

and

log jdiagðSÞj ¼ log j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðSÞ

p
I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðSÞ

p
j (9)

¼ log
YI
j¼1

Sjj þ 0 (10)

where Equation (10) makes use of the fact that the correlation matrix
of a diagonal variance-covariance matrix is an identity matrix I which
determinant is exactly equal to 1.

The re-expressions of the log determinant terms in Equations (8)
and (10) allow to simplify the expression for F0 further by elimination

F0 ¼ log jdiagðSÞj� log jSj (11)

¼ log
YI
j¼1

Sjj� log
YI
j¼1

Sjj� log jRj (12)

¼ � log jRj (13)

such that the denominator of CFI under the null model comes
down to
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k0 ¼ v20�df0 ¼ F0ðn�1Þ�df0 ¼ � log jRjðn�1Þ�IðI�1Þ=2

Appendix B.

Mini Example to Report Incremental Fit Indices with
Corresponding R::Lavaan Code

The SEM-package lavaan (Rosseel, 2012) in the free statistical software
environment R (R Core Team, 2020) contains a built-in dataset variant
of a well-known study by Holzinger and Swineford (1939). Situated in
the study of human intelligence, the dataset contains scores on I¼ 9
cognitive ability tests (named variables x1 to x9 in the dataset) for
n¼ 301 children. In practice, we advocate the use of incremental fit
indices as intended, that is in the context of a reasoned model com-
parison strategy. Without being able to elaborate too much on specifics
of the field or dataset, we can still posit a fairly realistic set of compet-
ing models for the current context as an example in case, but with a
somewhat simplified underlying theoretical motivation.

Set of Competing Models
A historical finding in the intelligence field is that cognitive tests, no
matter their specifics, tend to positively correlate within a general
population. This would correspond to a so-called positive manifold as
reflected by the appropriateness of a one-factor model M1 covering all
9 tests. Yet the nine cognitive tests are said to have some common
structural elements, with the first three tests being more the visuo-spa-
tial type, the second three tests being more verbal-text related, and the
last three more speed-based. It would be natural to expect these clus-
ters to also be reflected in the strength of the intercorrelations between
the test scores. Yet how this exactly surfaces, one can disagree about.
Model M2a considers three orthogonal factors, one for each of the
three independent item clusters. This model also implies that intercor-
relations among cognitive tests of a different type would be negligible.
Model M2b with three oblique factors, one for each of the three inde-
pendent item clusters, offers a less strict perspective by implying that
the dominant correlation is within the clusters but allowing some cor-
relation between clusters. A final model M3 covers all bases by consid-
ering a one-factor model but with residual correlations among
cognitive tests within the same cluster.

The model comparison strategy further involves locating the set of
competing models within a continuum of models from the worst fit-
ting baseline null model M0 to the perfect fitting saturated model MS

(Bentler & Bonett, 1980). The results are summarized and reported in
Table B.1. Corresponding R-code for the models and results can be
found at https://osf.io/f6jnm/?view_only=e367c654fbcd47248667e17
0442592c3.

Results
We can see that accounting for the implied positive manifold or the
expectation that performance on cognitive tests correlates by default as
in M1 , reduces the specification error in terms of the multivariate
degree of dependence present in the data by 68% (CFIðM1 ,M0Þ ¼ :68).
Note how in linear regression, one would generally already be quite
happy with such a relative reduction in predictor error variance as

implied by an r-square of .68. Although the model does not fit close to
perfect in an absolute sense, there is sufficient to disregard the implied
uncorrelatedness of test performances by model M0: At the same time,
we see that ignoring the positive manifold idea and only accounting
for the cluster structure as in M2a leads to a reduction of 86%, an add-
itional 18% reduction in misspecification error of the multivariate
dependence compared to M1: This finding implies that the dominant
correlation structure in the dataset is indeed between cognitive tests of
the same type. Allowing for some structural intercorrelation between
the clusters does reduce misspecification somewhat more with an add-
itional 7%, amount to a total reduction of 93% under M2b: Further
covering both perspectives with a structural positive manifold and vari-
able residual interdependence within a cluster, as in M3, leads to an
additional reduction of 5% in misspecification error, bringing us, rela-
tively speaking within 2% (CFIðM3 ,M0Þ ¼.98), in the immediate neigh-
borhood of the ‘perfect’ yet unstructured saturated model MS:

Simplified Conclusion
In a reasoned model comparison strategy, incremental fit indices are a
useful benchmark metric for interpreting the relative magnitude (i.e.,
effect size) of the paths in which the set of competing models differ.
Together these results imply that the paths corresponding to the cluster
structure in terms of cognitive test type are clearly pronounced, but
that not all cognitive tests adhere to a strict clustering and still inter-
correlate across types as well. When inspecting the correlation matrix
among the cognitive tests, you can also clearly see the cluster structure,
but also the first visuo-spatial test correlating with the majority of
other tests regardless of type.

Notice that in our assessments there was no explicit need for rules
of thumb nor a focus on absolute fit, as in the end interest would be
more about strengths of the different perspectives as put forward by
the competing models. This appears to us as a more healthy approach
than a one-off model assessment approach using binary conclusions
based on indefensible universal rules of thumb (e.g. CFI�.95). For one
specific study, the value of reporting determinant, sample size, and
number of variables might not be directly apparent. Yet, these sum-
mary statistics would become relevant once you intend to compare
incremental fit indices across different studies to assess whether one
study’s 93% is comparable to another study’s 95%, and for general
meta-analysis purposes. Hence, we recommend including these by
default, and doing so is luckily extremely simple in practice.

Table B.1. Model comparison results for the set of competing models.

M0 M1 M2a M2b M3 MS

v2 919 312 154 85 35 0
df 36 27 27 24 18 0
p <.001 <.001 <.001 <.001 0.010 1.000
k 883 285 127 61 17 0
CFIðm, 0Þ 0.00 0.68 0.86 0.93 0.98 1.00

jRj ¼ 0:047, n¼ 301, I¼ 9.

Note. k ¼ non-centrality for the estimated model (i.e., k ¼ v2�df); CFI¼ CFI
value for estimated model (i.e., CFIðm, 0Þ ¼ 1� km

k0
); jRj ¼ determinant of the

observed correlation matrix (i.e., the degree of multivariate dependence); n ¼
sample size; I ¼ number of items. Here one would typically further clarify the
model specifications and highlight the differences among the models. Yet, to
keep the appendix compact see the text above.
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