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Abstract: Copulas are appealing tools in multivariate probability theory and statistics. Nevertheless, the
transfer of this concept to infinite dimensions entails some nontrivial topological and functional analytic
issues, making a deeper theoretical understanding indispensable toward applications. In this short work,
we transfer the well-known property of compactness of the set of copulas in finite dimensions to the
infinite-dimensional framework. As an application, we prove Sklar’s theorem in infinite dimensions via a
topological argument and the notion of inverse systems.
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1 Introduction

Copulas are widely used and well-known concepts in the realm of statistics and probability theory. This is
not least due to the advantages that go along with their often intuitive and flexible handling. To some
extent, such practicality is lost in infinite dimensions, as consistency problems may occur and construc-
tions via copulas in topological vector spaces culminate in general in cylindrical, rather than actual prob-
ability measures (c.f. [10] and [2]). Building up a functional analytic and topological theory for copulas
becomes pivotal in order to make the copula approach fully applicable to general stochastic processes.

The keystone of the theory is Sklar’s theorem and there is a vast literature solely focusing on different
proofs of this fundamental result. Among others there are proofs based on the distributional transform in [13]
and [4] and earlier already in [11], based on mollifiers in [6] or the constructive approach by the extension of
subcopulas, as it was proved for the bivariate case in [14] and for the general multivariate case in [17] or [3].

The naive transfer of the subcopula approach to an infinite-dimensional setting appears to be challen-
ging, since, after the extension of the subcopulas corresponding to the finite-dimensional laws of an
infinite-dimensional distribution, one would also have to check that this construction meets the necessary
consistency conditions. In contrast, and besides the approach via distributional transforms (as extended to
an infinite-dimensional setting in [2]), a nonconstructive proof based on topological arguments in [7] is
naturally in tune with an infinite-dimensional setting.

In this article, we will therefore adopt this ansatz. In contrast to the proof in [2], we prove Sklar’s
theorem on the level of probability measures and not on the level of random variables. The argument carries
the steps in [7] over to an infinite-dimensional setting:
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(i) Show that the set of copula measures is compact with respect to the topology of convergence of the
finite dimensional distributions (Definition 4.1).
(ii) Prove the second part of Sklar’s theorem (that every copula measure can be merged with any family of
marginals to a probability measure). This step is straightforward and as in [2].
(iii) Prove that the operation of merging a copula measure with marginals is a continuous mapping and use
the compactness of the set of copulas to conclude that this map has closed image. The second part of
Sklar’s theorem follows by arguing that this image is also dense in the space of probability measures.

In finite dimensions, the compactness of copulas is described as “folklore” in [6] and it implies some useful
applications. Some of these results carry over to the infinite-dimensional setup (c.f. Section 5).

2 Short primer on topological inverse systems

We will frequently use the notation R for the extended real line [-o0, co]. For any measure u on a measur-
able space (B, 8) and a measurable function f: (B, 8) — (4, A) into another measurable space (4, A) we
denote by f,u the pushforward measure with respect to f given by f,u(S) = u(f1(S)) forall S € A. For I an
arbitrary index set, B = R and B = ®;c B(R), we use the shorter notations 7m,u =: )7 for a subset J ¢ I and
M = W, for an element i € I, where 7 denotes the canonical projection on R’/. If J c I is finite, we denote
the corresponding finite-dimensional cumulative distribution functions by F, or F,, respectively, where in
the latter we used J = {i}. We use the notation 7 for the set consisting of all finite subsets of I. Moreover, for
a one-dimensional Borel measure y; on R, we use the notation F, ][Jlf” for the quantile functions

FYw) = inf{x € (~c0, 00) : Fy(x) = u}. (2.1)

We will refer to the one-dimensional distributions y;, i € I and equivalently F,, i € I as marginals of the
measure y. We denote the set of all probability measures on R, ®;cBR)) by P(R Iy, Moreover, for two
topological spaces X, Y we write X = Y if they are homeomorphic.

The remainder of the section is mainly based on [12]. Let X; be a set for each J € 7 and

(P, : X, = X;,) for Jy € o, with i,/ € T

a family of mappings, also called projections, such that
(i) P = id; is the identity mapping for all J € 7, and
(ii) P]1,]3 = Ph,lz o P12J3 forall ¢ ), ¢ hinI.

The system
(%, Progs T) = (Kyers (P : X5, = Xp) II{EQI))

is called an inverse system (over the partially ordered set 1). If (Xj, 7;) are topological spaces for each J € 7
and (Py,j,) are continuous for all J; ¢ /, with J;, /, € I, we call

(X1, 55 Prpp J € I) = (X, 0)yers ((Pr, = Xy, = X) h{lﬁfg[))

a topological inverse system. A topological inverse limit of this inverse system is a space X together with
continuous mappings P : X — X;, ] € I, such that Py, ;,P;, = P;, for all ; ¢ , in I (i.e., the mappings are
compatible) and the following universal property holds: Whenever there is a topological space Y, such that
there are continuous mappings (1/)] : Y — X;)er which are compatible, i.e., Py, 13 b= Y i forall jchinT,
then there exists a unique continuous mapping

¥v.Y-X, (2.2)
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with the property 'V = i, for all ] € 7. We have that

= 0g)er € [1% 2 Pp(m,(0) = my(x0) for i by < []% (2.3)
Jel Jel

equipped with the subspace topology with respect to the product topology is an inverse limit of the
topological inverse system, induced by the canonical projections m;((x7);er) = xp. Each topological inverse
limit is homeomorphic to this space and therefore to every topological inverse limit (see the proof of
Theorem 1.1.1 in [12]). We write lim. X; € I—[]E ;X for the inverse limit as a subset of the product space
and we equip it throughout with the induced subspace topology.

Lemma 2.1. Let (X;, 7, 71y, j,) be a topological inverse system (over the poset I') of Hausdorff spaces. Then
lim._X; is a closed subset of 1_[]e 7 X; with respect to the product topology.

Proof. See [12, Lemma 1.1.2]. a

Lemma 2.2. Let X be a compact Hausdorff space and (X;, 15, 1y, ,) be a topological inverse system of compact
Hausdorff spaces. Let Y, : X — X;, ] € I be a family of compatible surjections and ¥ the induced mapping.

Then either lim.X; = & or Y(X) is dense in lim_X;.

Proof. See [12, Corollary 1.1.7]. O

3 Copulas and Sklar’s theorem

As they are cumulative distribution functions, copulas in finite dimension have a one-to-one correspon-
dence to probability measures. In infinite dimensions we will therefore work with the notion of copula
measures as introduced in [2].

Definition 3.1. A copula measure (or simply copula) on R’ is a probability measure C € #(R), such that its
marginals C; are uniformly distributed on [0, 1]. We will denote the space of copula measures on R’
by CR").

Sklar’s theorem as stated below was proved in [2] by following the arguments for the finite-dimensional
assertion in [13]. Here we give an alternative proof for the infinite-dimensional setting using a topological
argument as in [7].

Theorem 3.2. (Sklar’s theorem) Let y € PR’ be a probability measure with marginal one-dimensional
distributions ;, i € I. There exists a copula measure C, such that for each | € I, we have

FCI((ij(Xj))je]) = Fu,((xj)je]) 3.1)

for all (xj)je; € R’. Moreover, C is unique if E, is continuous for each i € 1. Vice versa, let C be a copula
measure on R' and let (U)ier be a collection of (one-dimensional) Borel probability measures over R. Then

there exists a unique probability measure y € P(R 0y, such that (3.1) holds.

4 Topological properties of Copulas and a proof of Sklar’s theorem

The collection (P(R’), J € I), where each P(R”) is considered as a topological space with the topology of
weak convergence, is a topological inverse system with the projections mj, 1,(u;) = (u},); for p;, € P(R %)
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and Ji, » € T, J; < J,. Moreover, observe that each P(R ]) is a Hausdorff space, since it is metrizable by the
Prokhorov metric (c.f. [15, Theorem 4.2.5]). The space lim. P(R’) c I"[]e ]SD([R]) of consistent families of
probability measures is a topological inverse limit, equipped with the corresponding inverse limit topology.
The space of probability measures on ®;;B(R) has via its finite-dimensional distributions a one-to-one
correspondence with this family of consistent finite-dimensional distributions, and hence there is a natural
bijection between lim. P(R’) and PR ).

We equip the space P(R’) with the topology of weak convergence of the finite-dimensional distributions,
which we define as follows:

Definition 4.1. The topology of convergence of the finite-dimensional distributions on P(R’) is defined as
the topology such that P([R?) = lim_PR’).

PR’ with this topology is by definition a topological inverse limit. Define also lim. C[R’) =
lim_P(R’) n [1,.,CR’). Certainly, we have

CRY = lim CR") (4.1)

with the corresponding topologies.
The following result contains among other things the topological proof of Sklar’s theorem 3.2.

Theorem 4.2. The following statements hold.
(1) PRY) with the topology of weak convergence of the finite-dimensional distributions is a Hausdorff space.

(2) The space of copula measures C(R?) is compact with respect to the topology of convergence of finite-
dimensional distributions.

(3) For a copula measure C on R! and (one-dimensional) Borel probability measures (),);c; over R the push-
forward measure

= ((FM)ier)-C (4.2)
satisfies (3.1).
(4) If we equip CRY) x [1;.;P(R) with the product topology of weak convergence on each P(R) and the
topology of convergence of the finite-dimensional distributions on CR') and P(R?), then the mapping
@ : CRY) x [1,.,LR) — PR") given by
OC, ien) = ((F;M)ier ). C

is continuous and surjective. In particular, Sklar’s theorem holds.

Proof. (1) Since products of Hausdorff spaces are Hausdorff and P(R’) is homeomorphic to a subset of a
product of Hausdorff spaces, it is Hausdorff.

(2) We know by [6, Thm. 3.3] that every C(R 7y is compact with respect to the topology of weak con-
vergence on P(R’). Tychonoff’s theorem guarantees also that er ,CR 7y is compact with respect to the

product topology on ]_[]E PR 7). Therefore, as lim.P(R’) is closed by Lemma 2.1, we obtain that C(R?) is
compact, since it is homeomorphic to an intersection of a closed and a compact set in the product topology.

(3) This corresponds to the second part of Sklar’s theorem and the proof can be conducted analogously
to the one in [2]. Therefore, it is enough to see that

([o, ij(xj)])je]\((F;[;;H)_l(_oo’ xi])jes

is a G-nullset for all (x;);; € R/, J € I, since then we immediately obtain

C](((F,[,;H)‘l(—oo, xi)jey) = Cl(( [0’ ij(x,-)]) ] = Fo(F,((5))jep)-
jeJ
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(4) Define ¢, : CR") x [, PR) - PR’) by
¢](C: Mpier) = D(C, (Uyier)rs

which is well defined by (3). Since the finite-dimensional distributions of a law are consistent, (¢, ] € 7)
forms a compatible family. Define analogously for J € I also ¢~)] : C(R7) x [1;. PR) —» PR by

&G, w)ien) = (B Mjer )G

This is by Sklar’s theorem in finite-dimensions surjective and by [16, Thm. 2] also continuous. Hence,
¢ = qun] is continuous and surjective, since both q,'~>, and 7 are. @ must be the uniquely induced continuous
mapping by the family (¢, J € 7) by the universality property of the inverse limit. Moreover, since by [15,
Corollary 4.2.6] P(R) is compact and by (2) also C(R') is compact, we have that C(R?) x [T, PR) is
compact by Tychonoff’s theorem. The continuity of ® implies therefore that ®(C(R ) x [1;.;P(R)) is com-
pact, hence closed. Since moreover Lemma 2.2 implies that ®(C(R) x [1;.;(R)) is dense, we obtain that ®
is surjective and therefore also the first part of Sklar’s theorem holds. The uniqueness of the copulas in the
case of continuous marginals follows immediately by Sklar’s theorem in finite dimensions via the unique-
ness of the finite-dimensional distribution of the corresponding copula measure. (|

5 Applications of the compactness of copulas in infinite
dimensions

Apart from the alternative proof of Sklar’s theorem, the compactness of the family of copulas has some
useful implications.

Observe that P(R”) is a subset of a locally convex Hausdorff space. Indeed, P(R”) once equipped with
the topology of convergence of the finite-dimensional distributions is topologically embedded in C,(R”)*
equipped with the weak*-topology, where C,(R”)* is the topological dual of the space of bounded contin-
uous functions equipped with the topology induced by the uniform norm. Thus, with respect to the
topology of weak convergence for each J € 7, we obtain that also the inverse limit P(R’) = lim_P[R’) is
topologically embedded in a locally convex Hausdorff space, as it is isomorphic to a subset of the product
[T, PR o [, 7C(R Ny, Since CR') - P(R') is convex, we obtain the following result by the
Krein—Milman theorem [5, Thm.V.8.4], as mentioned for instance in [8, p. 30] for the finite-dimen-
sional case:

Lemma 5.1. C(RY) is the closure of the convex hull of its extremal points with respect to the topology of weak
convergence of finite-dimensional distributions.

As mentioned in [1] this implies for instance that

sup g(C)= sup g(0),
CeCRY) Ceext(CRT))

where ext(C(R')) denotes the set of extremal points of C(RY) and g : C(RY) — R is a convex function.

The compactness of copulas might also be of interest for proving limit theorems. In fact, by the
compactness of copulas in finite dimensions, we obtain that every sequence (C™"), .y of multivariate copulas
(of fixed dimension) has a convergent subsequence. This was for instance used in [9]. If (C")peny € C(R I) isa
sequence of copula measures and [ is an infinite index set, this also implies that all finite distributions F¢r
for J c I finite have a convergent subsequent that converges weakly. However, it is not clear if this sub-
sequence can be chosen uniformly for all finite J € I, i.e., for all finite dimensional distributions. Thus, this
result is intricate to transfer to the infinite dimensional setting especially since the notions of compactness
and sequential compactness may not coincide and one has to appeal to the notion of nets instead of
sequences. For countable index sets we have at least
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Lemma 5.2. If I is a countable index set, then C(R") is sequentially compact.

Proof. R’ is a product of polish spaces and hence polish with respect to the product topology. Thus, the
Lévy—Prokhorov metric makes #(R’) a metric space, whose topology coincides with the topology of con-
vergence in distribution with respect to the product topology on R, which itself coincides with the topology
of weak convergence of the finite dimensional distributions. As a compact set in a metrizable space, CR ) is
sequentially compact. O

With this lemma it might be easy to prove convergence criteria in some topological vector spaces. Recall
that the p-Wasserstein space ‘W)y(E) over a separable Banach space E is given by

WyE) ={v:v isaBorellawon E, I||x||§v(dx) <007,
E

Let E = I? be the sequence space

1

00 P
I? = { (Xpnen C RN : ”(Xn)neN”p = (Z|Xn|p) < 00
n=1
for some p € [1, o). Recall that for the case p = 2 this class of spaces contains (by isomorphy) all separable
Hilbert spaces.
Define by m; for i € N the projection onto the ith component, i.e., m(x, %,....) = X; Vx € [P. Any
u € Wy(IP) is uniquely specified by the family p;  ; of finite dimensional distributions given by

- -1
Mi, iy =H° (ﬂil""’nid)

for any finite subset {ij, ...,iz} ¢ N of the natural numbers. We write m ,f_ for the pth absolute moment of the
univariate measures y;, i € N, i.e.,

mp = [P u@o.
R

Corollary 5.3. Assume (U")neny € Wi(IP). If all for all i € N there is a p;™ € Wy(1P) such that
szZ"" < o0,
i=1

then there is a subsequence (U™ )y Of Borel laws that converges with respect to the topology of weak
convergence of finite dimensional distributions to some Borel law p in ‘Wy(1?), such that

U =y VieN. (5.1)
Proof. Recall from Section 3.1in [2] that a basis copula corresponding to a measure v € “W(I?) is the copula
measure C, in R", such that its finite dimensional distributions are given by the copula measures associated
with the finite dimensional distributions v;,, . ;,. Let (Cy)nen denote the sequence of basis copulas associated

with the sequence (4, )nen. Then by Lemma 5.2, there is a subsequence (Cp, Jken that converges to a copula
measure C € C(RY) with respect to the topology of convergence of the finite dimensional distributions.
Theorem 2 in [16] tells us that for multivariate random variables weak convergence follows by convergence
of the marginal distributions and the weak convergence of the associated copulas. By assumption, this
yields the existence of a Borel law p in RN such that

u—
Equation (5.1) holds and p has C as its underlying copula measure. That indeed p € “Wy(1”) holds follows
from Corollary 4 in [2]. O
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Remark 5.4. Certainly, we can identify elements of Banach spaces with a Schauder basis uniquely with
elements in RN. In that way, transferring the assertion of Corollary 5.3 to this more general situation is
possible for instance by appealing to Corollary 3 in [2].
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