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Abstract. We apply the specialization technique based on the decomposition of the diago-
nal to the intersection of a quadric and cubic hypersurface in P6. We find an explicit example
defined over Q that is smooth, and does not admit a decomposition of the diagonal, and is
therefore not retract rational. The proof uses the specialization of Nicaise and Ottem (Trop-
ical degenerations and stable rationality, 2020), who proved that the very general complete
intersection of this type is stably irrational using the motivic volume.

1. Introduction

Determiningwhich varieties are rational is a central problem in birational geometry.
Castelnuovo’s criterion for rationality gives a satisfying answer for surfaces over
the complex numbers, but in higher dimensions, or over other fields, the rationality
problem has proven to be harder. Nevertheless, studying rationality, various other
weaker notions of rationality, and the relation between them, has been an active
and fruitful area of research.

Here we will primarily consider stable rationality and retract rationality. Recall
that a variety X is stably rational if X × P

n is rational for some n and X is retract
rational if the identity map on X factors rationally through a projective space. In
particular, if X × Y is rational for a variety Y , then X is retract rational, so any
stably rational variety is retract rational. The question of whether retract rationality
implies stable rationality is a major open question.

A recent breakthrough in studying retract rationality is the specialization tech-
nique introduced by Voisin in [19]. This technique is based on the decomposition of
the diagonal. The technique has then been developed further by Colliot-ThThélène
and Pirutka [4] to allow for more general specializations, in particular to positive
characteristic. Further work by Schreieder in [13] allowed specializing to varieties
with singularities, without constructing explicit resolutions.

Some of the varieties proven to be non retract rational using the specialization
technique based on the decomposition of diagonal are general double solids [19],
general quartic hypersurfaces [4], general quadric surface bundles over rational
surfaces [7], general hypersurfaces in projective space of sufficiently high degree
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[14,18] and complete intersetions in projective space of sufficiently high degree
[3].

Using specialization to positive characteristic to prove irrationality of hyper-
surfaces of sufficiently high degree already appears in Kollár [8], but there one
specializes to a variety that is not ruled, rather than to a variety that merely has
no decomposition of the diagonal. In [18], Totaro combines the specialization to
positive characteristic with the decomposition of the diagonal technique to obtain
better bounds on the degree. The specialization technique of Kollár is generalized
to complete intersections in the PhD-thesis of Braune [1].

The goal of this paper is to prove retract irrationality for a specific complete
intersection. We will use techniques from [13,14] to find an example of a smooth
(2, 3) complete intersection inP6 with integer coefficients that is not retract rational.
From this it follows that also the very general such complete intersection is not
retract rational. One motivation for studying this particular case is that the very
general complete intersection of this type is known to be stably irrational over C.
Using a different degeneration technique introduced by Nicaise and Schinder in
[11], based on the motivic volume, Nicaise and Ottem in [10] prove that the very
general complete intersection of a cubic and a quadric in P

6 is stably irrational.
However, it remained open if the very general (2, 3) complete intersection is retract
rational or admits a decomposition of the diagonal. In contrast, all other complete
intersection fourfolds which are known to be not stably rational, are also known to
be not retract rational.

In [10] stable irrationality of many other varieties was proven. The retract ratio-
nality of a different varietywhose stable irrationality was proven in [10] was studied
in [12]. There Pavic and Schreieder prove retract irrationality of the quartic fivefold.
To achieve this, Pavic and Schreieder use a more subtle specialization technique
than the one used in this paper.

Themain ideawewill use is to find a (2,3)-complete intersection defined overQ,
and specialize to a (2,3)-complete intersection defined over positive characteristic,
which does not admit a decomposition of the diagonal.

Additionally, the example we find will give rise to an example in positive char-
acteristic of a (2, 3)-complete intersection fourfold that is not retract rational. The
fact that the examples are given by simple explicit equations is also a nice com-
plement to Nicaise and Ottem’s results, which concern the very general complete
intersection and therefore does not give examples defined over Q.

In this paper, we will prove the following results:

Theorem 1.1. Let K = Q or K = Fp(t) with p ≥ 3. In the first case let p ≥ 3,
q ≥ 11 be distinct primes and set u = p, v = q, and in the second case let
u = t, v = (t − 1). Let X ⊂ P

6
K be the complete intersection defined by the

following two equations:

u

(
6∑

i=0

x2i

)
+ v(x3x6 − x4x5) = 0 (1)
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u

(
6∑

i=0

x3i

)
+ v

(
x20 x5 + x21 x4 + x22 x6 + x3

(
x25 + x24 + x23 − 2x3 (x6 + x5 + x4)

))
= 0. (2)

Then X is a smooth complete intersection such that the base change to K does
not admit a decomposition of the diagonal. It is therefore not geometrically retract
rational.

The unifying property of the two choices for K is that varieties over K can be
specialized to varieties overFp. Using specialization techniques to prove irrational-
ity of varieties defined over such fields goes back to [8], and was used together with
the decomposition of the diagonal in [14,18]

The structure of the paper is as follows: In Sect. 2 we collect the important
definitions and results we will use to prove Theorem 1.1. Then in Sect. 3 we will
prove that the complete intersection in Theorem 1.1 does not admit a decomposition
of the diagonal. To do this we specialize the complete intersection to the union of
two components, such that one component is birational to the quadric bundle found
in [7], which does not admit a decomposition of the diagonal. This is the same
specialization as the one used in [10].

2. Rationality and specialization

2.1. Unramified cohomology

Unramified cohomology groups of a variety are subgroups of the étale cohomology
groups of the function field. If X is a scheme and F a sheaf on the small étale site
on X , we denote the i-th étale cohomology group by Hi (X, F). If R is a ring we
will use Hi (R, F) as a shorthand for Hi (Spec R, F).

We refer to [16] for an introduction to unramified cohomology. Following [9,
16], we define unramified cohomology using only geometric valuations. For a
positive integer m invertible in the field k, we write μm for the sheaf of m-th roots
of unity.

Definition 2.1. [16, Definition 4.1] Let K/k be a finitely generated field extension.
A geometric valuation ν on K over k is a discrete valuation on K over k such that
the transcendence degree of κν , the residue field of the corresponding DVR, over k
is given by

trdegk(κν) = trdeg(K ) − 1

Definition 2.2. [16, Definition 4.3] Let K/k be a finitely generated field extension
and let m be a positive integer that is invertible in k. We define the unramified
cohomology of K over k with coefficients in μ

⊗ j
m as the subgroup

Hi
nr

(
K/k, μ⊗ j

m
) ⊂ Hi (K , μ

⊗ j
m

)
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consisting of all elements α ∈ Hi (K , μ
⊗ j
m ) such that ∂ν(α) = 0 for any geometric

valuation ν on K over k.

Unramified cohomology has the following functoriality properties.

Proposition 2.3. [16, Proposition 4.7]Let K ′/K/k be finitely generated field exten-
sions, let f : Spec K ′ → Spec K be the natural morphism and let m be an integer
that is invertible in k.

(i) Then f ∗ : Hi (K , μ
⊗ j
m ) → Hi (K ′, μ⊗ j

m ) induces a pullback map

f ∗ : Hi
nr

(
K/k, μ⊗ j

m
) → Hi

nr

(
K ′/k, μ⊗ j

m
)

(ii) If f is finite, then f∗ : Hi (K ′, μ⊗ j
m ) → Hi (K , μ

⊗ j
m ) induces a pushforward

map

f∗ : Hi
nr

(
K ′/k, μ⊗ j

m
) → Hi

nr

(
K/k, μ⊗ j

m
)

with f∗ ◦ f ∗ = deg( f ) · id
We can aslo define the restriction of an unramified cohomology class.

Proposition 2.4. [16, Proposition 4.8] Let X be a smooth variety over a field k and
let m be a positive integer that is invertible in k. Let α ∈ Hi

nr (k(X)/k, μ⊗ j
m ).

(i) Let x ∈ X be any scheme point. Then there is a well-defined restriction

α
∣∣
x ∈ Hi (κ(x), μ⊗ j

m
)
.

(ii) If X is also proper over k, then α
∣∣
x ∈ Hi (κ(x), μ⊗ j

m ) is unramified over k.

2.2. The Merkurjev pairing

Following [14], we will use the Merkurjev pairing introduced in [9, Section 2.4] to
detect whether a smooth variety has a decomposition of the diagonal.

Proposition 2.5. Let X be a smooth proper variety over a field K (not necessarily
algebraically closed) and let m be an integer invertible in K . Then there is a bilinear
pairing:

CH0(X) × Hi
nr

(
K (X)/K , μ

⊗ j
m

) → Hi (K , μ
⊗ j
m

)
which we will write as (z, α) → 〈z, α〉. For a closed point z the pairing is given
by:

〈z, α〉 = ( fz)∗(α
∣∣
z) ∈ Hi (K , μ

⊗ j
m

)
for fz : Spec κ(z) → Spec K the structure morphism.
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2.3. Alterations

The Merkurjev pairing is defined on smooth varieties, and since resolution of sin-
gularities is still unknown in positive characteristic we will need to use alterations:

Let Y be a variety over an algebraically closed field k. An alteration of Y is a
proper generically finite surjective morphism Y ′ → Y , where Y ′ is a regular variety
over k. By de Jong [6], alterations exist in any characteristic and by work of Gabber
the degree of the alteration can be chosen to be coprime to any prime not dividing
the characteristic of the field. In fact Temkin proves that one can choose the degree
to be a power of the characteristic [17, Theorem 1.2.5] (or degree 1 if char(k) = 0).

2.4. Decomposition of the diagonal

The decomposition of the diagonal technique was introduced in [2], and its use in
answering questions of retract rationality was developed by among others [4,14,
15,18,19].

Definition 2.6. We say a scheme of pure dimension n over a field k admits a decom-
position of the diagonal if we have an equality:

�X = X × z + ZX ∈ CHn(X × X)

where ZX is a cycle supported on D × X for some divisor D ⊂ X and z ∈ Z0(X)

is a zero-cycle on X .

There is a natural isomorphism

lim−→∅=U⊂X

CHn(X ×k U ) � CH0(Xk(X))

Where we write Xk(X) for the base change of X to its function field k(X). Using
this, we can also think of a decomposition of the diagonal as an equality:

[δX ] = [zk(X)] ∈ CH0(Xk(X))

where we write δX for the zero-cycle on Xk(X) induced by the diagonal.
The following lemma relates decompositions of the diagonal to retract ratio-

nality:

Lemma 2.7. (See, e.g., [14, Lemma 2.4]) A variety X over a field k that is retract
rational admits a decomposition of the diagonal.
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2.5. The specialization method

The following result is the key ingredient in using specialization to prove that a
variety is not retract rational.

Proposition 2.8. [16, Corollary 8.3]Let R be a discrete valuation ringwith fraction
field K and algebraically closed residue field k. Let π : X → Spec R be a proper
flat R-scheme with connected fibers and denote by X = X × K and Y = X × k
the geometric generic fiber and geometric special fiber of π . Assume that X admits
a decomposition of the diagonal and the special fiber Y is pure-dimensional, then
Y admits a decomposition of the diagonal as well.

3. A non-retract rational (2,3)-complete intersection

We will apply the specialization technique to find a quadric and a cubic fivefold,
defined overQ, such that their intersection is a smooth non-retract rational variety.
Using the specialization from [10], the complete intersection specializes to a vari-
ety birational to the variety constructed in [7], which has a non-trivial unramified
cohomology class. From this it will follow that the original complete intersection
is not retract rational.

Let R = Z or R = Fp[t] for p ≥ 3, with field of fractions K . If R = Z

we pick any two distinct primes p ≥ 3, q ≥ 11 and set u = p, v = q, in the
other case we set u = t, v = (t − 1). We will consider the complete intersection
X :=Q ∩ C ⊂ P

6
R , where Q and C are the following hypersurfaces:

Q = V

(
u

(
6∑

i=0

x2i

)
+ v(x3x6 − x4x5)

)
⊂ P

6
R (3)

C = V

(
u

(
6∑

i=0

x3i

)
+ v(x20 x5 + x21 x4 + x22 x6 + x3(x

2
5 + x24 + x23

−2x3(x6 + x5 + x4)))) ⊂ P
6
R

(4)

Lemma 3.1. Let X be as above and let X be the generic fiber of X → Spec R,
then X is a smooth complete intersection in P

6
K .

Proof. Consider the scheme X → Spec R. If R = Z, the fiber over (q) is the
intersection of the Fermat quartic and the Fermat cubic in P

6
Fq
, which is smooth.

If R = Fp[t] we look at the fiber over the ideal (t − 1) and apply the same
argument. ��

Remark 3.2. The assumption that the prime q ≥ 11 is to ensure that the intersection
of the Fermat quadric and Fermat cubic is smooth in characteristic q.
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Let p be the ideal (p) or (t) depending on if R is Z or Fp[t] respectively. Let
X → Spec Rp be defined by the two equations (3) and (4). The fiber X p above the
closed point SpecFp is the complete intersection in P6

Fp
of the two hypersurfaces:

Qp = V (x3x6 − x4x5) (5)

Cp = V
(
x20 x5 + x21 x4 + x22 x6 + x3

(
x25 + x24 + x23

−2
(
x3x6 + x3x5 + x3x4

)))
(6)

We will prove that the base change of X p to Fp does not have a decomposition of
the diagonal. Then, from Proposition 2.8, it will follow that X is not geometrically
retract rational over Q.

The hypersurface Qp is the cone over a quadric surface P1
Fp

× P
1
Fp

embedded

in the P3
Fp

⊂ P
6
Fp

that has coordinates x3, x4, x5, x6. It is singular along the plane
V (x3, x4, x5, x6), which is the vertex of the cone.

The complete intersection X p = Qp ∩ Cp is also singular along the plane
V (x3, x4, x5, x6). Additionally, one can compute that it is singular along four
curves: The plane conics defined by

x1 = x5 = x6 = x3 − x4 = x20 + x22 − 4x23 = 0

x0 = x4 = x6 = x3 − x5 = x21 + x22 − 4x23 = 0

and the plane cubics defined by:

x1 = x2 = x3 = x5 = x34 + x20 x6 = 0

x0 = x2 = x3 = x4 = x35 + x21 x6 = 0

To check that X p does not admit a decomposition of the diagonal, we will
construct a less singular birational model X1.

It is straightforward to check the following:

Lemma 3.3. The blow-up of Q p in the vertex plane V (x3, x4, x5, x6) is a map

ρ : P :=P
P
1
Fp

×P
1
Fp

(O⊕3 ⊕ O(1, 1)) → Qp ⊂ P
6
Fp

defined by the base-point-free linear system |OP(1)|.
We fix {U, V,W, y0z0T, y0z1T, y1z0T, y1z1T } as the basis of H0(OP (1)) that
induces ρ, where yi and zi are coordinate functions on P

1 × P
1.

Let F be the following polynomial

F(y0, y1, z0, z1,U, V,W, T ) = y0z1U
2 + y1z0V

2 + y1z1W
2

+ y0z0
(
y21 z

2
0 + y20 z

2
1 + y20 z

2
0

−2
(
y0y1z0z1 + y0y1z

2
0 + y20 z0z1

))
T 2

(7)

which we regard as a section of |OP (2) ⊗ p∗(O
P
1
Fp

×P
1
Fp

(1, 1))|.
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Lemma 3.4. With notation as above, the strict transform X1 of X p in P is
defined by F(y0, y1, z0, z1,U, V,W, T ) = 0. Furthermore, the exceptional
divisor E of the restriction of ρ to X1, ρX1 : X1 → X p is defined by
F(y0, y1, z0, z1,U, V,W, T ) = T = 0.

Proof. A straightforward computation shows that ρ−1(X p) is defined by

T F(y0, y1, z0, z1,U, V,W, T ) = 0

which we recognize as having two components. The component defined by T = 0
is the exceptional divisor and the other component is the strict transform of X p. ��

To apply the specialization method in Proposition 2.8 with special fiber X p, we
must prove that the geometric special fiber X p does not admit a decomposition of
the diagonal. We will prove this by studying X1. Following the method developed
in [14], the first step is to check that the singular locus of X1 does not dominate
P
1
Fp

× P
1
Fp
, and that the exceptional divisor meets the smooth locus.

Lemma 3.5. The generic fiber of the map f : X1 → P
1
Fp

× P
1
Fp

is smooth and

meets E. Furthermore, the generic fiber of fE : E → P
1
Fp

× P
1
Fp

is also smooth.

Proof. Let K be the field corresponding to the generic point of P1 × P
1. Then the

generic fiber of f is a quadric surface over K defined by the polynomial F , as a
polynomial in K [U, V,W, T ]. Since this quadric is in diagonal formwith non-zero
coefficients, it is smooth. Furthermore, since the subvariety E is defined by T = 0,
it must meet the generic fiber of f and dominate P1 × P

1. The second statement is
proven in the same manner as the first. ��
Remark 3.6. More precisely, the variety X1 is singular along six curves, two curves
projecting to points in P

1
Fp

× P
1
Fp
, two curves not contained in E that project

to coordinate axes in P
1
Fp

× P
1
Fp

and two curves contained in E that project to

coordinate axes in P1
Fp

× P
1
Fp
. These three pairs of curves are defined by

y1 = z0 − z1 = U = V 2 + W 2 − 4y20 z
2
0T

2 = 0

z1 = y0 − y1 = V = U 2 + W 2 − 4y20 z
2
0T

2 = 0,
(8)

y0 = V = W = z1U
2 + y21 z

3
0T

2 = 0

z0 = U = W = y1V
2 + y30 z

2
1T

2 = 0
(9)

and

z1 = V = T = y1W
2 + y0U

2 = 0

y1 = U = T = z1W
2 + y0V

2 = 0
(10)

respectively. Furthermore, E is singular along the two curves defined by (10).
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In the remainder of this section, we will consider X1:=X1 ⊗ Fp, the base
change of X1 to the algebraic closure of Fp. We will first look at the unramified
cohomology of X1 and then use this to obstruct the existence of a decomposition
of the diagonal.

In [7], Hassett, Pirutka and Tschinkel describe the following quadric surface
bundle over P2, which has a non-trivial class in unramified cohomology.

Proposition 3.7. c.f. [7, Proposition 10] Let k = C [7] or let k be an algebraically
closed field of characteristic different from 2 [16], let P2

k × P
3
k have coordinates

x, y, z and s, t, u, v respectively. Let K = k(x, y) = k(P2
k), and f : Y → P

2
k be

the hypersurface defined by:

yzs2 + xzt2 + xyu2 + F(x, y, z)v2 = 0

where

F(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz)

Then Y is a quadric surface bundle over P2
k with a non-trivial unramified cohomol-

ogy class

0 = α = f ∗
((

x

z
,
y

z

))
∈ H2

nr

(
k(Y )/k, μ⊗2

2

)
.

In [7], the authors work over C, but in [16, Proposition 9.6] it is observed that
the same proof works as long as k is an algebraically closed field of characteristic
different from 2. An immediate consequence is:

Corollary 3.8. With notation as above, X1 is birational to the quadric surface
bundle Y defined in Proposition 3.7. It follows that there is a non-trivial class
0 = α = f ∗(( y1y0 ,

z1
z0

)) ∈ H2
nr (k(X1)/k, μ

⊗2
2 )

Proof. The ambient spaces of Y and X1 are birational, and are isomorphic on
the open sets defined by z = 0 and y0, z0 = 0 respectively. If we set z = 1 in
the defining equation of Y , and y0 = z0 = 1 in the defining equation for X1,
the equations are equal. So the birational map on the ambient spaces induces a
birational map between Y and X1. Therefore, k(Y ) � k(X1), so the corresponding
unramified cohomology groups are also isomorphic. ��

Using the explicit description of the non-zero class α, we obtain the following
result.

Lemma 3.9. Let E ⊂ X1 be the exceptional divisor. Consider the class α =
f ∗(( y1y0 ,

z1
z0

)) ∈ H2
nr (k(X1)/k, μ

⊗2
2 ). Then α restricted to the smooth locus E

◦

of E is zero.

Proof. The unramified cohomology groups H2
nr (k(X1)/k, μ

⊗2
2 ) and H2

nr (k(E)/k,
μ⊗2
2 ) are isomorphic to the2-torsion in theBrauer groups,writtenBr(Spec(k(X1))[2]

and Br(Spec(k(E)))[2] respectively (c.f. [16, Proposition 4.11]). Furthermore, the
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isomorphism is compatible with the restriction maps. Using the affine coordinates
y1 and z1 the non-zero class α ∈ Br(Spec(k(X1))[2] corresponds to the conic

y1A
2 + z1B

2 = y1z1C
2,

which has no points over k(X1). The restriction of α to Br(Spec(k(E)))[2] cor-
responds to the same quadric over the field k(E). However, in k(E) we have the
relation z1U 2 + y1V 2 + y1z1W 2 = 0, so for any square root ι of −1, the conic

y1A
2 + z1B

2 = y1z1C
2

has a point over k(E) given by A = V, B = U,C = ιW . Therefore, the restriction
of α to Br(Spec(k(E)))[2] is trivial. The conclusion then follows from functoriality
and the fact that Br(E

◦
) → Br(Spec(k(E))) is injective [5, Theorem 3.5.5]. ��

Remark 3.10. The subvariety E is rational, but because it is singular it does not
follow immediately that the restriction of α to any scheme point in E vanishes.

While X1 is still singular, the following result by Schreieder will ensure that
the singularities of X1 do not interfere with the Merkurjev pairing.

Theorem 3.11. [16, Theorem 10.1] Let f : Y → S be a surjective morphism of
proper varieties over an algebraically closed field k with char(k) = 2 whose
generic fiber is birational to a smooth quadric over k(S). Let n = dim(S) and
assume that there is a class α ∈ Hn(k(S), μ⊗n

2 ) with f ∗α ∈ Hn
nr (k(Y )/k, μ⊗n

2 ).
Then for any dominant generically finite morphism τ : Y ′ → Y of varieties and
for any subvariety E ⊂ Y ′ that meets the smooth locus of Y ′ and which does not
dominate S via f ◦ τ , we have (τ ∗ f ∗α)

∣∣
E = 0 ∈ Hn(k(E), μ⊗n

2 ).

We are now ready to prove that the geometric special fiber does not have a
decomposition of the diagonal. The proof strategy is the same as in [14, Proposition
3.1].

Proposition 3.12. Let X p be the complete intersection Qp ∩ Cp ⊂ P
6
Fp

from (5)

and (6) and let X p be the base change of X p to k:=Fp, the algebraic closure of
Fp. Then X p does not admit a decomposition of the diagonal.

Proof. Assume for contradiction that

δX p
= (z p)k(X p)

∈ CH0
((
X p

)
k(X p)

))
is a decomposition of the diagonal of X p, where z is a zero-cycle on X p The map
ρX1 : X1 → X p (cf. Lemma 3.4) is the blow-up of X p in a plane, and therefore an
isomorphism on the complement of the exceptional divisor E . Hence, ρ∗

X1
(δX p

) =
δX1

. Using this and the exact sequence:

CH0(E) → CH0(X1) → CH0(X1\E) → 0

we get the following equality, where we write K for k(X1).

δX1
= [zK ] + [z′K ] ∈ CH0((X1)K ) (11)
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for some zero-cycle z′ supported on E .
Let τ : X̃1 → X1 be an alteration of odd degree, and let U ⊂ X1 be a subset

of the smooth locus of X1 such that U ∩ E is smooth and the complement X1\U
does not dominate P1 × P

1. In fact, from Remark 3.6, one can simply let U be the
smooth locus of X1. Define Ũ := τ−1(U ) and consider the following commutative
diagram:

ŨK (X̃1)K

UK (X1)K

j ′

τŨ τ

j

Since j is flat and both ŨK andUK are smooth, there are well-defined pullback
maps j∗ and τ ∗̃

U
on Chow rings. Pulling back (11) by τ ∗̃

U
◦ j∗ gives an equality

τ ∗̃
U

(
j∗

(
δX1

)) = τ ∗̃
U

(
j∗([zK ])) + τ ∗̃

U

(
j∗

([z′K ])) (12)

Since τ is étale in a neighborhood of the diagonal point, we have τ ∗̃
U

( j∗δX1
) =

δ̃τ , where δ̃τ is the 0-cycle corresponding to the graph of the map τ in X̃1 × X1.
In CH0((X̃1)K ) we get the equality:

δ̃τ = [̃zK ] + [̃z′K ] + [̃z′′K ] (13)

where [zK ] is supported on ŨK , [̃z′K ] is supported on τ−1(UK ∩ EK ) and [z′′K ]) on
X̃1\Ũ .

We will compute the pairing of each term in (13) with the class τ ∗α to obtain
a contradiction. To compute the pairing of δ̃τ with τ ∗, recall that δ̃τ represents the
graph of τ . Since this graph is isomorphic to X̃1, τ induces a map from k(X̃1), the
residue field of δ̃τ , to Spec(K ). Furthermore, to compute the pairing, we compute
the pushforward of τ ∗α by this map. Therefore we have:

〈̃δτ , τ
∗α,=〉τ∗τ ∗α = (deg τ)α = 0.

The class is non-zero since α is non-zero of even order.
We now compute the pairing of τ ∗α with the summands on the right-hand side.

Firstly,

〈[̃z]K , τ ∗α,=〉0
since the pairing factors through the restriction of τ ∗α to a closed point on X̃1, a
smooth variety over an algebraically closed field, and the restriction of unramified
cohomology classes of positive degree to such classes vanishes.

Secondly,

〈[̃z′K ], τ ∗α,=〉0,
since the restriction of τ ∗α to z̃ factors through the restriction of τ ∗α to τ−1(UK ∩
EK ). By functoriality, this restriction is equal to τ ∗(i∗α), where i : UK ∩ EK →
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(X1)K is the inclusion map. From Lemma 3.9 we know that i∗α vanishes, so
〈[̃z′K ], τ ∗α,=〉0.

Finally, by Theorem 3.11,

〈[̃z′′K ], τ ∗α,=〉0,
since by Lemma 3.5 the singular locus of X1 does not dominate P1 × P

1.
From these computations, we see that the pairing of τ ∗α with the left hand side

of (13) is non-zero, but the pairing of τ ∗α with the right-hand side of (13) is zero.
This contradiction proves that X p cannot have a decomposition of the diagonal. ��

using this we can apply Proposition 2.8 to get the main result of the paper:

Theorem 3.13. Let R = Z or R = Fp[t] with field of fractions K . In the first case
let p ≥ 3, q ≥ 11 be distinct primes and set u = p, v = q, and in the second case
let u = t, v = (t − 1). Let X1 be the smooth complete intersection in P

6
K defined

by the intersection Q ∩ C for

Q = V

(
u

(
6∑

i=0

x2i

)
+ v(x3x6 − x4x5)

)

C = V

(
u

(
6∑

i=0

x3i

)
+ v

(
x20 x5 + x21 x4 + x22 x6 + x3

(
x25 + x24 + x23 − 2x3

(
x6 + x5 + x4

))))
Then X1 is not geometrically retract rational.

Proof. After a base change Spec R′ → Spec R(u) we can assume that X1 is defined
over a DVR with residue field Fp. Then, by Lemma 3.12, the special fiber does not
admit a decomposition of the diagonal. From Proposition 2.8, we can then conclude
that the geometric generic fiber over Spec R′ does not admit a decomposition of the
diagonal, and is therefore not geometrically retract rational. Since this geometric
generic fiber is a base change of X1, it follows that X1 is also not geometrically
retract rational. ��
Remark 3.14. By a specialization argument, it follows from the existence of a single
smooth (2, 3) complete intersection that does not admit a decomposition of the
diagonal, that the very general such intersection does not admit a decomposition
of the diagonal and is therefore not retract rational. Since in this case the special
fiber is smooth, one can in this case also use the specialization technique from [4,
Theorem 1.12] to prove that the very general fiber has no decomposition of the
diagonal.
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