
REMARKS ON CLASSICAL NUMBER THEORETIC ASPECTS

OF MILNOR–WITT K-THEORY

HÅKON KOLDERUP

Abstract. We record a few observations on number theoretic aspects of Milnor–Witt K-theory,
focusing on generalizing classical results on reciprocity laws, Hasse’s norm theorem and K2 of

number fields and rings of integers.

1. Introduction

The algebraic K-groups of number fields and rings of integers are known to encode deep
arithmetic information. This is witnessed already by the computation of the zeroth and first
K-groups of the ring of integers OF in a number field F : indeed, the torsion subgroup of K0(OF )
is precisely the ideal class group of F , while K1(OF ) is the group of units in OF . In the 70’s, Tate
discovered that the second K-group of F is inherently related to reciprocity laws on F [Tat71].
More precisely, Tate found that in the case when F = Q we have

K2(Q) ∼= Z/2⊕
⊕

p prime

F×p .

Tate’s proof method follows essentially Gauss’ first proof of the quadratic reciprocity law involving
an induction over the primes. One can show that Tate’s structure theorem for K2(Q) gives rise
to the product formula for Hilbert symbols over Q, which is an equivalent formulation of the law
of quadratic reciprocity. See [Gra03, II §7] for details.

Besides the algebraic K-groups there are several other important invariants attached to a
number field F . A noteworthy example is the Witt ring W(F ) of F , which subsumes much of the
theory of quadratic forms over F . For instance, the celebrated Hasse–Minkowski’s local-global
principle can be formulated in terms of the Witt ring by stating that an element of W(Q) is
trivial if and only if it maps to zero in W(R) and in W(Qp) for each prime p [MH73, IV Corollary
2.4]. Another example is given by the Milnor K-groups of F , KM

n (F ), introduced by Milnor in
his 1970 paper [Mil70]. By definition, the Milnor K-groups of F coincide with the algebraic
K-groups of F in degrees 0 and 1, while Matsumoto’s theorem on K2 of fields [Mat69] implies
that also KM

2 (F ) ∼= K2(F ). In higher degrees, however, these groups are in general different. On
the other hand, Milnor proved in [Mil70] that the Milnor K-groups of F are intimately linked
with the Witt ring of F . The understanding of this connection between Milnor K-theory and
quadratic forms was greatly enhanced in the wake of Morel and Voevodsky’s introduction of
motivic homotopy theory [MV99], and in particular by Orlov, Vishik and Voevodsky’s solution of
Milnor’s conjecture on quadratic forms [OVV07]. In fact, both the Milnor K-groups and the Witt
ring was set in new light in the context of motivic homotopy groups. More precisely, Hopkins
and Morel introduced the so-called Milnor–Witt K-groups KMW

∗ (F ) of F , and Morel showed in
[Mor04a, Theorem 6.4.1] that for any integer n, there is a canonical isomorphism

πn,n1 ∼= KMW
−n (F ). (1.1)
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Here πn,n1 denotes the motivic homotopy group of the motivic sphere spectrum 1 over F in
bidegree (n, n). We refer the reader to, e.g., [IØ20] for a survey on motivic homotopy groups.
The Milnor–Witt K-groups of F are equipped with forgetful maps to the Milnor K-groups as well
as to the Witt ring, and can therefore be considered as an enhancement of the Milnor K-groups
of F which also takes into account information coming from quadratic forms defined over F .

Below we investigate what number theoretic information the lower Milnor–Witt K-groups
carry. In particular, we define Hilbert symbols and idèle class groups in this setting; we consider
the connection between KMW

2 (F ) and reciprocity laws; we compute KMW
2 (OF ) in a few explicit

examples; and we show a Hasse type norm theorem for KMW
2 . Since the Milnor–Witt K-groups

contain information coming from quadratic forms, we obtain analogs of classical results that are
more sensitive to the infinite real places of the number field than the ordinary K-groups.

1.1. Outline. In Section 2 we start by recalling the definition and basic properties of Milnor–Witt
K-theory, before we move on to computing Milnor–Witt K-groups of the rationals as well as some
local fields. We finish this preliminary section by defining valuations in the setting of Milnor–Witt
K-theory, lifting the classical valuations on a number field.

In Section 3 we put a topology on the first Milnor–Witt K-group KMW
1 (Fv) of a completion

of the number field F , in such a way that KMW
1 (Fv) becomes a covering of F×v . This is used in

Section 4 where we define idèles and idèle class groups in the setting of Milnor–Witt K-theory.

We show that the associated volume zero idèle class group C̃0
F is again a compact topological

group extending the classical compact group C0
F . See Proposition 4.9 for more details.

In Section 5 we shift focus from KMW
1 to KMW

2 . We define Hilbert symbols on Milnor–Witt
K-groups and show a Moore reciprocity sequence in this setting; see Proposition 5.8. We then
move on to the study of KMW

2 of rings of integers in Section 6. Finally, in Section 7 we show
an analog of Hasse’s norm theorem similar to the generalizations of Bak–Rehmann [BR84] and
Østvær [Øst03].

1.2. Conventions and notation. Throughout we let F denote a number field of signature
(r1, r2), and we let PlF denote the set of places of F . For any v ∈ PlF , we let Fv denote the
completion of F at the place v, and we let iv : F ↪→ Fv denote the embedding of F into Fv.
By Ostrowski’s theorem, PlF decomposes as a disjoint union PlF = Pl0 ∪Pl∞ of the finite and
infinite places of F , respectively. The set Pl∞ of infinite places of F decomposes further into the
sets Plr∞ and Plc∞ of real and complex infinite places, respectively. Finally, let Plnc

F denote the
set of noncomplex places of F .

In order to streamline the notation with the literature, we will often use the notations KM
n (F )

and Kn(F ) interchangeably whenever n ∈ {0, 1, 2}.

1.3. Acknowledgments. I thank Ambrus Pál for interesting discussions and for encouraging
me to write this text. Furthermore, I am very grateful to Jean Fasel for particularly helpful
comments on a draft, and to Kevin Hutchinson for his interest and for useful comments. I would
also like to thank the anonymous referee for a careful reading and for many valuable remarks
that helped improve the exposition. This work was supported by the RCN Frontier Research
Group Project no. 250399.

2. Preliminaries

2.1. Milnor–Witt K-theory. We start out by providing some generalities on Milnor–Witt
K-groups, mostly following Morel’s book [Mor12].

Definition 2.1 (Hopkins–Morel). The Milnor–Witt K-theory KMW
∗ (F ) of F is the graded

associative Z-algebra with one generator [a] of degree +1 for each unit a ∈ F×, and one generator
η of degree −1, subject to the following relations:
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(I) [a][1− a] = 0 for any a ∈ F× \ {1} (Steinberg relation).
(II) [ab] = [a] + [b] + η[a][b] (twisted η-logarithmic relation).
(III) η[a] = [a]η (η-commutativity).
(IV) (2 + η[−1])η = 0 (hyperbolic relation).

We let KMW
n (F ) denote the n-th graded piece of KMW

∗ (F ). The product [a1] · · · [an] ∈ KMW
n (F )

may also be denoted by [a1, . . . , an]; by [Mor12, Lemma 3.6 (1)], these symbols generate the
abelian group KMW

n (F ).

2.1.1. Milnor–Witt K-theory and quadratic forms. Let us explain the relationship between Milnor–
Witt K-theory and quadratic forms. Recall for instance from [MH73; Sch85] that a symmetric
bilinear form1 over F is a finite dimensional F -vector space V together with a nondegenerate
symmetric bilinear map β : V × V → F . The group completion of the semiring of isomorphism
classes of symmetric bilinear forms over F is called the Grothendieck–Witt ring of F , denoted
GW(F ). Any unit u of F defines a symmetric bilinear form 〈u〉 whose underlying vector space is
just F , and whose bilinear map β is given by β(x, y) = uxy. In fact, the forms 〈u〉 for u ∈ F×
additively generate the Grothendieck–Witt ring of F [Mor12, Lemma 3.9]. Sending the element
1 + η[u] ∈ KMW

0 (F ) to 〈u〉 ∈ GW(F ) gives a well defined ring homomorphism from KMW
0 (F ) to

GW(F ) which is in fact an isomorphism [Mor12, Chapter 3]. In light of this isomorphism we will,
for any u ∈ F×, denote the element 1 + η[u] ∈ KMW

0 (F ) also by 〈u〉.
The addition and multiplication in the ring GW(F ) stems from direct sum and tensor product

of vector spaces over F . The form H := 〈1〉+ 〈−1〉 ∈ GW(F ) is called the hyperbolic plane, and
this form generates an ideal which is isomorphic to Z. The resulting quotient ring W(F ) :=
GW(F )/(H) is called the Witt ring of F . In the defining relation (IV) of Milnor–Witt K-theory
above, the element 2 + η[−1] = 1 + 〈−1〉 ∈ KMW

0 (F ) corresponds to H ∈ GW(F ). Thus the
hyperbolic relation essentially implies that multiplication by η on the negative Milnor–Witt
K-groups becomes an isomorphism, identifying KMW

n (F ) with W(F ) for all n < 0; see [Mor12,
Lemma 3.10] for details.

Taking the rank of forms over F defines a ring homomorphism GW(F )→ Z, which descends
to a homomorphism W(F ) → Z/2. The kernel of the map W(F ) → Z/2 consists of the even-
dimensional forms in the Witt ring, and is referred to as the fundamental ideal of F , denoted
I(F ). The powers In(F ) of the fundamental ideal are generated by the so-called Pfister forms
〈〈a1, . . . , an〉〉 := (〈1〉 − 〈a1〉) · · · (〈1〉 − 〈an〉). For n ≥ 1 there is a group homomorphism from
KMW
n (F ) to In(F ) given by mapping [a1, . . . , an] to the Pfister form 〈〈a1, . . . , an〉〉. We can use this

map to define, for each infinite real place v of F , a signature homomorphism s̃gnv : KMW
n (F )→ Z

as the composition

s̃gnv : KMW
n (F )→ KMW

n (Fv)→ In(Fv)
∼=−→ Z. (2.1)

Here the last homomorphism is given by the signature of quadratic forms [MH73, p. 62]: for
example, for a ∈ F×v , the signature of 〈a〉 is +1 if a is positive, and −1 otherwise. Thus the
signature of 〈〈−1, . . . ,−1〉〉 ∈ In(Fv) is 2n, and this defines an isomorphism In(Fv) ∼= Z by [MH73,
III Corollary 2.7], carrying the generator 〈〈−1, . . . ,−1〉〉 to 1 ∈ Z.

As the name suggests, Milnor–Witt K-theory is also related to Milnor K-theory. Indeed, for
any n ≥ 0 there is a surjective homomorphism p : KMW

n (F ) → KM
n (F ) determined by killing η

and sending [a] to {a} ∈ KM
1 (F ). Its kernel is In+1(F ), the (n+ 1)-th power of the fundamental

ideal in the Witt ring of F . The above discussion is subsumed by the following pullback square,

1The connection between symmetric bilinear forms and quadratic forms is as follows. Any symmetric bilinear
form β gives rise to a quadratic form q by setting q(x) := β(x, x). Moreover, if F is of characteristic different from
2, then any quadratic form over F arises uniquely in this way from a symmetric bilinear form over F .
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which is proved in [Mor04b, Theorem 5.3]:

KMW
n (F ) KM

n (F )

In(F ) In(F )/In+1(F )

p

(2.2)

2.1.2. The residue map. In Milnor K-theory, there is a residue map, or tame symbol, ∂v : KM
∗ (F )→

KM
∗−1(k(v)) defined for each finite place v of F . These homomorphisms assemble to a total residue

map

∂ : KM
∗ (F )→

⊕
v∈Pl0

KM
∗−1(k(v))

given as ∂ =
⊕

v∈Pl0
∂v. Morel shows in [Mor12, Theorem 3.15] that the same is true for Milnor–

Witt K-theory. More precisely, for each uniformizer πv for v, there is a unique homomorphism
∂πv
v giving rise to a graded homomorphism

∂ =
⊕
v∈Pl0

∂πv
v : KMW

∗ (F )→
⊕
v∈Pl0

KMW
∗−1 (k(v))

which commutes with η and satisfies ∂πv
v ([πv, u1, . . . , un]) = [u1, . . . , un] whenever the ui’s are

units modulo πv. In contrast to the case for Milnor K-theory, the maps ∂πv
v depend on the choice of

uniformizer πv; this stems from the relation [uπv] = [u] + [πv] +η[u, πv]. One can however define a
twisted version of Milnor–Witt K-theory in order to make the maps ∂πv

v canonical. Indeed, for any
field k and any one-dimensional k-vector space V , let KMW

∗ (k, V ) := KMW
∗ (k)⊗Z[k×] Z[V \ {0}],

where Z[k×] acts by u 7→ 〈u〉 on KMW
∗ (k) and by multiplication on Z[V \ {0}]. Then the

map ∂v : KMW
∗ (F ) → KMW

∗−1 (k(v), (mv/m
2
v)
∨) given by ∂v([πv, u1, . . . , un]) = [u1, . . . , un] ⊗ πv is

independent of the choice of uniformizer [Mor12, Remark 3.21].

2.1.3. A few exact sequences. Let us collect some short exact sequences involving Milnor–Witt
K-groups that will be used later in the text. First of all, the square (2.2) gives a short exact
sequence

0→ In+1(F )→ KMW
n (F )

p−→ KM
n (F )→ 0. (2.3)

Here the map In+1(F ) → KMW
n (F ) is defined by sending the Pfister form 〈〈a1, . . . , an+1〉〉 to

η[a1 . . . , an+1]. There is a similar sequence with the fundamental ideal on the right hand-side; it
takes the form [HT10, p. 6]

0→ 2KM
n (F )→ KMW

n (F )→ In(F )→ 0. (2.4)

The left hand-side homomorphism is here given by mapping 2{a1, . . . , an} to h[a1, . . . , an], where
h := 1 + 〈−1〉 is the hyperbolic plane.

On the other hand, there is a fundamental computation by Morel [Mor12, Theorem 3.24]
(which follows Milnor’s computation in the case of Milnor K-theory [Mil71]) showing that there is
a split short exact sequence

0→ KMW
n (F )→ KMW

n (F (t))
∂−→

⊕
x∈(A1

F )(1)

KMW
n−1(k(x))→ 0. (2.5)

Here x runs over all closed points of A1
F .
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2.1.4. Transfers in Milnor–Witt K-theory. If L/F is an extension of number fields, recall that
there exist norm maps, or transfer maps in Milnor K-theory [Kat78],

τL/F : KM
n (L)→ KM

n (F ),

which generalize the classical norm NL/F : L× → F×. Similar maps exist also for Milnor–Witt
K-theory, and are constructed in the same way as for the Milnor K-groups. We briefly recall
this construction. Let α be a primitive element for the extension of number fields L/F , so that
L = F (α). Let P ∈ F [t] be the minimal polynomial of α. The transfer map

τL/F : KMW
n (L)→ KMW

n (F )

is defined by using the split short exact sequence (2.5) as follows. Choose a section s :=
⊕

x sx
of ∂, and let y ∈ (A1

F )(1) be the closed point corresponding to P . Then we define τL/F as the
composition

τL/F : KMW
n (L)

∼=−→ KMW
n (k(y))

sy−→ KMW
n+1(F (t))

−∂−1/t
∞−−−−−→ KMW

n (F ),

where ∂
−1/t
∞ is the residue map corresponding to the valuation on F (t) with uniformizer −1/t. It

is a difficult theorem, proved by Morel in [Mor12, Theorem 4.27], that the map τL/F does not
depend on the choices made.

2.2. Milnor–Witt K-theory of finite and local fields. We compute some Milnor–Witt K-
groups of finite and local fields. The results follow readily from the structure of the corresponding
Milnor K-groups along with some knowledge about fundamental ideals.

Proposition 2.2.

(i) If F is a finite field, then KMW
n (F) ∼= KM

n (F) for all n ≥ 1.
(ii) Let v ∈ PlF be a place of F . We have isomorphisms of abelian groups

KMW
n (Fv) ∼=


KM
n (Fv), v ∈ Pl0, n ≥ 2

Z⊕Av, v ∈ Plr∞, n ≥ 1

KM
n (Fv), v ∈ Plc∞, n ≥ 0,

where the Av’s are uniquely divisible abelian groups.

Remark 2.3. The Milnor K-groups of local fields are known: if v is a finite place of F , then
KM

2 (Fv) ∼= µ(Fv)⊕Av, where Av is a uniquely divisible group [Mer83], while KM
n (Fv) is uniquely

divisible for n ≥ 3 [Siv85]. If v is an infinite real place of F , then for all n ≥ 1, KM
n (Fv) is the

direct sum of a cyclic group of order 2 generated by {−1, . . . ,−1} and a uniquely divisible group
[Wei13, Example 7.2]. Finally, if v is a complex place of F then KM

n (Fv) is uniquely divisible for
all n ≥ 1 [Wei13, Example 7.2].

Proof of Proposition 2.2. The first claim follows from the exact sequence (2.3) since I2(F) = 0
for any finite field F [MH73, p. 81].

For (ii), first assume v ∈ Plc∞. Then the statement follows from the fact that C is quadratically
closed [Mor12, Proposition 3.13]. If v ∈ Pl0 we have I3(Fv) = 0 by [MH73, p. 81], and hence the
exact sequence (2.3) yields KMW

n (Fv) ∼= KM
n (Fv) for each n ≥ 2. Finally, suppose v ∈ Plr∞. Then

we have In+1(Fv) ∼= Z, generated by the Pfister form 〈〈−1, . . . ,−1〉〉 [MH73, p. 81]. Furthermore,
by Remark 2.3, KM

n (Fv) ∼= Z/2⊕A, where A is a uniquely divisible abelian group. Using that
2KM

n (Fv) ∼= A, the sequence (2.4) above reduces in this case to

0→ A→ KMW
n (Fv)→ Z→ 0.

The right hand-side being free, this sequence splits and the result follows. �
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Remark 2.4. In the case of finite places and n = 2, the isomorphisms appearing in Proposition 2.2
are given by the classical local Hilbert symbols (−,−)v [Neu99, V §3]. On the other hand, if
v ∈ Plr∞, we can think of the signature map KMW

2 (R) → Z as a “Z-valued Hilbert symbol”
extending the classical Z/2-valued Hilbert symbol on R. We will return to this point of view in
Section 5.1.

2.3. Milnor–Witt K-theory of the rationals. The Witt- and Grothendieck–Witt ring of Q is
determined for instance in [MH73, IV §2]. Thus we know KMW

n (Q) for n ≤ 0. The the remaining
groups are given as follows:

Proposition 2.5. For each n ≥ 1, the residue map ∂ defined in Section 2.1.2 induces an
isomorphism of abelian groups

KMW
n (Q) ∼= Z⊕

⊕
p prime

KMW
n−1(Fp).

In particular,

KMW
1 (Q) ∼= Z⊕

⊕
p prime

GW(Fp); KMW
2 (Q) ∼= Z⊕

⊕
p prime

F×p ,

while KMW
n (Q) ∼= Z for n ≥ 3.

Proof. For each n ≥ 1 let Λn denote the kernel of the signature homomorphism s̃gn: KMW
n (Q)→ Z

defined in (2.1). Since the target of s̃gn is free, we have KMW
n (Q) ∼= Z⊕ Λn, and it remains to

identify Λn. Since KM
n (Q) ∼= Z/2⊕

⊕
p prime KM

n−1(Fp) for n ≥ 1 [BT73], then using the sequence

(2.3) it follows that we have a commutative diagram with exact rows

0 ker(sgn) Λn
⊕

p prime

KM
n−1(Fp) 0

0 In+1(Q) KMW
n (Q) Z/2⊕

⊕
p prime

KM
n−1(Fp) 0

0 Z Z Z/2 0.

sgn s̃gn

p

Here sgn denotes the signature map on quadratic forms [MH73, p. 62]. From knowledge about
the fundamental ideal of Q [MH73, IV §2] we conclude the following:

• For n = 1 the upper short exact sequence reads

0→
⊕

p>2 prime

Z/2→ Λ1 →
⊕

p prime

Z→ 0.

The right hand-side being free, this sequence splits, and we conclude that

Λ1
∼= Z⊕

⊕
p>2 prime

(Z⊕ Z/2) ∼=
⊕

p prime

GW(Fp).

• If n ≥ 2, then the map sgn is an isomorphism and the claim follows.

This finishes the proof. �
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2.4. Valuations. Let v be a finite place of F . Classically, the v-adic discrete valuation on the
local field Fv is a homomorphism ordv : F×v → Z which, by definition, coincides with the residue
map ∂v : KM

1 (Fv) → KM
0 (k(v)) = Z on Milnor K-theory. The units O×v of the corresponding

valuation ring Ov then coincides with the kernel of ordv. Following [Gra03, I Definition 1.5] we
extend this picture to the real and complex places of F . Thus, if v is an infinite real place of F
we denote by ordv the homomorphism F×v → Z/2 under which x ∈ F×v ∼= R× maps to 0 if x > 0,
and 1 if x < 0. On the other hand, we set ordv := 0 whenever v is a complex infinite place. In
any case, we let O×v denote the kernel of ordv.

Definition 2.6. Let v be a place of F .

(1) If v ∈ Pl0, we define

õrdv : KMW
1 (Fv)→ GW(k(v), (mv/m

2
v)
∨)

by õrdv := ∂v, where ∂v is the residue map on Milnor–Witt K-theory.
(2) If v ∈ Plr∞, we define the homomorphism

õrdv : KMW
1 (Fv)→ Z

as the signature homomorphism (2.1).

(3) For v ∈ Plc∞, we let õrdv be the trivial homomorphism on KMW
1 (Fv).

In any case, we let KMW
1 (Ov) denote the kernel of õrdv.

Remark 2.7. For the infinite real places of F we are in Definition 2.6 not really taking KMW
1 of

a field or ring: the notation KMW
1 (Ov) is only suggestive in order to obtain analogs of the unit

groups attached to each place of F [Gra03, I §1]. For a finite place or complex infinite place v of
F , however, the above definition is the same as Morel’s definition of Milnor–Witt K-groups of
valuation rings [Mor12, §3]. Morel shows in [Mor12, Theorem 3.22] that with this definition, the
Milnor–Witt K-theory of Ov is generated as a ring by η along with the symbols [u] for u a unit
of Ov. It follows that this definition coincides with other definitions of Milnor–Witt K-theory of
rings given in the literature, for example that of Schlichting in [Sch17, §4].

Lemma 2.8. Let v ∈ PlF be a place of F .

• If v is either an infinite place or a nondyadic finite place, then KMW
1 (Ov) ∼= O×v (where,

by definition, O×v := R×>0 for v ∈ Plr∞ and O×v := C× for v ∈ Plc∞).
• If v is a dyadic place, then there is a short exact sequence

0→ I2(Fv)→ KMW
1 (Ov)→ O×v → 0.

Proof. The statement is clear for the infinite places by Proposition 2.2. Let v ∈ Pl0 be a finite
place of F , and consider the commutative diagram with exact rows

0 KMW
1 (Ov) KMW

1 (Fv) KMW
0 (k(v)) 0

0 O×v F×v Z 0.

p′

∂v

p p′′

ordv

If v - 2, then the induced map ker p ∼= I2(Fv) ∼= Z/2→ ker p′′ ∼= I(k(v)) ∼= Z/2 is an isomorphism
and so we conclude by the snake lemma. If v | 2, then k(v) is quadratically closed and hence the
map p′′ : KMW

0 (k(v))→ Z is an isomorphism. In this case the snake lemma applied to the above
diagram yields ker p′ ∼= ker p ∼= I2(Fv). �
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3. Topology on KMW
1 (Fv)

We now aim to put a topology on KMW
1 (Fv), for each place v of F , in such a way that the

homomorphism p : KMW
1 (Fv)→ F×v becomes a covering map.

3.0.1. In general, suppose that we are given an abelian group G (written additively) along with
a subgroup H of G which is a topological group. We can then extend the topology on H to a
topology on G as follows. Choose a set theoretical section s of the quotient map π : G→ G/H,
and let G/H have the discrete topology. Then s defines a partition

G =
∐

x∈G/H

(s(x) +H)

of G, and there is a natural topology on each coset (s(x) + H) ∼= H coming from that on H.
We can then declare a subset U ⊆ G to be open if and only if U ∩ (s(x) +H) is open for every
x ∈ G/H. This turns G into a topological group.

3.0.2. Now let v be a place of F . Then, by taking n = 1 in the short exact sequence (2.4) we
get the exact sequence

0→ F×2
v → KMW

1 (Fv)→ I(Fv)→ 0.

In the notations above, we can then let G := KMW
1 (Fv) and H := F×2

v . The quotient map
π : G→ G/H is given as [a] 7→ 〈〈a〉〉. Using the set theoretical section s(〈〈x〉〉) := [x] of π along
with the fact that F×2

v is a topological group, we obtain by the above a topology on KMW
1 (Fv).

Proposition 3.1. For any v ∈ PlF , the map p : KMW
1 (Fv) → F×v is a covering of topological

groups. Furthermore, if v is a finite place of F , then we have the following:

(1) The map p is proper.
(2) The space KMW

1 (Fv) is locally compact and totally disconnected, and KMW
1 (Ov) is compact

in KMW
1 (Fv).

Proof. If v is a complex place, then by Proposition 2.2 there is nothing to show. So we may
assume that v ∈ Plnc

F . We have a commutative diagram with exact rows

0 F×2
v KMW

1 (Fv) I(Fv) 0

0 F×2
v F×v I(Fv)/I

2(Fv) 0.

= p

That p is a covering map follows from this diagram along with the fact that the quotient topology
on F×v /F

×2
v
∼= I(Fv)/I

2(Fv) is the discrete topology.
Now let v be a finite place of F . Then I2(Fv) ∼= Z/2, so that we have an exact sequence

0→ Z/2→ KMW
1 (Fv)

p−→ F×v → 0.

Thus p is in this case a two sheeted covering map, hence proper. The claim (2) follows from
Lemma 2.8 along with the properties of the topology on F×v . �

4. Idèles

Recall that the idèle group JF of F is the restricted product of the groups of units of the
completions F×v with respect to the compact subgroups O×v , with the restricted product topology.
Equivalently, JF can be defined as the direct limit lim−→S

JF (S), where S is a set of places of F and

JF (S) :=
∏
v∈S

F×v ×
∏
v 6∈S

O×v .
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Definition 4.1. For any finite set S of places of F , put

J̃F (S) :=
∏
v∈S

KMW
1 (Fv)×

∏
v 6∈S

KMW
1 (Ov).

The Milnor–Witt idèle group J̃F of F is defined as the direct limit

J̃F := lim−→
S

J̃F (S),

where S ranges over all finite subsets of PlF .

Proposition 4.2. There is a short exact sequence

0→
⊕
v∈PlF

I2(Fv)→ J̃F
p−→ JF → 0,

where the map p is induced by the projection maps from Milnor–Witt K-theory to Milnor K-theory.

Proof. For the definition of the homomorphism p, note that we have projection maps J̃F (S)→
JF (S) for any finite set of places of F . Here JF (S) :=

∏
v∈S F

×
v ×

∏
v 6∈S O×v . The map p is then

the induced morphism on the colimit, which we notice is surjective.
Let Pl2 := {v ∈ PlF : v | 2} denote the dyadic places of F . It follows from Lemma 2.8 along

with the sequence (2.3) that the kernel of the projection map J̃F (S)→ JF (S) is
⊕

v∈S∪Pl2
I2(Fv).

Passing to the colimit as S varies, we thus find that the kernel of the map J̃F → JF is⊕
v∈PlF

I2(Fv). �

Definition 4.3. Let S be a finite set of places of F . We define a topology on J̃F (S) by taking
the topology generated by the sets

WS :=
∏
v∈S

Uv ×
∏
v 6∈S

KMW
1 (Ov),

where the Uv’s are open subsets of KMW
1 (Fv) for each v ∈ S. This defines a topology on J̃F via

the direct limit topology.

Lemma 4.4. The Milnor–Witt idèle group J̃F is a locally compact topological group.

Proof. This follows from the fact that J̃F is the restricted product of the groups KMW
1 (Fv) with

respect to the subgroups KMW
1 (Ov), which are compact for almost all v by Proposition 3.1. �

Definition 4.5. Define the map ĩ : KMW
1 (F )→ J̃F by ĩ([x]) := ([iv(x)])v∈PlF . We refer to the

cokernel C̃F := coker ĩ as the Milnor–Witt idèle class group of F .

Lemma 4.6. The map ĩ is injective. Hence C̃F = J̃F /̃i(K
MW
1 (F )).

Proof. By Proposition 4.2, the kernel of the map J̃F → JF is
⊕

v∈PlF
I2(Fv). Hence there is a

commutative diagram

I2(F )
⊕
v∈PlF

I2(Fv)

0 ker ĩ KMW
1 (F ) J̃F C̃F 0

0 F× JF CF 0.

ĩ

p

i
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By the Hasse–Minkowski theorem, the map I2(F )→
⊕

v∈PlF
I2(Fv) is injective. It follows from

this and a diagram chase that ker ĩ = 0. �

4.0.1. Idèles of volume zero. Recall that we have a volume map vol : JF → R×>0 defined as
vol(x) :=

∏
v∈PlF

|xv|Fv
[Neu99, p. 361]. Here x = (xv)v∈PlF ∈ JF , and | · |Fv

is the v-adic

absolute value on Fv. We let J0
F denote the kernel of the volume map. By the classical product

formula for absolute values [Neu99, Chapter III, Proposition 1.3] we have F× ⊆ J0
F . The fact that

the resulting quotient group C0
F := J0

F /F
× is compact is an equivalent formulation of Dirichlet’s

unit theorem and the finiteness of the ideal class group [Gra03, I Proposition 4.2.7].

Definition 4.7. Let p : J̃F → JF denote the projection map. We define a volume map ṽol : J̃F →
R×>0 on J̃F by ṽol := vol ◦ p, and put J̃0

F := ker(ṽol). Let C̃0
F be the quotient group

C̃0
F := J̃0

F /̃i(K
MW
1 (F )).

Remark 4.8. By Lemma 4.6 along with the product formula for absolute values we have

ĩ(KMW
1 (F )) ⊆ J̃0

F , justifying the definition of C̃0
F .

Proposition 4.9. There is a short exact sequence

0→ Z/2→ C̃0
F → C0

F → 0.

Hence C̃0
F is a compact topological group.

Proof. By definition, the kernel
⊕

v∈PlF
I2(Fv) of the projection map p : J̃F → JF is contained

in J̃0
F . Consider the commutative diagram with exact rows

0 KMW
1 (F ) J̃0

F C̃0
F 0

0 F× J0
F C0

F 0.

ĩ

p

i

By the snake lemma it suffices to show that the cokernel of the map I2(F )→
⊕

v∈PlF
I2(Fv) is

Z/2. But this follows from the snake lemma applied to the commutative diagram with exact rows

0 I3(F ) I2(F ) I2(F )/I3(F ) 0

0
⊕
v∈PlF

I3(Fv)
⊕
v∈PlF

I2(Fv)
⊕
v∈PlF

I2(Fv)/I
3(Fv) 0,

ι∼=

using the fact that the left hand vertical map ι is an isomorphism by Lemma 4.10 below, and
that the cokernel of the right hand vertical map is Z/2 by [Mil70, Lemma A.1]. �

Lemma 4.10. For any number field F , the canonical map ι : I3(F )→
⊕

v∈PlF
I3(Fv) induced by

the embeddings iv : F ↪→ Fv is an isomorphism.

Proof. The map is injective by the Hasse–Minkowski theorem. We must show that it is surjective.
If v ∈ Pl0 ∪Plc∞, then I3(Fv) = 0 and there is nothing to show. On the other hand, if v is

an infinite real place, then I3(Fv) ∼= Z by [MH73, III Corollary 2.7]. By strong approximation
[Neu99, p. 193] we can find an element a ∈ F which is negative in the i-th ordering on F and
positive otherwise. Then 〈〈−1,−1, a〉〉 ∈ I3(F ) maps to the i-th unit vector in

⊕
v∈Plr I3(Fv). �

Remark 4.11. One can speculate on whether there is a variant of the abelianized étale fundamental
group of Spec(OF ) which is the recipient of a reciprocity map defined on the Milnor–Witt idèle

class group C̃F and which lifts the classical Artin reciprocity map ρ : CF → Gal(L/F )ab.
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5. A Moore reciprocity sequence for Milnor–Witt K-theory

The classical result of Moore on uniqueness of reciprocity laws states that there is an exact
sequence

0→WK2(F )→ K2(F )
h−→

⊕
v∈Plnc

F

µ(Fv)
π−→ µ(F )→ 0.

Here h denotes the global Hilbert symbol, and the group WK2(F ) is known as the wild kernel
[Gra03, II §7]. Moreover, the map π is defined as

π((ζv)v) :=
∏

v∈Plnc
F

ζmv/m
v ,

where mv := #µ(Fv) and m := #µ(F ). In this section we will show that also KMW
2 (F ) fits into a

similar exact sequence.

5.1. Hilbert symbols. In order to obtain a Moore reciprocity sequence for KMW
2 , we first need

to define Hilbert symbols in the setting of Milnor–Witt K-theory. These should be particular
instances of maps of the following type:

Definition 5.1. Let A be a GW(F )-module. A Milnor–Witt symbol on F with values in A is a
GW(F )-bilinear map

(−,−) : KMW
1 (F )×KMW

1 (F )→ A

satisfying ([a], [1− a]) = 0 for all a ∈ F× \ {1}.

Remark 5.2. Note that any abelian group A is also a GW(F )-module via the rank map
rk: GW(F )→ Z. Thus we should think of the definition of a Milnor–Witt symbol as a lift of the
classical notion of a symbol, i.e., a Z-bilinear map (−,−) : F× × F× → A satisfying the Steinberg
relation [Tat71]. Just as K2(F ) is the universal object with respect to symbol maps, it follows
from [Mor12, Remark 3.2] that KMW

2 (F ) is the universal object with respect to Milnor–Witt
symbols.

Definition 5.3. For any place v of F , let Bv be the group

Bv :=


µ(Fv), v ∈ Pl0

Z, v ∈ Plr∞
0, v ∈ Plc∞ .

Furthermore, define a map qv : Bv → µ(Fv) by letting qv be the identity if v ∈ Pl0; reduction
modulo 2 if v ∈ Plr∞; or the trivial homomorphism if v ∈ Plc∞. Finally, write q :=

⊕
v∈Plnc

F
qv.

5.1.1. By Proposition 2.2 we have KMW
2 (Fv) ∼= Bv ⊕Av for each v ∈ Plnc

F . Thus we can define,
for any noncomplex place v of F , the homomorphism bv : KMW

2 (Fv)→ Bv as the composition of
the isomorphism KMW

2 (Fv) ∼= Bv ⊕Av followed by the projection Bv ⊕Av → Bv. Thus, if v is a
finite place of F then bv is just the classical local Hilbert symbol, while for v ∈ Plr∞ the map bv
is the signature homomorphism (2.1).

Definition 5.4. For each v ∈ Plnc
F , let hMW

v : KMW
2 (F )→ Bv denote the composite

KMW
2 (F )

iv−→ KMW
2 (Fv)

bv−→ Bv,

where the first map is induced by the embedding iv : F ↪→ Fv. Moreover, let

hMW : KMW
2 (F )→

⊕
v∈Plnc

F

Bv

be the map hMW :=
⊕

v∈Plnc
F
hMW
v .
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Definition 5.5. Let v ∈ Plnc
v be a noncomplex place of F . We define the local Milnor–Witt

Hilbert symbol at v, denoted (−,−)MW
v , as the composite

(−,−)MW
v : KMW

1 (F )×KMW
1 (F )→ KMW

2 (F )
hMW
v−−−→ Bv.

Here the first map is multiplication on Milnor–Witt K-theory.

Lemma 5.6. For any v ∈ Plnc
F , we have a commutative diagram

KMW
1 (F )×KMW

1 (F ) Bv

F× × F× µ(Fv).

(−,−)MW
v

p×p qv

(−,−)v

Proof. The statement is clear for the finite places, so let v be an infinite real place of F . Recall
that (a, b)v ∈ Z/2 is defined as 0 if iv(a)X2 + iv(b)Y

2 = 1 has a solution in Fv ∼= R, and 1
otherwise [Mil71, p. 104]. On the other hand, the map (2.1) carries [a, b] to 0 if any of iv(a) or
iv(b) is positive in the ordering v, and to 1 otherwise. So ([a], [b])MW

v ≡ (a, b)v (mod 2). �

5.1.2. Wild kernels. Using the maps hMW
v we can define wild kernels for Milnor–Witt K-theory

similarly as in the classical case:

Definition 5.7. Let WKMW
2 (F ) denote the kernel of the map hMW =

⊕
v∈Plnc

F
hMW
v .

5.1.3. We are now ready to formulate a Moore reciprocity sequence for Milnor–Witt K-theory:

Proposition 5.8. For any number field F , there is an isomorphism WKMW
2 (F ) ∼= WK2(F ).

Moreover, there is an exact sequence

0→WK2(F )→ KMW
2 (F )

hMW

−−−→
⊕
v∈Plnc

F

Bv → µ(F )→ 0,

where v runs over all noncomplex places of F , and where the Bv’s are the groups defined in
Definition 5.3.

Proof. Consider the following commutative diagram with exact rows:

ker p′ I3(F )
⊕
v∈Plnc

F

I3(Fv) ker q′

0 WKMW
2 (F ) KMW

2 (F )
⊕
v∈Plnc

F

Bv cokerhMW 0

0 WK2(F ) K2(F )
⊕
v∈Plnc

F

µ(Fv) µ(F ) 0.

ι
∼=

p′

hMW

p
q

q′

h π

Here p′ and q′ are induced from p and q, respectively. According to Lemma 4.10, the map
ι : I3(F )→

⊕
v∈Plnc

F
I3(Fv) is an isomorphism. It follows from this and a diagram chase that p′

and q′ are isomorphisms. �
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Example 5.9. We see from Proposition 2.5 that in the case F = Q, the exact sequence of
Proposition 5.8 reads

0→ Z⊕
⊕

p prime

F×p → Z⊕ Z/2⊕
⊕

p prime

F×p → Z/2→ 0.

Here we have used that WK2(Q) = 0.

6. Regular kernels and Milnor–Witt K-theory of rings of integers

6.1. We will now consider various kernels of the Hilbert symbols and the tame symbols. Recall
that in classical K-theory, there are three subgroups of K2(F ) of particular interest:

K2(OF ) = ker

(
∂ : K2(F )→

⊕
v∈Pl0

k(v)×

)

K+
2 (OF ) := ker

 ⊕
v∈Plr∞

hv
∣∣
K2(OF )

: K2(OF )→
⊕
v∈Plr∞

µ(Fv)



WK2(F ) := ker

h : K2(F )→
⊕
v∈Plnc

F

µ(Fv)

.

⊆
⊆

We have already encountered the wild kernel WK2(F ), and it is a classical result of Quillen [Qui73,
§5] that K2(OF ) is the kernel of the tame symbols ∂. The group K+

2 (OF ) was introduced by Gras
in [Gra86] and is referred to as the regular kernel, or the narrow K2-group. It is a modification of
K2(OF ) that takes into account also the real places of F .

Definition 6.1. For any n ≥ 1, let KMW
n (OF ) denote the kernel of

∂ :=
⊕
v∈Pl0

∂πv
v : KMW

n (F )→
⊕
v∈Pl0

KMW
n−1(k(v)).

Here πv is any choice of uniformizer for the discrete valuation v. Moreover, we let

KMW,+
n (OF ) := ker

(
KMW
n (OF )→ Zr1

)
; KMW,+

n (F ) := ker
(
KMW
n (F )→ Zr1

)
,

where the maps are given by the signatures with respect to the orderings on F , as defined in
(2.1).

Remark 6.2. By [Mor12, Proposition 3.17 (3)], the kernel of ∂πv
v is independent of the choice of

uniformizer πv.

Example 6.3. By Proposition 2.5 we have KMW
n (Z) ∼= Z for all n ≥ 1.

Remark 6.4. If S is a set of places of F containing the infinite places, note that we can also define
Milnor–Witt K-theory of the ring of S-integers OF,S in F as

KMW
n (OF,S) := ker

⊕
v 6∈S

∂πv
v : KMW

n (F )→
⊕
v 6∈S

KMW
n−1(k(v))

.
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Here πv is a uniformizer for the place v. For n = 2, the groups KMW
2 (OF,S) were also considered

in [Hut16]. More precisely, Hutchinson defines a subgroup K̃2(2,OF,S) of the second unstable
K-group K2(2, F ) by

K̃2(2,OF,S) := ker

K2(2, F )→
⊕
v 6∈S

k(v)×

.
By [Hut16, Proposition 3.12] there is a natural isomorphism K2(2, F )

∼=−→ KMW
2 (F ), hence

K̃2(2,OF,S) ∼= KMW
2 (OF,S). The main theorem of [Hut16] states that if S is a set of places of Q

containing 2 and 3, then KMW
2 (ZS) ∼= H2(SL2(ZS),Z) (where ZS denotes the localization of Z

at the primes of S). In particular, KMW
2 (Z[1/m]) ∼= H2(SL2(Z[1/m]),Z) provided 6 | m. It is a

conjecture that this isomorphism holds for any even m.

Proposition 6.5.

(i) We have a short exact sequence

0→ Zr1 → KMW
2 (OF )

q−→ K2(OF )→ 0,

where the homomorphism q is induced by the forgetful map from Milnor–Witt K-theory to
Milnor K-theory.

(ii) We have KMW,+
2 (OF ) ∼= K+

2 (OF ) and KMW,+
2 (F ) ∼= K+

2 (F ).
(iii) The groups KMW

2 (OF ) and KMW
2 (F ) decompose as

KMW
2 (OF ) ∼= K+

2 (OF )⊕ Zr1 ; KMW
2 (F ) ∼= K+

2 (F )⊕ Zr1 .

In particular, by Garland’s theorem on the finiteness of K2(OF ) [Gar71], the group KMW
2 (OF ) is

a finitely generated abelian group of rank r1.

Proof. For the first point, consider the diagram

0 KMW
2 (OF ) KMW

2 (F )
⊕
v∈Pl0

KMW
1 (k(v)) 0

0 K2(OF ) K2(F )
⊕
v∈Pl0

k(v)× 0.

q p

∂

∼=

∂

By Proposition 2.2 (i), the right hand vertical map is an isomorphism. Using Lemma 4.10, the
claim follows.

For the second point, first note that we have a commutative diagram with exact rows

0 KMW,+
2 (OF ) KMW

2 (OF ) Zr1 0

0 K+
2 (OF ) K2(OF ) (Z/2)r1 0.

(6.1)

Here the upper right hand-side map is given by the signature homomorphisms (2.1); commutativity
of the right hand square follows similarly as the proof of Lemma 5.6. The first claim of (ii) then
follows from (i) along with the snake lemma applied to the diagram (6.1); the second claim of (ii)
follows similarly.

For (iii), we use (ii) along with the observation that since the right hand-side in the upper short
exact sequence of (6.1) is free, the sequence splits. A similar argument works for KMW

2 (F ). �
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Remark 6.6. In contrast to point (iii) of Proposition 6.5, the corresponding short exact sequence
for K2(OF ),

0→ K+
2 (OF )→ K2(OF )→ (Z/2)r1 → 0,

need not split. For example, [Keu89, Example 3.10] shows that if F = Q(
√

14), then rk2(K+
2 (OF )) =

1 while rk2(K2(OF )) = 2. On the other hand, the sequence

0→ K+
2 (F )→ K2(F )→ (Z/2)r1 → 0

is always split (see [Keu89, §2.1]).

6.2. Sample computations of KMW
2 (OF ). Using Proposition 6.5 along with similar results for

K2(OF ) we deduce some computations of KMW
2 (OF ) for various fields F . Below we make use of

the calculations of [BG04] to determine KMW
2 (OF ).

In the following table, we consider the number fields F = Q[x]/(P ) defined by the polynomial
P . We let ∆F denote the discriminant of F , and (r1, r2) the signature.

P ∆F (r1, r2) K2(OF ) KMW
2 (OF )

x3 + x2 − 2x− 1 49 (3, 0) (Z/2)3 Z3

x3 + x2 + 2x+ 1 −23 (1, 1) Z/2 Z
x3 + x2 + 3 −255 (1, 1) Z/6 Z/3⊕ Z
x4 − x− 1 −283 (2, 1) (Z/2)2 Z2

x5 − x3 − x2 + x+ 1 1609 (1, 2) Z/2 Z

7. Hasse’s norm theorem for KMW
2

Recall that the classical norm theorem of Hasse states that if L is a cyclic extension of the
number field F , then a nonzero element of F is a local norm at every place if and only if it is a
global norm. We can think of this result as a norm theorem for K1.

In [BR84], Bak and Rehmann extended Hasse’s norm theorem to K2. More precisely, they
showed that if L/F is any finite extension of number fields, then an element of K2(F ) lies in the
image of the transfer map τL/F : K2(L)→ K2(F ) if and only if its image in each K2(Fv) lies in
the image of the map ⊕

w|v

τLw/Fv
:
⊕
w|v

K2(Lw)→ K2(Fv);

see [BR84, Theorem 1]. By [BR84, p. 4], this result can be reformulated as the exactness of the
sequence

K2(L)
τL/F−−−→ K2(F )

⊕
v∈ΣL/F

hv

−−−−−−−−→
⊕

v∈ΣL/F

µ(Fv)→ 0. (7.1)

Here ΣL/F denotes the set of infinite real places of F that are complexified in the extension L/F ,
and hv denotes the classical local Hilbert symbol at v.

7.0.1. The aim of this section is to show that a similar result as (7.1) holds also for KMW
2 :

Proposition 7.1. Let L/F be an extension of number fields. Then an element of KMW
2 (F ) lies

in the image of the transfer map τL/F : KMW
2 (L)→ KMW

2 (F ) if and only if its image in KMW
2 (Fv)

lies in the image of
⊕

w|v τLw/Fv
for all v ∈ PlF .
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7.0.2. We note that Proposition 7.1 is equivalent to the following assertion:

Proposition 7.2. Let L/F be an extension of number fields. Denote by ΣL/F the set of infinite
real places of F that are complexified in the extension L/F . Then there is an exact sequence

KMW
2 (L)

τL/F−−−→ KMW
2 (F )

⊕
v∈ΣL/F

hMW
v

−−−−−−−−−−→
⊕

v∈ΣL/F

Z→ 0,

where τL/F denotes the transfer map on Milnor–Witt K-theory as defined in (2.1.4), and the right
hand-side map is given by the local Milnor–Witt Hilbert symbols.

To show the equivalence of Propositions 7.1 and 7.2, notice first that Proposition 7.1 is

equivalent to the assertion that the map coker(τL/F )→
∏
v∈PlF

coker
(⊕

w|v τLw/Fv

)
is injective.

It is therefore enough to show that coker(τLw/Fv
) is trivial except for v ∈ ΣL/F , in which case it

is Z. But this follows from Proposition 2.2 along with the corresponding statement for K2 proved
in [BR84, p. 4].

7.0.3. Let us proceed with the proof of Proposition 7.2. We follow closely the strategy of Bak
and Rehmann [BR84]. Recall from Definition 5.3 the definition of the groups Bv for v ∈ PlF .

Definition 7.3. If v is any place of F and w | v is a place of L above v, we define a homomorphism

bw|v : Bw → Bv

by

bw|v :=


0, v ∈ PlrF,∞ and w ∈ PlcL,∞
id, v ∈ PlrF,∞ and w ∈ PlrL,∞
nw/mv, v ∈ PlF,0 .

Here nw := #µ(Lw) and mv := #µ(Fv).

Lemma 7.4. For any place v of F , the diagram

KMW
2 (L)

⊕
w|v

Bw

KMW
2 (F ) Bv

τL/F

⊕
w|v h

MW
w

⊕
w|v bw|v

hMW
v

is commutative.

Proof. Since KMW
2 (Fv) ∼= K2(Fv) for each v 6∈ Plr∞ it suffices by [BR84, Proof of Proposition 2]

to note that τLw/Fv
= id: KMW

2 (R)→ KMW
2 (R) whenever v and w both are infinite real places.

Indeed, this follows since Lw/Fv is then the trivial extension. �

Lemma 7.5. Let x ∈ WKMW
2 (F ), and let p be a rational prime. Then there is an element

z ∈ KMW
2 (F ) such that pz = x.

Proof. By Proposition 5.8 we have WKMW
2 (F ) ∼= WK2(F ). Moreover, KMW

2 (F ) ∼= K+
2 (F )⊕ Zr1

by Proposition 6.5. Then, since WKMW
2 (F ) ⊆ K+

2 (F ), the statement follows from the fact that
any element in the classical wild kernel has a p-th root in K2(F ) [Tat71]. �

Lemma 7.6. Suppose that x ∈ ker
(⊕

v∈ΣL/F
hMW
v

)
. If nz = x for some z ∈ KMW

2 (F ) and some

integer n ≥ 1, then there is an element y ∈ KMW
2 (L) such that x+ τL/F (y) ∈ nWKMW

2 (F ).
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Proof. Using the Moore reciprocity sequence 5.8 along with the fact that the homomorphism
KMW

2 (F )→
⊕

v∈ΣL/F
Z is split, the same proof as that of [BR84, Lemma 1] goes through. �

Proof of Proposition 7.2. The desired result now follows from Lemma 7.6 in an identical manner
as the proof of [BR84, Theorem 2]. �
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