a polymers

Article

Void Content Determination of Carbon Fiber Reinforced
Polymers: A Comparison between Destructive and
Non-Destructive Methods

Moustafa Elkolali 1"*, Liebert Parreiras Nogueira

check for
updates

Citation: Elkolali, M.; Nogueira, L.P;
Renning, P.O.; Alcocer, A. Void
Content Determination of Carbon
Fiber Reinforced Polymers: A
Comparison between Destructive
and Non-Destructive Methods.
Polymers 2022, 14,1212. https://
doi.org/10.3390/polym14061212

Academic Editors: Tao Wang and
Victor Tcherdyntsev

Received: 18 February 2022
Accepted: 15 March 2022
Published: 17 March 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

2(D, Per Ola Renning ! and Alex Alcocer !

Department of Mechanical, Electronic and Chemical Engineering, Oslo Metropolitan University,
0130 Oslo, Norway; peror@oslomet.no (P.O.R.); alepen@oslomet.no (A.A.)

Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway;
L.p.nogueira@odont.uio.no

*  Correspondence: elkolali@oslomet.no

Abstract: The properties of composite materials are highly dependent on the fiber and matrix fraction
and on the porosity resulting from micro voids. This paper addresses void content characterization
and the constituent content of composite materials by resorting to a comparison of destructive and
non-destructive methods. The work presents the detailed procedures of two destructive methods,
using acid digestion of epoxy resins matrices, and compares their processes. It also presents the
results of a non-destructive method, by means of Micro Computed Tomography (MicroCT). The
results of both destructive and non-destructive methods are compared, and a recommendation is
made based on the application and the type of composite being analyzed. The MicroCT showed
better and more consistent results in detecting voids in the material, while the acid digestion tests
provided better results about the fiber and matrix percentage. Exported results from the MicroCT
scanning with actual locations of voids were used in numerical analysis, to examine the feasibility
of using them, whether by developing models that map damage in the proximity of the void, or by
developing models that predict the properties of the entire material with respect to the content, shape,
and distribution in the material.
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1. Introduction

Carbon fiber composites are being used in a steadily increasing number of applications,
including piping, pressure housings for underwater robotic vehicles, and other marine
structural components [1]. Carbon fiber composites exhibit excellent mechanical properties,
and in many cases allow to reduce the weight of parts in a substantial manner. In order to
ensure a good and reliable performance of the Carbon Fiber Reinforced Polymer (CFRP)
structure, it is crucial to ensure a low level of void content. Voids are formed during the
coating of fibers with resin as a result of the inability of the resin to fully replace air from the
fiber surface. Another common cause of void content in the laminate is the entrapment of
air bubbles and volatiles during lamination, particularly when using the filament winding
manufacturing method. Many other factors affect the formation of voids and the quality
of the composite, such as the viscosity of the resin, the temperature of the resin during
manufacturing, and processing parameters such as curing cycles, pressure, and time [2—4].

Voids are mainly spherical, which is due to the gelation phase that the matrix goes
through during polymerization at the curing process [5]. Several methods can be used to
reduce the void content during manufacturing and help reduce their total volume and size
in the material, such as autoclave curing and vacuum bagging. However, voids cannot be
eliminated entirely [6].

Voids act as stress intensifiers and have a huge impact on the mechanical properties of
the material. Stress concentration increase by a factor of up to 1.85 near the edges of the
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voids [7]. A high void content laminate will have an easier crack propagation as well as
a weaker bonding between the fiber and the matrix [6]. This results in a reduction in the
mechanical properties of the material and may result in catastrophic and premature failure.
According to [8], the inter-laminar shear maximum strength is lowered by 7% for only 1%
of void content in the composite material. Other material properties such as in-plane shear,
tensile and flexural strengths, and moduli are also greatly affected by the void content [3].
Figure 1 shows a relation between the void content percentage and the inter-laminar shear
stress for a 12-ply unidirectional laminate, that has between 60 and 70% fiber content [9].
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Figure 1. Effect of void content on the interlaminar shear strength, according to [9].

Not only do voids have a significant effect on the mechanical properties of the material,
but they also facilitate abrasion between the fibers resulting in fiber damage [10], as well as
increase the vulnerability to water penetration and weathering effects [11], which is crucial
in marine applications. For these reasons, the knowledge of void content is important for
the quality control of a manufacturing technique and the prediction of the properties of
the manufactured component. A relation was noted by [12], by using means of ultrasonic
testing, that approximately up to 1.5% of the void content is mainly volatile-induced voids,
and the remaining of the void content, if there is any, is caused by the entrapment of air
bubbles between the laminae.

Another main factor that affects any composite properties is the fiber and matrix
content. They have the dominant effect on the mechanical properties of the composite
material. Although the Rule of Mixture is not entirely accurate, it provides an estimation
of the elastic properties of the composite material [9]. Hence, the fiber and matrix content
are two essential qualities to measure. Approaches to measure the fiber-to-matrix ratio
are standardized in both automotive and aerospace industries [13]. Gravimetric tests are
performed on samples of the manufactured material to eliminate the matrix content and
measure the mass of the sample before and after the removal of the matrix. If the densities
of the fibers and matrix used, as well as the volume of the sample before the removal of the
matrix are known, the volume of any void content present can be also calculated. Therefore,
the physical properties of the fibers and the matrix has to be known accurately, whether to
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calculate their ratio or to calculate the void content in the composite [14]. Non-physical
negative values of void content have been reported by [15] due to wrong density inputs.

Recent progress in numerical techniques and computational power have enabled
more involvement of numerical modelling in the study of voids in composites [14]. Many
numerical methods have been used lately to study the effects of void content on the
material, but the experimental approach had the biggest share of contributions to this
field [14]. However, in many studies, it was observed that not only the void content
determines their effect on the material, but also their morphology (shape), location, size,
and distribution contribute to the impact on the material mechanical properties [16-19].
Using non-destructive testing that can provide full 3D analysis, such as MicroCT scanning,
and Finite Element Modelling (FEM), facilitated achieving such analyses and conclusions.
Ref. [20] introduced an approach that considers the voids volume fraction by importing the
actual geometry from MicroCT scanning. A reduction in the matrix properties was done
based on a void compensating factor %, where V,,; and V;, are the volumes of the matrix
and voids, respectively. The results of the finite model, tensile modulus, and in-plane
shear modulus, although performed on a micro-scale, have matched the experimental
results [14,20]. Others have used a different approach for the prediction of strength for
composites with voids, such as in Ref. [21]. They developed a Finite Element (FE) 3D model
based on the failure criterion of Ref. [22]. They concluded that the criteria of judging the
quality of the manufactured composite, based on the volumetric percentage solely is not
enough. Despite that, in some of the tested samples, the porosity was only 0.1% and the
strength reduction was more than 50% because some of the pores were in critical areas.

The aim of this study is to perform two types of standard destructive tests and one
type of standard non-destructive testing, on samples cut from filament wound tube, in
order to know the fiber, matrix, as well as volume percent of any voids present and compare
the results of the tests. An evaluation of the two methods of destructive tests is also an
aim of the work to make a recommendation on which method has higher accuracy. An
evaluation of the non-destructive test method used is also carried out, by assessing the
resolution of the results and the ability to perform and export 3D analysis. Scanned and
reconstructed data of the material tested was exported to be analyzed using numerical
analysis, allowing further research to be done on the prediction of the laminate strengths
using numerical modelling and the comparison of these predictions to mechanical testing.
Another aim of the study is to compare the results of the destructive and non-destructive
tests, in terms of accuracy, simplicity, and availability.

The results of this work will be also used in the future within the framework of OASYS
research project to design and manufacture the hull of a deep autonomous underwater
vehicle, using a comparable stacking sequence as the one tested, by adapting the mechanical
properties of the composite, such as the longitudinal and transverse modulus and strength
according to the fiber, matrix, and voids content.

2. Methodology
2.1. Destructive Testing

There are various methods for inspecting the quality of the composite manufactured
part that includes both non-destructive and destructive tests. The destructive methods in
general are more suitable for quality control processes, since it allows the testing of large
samples, and it is relatively fast and more economical compared to the non-destructive
testing techniques [14]. One example of destructive methods is matrix ignition, also known
as resin burn-off [13]. In the burn-off method, the matrix is physically removed entirely
from the composite test sample by using a Muffle Furnace or a Nitrogen-Purging Furnace to
increase the temperature of the sample to 500-600 °C, consecutive to measuring its weight
and volume. Nitrogen is used to prevent the oxidation of carbon fibers [13]. The sample
is then cooled and measured again for its volume and weight, to know the volumetric
percentage of the matrix and voids. This method is used generally with polymer-matrix
composites (PMC) fibers that do not lose weight at high temperatures, such as ceramics
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and glass [23]. This method has some drawbacks, e.g., it cannot be used with carbon fibers
unless the temperature is closely controlled (+5%) to prevent the char of the fibers [23],
as well as not being as simple as other destructive tests such as matrix digestion, since it
requires some expensive apparatus, for instance, a Nitrogen-Purging Furnace.

Matrix digestion, commonly known as acid digestion, was favored in this work as a
destructive method to determine the constituent content of the composite. Several acids are
recommended by Ref. [23] depending on the type of the matrix and reinforcement in the
material. For non-metal matrices and carbon fiber reinforcements, there are three standard
procedures using three different digestion solvents: one involves the use of Sulfuric Acid,
another Nitric Acid, and the third uses a solution of Potassium Hydroxide and Ethylene
Glycol. Two test procedures were carried out in this work using Nitric Acid and Sulfuric
Acid. The tests were done according to the recommendations of Ref. [23]. The error of the
void content resulting from destructive testing of the composite is no less than +0.5%, even
for the best results [24].

2.1.1. Procedures
Specimen Preparation

All the samples were cut using diamond-tipped tooling to prevent any damage to
the material, such as delamination, and to avoid trapping air in the samples during the
cutting process. Six non-identical samples were tested in each method, all cut from the
same specimen. The minimum samples required to be tested is three samples in each
method, according to ASTM recommendation [23].

The samples used in the analyses were all cut from a filament wound tube that has ply
angles of [123/85;]s. The composite used in this work consists of Toray® (Tokyo, Japan)
T-700 Standard Modulus Carbon Fibers, and the matrix used is epoxy Hexion® (Columbus,
OH, USA) EPIKOTE 828 as a resin mixed with EPIKURE 866 curing agent and EPIKURE
101 catalyst with the ratio of 100:80:1.5 by weight, respectively. The density of the used
fibers is 1.760 kg/m? and the density of the matrix is 1.1804 kg/m?. The filament wound
tube was cured at 90 °C for 1.5 h, then at 150 °C for 2.5 h. A thermo-shrinkable folio tape,
designed to be used with epoxy resins, was then wrapped in direct contact with the external
lamina and compressed the tube over the mandrel when it was put in the oven for curing.

Before the testing procedures, the density of the samples was measured. The samples
were dried in an airflow oven and cooled in a desiccator to prevent any false mass readings
due to moisture content. The mass of each sample was then measured to the nearest
0.1 mg using an analytical balance, “Mettler Toledo-New Classic MF”. The volumes of
the samples however were measured using a more complicated approach, by using the
buoyancy principle. The samples were suspended using a thin copper wire that has a
diameter of 0.15 mm and submerged in temperature monitored distilled water, and the
change of weight was recorded before and after the submerging, according to Ref. [25].
The distilled water used had a temperature of 25.1 °C. The volume of the sample was then
calculated using Equation (1), where V5 is the volume of the sample, Vgyy is the volume of
the submerged suspending thin wire, M; is the mass of the sample, Mg is the submerged
mass of the sample, ppyy is the density of the fluid used to provide the buoyant case, which
is distilled water at 25.1 °C in this experiment and equal to 0.99708 kg/m?, according to
Ref. [25].

Vs = [(M; — Ms)/ppw] — Vsw 1

Table 1 shows the properties of each tested sample. After the mass and volume of each

sample were measured, samples were dried and then stored in a 25 °C environment with
50% relative humidity, for 24 h prior to the tests.
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Table 1. Mass and volume of the 12 destructive tested samples.
Approach A1 (Sulfuric Acid) Approach A2 (Nitric Acid)
Sample Sample Sample Sample
;amile Mass Volume zamile Mass Volume
umber mg mm3 umber mg mm3

S1 3239.7 2170.686 N1 2827.0 1891.270

S2 2226.3 1490.700 N2 2775.8 1836.209

S3 2755.0 1836.711 N3 2518.5 1682.254

S4 2554.4 1699.109 N4 2474.5 1644.850

S5 2846.4 1895.783 N5 2564.3 1696.501

S6 2355.8 1568.333 N6 2179.9 1453.987

Acid Digestion Tests Using Sulfuric Acid

The other six samples were put in separate beakers, and 30 mL of concentrated sulfuric
acid (98%) was added into each beaker. The mixture was heated using electric heaters until
fumes came out of the beaker, the color of the acid turned dark black, indicating that the
reaction was accelerated by the applied heat and that the sulfuric acid has etched the matrix
around the fibers, as shown in Figure 2a. The beakers were left for approximately 15 min
until no further change in color was noticed, as shown in Figure 2b.

(b)
Figure 2. (a) Carbon/Epoxy sample during sulfuric acid digestion; (b) after the addition of Hydrogen

Peroxide Description of what is contained in the second panel.

Then, 40-50 mL of 30% hydrogen peroxide was added into the beaker, producing what
is known as the “Piranha Solution” a very strong oxidizing agent which will oxidize the
epoxy matrix and make it hydrophilic. The dark color resulting from the etching process
will dramatically fade and the remaining fibers were visible floating on top of the solution,
and it was clear that there was no undigested material in the beakers, as shown in Figure 2b.
The reaction with the hydrogen peroxide is highly exothermic and results in acid fumes
and splashing high-temperature acid droplets. Hence, the experiments were performed in
a fume hood, as shown in Figure 3.

The beakers were cooled in an ice bath for safe handling and were then vacuum
filtered in a pre-weighted, pre-rinsed with diluted hydrochloric acid and distilled water,
and oven-dried sintered glass filter, as shown in Figure 4. Glass filters offer high chemical
resistance and high-temperature resistance in comparison with normal paper filters, which
cannot be used in this application. The used filters have a porosity size of 10-16 um. After
filtration, the samples were then washed carefully in the filters using distilled water and
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acetone and placed in a drying oven at a temperature of 120 °C for 12 h. Finally, the filters
containing the samples were weighed to the nearest 0.1 mg.

Figure 3. Six samples being simultaneously tested in the vacuum fume hood.

Figure 4. Remaining carbon fibers in the filter after the etching process.

Acid Digestion Tests Using Nitric Acid

Six samples were put in separate round-bottom flasks fitted with reflux condensers,
each flask containing 30 mL of 65% nitric acid. The flasks were then put in a hot water
bath at 60 °C to ensure constant and controlled heating. The samples were left for 6 h
first, but digestion was ineffective, as shown in Figure 5a. The temperature of the hot bath
was then increased to 80 °C, another 30 mL of nitric acid was added to each flask, and the
samples were left for another 12 h. Etching of the material was more complete, but traces
of non-digested material still existed, as shown in Figure 5b.

Unfortunately, these traces are very hard to distinguish in the flasks, until the material
is removed. Any non-digested material was put back into the acid to continue the digestion
process. The non-digested material should be visible as residues of the composite, as shown
in Figure 5. The total time of the process was around 40 h. The fibers were vacuum filtered
in pre-weighted sintered glass filters, similar to the procedure using sulfuric acid. The
fibers were washed in the filter crucibles with distilled water and acetone several times
before the filters were placed in a drying oven at a temperature of 120 °C for approximately
12 h. Finally, the filters with the filtered fibers were weighed to the nearest 0.1 mg, using an
analytical scale.



Polymers 2022, 14, 1212

7 of 16

(@)

Figure 5. Sample in nitric acid; (a) after 6 h of digestion; (b) after 18 h of digestion.

Calculations

After performing the experiments, the fiber and matrix content, volume and weight,
can be calculated according to Equations (2)—(6), while void content can be calculated
according to Equation (7) [11,23].

Mf = My — M, )
My
M .
f o Pi
v, = L« P00, 4
P M oy (4)
w, = MM 0o 5
"= M x 100, ®)
CMi—M; g,
VM—TXExloo, (6)
Vo =100 — (Vy + Vi), )

where Wy and W), are the percentages of the weight of the fibers and the matrix in the
composite accordingly. Vf, Vi, and V;, are the volumetric percentages of the fibers, matrix,
and voids in the composite accordingly. M iz M., M, fr and M; are the mass of the sample
after digestion, the mass of the dry filter, the mass of the filter with the fibers remaining
from the chemical reactions, and the mass of the sample before digestion. p¢, pi and p; are
the densities of the fibers, matrix, and the sample, respectively.

2.1.2. Results of Destructive Testing

The results of the tested samples should be very similar; hence six samples were tested
in each analysis to detect any error that may be present in any of the samples. Errors may
show up during the preparation of the samples, such as delamination due to the cutting
process, giving false readings about the presence of voids. They may appear also during
the experiment such as the presence of non-digested matrix or any change in fiber weight
before and after the tests.

Ideally, the mass of the fibers should be identical before and after testing, and the mass
of the matrix should be zero after testing. However, due to imperfect testing conditions or
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procedures, these two properties may change. In order to compensate for these two factors,
the full procedures of experiments can be repeated on two blanks. One blank consists
entirely of fibers, and the other blank consists entirely of the cured matrix. The change
in the mass in the fibers and the matrix, if it is reproducible, can be taken as a correction
factor to be added or subtracted from all the actual samples. Only changes bigger than
0.5% should be considered [23].

The results of each of the 12 tested samples from the acid digestions tests were similar.
Figures 6 and 7 show the percentage of the constituent content of the material tested using
acid digestion by mass and volume on a logarithmic scale, without taking the fiber or
matrix correction factors into count. However, the void percentage of the samples tested
using the nitric acid approach had a bigger variation than the ones tested using the sulfuric
acid approach. This supports the observation that sulfuric acid is a more efficient and faster
digestion agent for the polymers studied in this experiment. None of the results exceeded
the 2% limit recommended by Ref. [9].

s1 S2 S3 S4 S5 S6 N1 N2 N3 N4 N5 N6
100%

4153 41,92 3' 6 40.67 4075 4077 54.8 3
50%
25%
13%

5694 5

588 Sgle  cgig- 505

6% 587 S[-69 56:81
3%
2%
1%
0%

W Voids Percentage M Fiber Percentage M Matrix Percentage

Figure 6. Volume constituent content by acid digestion with a logarithmic scale.
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Figure 7. Mass constituent content by acid digestion.

Since this is a gravimetric analysis, the average values, Standard Deviation (SD), and
Coefficient of Variation (CoV) were calculated and shown in Table 2. Both the CoV and the
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SD are low in both approaches volume contents of the samples, which is a good indication
that none of the samples had a flawed test result, like a partially digested sample, as
explained earlier.

Table 2. Statistics of sample tested by acid digestion.

Volume Content

Average (%) SD (%) CoV

Fiber 57.60% 0.602 1.044

Sulfuric Matrix 41.11 0.526 1.280
Void 1.30 0.134 10.295

Fiber 57.46 0.836 1.455

Nitric Matrix 41.66 0.660 1.582
Void 0.87 0.238 27.231

2.2. Non-Destructive Testing
2.2.1. Approach and Methodology

In most of the above tests, the work described used void content figures obtained by
destructive means. These are essentially rather laborious point-by-point measurements
giving an average value over a finite volume of material whilst they cannot give some
guidance as to the variation of voids across the material. Furthermore, being destructive,
they cannot be accompanied by mechanical testing on the same test samples. Moreover,
they do not take into count all the voids and the micro voids in the material [26], and they
do not provide information about the size or the shape of the voids.

It is clear therefore that a more detailed investigation of the effect of voids on me-
chanical performance requires accurate non-destructive tests. Different non-destructive
methods have been used for measuring the void characteristics, such as Ultrasonic and
MicroCT testing. Ultrasonic testing uses controlled ultrasonic energy. Attenuation or dis-
persion of the pulse will occur if there is any discontinuity in the material [14]. Ultrasonic
testing is precise and possible for inspection during service [14]. However, it requires a
coupling agent such as oil or water, although late research has been done using noncontact
air-coupled ultrasonic testing [27,28]. The biggest drawback of ultrasonic testing is that it
provides poor feedback about the morphology of the voids [14]. The MicroCT scanning,
however, uses X-ray to generate 3D images of the samples. Briefly, the sample is scanned
around its central axis, while 2D images, also called projections, are taken in small steps.
The resulting dataset will be then reconstructed into virtual 2D slices, which can be visual-
ized in any orientation, as well as 3D rendered, and have its structures quantified [29]. It
is able to provide a full 3D analysis of the morphology, distribution, and location of the
voids. MicroCT is not without any disadvantages, though. The resolution of the scanning is
dependent mostly on the size of the sample. The smaller the scanned specimen, the higher
the resolution that can be achieved. Although large devices can be found, they are not very
common [14].

A MicroCT scanner was used for this analysis in order to capture voids down to
3.5 um in diameter. The specimens were scanned using a Skyscan 1172 MicroCT [30].
Samples to be scanned were cut to the dimensions of approximately 6.0 mm x 4.0 mm
using a diamond-tipped tooling, same as the acid digestion samples, to prevent damage
to them. The parameters used for scanning were: 49 kV and 190 pA; exposure time of
240 ms per projection, and frame averaging of 5 images per projection, making out a
total acquisition time per projection of 1200 ms. A total of 880 projections were evenly
acquired by a charge-coupled device (CCD) camera while the sample was rotated around
360 degrees, at a field of view of 2000 x 1332 pixels. The projections taken from the
scanner were then reconstructed using the reconstruction software NRecon [31], with a
final pixel size of 3.5 pm. Further segmentation and analysis were performed using CTAn
software [32]. Finally, three-dimensional rendering of the images was performed with
“Dragonfly” software [33].
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After the acquisition and reconstruction of the datasets, quantification of pores could
be performed. For this, the images were segmented using the procedure described by [34],
so that pores could be separated from the fibers, matrix, and background. The sample
volume, number of closed pores, volume of closed pores, and closed porosity were analyzed
in this work. Closed porosity is defined as the ratio between the pores that do not have any
connection with the boundaries of the sample and the analyzed sample volume. Pore size
distribution was also quantified. The pore size is calculated based on the local thickness,
where local thickness is evaluated as the diameter of a hypothetical sphere that fits within
each surface point of the pore [35].

The specimens used in the non-destructive testing was prepared in the same proce-
dures as the destructive tests’ specimens, as explained in Section Specimen Preparation,
except that the specimens were cut in smaller size to get higher resolution from the scan,
as mentioned later. They were cut from the same filament wound tube as the destructive
testing samples. This allows the comparison of the two results.

2.2.2. Results of Non-Destructive Testing

The MicroCT scanned samples showed a much lower standard deviation as shown in
Table 3. The average porosity was 1.53% with a standard deviation of 0.04%”. The majority
of the pores have sizes that lie within the range of 24.5-31.5 um in diameter, as shown in
Figure 8, which is a low range.

Table 3. Results of samples tested with MicroCT scan.

Sample Sample Volume Number of Volume of Closed Closed Porosity
(mm?) Closed Pores Pores (mm?) Percentage (%)
uCT 1 60.054 3040 0.930 1.550
uCT 2 60.054 3413 0.904 1.506
uCT 3 60.054 2965 0.914 1.522
uCT 4 60.054 1997 0.923 1.537
uCT 5 60.054 1818 0.889 1.480
uCT 6 60.054 6457 0.955 1.591
Average (%) 1.531
Standard deviation (%) 0.038
Coefficient of variation (%) 2478
20 = uCT1
18 uCr2
uCT3
16 uCT4
——CTS
14 ——CT6

[any
N

Percent volume in range (%)
=
o

7 21 35 49 63 77 91 105 119 133 147 161 175 189 203 217 231 245
Diameter of the pore (um)

Figure 8. Graph representing pore size distribution in the six scanned samples.
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The MicroCT scan results are close to the acid digestion ones. Unfortunately, the scan
is not capable of distinguishing the difference between the two material components clearly
enough, due to their very similar density. Given that the difference between the densities of
the fiber and the matrix is not a considerable amount, it was not possible to obtain the mass
constituent content of the fibers and matrix in the scanned samples, using the MicroCT scan,
which is one of the main drawbacks of using MicroCT scanning in such analysis. In some
cases, a contrast agent is added to the resin before manufacturing to increase its absorption
coefficient, which will make it more distinguishable while scanning the samples [36]. On
the other hand, the MicroCT scans provided a resolution down to 3.5 um/pixel allowing
the detection of all the pores bigger than approximately 10 um, as well as their size and
their distribution. Figure 9 shows a reconstructed, rendered image of one of the scanned
samples. Not only did it provide good resolution, but also showed higher precision, as
shown in Table 3. More importantly, it allowed further inspection of the pores using finite
element analysis, as performed in the following section.

—
(a) (b)

Figure 9. Scanned sample “uCT 2” showing the composite in grey and the voids in red; (a) the
scanned sample, (b) a section cut showing the voids in the sample.

2.2.3. Numerical Modelling

The numerical modeling is performed on one isolated layer of one of the MicroCT
scanned samples. MicroCT provided a reliable geometry input of the morphology and
distribution of the voids. This model focuses more on the voids and their short-range
effects. This does not include long-range effect on properties, such as effect on the fracture
toughness. The numerical model, in this case, is done to show how much the voids will
contribute to the failure of the material under longitudinal and transverse loading, and, if
failure is initiated, whether it will occur at or in the proximity of the voids. In other words,
by creating a damage map around the voids, Ref. [37] found a direct correlation between
fiber failure and the existing voids in the material. Fiber breaks were found to occur up to
five times more immediately next to existing voids.

The layer that has the voids was exported from the scan and imported into ABAQUS
software [38]. The damage model used is Hashin’s Model [39]. The damage model enabled
calculating the parameters of the homogenized damage. Ref. [40] did similar research on
predicting the tensile and compressive strengths of a uni-directional laminate with void
content ranging from 0.33 to 1.5% using FE modelling. Hashin’s theory considered the dam-
age initiation in a given fiber-reinforced composite, by one or more of four criteria. These
criteria are fiber tension, fiber compression, matrix tension, and matrix compression [39].
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Equations (8)-(11) represent the failure in the composite material using the four criteria
mentioned earlier. Table 4 shows the values used for the numerical model obtained from
the datasheet of the material used in manufacturing and their denotations. 011, 022, and 12
are the normal and shear components of the effective stress matrix. Damage is initiated if
any of the Hashin factors is bigger than 1. The model proposed by Hashin recommends
setting o to 1 [39]. A damage evolution model has also been defined so that the maximum
variable of these factors does not exceed 1.0. Figure 10 shows the binary image exported
from the scan and the meshed model created in ABAQUS.

Table 4. Properties of the material used in the numerical model.

Property Explanation Value  Unit
Enp Longitudinal modulus of elasticity. 135 GPa
Eon Transverse modulus of elasticity. 10 GPa
Elastic properties V12 Poisson’s ratio. 0.3 GPa
prop G In-plane shear modulus. 5.0 GPa
Gis 5.0 GPa
Gos Out-of-plan shear modulus. 25 GPa
xT Ultimate longitudinal tensile strength. 1760 MPa
X€ Ultimate longitudinal compressive strength. 1570 MPa
Damage YT Ultimate transverse tensile strength. 80 MPa
properties Y© Ultimate transverse compressive strength. 250 MPa
st Ultimate longitudinal shear strength. 98 MPa
ST Ultimate transverse shear strength. 50 MPa
« Factor ranging from 0 to 1 representing the input of the shear strength to the fiber tensile damage. 1 -
F } Hashin fiber factor in tension. -
. E! Hashin matrix factor in tension. -
Hashin fact m
astun factors Fj? Hashin fiber factor in compression. -
Fy Hashin matrix factor in compression. -

-
- -
-

« -

-

eos
- - - -
> - -

-

- —_— -

-
-
-

(b)

(a)

Figure 10. Model used in ABAQUS software; (a) Exported binary image from the MicroCT scan, (b)
The meshed created model.

The model is deformable shell and the element type used in the analyses is a general
purpose Stress/Strain shell element with four nodes (54R). The part is fixed from one edge
and loaded from the opposing edge, both in the longitudinal and transverse direction of
the composite, in order to inspect the failure locations for both the matrix and fibers. The
loads applied are purely tensile loads, where no other in-plane loads were applied.

P= (%) +e(5)

7= (5)

®)

©)
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Two simulations were performed: one simulating pure longitudinal tensile load, and
the other simulating transverse tensile load. The results showed that, although the loading
is safe to be applied on the material based on its property, both matrix and fiber failures
initiate at the voids whether in the longitudinal or the transverse loading. Figure 11a—f
shows the results of the two simulations. Damage can be seen occurring in the adjoining
regions of voids, although that there is no damage in the rest of the regions. This confirms
the results of Ref. [37], who found that voids contribute greatly not only to matrix cracks
but also to fiber breakage in filament wound composites.

Figure 11. Results of numerical simulation showing: (a) load direction in longitudinal direction;
(b) load direction in the transverse direction; (c) fiber failure under longitudinal loading; (d) matrix
failure under longitudinal loading; (e) fiber failure under transverse loading; (f) matrix failure under
transverse loading.
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3. Discussion and Conclusions

Manufactured defects such as voids can have a great impact on the properties of
the composites. Even though it is not possible to eliminate them entirely, it is possible to
include their realistic presence in the design, avoiding using both extremes of “worst case”,
and “far optimistic” scenarios.

In this study, destructive and non-destructive testing was performed on CFRE com-
posite, to evaluate the volumetric percentage of fibers, matrix, and voids. The samples
were taken from a filament wound tube. The results will be incorporated in a design of
a tube with a similar stacking sequence that will be used as a hull for an autonomous
underwater vehicle.

Destructive testing was performed using acid digestion. Two approaches were used
in acid digestion, one using sulfuric acid and the other by using nitric acid. The results of
the mass content from the two approaches were similar. The average fiber /matrix mass
ratio of the six samples of each approach were different only by 0.35%. The approach of
using sulfuric acid proved to be much easier to be used. The time of the experiment did
not exceed one hour, and it does not require the same lab equipment as the approach using
nitric acid, while the material digestion using nitric acid took approximately 40 h. The
results of the nitric acid approach showed a factor of variation that is almost three times
the one of the sulfuric acid. This means that using sulfuric acid showed higher precision.
However, it involves more safety hazards and requires more safety equipment.

Acid digestion, specially using sulfuric acid, was simple, cheap, and better at iden-
tifying the mass constituent of the reinforcement and matrix, but the results were not as
accurate as of the MicroCT scan in identifying the micro voids in the material and vice versa.

Accurate non-destructive testing was done by means of MicroCT scanning. In order
to get to very low accuracy, 3.5 um/pixel, the samples had to be cut into a very small size,
approximately 70 mm? each. This might not be feasible if a proper cutting CNC machine
and proper tooling are not available. The MicroCT scanning however, was excellent in
detecting any voids that have sizes bigger than ~3 um, but unfortunately, it was not able to
distinguish the difference between the matrix and the reinforcement clearly enough, due to
the fact that the difference between them was not considerable enough.

Another advantage of the MicroCT scan is that it enables the possibility of further
analyses to be done on the sample. Numerical analysis was performed on an isolated layer
of one of the samples, and the numerical testing clearly showed failure loci in the matrix
and the reinforcement occurring at the voids in both longitudinal and transverse loading.
A very critical factor that judges the accuracy of the results of the model is the choice of the
correct damage model and the correct damage controlling parameters in the micro-scale,
which should be measured based on the results of tests performed on a micro-scale. In
future work, we intend to validate the FEM by mechanical testing of samples, and study the
possibility of correlating the results from MicroCT scans to the prediction of the in-plane
and out-of-plan strengths of the composite laminate.
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