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Abstract

The value of high-throughput germline genetic testing is increasingly recognized in

clinical cancer care. Disease-associated germline variants in cancer patients are

important for risk management and surveillance, surgical decisions and can also have

major implications for treatment strategies since many are in DNA repair genes. With

the increasing availability of high-throughput DNA sequencing in cancer clinics and

research, there is thus a need to provide clinically oriented sequencing reports for

germline variants and their potential therapeutic relevance on a per-patient basis. To

meet this need, we have developed the Cancer Predisposition Sequencing Reporter

(CPSR), an open-source computational workflow that generates a structured report

of germline variants identified in known cancer predisposition genes, highlighting

markers of therapeutic, prognostic and diagnostic relevance. A fully automated vari-

ant classification procedure based on more than 30 refined American College of

Medical Genetics and Genomics (ACMG) criteria represents an integral part of the

workflow. Importantly, the set of cancer predisposition genes profiled in the report

can be flexibly chosen from more than 40 virtual gene panels established by scientific

experts, enabling customization of the report for different screening purposes and

clinical contexts. The report can be configured to also list actionable secondary vari-

ant findings, as recommended by ACMG. CPSR demonstrates comparable sensitivity

and specificity for the detection of pathogenic variants when compared to other

algorithms in the field. Technically, the tool is implemented in Python/R, and is freely

available through Docker technology. Source code, documentation, example reports

and installation instructions are accessible via the project GitHub page: https://

github.com/sigven/cpsr.
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What's new?

The Cancer Predisposition Sequencing Reporter is a unique bioinformatics tool for identifying

genetic variants that may be therapeutically relevant. Many cancers arise from rare germline

mutations in cancer predisposition genes. Knowing what variants a patient is carrying can help

clinicians make decisions about risk-reduction interventions and surveillance, but interpretation

of the variant profile can be challenging. This tool generates a report of variants in known cancer

predisposition genes, highlighting those with therapeutic, prognostic, and diagnostic relevance.

1 | INTRODUCTION

A considerable fraction of human cancers is rooted in rare pathogenic

germline mutations in cancer predisposition genes.1 Screening of can-

cer patients for predisposing germline alterations may yield valuable

decision support for risk-reducing interventions and surveillance and

has also proven its significance for the application of platinum-based

chemotherapy and targeted drugs.2,3

High-throughput screening for a broad collection of cancer pre-

disposition genes is currently feasible due to technological advances

in genome-wide DNA sequencing. The accuracy of variant detection

algorithms has improved substantially, producing consistent and

highly accurate results, particularly for single point mutations.4 On the

other hand, the ability to interpret variant findings in terms of clinical

significance and actionability still represents a major challenge. To our

knowledge, no freely available bioinformatics tool aims to transform

raw germline variant sets to structured and interactive reports for clin-

ical interpretation on a per-patient basis. Efforts in this area have

focused primarily on the implementation of algorithms for variant

pathogenicity classification, which lies at the core of clinical variant

interpretation. Multiple tools and algorithms for variant classification

according to published guidelines by the American College of Medical

Genetics and Genomics (ACMG) have been developed, the most rele-

vant ones in the field of cancer being CharGer, SherLoc, Cancer SIG-

VAR and PathoMAN5-8 (Supplementary Table 1). The comprehensive

classification procedure outlined in Invitae's SherLoc framework is

however not available as open-source software, and the limited web-

based services offered by PathoMAN and Cancer SIGVAR are

inconvenient for integration in high-throughput analysis environ-

ments. Furthermore, given the sensitive nature of DNA sequencing

data from cancer patients, which is under strict regulations in most

countries, it is frequently a necessity to choose stand-alone workflows

over public web-based interpretation solutions. Also, neither of the

abovementioned tools and algorithms provides structured genome

reports on a case-by-case basis, and where the report content can be

customized according to the cancer condition in question. Summing

up, although the generation of informative variant interpretation

reports constitutes an essential output of high-throughput cancer

sequencing workflows, there is currently a shortage of flexible solu-

tions for this in the open-source software landscape.

Here, we present a flexible bioinformatics tool that generates per-

sonal genome reports in the context of cancer predisposition and

inherited cancer syndromes. Cancer Predisposition Sequencing

Reporter (CPSR) can be easily integrated with standard variant calling

output from whole-genome, exome or targeted gene panel sequenc-

ing, and produces structured and interactive variant reports that high-

light findings with clinical implications.

2 | CONSTRUCTION AND CONTENT

CPSR is implemented as a stand-alone bioinformatics workflow in

Python and R. By design, it is therefore well suited for integration with

workflows for high-throughput sequencing, as opposed to purely

web-based solutions. Technically, CPSR builds upon our previously

developed framework for the analysis of somatic mutations in tumor

genomes, the Personal Cancer Genome Reporter.9 To facilitate repro-

ducibility and ease of use, the tool can be installed either as a Dock-

erized application or through a Conda package, the latter probably

being the preferred choice in high-performance computing environ-

ments. In addition to the actual software and configuration files, users

need to download a dedicated data bundle, which contains the under-

lying databases that CPSR is using for functional variant annotation

and as a basis for classification and reporting. CPSR supports both of

the recent assembly versions of the human genome (ie, grch37 and

grch38). Installation instructions and other information regarding con-

figuration, versions of software and underlying databases, and input/

output files, are available from the project GitHub page (https://

github.com/sigven/cpsr), and also through the CPSR documentation

website (https://cpsr.readthedocs.io).

The input to CPSR is a single file with DNA variants (SNVs/

InDels) detected from germline variant calling, encoded in the stan-

dard single-sample variant call format (VCF). CPSR automatically

detects the genotype (homozygous/heterozygous) of input variants if

these are formatted according to the correct standard in the VCF file.

The workflow proceeds with four major steps, which are described in

detail below (schematically illustrated in Figure 1).

2.1 | Selection of targets for reporting—virtual
cancer predisposition gene panels

In order to serve a wide range of clinical cases, CPSR can produce var-

iant reports that are dedicated towards predisposition genes for spe-

cific tumor types or cancer syndromes. In the initial step of the

workflow, we exploit virtual gene panels as available from the
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Genomics England PanelApp, a crowdsourcing initiative in which sci-

entific experts are evaluating risk genes for more than 40 different

hereditary cancer conditions on a continuous basis.10 Technically, var-

iants in the input VCF file are filtered against the gene panel of choice

(encoded as a BED file, both coding and noncoding regions) to ensure

that variants analyzed are restricted to the panel genes only. When

selecting a panel from PanelApp for analysis in CPSR, the user may

also restrict the analysis to genes with a high level of disease associa-

tion only (ie, diagnostic-grade or “GREEN” genes according to Pan-

elApp nomenclature).

In addition to predefined panels from PanelApp, the user can

choose to screen variants within a comprehensive exploratory panel

intended for research use (ie, a “superpanel”), containing cancer pre-

disposition genes gathered from multiple sources. As of June 2021,

the superpanel amounts to a total of 433 genes, containing all genes

from PanelApp panels available in CPSR, genes curated in the Cancer

Gene Census (COSMIC), those profiled in TCGA's PanCancer analysis

of germline variants, and other user-contributed genes deemed rele-

vant for cancer predisposition. Importantly, users may also flexibly

define their own virtual screening panel from the set of genes in the

exploratory superpanel.

Information on dominant vs recessive inheritance patterns for the

various inherited cancer syndromes is largely harvested from

the Genomics England PanelApp, with some additions from two other

large-scale sequencing studies of cancer genes.1,11 Information related

to the mechanism of disease (loss-of-function vs gain-of-function)

per gene has been collected from the study by Maxwell et al.11

Disease-related gene properties are exploited during automated

variant classification according to ACMG criteria (section Automated

variant pathogenicity classification outlined below).

2.2 | Functional variant annotation

The second step of the workflow utilizes two open-source tools, vari-

ant effect predictor (VEP) and vcfanno, to provide comprehensive

functional annotations of all input variants.12,13

Gene variant consequences are determined by VEP, using GEN-

CODE as the gene and transcript reference model. Cross-references

to RefSeq transcripts are provided in the output whenever this is

available through Ensembl's transcript database, which is important

due to the frequent use of RefSeq identifiers in clinical variant

reporting. Although a single variant frequently affects multiple tran-

scripts in a given gene, CPSR reports a single main consequence per

variant, using VEP's internal ranking routine to pick the most impor-

tant transcript-specific consequence, a ranking that can be configured

by the user (VEP options –pick_allele and –pick_order, see https://

www.ensembl.org/info/docs/tools/vep/script/vep_options.html#basic).

Notably, variants with a putative loss-of-function consequence

(ie, stopgain, frameshift and splice site disruption), which are of major

importance when it comes to pathogenic germline variants in cancer,

are subject to careful evaluation and filtering through the loss-of-

function transcript effect estimator (LOFTEE) plugin in VEP.14 Specifi-

cally, LOFTEE assigns confidence to a loss-of-function variant based

on multiple features, such as transcript location, ancestral allele state

and intron size and donor site nature (for splice site mutations).

F IGURE 1 Cancer Predisposition Sequencing Reporter (CPSR) workflow with key databases and underlying software, illustrating how the
query variant set from germline variant calling (formatted as VCF) is subject to four main steps for predisposition interpretation. Locus filtering
against a selected cancer predisposition gene panel from the Genomics England PanelApp, where colors indicate confidence of association to
phenotype, from diagnostic-grade in green to low-level confidence genes in red (step 1). Annotation through VEP and vcfanno with functional
variant annotations: variant consequences by VEP, mutation hotspots from cancerhotspots.org, in silico deleteriousness predictions from
dbNSFP, loss-of-function predictions through VEP's LOFTEE plugin, population allele frequencies from gnomAD, germline biomarkers from CIViC
and low-risk alleles from NHGRI-EBI GWAS Catalog (step 2). Pathogenicity classification of novel variants according to a cancer-dedicated
implementation of refined ACMG criteria (step 3). Aggregation and structuring of the results in a tiered cancer predisposition report (step 4).
ACMG, American College of Medical Genetics and Genomics; CIViC, clinical interpretations of variants in cancer; dbNSFP, database of

nonsynonymous functional predictions; gnomAD, genome aggregation database; LOFTEE, loss-of-function transcript effect estimator; TS,
targeted sequencing; VCF, variant call format; VEP, variant effect predictor; WES, whole-exome sequencing; WGS, whole-genome sequencing
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The relative location of variants with respect to intron-exon borders

are also derived from VEP's output.

Through the use of vcfanno, the second workflow step will also

annotate the input variants with data from multiple open-access vari-

ant datasets of relevance for cancer predisposition and functional var-

iant effect (Figure 1). These datasets include information related to

pre-classified variants in ClinVar (phenotypes, review status, etc.),

population-specific allele frequencies (gnomAD, noncancer subset),

known mutational hotspots in cancer (cancerhotspots.org),

precomputed insilico deleteriousness predictions of missense and

splice site variants (dbNSFP and dbSCSNV), low-risk risk alleles identi-

fied from genome-wide association studies of cancer phenotypes

(GWAS catalog) and importantly, germline biomarkers of relevance for

prognosis, diagnosis or therapeutic regimens retrieved from the clini-

cal interpretation of variants in cancer resource (CIViC).14-20 Through

annotations from CIViC, we can effectively show which germline vari-

ants in the query that, according to published evidence from clinical

trials or case reports, are likely to have therapeutic implications. A

prominent example relates to cases with increased sensitivity to

poly(ADP-ribose) polymerase (PARP) inhibitors elicited by pathogenic

variants in BRCA1/2 genes, as well as other genes implicated in the

homologous recombination repair pathway.21

2.3 | Automated variant pathogenicity
classification

The occurrence of rare variants that have not yet received any classifi-

cation or interpretation (ie, in ClinVar) is a common scenario in

germline sequencing of cancer patients. To guide the interpretation of

these variants, CPSR provides an automated pathogenicity classifica-

tion in which the collection of variant annotations in step two

(ie, consequence type, predicted functional effect and population fre-

quencies), along with information on disease mechanism and mode of

inheritance per cancer predisposition gene is exploited. Specifically,

CPSR conducts a standard five-level (benign/likely benign [B/LB], vari-

ant of uncertain significance [VUS], likely pathogenic/pathogenic

[LP/P]) variant pathogenicity classification,22 serving similar function-

ality to the open-source tools offered by CharGer and PathoMAN.

The classification procedure employed by CPSR is built largely

upon the foundations established by the SherLoc algorithm, which

made substantial refinements to the original ACMG guidelines for var-

iant classification.7 In general, each ACMG criterion specifies particu-

lar properties of variants, such as population allele frequency and

predicted functional effect that supports a pathogenic or benign vari-

ant nature. Furthermore, in the approach proposed by SherLoc, each

ACMG criterion is weighted with positive or negative point scores

that reflect their relative strength of importance with respect to classi-

fication. For all criteria that match with a given variant, scores are ulti-

mately aggregated to obtain a single variant pathogenicity score.

Notably, the specific combinations of software (eg, VEP and LOFTEE)

and annotation databases (eg, GENCODE, gnomAD) used in CPSR, as

well as the customization of the criteria towards the disease

phenotype (eg, using cancer mutation hotspots to highlight important

amino acids), are in effect providing a unique, cancer-dedicated vari-

ant classification procedure. The details of each ACMG evidence crite-

rion implemented in CPSR, as well as their associated point scores,

can be found in Supplementary Table 2.

Thresholds for converting variant pathogenicity scores to five-

level classifications were calibrated through a comparison with exis-

ting ClinVar classifications (April 2021 release). In our calibration, we

considered ClinVar variants in cancer predisposition genes (CPSR

superpanel set v2.0, n = 335), limited to variants with a review status

of minimum two stars, the latter to minimize the impact of low-

confident variant interpretations (55 841 variants in total, see Supple-

mentary Materials). The relationship between ClinVar classification

status and variant pathogenicity scores calculated by CPSR is illus-

trated in Figure 2, and thresholds that were set ensured high concor-

dance (agreement on 92.8% of all P/LP classified variants in ClinVar,

95.7% for VUS variants and 96.3% for B/LB variants). The most chal-

lenging collection of variants with respect to correct score-based clas-

sification is located at the VUS/LP border, where the score is unable

to discriminate accurately between VUS and LP/P variants. If such

cases arise during analysis with CPSR, they are highlighted in the

report, as a means to indicate that these should be carefully

examined.

Finally, we compared the sensitivity and specificity of our classifi-

cation algorithm with the two algorithms provided through CharGer

(ie, custom and ACMG-based). Here, we used a benchmark variant set

from the Pediatric Cancer Germline Project (PCGP) in which manual

variant classifications defined by a panel of clinical geneticists consti-

tute the gold standard (788 variants in total, see Supplementary Mate-

rials and Supplementary Table 3). For LP/P variants (n = 105),

classification with CPSR achieved a sensitivity of 74.3%, which is

higher than what was obtained with either of CharGer's two algo-

rithms (72.4% for the custom and 56.2% for the ACMG-based,

respectively). Of all panel-determined nonpathogenic variants

(n = 683), CPSR classified 16 variants as pathogenic, translating to a

specificity of 97.7%, an intermediate of the rates produced by Char-

Ger's algorithms (98.1% for the ACMG-based and 97.2% for the cus-

tom, respectively).

2.4 | Variant report generation

The final step of the workflow exploits the R Markdown framework

to display all variant findings in a structured and interactive variant

report.23 Of note is that additional output formats are also available

to the user, that is, annotated VCF, JSON and TSV (tab-separated

values). The TSV output can be utilized to collect results from multiple

cases that have been analyzed with CPSR, which represents a com-

mon scenario in large research studies. An example HTML report can

be downloaded for exploration here: https://doi.org/10.5281/

zenodo.5035949.

The interactive HTML report is organized into four main sections:

Settings, Summary of Findings, Variant Classification and Documentation.
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Settings indicate report and analysis configurations, as well as informa-

tion regarding the virtual screening panel, while the Documentation

section lists all versions of underlying databases and third-party soft-

ware. These two sections thus serve to ensure reproducibility and trans-

parency of the complete analysis workflow. Summary of findings

provides the user with overall statistics with respect to classifications of

variants found for the given case, both for variants already existing in

ClinVar, and for novel variants without records in ClinVar.

The main content of the report is contained within the

section named Variant Classification, where details of all variants are

structured in interactive tables, and where the user can explore and

filter variant data for various types of annotations, for example,

population frequency, consequence type or existing phenotype asso-

ciations. For variants of uncertain significance (VUS), which frequently

make up the largest group of variants, the report importantly enables

the use of the CPSR pathogenicity score to prioritize potential border-

line cases. A dedicated biomarker section lists input variants that can

have therapeutic implications or otherwise influence prognosis or

diagnosis, and also allows the user to investigate the supporting litera-

ture and evidence for such associations.

Finally, the user can opt to list secondary pathogenic variants in a

dedicated section, as recommended by ACMG,24 and also for a poten-

tial overlap of input variants with low-to-moderate risk alleles found

for cancer phenotypes in GWAS.

3 | DISCUSSION

Knowledge on pathogenic variants in cancer-predisposing genes,

and their relationships to systemic therapy choices, is emerging

and evolving on a continuous basis. The quality and contents of

the report produced with CPSR will thus advance accordingly, as

underlying databases are updated. In particular, information

regarding the mode of inheritance and the mechanism of action is

currently not well established for a significant number of inherited

cancers. Filling this gap is likely to improve variant classification in

a number of genes.

The automated variant classification procedure implemented in

CPSR demonstrated improved sensitivity over existing algorithms pro-

vided with CharGer. One should however note that simple compari-

sons of classification algorithms must be interpreted cautiously,

primarily due to the fact that algorithms for variant classification are

frequently configurable through a multitude of parameters. It should

also be emphasized that automated procedures are intended primarily

to guide the classification, and where borderline cases either way

should be manually reviewed.

We acknowledge that additional datasets and analyses can add

useful extra dimensions to the cancer predisposition report. A future

version of CPSR should accept germline DNA copy number variants

as an additional input type. Important pharma- and radiogenomic risk

F IGURE 2 Calibration of Cancer Predisposition Sequencing Reporter (CPSR) pathogenicity score thresholds against ClinVar variants with a
known classification (20210328 release, minimum two review stars). The complete distribution was calculated for variants in cancer
predisposition genes (n = 335) and was used to determine suitable CPSR thresholds for P/LP/VUS/LB/B classifications, as indicated with the
vertical dashed lines (pathogenic: [5,], likely pathogenic: [2.5, 4.5], VUS: [�1, 2.0], likely benign: [�4.5, �1.5], benign: [, �5])
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variants may further be incorporated during reporting, as well as a

framework for calculation of polygenic risk scores.25

4 | CONCLUSION

Evidence-based personal cancer treatment based on genetic testing is

an important goal in oncology. CPSR provides a documented tool to

reach this goal.
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