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Abstract
We prove convergence rates of monotone schemes for conservation laws for Hölder contin-
uous initial data with unbounded total variation, provided that the Hölder exponent of the
initial data is greater than 1/2. For strictly Lip+ stable monotone schemes, we prove conver-
gence for any positive Hölder exponent. Numerical experiments are presented which verify
the theory.

Keywords Hyperbolic conservation laws · Numerical methods · Convergence rate ·
Irregular data

1 Introduction

Consider the scalar hyperbolic conservation law

ut + f (u)x = 0

u(x, 0) = u0(x)
(1)

where f ∈ C1(R) is the flux function and u0 ∈ L1 ∩ L∞(R) is the initial data. Equations of
this form appear in a large number of applications, including scenarios where very irregular
data is to be expected; we mention in particular flow in porous media [1, 2], turbulent flows
(so-called “Burgulence”) [3–5], and advection with rough coefficients [6]. While the study of
qualitative properties of “rough” solutions of (1) has been explored in detail (see e.g. [3–5]),
the behavior of numerical methods for (1) has received much less attention. There exists
convergence results for linear conservation laws with rough coefficients [6]. However, there
are no known results for non-linear conservation laws with rough initial data.
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The purpose of this paper is to study the convergence rate of monotone numerical methods
for (1) in the presence of rough (say, piecewise Hölder continuous) initial data u0. As is to be
expected, the convergence rate deteriorates with lower regularity. We demonstrate in several
numerical experiments that our estimates are sharp, or close to being sharp.

1.1 Weak Solutions of Hyperbolic Conservation Laws

As is well-known, solutions of nonlinear hyperbolic Eq. (1) can develop shocks in finite time,
making it necessary to interpret the equation in a weak manner. A weak solution of (1) is a
function u ∈ L1 ∩ L∞(R × R+) satisfying

∫
R+

∫
R

u(x, t)φx (x, t) + f (u(x, t))φ(x, t) dx dt +
∫
R

φ(x, 0)u0(x) dx = 0 (2)

for all test functions φ ∈ C∞
c (R × R+). It is well-known that weak solutions are non-

unique, so one introduces entropy conditions to single out the physically relevant solutions.
Concretely, we say that u ∈ L1 ∩ L∞(R × R+) is an entropy solution of (1), if for every
pair of functions η, q : R → R where η is convex and q ′ = η′ f ′, it holds that

η(u)t + q(u)x ≤ 0

in the sense of distributions. In particular, it is sufficient to impose the entropy condition with
respect to the Kruzkov entropy pairs, given by

η(u, k) = |u − k|, q(u, k) = sign(u − k)( f (u) − f (k)), u ∈ R

for all k ∈ R. It was shown by Kruzkov (see e.g. [7] or [8,Proposition 2.10]) that entropy
solutions of (1) are unique.

1.2 Finite VolumeMethods for Conservation Laws

This section briefly describes the conventional approach of numerical approximation of
conservation laws through finite volume and finite differencemethods. For a complete review,
one can consult e.g. [9].

We discretize the spatial domain R by partitioning it into a collection of cells

Ci :=[xi−1/2, xi+1/2) ⊂ R with corresponding cell midpoints xi := xi+1/2+xi−1/2
2 . For simplicity

we assume that our mesh is equidistant, that is,

xi+1/2 − xi−1/2 ≡ �x ∀ i ∈ Z

for some �x > 0. We discretize time by equidistant points, that is, we choose tn = n�t for
n ∈ N0 for some �t > 0.

For each cell Ci and each point in time tn we let vni be an approximation of the cell average
of u at time tn , uni ≈ −∫Ci u(x, tn) dx (here, −∫C := 1

|C |
∫
C , where |C | is the Lebesgue measure

of a Lebesgue set C ⊂ R). This approximation is computed according to the finite volume
scheme

vn+1
i − vni

�t
+ F(vni , vni+1) − F(vni−1, v

n
i )

�x
= 0

v0i = −
∫
Ci
u0(x) dx

(3)
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where F is a numerical flux function. We furthermore assume the numerical flux function is
consistent with f and locally Lipschitz continuous; more precisely, for every bounded set
K ⊂ R, there exists a constant CF > 0 such that

∣∣F(a, b) − f (a)
∣∣ + ∣∣F(a, b) − f (b)

∣∣ ≤ CF
∣∣b − a

∣∣ ∀ a, b ∈ K . (4)

We will frequently abuse notation and view grid functions v ∈ �1(Z) as an element of L1(R)

under the inclusion �1(Z) ↪→ L1(R) which maps v �→ ∑
i vi1Ci .

2 AModified Kuznetsov Lemma

Kuznetsov’s lemma [10] provides an explicit estimate of the difference between two (approx-
imate) solutions of (1) in terms of their relative (Kruzkov) entropy. In this section we recall
Kuznetsov’s lemma and prove a corollary which — as opposed to Kuznetsov’s original
application of the lemma — does not depend on TV(u0) being bounded. We note that both
Lemmas 1 and 2 can be generalized tomultiple space dimensions (see e.g. [10] and [8,Section
4.3]). However, since we will only be able to handle one-dimensional equations in Sect. 3,
we chose to stick to one dimension, for the sake of simplicity.

Fix now some final time T > 0. Kuznetsov’s lemma estimates approximation errors in
the space

K:= {
u : R+ → L1(R)

∣∣ u and has right and left limits at all(t, x) ∈ R+ × R
}
.

For u ∈ K and σ > 0 we define the moduli of continuity

νt (u, σ ) = sup
{‖u(t + τ) − u(t)‖L1(R) | 0 < τ ≤ σ

}
, ν(u, σ ) = sup

t∈[0,T ]
νt (u, σ ).

Let ω ∈ C∞
c (R) be a standard mollifier, i.e. an even function satisfying suppω ⊂ [−1, 1],

0 ≤ ω ≤ 1 and
∫
R

ω dx = 1. For ε > 0 we define ωε(x) = 1
ε
ω( x

ε
). For ε, ε0 > 0, define

�(x, x ′, s, s′) = ωε0(s − s′)ωε(x − x ′) (x, x ′, s, s′) ∈ R
4.

For φ ∈ C∞
c (R × R+,R), k ∈ R and u, v ∈ K we set

T (u, φ, k) =
∫ T

0

∫
R

(|u − k|φt + q(u, k)φx
)
dx dt

−
∫
R

|u(x, T ) − k|φ(x, T ) dx +
∫
R

|u(x, 0) − k|φ(x, 0) dx,

ε,ε0(u, v) =
∫ T

0

∫
R

T (u,�(·, x ′, ·, s′), v(x ′, s′)) dx ′ ds′.

Lemma 1 (Kuznetsov’s lemma [10]) Let v ∈ K and let w be an entropy solution of (1). If
0 < ε0 < T and ε > 0, then

‖v(·, T ) − w(·, T )‖L1(R) ≤ ‖v0 − w0‖L1(R) + TV(w0)
(
2ε + ε0‖ f ‖Lip

)
+ ν(v, ε0) − ε,ε0(v,w)

where v0 = v(·, 0) and w0 = w(·, 0).
The following is a straightforward extension of [10,Lemma 4 and Theorem 4].
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Lemma 2 Let u0 ∈ L1(R) ∩ L∞(R) and let v�x be the solution computed by a monotone
finite volume scheme (3) with initial data v�x

0 . Then

‖u(T ) − v�x (T )‖L1(R) ≤ 2‖u0 − v�x
0 ‖L1(R) + TV(v�x

0 )
(
2ε + ε0‖ f ‖Lip + 2CF max(ε0,�t)

)

+ C

(
CF�x

ε
+ ‖ f ‖Lip�t

ε0

) N∑
n=0

TV(v�x (tn))�t .
(5)

for any T > 0, ε > 0 and 0 < ε0 < T , for some C > 0 only depending on the choice of
smoothing kernel ω.

Proof Let w be the entropy solution of (1) with w0 = v�x
0 . Then

‖u(T ) − v�x (T )‖L1(R) ≤ ‖u(T ) − w(T )‖L1(R) + ‖w(T ) − v�x (T )‖L1(R)

≤ ‖u0 − v�x
0 ‖L1(R) + ‖w(T ) − v�x (T )‖L1(R)

by the stability of entropy solutions in L1(R) (see e.g. [11,Theorem 1] or [8,Proposition
2.10]). We estimate the second term using Lemma 1. For notational convenience, denote

ηni = |vni − k| and qni = q(vni , k).

Without loss of generality we may assume that T = t N+1 for some N ∈ N. Then

−T (v�x , φ, k) = − x
N∑

n=0

∞∑
i=−∞

∫ tn+1

tn

∫ xi+1/2

xi−1/2

(ηni φt + qni φx ) dx dt

+
∞∑

i=−∞

∫ xi+1/2

xi−1/2

ηN+1
i φ(x, T ) dx −

∞∑
i=−∞

∫ xi+1/2

xi−1/2

η0i φ(x, 0) dx

= −
N∑

n=0

∞∑
i=−∞

∫ xi+1/2

xi−1/2

ηni
(
φ(x, tn+1) − φ(x, tn)

)
dx

+
N∑

n=0

∞∑
i=−∞

∫ tn+1

tn
qni

(
φ(xi+1/2, t) − φ(xi−1/2, t)

)
dt

+
∞∑

i=−∞

∫ xi+1/2

xi−1/2

ηN+1
i φ(x, T ) dx −

∞∑
i=−∞

∫ xi+1/2

xi−1/2

η0i φ(x, 0) dx

(summation by parts)

=
N∑

n=0

∞∑
i=−∞

∫ xi+1/2

xi−1/2

(
ηn+1
i − ηni

)
φ(x, tn+1) dx

+ �x
N∑

n=0

∞∑
i=−∞

∫ tn+1

tn

(
qni+1 − qni

)
φ(xi+1/2, t) dt

(set φ̄n
i := 1

�x

∫ xi+1/2
xi−1/2

φ(x, tn+1) dx and φ̄
n+1/2
i+1/2 := 1

�t

∫ tn+1

tn φ(xi+1/2, t) dt)

= �x
N∑

n=0

∞∑
i=−∞

(
ηn+1
i − ηni

)
φ̄n
i + �t

N∑
n=0

∞∑
i=−∞

(
qni+1 − qni

)
φ̄
n+1/2
i+1/2 .
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Let Qn
i+1/2:=F

(
vni ∨k, vni+1 ∨k

)− F
(
vni ∧k, vni+1 ∧k

)
be the Crandall–Majda numerical

entropy flux, so that

ηn+1
i − ηni + �t

�x

(
Qn

i+1/2 − Qn
i−1/2

) ≤ 0

(see e.g. [12] or [8,(3.33)]). It is not hard to show that Q is Lipschitz continuous,

|Qn
i+1/2 − qni | ≤ 2CF |vni+1 − vni |, (6)

where CF is the Lipschitz constant for F (cf. (4)). Assuming now that φ is non-negative, we
obtain from the above discrete entropy inequality

−T (v�x , φ, k) ≤ −�t
N∑

n=0

∞∑
i=−∞

(
Qn

i+1/2 − Qn
i−1/2

)
φ̄n+1
i + �t

N∑
n=0

∞∑
i=−∞

(
qni+1 − qni

)
φ̄
n+1/2
i+1/2

= �t
N∑

n=0

∞∑
i=−∞

(
Qn

i+1/2 − qni
)(

φ̄n+1
i+1 − φ̄n+1

i

)

+ �t
N∑

n=0

∞∑
i=−∞

(
qni+1 − qni

) (
φ̄
n+1/2
i+1/2 − φ̄n+1

i+1

)

(using (6) and the Lipschitz continuity ‖q‖Lip ≤ ‖ f ‖Lip)

≤ �t
N∑

n=0

∞∑
i=−∞

|vni+1 − vni |
(
CF

∣∣φ̄n+1
i+1 − φ̄n+1

i

∣∣ + ‖ f ‖Lip
∣∣φ̄n+1/2

i+1/2 − φ̄n+1
i+1

∣∣)

(smoothness of φ)

≤ �t
(
CF�x‖∂xφ‖L∞ + ‖ f ‖Lip�t‖∂tφ‖L∞

) N∑
n=0

∞∑
i=−∞

|vni+1 − vni |.

From this estimate we obtain

− ε0,ε(v
�x , w) = −

∫ T

0

∫
R

T (v�x , ωε0(· − s)ωε(· − y), w) dy ds

≤ �t
∫ T

0

∫
R

(
CF�x‖ωε0(· − s)‖L∞‖ω′

ε(· − y)‖L∞

+ ‖ f ‖Lip�t‖ω′
ε0

(· − s)‖L∞‖ωε(· − y)‖L∞
) N∑
n=0

∞∑
i=−∞

|vni+1 − vni | dy ds

≤ C�t

(
CF�x

ε
+ ‖ f ‖Lip�t

ε0

) N∑
n=0

∞∑
i=−∞

|vni+1 − vni |

for some constant C > 0 only depending on ω.
It remains to estimate ν(v�x , ε0). The standard estimate

|vn+1
i − vni | ≤ �t

�x
CF

(|vni+1 − vni | + |vni − vni−1|
)
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yields

ν(v�x , ε0) ≤ �x
∑
i

max(ε0,�t)
1

�x
CF

(|vni+1 − vni | + |vni − vni−1|
)

= 2CF max(ε0,�t)TV(vn).

��

3 Convergence Rates for Irregular Data

With theKuznetsov lemmaand its corollary in place,we are now inplace to prove convergence
rates for (3) with irregular data. We start with some preliminaries in Sect. 3.1 before proving
convergence rates in Sect. 3.

3.1 Preliminaries

We define the discrete Lip+ (semi-)norm as the sublinear functional

|v|DLip+:= sup
i∈Z

vi+1 − vi

�x
for v ∈ �∞(R).

Following [13] (see also [14]), we say that a numerical flux function is (strictly) Lip+ stable
if

|vn+1|DLip+ ≤ 1

|vn |−1
DLip+ + β�t

(7)

for some β ≥ 0 (β > 0, respectively) which is independent of �t,�x . Iterating (7), it holds
in particular that

|vn |DLip+ ≤ 1

|v0|−1
DLip+ + βtn

∀ n ∈ N.

It was shown in [13] that the Lax–Friedrichs, Engquist–Osher and Godunov schemes are
all strictly Lip+ stable. (The Roe scheme is non-strictly Lip+ stable.) The concept of Lip+
stability is motivated by the Oleinik entropy condition for conservation laws with strictly
convex flux functions [15], which states that the Lip+ seminorm |u|Lip+:= supx �=y

u(x)−u(y)
x−y

of a solution of (1) should decrease over time at a rate proportional to t−1; more precisely,

|u(t)|Lip+ ≤ 1

|u0|−1
Lip+ + β0t

where 0 ≤ β0 ≤ f ′′(v) for all v ∈ R.
For a function g ∈ L1(R) we define its total variation as

TV(g) = sup

{∫
R

g(x)φ′(x) dx | φ ∈ C1
c (R), ‖φ‖L∞ ≤ 1

}
.

We say that a finite volume scheme is total variation diminishing (TVD) if for every u0 ∈
BV(R), we have TV(vn+1) ≤ TV(vn) for all n ≥ 0. We say that the scheme is monotone if
for all cell averaged initial data u0, v0 with u0j ≤ v0j for all j ∈ Z, we have unj ≤ vnj for all
n > 0 and j ∈ Z.
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Lemma 3 Let u ∈ Cα
c (R) for some α > 0 and let u�x ∈ �1(Z) be the volume averages of u,

u�x
i = −

∫
Ci
u(x) dx i ∈ Z.

Then

‖u�x − u‖L1(R) ≤ C�xα, (8a)

TV(u�x ) ≤ C�xα−1, (8b)

where C only depends on α and the size of the support of u.

Proof Let K = {i ∈ Z | Ci ∩ supp u �= ∅}. Then

‖u�x − u‖L1(R) =
∑
i∈K

∫
Ci

|u�x (x) − u(x)| dx =
∑
i∈K

∫
Ci

∣∣∣∣ −
∫
Ci
u(y) − u(x) dy

∣∣∣∣ dx

≤
∑
i∈K

∫
Ci

−
∫
Ci

|u(y) − u(x)| dy dx ≤ ‖u‖Cα

∑
i∈K

∫
Ci

−
∫
Ci

|x − y|α dy dx

≤ ‖u‖Cα

∑
i∈K

∫
Ci

�xαdx ≤ ‖u‖Cα

∑
i∈K

�xα+1

= C�xα

where C = ‖u‖Cα�x |K | and |K | is the Lebesgue measure of K . Similarly,

TV(u�x ) =
∑
i∈K

∣∣∣∣ −
∫
Ci
u(x + �x) − u(x) dx

∣∣∣∣ ≤
∑
i∈K

‖u‖Cα�xα = C�xα−1

for the same constant C as above. ��

3.2 Convergence Rates

Without any assumptions on the scheme beyond being monotone, we can only prove conver-
gence rates for initial data whose Hölder exponent is not smaller than 1/2, which the following
theorem makes precise.

Theorem 1 For a flux function f ∈ C1(R), let u : R×[0, T ] → R be the entropy solution of
(1)with initial data u0 ∈ Cα

c (R) for some α ∈ (0, 1). Let (vni )i,n be generated by a monotone
finite volume scheme (3) with initial data u0. Then

‖u(T ) − v�x (T )‖L1(R) ≤ C�xα−1/2 (9)

for any T > 0, for some C > 0 only depending on f and u0.

Proof Since u0 is Hölder continuous with exponent α, Lemma 3 implies that TV(v�x
0 ) ≤

C�xα−1 < ∞, and since the scheme is TVD we get TV(v�x (tn)) ≤ TV(v�x
0 ). Hence,

N∑
n=0

TV(v�x (tn))�t ≤ CT�xα−1.

We note furthermore that

‖u0 − v�x
0 ‖L1(R) ≤ C�xα.
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(A) (B) (C)

(D) (E) (F)

(G) (H) (I)

Fig. 1 Example evolution of fractional Brownian motion under Burgers’ equation with the Rusanov flux

Combining the above estimates with that of Lemma 2, we see that

‖u(T ) − v�x (T )‖L1(R) ≤ 2C�xα + C�xα−1(2ε + ε0‖ f ‖Lip + 2CF max(ε0,�t)
)

+ CT

(
CF�x

ε
+ ‖ f ‖Lip�t

ε0

)
�xα−1.

(10)

Choosing ε = ε0 = �x1/2 yields

‖u(T ) − v�x (T )‖L1(R) ≤ 2C1�xα + C2�xα−1/2 ≤ C�xα−1/2, (11)

which was what we wanted. ��
We can improve the somewhat suboptimal convergence rate of �xα−1/2 for Lip+-stable

schemes. To this end we need the following result.

Lemma 4 Let u0 ∈ L1 ∩ L∞(R) have compact support and let u be the entropy solution of
(1). Let (vni )i,n be generated by a strictly Lip+ stable finite volume scheme (3). Then

N∑
n=0

TV(vn)�t ≤ C

(
|v0|DLip+�t + 1

β
log

(
1 + βt N |v0|DLip+

))

where t N ≤ T and C > 0 is independent of �x.

Proof Let M > 0 be such that supp v�x (t) ∈ [−M, M] for all t ∈ [0, T ] and let I ∈ N be
such that xI−1 < M ≤ xI . The compact support of v and the strict Lip+ stability imply that

TV(vn) =
I∑

i=−I

|vni+1 − vni | = 2
I∑

i=−I

(
vni+1 − vni

)+ ≤
I∑

i=−I

1

|v0|−1
DLip+ + βtn

�x ≤ 2M
1

|v0|−1
DLip+ + βt

123
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(A) (B)

(C) (D)

(E) (F)

Fig. 2 Comparison between different mesh resolutions (�x = 2−15 and �x = 2−8) at T = 0 and T = 1 for
different equations and schemes. Here H = 0.125. In the left column, we show the initial data, while in the
right column, we show the evolved data under the specified numerical scheme

Hence,

N∑
n=0

TV(vn)�t ≤ 2M
N∑

n=0

1

|v0|−1
DLip+ + βtn

�t

≤ 2M

⎛
⎝ �t

|v0|−1
DLip+

+ 1

β

(
log

(|v0|−1
DLip+ + βt N

) − log
(|v0|−1

DLip+
))

⎞
⎠

= 2M

(
|v0|DLip+�t + 1

β
log

(
1 + βt N |v0|DLip+

))
. (12)

123



   32 Page 10 of 16 Journal of Scientific Computing            (2022) 91:32 

(A) (B)

(C) (D)

(E) (F)

Fig. 3 Comparison between different mesh resolutions (�x = 2−15 and �x = 2−8) at T = 0 and T = 1
for different equations and schemes. Here H = 0.5. In the left column, we show the initial data, while in the
right column, we show the evolved data under the specified numerical scheme

��

Theorem 2 For a strictly convex flux function f ∈ C1(R), let u : R × [0, T ] → R be the
entropy solution of (1) with initial data u0 ∈ Cα

c (R) for some α ∈ (0, 1). Let (vni )i,n be
generated by a strictly Lip+ stable, monotone finite volume scheme (3) with initial data u0.
Then

‖u(T ) − v�x (T )‖L1(R) ≤ CL,M, f ,β

√
log

(
1 + CFβT�xα−1

)
�xα/2 (13)

123
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(A)

(B)

(C)

(D)

Fig. 4 Convergence rates for different equations and numerical fluxes at T = 1
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(A) (B)

(C)

(D) (E)

Fig. 5 The total variation as a function of time for varying equations, numerical fluxes and Hurst indices. This
corresponds to the first estimate in (12)

for any T > 0, for some CL,M, f ,β > 0. For small �x > 0 this yields the “almost �xα/2”
estimate

‖u(T ) − v�x (T )‖L1(R) ≤ C�xα/2
√− log�x . (14)

Proof Lemmas 4 and 3 imply

N∑
n=0

TV(vn)�t ≤ C

(
‖u0‖Cα�xα + 1

β
log

(
1 + ‖u0‖Cαβt N�xα−1))

for someC > 0 independent of�x . Inserting this and the bounds ‖u0−v�x
0 ‖L1(R) ≤ C�xα

and TV(v�x
0 ) ≤ C�xα−1 from Lemma 3 into the Kuznetsov estimate (5), we produce

‖u(T ) − v�x (T )‖L1(R) ≤ C�xα + C�xα−1(ε + ε0‖ f ‖Lip + max(ε0,�t)
)

+ C

(
CF�x

ε
+ ‖ f ‖Lip�t

ε0

) (
�xα + 1

β
log

(
1 + ‖u0‖CαβT�xα−1)) .

(15)

Defining

Q(�x, α) = �xα + 1

β
log

(
1 + ‖u0‖CαβT�xα−1)
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Fig. 6 Sharpness of the bound (12) for Burgers’ equation solved with the Godunov scheme. Specifically, we

plot the ratio
2M

(
|v0|DLip+�t+ 1

β
log

(
1+βt N |v0|DLip+

))
∑N

n=0 TV(vn )�t
as a function of the mesh width �x . A value of 1

corresponds to a sharp estimate, a value greater than one corresponds to an not sharp estimate

and setting ε = ε0 = �x1−α/2√Q(�x, α) yields

‖u(T ) − v�x (T )‖L1(R) ≤ C�xα + CL,M, f

√
Q(�x, α)�xα/2 (16)

Since α ∈ (0, 1), the second term on the right-hand side dominates, so we obtain (13). To
get (14) we estimate

log
(
1 + C�xα−1) � log(C) + log(�xα−1) � −(1 − α) log(�x).

��

4 Numerical Examples

We consider three scalar conservation laws: Burgers’ equation where f (u) = u2/2, a cubic
conservation law where f (u) = u3/3, and lastly a linear conservation law where f (u) = u.
The initial data will be given as fractional Brownian motion with varying Hurst exponent
H . Introduced by Mandelbrot et al. [16], fractional Brownian motion can be seen as a gen-
eralization of standard Brownian motion with a scaling exponent different than 1/2. We
set

uH
0 (x):=BH (x) x ∈ [0, 1],

where BH is a path of fractional BrownianmotionwithHurst exponent H ∈ (0, 1). Brownian
motion corresponds to a Hurst exponent of H = 1/2.

To generate fractional Brownian motion, we use the random midpoint displacement
method originally introduced by Lévy [17] for Brownian motion, and later adapted for
fractional Brownian motion [18, 19]. For a more detailed description on how we gener-
ate fractional Brownian motion, consult [20,A.4.1]. See Fig. 1 (left column) for an example
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with H = 0.125, H = 0.5 and H = 0.75. The initial data is normalized to have values in
[−1, 1].

4.1 Numerical Results

Figures 2 and 3 show the computed solutions for mesh resolutions of �x = 2−8 and �x =
2−15, and as expected the approximation converges uponmesh refinement. In order tomeasure
the rate of convergencewe comparewith a reference solution computed on amesh of 216 cells
(�x = 2−16); the results are shown in Fig. 4. The figure clearly shows convergence for all the
given configurations. However, for most configurations—most notably those of low Hurst
index H—we observe better convergence rates than the rates�xH−1/2 and�xH/2√| log�x |
predicted by Theorems 12, respectively.

4.2 Sharpness of our Estimates

In Fig. 5 we show the evaluation of the inverse of the total variation as a function of time.
As we can see from the plot, the total variation decays as C/t , which agrees well with the
estimate on TV(vn) in the proof of Lemma 4.

Inspired by (12), we use the value of β = 1
2 · 1

4 for the Godunov flux applied to Burgers’
equation, computed in [13], and measure the sharpness of the bound (12) by the ratio

2M
(
|v0|DLip+�t + 1

β
log

(
1 + βt N |v0|DLip+

))
∑N

n=0 TV(vn)�t
,

which is plotted in Fig. 6 as a function of the spatial resolution �x . As we can see, the bound
is not perfectly sharp, and seems to overestimate the sum on the left hand side of (12) by a

factor of �
1
4 . This partially explains the discrepancy of the observed convergence rates and

the predicted convergence rate of Theorem 2.

5 Conclusion

In this paper we have extended the standard Kuznetsov convergence proof for finite volume
schemes approximating solutions to hyperbolic conservation laws to include initial data
with unbounded total variation. The theory covers rapidly oscillating data such as Brownian
and fractional Brownian motion. We show several numerical experiments which show good
agreement with the theory.

Our result can easily be extended to cover initial data which is only piecewise Hölder
continuous with a finite number of downward jump discontinuities. The suboptimal rate
�xα−1/2 in Theorem 1 can be extended even further to cover e.g. initial data in Besov
spaces, since it only relies on the projection estimates (8a) and (8b).

We conjecture that the rate �xα/2 given in (14) in Theorem 2 is optimal or near optimal.
For optimality of convergence rates see e.g. [21, 22].

Funding Open access funding provided by University of Oslo. USF was partially supported by the Research
Council of Norway project number 301538.

Data and Code Availability All numerical experiments have been done with the Alsvinn code available from
https://alsvinn.github.io. The code for post-processing, along with the generation of the initial data, can be
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found at https://github.com/kjetil-lye/unbounded_tv_experiments. They are also permanently stored on the
Zenodo platform with the DOI 10.5281/zenodo.4088164.
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