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1. We consider a system of two competing populations with asymmetric 13 

migrations between two habitats.  14 

2. We obtain equilibrium population sizes for zero, sufficiently small and infinite 15 

migration rates.  16 

3. The coexistence condition for two competing species in a perfectly mixed 17 

habitat is derived.  18 

4. Harvest mortality is added to the system and the maximum sustainable yield 19 

(MSY) is calculated. 20 

5. The conditions under which a no-harvesting zone (e.g., marine protected area) 21 

can increase MSY are evaluated. 22 
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Abstract  26 

 27 

The standard model of a single population fragmented into two patches connected by 28 

migration, was first introduced in the 1970s by Freedman and Waltman, since 29 

generating long-term research interest, though its full analysis for arbitrary values of 30 

migration rate has only been completed relatively recently. Here, we present a model 31 

of two competing species in a two-patch habitat with migrations between patches. We 32 

derive equilibrium solutions of this model for three cases of migration rate resulting in 33 

isolated, well-mixed and semi-isolated habitats. We evaluate the full range of effects 34 

of habitat, life-history and migration parameters on population sizes. Finally, we add 35 

harvesting mortality and define conditions under which introduction of a no-36 

harvesting (protected area) may lead to increased maximum sustainable yield.  The 37 

results have applications in mixed fishery management and the design of wildlife 38 

protection zones, including marine protected areas (MPAs).  39 
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 45 

1. Introduction  46 

 47 

The issue of dispersal and migration has been one of core concern in ecology and 48 

conservation since the 1970s (SLOSS debate, Hanski, 1999), after the first basic 1x2-49 

migration model (one species migrating between two patches) was considered by 50 

Freedman and Waltman (1977). Over the decades, much effort has been focused on 51 

the development and analysis of more general space-continuous reaction-diffusion 52 

and competition-diffusion models (Lou 2006) as well as the evolutionary 53 

consequences of migration (Hutson et al. 2003). Continuous models have produced 54 

several remarkable results, but their application to ecology has been limited due to the 55 

assumption of strict functional relationship between growth rate and carrying capacity 56 

(De Angelis et al., 2016). This assumption reduces the influence of the environment 57 

on the population to a function of a single variable, permitting the derivation of 58 

compact solutions; but it reduces the generality of continuous models. This problem 59 

with general biological interpretation of the results has revived interest in 1x2 (one 60 

species migrating between two patches) models, which do not constrain the 61 

relationship between growth rate and carrying capacity and allow direct experimental 62 

verification (Zhang et al. 2017). More recently, a complete analysis of the 1x2 model 63 

for any value of the migration rate in cases of symmetric (Arditi et al. 2015) and 64 

asymmetric (Arditi et al. 2018, Wu et al. 2020) migration has been completed. Most 65 

recently, Takashina (2020) developed a two-patch, single population model (based on 66 

Logistic-Shaefer dynamics) to enable the optimal size of marine protected areas 67 

(MPAs) to be calculated, taking account of adult (density-dependent) dispersal. The 68 

two patches (representing a fishing ground and marine reserve) set up a source-sink 69 

dynamic with migration, which was analysed only for cases where migration rate is 70 

much greater than population growth rate. 71 

Here, we consider two competing species in two patches (2x2). We analyse the model 72 

at three (zero, sufficiently small and infinity) ranges of migration rates to investigate 73 

the effect of migration rates on equilibrium population sizes and species coexistence 74 

conditions. Then, we add harvesting pressure to the previous model and analyse how 75 

two-species maximum sustainable yield (MSY) is affected by interspecific 76 

competition and species migrations. Finally, we formulate the protected area optimal 77 

choice problem, i.e., how to divide the total area into protected and exploited parts, so 78 

that MSY does not decrease or, under certain conditions, may even increase. Using a 79 

simple example, we illustrate a possible solution to this problem. 80 

This is of practical importance because management of mobile wildlife populations 81 

often involves nature reserves or MPAs adjacent to or surrounded by areas in which 82 

hunting, or harvesting are permitted at a higher level. The effectiveness of a protected 83 

area depends on its spatial extent relative to the dispersion rate of the organisms for 84 

which it is intended (Botsford et al., 2001; Moffitt et al., 2011; Gruss et al. 2011; 85 

Green et al. 2015). Conflict between harvesting and conservation goals can be 86 

mitigated by the ‘spill-over effect’ whereby the natural dispersion of harvestable 87 

organisms from the protected area compensates for area lost to harvesting, especially 88 

in fisheries (e.g., DiLorenzo et al. 2016), but also might exasperate wildlife / domestic 89 

stock conflict (e.g., Holmern et al. 2007). Population models which include migration 90 

or dispersal are needed to determine the optimal (or minimum viable) size of reserves, 91 

such as MPAs (reviewed in Botsford et al. 2019), but most work so far has 92 

concentrated on larval dispersal in marine cases and on single populations without 93 

reference to trophic or competitive interactions. 94 



 95 

Description of the model  96 

 97 

Assume that two competing species m and n follow the standard Lotka-Volterra 98 

competition model:  99 
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where K, L are carrying capacities, β and α are competition interaction coefficients, r 101 

and s are net growth rates for species m and n respectively. This model assumes that 102 

populations are perfectly mixed in space and may coexist in a common homogeneous 103 

habitat. To introduce habitat fragmentation, it commonly accepted to assume (Arditi 104 

et al. 2015) that subpopulations on each patch follow a local competition model and 105 

patches are linked by migrations (Fig.1). In the simple case of two patches and 106 

asymmetric migrations between sites, the model (0) can be rewritten as:       107 
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where iK , iL  are carrying capacities, i i competition interaction coefficients and ir ,109 

is net growth rates in habitat i  for species m and n , respectively. Also, mD , mS and nD ,110 

nS are specific migration rates and asymmetry coefficients for  species m and n . 111 

Finally,   is scale parameter, which defines magnitude or intensity of migrations. 112 

Thus, the resulting migration flow rates can be calculated as k kD S .  All parameters 113 

are assumed to be positive; hereafter, without loss of generality, we assume that 114 

m nD D  or m  is “fast-migrating” and n  is “slow-migrating” species. The asymmetry 115 

coefficients represent a consistent bias in transition rate among habitats, which would 116 

normally arise from directed searching by the organisms to result in what Cressman 117 

and Křivan, 2013 termed ‘adaptive dispersion’. S could be expanded to represent, 118 

e.g., a response to resource gradient. Particularly, the asymmetry coefficient 0S =119 

means that the first habitat is a “pseudo-sink” (Watkinson and Sutherland 1995) i.e. 120 

only inward migration is present; 1S = means that species have no preferences to any 121 

habitat and  1S   means that  the first habitat is a “pseudo-source” i.e. species prefer 122 

migrating to the second habitat. It should be noted that the terms "pseudo-source" and 123 

"pseudo-sink" differ from similar terms "source" and "sink" in that in the first case 124 

only migration flows are considered, while in the second case the difference in net 125 

growth rates is also considered. e.g., “sink” means that the net growth rate is negative 126 

for a given habitat, whereas "pseudo-sink" means that there is an inflow into the given 127 

area. 128 



 129 

2. Model of two competing species migrating between two patches at different 130 

migration magnitudes  131 

 132 

In this section, we consider equilibrium solutions of the system (1). In general, this 133 

system does not have a convenient compact form of solutions for a full set of 134 

parameters and especially for arbitrary magnitude of migration rates. Nevertheless, for 135 

the convenience of further analysis, we can obtain compact solutions for some special 136 

cases:  137 

(A) 0 = , the extreme case of two completely isolated habitats. 138 

(B)  →  , the extreme case of perfectly mixed habitats.  139 

(C) sufficiently small 0  , the case of weakly coupled or semi-isolated habitats, 140 

where the boundary migration magnitude 0 is defined by the condition:  141 

1 2 1 2
0

min( , , , )

max( , , , )m m m n n n

r r s s

D S D D S D
 = ,       (C1) 142 

meaning that maximum migration rate is smaller than minimum growth rate or 143 

migration flows do not exceed population growths. 144 

For intermediate range of migration rates, where compact analytical solutions cannot 145 

be obtained, we find numerical solutions and check these analytical results. 146 

Also, for an intermediate range of migration rates ( 0    ), where compact 147 

analytical solutions cannot be obtained, we calculate a numerical solution for the 148 

entire range of migration rates and check our analytical results at extreme A, B and C 149 

ranges. 150 

 151 

2.1 Isolated habitats   152 

 153 

In isolated habitats, we can simply combine well-known result for single-patch 154 

equilibrium solutions. On one patch, we have four equilibrium solutions: both species 155 

are extinct; one of the species is extinct and both species coexist. Therefore, on both 156 

patches, the system (1) has 16 (including trivial) equilibrium solutions (Cressman et.al 157 

2004). Of these, 8 solutions describe a situation in which only one species is present 158 

in one patch, the other 6 solutions describe a situation in which species coexist in only 159 

one patch, one trivial solution, and finally one solution in which species coexist on 160 

both patches. Each solution can be represented as vector of equilibrium population 161 

sizes of each species on each patch 1 2 1 2, , ,m m n n0X ( ) , where  162 
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The coexistence of two species in both habitats takes place if all components of the 164 

vector 1 2 1 2, , ,m m n n0X ( ) are greater than zero, which requires the fulfilment of the 165 

following necessary conditions: 1( / )i i i iK L  −   (C2), which means that the ratio 166 

of carrying capacities is within a certain range, 1i i    (C3), which means that 167 

intraspecific competition is greater than interspecific competition. In the case of 168 

migration between habitats, these conditions ensure local coexistence (i.e., species can 169 

coexist in isolation within each habitat). Hereinafter, we are mostly interested in the 170 

migration of locally coexisting species; accordingly, the local coexistence conditions 171 

are used throughout the manuscript.  172 



 173 

 2.2 Perfectly mixed habitats 174 

 175 

In this case, we can separate dynamics of the system (1) into fast and slow parts and 176 

apply the Tikhonov theorem (Tikhonov, 1952) in the limit →   (Appendix A).  177 

Given equal habitat interaction coefficients (i.e., ( ) ( )i i   =  = ) and the same for 178 

both species asymmetry coefficients (i.e., m nS S S= = ), we get four asymptotic 179 

solutions 0 0(0,0), ( ,0), (0, ), ( , )M N M N . The coexistence solution for each species 180 

population on each habitat infX , total population of each species on both habitats 181 

,M N  and overall population of both speciesT is  182 
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where 0 0,M N  are 184 
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Note that in the case of symmetric migrations (i.e., 1S = ), the single species solutions 186 

coincide with well-known result for population dynamics in two coupled patches 187 

(Freedman and Waltman (1977), Holt (1985), Arditi et. al. (2015)). In addition, we 188 

can find changes in equilibrium abundances when the migration magnitude is varied 189 

from zero to infinity. In the coexistence case, equation (2) minus equation (3) gives  190 
1

0 0 0 0( , ) (1 ) ( , )M N M N N M  −  = −  −   −  ,     (5) 191 

where 0 0,M N  are 192 
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Equations (5) and (6) show that equilibrium abundances do not change if one of 194 

conditions 2 1K K S= (C4) or 1 2

1 2

r r

SK K
= (C5) combines with one of conditions 195 

2 1L L S= (C6) or 1 2

1 2

s s

SL L
= (C7), otherwise, equilibrium abundances may change in 196 

any directions depending on conditions. It can be noted that these zero change 197 

conditions (ZCC) correspond to the conditions of ideal free distribution (IDF) for each 198 

species. A pair of conditions (C4) and (C6) requires equality of effective (i.e., with 199 

respects to migration asymmetry) carrying capacities, while a pair of conditions (C5) 200 

and (C7) requires equality of effective intraspecific competition in both habitats and 201 

no net spillover effect. Also, note that competition between species (i.e., interspecific 202 

competition) does not affect ZCC conditions.  203 



Significantly, the conditions for coexistence for isolated habitats (i.e.,204 
1( / )i iK L  −  ) and perfectly mixed habitats (i.e., 1

0 0( / )M N  −  ) are 205 

structurally different. In the case of isolated habitats, these conditions do not depend 206 

on net growth rates, while in the case of mixed habitats, they do. This means that local 207 

coexistence does not guarantee global coexistence (i.e., coexistence within migration-208 

connected habitats). In Appendix B, we explore how coexistence conditions depend 209 

on habitat heterogeneity and differences between species. 210 

 211 

2.3 Semi-isolated habitats  212 

 213 

In case of sufficiently small (C1) migration magnitude (or strong barrier between 214 

habitats), we can use the method of perturbation theory and consider   as a 215 

perturbation parameter and find perturbed equilibrium as 2

0 1 ( )o  = + +X X X , 216 

which is asymptotically stable under common assumptions (Freedman and Waltman 217 

1977) if non-perturbed equilibrium is stable (i.e., stability is preserved for the 218 

perturbed equilibrium).  219 

Here, we are primarily interested in the perturbed solution around equilibrium that 220 

allows the coexistence of two species in both habitats, i.e., when 0X is given by 221 

equation (2). We now focus on the effect of difference in migration rates between two 222 

otherwise equivalent species. This is useful for considering two e.g., genotypes of the 223 

same species that differ only in their migration behaviour with potential management 224 

implications (see e.g., Andersen et al., 2018; Alós et al., 2019). We will derive their 225 

equilibrium populations based on the following simplifications of the general solution 226 

(2). (a) We assume that interaction coefficients do not depend on habitat i.e., 227 

1 2 1 2,   = =  and they are symmetrical i.e.,  = ; (b) carrying capacities are 228 

equal for both species, but may differ among habitats i.e., 1 1 2 2,K L K L= = . With these 229 

specifications, the equilibrium solution (2) reduces to 230 

0 1 2 1 2 1 2 1 2

1
( , , , )
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T(m ,m ,n ,n ) K K K K
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=
+

X . After some calculations (supplementary 231 

material), we can derive the linear term of the extended solution as:   232 

 233 

2 1 1 1 1 1

2

1 1

2 2 2 1 2 2

2

2 2

1

2 1 1 1 1 1

2

1 1

2 2 2 1 2 2

2

2 2

( ) ( )

(1 )

( ) ( )

(1 )

( ) ( )

(1 )

( ) ( )

(1 )

m n n n m m

n m m m n n

n m m m n n

m n n n m m

K D s D r K D S r D S s

r s

K D r D s K D S s D S r

r s

K D r D s K D S s D S r

r s

K D s D r K D S r D S s

r s

 



 



 



 



− + − 
 −
 
 − + −
 

−
 =
 − + −
 

− 
 − + −
 

− 

X  .    (7) 234 

 235 

Solution (7) can be further simplified if we assume that the net growth rates are the 236 

same for both “fast” and “slow” behaviours (i.e., 1 1 2 2,s r s r= =  ) and similar migration 237 

preferences (i.e., n mS S S=  ) as  238 
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Based on (8), we can calculate each species population on each habitat X , total 240 

population of each species on both habitats ,M N  and overall population of both 241 

speciesT as: 242 
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The effect of migration on population sizes is summarized in Table 1. Evidently, the 247 

interaction between environmentally driven conditions (i.e., net growth rates and 248 

carrying capacities) and migration behaviours (i.e., migration rates and migration 249 

preferences) can cause a wide variety of effects. Both “fast” and “slow” migrating 250 

behaviours can be beneficial for species abundance depending on other conditions. 251 

Positive correlation between r and K (i.e.,
1 2 1 2( ) ( )effr r K K   ) leads to increasing 252 

of total population size relative to sum of carrying capacities, where 
1 1

effK SK  is 253 

effective carrying capacity. Note that in this case ZCC conditions for each species 254 

(i.e.,
1 2

effK K= , 1 2r r= , m nD D= and
1 2

effK K= , 1 2r r= , n mD D= ) and total population 255 

(i.e., 
1 2

effK K= , 1 2r r= ) are all different.     256 

Based on the results from Table 1, we can already highlight three classes of 257 

environmental conditions (with respect to evolutionary selection):  258 

 (1) disruptive conditions under which differences in migration rates are beneficial for 259 

both (“fast” and “slow”) behaviours and potentially can lead to divergence of 260 

migration behaviour.  261 

(2) convergent conditions under which differences in migration rates are beneficial for 262 

one type of behaviour only.  263 

(3) sessile conditions under which migration leads to a decrease in equilibrium 264 

population sizes for both types.   265 

Note that the strength of competition affects the case classification and disruptive 266 

conditions take place only for moderate differences in migration rates (i.e.,267 
1

m nD D− ).   268 

 269 

2.4 Numerical solution  270 

 271 

In previous sections, we have fond analytical solutions for the system (2) at specific 272 

ranges of the migration magnitude. In this section, we calculate a numerical solution 273 

for the entire range of migration magnitude and compare the numerical and analytical 274 

results. The Mathcad program code for the numerical solution of system (2) can be 275 



viewed in the supplementary section, as well as can be downloaded from GitHub 276 

(https://github.com/Alexander-277 

Sadykov/Migration_two_habitats_two_species/Numerical_solutions_2x2). Here, we 278 

consider two ecologically equivalent species (i.e., i ir s= , i iK L=  and 1i i  = =  ) 279 

which differ only in migration rate ( m nD D ). Note that under these assumptions, the 280 

conditions for local and global coexistence are the same (table B), i.e., locally 281 

coexisting populations always coexist globally. Two specific numerical solutions for 282 

“disruptive” and “sessile” conditions are shown on fig.2. It can be seen that numerical 283 

and analytical solutions coincide at 0 →  and →  , and that at a small magnitude 284 

of migration 0  , the linear approximate solutions are in good agreement with the 285 

numerical results. Numerical results show that the relationship between population 286 

sizes and migration rate is not always monotonic, for example, in the “disruptive” 287 

case (fig. 2B), both species reach their maximum population size at some intermediate 288 

values of the migration rate. Numerical solutions for all cases from Table 1 show that 289 

at sufficiently high migration rates, the "slow" species always has a larger population 290 

size. This observation is consistent with a well-known “the slower diffuser always 291 

prevails" principle (Dockery et al., 1998, De Angelis et al., 2016). However, full 292 

analysis for the entire range of migration rates shows that this principle has limited 293 

validity for 2x2 system. Since at low migration rates and positive r-K correlation 294 

(grey rows in Table 1), the population of the "fast" species is relatively greater than 295 

the population of the "slow" species (e.g., fig.2B).  296 

For locally non-coexisting populations ( 1i i  = =  ), we checked the possibility 297 

of global coexistence (i.e., calculated the sign of the maximum eigenvalue of the 298 

Jacobin matrix). For the studied set of parameters, asymptotically stable coexisting 299 

solutions were not found. Although, for some values of the migration rate, the 300 

maximum eigenvalue is close to zero (fig.3), which may serve as evidence of "weak 301 

global coexistence" (i.e., the characteristic extinction time may be longer than the 302 

generation time). In other words, under certain conditions, migration can relax 303 

interspecific competition (i.e., reduce the value of the maximum eigenvalue) and slow 304 

down the decline to extinction of one the competitor. 305 

 306 

3. Model of two competing species on two patches with harvesting on one patch  307 

 308 

In this section, we add harvesting pressure to the model (1) to consider the effect of 309 

introducing a protected area (e.g., a wildlife reserve or MPA) on the maximum 310 

sustainable yield (MSY). Suppose that the first habitat is protected, while the second 311 

is harvested with rates mC and nC for the species M  and N  accordingly. We can 312 

modify model (1) by including harvest terms as follows:    313 
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dn n m
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Cdn n m
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
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
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

  
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
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 
  

= − − − + −  
  

.    (10) 314 

Without migrations ( 0 = ) the system (10) has the coexistence equilibrium solution:   315 

 316 

1 1

2 2 2 2 2 2 2 2

2 2

0

1 1

2 2 2 2 2 2 2 2
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1

( ) ( )

(1 )

1

( ) ( )
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m n

n m

K L

K r s C s L r s C r

r s

L K

L r s C r K r s C s

r s

















− 
 −
 

− − − 
 −
 =
 −
 

−
 
 − − −
 

− 

X .      (11) 317 

Based on the equilibrium (11), we can find the harvest rate vector ( , )n mC CMSYC that 318 

provide maximum sustainable yield T=MSY MSY MSYH C X by solving harvest 319 

optimization problem i.e.,
0max[ ( )]T

C X C . For instance, in the case of equal carrying 320 

capacities i iL K= and equal net growth rates i is r= , the solution has a simple compact 321 

form:  322 

 2 2(1 ) (1 )
,

2 2

T

r r 

   

 + +
=  

+ + + + 
MSYC , 2 2 2 2

2 2

(1 ) (1 )
,

( 2) ( 2)

T

r K r K 

   

 + +
=  

+ + + + 
MSYH . Further, for 323 

the simpler case of equal interaction coefficients  = , this gives the well-known 324 

result 2 2,
2 2

T
r r 

=  
 

MSYC and 2 2 2 2,
4(1 ) 4(1 )

T

r K r K

 

 
=  

+ + 
MSYH .  325 

Approximate solution of the system (10) at sufficiently small migration magnitude 326 

can be derived in the same way as for system (1). In this case, the linear 327 

approximation term is   328 

 329 
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 
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− 

− 
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 

− − 

X .      (12) 330 

 331 

Accordingly, approximate values of MSY harvest rates, MSY harvest of each species 332 

and overall harvest for both species can be calculated as:    333 

( )

( ) ( )

2 22 12 2

2

2 22 2 2 1

22 12 2

( )( 4 )
, 1,1 ( , )

2 2 4

( 2 )
1,1 - , - ( , )
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m n

m n n m

m n
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D D K K Sr r
o

K

r K K K S
D D D D o

D D K K Sr K
TH o

  


   

  

 
 

+ − 
= − + 
 

−
= − +

+ + −

+ −
= − +

+ +

T
T

MSY

T T

MSY

C

H .  (13) 334 

As Table 2 shows, migration between sites may lead to multidirectional (increasing 335 

or decreasing) effects on the MSY harvest, depending on specific values of carrying 336 

capacities, migration rates and asymmetry of migration flows. The practical effect is 337 

that predicting the ecological consequences is far from simple.  338 

   339 

Optimal choice of protected area  340 

 341 

In accordance with the resource management goal of maximising harvesting strictly 342 

subject to sustainability conditions and seeking a synergy between the two, we 343 

examine the prospect for designating a protected area (habitat partition) which can 344 

both conserve the population and increase the harvest rate over that of an un-345 

partitioned habitat. In particular, we are trying to find the conditions under which the 346 

introduction of protected subareas leads to an increase in the maximum sustainable 347 

yield for the entire area. As illustration, let us consider some area A with a total 348 

carrying capacity K for both species. Let us also assume that this area is ecologically 349 

homogeneous in the sense that the carrying capacity is proportional to the area350 

( )K A A , which implies that 1 2K K K= +  for 1 2A A A= + , where iA are subareas of 351 

total area A . Further, we can ask how MSY harvest will change if the first subareas 352 

becomes protected from exploitation. We can calculate changes in MSY harvest 353 

MSYTH  as the difference between MSYTH  before ( 1 1 2 2

2(1 )
MSY

r K r K
TH



+
=

+
) and after 354 

(equation (13)) introduction of protected area, and up to second order   we get   355 

2 11 1
( )( 2 )

2(1 ) 2(1 )

m n
MSY

D D K K Sr K
TH 

 

 + −
 = − + 

+ + 
.     (14) 356 

The first term in equation (14) is always negative and represents the loss of potential 357 

yield in the protected subarea; the second term represents net migration from the 358 

protected to the harvested subarea and can be either negative or positive (spillover 359 

effect). We seek the conditions under which migration flows compensate for potential 360 



harvesting losses (i.e., 0MSYTH  ). The ratio A1/A2 for which these conditions are 361 

met is then the optimisation objective for management. In order for MSYTH  to be 362 

non-negative, two conditions must be met: (1) The second term must be negative, 363 

which implies that 2
1

2

K
K

S
 ; (2) The sum of both terms must be positive, which 364 

implies that 2
1

2

K
K

S 


−
, where 1

( )m n

r

D D



=

+
.  365 

The first condition means that the protected area must be large enough to ensure a 366 

significant migration flow, while the second condition means that the protected area 367 

must be small enough not to suppress the harvest. Combining these opposite 368 

requirements, we obtain the following inequality for the optimal choice of a protected 369 

area: 370 

1

2

1 1

2 2

K

S K S 
 

−
.         (15) 371 

 372 

The optimal condition (15) for carrying capacities ratio also represents condition for 373 

protected/harvested subareas 1 1

2 2

K A

K A
 , since we assume a homogeneous environment.  374 

The optimal choice solution exists only if / 2S  , taking into account that 1   for 375 

1r   (linear approximation condition), it can be noted that a high asymmetry of 376 

migration flows is required for the optimal choice to exist (fig.4). In other words, the 377 

protected area must be a strong enough pseudo-source. Also, for S  , there is 378 

approximate solution 2 12A SA , or the exploited area should be approximately 2S  379 

times larger than the protected area.   380 

 381 

4. Discussion  382 

 383 

The 2x2 (two-species in two habitats) model is a minimal baseline model, which 384 

allows the study of mutual relations between competition, migration and coexistence. 385 

This enables analytical results to be found, so can contribute to answering some 386 

outstanding research questions The relationship between competition and migration 387 

can be examined by comparing the previous single-species model (Freedman and 388 

Waltman, 1977; Holt, 1985; DeAngelis and Zhang, 2014; Arditi et.al., 2015) with the 389 

two-species model with competition. 390 

For a small migration magnitude 0  , it is noted that for the total abundance391 

T M N= + , the results of both one- and two-species models are mutually consistent, 392 

that is, fragmentation (i.e., dividing population on subpopulations) is beneficial for 393 

total population size in the case of positive correlation between intrinsic growth rate 394 

and effective carrying capacity, while fragmentation is detrimental in the opposite 395 

case. Although the overall population size is consistent with the single-species model, 396 

the population size of each species may deviate from the single-species model’s 397 

prediction. For fast-migrating species, a positive correlation between r and K  is 398 

always beneficial, but for slow-migrating species, such a correlation may be 399 

detrimental in the case of a significant (i.e., 1

m nD D− ) difference between migration 400 

rates (Table 1). Conversely, a negative correlation between r and K  is always 401 

detrimental to a fast-migrating species, but in some cases may be beneficial to a slow-402 



migrating species. In general, in a community of two competing species at small 403 

migration rates, a fast-migrating species tends to behave as predicted by single-404 

species models, while a slow-migrating species does the opposite. This qualitative 405 

observation might be useful in explaining the preferred habitats for competing species 406 

with different migratory behaviours. Speculatively: in a competitive environment, 407 

migratory species may increase their abundance by occupying rich (i.e., with positive 408 

r-K correlation) habitats, whereas sessile species may gain by dwelling in relatively 409 

poor (i.e., with negative r-K correlation) habitats, avoiding competition. 410 

If we consider the population sizes of "fast" and "slow" species over the entire range 411 

of migration rates, we can see that the well-known principle “the slower diffuser 412 

always prevails" obtained using continuous models is not fulfilled within the 413 

framework of a two-patch model. Although the "slow" species always has a larger 414 

population size at high migration rates, the "fast" species may prevail at low migration 415 

rates (fig.2B). Thus (in the case of a positive r-K correlation), there is a value of the 416 

migration magnitude ESS at which the sizes of both populations are equal417 

( ) ( )ESS ESSM N = . This value can be called the evolutionarily stable magnitude of 418 

the migration rate, since possible mutations in the migration rates will lead to this 419 

value. 420 

The relationship between migration and coexistence can be seen in the example of 421 

perfectly mixed habitats. The results for this case (Table B) show that in a fragmented 422 

habitat, the coexistence conditions (B1) may differ from those in a homogeneous 423 

environment (C2), and the non-homogeneity of the habitat leads to a dependence of 424 

the coexistence conditions on the growth rates. The latter suggests that, depending on 425 

the growth rates, migrations can have opposite effects, either ensuring the coexistence 426 

of species, or, on the contrary, leading to the extinction of one of the species. In a 427 

sense, this is an expected result; nevertheless, (B1) provides a quantitative criterion 428 

for different cases.  429 

Finally, the relationship between migration and maximum sustainable yield (MSY) 430 

can be examined in the context of conditions for optimal size of wildlife reserve, 431 

especially marine protected areas (MPA). In previous works on the optimal MPA size 432 

(Hastings and Botsford 1999, Moussaoui and Auger 2015, Takashina 2020), single-433 

species populations having a very high or moderate migration rate were considered. In 434 

this manuscript, we examined populations of two competing species at relatively low 435 

migration rates. In practical terms, models with a high migration rate are more 436 

suitable for describing relatively small (compared to the average migration distance) 437 

MPAs, while models with a low migration rate are better suited for describing 438 

relatively large MPAs. We have determined the range of parameters for which the 439 

optimal MPA size exists. It turned out that the key parameter is the asymmetry of 440 

migration flows i.e., an optimal MPA exists if the net migration flow from the 441 

protected area exceeds the losses from its non-use for harvesting. We suggest from 442 

this that if a fishing ground can be roughly divided into “spawning” and “foraging” 443 

areas (i.e., there is strong asymmetry in migration flows between subareas), then the 444 

introduction of an MPA over the “spawning” area may be the optimal solution in the 445 

sense that it will not reduce the maximum sustainable yield. In practice, it is quite 446 

possible that conditions for an optimal MPA cannot be achieved for natural reasons 447 

(e.g., there are no behaviourally distinct regions so no significant asymmetry of 448 

migration flows). In this case, the deviation from the conditions of the optimal MPA 449 

can serve as a convenient indicator for choosing a "next-best" MPA. Although, within 450 

the framework of the model, we ignored many biologically important features, 451 



showing with a simple case the conditions under which the introduction of the optimal 452 

MPA can increase the MSY harvest, we have outlined a benchmark for applied 453 

research that takes account of local bio-economic conditions in specific regions. 454 
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 462 

Appendix A. Equilibrium solution for perfectly mixed habitats. 463 

 464 

Rewrite system (1) for fast 1 1,m n  and slow 1 2 1 2( ) / 2, ( ) / 2M m m N n n= + = +465 

variables. Taking into account that 2 1 2 12 , 2m M m n N n= − = − ), we get couple of 466 

equations for fast variables  467 

 

1 1 1 1
1 1 1

1 1

1 1 1 1
1 1 1

1 1

1
1 (2 (1 ) )

1
1 (2 (1 ) )

m

m m

n

n n

dm m n
m r M S m

d D K K

dn n m
n s N S n

d D L L



 



 

 
= − − + − + 

 

 
= − − + − + 

 

,   (A1) 468 

where ,m m n nD t D t   = = .  At  →  the first term in each equation can be dropped 469 

and fast equations are obtained as  470 

  

1
1

1
1

2 (1 )

2 (1 )

m

m

n

n

dm
M S m

d

dn
N S n

d





= − +

= − +

 ,        (A2) 471 

which have asymptotically stable solutions: 472 

1

2

(1 )m

m M
S

=
+

, 
1

2

(1 )n

n N
S

=
+

.        (A3) 473 

After substitution (A3) and letting n mS S S= = , we get couple of equations for slow 474 

variables:   475 

 476 
2 2 2

1 2 1 1 2 2 2 1 1 2 2 1 1 2

2

1 2

2 2 2

1 2 1 1 2 2 2 1 1 2 2 1 1 2

2

1 2

( ( ) 2( ) 2 ( ) )
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( ( ) 2( ) 2 ( ) )
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M K K r Sr Sr S r K r K r S M K r K r S NdM

dt K K S

N L L s Ss Ss S s L s L s S N L s L s S MdN

dt L L S





+ + + − + − +
=

+

+ + + − + − +
=

+

,  477 

which is Lotka-Volterra competition system in its structure and accordingly it has four 478 

asymptotic solutions 0 0(0,0), ( ,0), (0, ), ( , )M N M N shown in main text, equations (3) 479 

and (4).    480 

 481 

Appendix B. Conditions for coexistence in perfectly mixed habitats.   482 

 483 



A biologically meaningful solution for the coexistence of competing species exists if 484 

both equilibrium populations (3) are positive, i.e., 485 

0 0 0 0( 1) (( / ) ) (( / ) )M N N M        which can be rewritten as  486 

2

1 2 1 2 1 2 2 1

2

1 2 1 2 1 2 2 1

( ) ( ) 1

( ) ( )

K K r Sr L s S L s

L L s Ss K r S K r




+ +
 

+ +
 .      (B1) 487 

It can be noted that condition (B1) is quite different from the coexistence condition 488 

for isolated habitat, which is 1 1

1 1 2 2( ( / ) ) ( ( / ) )K L K L   − −     . The main 489 

feature is that in perfectly mixed habitat, the condition for the coexistence (B1) 490 

depends on their growth rates, which is not the case for isolated habitats. In order to 491 

understand what specifically affects the change in the coexistence conditions, let us 492 

consider two types of transformations in B1: gradual reduction of habitat 493 

heterogeneity and reduction of the ecological difference between species. In the first 494 

case, let us assume absence of heterogeneity in growth rates 1 2 1 2( ) ( )r r r s s s= =  = =  495 

and get  496 

1 2 1 2

2 2

1 2 1 2 1 2 2 1 1 2 1 2

,2 2

1 2 1 2 1 2 2 1 1 2 1 2

( ) ( ) ( )
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K K r Sr L s S L s K K L S L

L L s Ss K r S K r L L K S K= =

+ + +
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+ + +
 ,  (B2) 497 

than assume absence of heterogeneity in carrying capacities 498 

1 2 1 2( ) ( )K K K L L L= =  = =  and get  499 

1 2 1 2

2 2

1 2 1 2 1 2 2 1 1 2 2 1

,2 2

1 2 1 2 1 2 2 1 1 2 2 1
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+ + + +
.  (B3) 500 

Note that in the case of equally desirable habitats (i.e., 1S = ), condition (B3) is the 501 

same as the coexistence condition for a single-patch (totally homogeneous) habitat 502 

(i.e., 
1( / )K L  −  ).  If we simultaneously assume the homogeneity of the growth 503 

rate and carrying capacity, then condition (B1) is reduced to 1, which also coincides 504 

with the coexistence condition for the single-patch case (i.e., 1  ). 505 

In the second case, let us assume species equivalence in growth rates i ir s= and get 506 

1 1 2 2

2 2

1 2 1 2 1 2 2 1 1 2 1 2 2 1

,2 2

1 2 1 2 1 2 2 1 1 2 1 2 2 1

( ) ( ) ( )

( ) ( ) ( )r s r s

K K r Sr L s S L s K K L r S L r

L L s Ss K r S K r L L K r S K r= =

+ + +
⎯⎯⎯⎯→

+ + +
 ,  (B4) 507 

than assume species equivalence in carrying capacities i iK L=  and get 508 

1 1 2 2

2 2

1 2 1 2 1 2 2 1 1 2 1 2 2 1

,2 2

1 2 1 2 1 2 2 1 1 2 1 2 2 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )K L K L
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L L s Ss K r S K r s Ss K r S K r= =

+ + + +
⎯⎯⎯⎯⎯→

+ + + +
 . (B5) 509 

For ecologically equivalent species (i.e., i ir s= and i iK L= ) , condition (B1) is 510 

reduces to 1, which again coincides with the coexistence condition for the single-511 

patch case (i.e., 1  ).  512 

  513 

 514 

Table B shows the conditions of existence for various combinations of parameters. 515 

 516 

 517 

Table B. Coexistence conditions for different levels of species differences and 518 

heterogeneity of habitats.  519 

 520 
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αβ<1 B3 B2 B1 

ri=si αβ<1 B3 B2 B4 

Ki=Li αβ<1 αβ<1 αβ<1 B5 

(ri=si) 

∧
(Ki=Li) 

αβ<1 αβ<1 αβ<1 αβ<1 

 (Ki=K)∧ Li=L) 

(ri=r)∧ si=s) 
(Ki=K)∧ Li=L) (ri=r)∧ si=s) 

 

 
Habitat heterogeneity 

The cells for which the coexistence conditions are the same as for the single-patch 521 

habitat are marked in grey. The cells for which the conditions of coexistence do not 522 

depend on the growth rates are marked in light grey. 523 

      524 

 525 
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Tables  633 

 634 

Table 1. Effect of migrations on equilibrium population sizes under different 635 

conditions  636 

 637 

Net 

growth 

rates (r)  

Carrying 

capacities 

and 

migration 

asymmetry 

(K, S) 

Migration rates 

( , )m nD D , 

where m nD D  

Sign of effect on 

population sizes of 

species M, species 

N and total 

population 

T=M+N, (M, N, T) 

Classification 

of conditions  

1 2r r  

1 2SK K  

1

m nD D−  (+,- ,+) Convergent 

1

m nD D−  (+,+,+) Disruptive 

1 2SK K  

1

m nD D−  (- ,+, -) Convergent 

1

m nD D−  (- ,- ,- ) Sessile 

1 2r r  

1 2SK K  

1

m nD D−  (- ,+ ,-) Convergent 

1

m nD D−  (- ,- ,- ) Sessile 

1 2SK K  

1

m nD D−  (+ ,- ,+) Convergent 

1

m nD D−  (+ ,+,+) Disruptive 

Cases with a positive correlation between r and K are marked by grey. Note that a 638 

positive r-K correlation is always beneficial for the "fast species" and total population, 639 

whereas a negative correlation may be beneficial for the "slow species" but always 640 

disadvantageous for total population.  641 

 642 

 643 

Table 2. Effect of migrations on MSYH under different habitat conditions  644 

 645 

Carrying 

capacities and 

migration 

asymmetry (K, S) 

Migration/dispersion rates 

for species M and N 

(Dm, Dn) 

Sign of effect on Hmsy, for 

species M, species N and total 

population, consequently 

(HMmsy,HNmsy,HTmsy)  

1 22SK K  

1

m nD D−  (+,- ,+) 

1

m nD D−  (+,+,+) 

1 22SK K  

1

m nD D−  (- ,+, -) 

1

m nD D−  (- ,- ,- ) 
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Figures  657 
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 672 

 673 

Fig.1 Structural components of the model of two competing species migrating 674 

between two habitats.  675 
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 707 
Fig.2 Population sizes depending on the log magnitude of the migration rate under 708 

“sessile” (A) and “disruptive” (B) conditions. The top plots show the population sizes 709 

of each species in each habitat (red lines for "fast" and blue for "slow" species). The 710 

bottom plots show the total population sizes for both species. Blue and red dotted 711 

lines show linear approximate solutions (equation 9). Black vertical dashed lines mark 712 

the boundary value of the migration magnitude ( 00.1   ), up to which the linear 713 

approximation gives a good fit. Black horizontal dashed lines mark analytical 714 

solutions of system (1) in the cases 0 =  and  →  as 0M and infM  respectively. 715 

Parameters for the “sessile” case are 1 21, 2r r= = , parameters for the “disruptive” case 716 

are 1 22, 1r r= = , other parameters are717 

1 220, 10, 0.3, 0.1, 0.25, 2m nK K D D S= = = = = = . 718 

 719 

 720 



 721 

Fig.3 Total population sizes and the maximum eigenvalue of the Jacobian matrix 722 

depending on the log magnitude of the migration rate for locally non-coexisting 723 

populations (red lines for "fast" and blue for "slow" species). Sharp steps represent 724 

regime switching from unstable coexistence to extinction of one of the species. 725 

(0)Meg is value of the maximum eigenvalue in the absence of migration.  The 726 

interspecific competition coefficient is 1.25 = , other parameters are727 

1 2 1 22, 1, 20, 10, 0.3, 0.1, 2m nr r K K D D S= = = = = = = . 728 

 729 

 730 

 731 

 732 

 733 

 734 

 735 



 736 
 737 

Fig.4 Conditions for optimal choice of protected area (shaded domain). The vertical 738 

axis shows the relative share of the protected area , the horizontal axis shows 739 

the coefficient of asymmetry . The picture is shown at . It can be noted that the 740 

optimal choice solution does not exist at , and also that for sufficiently large 741 

asymmetry coefficient , the protected area can be approximated as .  742 
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