

Potential of Quality-Adaptive
Streaming of Layer-Encoded Video

over a Wireless Network

by Cuong Huu Truong

Master Thesis

The Department of Informatics,
University of Oslo

November 2005

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

i

Table of Contents

Acknowledgments .. iv

Abstract.. v

List of Figures... vi

Chapter 1: Introduction .. 1

1.1 Streaming .. 1
1.2 Problems Related to Streaming... 2
1.3 The Goal of this Thesis ... 3
1.4 Thesis Structure .. 5

Chapter 2: Background Materials ... 6

2.1 Streaming in Practice .. 6
 2.1.1 Streaming with UDP... 7
 2.1.2 Streaming with TCP.. 9

2.2 Wireless Network.. 11
 2.2.1 IEEE 802.11 WLAN... 11
 2.2.2 Simulation of a Wireless Network.. 14

2.3 Scalable Video Format.. 15
 2.3.1 The MPEG Video Format... 15
 2.3.2 Scalable Video .. 16
 2.3.3 SPEG – A Modification to MPEG.. 18

2.4 Priority-Progress Streaming (PPS) ... 18
2.5 Priority Mapping... 21
2.6 Overview of Qstream.. 23

 2.6.1 Collaboration of the Three Programs.. 23
 2.6.2 GAIO and QSF ... 26

Chapter 3: The Analysis.. 28

3.1 Part I – A Closer Look at Qstream... 28
 3.1.1 Naming Conventions .. 28
 3.1.2 Data Structures.. 29
 3.1.3 Phase I – The Setup... 33
 3.1.4 Phase II – The File Request .. 34
 3.1.5 Phase III – The File Fetching and Window Preparation............................. 36
 3.1.6 Phase IV – The Transmission ... 38
 3.1.7 Work Conserving Strategy.. 42
 3.1.8 Window Scaling.. 43

3.2 Part II - Ways of Improvement ... 45
 3.2.1 A Way to Confront the Wireless Network.. 45
 3.2.2 Prediction of the Network Bandwidth .. 46

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

ii

 3.2.3 The Trade-Off between Quality and Workahead.. 47
 3.2.4 Proposal of Improvement Code .. 48

Chapter 4: The Implementation... 52

4.1 Additions to the Data Structures ... 52
4.2 Threshold Variables .. 54
4.3 The Functions.. 58

 4.3.1 The Bandwidth Prediction Function ... 58
 4.3.2 The Written Bytes Update Function ... 59
 4.3.3 The Layer Update Function .. 59
 4.3.4 The Workahead Update Function ... 62
 4.3.5 The Transmission Crisis Check Function... 62
 4.3.6 The Adaptation Function .. 63
 4.3.7 The Workahead Transmission Function ... 64
 4.3.8 The Initiation Function ... 65

4.4 An Illustration of the Improvement Code... 67
 4.4.1 Part I – Initiation ... 68
 4.4.2 Part II – Quality Adaptation.. 69

Chapter 5: Testing the Improvement Code... 71

5.1 Bandwidth Scenarios .. 72
5.2 Using the Original Qstream Code... 75
5.3 The Addition of the Improvement Code... 78
5.4 An Objective Metric to Represent the Perceived Quality..................................... 82
5.5 An Objective Assessment of the Improvement Code .. 87

 5.5.1 Objective Quality when Connectivity is Getting Bad................................. 87
 5.5.2 Objective Quality when Connectivity is Getting Good 93
 5.5.3 An Objective Quality Comparison Between The Original
 Qstream Code and The Improvement Code.. 97

5.6 Evaluation of the Improvement Code ... 102

Chapter 6: Conclusion... 104

6.1 The Achievement of this Thesis ... 104
6.2 Future Work .. 106

Appendix A.. 107

A.1 The Bandwidth Prediction Function ... 107
A.2 The Written Bytes Update Function ... 108
A.3 The Layer Update Function .. 109
A.4 The Workahead Update Function ... 111
A.5 The Transmission Crisis Check Function... 112
A.6 The Adaptation Function .. 112
A.7 The Workahead Transmission Function ... 113
A.8 The Initiation Function ... 114

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

iii

A.9 Registering the Number of Bytes Written to TCP.. 115

Appendix B .. 118

B.1 Sample of a Bandwidth Scenario Script ... 118
B.2 The Code for Computing the Spectrum2 Value ... 118

Bibliography .. 121

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

iv

Acknowledgments

I wish to express a sincere gratitude to my advisor Carsten Griwodz and my co-advisor
Svetlana Boudko for their support and patience all the way through the process. During
the research of this thesis they provided me with many good advices and essential
information, which helped me a lot in achieving the goal of this thesis.

Also I would like to thank the Norwegian Computing Center (Norsk Regnesentral) for
providing me with the necessary equipments and a space in their laboratory for doing my
research.

I would also like to thank my family and friends for their encouragement and support.

Cuong Huu Truong
Oslo, November 2005

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

v

Abstract

The aim of this thesis is to find and implement an optimal solution for efficient utilization
of the varying bandwidth of a wireless network when streaming a video, between a
streaming server and a mobile wireless device. The video used in the research is in a
layer-encoded format, which makes it possible to achieve quality-adaptive streaming
through priority dropping of video layers. The research is based on an existing streaming
software called Qstream. This software supports quality-adaptive streaming, by making
use of the layer-encoded video format SPEG for streaming and an algorithm known as
Priority-Progress Streaming (PPS) for priority data dropping. This thesis contributes by
providing an improvement code, which is added to this software to make the quality-
adaptation work in a network with intensely varying bandwidth. The challenge also lies
in the task of verifying how efficient the improved system is when handling different
degrees of bandwidth variations

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

vi

List of Figures

Figure 1: Independent Transmission Time ... 4
Figure 2: TCP Congestion Algorithm [8] ... 10
Figure 3: SNR Scalable Coding [5] .. 17
Figure 4: The Relationship Between ADU, SDU and Adaptation Windows 19
Figure 5: PPS Conceptual Architecture [17] .. 20
Figure 6: Priority mapping [17] ... 21
Figure 7: Utility function [17].. 21
Figure 8: Qstream architecture for unicast mode [17] ... 24
Figure 9: The PPS Session Object for StreamServ [17] .. 29
Figure 10: The Adaptation Window Object for StreamServ [17]..................................... 30
Figure 11: SDU and ADU objects [17]... 30
Figure 12: The PPS Session Object for StreamPlay [17] ... 31
Figure 13: The Adaptation Window Object for StreamPlay[17]...................................... 32
Figure 14: The StreamHeader Object [17].. 32
Figure 15: Phase I ... 33
Figure 16: Phase II .. 35
Figure 17: Phase III... 37
Figure 18: Phase IV .. 40
Figure 19: Ilustration of Work Conservation.. 42
Figure 20: Window Scaling .. 43
Figure 21: Updated PPS Session Object for StreamServ.. 52
Figure 22: Updated Adaptation Window Object for StreamServ..................................... 53
Figure 23: Bad Condition Threshold .. 56
Figure 24: Good Condition Thresholds .. 57
Figure 25: Phase IV of the Streaming Scenario with Marked Areas that Indicate the
Insertion Points of the Improvement Code ... 67
Figure 26: Implemented Code I: Initiation ... 68
Figure 27: Implemented Code II: Quality-Adaptation Algorithm................................... 69
Figure 28: Bandwidth Scenario 1 ... 72
Figure 29: Bandwidth Scenario 2 ... 72
Figure 30: Bandwidth Scenario 3 ... 73
Figure 31: Bandwidth Scenario 4 ... 73
Figure 32 – Bandwidth Scenario 5.. 74
Figure 33: Bandwidth Scenario 1 ... 75
Figure 34: Outcome of Streaming Test, Case I... 76
Figure 35: Bandwidth Scenario 2 ... 77
Figure 36: Outcome of Streaming Test, Case II ... 77
Figure 37: Bandwidth Scenario 1 ... 78
Figure 38: Outcome of Streaming Test, Case I: Streaming with Initial Values of the
Threshold Variables .. 79
Figure 39: Outcome of Streaming Test, Case II: Streaming with Different Values of the
Threshold Variable ig_wt ... 81
Figure 40: Rapid and Gradual Drops .. 83

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

vii

Figure 41: Lowest and Highest Quality Reception... 83
Figure 42: Lowest and Highest Quality Level.. 84
Figure 43: Higher and Lower Quality Changes.. 85
Figure 44: Higher Quality Level, High Quality Change... 86
Figure 45: Lower Quality Level, Low Quality Change... 86
Figure 46: Bandwidth Scenario 3 ... 88
Figure 47: Objective Quality when Bandwidth Decreases, ig_wt = 10 to 25................... 89
Figure 48: Objective Quality when Bandwidth Decreases, ig_wt = 30 to 60.................. 90
Figure 49: Objective Quality for ig_wt = 10 to 60 from a Different Perspective............. 91
Figure 50: Bandwidth Scenario 4 .. 93
Figure 51: Objective Quality when Bandwidth Increases, ig_wt = 10 to 25.................... 94
Figure 52: Streaming Session with Low ig_wt and Low Bandwith Growth Rate............ 95
Figure 53: Objective Quality when Bandwidth Increases, ig_wt = 30 to 60.................... 96
Figure 54: Objective Quality when Bandwidth Increases from a Different Perspective.. 96
Figure 55: Bandwidth Scenario 5 ... 98
Figure 56: Comparing the Improvement Code with the Original Qstream Code............. 99
Figure 57: Streaming Session Using Original Qstream over Sub-Scenario 3 99
Figure 58: Streaming Session Using Improvement Code over Sub-Scenario 3,
with ig_wt= 60 .. 100
Figure 59: Streaming Session Using Improvement Code over Sub-Scenario 3,
with ig_wt=10 ... 100
Figure 60: Streaming Sessions over Sub-Scenario 5 .. 101

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

1

Chapter 1: Introduction

Through the years, video and audio have rapidly become an essential part of the Internet.
As the interest for instant access to continuous media was growing, technology was
improved to overcome the fact that multimedia files have to be fully downloaded before
viewing is possible. Streaming was developed to support this instant access feature.
However, achieving full utilization of streaming is not an easy task due to a number of
technical problems. Network resources are probably the one of primary concern, as
streaming in a satisfying way mostly depends on a good network bandwidth, which costs
are expensive and slow to improve for wide areas. The following two sections, 1.1 and
1.2, provide a deeper insight into the meaning of streaming and the technical problems
related to it. Section 1.3 gives an overview of the goal of this thesis. Finally, section 1.4
provides a brief description of the structure of this thesis.

1.1 Streaming

Streaming is a term used to describe the process of transmitting multimedia data from a
sender to a receiver over the Internet, or other kinds of network, for instant viewing.
This is a precondition for live communication (telephony, video conferencing) and will
improve user satisfaction in on-demand services. It is also favourable in the case of
playing back multimedia files stored on remote machines.

The benefit is that a receiver doesn't need to have access to the entire multimedia content
before the playback can begin. The content will usually be played as soon as it arrives at
the receiver. This is the reason why live viewing is possible, as streaming allows
playback to occur in real-time. Satisfaction in using streaming depends on continuous
playout. Once the playback of the multimedia content begins, it should proceed according
to the original timing of the content. The receiver must get data from the sender in time,
or else jitter in playback will occur.

In some streaming cases the receiver may have a buffer to store some future data. It is
meant as a precaution against network problems that might result in data not arriving in
time. Buffering is possible because transmission speed and playback speed are to a very
large degree independent, which is explained in section 1.3. The receiver will be able to
play the video/audio while it receives and buffer the later parts concurrently. This is
typical when streaming a pre-recorded multimedia file from a remote sender.

However, this is not always the case due to higher real-time demand in certain kinds of
streaming. In a live communication for instance, it is not possible to buffer future data as
these data might not have been captured yet. With network problems present, the receiver
will likely have to accept jitter in this kind of presentation.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

2

Streaming supports the three kinds of network traffic, unicast-, broadcast- and multicast-
traffic. In a unicast streaming, the multimedia content is transmitted separately from the
sender to all the receivers that request it. When broadcasting, a single copy of the
multimedia content is sent to all receivers on the network. In general, both these methods
waste bandwidth when the same data needs to be sent to only a portion of the receivers
on the network. Unicast wastes bandwidth by sending multiple copies, while broadcast
wastes bandwidth by sending to the whole network whether or not the multimedia
content is wanted. Multicast was introduced to solve this problem as its strategy is to send
a single copy of the data only to those receivers who request it.

1.2 Problems Related to Streaming

The problems that might arise when streaming are caused by limitations of the
fundamental resources: processors, storage and network. These limitations may affect the
performance of the streaming in the sense that continuous viewing is interrupted by errors
like delay and jitter. The most crucial resource today, in regard to such failures, is
perhaps the network, where the available network bandwidth plays a significant role.

Since wide-area bandwidth costs are expensive and slow to improve, the primary
challenge is to find ways to deliver video in a most efficient manner at low bandwidth
costs. To reduce bandwidth costs, video compression and video distribution techniques
have been developed.

Video compression is basically a technique to reduce the size of a video file, but still
maintain a good and acceptable video quality in comparing to the original one. Thus, the
compressed video file requires less bandwidth to transmit. Different compression formats
have been developed through the years. Among them is one named Moving Picture
Experts Group (MPEG), which is of interest to this thesis and is elaborated in section
2.3.1 of chapter 2. Most compression formats also have the ability to carry video with
variable data rate.

On the distribution side, improvements in speed and cost have been made to basic
networking technologies such as link types, switchers, routers, etc. Techniques like
caching and multicasting have also been taken into account to achieve efficient
distribution of video content.

Apart from the transmission cost problem, there is another issue for streaming that needs
to be resolved. That is the handling of variable video and network rates. The main
purpose of streaming is to deliver video across the network with proper timing, so that it
is displayed at the receiver at the proper rate and without interruption. To be able to do
this, the sender application is required to transmit the video in a most efficient way, with
the variable video and network rates taken into consideration. Quality-adaptive
approaches to streaming have been developed to solve this problem. As compression
controls the rate of the video, these approaches have the task of adjusting the
compression ratio of the video adaptively, so that timeliness of video playout is

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

3

maintained. According to how the network bandwidth is, the quality-adaptive approach
will attempt to match the rate of the video to the rate of the network to achieve as
efficient streaming as possible.

1.3 The Goal of this Thesis

The goal of this thesis is to determine how to deliver video to a mobile device, through a
wireless network with varying bandwidth, in a most efficient manner. It should be noted
that the wireless network is simulated in this thesis, but the idea is to develop a code that
will also work in a real wireless network with varying bandwidth.

A quality-adaptive streaming approach is required for the research as well as a scalable
layer-encoded video format that is rate-adjustable. The quality-adaptive streaming
algorithm Priority-Progress Streaming (PPS) and the scalable video format SPEG
(scalable version of MPEG) are the two chosen candidates for this thesis. These are
further explained in sections 2.4 and 2.3 of chapter 2, respectively.

This thesis is based on unicast streaming over the Internet protocol Transmission Control
Protocol (TCP), and the multimedia content used for streaming is a pre-recorded SPEG
file stored on the sender machine. The issues about streaming over TCP are covered in
section 2.1.2 of chapter 2.

Qstream is a software that includes a quality-adaptive streaming system. It makes use of
the PPS algorithm and is specifically developed for streaming over TCP. Improvement of
this software is the primary interest of the research, as the goal is to make the quality of
the streaming video adapt gracefully to the varying bandwidth condition caused by a
wireless network. The details about Qstream is further elaborated in sections 2.6 of
chapter 2 and 3.1 of chapter 3.

The wireless network is simulated by using a network emulator, and thus different
network bandwidth scenarios can be created to be used in tests, to verify the efficiency of
the quality-adaptive streaming in different circumstances. The wireless network
simulation is explained in section 2.2.2 of chapter 2.

A scalable video stream indicates a stream that can be divided into several video layers.
The details are covered in section 2.3.2 of chapter 2. Thus, it’s possible to adjust the
amount of video layers that the streaming server is allowed to transmit, according to how
the network condition is. Qstream has the ability to divide the video stream into smaller
time intervals called adaptation windows, which is described in section 2.4 of chapter 2.
Each window’s amount of layers, which defines the video quality, is independent of the
other windows. Therefore, an adaptation window that consists of a small amount of
video layers will result in a video with lower data rate, within the time interval that is
covered by the window, compared to another adaptation window with more layers. It
follows that the transmission speed of the video stream can differ from the playback

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

4

speed, as the transmission time of the adaptation windows depends on how many video
layers the windows contain, and also on the condition of the network.

A concrete example will explain this more clearly. Assume that the maximum layers a
video stream can be divided into is L, and among all the adaptation windows to be
transmitted, there are two in the spotlight called A and B. Thus, each of the window
contains L video layers that are possible to transmit.

If the quality-adaptation algorithm decides that L1 layers of adaptation window A and L2
layers of adaptation window B are to be transmitted, then the transmission time for
adaptation window A is shorter than for adaptation window B if L1 < L, L1 < L2 ≤ L, and
the network bandwidth is equally good when transmitting the two adaptation windows.

Figure 1: Independent Transmission Time

Apparently this indicates that by decreasing the number of layers to be transmitted for a
number of adaptation windows, the transmission time might get ahead of the playback
time. The time difference is called the workahead time. This is the same as to say that the
receiver is buffering some future data. Since the transmission is ahead of time, the
receiver gets data that is not supposed to be displayed yet. These data are stored in a
temporary buffer until the time for decode and display arrives.

The buffering of future data is an important assumption for handling a streaming session
over a wireless network with varying bandwidth. In a network with unpredictable

 Adaptation Window A

 Adaptation Window B

 L video layers in total for both windows

 L1

L2

Transmission
 Timeline

 End transmit A

 End transmit B

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

5

bandwidth, the streaming system must be able to adapt to the condition of the network at
all time, by estimating the balance point between workahead/buffering and video quality.
This means that less layers for each adaptation window leads to reduced video quality,
but more workahead/buffering. Buffering provides support in the sense that the playout
doesn’t stop immediately if the connectivity suddenly is gone. How long the playout can
keep going, depends on how much video left there is in the buffer. On the other hand,
more layers for the adaptation windows give better video quality, but at the expense of
workahead/buffering. This trade-off theory is elaborated in section 3.2.3 of chapter 3.

To summarize, streaming over a unreliable wireless network with varying bandwidth
needs to be controlled and quality-adapted. The main goal of this thesis is to develop an
algorithm on the server side that makes the streaming server aware of the condition of the
network at all time throughout a streaming session. Based on this awareness, the
algorithm makes it possible for the streaming server to adapt the quality of the video
stream according to the network condition. The adaptation is based on the issues
discussed above, which consists of estimating the amount of video layers to transmit for
each adaptation window, and the amount of workahead time to acquire at different times.

1.4 Thesis Structure

Chapter 2 provides a detailed description of the relevant background materials that this
thesis is based on. The focus is put on the materials that are mentioned in the previous
section.

In chapter 3, a detailed analysis is performed on the Qstream software to reveal the areas
that need to be improved in order to achieve the goal of this thesis. A proposal of an
improvement code is also introduced and discussed.

Chapter 4 provides an insight into the way the improvement code is implemented, which
is based on the proposal made in chapter 3. The improvement code uses the C
programming language, since Qstream is based on this language. However, to simplify
and make it easier to understand, the code presented in this chapter is written in pseudo-
code.

In chapter 5, the improvement code is tested and evaluated. The test part is based on a
number of test cases (streaming sessions) that are performed on the code. The goal is to
investigate if the improvement code solves the issues introduced in this thesis efficiently
enough.

Chapter 6 is the final chapter of this thesis, which consists of a conclusion and ideas
about future work.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

6

Chapter 2: Background Materials

This chapter provides an introduction to the background materials that are relevant for
this thesis, which is based on a number of sources ([1], [2], [3], [5], [6], [7], [8], [9] [10],
[11], [12], [13]). Section 2.1 describes the streaming technique in practice. Section 2.2
and 2.3 cover the issues of wireless network and scalable video format, respectively.
Section 2.4 and 2.5 introduce two algorithms, Priority-Progress Streaming (PPS) and
Priority Mapping, which are fundamental for achieving quality-adaptive multimedia
streaming. The last section of this chapter gives an overview of the Qstream software that
is used and further developed in this thesis.

2.1 Streaming in Practice

Today there are several internet protocols available for streaming data, TCP, UDP, RTP,
MMS and HTTP.

User Datagram Protocol (UDP) is probably the most preferable protocol for streaming,
and the following section will provide further details of this protocol.

Transmission Control Protocol (TCP) has been considered less suitable for streaming, but
in recent years there have been arguments against this claim [18]. Streaming softwares
were also developed to prove that TCP might not be as bad as it's claimed to be. One
example is the Qstream software which is used in this thesis. As this thesis is based on
TCP streaming, the issues about TCP streaming are further elaborated in section 2.1.2.

Microsoft introduced Microsoft Media Server (MMS) as the primary server protocol of
their media technologies. MMS includes both Microsoft Media Server protocol/UDP
(MMSU) and Microsoft Media Server protocol/TCP (MMST) as subsets to explicitly
request the stream to use UDP or TCP respectively. This protocol has both a data delivery
mechanism to ensure that packets reach the receiver and a control mechanism to handle
client requests such as Play/Stop.

Hyper Text Transport Protocol (HTTP) is the slowest of the protocols and is used by
Internet Web Servers. HTTP is a well known protocol used everyday by people who
browse the Internet. This protocol has the ability to simulate streaming by using a method
called progressive download, and it is great for short contents. As the multimedia content
is in downloading progress, the receiver computer will start playing the video/audio while
it keeps downloading it concurrently. This will make it look like a real streaming, but in
reality it's just a normal downloading process. The receiver must support this feature, or
else the simulated streaming will not work.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

7

2.1.1 Streaming with UDP

User Datagram Protocol (UDP) provides a way for applications to send encapsulated IP
datagrams. The transmit is possible without having to establish a connection, and UDP is
therefore defined as a connectionless protocol. UDP transmits packets which consist of
an 8-byte header followed by a payload. The header contains the source and destination
ports, which helps the transport layer to deliver the packet to the right destination. UDP
does not support flow control, error control (FEC, etc.) or retransmission upon receipt of
a bad segment. All of that is up to the user processes. However, retransmission is
generally considered bad for streaming because it adds latency at the application layer. So
the fact that UDP is missing this feature, has been one of the reasons why it's favourable
for streaming. A protocol widely used for streaming which runs on top of UDP, is the
real-time protocol (RTP). Before sending a file into the network for streaming, it has to
be split into smaller packets. The packets are typically encapsulated with special header
fields that include sequence numbers and timestamps. Usually RTP is chosed to serve this
purpose.

RTP, defined in RFC 3550, is a standard used for transporting common formats such as
PCM, GSM, MP3 for sound and MPEG and H.263 for video. What the sender side
actually does is that it encapsulates a media segment within an RTP packet. The media
segment along with the RTP header form the RTP packet. This packet is further
encapsulated in a UDP segment which will be handed to IP (Network layer). The
receiving side extracts the RTP packet from the UDP segment. From the RTP packet it
will extract the media segment and use the header fields to properly decode and play back
the segment with a media player. However, RTP does not provide any mechanism to
ensure timely delivery of data or provide other quality-of-service (QoS) guarantees for
the client application, and the delivery of packets to the application can also be out-of-
order.

The RTP header consists of the following important header fields:

• Payload type - This field is 7 bits long. For an audio stream, the field is used to
indicate the type of audio encoding that is being used, for example PCM, adaptive
delta modulation, linear predictive encoding, etc. For a video stream, the field
indicates the type of video encoding, for example JPEG, MPEG-1, MPEG-2,
H.261, etc. The space for payload types is limited, so only very common video
and audio encodings are assigned static (permanent) types, such as those
described above. On the other hand, dynamic payload types are not assigned in
the RTP profile. They are dynamically assigned, and the meaning is carried by
external means. They map an RTP payload type to an audio and video encoding
for the duration of a session. Different members of a session could, but usually
not, use different mappings. Dynamic payload types use the range 96 to 127 while
static payload types use range below 90.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

8

• Sequence number - This field is 16 bits long. The sequence number increments
by one for each RTP packet sent, and may be used by the receiver to detect packet
loss and to restore packet sequence.

• Timestamp - This field is 32 bits long. The receiver can use timestamps in order

to remove packet jitter introduced in the network and to provide synchronous
playout of the media file. This timestamp is derived from a sampling clock at the
sender.

• Synchronization source identifier (SSRC) - This field is 32 bits long. SSRC is a

number used to identify which packets that belong to the same RTP stream, and
this number is randomly assigned by the source when the new stream is started.

In addition to RTP there are also two other protocols defined, the RTP Control Protocol
(RTCP) and the real-time streaming protocol (RTSP).

As the name indicates, RTCP packets are control packets. These are sent periodically and
contain sender and/or receiver reports that announce statistics useful to the application. A
sender generates a sender report for each RTP stream that it is transmitting, while a
receiver generates a reception report for each RTP stream that it receives. The
sender/receiver aggregates its report into a single RTCP packet, and this packet is sent
into the multicast tree that connects all the session's participants.

The real-time streaming protocol (RTSP) is a signalling protocol. The following control
actions are possible, pause/resume, fast-forward, rewind and repositioning of playback.
The protocol is based on a set of request and response messages between the client and
the server. It is similar to the HTTP protocol where all request and response messages are
in ASCII text. The client employs standardized methods (SETUP, PLAY, PAUSE, etc.),
and the server responds with standardized reply codes. The following example shows a
client (C) requesting for playback of an audio file by sending a "PLAY"-RTSP message,
and the server (S) that responds with an "OK"-RTSP message:

C: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0
 Range: npt=0-
 Cseq: 2
 Session: 4231

S: RTSP/1.0 200 OK
 Cseq: 2
 Session: 4231

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

9

2.1.2 Streaming with TCP

Transmission Control Protocol (TCP) was considered unsuitable for streaming due to its
two basic mechanisms, packet retransmissions and congestion control [18] .

TCP was designed to provide a reliable end-to-end byte stream over an unrealiable
internetwork. An internetwork may have different topologies, bandwidths, delays, packet
sizes, etc. This led to the design of TCP which could dynamically adapt to the conditions
of the internetwork and to handle various kinds of failures.

TCP is a connection-oriented protocol which provides a connection-oriented service. For
TCP service to be obtained, a connection must be explicitly established between
instances of TCP on the sending machine and the receiving machine. Each machine
supporting this protocol has a TCP transport entity that manages TCP streams and
interfaces to the IP layer. This entity will accept user data streams from local processes
and break them up into pieces not exceeding 64 KB. Each piece will be sent as a separate
IP datagram. When the datagram arrives at the receiving machine, it is given to the TCP
entity which is responsible for reconstructing the original byte stream from the received
datagrams.

The IP layer does not give any guarantee that datagrams will be delivered properly, so it
is up to TCP to retransmit them when necessary. When TCP sends out data, it requires an
acknowledgment (ACK) from the receiver in return. If the acknowledgment arrives
several times or doesn't arrive at all, TCP must retransmit the data.

TCP has an implemented function known as the fast retransmit algorithm which deals
with retransmission. On the sender side TCP will count the ACKs for a sent datagram. If
the ACK for datagram N is received three times at the sender, it will assume that the sent
datagram N+1 is lost. The sender will then retransmit datagram N+1. Also it is the
reponsibility of TCP to reassemble datagrams into messages in the proper sequence if the
datagrams arrive in wrong order.

In a streaming situation this is considered unacceptable, since it will introduce end-to-end
latency. The claim is that re-sending is not appropriate in regard to the real-time nature of
video, because the resent data would arrive too late at the receiver for display [18] .
Another problem that might occur with retransmission is its potential to limit the
effectiveness of end-to-end feedback mechanisms.

The other drawback with TCP streaming is the congestion control mechanism.
Congestion occurs when a network is offered more data than it can handle. A possible
way to solve this problem is to refrain from injecting a new data packet into the network
until an old one is delivered. TCP achieves this goal by dynamically manipulating the
window size of a congestion window. This window will help exploring how much traffic
the network can handle, and it will react upon a congestion. When a connection is
established, the sender initializes the congestion window to the size of the maximum
segment in use on the connection. After sending one maximum segment, hopefully an

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

10

acknowledgment will come back. If the acknowledgment arrives before timeout, the
sender will add one segment's worth of bytes to the congestion window to make it two
maximum size segments and sends two segments. When a congestion window is n
segments and all n are acknowledged, the window is increased by the byte count
corresponding to n segments.

All TCP implementations support an algorithm called slow start. The idea of the
algorithm is that if bursts of packets of size like 1024, 2048 or 4096 bytes work fine but a
burst of 8192 bytes gives a timeout, then the congestion window should be set to 4096 to
avoid congestion. The point is that whenever a congestion occurs, the congestion window
will be set to half its size. When the transmission begins, slow start will be used to
determine what the network can handle. The slow start algorithm will stop when a
threshold (initally 64KB) is reached, and from that point on successful transmissions
grow the congestion window linearly (by one maximum segment for each burst). When a
timeout occurs, the threshold will be set to half of the current congestion window. The
window is reset to one maximum segment, and the transmission will continue using the
slow start algorithm again until the new threshold is reached. So basically this congestion
algorithm probes available bandwidth, through deliberate manipulation of the
transmission rate. When viewed over shorter time-scales, the transmission rates form a
sawtooth shape. This shape indicates abrupt transmission rate changes, which
unfortunately might impede efficient streaming.

Figure 2: TCP Congestion Algorithm [8]

Figure 2 shows how the TCP congestion algorithm works. The maximum segment size in
use here is 1024 bytes. Initially, the congestion window was 64 KB. But because a
timeout occurred, the threshold is set to 32 KB and the congestion window to 1 KB for
transmission 0 here.

 2 4 6 8 10 12 14 16 18 20 22 24

 40

 36

 32

 28

 24

 20

 16

 12

 8

 4

Threshold

Timeout

Threshold

C
on

ge
st

io
n

w
in

do
w

 (k
ilo

by
te

s)

 Transmission number

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

11

A way to resolve the problems introduced by TCP, is to employ buffering at the receiver
application to smooth out the rate change. Protection from sudden rate reductions will be
achieved by borrowing some current bandwidth to transmit future data and buffer these at
the receiver. It is also a favourable solution to use a scalable video format for this
purpose, since the video can be divided into different layers. When time or bandwidth is
critical, the less important layers of the video is dropped. Scalable video is explained in
section 2.3.2.

2.2 Wireless Network

This section provides some background materials about the wireless network standard in
use today, along with a description of how to create a simulated wireless network which
is necessary for the research of this thesis.

2.2.1 IEEE 802.11 WLAN

This section provides a short introduction into the IEEE 802.11 WLAN (Wireless Local
Area Network). This was the first international standard for WLANs that was adopted
back in 1997.

The main difference from wired networks is that wireless networks make use of the air
link instead of wires, which could either be the radio or infrared link between WLAN
transmitters and receivers. The mobility provided here is an important feature and gives
users the opportunity to move around freely with their laptops for instance. Since the data
on a WLAN is broadcasted for everybody to hear, the IEEE 802.11 standard has provided
a cryptographic mechanism in the protocol to protect the data being sent through the air.

The IEEE 802.11 architecture consists of the following components:

• The Station (STA) - This is the most basic component of a wireless network. It's
a device that has the functionality of the 802.11 protocol and has the ability to
connect to the wireless medium. It consists of a MAC (Medium Access Control)
and a PHY (Physical Layer) which is explained more later. The station may be
mobile, portable or stationary, and it also supports station services such as
authentication, deauthentication, privacy and data delivery. A station could be a
laptop PC or a handheld device, and they are usually referred to as the network
adapter or network interface card (NIC).

• The Basic Service Set (BSS) - This is known as the basic building block of an

802.11 wireless LAN, and it's defined as a group of any number of stations. When
all the stations in the BSS are mobile and not connected to a wired network, the
BSS is called an independent BSS (IBSS). In an IBSS all stations can
communicate directly with other stations under the condition that they are within

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

12

range of each other. When the BSS includes an access point (AP), it is no longer
independent and is called an infrastructure BSS, usually referred to simply as a
BSS. The difference now is that the stations do not communicate directly with
each other, but go via the AP.

• The Access Point (AP) - The AP provides the local relay function for the BSS
and the connection to a wired LAN if there is any. As told in the previous section,
a station in an infrastructure BSS doesn't communicate directly with another
station. Instead the communication is first sent to the AP and then forwarded from
the AP to the other mobile station, aka. data being relayed between the mobile
stations by the AP. One major advantage about this is that the AP can buffer data
frames for mobile stations. So when these data frames are requested by another
mobile station and the source station is in power saving mode, the AP can provide
the station with the requested data frames from the buffer, without having to
'wake up' the source station. That way mobile stations in power saving state can
remain in such condition for longer periods.

• The Wireless Medium - The IEEE 802.11 standard defined three physical (PHY)

layers which are an infrared (IR) baseband PHY, a frequency hopping spread
spectrum (FHSS) radio in the 2.4 GHz band and a direct sequence spread
spectrum (DSSS) radio also in the 2.4 GHz band.

• The Distribution System (DS) - The DS could be defined as a mechanism by
which an access point communicates with another access point to exchange data
frames for stations in their BSSs, forward frames to follow mobile stations from
one BSS to another, and exchange frames with a wired network. The requirements
of the DS is that it must provide certain distribution services. There are no
restrictions on the implementation of the DS, and it can be referred to as an
abstract medium.

• The Extended Service Set (ESS) - An ESS is a set of infrastructure BSSs,

where APs communicate among themselves to forward traffic from one BSS to
another and to facilitate the movement of mobile stations from one BSS to
another.

The IEEE 802.11 architecture has defined nine services which are divided into two
groups, station services and distribution services.

Station services:

• Authentication - Provides a mechanism for a station to identify another station.
Without such proof of identity, a station is not allowed to use the WLAN for data
delivery.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

13

• Deauthentication - This is used to eliminate a previously authorized user from
any further use of the network. Once a station is de-authenticated, it can not
access the WLAN without performing the authentication function again.

• Privacy - This mechanism is supposed to protect the data as it traverses the
wireless medium. The level of security of this protection is equally good as that of
a wired network. The privacy service is an encryption algorithm based on the
802.11 Wired Equivalent Privacy (WEP) algorithm.

• Data delivery - This provides a reliable delivery of data frames from the MAC in

one station to the MAC in one or more other stations.

Distribution services:

• Association - A logical connection between a mobile station and an AP is
required before a station can send data through the AP onto the distribution
system. This is also known as an association between a mobile station and an
access point.

• Reassociation - This enables a station to change its current association with an

access point to be able to associate with a new access point. The station can
provide information to the new AP, so that it can contact the previous AP to
obtain frames that may be waiting there for delivery to the mobile station, or other
relevant information.

• Disassociation - This is used to make a mobile station eliminate its association to

an access point. The mobile station can also use this service to inform an access
point that it no longer needs the services of WLAN. When a station becomes
disassociated, it must go through the association process to be able to
communicate with an access point again.

• Distribution - This is the primary service used by a 802.11 station. A mobile

station uses the distribution service every time it sends MAC frames across the
distribution system. This service provides the information to determine the proper
destination BSS for the MAC frame.

• Integration - This service connects the IEEE 802.11 WLAN to other LANs,

including one or more wired LANs, or other IEEE 802.11 WLANs. It is also
capable of translating IEEE 802.11 frames to frames that may traverse another
network, and vice versa.

Medium Access Control (MAC)
The 802.11 MAC layer provides the functionality to allow reliable data delivery for the
upper layers over the noisy, unreliable wireless media. Another function it provides is a

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

14

fair controlled access to the shared wireless medium. A third function is to protect the
data that it delivers, and the MAC layer does this by providing a privacy service that's
been mentioned earlier, Wireless Equivalent Privacy (WEP). This layer also implements
a frame exchange protocol to allow the source of a frame to determine when the frame
has been successfully received at the destination.

Physical Layer (PHY)
This layer is the interface between the MAC and the wireless media where data frames
are being transmitted and received. The PHY provides three functions. The first one is an
interface with the upper MAC layer for transmission and reception of data. The second
function is that the PHY uses signal carrier and spread spectrum modulation to transmit
data frames over the media. And thirdly, the PHY provides a carrier sense indication back
to the MAC to verify activity on the media.

2.2.2 Simulation of a Wireless Network

Since a real-world wireless network is not completely predictable, a simulated wireless
network is necessary for this thesis.

The Linux network emulator Netem is used to emulate the variable bandwidth of a
wireless network. This emulator supports a range of queuing disciplines, where the first-
in first-out (FIFO) discipline is the one of interest. By queuing it means to manipulate the
way in which data is sent. In FIFO, the data packets are placed in a single queue and are
served in the same order they were placed.

In addition, the Token Bucket Filter (TBF) algorithm, which is also supported by Netem,
is used to control the amount of outgoing data packets. It consists of a buffer (bucket) that
is constantly filled by some virtual pieces of information called tokens, at a specific rate
(token rate). Each generated token collects a certain amount of bytes from the data queue
and is then deleted from the bucket. The collected bytes of data are then allowed to be
transmitted. If the bucket becomes empty of tokens, then the arriving data must wait for
more tokens to be generated before they can be transmitted.

The TBF algorithm allows saving, up to the maximum size of the bucket, n. This property
means that bursts of up to n bytes can be sent at once, allowing some burstiness in the
output stream and giving faster responses to sudden bursts of input.

The relation between tokens and data packets gives three possible scenarios:

• The data arrives in TBF at a rate that is equal to the rate of tokens being
generated. In this case each incoming byte gets a token and passes the queue
without delay.

• The data arrives in TBF at a rate that is smaller than the token rate. Only a part of

the tokens are taken by the incoming data. The number of tokens eventually

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

15

accumulates up to the bucket size. The unused tokens can then be used to send
data at a speed that's exceeding the standard token rate, in case short data bursts
occur.

• The data arrives in TBF at a rate bigger than the token rate. This means that the

bucket will soon be devoid of tokens, which causes the TBF to throttle itself for a
while. This is called an 'overlimit situation'. If data keeps coming in, they will
start to get dropped.

To emulate a wireless network with a highly varying bandwidth, a simple script can be
written to vary the token rate at different times throughout a streaming session.

2.3 Scalable Video Format

This section introduces the meaning of scalable video. The scalable video format SPEG is
a modification of a compressed video format called MPEG and is used in the research of
this thesis. Section 2.3.1 provides a description of the MPEG format. Section 2.3.2
describes scalable video in general, while section 2.3.3 focuses on the SPEG format.

2.3.1 The MPEG Video Format

Moving Picture Experts Group (MPEG) is the name of a family of standards used for
coding audio-visual information in a digital compressed format. With its sophisticated
compression techniques, the video quality achieved is equally good compared to other
coding formats, but at lower file sizes which is a major advantage.

The MPEG family of standards include MPEG-1, MPEG-2 and MPEG-4, formally
known as ISO/IEC-11172, ISO/IEC-13818 and ISO/IEC-14496. The MPEG-2 format is
an improvement of the MPEG-1 format with higher picture resolution and data rate.
Because of this, MPEG-2 requires more space than MPEG-1 when storing a video file of
equal running time.

An MPEG video stream basically consists of consecutive picture frames which define the
motion picture. There are three different picture frames: I (Intra) -frames, P (Predicted) -
frames and B (Bidirectional) -frames. I-frames are complete pictures that can be decoded
without needing any other information. It is similar to a JPEG still image. This type of
frame requires the most storage space compared to the other two types. P-frames are
predictions from the previous reference frames, which could be I-frames or P-frames. The
idea is to 'borrow' parts of the reference frame that are common with the current frame. It
can for instance be a macroblock in the previous I-frame that hasn't moved an inch since
then, so there is no need to recreate that block for this frame. The format makes use of a
motion vector to derive these common parts, which are called “predictive coded”
macroblocks. Parts that are not possible to borrow from the reference frame must be

http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=11172
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=13818
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=14496

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

16

encoded as I-frames, also known as “intra coded” macroblocks. So basically a P-frame
consists of “intra coded” and “predictive coded” macroblocks. An estimation of the size
of a P-frame is about 30-50 % of an I-frame. B-frames are also predictions from other
reference frames. The difference here is that these can be predictions from both previous
and later frames. This is possible due to the fact that the encoder already has access to the
later frames at the start of encoding of the frame. The size of a B-frame is estimated to be
around 50 % of a P-frame. A collection of consecutive frames in MPEG is known as a
GOP (Group Of Pictures). An MPEG videostream is therefore built from a row of GOPs.
One GOP usually corresponds to about 0.5 - 1 second of video length and consists of a
combination of the three types of video frames described above. The first frame in a GOP
must be an I-frame. Because of this the MPEG video stream will be easy to edit.
Corruptions in the stream can be skipped by searching to the next I-frame, and it will also
be possible to perform "random access" on the video stream.

2.3.2 Scalable Video

The purpose of scalable video is to make the video stream adaptable to different
conditions of server and client applications, in addition to a varying bandwidth of a
unreliable wired/wireless network. Scalable video can achieve this adaptability by
splitting the video stream into different layers.

The lowest layer is called the base layer and has the lowest acceptable video quality. This
layer is the minimum requirement that must be transmitted when streaming the video.
Apart from this, there is also one or more enhancement layers. To achieve a better picture
quality, these layers can be added to the base layer when possible, but at the cost of
higher data rate. The amount of enhancement layers to be used will depend on the
streaming application and the network capacity.

The following primary methods of scalable coding are explained in details below:

• SNR (signal-to-noise ratio) scalability
• Temporal scalability
• Spatial scalability

Each of these methods has their own way to create the base layer and the additional
enhancement layer(s).

SNR (signal-to-noise ratio) scalability
This coding technique is based on the DCT (Discrete Cosine Transform) encoding. The
DCT can transform a signal or image from the spatial domain to the frequency domain.
As a result we get a set of frequency coefficients which measure how fast intensities of an
image are changing. It should be noted that the frequency coefficients measure the
difference between two neighbour pixels. The frequency coefficients can be runned
through a process called quantization. The main goal of this process is to transform near-
zero coefficients into zeroes. These zero coefficients represent the high frequency area. In

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

17

other words, high frequency data have been removed. Because the human eye is less
sensitive to high frequency information, we can remove this without actually getting any
visible loss. It is possible to adjust the level of quantization. By increasing the
quantization factor, more data will be removed, and as a result we will get a reduced
picture quality. In SNR scaling this is how the base layer is created. The raw video data is
DCT encoded and then quantized with a large factor which will result in large amounts of
data being removed. The enhancement layer is made by first running Inverse DCT on the
quantized base layer. This data will then be subtracted from the original data, and the
outcome will be DCT encoded once again with a lower quantization factor. This is
illustrated in figure 3. The idea here is that if an enhancement layer manages to arrive at
the client, then it will be added to the base layer before running Inverse DCT.

Figure 3: SNR Scalable Coding [5]

Temporal scalability
Frame rate is defined as frames per second (fps), which is the number of video frames
being displayed per second. High frame rate means smoother playback of a video stream,
while low frame rate results in choppy playback. The normal playback framerate is 25-30
fps. Temporal scalability is based on the manipulation of the frame rate of a video stream.
The purpose here is to create a base layer video stream with low frame rate but with a
minimum acceptable picture quality. The enhancement layers will be added to the base
layer when possible to achieve a video stream with higher frame rate. The idea is to
remove B-frames from the video stream, so that the base layer will only consist of I-
frames and P-frames. It's also possible to remove P-frames if necessary. The removed
frames will then become the enhancement layer(s).

Spatial scalability
In this coding technique we work at the pixel level of a video frame. The base layer
consists of downsampled frames of the original images where we code less pixels. To
create the enhancement layer we subtract the base layer pixels from all the pixels of a
frame. If the enhancement layer manages to arrive at the client, the layers are added
(DCT decoded) together to create higher resolution images.

 Video In DC Quantizer VLC
(Variable
 Length
Coding)

 Base
 Layer

 Inverse
 Quantizer IDCT

 +
 (-) DC

T
Quantizer VLC

Enhancement
 Layer

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

18

2.3.3 SPEG – A Modification to MPEG

As mentioned, SPEG is the scalable video format used in this thesis, which is a
modification to MPEG and introduces scalability in the transmission rate of a video
stream. SPEG was implemented because there was no freely available implementations
of layered extensions for existing video standards (MPEG-2, MPEG-4). SPEG combines
temporal and SNR scalability which improves the granularity of scalability.

One thing to notice is that SPEG can be derived from the different MPEG standards, and
still maintain the different standards’ properties, such as picture resolution and the range
of capable data rate. It follows that a SPEG file (S1) converted from an MPEG-1 source
has video layers of smaller sizes than the layers of a SPEG file (S2) converted from an
MPEG-2 source. This means that when streaming S2, a higher network bandwidth is
required to achieve satisfying playback, compared to when streaming S1.

It should be noted that the Qstream software (section 2.6), that is used and further
developed in this thesis, operates with 16 video layers in total. It divides the SPEG video
stream into smaller time intervals in which each interval has 1 base layer and 15
enhancement layers. These intervals are known as adaptation window. This is explained
in section 2.4. Section 4.3.6 of chapter 4 further elaborates on how the video layers are
used and referred to.

2.4 Priority-Progress Streaming (PPS)

Priority-Progress Streaming (PPS) is a streaming algorithm which has the ability to adapt
to the rate decisions of a TCP congestion control mechanism. The basic idea is that
higher prioritized data packets are transmitted before those with lower priorities. The PPS
algorithm also defines how to manage timing and priorities simultaneously.

To realize the idea of prioritized data packets, a scalable video format like SPEG has
been taken into account. Since the video stream can be split into many layers, it's possible
to apply priorities to the different video layers. The base layer will get the highest
priority, while the enhancement layers will be marked with lower priorities. The layers
are represented by units called Application Data Units (ADU).

By using an algorithm called priority mapping (explained in section 2.5), the ADUs are
grouped into units called Streaming Data Units (SDU). The ADUs with the same
timestamp will become part of the same SDU. The SDUs are then marked with priorities
according to the ADUs they contain, and they are placed into a so-called adaptation
window.

An adaptation window is meant to represent a specific time interval of the streaming
video, as the PPS algorithm subdivides the timeline of the video into a sequence of time
intervals using the SDU timestamps. Therefore, an adaptation window contains all the

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

19

SDUs with timestamps within its time interval. The relationship between ADUs, SDUs
and adaptation windows is illustrated in figure 4. The SDUs of an adaptation window are
processed by priority. The idea is that by the end of the transmission timeline of an
adaptation window, all the SDUs within the window that haven't been transmitted are
discarded. Recall that Qstream operates with 16 video layers in total. That is, each
adaptation window has 1 base layer and 15 enhancement layers. These layers are
represented by the SDUs. The SDUs of the enhancement layers are of lower priority than
the SDUs of the base layer. The different levels of enhancement layers are also sorted by
priority.

Figure 4: The Relationship Between ADU, SDU and Adaptation Windows

Based on the SDU timestamp labels, PPS can regulate the progress of the video stream to
ensure that the receiver can achieve proper playback timing. The PPS algorithm consists
of three subcomponents, the upstream buffer, the downstream buffer, and the progress
regulator.

 ADU0
 Timestamp=1

 ADU1
 Timestamp=1

 ADU2
 Timestamp=2

 ADU3
 Timestamp=3

 SDU0
 Timestamp=2
 Priority=0

 SDU5
 Timestamp=3

 Priority=1

 SDU9
 Timestamp=4

 Priority=2

ADU0 ADU1 ADU2 ADU3

 Adaptation Window
 Time Interval: 1-3

 Adaptation Window
 Time Interval: 4-6

SDU0 SDU5 SDU9

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

20

Figure 5: PPS Conceptual Architecture [17]

The upstream buffer admits SDUs within the time boundaries of an adaptation window.
Time boundaries are chosen by the progress regulator, which is also responsible for
advancing the window forward. This will trigger unsent SDUs from the old window
position to be expired and dropped, and the window is then populated with SDUs from
the new position. The SDUs flow in priority-order from the upstream buffer through the
bottleneck (for example the TCP transport) to the downstream buffer, where the
transmission rate is controlled by the bottleneck. Upon arrival of data, the downstream
buffer will collect ADUs contained in SDUs and re-order them to their original
timestamp order. The contents are then passed on for decoding and display. In the case of
late arrival of SDUs, the process regulator will adjust the phase between the regulator
clock and the downstream clock, in an attempt to prevent late SDUs in the future. As the
bottleneck can have a varying bandwidth in certain cases, like in a wireless network, the
downstream buffer may not always be able to receive all the SDUs. It will receive as
many SDUs as the bottleneck allows, and the rest which are of lower priority will be
dropped at the server. This method of prioritized dropping will adapt the video quality to
match the network conditions between the sender and the receiver.

 Upstream

 Bottleneck

 Downstream

 Progress
 Regulator

 Regulator Clock

Phase Adjust/
Downstream
 Clock

 ADUs
(timestamp order)

 SDUs
(priority order)

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

21

2.5 Priority Mapping

The previous section briefly introduced the algorithm called priority mapping. The
priority mapper used in this thesis is the one included in the Qstream software. The
details about this software is covered in section 2.6 and section 3.1 of chapter 3. A
priority-mapper assigns priorities to the units of a media stream, so that priority drop
yields the most graceful degradation, as appropriate to the viewing scenario. The mapper
used by Qstream is depicted in figure 6.

Figure 6: Priority mapping [17]

The inputs are ADUs and the quality adaptation policy. The output of the mapper is a
sequence of SDUs. Each SDU contains a subset of the input ADUs, a timestamp and a
priority computed by the mapper algorithm.

The adaptation policy consists of utility functions where users can specify their
preferences. Figure 7 shows the general form of a utility function.

Figure 7: Utility function [17]

qmax qmin

unacceptable
 quality
 threshold 0

 best
 quality
threshold

 1

utility

lost quality

 Priority Mapper

 Adaptation
 Policy

 ADUs

SDUs

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

22

The horizontal axis describes an objective measure of lost quality, while the vertical axis
describes the subjective utility of a presentation at each quality level. The region between
the q-max and q-min thresholds is where a presentation has acceptable quality. The q-
max threshold indicates a point where the quality of the presentation is as good as perfect,
while the q-min threshold marks a point where lost quality has reached beneath an
acceptable level. In the case of priority mapping for SPEG, the adaptation policy contains
two utility functions, one for spatial quality and one for temporal quality.

The mapping algorithm subdivides the timeline of the video stream into intervals called
mapping windows and prioritizes the ADUs within each window separately, which is
done in two phases.

In the first phase, the ADUs are partially ordered according to a “drop before”
relationship. This means that base layer ADUs should not be dropped before their
corresponding enhancement layer ADUs. This kind of ordering constraint represent hard
dependency rules, in that they simply reflect SPEG semantics. There are also soft
dependency rules which ensure that frame dropping is spaced as evenly as possible. For
example, if half the frames are to be dropped, then it is better to drop every other frame
rather than clustered dropping such as keeping even GOPs and dropping odd GOPs.

In the second phase, the adaptation policy is used to refine the partial ordering from the
first phase, generating the prioritized SDUs. The algorithm works through an iterative
process of elimination of ADUs. For each iteration a set of candidate ADUs (initially all
ADUs from the mapping window), that are still in the set of unprioritized ADUs, is
considered. The mapper computes, for each of these candidate ADUs and quality
dimension (spatial and temporal in SPEG), the presentation quality that would result if
the candidate ADU was dropped. For the temporal quality dimension, the mapper
computes the frame rate. For the spatial quality dimension, the spatial level is computed.
The utility functions are used to convert the computed quality values to corresponding
utilities. The candidate ADU that has the highest utility is selected as the next victim, as
that ADU will have the smallest impact on utility when dropped next. The priority value
for the victim ADU is a linear (inverse) fitting of the utility into the range of priority
values. The iterations stop when all ADUs have been assigned a priority. Once the
mapper has assigned priorities to all of the ADUs in a map window, it groups them into
SDUs. In this mapping algorithm, there is one SDU per priority level, which contains all
the ADUs that ended up with the same priority. Another main attribute of an SDU is its
timestamp. The SDUs are all set to have the same timestamp as the first video frame in
the whole map window. All the ADUs in a map window are grouped into a single set of
SDUs, distinguished by priority, but sharing the same timestamp.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

23

2.6 Overview of Qstream

Qstream is one of the softwares that makes use of the PPS protocol. It consists of several
components. Among them is a component called Qvid, which is the video streaming
system that supports quality-adaptive streaming over TCP, and is based on the notion of
priority data dropping. It uses the scalable video format SPEG for streaming.

Qvid is actually a collection of several programs, and these are the most significant ones
for this thesis:

• StreamServ - The main functions of this program are video retrieval, priority
mapping and PPS transmission. The video retrieval is either a stored SPEG file, or
a live video capture from a webcam that's being encoded to SPEG in real time. It
should be mentioned that this thesis doesn't include the latter part.

• StreamPlay - This player represents the receiver side of the PPS protocol. It takes

care of video decoding and display, and also defines the usual functions of a video
player.

• FileServ - This program is responsible for checking that a requested video

bitstream and index files are available for streaming. It also prepares the requested
media file for StreamServ to fetch.

2.6.1 Collaboration of the Three Programs

In this thesis Qstream is configured to work in a unicast streaming mode, as figure 8
shows. The architecture basically consists of two nodes, the upstream node and the
downstream node. The upstream node contains the two programs FileServ and
StreamServ, while the downstream node consists of StreamPlay. FileServ and
StreamServ were initially two separated programs, but were later merged into a single,
dual-threaded program for an ease of use purpose.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

24

Figure 8: Qstream architecture for unicast mode [17]

This section provides an overview of how the three programs work together to achieve
streaming of media files over TCP using the PPS algorithm.

At the starting point, both StreamServ (the streaming server) and FileServ (the file server)
put themselves in a state to accept requests. When StreamPlay (the streaming client)
starts, it gets the name of the video to request from the command line input. It then
attempts to connect to StreamServ. If it succeeds, then StreamServ responds with an
acceptance message.

StreamServ and StreamPlay must also each initialize a PPS session to handle the
streaming session. The PPS session of StreamServ takes care of everything that happens
with the streaming session at the server side, while the PPS session of StreamPlay is
responsible for all that happens, within the same streaming session, at the client side.

It should be noted that the different parts of the system use message passing to
communicate with each other. After the client is successfully connected to StreamServ, it
forwards the video request to StreamServ by wrapping the request inside a predefined
message shell. StreamServ gets the request and wraps it in a new message which it

 FileServ

StreamServ

 SPEG Video Bitstream
 (ADU payloads)

 Unix Local
 Socket

 Helper

 Upstream Node

Internet (TCP)

Parent

 StreamPlay

Downstream Node Child

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

25

forwards to FileServ. Upon receiving the message, FileServ tries to find the requested
video. Details about the message passing protocol used are covered in section 2.6.2.

The next step for StreamServ is to initialize an adaptation window. As mentioned earlier,
an adaptation window represents a fixed timeline in the streaming video. Thus, it requires
several adaptation windows to cover the whole timeline of the streaming video.

After initializing an adaptation window, StreamServ contacts FileServ to retrieve the
range of video data that falls within the interval of the window. The window is
responsible for this range of video data in the sense that it contains a pointer to the data. It
should be noted that as soon as an adaptation window is ready to be transmitted,
StreamServ initializes and prepares the next adaptation window in the video timeline.

When the range of data is retrieved, StreamServ runs the adaptation window through the
mapping function, which is described in section 2.5. A deadline is computed for the
adaptation window to determine when the transmission of the window should start. When
the time comes for the adaptation window to be transmitted, StreamServ sends a window
start message to the client to indicate that the streaming is about to begin. The client will
initialize its stream clock and be prepared for the adaptation window to arrive.
StreamServ also schedules a timeout for the adaptation window to mark when the
window expires. If the timeout fires before the transmission of the entire adaptation
window contents complete, then the algorithm proceeds to drop unsent data for the
window. If an adaptation window finishes before its expiry timeout, then StreamServ has
to cancel the timeout scheduled for that specific window.

As mentioned, StreamServ prepares the next adaptation window when the current
window is ready for transmission. The preparation of the next adaptation window is then
done concurrently with the transmission of the current one. If the preparation of the new
window finishes before its transmission time, then it is scheduled with a deadline as
indication of when to start the transmission. However, if the deadline happens to have
already past by the time the preparation finishes, the scheduler starts the transmission of
the window as soon as possible.

On the client side a play window is created when the client receives the window start
message from StreamServ. The play window is initiated with the contents of the window
start message, and later it is used to store the data that arrive. That is, one play window is
created for each adaptation window arriving. The expiration time of the play window is
also being computed and put into a scheduling scheme. When the window expires, it is
put into a scheduling queue for decoding and display.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

26

2.6.2 GAIO and QSF

Another component of Qstream is qsf. This is actually a collection of modules that
collectively makes up the Quasar Streaming Framework library (libqsf). This library is
used by the rest of the Qstream software and contains two main modules, GNU
Asynchronous IO (GAIO) and Quasar Streaming Framework (QSF). These two modules
realize the idea of a reactive programming model, which basically means an event-based
programming model.

An event is a notification of either a result of a requested IO operation being ready, an
expiration of a scheduled deadline or an available time slot to do a computation. Only one
event is active at a time. Once invoked, it is allowed to execute to completion. This
means that a long running computation should be spread across multiple events. IO and
computation events are prioritized, and an application can dynamically set these priorities
according to its own needs.

The GAIO library provides the core Application Programming Interface (API) for
reactive programming in Qstream. It offers services that make it possible to schedule
events for execution immediately or at a given time deadline. It also contains a GAIO
event dispatcher which is the core of the application's state machine. The applications
(StreamServ and StreamPlay) call functions of GAIO and QSF, providing an event-
handler callback parameter (in the form of a C function pointer) to be invoked when the
requested action is complete (the IO has completed or the deadline expired). The GAIO
event dispatcher can schedule the handlers for the mix of IO completion events, deadline
events and immediate events. It ensures that executions of event handlers are atomic,
which means that every time an event handler is dispatched, it is allowed to run to
completion before another handler can be dispatched.

An event handler of a specified priority can be scheduled for execution as soon as
possible. For example, if computations are running by scheduling and dispatching a long
running loop of separate events, the loop may be interrupted if another higher priority
event occurs, such as an IO completion or a deadline expiry. It's also possible to allow the
application to schedule an event handler for execution at a set deadline time by using a
timer primitive. The deadline can be specified as an absolute time, or time relative to the
current time. When the deadline expires, the event dispatcher will execute the handler as
soon as possible.

GAIO also provides a tool called Worst Case Execution Time (WCET). As the name
indicates, this tool measures the duration of event handlers that are dispatched, with the
purpose of estimating if the running time of the handlers affect the overall timeliness of
an application.

Qstream includes a second library called QSF (Quasar Streaming Framework) which
provides services that are more specialized to network streaming applications. QSF is a
higher level API built on top of GAIO for message passing protocols, including

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

27

connection establishment for clients and servers (initiate and accept connections),
message creation helpers for clients, and message dispatching for servers.

A set of routines for message formatting for logging and debugging are also implemented
to help understanding the dynamics of the program executions. QSF also provides
support for using OS real-time scheduling. However real-time running might be
dangerous, as it could lead to live-locks which could crash the whole system. QSF solves
this by creating a watchdog process that can detect and kill the application if a live-lock
occurs. QSF was developed with the intention of directly supporting the message oriented
style of the PPS protocol. It provides a generic API for message oriented protocols, of
which PPS is one instance. The goal is to provide a simple API for sending and receiving
messages.

All messages share a generic message header. The length and type fields contain the
essential information necessary to implement message oriented communication over a
(TCP style) reliable, byte-stream session. The length field indicates the size in bytes of
the message body that follows the header. The type field indicates what kind of message
that is contained in the body, and it’s application specific. The magic field is for
debugging purposes, like to detect corruption of the basic framing of messages.
StreamServ, StreamPlay and FileServ make use of this message passing protocol to
communicate with each other during a streaming session. To distinguish between the
different connections and functions of these programs, naming conventions have been
introduced. StremServ’s connection to FileServ is called helper. Whenever StreamServ
wants to send a message to FileServ, it passes the message via functions with the word
helper as part of name indication. StreamServ’s downstream connection to StreamPlay is
called child, and StreamPlay’s upstream connection to StreamServ is called parent. The
messages exchanged between StreamServ and StreamPlay comprise the PPS protocol.
Each PPS session begins with StreamPlay establishing a transport level connection to
StreamServ, which in turn establishes a connection to Fileserv. From then on, the PPS
session consists of a sequence of application level messages exchanged across the
transport connections.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

28

Chapter 3: The Analysis

This chapter is divided into two main sections of analysis. The first section is an
elaboration of section 2.6.1 of chapter 2, which provides a deeper insight into the code of
Qstream. The second section proposes improvements to the existing code.

3.1 Part I – A Closer Look at Qstream

This first part of the analysis presents the server and client algorithms for PPS in more
depth. The focus is put on the various C-coded functions of StreamServ and StreamPlay.
Sections 3.1.3 – 3.1.6 present the streaming scenario in four phases, which are explained
in details with references to the functions called in the different steps. These four phases
include start-up of programs, creation and initiation of data structures, requesting and
fetching of a media file, preparation of adaptation windows, and the actual streaming
process. Section 3.1.1 describes the naming conventions used by the functions of
StreamServ and StreamPlay, while section 3.1.2 provides a description of the most
relevant data structures used by these two programs. Section 3.1.7 describes an important
strategy of Qstream, which is known as work conservation. Finally, the last section of
this chapter describes an option included in the PPS algorithm, which is known as
window scaling.

3.1.1 Naming Conventions

Each of the programs (StreamServ, StreamPlay and FileServ) contains several functions
which have a particular naming convention. Each function name begins with a prefix that
identifies which Qstream program or to which library the function belongs. The ss prefix
is for functions in the StreamServ program, sp is for functions in StreamPlay, and fs is for
functions in FileServ.

The qsf prefix is used for QSF library functions. The second component of the name, as
mentioned in section 2.6.2 of chapter 2, refers to the object on which the function acts or
was triggered by. These are the words helper, child and parent which refer to
StreamServ's connection to FileServ, StreamServ's downstream connection to Stream-
Play, and StreamPlay's upstream connection to StreamServ, respectively. The remaining
suffix of the name describes the action performed by the handler.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

29

3.1.2 Data Structures

There are two main data structures in the StreamServ program, one for state related to a
PPS session and the other for individual adaptation windows. These are shown in figure 9
and figure 10.

The ServPpsSession object is allocated for each PPS session (section 2.6.1 of chapter 2).
As the names child and helper are references to StreamPlay and FileServ respectively, the
child_session and helper_session fields are handles used to exchange messages with the
programs via QSF.

The next three fields show the different queues for adaptation windows that each session
maintains. As mentioned in section 2.6.1 of chapter 2, the adaptation windows go through
different steps in the preparation stage. The recv_windows queue holds adaptation
windows as they are initialized with the video data range fetched from storage. The
mapped_windows queue holds adaptation windows that have been prioritized but are not
ready for transmission yet. The xmit_windows queue holds adaptation windows that the
mapper has finished prioritized and are eligible for transmission.

The workahead_limit field is used for configuration of a work conserving mode. In this
mode, the transmission of an adaptation window is allowed to start immediately if
bandwidth was enough for the previous window to finish before its deadline. However,
this is allowed only up to the configurable workahead_limit of the session. It should be
noted that this workahead_limit variable is an essential part in the research of this thesis.
More details are covered in section 3.1.7.

The map_session field is a pointer to a MapSession object that contains state for the
mapper algorithm. The variables expand_end, shrink_start and growth_rate are used to
update the size of adaptation windows for an option of PPS called window scaling
(section 3.1.8).

ServPpsSession {
 QsfSession child_session; //Handle for TCP connection downstream
 QsfSession helper_session; //Handle for local connection to FileServ
 Queue recv_windows; //Windows captured/fetched from storage
 Queue mapped_windows; //Windows mapped beyond workahead limit
 Queue xmit_windows; //Adaptation windows ready to stream
 StreamHeader stream_header; //Contains video duration, fps, etc.
 Integer video_fd; //File descriptor for video data
 Time session_origin; //Base time of regulator clock
 Time phase_offset; //Worst case transport latency
 Time workahead_limit; //For work conserving mode
 MapSession mapper_session; //Mapper specific session state
 Time expand_end; //When window sizes stop growing
 Time shrink_start; //When window sizes start shrinking
 Time prev_vid_end; //Video end position of latest window
 Float growth_rate; //How fast the windows grow/shrink
 Boolean serv_ready; //First window ready for transmit
 Boolean child_ready; //Child has sent start request
}

Figure 9: The PPS Session Object for StreamServ [17]

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

30

The ServPpsWindow object is allocated per adaptation window (section 2.4 of chapter 2).
The vid_start and vid_end fields delimit the position of this window within the video
timeline. The xmit_start and xmit_end fields are the window's position within the
transmission timeline.

The start_timeout field stores a handle to a scheduled GAIO event (section 2.6.2 of
chapter 2), which in this case is the event that enqueues the window for transmission.
This field can be manipulated by the workahead_limit variable in the work conserving
mode, as a decrease of value in the start_timeout field will make the window start its
transmission phase earlier than originally planned (step 5 of phase III, section 3.1.5). On
the other hand, the xmit_timeout field is used to issue an GAIO event that will trigger the
transmission phase to stop for the current window. In this case, recall from section 2.4 of
chapter 2 that unsent SDUs are dropped, and the next window is allowed to start.

The fetch_done flag is used to track whether FileServ has fetched the contents. When the
contents from FileServ are received, the adus field will store these unprioritized ADUs.
The mapper algorithm will consume the content of adus, and then prioritize and group the
ADUs transforming them into SDUs (sections 2.4 and 2.5 of chapter 2). The mapper will
proceed to insert the SDUs into a heap data structure, which is pointed to by the sdus
field.

ServPpsWindow {
 Time vid_start; //Start position in video timeline
 Time vid_end; //End position in video timeline
 Time xmit_start; //Start position in transmit timeline
 Time xmit_end; //End position in transmit timeline
 Time xmit_deadline; //End position in absolute time
 Boolean fetch_done; //Window has arrived
 Queue adus; //Window contents before mapping (time order)
 Heap sdus; //Window contents after mapping (priority order)
 Timeout start_timeout; //Handle to timeout scheduled to start transmit
 Timeout xmit_timeout; //Handle to timeout scheduled to stop transmit
}

Figure 10: The Adaptation Window Object for StreamServ [17]

PpsSdu {
 Time timestamp; //Derived from map window
 Integer priority; //Assigned by mapper
 Integer num_adus; //PpsAdus follow, then ADU payloads
 PpsAdu adus[num_adus]; //Index ADU payloads
 Bytes payloads[]; //ADU payloads (variable length)
}

PpsAdu {
 FileOffset offset;
 Integer length;
}

Figure 11: SDU and ADU objects [17]

The data structures for the SDU and ADU objects can be seen in figure 11. An SDU
contains the timestamp and priority, along with a group of ADUs. The adus field is an

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

31

array with pointers to the ADU objects, which describe the logical location of the ADUs
within the video bitstream.

Similar to StreamServ, there are two main data structures in StreamPlay, a per-session
object called PlayPpsSession and a per-adaptation window object called PlayPpsWindow,
shown in figure 12 and figure 13.

A PlayPpsSession object is allocated for each active PPS session (section 2.6.1 of chapter
2). The parent_session field is a handle to the network socket to StreamServ
corresponding to the PPS session. The session_origin field contains the start time of the
transmission phase for this session and is used as the basis for converting time of day
values to the transmission and display timelines. The slack field is used to mark, for each
arriving SDU, the remaining time before the deadline for the adaptation window
currently in transmission phase. A negative slack value means that the last SDU received
was late, and the value is then used to maintain the correct phase offset between the
StreamServ and StreamPlay clocks.

The xmit_window field is a pointer to a PlayPpsWindow object (seen in figure 13) which
corresponds to the current adaptation window of the transmission phase. The
decode_windows field is a queue of PlayPpsWindow objects for adaptation window(s) in
the process of decoding. In the work conserving mode, this queue makes it possible for
the transmission phase to work more than one window ahead of the decode and display
phase.

PlayPpsSession {
 QsfSession parent_session; //Handle for TCP connection upstream
 StreamHeader stream_header; //Contains video duration, fps, etc.
 Time session_origin; //Base time of regulator clock
 Time slack; //How early did last SDU arrive?
 PlayPpsWindow xmit_window; //Window in transmission
 Queue decode_windows; //Adaptation window in decode/display
}

Figure 12: The PPS Session Object for StreamPlay [17]

The PlayPpsWindow object is instantiated for each adaptation window in the video
timeline. The vid_start and vid_end fields delimit the position of the window in the video
timeline. The xmit_start field indicates when the window must begin its transmission
phase, while the xmit_end field contains the time at which the decode/display phase for
the window must start. The xmit_timeout field is a handle to a scheduled timeout, which
can also be used to cancel the timeout in the event that processing of the window
completes prior to the timeout deadline.

The num_base_sdus and num_sdus field are used to detect conditions such as when the
base layer is complete and when the entire window is complete. The adus field is a
handle to the heap data structure that is used to sort the contents of SDUs from priority
order back to the original time order.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

32

PlayPpsWindow {
 Time vid_start; //Start position in video timeline
 Time vid_end; //End position in video timeline
 Time xmit_start; //When should xmit start
 Time xmit_end; //When should xmit end
 Timeout xmit_timeout; //Handle for cancellation
 Boolean decode_started; //Has decode already started?
 Integer sdu_count; //How many SDUs so far
 Integer num_base_sdus; //How many SDUs in base layer
 Heap adus; //Window contents (time order)
}

Figure 13: The Adaptation Window Object for StreamPlay[17]

A field that both the ServPpsSession and PlayPpsSession objects share in common, is the
stream_header field which points to a StreamHeader object that contains configuration
information from the video. The StreamHeader object is shown in figure 14.

StreamHeader {
 VideoRate video_rate; //Fps, timecode settings
 Time duration; //Total duration of stream
 Integer h_size; //Horizontal resolution
 Integer v_size; //Vertical resolution
 Time preroll_duration;
}

Figure 14: The StreamHeader Object [17]

When StreamServ receives this object from FileServ, it passes it forward to StreamPlay.
The resolution information (h_size and v_size fields) is used by StreamPlay to initialize
the display window during startup. The preroll_duration variable is used to inform the
PPS of the smallest feasible adaptation window duration. The video_rate and duration
fields indicate the framerate and running time of the video respectively. Both StreamServ
and StreamPlay need to have this information.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

33

3.1.3 Phase I – The Setup

This phase involves the start-up of the three programs and the process of how they
connect to each other. The necessary data objects will be created and initiated, like the
ServPpsSession and PlayPpsSession objects. This is depicted in figure 15.

1) When StreamServ starts up, it creates a thread that triggers FileServ to start
running as well. The two programs will then put themselves in a ready state for
further requests.

2) When StreamPlay starts up, its main function calls sp_stats_ready to get the name

of the requested media file by parsing a list of names built from the input
command. This function then calls sp_parent_connect, passing the name as an
argument. Sp_parent_connect creates and initiates the necessary data objects, like
the PlayPpsSession object. The name of the requested file is stored in the
PlayPpsSession object for later use. Then by calling qsf_connect, StreamPlay
initiates a connection to StreamServ.

Figure 15: Phase I

StreamPlay

StreamServ

 FileServ

 main()

sp_stats_ready()

ss_child_acceptor()

 main() fs_main()

(initiate start-up
 FileServ by
 calling the
 function
 pthread_create)

fs_push_accept()

 qsf_msg_start_recv()
(application-level
 message
 dispatching
 enabled for
 connection with
 StreamServ)

 ss_helper_connected()

 qsf_msg_start_recv()

(application-level message dispatching
 enabled for downstream TCP connection
 with StreamPlay & local connection to
FileServ)

sp_parent_connected()

(application-level message
 dispatching enabled for
 upstream TCP connection
 with StreamServ)

 sp_parent_send_open_file()
 (PHASE II)

 sp_parent_connect()

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

34

3) The function ss_child_acceptor of StreamServ is called when the new connection
with StreamPlay has been accepted. This function creates a ServPpsSession
object, and then it initiates a local connection to FileServ.

4) FileServ's function fs_push_accept is called when the new connection with

StreamServ has been accepted. FileServ then calls the function qsf_msg_
start_recv to enable the application-level message dispatching for incoming
messages. FileServ then responds to StreamServ, reporting that the connection has
been accepted.

5) When the response from FileServ arrives at StreamServ, the function ss_helper_

connected is called. This function calls qsf_msg_start_recv twice, to enable the
application-level message dispatching for both the downstream TCP connection
to StreamPlay and the local connection to FileServ.

6) It follows that StreamPlay gets the similar kind of response from StreamServ,
 reporting that the connection to StreamServ has been accepted. StreamPlay's

 function sp_parent_connected is called to start message dispatching for incoming
 messages on the connection to the parent (StreamServ). It then calls the function
 sp_parent_send_open_file which is the starting point of phase II.

The code of this phase will remain unchanged in the further research of this thesis, as it’s
not a part of the code that needs to be improved.

3.1.4 Phase II – The File Request

This phase will describe how the file request process is handled by the three programs
and is depicted in figure 16.

1) StreamPlay's function sp_parent_send_open_file prepares a qsf message with all
 the necessary information about the file to be requested, like the name of the file
 and the length of the name. The qsf message is then sent to StreamServ via the
 application-level message passing protocol enabled in phase I, also discussed in
 earlier sections.

2) StreamServ's function ss_child_recv_open_file is called upon receiving the qsf

message from StreamPlay. This function simply forwards the message to
FileServ.

3) Upon receiving the message, FileServ's function fs_push_open_file is called. This

function performs a look-up for the requested file. If the look-up succeeds, then
the function prepares a StreamHeader object (refer to data structure section) with
relevant information about the requested file, that it sends back to StreamServ via
a qsf message.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

35

4) The function ss_helper_recv_open_file of StreamServ is called upon the arrival of

the response message from FileServ. This message is then forwarded to
StreamPlay, as it includes the StreamHeader object which StreamPlay needs to
initialize its display. The function ss_win_prep_first will then be called by
ss_helper_recv_open_file, with the starting time point of the video passed as an
argument.

5) The purpose of the function ss_win_prep_first is to allocate a ServPpsWindow

object for the first adaptation window. It initializes all the necessary variables of
the window object and puts the new window in the recv_windows queue, where it
will stay until the preparation is complete. The function ss_helper_send_read_
range is then called to initiate FileServ to locate and fetch the contents of the
window from storage. This marks the entrance to phase III.

Figure 16: Phase II

 6) When StreamPlay receives the message from StreamServ, the function sp_parent
 _recv_open_file is called. The StreamHeader object is extracted, and it is used to

StreamPlay

 StreamServ

 FileServ

 sp_parent_send_open_file()
 ss_child_recv_open_file() fs_push_open_file()

 ss_helper_recv_open_file()

 ss_win_prep_first()

 ss_helper_send_read_range()
 (PHASE III)

 sp_parent_recv_open_file()

(sending the stream
 header object to
 StreamPlay)

ss_child_recv_start_stream()

ss_start_stream()
 (PHASE IV)

(if first adaptation window
 has been fully prepared)

(else wait till an adaptation window is ready)

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

36

initialize play-out, such as duration of the stream, width and height of the video,
and frame rate. The function then sends a qsf message to StreamServ to
indicate that the player is ready to commence streaming.

7) The message from sp_parent_recv_open_file triggers StreamServ's function

ss_child_recv_start_stream to be called. This is an indication that the child
(StreamPlay) is ready to receive the first adaptation window. The function
ss_child_recv_start_stream tests if the first adaptation window has been fully
prepared. If so, then the function ss_start_stream is called, which starts phase IV.
This assumes that phase III has finished, which is explained in the next section.

The code of this phase will remain unchanged in the further research of this thesis, as it’s
not a part of the code that needs to be improved.

3.1.5 Phase III – The File Fetching and Window Preparation

This phase provides a description of how the requested file is fetched and prepared for
streaming, and it is depicted in figure 17. It should be noted that the processes of this
phase is repeated for each new adaptation window.

1) When StreamServ has finished preparing an adaptation window, as explained in
phase II, it will call the function ss_helper_send_read_range. This function
prepares a qsf message which includes the starting and ending time points of the
window. The message is sent to FileServ to locate and retrieve all the ADUs
(from the requested media file) that fall within the time points specified.

 2) When the message arrives at FileServ, it triggers the function fs_push_range_get.

This function fetches the requested range of the media file and prepares a reply
message with necessary information, that it sends back to StreamServ.

2) The response message from FileServ triggers the function ss_helper_recv
 _read_range of StreamServ. The message is parsed by the function to get the
 content, which is an array of ADU descriptors for the ADUs that fall within the

range requested. These are stored for later processing by the priority mapper. The
window is then put into a scheduling queue, where the mapper function ss_map
_adus is scheduled to be run as soon as no other higher priority events are
pending.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

37

Figure 17: Phase III

4) When the mapping event for the window is dispatched, the function ss_map_adus
is called. This one will further call another function named ss_map_prioritize to
prioritize the contents of the adaptation window, according to the mapper
algorithm described in section 2.5. Recall that the adaptation window consists of a
sequence of one or more smaller intervals called map windows. The mapper is
scheduled to process the ADUs in all the map windows until the entire adaptation
window is empty.

5) When the entire adaptation window has been prioritized, ss_map_adus calls the
 function ss_map_done. The window is then moved from the recv_wins queue to
 the mapped_wins queue. If the current window is the very first adaptation window

in the stream, then ss_map_done proceeds to call the function ss_start_stream,
which marks the entrance to phase IV. For all other windows other than the first,

 the deadline at which transmission of the windows should start is computed. If
 there is a workahead time available, then it is subtracted from the transmission

start deadline of a window also. This makes it possible for a window to start its
transmission phase earlier than planned. The window is put into a scheduling
queue, where the function ss_win_xmit_start will be dispatched at the deadline. If
the deadline happens to have already past, then the event dispatcher will call
ss_win_xmit_start as soon as possible. The ss_map_done function also checks
whether the next adaptation window is available and ready for mapping. If so, an
event is scheduled to invoke the mapper.

StreamServ FileServ

 ss_helper_send_read_range() fs_push_range_get()

 ss_helper_recv_read_range()

 ss_map_adus()

 ss_map_prioritize()

 ss_map_done()

ss_start_stream()
(PHASE IV)

 (if first window)

(calculate start transmission deadline
 for the window & put it in a scheduling
 queue, ss_win_xmit_start() will be called
 when the deadline strikes)
 (PHASE IV)

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

38

The code of this phase will remain unchanged in the further research of this thesis, as it’s
not a part of the code that needs to be improved.

3.1.6 Phase IV – The Transmission

This final phase describes the process of transmitting an adaptation window. It should be
noted that when an adaptation window is starting its transmission phase, the preparation
of the next window is being done concurrently (phase III). The following presentation is
depicted in figure 18.

1) The call of the function ss_start_stream marks the start of this phase. This func-
tion can be dispatched in two different ways. If StreamServ is not ready with the
preparation of the first adaptation window by the time the child (StreamPlay) is
ready to receive this window, then ss_map_done will be responsible for calling
ss_start_stream when the preparation is finished (phase III). However, if the child
is not ready by the time StreamServ is finished preparing the first adaptation
window, then ss_map_done will not call ss_start_stream. Instead the function
ss_child_recv_start_stream, which is dispatched when the child is ready, calls the
function ss_start_stream (phase II). That is, the main task of ss_start_stream is to
initiate the transmission phase for the first adaptation window in the stream. It
calls the function ss_child_send_stream_start, which purpose is to send a
message to StreamPlay reporting that the streaming is about to begin.
Ss_start_stream also calls the function ss_win_xmit_start to begin the trans-
mission.

2) When StreamPlay receives the streaming-start message from StreamServ, the

function sp_parent_recv_stream_start is dispatched. The client side stream clock
is initialized, and StreamPlay is then prepared to receive the first adaptation
window.

3) On the server side, ss_win_xmit_start has been called. The current adaptation

window is moved from the mapped_wins queue to the xmit_wins queue. Thus, the
window is ready to be transmitted. A timeout is scheduled to mark the expiration
of the window. If the timeout fires before the transmission of the entire window
contents complete, then the algorithm will proceed to drop unsent SDUs for this
window. For the first adaptation window, ss_win_xmit_start calls the function
ss_child_send_win_start to begin the transmission. Then the ss_win_prep_next
function is called to initiate preparation of the next adaptation window in the
video timeline. It calls ss_helper_send_read_range, which repeats the processes
of phase III for the next window. This preparation will then proceed concurrently
with the transmission of the current window.

4) The function ss_child_send_win_start initiates a window start message and
 sends it to StreamPlay before it starts the transmission. The window start message
 contains infos such as the number of SDUs expected for this particular adaptation

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

39

 window, the start time of the video stream and the end times of the video and the
transmission. Then the function initiates another message to be sent downstream
to StreamPlay, containing a notification that the function ss_child_send_sdu_head
is called whenever StreamPlay is ready to receive the adaptation window.

5) The SDU data structure consists of a header and a payload. The header part of the

SDU contains an array of ADU descriptors which specifies offset and length of
each ADU within the video bitstream, and the payload consists of the ADUs that
have been grouped together. StreamServ starts by sending the SDU header first.
This is done by the function ss_child_send_sdu_head. This function then
proceeds to call the ss_child_send_adu function to transmit the first ADU of the
SDU. Ss_child_send_adu repeatedly calls itself to transmit the next ADU in the
same SDU, until the SDU is empty. After finishing one SDU, the function
ss_sdu_next is called.

6) The function ss_sdu_next is called to transmit the next SDU in the adaptation

 window. If there are still SDUs left, then ss_child_send_sdu_head is called to
begin transmission of the next SDU. The pick of a SDU depends on the priority
order. However, if the heap in which the SDUs are stored is empty or the current
adaptation window is expired, then the function ss_win_done is called. It should
be noted that an adaptation window is allowed to ignore its expiration deadline, if
the expiration occurs before the base layer is finished transmitting. The trans-
mission will end as soon as the base layer is transmitted.

7) The function ss_win_done checks if the current window finished before its expiry

timeout occured. If that's the case, then the window's timeout is cancelled. If
there's any adaptation windows left in the xmit_wins queue, then ss_win_done
calls ss_child_send_win_start to initiate transmission of the next adaptation
window in the queue. However, if the current window turns out to be the last one
in the stream, then an end of stream message is sent downstream by calling the
function ss_child_eof.

8) Upon receiving a window start message from ss_child_send_win_start, Stream-

Play's function sp_parent_recv_win_start is dispatched. This indicates that a new
adaptation window is about to arrive. Apart from the first adaptation window, this
is also the normal indication that the previous adaptation window is done
transmitting, and that it should be committed to decode and display. In this case,
the function sp_win_xmit_done will be called after this step. A new instance of
PlayPpsWindow is created for the new adaptation window to arrive, and it's
initialized according to the contents of the window start message, such as the
number of SDUs expected and the time value for transmission end, so that
StreamPlay can compute an expected deadline for this new window. After the
window start message, SDUs for this new window will start to arrive.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

40

 9) The function sp_parent_recv_sdu is responsible for receiving the incoming SDUs.
A counter in the PlayPpsWindow object tracks the number of SDUs which have
arrived. The purpose is to check whether the base layer of the window is complete
or whether all of its SDUs have arrived. The ADUs contained within the SDU are
entered into a heap, which has the effect of sorting all of the ADUs for the
window back to their original time-order. If the current window receive all the
SDUs before its expiration deadline, then sp_parent_recv_sdu calls the function
sp_win_xmit_done. However, if the current window expires before being able to
receive all the SDUs, then sp_parent_recv_sdu calls the function sp_win_
decode_start as soon as the base layer is received.

Figure 18: Phase IV

10) The function sp_win_xmit_done is called whenever a transmission window needs

 to be retired. It's either because the window has finished transmitting, or the
 window has reached its expiration deadline. In the first case, the function cancels
 the window's expiry timeout. The function also checks whether there were late
 SDUs in this window. If so, a phase adjust message is sent to StreamServ, which
 tells StreamServ how much it should adjust its clock in order to avoid late SDUs
 in future windows. An alternative way to do this is to adjust the display clock.
 The function sp_win_decode_start is then called by sp_win_xmit_done.

11) The function sp_win_decode_start is the starting point for decoding and
 displaying of the retired transmission window. It further calls the function
 sp_schedule_decode, that leads to the sp_decode function which is responsible
 for the decoding process. This process will not be further discussed, as it's not
 relevant to the thesis.

 StreamPlay

 StreamServ

sp_parent_recv_stream_start() ss_start_stream()

ss_child_send_
stream_start()

ss_win_xmit_start()

ss_win_prep_next()

ss_child_send_win_start()

 ss child send sdu head()

 ss_child_send_adu()

(if finished
 transferring
all adus in a sdu)

ss_sdu_next()

(if window not
 expired & there
 are more sdus
 for the window)

(if heap is empty or window
 expired & base layer received)

ss_win_done()

ss_child_eof()

(if xmit_wins
queue is empty)

ss_helper_send_read_range()
 (PHASE III)

sp_parent_recv_win_start()

sp_parent_recv_sdu()

sp win decode start()

sp_schedule_decode()

sp_decode()

sp_win_xmit_done()

 (if base
 layer
 received
 & time-
 out for
window) (if all sdus received)

(current window
 is done, if it’s
 still in
 transmission
 when a new
 window start
 message is
 received)

(if there are more
 windows in xmit_wins
 queue)

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

41

It seems reasonable to apply a quality-adaptation algorithm each time an SDU of an
adaptation window is transmitted. According to the condition of the network, a
consideration is made to either transmit the next SDU of the window or to skip the rest of
it. This indicates that step 6 is one important insertion point for the improvement code.
Step 4 is extended with a call of an initiation function which is explained in section 4.3.8
of chapter 4.

Step 5 needs to be extended in order to register the number of bytes that is written to
TCP. This is necessary for a bandwidth prediction to work as section 3.2.2 shows, and
section 4.1 of chapter 4 presents the variable bytecount in the ServPpsSession object that
takes care of this registration. Since the function ss_child_send_adu goes through an
iteration to transmit the next ADU of the same SDU, the previous ADU is considered
successfully written to TCP whenever a new ADU is to be transmitted. Thus, the number
of bytes for the previous ADU is added to the variable. It should be noted that the byte
amounts of the SDU header parts, transferred in the function ss_child_send_sdu_head,
are also added to the same variable.

The function ss_win_done mentioned in step 7 also needs to be extended with a little
condition that is triggered whenever there is a need to ensure that the next adaptation
window starts its transmission phase as soon as possible. A function is then called to
handle this case, which is further explained in section 4.3.7 of chapter 4.

Section 4.4 of chapter 4 gives a detailed overview and illustration of all these changes.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

42

3.1.7 Work Conserving Strategy

The work conserving strategy can be claimed to be a fundamental assumption for
developing the improvement code. It was implemented to support quality-adaptive
streaming over TCP. TCP's congesion control causes abrupt transmission rate changes, as
discussed in section 2.1.2 of chapter 2, which might impede efficient streaming. This
strategy helps smoothing the rate change out, by employing buffering at the client
application.

If the transmission of an adaptation window finishes earlier than its estimated deadline,
then this strategy makes it possible for StreamServ to advance immediately to the next
adaptation window, discarding that window's original deadline for transmission start.
However, in a non work conserving strategy this is not the case. StreamServ instead waits
for the start deadline of the next window, which leads to a temporarily network
transmission pause.

Qstream handles the work conserving strategy by adjusting the start deadline of an
adaptation window according to a time variable called workahead_limit. This variable is
part of the ServPpsSession object.

If StreamServ manages to finish the transmission of a window at time T1 when the actual
deadline of that window is T2, where T1 < T2, then the difference T2 –T1 forms the
workahead time T3. This computed workahead time T3 is then subtracted from the start
deadline of the next adaptation window. As a result the next window starts its
transmission phase T3 time earlier than the original start deadline.

Figure 19: Ilustration of Work Conservation

 Adaptation
 Window
 1

 Adaptation
 Window
 2

 T2

Adaptation
 Window
 1

 Adaptation
 Window
 2

Transmission
of adaptation
window 1 starts its
transmission phase,
T2 is planned end
deadline for window
1 and start deadline
for window 2.

 T2 T1

 T3

Transmission of
adaptation window 1
ends at T1,
window 2 starts its
transmission phase at T1
which is T3 time earlier
than original time T2

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

43

The transmission timeline then advances faster than the real-time rate of the video. As a
consequence, StreamPlay receives some video data earlier than it needs them. As
mentioned in section 1.3 of chapter 1, this is good in the sense that StreamPlay can store
these data in its buffer/queue, as a protection against future rate reductions caused by
either TCP or other network failures.

This strategy is an essential part of the implementation of the improvement code, because
it makes it possible for StreamPlay to buffer future data as a precaution against sudden
loss of network connectivity. The usefulness of this strategy is further elaborated in
section 3.2.

3.1.8 Window Scaling

The PPS algorithm includes an option called window scaling, which means that the size
of adaptation windows is adjustable during a streaming process. The window starts out
minimal to minimize the startup latency. Then the window durations grow with each new
adaptation window as the stream plays. The adaptation windows grow by a rate of
growth_rate, which is a variable that is specified in the ServPpsSession object. There are
two other variables in addition, which are the time variables expand_end and
shrink_start. The expand_end variable determines when the windows are to stop
growing, which means that the window duration has reached the maximum allowed size.
The next adaptation windows are initiated with this maximum size until the shrink_start
time is reached. The shrink_start variable indicates that the next consecutive windows are
to shrink according to a rate of 1 / growth_rate. Figure 20 provides an illustration of the
window scaling.

Figure 20: Window Scaling

Adaptation
 Window
 Durations

Time
expand_end shrink_start

Adaptation
 Windows

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

44

Latency is a general problem that often occurs in a streaming session. All streaming
algorithms buffer some data, which in turn add some latency to the overall end-to-end
latency between the sender and the receiver. In the case of PPS, shorter adaptation
windows will reduce its contribution to end-to-end latency. In PPS, the duration of the
adaptation windows plays a significant role in achieving consistent video quality. It is a
goal to adapt the video quality with least noticeable effect to the user, and this is done by
making fewer quality changes, which in the case of PPS can be achieved by increasing
the duration of the adaptation windows. Thus, window scaling provides a way to yield a
balance between latency and consistency.

In this thesis, the improvement code is based on adaptation windows, whose size are of
fixed duration. Section 3.2.2 of chapter 3 describes that bandwidth predictions are
necessary for the improvement code to work. These predictions are based on bandwidth
measurements of a past condition of the network, in which a prediction is done once for
each new adaptation window. Based on these predictions, StreamServ is aware of the
condition of the network at all time. To make sure the information of the network
condition is up to date, the predictions should be made as regularly as possible. Thus, it’s
reasonable to use a small, fixed size of adaptation window for this purpose. Another
reason for using fixed size adaptation windows, is because of the usage of a low-pass
filter for bandwidth measurement, which is described in section 3.2.4.

When the window scaling option is turned off, the adaptation windows have a fixed
duration of 2 seconds. That is, each adaptation window has a maximum transmission time
of 2 seconds in the original implementation of Qstream.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

45

3.2 Part II - Ways of Improvement

This part of the analysis identifies the improvements that can be made, in order for
Qstream to be able to handle a streaming session over a wireless network with varying
bandwidth. The focus is put on the parts of the code that need closer analyzing, and a
proposal of an improvement code is discussed and analyzed.

3.2.1 A Way to Confront the Wireless Network

As discussed in section 1.3 of chapter 1, the main goal of this thesis is to improve the
code of Qstream in a way that it can handle a streaming session gracefully over a wireless
network with bandwidth that varies intensely over a longer period.

The wireless environment can be quite noisy and unreliable at times. Thus, it might lead
to major changes in the available bandwidth over longer time intervals. This will
unfortunately affect the performance of the streaming system.

A critical point are the expiration deadlines of adaptation windows. If the network
bandwidth falls below a useful level over a longer period of time, the transmission of an
adaptation window will eventually not be able to catch up with its scheduled transmission
time. The current implementation of Qstream assumes a continuously stable and good
network bandwidth. For this reason, StreamServ always sends all the SDUs of the
different video layers, of an adaptation window, to StreamPlay without any further
restrictions. This is acceptable if the network bandwidth never drops to an unusable level
at any time.

In the case of a bandwidth drop, a timeout can occur for an adaptation window if its
transmission phase begins too late. The solution to this problem of the current Qstream is
to only send the base layer SDUs of the window and then move on to the next window in
the transmission queue. Another way of getting a timeout is when a window exceeds its
transmission time. The unsent SDUs for the remaining video layers are dropped, and the
next window in the queue begins its transmission phase.

In a network with an unpredictable and varying bandwidth, the algorithm described
above is not appropriate for achieving a smooth and satisfying playback of a streaming
video over a longer time-scale. If the bandwidth varies intensely over a longer period of
time, the quality of the streaming video is also changing in a similar intense way. In the
worst case, only the base layer of the adaptation windows is transmitted, and some
windows can even be dropped completely due to timeout. This is unacceptable, as
thoroughly bad or highly varying video quality is not pleasant for the human eye. A test
is performed in chapter 5 to verify this.

The work conserving strategy introduced in the first part of this analysis is appropriate for
solving the problem regarding wireless network streaming. Since this strategy allows

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

46

StreamServ to work ahead of time, it is possible for StreamServ to transmit more data to
StreamPlay than required, at a moment in which the network bandwidth is good enough.
StreamPlay stores these future data in its buffer. Thus, the buffering of extra data at
StreamPlay makes up for the possible loss of data transmission which might occur when
the network connectivity is getting bad. When the network connectivity is partially or
completely lost, and StreamServ has some workahead time to spare, then the situation is
not critical for the playout at StreamPlay, as long as the loss doesn't exceed the
workahead time.

Although the work conserving strategy solves the issue of connectivity loss, there is need
for an algorithm that knows how to make use of the workahead time in an efficient way.
This is where the improvement code comes into the picture. The improvement code must
assist StreamServ in computing how much workahead time that should be put aside in
different circumstances in a fair manner. This depends on some kind of information about
the condition of the network and how much data it can handle. A way to achieve this is
by implementing an algorithm to predict the network bandwidth. This is elaborated and
discussed in the next section.

3.2.2 Prediction of the Network Bandwidth

The predicted network bandwidth is an essential piece of information that StreamServ
must have in order to estimate how much contents of the adaptation windows it should
transmit. A real prediction of the future bandwidth is impossible, and thus the
implemented prediction must be based on bandwidth measurements of the past condition
of the network.

A reasonable way to measure the bandwidth is by computing the number of bytes written
to TCP per second by StreamServ, for every pre-defined time interval with start and end
points that are fixed. The chosen time interval for this computation is the duration of the
transmission of an adaptation window. For each new adaptation window to be
transmitted, StreamServ compares the values of the last two intervals to predict if the
network bandwidth is going to be good or bad. That way a decrease in value indicates a
prediction in which the network bandwidth is falling. When the value eventually
increases again, it indicates a prediction in which the bandwidth is increasing. If the
network bandwidth is stable and good over a longer period of time, then the number of
bytes written per second for each time interval should be about the same. The byte
calculation is possible because StreamServ transmits the video parts by writing the
bytestream to the downstream TCP socket using the system call write(). Upon successful
completion, this function returns the number of bytes sent.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

47

3.2.3 The Trade-Off between Quality and Workahead

With the bandwidth information in place, the next challenge is to figure out how
StreamServ should transmit the adaptation windows according to this information.

One thing to notice is that if less SDUs of a window are transmitted, then more
workahead time is gained. The minimum SDUs that have to be transmitted per window,
are those corresponding to the base layer of a window. If the bandwidth prediction
indicates that the network connectivity is getting bad, then StreamServ must be able to
estimate how many video layers it can afford to transmit for a particular window to
achieve a certain level of acceptable quality, and drop the rest to avoid unnecessary
delays. The most it can drop are all the enhancement video layers for that window.
However, if the bandwidth prediction indicates that the network connectivity is good,
then StreamServ has two choices. Either StreamServ should transmit more video layers
for the coming windows to increase the video quality, or it should transmit a small
amount and gain some workahead time as precaution against possible network failures
instead. In other words, there is a trade-off between video quality and workahead time.

The more workahead time StreamServ saves up, the better is the protection against
playback failures at StreamPlay which is caused by unstable network condition. The
drawback is that the video quality of the playback might be quite bad over a longer period
of time, since most of the enhancement layers for a number of adaptation windows have
been dropped. On the other hand, if StreamServ chooses to transmit more layers for each
window and put less workahead time aside, then the video quality of the playback is
better, assuming the transmission is successful. However, the drawback in this case is the
workahead time saved up, which might be too small to cover a longer period of bad
connectivity. This could result in a sudden, drastic loss of quality while playing the video,
or in the worst case the playback stops, due to late arrival of SDUs.

The challenge lies in the task of finding a balance point for the trade-off between video
quality and workahead time. This should depend on how StreamServ interprets the
predicted bandwidth information. In general, StreamServ should treat a prediction of bad
connectivity more seriously than a prediction of good connectivity, as precaution is better
than taking risks. A prediction of good connectivity, which turns out to be true, doesn't
necessarily mean that the bandwidth of the wireless network stays good for a longer
period. Although this assumption is important, precaution must not dominate completely
at the expense of video quality (throughout the streaming session) either.

An idea could be to take precaution against connectivity loss by transmitting the least
amount of video layers possible, until a certain amount of workahead time is reached, and
then proceed to increase video layers to transmit for the next adaptation windows.

It's also favourable that the video quality doesn't change too rapidly whenever the
prediction indicates either good or bad connectivity, as fewer quality changes is generally
desirable from a viewer's perspective. This means that the increasing/decreasing of video
layers should be done in a slow manner.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

48

3.2.4 Proposal of Improvement Code

This section introduces the functions that ought to be implemented on the server side, to
solve the issues discussed in the previous sections of this chapter.

• Bandwidth prediction - As discussed in section 3.2.2, prediction of the network
bandwidth is necessary. There is need for a function that can make a calculation
to determine the prediction. This function is called once for each new adaptation
window that is entering the transmission phase. The calculation is based on two
values, which is the number of bytes written to TCP per second for the two latest
time intervals. In other words, these two values are bandwidth samples computed
at the two latest time intervals.

An appropriate way to interpret a prediction is by computing and returning the
result as a percentage of either gain or loss. If x is the value of the latest
bandwidth sample, and y is the value of the previous bandwidth sample, then
there's two possible outcomes:

1.) Loss - The x value is smaller than the y value. That means the percentage of
 loss is ((y - x) / y) * 100.

 2.) Gain - The x value is larger than the y value. That means the percentage of
 gain is ((x - y) / y) * 100.

However, further investigation on the computations above shows that the
achieved loss and gain values are not quite trustworthy when viewed over a short
time scale. The problem is that the amount of time used to transmit the number of
bytes for consecutive time intervals is not uniform, when the samples are
computed based on the short pre-defined time intervals. This leads to inaccurate
single bandwidth samples, and thus, the consequence is unreliable loss or gain
values computed from bandwidth samples of the two latest consecutive time
intervals. To solve this issue, a low-pass filter is taken into account.

k
yxkb

k
kb kk

Δ+
+

Δ+
Δ+
Δ−

= −
ττ

τ
22

2
1 [14] (a)

This filter is employed to average sampled measurements and to obtain the low-
frequency components of the available bandwidth. Thus, single measurements are
less significant, and the weight is put on the development over a longer period of
time.

The value bk is the filtered measurement of the available bandwidth, while bk-1 is
the previous measurement. kΔ is the time between the bandwidth samples x and
y. In other words, kΔ corresponds to the time in which the total number of bytes is
written for the latest time interval, which corresponds to the previous transmitted
adaptation window. In order to satisfy the Nyquist-Shannon sampling Theorem,

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

49

kΔ must be less than τ /2 [14]. τ must not be less than 2 * window duration.
Since the window duration is 2 seconds, the chosen value of τ is 5. An extra
second is added as a precaution against delays that might be caused by sudden
bandwidth drops. If it happens that kΔ > τ /2, then kΔ is set toτ /2 and x is set to
0 for the computation of bk.

• Written bytes update – This function has the task of updating the two variables
used by the ‘bandwidth prediction’ function to compute the predicted percentage
value. These two variables correspond to the number of bytes written to TCP per
second for the the last two time intervals, in which the start and end points of the
intervals are fixed. These are the bandwidth samples x and y mentioned above in
the description of the ‘bandwidth prediction’ function. Since the ‘bandwidth
prediction’ function is called each time a new adaptation window is entering its
transmission phase, this function should be called to update the two values at the
end of the transmission phase of each window.

• Video layer update - Since the bandwidth of a wireless network could be highly

varying, StreamServ should make sure that the workahead time saved up is above
a minimum required amount at all time, if possible, for emergency cases. When
that minimum amount of workahead time is in place, StreamServ is allowed to
transmit additional enhancement layers for the next adaptation windows to
increase the video quality. However, there must be a function that controls the
amount of extra layers StreamServ is allowed to transmit for the next windows.
Even if the network bandwidth is predicted to increase, the enhancement layers
should be added in a slow manner, as a sudden major change in quality is not
desirable. Another reason is that the bandwidth is not reliable, even if it seems to
be stable at the moment. If StreamServ starts transmitting too much, it might
affect the overall performance if connectivity suddenly is lost. An idea could be
to increase the number of allowed enhancement layers by a fixed small value for
each consecutive window, as long as the bandwidth is predicted to be usable. The
function should also be able to decrease the number of enhancement layers in a
similar slow manner, if the bandwidth prediction indicates bad network
connectivity. The function sets a global variable with a value that equals the
number of allowed enhancement layers, which can be used by the rest of the
StreamServ program. This value is set on the basis of the predicted bandwidth
information. This global variable is called layer and is further described in section
4.1 of chapter 4. The bandwidth information should be compared to some
adjustable threshold variables, whose purpose it is to decide the degree of how
good or bad the predicted bandwidth is. As discussed in section 3.2.3, precaution
is better than taking risks. That means, a small degree of bad connectivity
prediction should be taken more seriously than a large degree of good
connectivity prediction. The ‘video layer update’ function should operate with
this consideration in mind.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

50

• Workahead update - A function to update the workahead time is necessary.
This function is called each time StreamServ finishes transmitting an adaptation
window before the window's originally estimated deadline, which happens when
StreamServ decides to drop some or all of the enhancement layers of the window.
This workahead time is then used to adjust the the next window’s transmission
start deadline.

• Transmission crisis check - It should be clear by now that each adaptation

window has a pre-determined transmission time. This transmission time should
not be exceeded, so each window has a deadline that makes sure the transmission
stops by then. This ensures that StreamServ is able to start transmitting the next
window. However, if workahead time has been put aside, then a window is
allowed to use more time than its determined transmission time, if StreamServ
can afford it. In a network in which the connectivity is unstable, there's a
probability that StreamServ will not manage to transmit the entire contents of an
adaptation window by the time the deadline of the window is reached. There is
need for a function that is regularly called to determine if the current adaptation
window in transmission has used all of its time yet. In that case, the function must
return some kind of crisis message to inform about this.

• The adaptation function - This is the main function that takes care of the quality
adaptation, according to how the condition of the wireless network is. This
function is responsible for a task mentioned earlier, which is to check that a
minimum amount of workahead time is constantly maintained, if possible, for
emergency cases. This amount can be adjusted by implementing a threshold
variable that is configurable. If the configured amount is not reached, then the
function must initiate StreamServ to only transmit the minimum required SDUs of
the coming adaptation windows, which corresponds to the base layers, so that the
emergency amount of workahead time is collected as fast as possible. When the
emergency workahead is reached, the function allows more layers of the next
adaptation windows to be transmitted. The amount of enhancement layers allowed
is found in the global variable set by the 'video layer update' function. For each
SDU of a window that is transmitted, the 'transmission crisis' function is called to
check if the current window has used all of its transmission time yet. If that's the
case, then the adaptation function must estimate if StreamServ can afford to
continue transmitting more contents of the window, based on the workahead time
saved up. Again this can depend on an adjustable threshold variable, which is
used to compare the workahead time with. This function ought to be called by
ss_sdu_next, which corresponds to step 6 in phase IV of the streaming scenario
described in the first part of the analyze. That is, the adaptation algorithm should
make a consideration of what to do next, each time an SDU of a window is
transmitted.

• The workahead transmission function – The purpose of this function is to make
sure that the next adaptation window (if it is ready to be transmitted) is able to
start its transmission phase immediately, if the adaptation function decides to stop

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

51

transmitting the current adaptation window earlier than its originally scheduled
transmission end deadline. Recall from section 3.1 that the preparation and
mapping of the next adaptation window (phase III) and the transmission of the
current window (phase IV) are done concurrently. If the adaptation function
decides to end the transmission phase for the current window earlier than its
deadline and phase III for the next adaptation window has already finished at this
point, then the next window will not begin its transmission phase until the
scheduled time is reached. This scheduled time corresponds to the original
transmission end deadline of the current window. Thus, there is need for a
function that ensures that the next adaptation window is allowed to enter the
transmission phase as soon as possible, if the current window’s transmission is
ended by the adaptation function before its original transmission end deadline.

• The initiation function – The purpose of this function is to initiate and regularly
update a couple of significant variables. One important update is the information
about the predicted bandwidth. This is done by calling the 'bandwidth prediction'
function. Another piece of information that needs updating is the number of
allowed enhancement layers for the coming window. This is done by calling the
'video layer update' function, which updates the global variable mentioned, based
on the predicted bandwidth information. The variable is then used to regulate the
number of allowed enhancement layers for the window to be transmitted. This
function should be called by ss_child_send_win_start, which corresponds to step
4 in phase IV of the streaming scenario described in part one of the analyze. That
is, the function is called each time a new adaptation window is about to start
transmission.

Most of the functions described above make use of threshold variables, whose purpose is
to help exploring and finding the balance point for the trade-off between video quality
and workahead. These variables are further explained in chapter 4, and the tests in
chapter 5 show that different values of certain threshold variables might lead to different
outcomes.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

52

Chapter 4: The Implementation

This chapter shows how the improvement code is implemented. The functions, discussed
in section 3.2.4 of chapter 3, are coded using the C programming language, which is also
the language that Qstream is written in. Section 4.1 describes the necessary additional
variables that are implemented into existing Qstream data structures. Section 4.2 provides
an overview of the threshold variables mentioned in section 3.2.4 of chapter 3. The
descriptions of the functions in section 4.3 are in pseudo-code, which is based on the
source code of the improvement. The purpose is to filter out the unnecessary details and
preserve the most essential parts of the functions. The full source code is available in
appendix A. Finally, the last section of this chapter provides an illustration of the
implemented code, which shows how the implemented functions work together to adapt
the quality of the streaming video with regard to the network condition.

4.1 Additions to the Data Structures

This section provides a description of additional fields that need to be implemented into
the data structures of Qstream, which is necessary for the improvement code. The data
structures that need to be updated are the ones that correspond to the ServPpsSession and
the ServPpsWindow objects. These are shown in figure 21 and figure 22.

 ServPpsSession {
 Time global_tvnow //Marks the current time
 Integer layer //Indicate nr of enh. layers allowed to send
 Integer layer_increase_allowed //Indicate when layer increase is allowed
 Integer bytes_pr_sec_interval_x //Indicate bytes pr sec for interval just finished
 Integer bytes_pr_sec_interval_y //Indicate bytes pr sec for last interval
 Time time1 //Mark start of time interval
 Time time2 //Mark end of time interval
 Time timediff //Mark difference between time2 and time1
 Unsigned Integer difftime //For converting timediff
 Float time_used //For converting difftime to time in second in
 decimal format
 size_t bytecount //Stores number of bytes written to TCP
 GTimeVal vid_ahead //Marks how far ahead the playback is
 Integer stablecount //Marks consecutive stable conditions
 Integer b_k //Marks the current filtered bandwidth
 Integer b_k1 //Marks the previous filtered bandwidth
 Integer tau //Time constant used by low-pass filter

 }

Figure 21: Updated PPS Session Object for StreamServ

Figure 21 shows the necessary variables that each PPS session has to maintain in
addition. The variable global_tvnow is used to capture the current time whenever it’s
needed.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

53

The fields layer and layer_update_allowed take care of the amount of enhancement
layers that StreamServ is allowed to transmit for the coming adaptation windows. The
variable layer_increase_allowed has the task of enabling and disabling the possibility of
increasing the layer variable. Section 4.3.8 shows that this is necessary.

The fields bytes_pr_sec_interval_x and bytes_pr_sec_interval_y contain the number of
bytes written to TCP per second for the last two time intervals. These two variables are
also known as bandwidth samples x and y from section 3.2.4 of chapter 3, and they are
used by the bandwidth prediction function to compute the prediction value.

The next fields are time variables used to compute the time intervals. The result, which is
a decimal number representing the interval in seconds, is stored in the float variable
time_used.

The field bytecount is used to store the number of bytes that is written to TCP. The usage
of this field is shown in section 4.3.2. The vid_ahead field is used to store the amount of
time that the playback is ahead of the transmission. The usefulness of this field is
elaborated in section 4.3.4. The field stablecount is used to store the number of
consecutive stable predicted network conditions. The details of this field is elaborated in
section 4.3.3. The fields b_k and b_k1 are used to store the filtered measurements of
bandwidth, which are computed by using the low-pass filter as described in section 3.2.4
of chapter 3. The last field tau is the τ variable that is also used in the low-pass filter. As
discussed, this variable has a value of 5.

 ServPpsWindow {
 Time win_start_xmit //Marks the time when the window start xmit
 Integer percentage_kind //Indicate what the kind of percentage
 Integer percentage //Indicate the percentage of gain or loss,
 the bandwidht prediction has returned
 }

Figure 22: Updated Adaptation Window Object for StreamServ

Figure 22 shows the additional fields that each ServPpsWindow object must maintain.
The field win_start_xmit is used to capture the time when the window starts its
transmission phase. This is important for later use, when a computation of how long the
window has been transmitting is needed.

The fields percentage_kind and percentage are updated by the bandwidth prediction
function once for each new adaptation window. As the name indicates, the percentage
variable stores the percentage of gain or loss, which is a result of the computation of the
two variables bytes_pr_sec _interval_x and bytes_pr_sec_interval_y described above.
The percentage_kind field is simply there to tell if the percentage value indicates a gain
or a loss. A value of 1 means gain, while a value of 0 means loss.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

54

4.2 Threshold Variables

Section 3.2.4 of chapter 3 introduced the notion of threshold variables. Some of these
might need to be adjusted in order to find a balance point for the trade-off between video
quality and workahead. This section provides a more detailed description of these
threshold variables.

• low_workahead_thresh – This threshold variable indicates the minimum amount
of workahead time that StreamServ should maintain at all time, if possible,
throughout a streaming session. If the workahead time is below this threshold,
then StreamServ must transmit as little as possible of the coming adaptation
windows in order to quickly build up the workahead until it reaches above the
threshold. The fastest way to do this is by transmitting only the base layers of the
windows. There are two situations in which the workahead time is below this
threshold. The first involves the start-up of a streaming session, which means that
StreamServ only transmits the base layers of the first adaptation windows until the
workahead time passes the threshold. The second situation occurs during a
streaming session. If the connectivity is bad over a longer period of time due to
unstable network condition, the collected workahead time is consumed rapidly by
StreamServ. When the connectivity is back, the workahead time might have fallen
below the threshold. This triggers StreamServ to start transmitting only the base
layers again until the necessary amount of workahead is collected.

• ignore_bw_workahead_thresh – As the name indicates, this threshold variable

decides when StreamServ can ignore the bandwidth prediction. The reason for
implementing this threshold variable, is because it’s not always a benefit to
decrease the video quality immediately when predicting a bad network condition.
If the amount of workahead time saved up is small, then reducing the quality (by
lowering the number of allowed enhancement layers to transmit) is a right thing to
do. However, if there is a lot of workahead time to spare, then decreasing video
quality might be an act of waste due to bad utilization of the workahead time. The
idea is that if the collected workahead time surpasses this threshold, then
StreamServ can ignore the bandwidth prediction and proceed to increase the
number of enhancement layers for each consecutive adaptation window until the
maximum number of layers is reached. In such a case, a longer period of bad
network connectivity leads to a rapid reduction of the workahead time. If the
workahead time falls below the threshold, then StreamServ must take the
bandwidth prediction into consideration again and control the amount of
enhancement layers to be transmitted. As this threshold variable can cause greedy
consumption of the workahead time, it should initially be set to a high value.

• crisis_workahead_thresh – Recall that each adaptation window has a limited

transmission time. If the network is under a bad condition, then StreamServ might
not be able to finish transmitting the contents of an adaptation window by the time
the window’s transmission time has passed. However, with some workahead time

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

55

present, StreamServ can still afford transmitting the rest of the contents of the
window. It follows that StreamServ must somehow know the maximum amount
of workahead time that it can use for this purpose. It’s not desirable to use all the
workahead time on the late adaptation windows. That’s why there is a need for a
threshold variable that controls the amount. If the workahead time falls below this
threshold, then StreamServ has to stop transmitting the contents of the current late
adaptation window.

Whenever the bandwidth prediction gives a percentage of loss, this percentage value is
compared to a couple of threshold variables to determine the condition of the network.
There are three kinds of conditions that have to be taken into consideration. The first
indicates a network condition that is ‘stable’. This means that the number of bytes written
to TCP per second for two consecutive time intervals are about the same, but with the
latest interval having a slight smaller value than the prior interval. The second condition
indicates a network condition that is also kind of ‘stable’, but bad from an overall
viewpoint. In other words, the number of bytes written to TCP per second for two
consecutive time intervals differs more, with the latest interval having an even smaller
value than the prior interval. In this case, the decreasing of quality should be limited to a
reduction of only a certain number of enhancement layers. The third is the ‘bad’
condition, in which the value of the latest interval is significantly smaller than the value
of the prior interval. This condition is treated more seriously in the sense that the number
of allowed enhancement layers is dropped by a few for each consecutive window until it
reaches 0, if necessary. This could happen if the percentage of loss corresponds to this
condition for several consecutive windows. To determine which amount of value
difference between the intervals that corresponds to the different conditions, there is need
for a couple of threshold variables. These are called overall_stable_percentage_thresh
and bad_percentage_thresh.

• overall_stable_percentage_thresh – A percentage of loss below this threshold
corresponds to a ‘stable’ condition, while a percentage above this threshold
corresponds to either a ‘stable, but overall bad’ or ‘bad’ condition.

• bad_percentage_thresh – A percentage of loss below this threshold indicates a

network condition that is either ‘stable’ or ‘stable, but overall bad’. On the other
hand, a percentage of loss above this threshold indicates a real bad network
condition. This threshold variable is implemented to ensure that a slight bad
prediction does not cause unnecessary and exaggerated decreasing of video
quality. However, this variable should initially be set to a low value, as
‘precaution is better than taking risks’ when streaming over a network with
unpredictable bandwidth.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

56

Figure 23: Bad Condition Threshold

• bad_layer_thresh – Since a drastic change in video quality is not desirable, only

a few layers should be dropped each time a prediction of bad connectivity occurs.
This threshold variable regulates the number of layers to be reduced for the case
when the percentage of loss corresponds to a ‘bad’network condition.

• bad_stable_layer_thresh – This threshold variable indicates the maximum

allowed enhancement layers for the case when the percentage of loss corresponds
to a ‘stable, but overall bad’ network condition. If the number of enhancement
layers lies above this threshold, then it has to be reduced. On the other hand, if the
number lies below this threshold, then it’s allowed to increase with the threshold
as a maximum.

If the network condition is stable, which means that the percentage of loss is below
the threshold overall_stable_percentage_thresh, then the number of enhancement
layers is regulated as if the condition is stable in the case of a percentage of gain. This
‘stable’ condition is described below.

Whenever the bandwidth prediction gives a percentage of gain, this percentage value
is compared to a threshold variable to determine the condition of the network. There
are two kinds of conditions that have to be taken into consideration. The first is a
‘stable’ condition. This means that the number of bytes written to TCP per second for
two consecutive time intervals are about the same, but with the latest interval having
a slight larger value than the prior interval. The second is a ‘better’ condition, in
which the value difference between the two intervals is even larger. To determine
which amount of value difference between the intervals that corresponds to the two
different conditions, there is need for a threshold variable. This variable is called
better_percentage_thresh.

• better_percentage_thresh – A percentage of gain below this threshold

corresponds to a ‘stable’ condition, while a percentage above this threshold
corresponds to a ‘better’ condition.

 STABLE,
BUT OVERALL BAD
 CONDITION

 bad_
 percentage_thresh

0 overall_stable_
 percentage_thresh

 STABLE
 CONDITION

 BAD
 CONDITION

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

57

Figure 24: Good Condition Threshold

• stable_layer_thresh – This threshold variable is needed to regulate the number of
allowed enhancement layers for the case when the percentage of gain corresponds
to a ‘stable’ network condition.

• stablecount_thresh – Whenever the condition of the network is predicted to be
stable (when either the percentage of loss is below the threshold overall_ stable_
percentage_thresh or the percentage of gain is below the threshold better_
percentage_thresh), it is counted. If the number of counts reaches this threshold,
then StreamServ is triggered to increase the threshold stable_layer_ thresh by 1.
In other words, StreamServ is allowed to transmit better video quality for the next
adaptation window if the number of stable network predictions reaches this
threshold. In order for the number of counts to reach this threshold, the condition
of the network must be stable and good for a consecutive number of adaptation
windows that equals this threshold. However, if the bandwidth starts dropping and
leads to a prediction of bad network condition, then the threshold stable_layer_
thresh must also be reduced accordingly by 1 for the next adaptation window. The
variable that takes care of this counting is described in section 4.3.3.

 STABLE
CONDITION

 BETTER
 CONDITION

better_percentage_
 thresh

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

58

4.3 The Functions

This section presents the pseudo-code of the functions proposed and discussed in section
3.2.4 of chapter 3.

4.3.1 The Bandwidth Prediction Function

BANDWIDTH_PREDICTION(pps, win)

1 pps.b_k1 = pps.bk
2 if (pps.time_used > pps.tau / 2)
3 pps.time_used = pps.tau / 2
4 pps.bytes_pr_sec_interval_x = 0
5
6 pps.b_k = (2*pps.tau – pps.time_used) / (2*pps.tau + pps.time_used) * pps.b_k1 +
7 pps.time_used * (pps.bytes_pr_sec_interval_x + pps.bytes_pr_sec_interval_y) /
8 (2*pps.tau + pps.time_used)
9
10 if (win.number != 0)
11 if (pps.b_k < pps.b_k1)
12 win.percentage_kind = 0
13 win.percentage = ((pps.b_k1 – pps.b_k) / b_k1) * 100
14 else if (pps.b_k > pps.b_k1)
15 win.percentage_kind = 1
16 win.percentage = ((pps.b_k – pps.b_k1) / pps.b_k1) * 100
17 else
18 win.percentage_kind = 1
19 win.percentage = 0

A bandwidth prediction is made once for each new adaptation window. There are two
kinds of outcome that the function can predict. Either it’s a prediction of bad connectivity
(lines 11-13) or a prediction of good connectivity (lines 14-16). In both cases the function
updates the two variables percentage_kind and percentage for the window. The variable
percentage_kind indicates what kind of percentage is being dealed with and can have
either the value 0 or 1. The percentage variable contains the percentage of either gain
(good connectivity prediction, indicated by percentage_kind = 1) or loss (bad
connectivity prediction, indicated by percentage_kind = 0), which is computed by using
the variables b_k and b_k1. Recall from section 3.2.4 of chapter 3 that these variables are
filtered bandwidth measurements derived from a low-pass filter. Lines 1-8 show how the
low-pass filter updates the variables b_k and b_k1. Notice that kΔ from section 3.2.4 is
represented here by the variable time_used (lines 2, 3, 6, 7, 8). Lines 17-19 correspond to
a condition in which the two variables b_k and b_k1 have an equal value. In that case, the
network condition should be considered to be stable and good.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

59

4.3.2 The Written Bytes Update Function

UPDATE_WRITTEN_BYTES(pps)

1 get_current_time(pps.time2)
2 gint bytes_written = pps.bytecount
3 pps.bytecount = 0
4
5 pps.bytes_pr_sec_interval_y = pps.bytes_pr_sec_interval_x
6
7 pps.timediff = pps.time2 – pps.time1
8 pps.difftime = (pps.timediff.tv_sec * 1000000) + pps.timediff.tv_usec;
9 pps.time_used = (float) pps.difftime / 1000000
10
11 pps.bytes_pr_sec_interval_x = bytes_written / pps.time.used

This function is called at the end of each window’s transmission phase. Its purpose is to
update the two variables bytes_pr_sec_interval_x and bytes_pr_sec_interval_y for the
bandwidth prediction function to use. Line 2 gets the value of the bytecount variable,
which corresponds to the total number of bytes written to TCP since the last time the
function was called. Line 3 resets the bytecount variable to 0 as preparation for the next
interval. Lines 7-9 computes the time used to write this amount of bytes. The time is in
seconds and is represented with a decimal value for accuracy purpose. Line 11 computes
the number of bytes written per second and stores the result in the variable
bytes_pr_sec_interval_x. The previous value of bytes_pr_sec_interval_x is stored in
bytes_pr_sec_interval_y, which is done in line 5.

4.3.3 The Layer Update Function

UPDATE_LAYER(pps, win, nr)

1 if (nr = 0)
2 if (win.percentage_kind = 0 & win.percentage ≥ bad_percentage_thresh)
3 stable_layer_thresh - 1
4 if (pps.workahead_limit.tv_sec < ignore_bw_workahead_thresh)
5 if (pps.layer > bad_layer_thresh) pps.layer – 2
6 else pps.layer – 1
7 else
8 if (pps.layer < 15) pps.layer + 1
9
10 else if (win.percentage_kind = 0 & win.percentage < bad_percentage_thresh
11 & win.percentage > overall_stable_percentage_thresh)
12 stable_layer_thresh - 1
13 if (pps.workahead_limit.tv_sec < ignore_bw_workahead_thresh)
14 if (pps.layer < stable_bad_layer_thresh) pps.layer + 1
15 else pps.layer – 1

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

60

16 else
17 if (pps.layer < 15) pps.layer + 1
18
19 else if (win.percentage_kind = 0 & win.percentage <= overall_stable_percentage_thresh)
20 pps.stablecount + 1
21 if (pps.workahead_limit.tv_sec < ignore_bw_workahead_thresh)
22 if (pps.stablecount < stablecount_thresh)
23 if (pps.layer < stable_layer_thresh) pps.layer + 1
24 else pps.layer – 1
25 else
26 if (stable_layer_thresh < 15)
27 stable_layer_thresh + 1
28 pps.stablecount = 0
29 else
30 if (pps.layer < 15) pps.layer + 1
31
32 else if (win.percentage_kind = 1 & win.percentage < better_percentage_thresh)
33 pps.stablecount + 1
34 if (pps.workahead_limit.tv_sec < ignore_bw_workahead_thresh)
35 if (pps.stablecount < stablecount_thresh)
36 if (pps.layer < stable_layer_thresh) pps.layer + 1
37 else pps.layer – 1
38 else
39 if (stable_layer_thresh < 15)
40 stable_layer_thresh + 1
41 pps.stablecount = 0
42 else
43 if (pps.layer < 15) pps.layer + 1
44
45 else if (win.percentage_kind = 1 & win.percentage ≥ better_percentage_thresh)
46 pps.stablecount + 1
47 if (pps.layer < 15) pps.layer + 1
48
49 else if (nr = 30)
50 if (pps.layer ≥ 3) pps.layer / 2
51 else pps.layer = 0
52
53 else if pps.layer = nr

This function is responsible for updating the amount of enhancement layers allowed to be
transmitted for the coming adaptation windows. It operates according to the values of the
variables percentage_kind and percentage, which are updated by the ‘bandwidth
prediction’ function.

There are three main conditions that can be triggered by the variable nr, which is passed
as an argument from the caller. These conditions are seen in lines 1, 49 and 53.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

61

Line 1 is the first main condition. Lines 2-47 are sub-conditions to the one of line 1. If the
bandwidth prediction gives a percentage of loss, then the update of the number of
allowed enhancement layers are done by either lines 2-8, 10-17 or 19-30. Lines 2-8 are
for the case when the percentage value is larger or equal to the threshold
bad_percentage_thresh. The layer variable is then reduced by either 1 or 2 according to
the threshold bad_layer_thresh. Lines 10-17 are for the case when the percentage value is
smaller than the threshold bad_percentage_thresh. The layer variable is then regulated by
the threshold stable_bad_layer_thresh. Lines 19-30 are for the case when the percentage
value is smaller than the threshold overall_stable_percentage_thresh. In this case, the
network bandwidth is assumed to be stable. The layer variable is regulated by the
threshold stable_layer_thresh. In a similar manner, lines 32-47 handle the update of the
allowed enhancement layers for the case when the prediction gives a percentage of gain.
It’s worth noticing that when the percentage of gain indicates a ‘stable’ network
condition (line 32), the update of the layer variable (lines 33-43) is similar to the one
described above, when the ‘stable’ condition is derived from a percentage of loss (lines
20-30).

Line 49 corresponds to the second main condition that is triggered whenever the
workahead time is below the threshold low_workahead_thresh. This is caused by either a
long-lasting network connectivity loss that leads to a consumption of the entire (or most
of it) collected workahead time, or the start-up of a streaming session in which the
workahead time is still being built up towards low_workahead_thresh. The number of
allowed enhancement layers (layer variable) is halved (line 50) if the current number is
larger or equal to 3. Since there has been a connectivity loss, it’s better for StreamServ to
be cautious with the transmission of the next window in the sense that less layers should
be transmitted. Otherwise, the layer variable is set to 0 (line 51). Recall that StreamServ
only transmits the base layer of the first adaptation windows until the workahead time
passes the threshold low_workahead _thresh. That means the layer variable remains at
the value of 0 until the workahead surpasses the threshold.

Line 53 takes care of the third main condition, which is triggered whenever the threshold
crisis_workahead_thresh stops StreamServ from using any more of the workahead time
to transmit the contents of a late adaptation window. The number of enhancement layers
that StreamServ manages to transmit for the window so far, is passed as an argument to
this function which is indicated by the variable nr. Line 53 sets the layer variable equal to
nr. That way StreamServ is allowed to transmit up to at least nr layers for the next
adaptation window. This is to ensure that a drastic change in quality does not occur in the
transition from the late window to the next window in the transmission queue.

It should also be noted that the bandwidth prediction is considered as long as the
workahead time is smaller than the threshold ignore_bw_workahead_thresh (lines 4, 13
21, 34), as discussed in section 4.2.

In addition, the stablecount variable is increased by 1 each time the predicted network
condition is good (lines 20, 33, 46). That is, the value of the variable is increased
whenever the condition is either ‘stable’ or ‘better’. If the value of this variable reaches

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

62

the threshold stablecount_thresh (lines 22 and 35) and the network condition is still
stable, then the threshold stable_layer_thresh for the coming window is allowed to
increase by 1. The stablecount variable is then reset back to 0. However, if the bandwidth
eventually starts dropping and leads to a bad connectivity prediction, then the threshold
stable_ layer_ thresh is reduced by 1 (lines 3 and 12). It might be clear by now that the
purpose of the stablecount variable is to ensure that better video quality is eventually
achieved if the network condition is continuously stable. This way the amount of allowed
enhancement layers is not completely controlled by a fixed value of the threshold
stable_layer_thresh, if the condition of the network remains stable.

4.3.4 The Workahead Update Function

UPDATE_WORKAHEAD(pps, win)

1. pps.vid_ahead = win.xmit_deadline – pps.global_tvnow

This is a simple function that updates how much time the playback currently is ahead of
the transmission, by computing how much earlier the current adaptation window finishes
its transmission phase than it is supposed to. Thus, this function is called whenever
StreamServ stops transmitting an adaptation window earlier than its scheduled
transmission end deadline. If necessary, this amount of time is used to configure the
transmission start deadline of the the next adaptation window, as section 4.3.7 shows.

4.3.5 The Transmission Crisis Check Function

CHECK_TRANSMISSION_CRISIS(pps, win)

1 if ((pps.global_tvnow – win.win_xmit_start) > (win.xmit_end – win.xmit_start))
2 return 0
3 else if ((pps.global_tvnow – win.win_xmit_start) < (win.xmit_end – win.xmit_start))
4 return 1

This function has the task of checking if the current adaptation window in transmission
has used all of its transmission time yet. The time that the window has used up to this
moment, is computed by subtracting the time when the window started transmitting
(win_xmit_start) from the current time. This is compared to the window’s limited
transmission time, which is computing by subtracting the window’s transmission start
time (xmit_start) from the window’s transmission end time (xmit_end). If the window
has used all its transmission time, then the condition of line 1 is triggered, and the value 0
is returned. Otherwise, the transmission is still within schedule. The condition of line 3 is
triggered, which returns the value 1.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

63

4.3.6 The Adaptation Function

ADAPTATION(pps, win, sdu)

1 if (pps.workahead_limit < low_workahead_thresh)
2 if (sdu.priority < (15 – pps.layer))
3 UPDATE_WORKAHEAD(pps, win)
4 SS_WIN_DONE(pps, win)
5 else
6 no_crisis = CHECK_TRANSMISSION_CRISIS (pps, win)
7
8 if (no_crisis = 1)
9 if (sdu.priority < (15 – pps.layer))
10 UPDATE_WORKAHEAD(pps, win)
11 SS_WIN_DONE(pps, win)
12 else
13 UPDATE_WORKAHEAD(pps, win)
14 if (pps.workahead_limit > crisis_workahead_thresh)
15 if (sdu.priority < (15 – pps.layer))
16 UPDATE_WORKAHEAD(pps, win)
17 SS_WIN_DONE(pps, win)
18 else
19 if (sdu.priority < 15)
20 UPDATE_LAYER (pps, win, 15 – sdu.priority)
21 UPDATE_WORKAHEAD(pps, win)
22 SS_WIN_DONE(pps, win)

This function is responsible for the quality adaptation. For each SDU that is transmitted,
it is called to determine if the number of layers transmitted has surpassed the amount of
allowed layers, which is regulated by the layer variable (lines 2, 9, 15). If that’s the case,
then the rest of the contents of the adaptation window are dropped. However, if the
number of layers transmitted has not reached the allowed threshold yet, then the function
must estimate if StreamServ can afford sending the next SDU of this window, based on
the condition of the network.

Since Qstream operates with 16 layers in total, each adaptation window contains SDUs
with priorities in a range from 15 to 0. The SDUs with priority 15 correspond to the base
layer, while those with priorities 14 to 0 correspond to the enhancement layers. This
explains the way lines 2, 9, 15 and 19 are coded. In line 2 for instance, the layer variable
is set to 0 (reason explained in section 4.3.4). The if-condition is supposed to check if
StreamServ has finished transmitting the base layer of the current adaptation window.
This is done by checking if the priority of the transmitted SDU is smaller than 15-0 = 15.
As mentioned, SDUs with priorities less than 15 belong to enhancement layers.

Lines 1-4 make sure that StreamServ only transmits the base layer of the adaptation
window, as long as the workahead time is below the threshold low_workahead_thresh.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

64

Otherwise, lines 5-22 are in charge of adapting the quality. Line 6 calls the ‘transmission
crisis check’ function to determine if the current adaptation window has used all of its
transmission time yet. If the returned value is 1, then the condition of line 8 is triggered.
StreamServ is then allowed to transmit the next SDU, which belongs to an enhancement
layer, provided that its priority is not exceeding the threshold set by the layer variable.
When all the allowed SDUs are transmitted, line 10 updates the workahead time, and line
11 calls ss_win_done to end the transmission phase of the window.

In the case of a transmission time crisis, the returned value from the ‘transmission crisis
check’ function is 0, which triggers the condition of line 12. Line 13 updates the
workahead time. If the workahead time is larger than the threshold crisis_ workahead_
thresh, then StreamServ can afford transmitting the next SDU of the current late
adaptation window (lines 14-17). On the other hand, if the workahead time is below
crisis_workahead_thresh, then there is no time left for StreamServ to transmit the
contents of the late window, provided that at least the base layer SDUs are done (line 19).
Line 20 calls the ‘layer update’ function and passes the number of layers transmitted so
far for this late window as an argument (reason explained in section 4.3.4). Lines 21 and
22 update the workahead time and call ss_win_done to end the transmission phase of the
late window.

4.3.7 The Workahead Transmission Function

WORKAHEAD_START_NEXT_WIN(pps)

1. ServWindow win = g_queue_peek_head(pps->mapped_wins)
2.
3. if (win == NULL)
4. pps.workahead_limit = pps.vid_ahead
5. else
6. g_aio_cancel_timeout(win->start_timeout)
7. ss_win_xmit_start(&tvnow, win)

This function is called each time the adaptation function ends the transmission phase of
an adaptation window earlier than its scheduled transmission end deadline. Its purpose is
to ensure that the next adaptation window is allowed to start the transmission phase
immediately, if the window is finished prepared and ready to be transmitted.

Line 1 attempts to retrieve the next adaptation window that is finished prepared and
mapped (phase III, section 3.1.5 of chapter 3) from the mapped_wins queue. If there is no
window that is finished yet, then the condition of lines 3-4 is triggered. This condition
makes sure that when the next adaptation window is ready to be transmitted (when it
finishes phase III), it will know that it can start the transmission phase earlier than
planned. The procedure of how to compute an earlier start time of the transmission phase
is described in step 5 of phase III in section 3.1.5 of chapter 3. For this procedure to
work, the variable workahead_limit of the ServPpsSession object needs to be updated
with the time of the vid_ahead variable (line 4).

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

65

However, if there is an adaptation window in the mapped_wins queue, which means that
the next window has finished its preparation and mapping phase, then the condition of
lines 5-7 is triggered. In this case, the preparation of the next adaptation window finished
before the adaptation function decided to end the transmission of the current window.
This means that the next adaptation window was scheduled with a transmission start
deadline that corresponded to the originally scheduled transmission end deadline of the
current window. Thus, there is need for an update that makes it possible for the next
adaptation window to start its transmission phase right away. Line 6 cancels the original
transmission start deadline of the next window. Line 7 calls the function ss_win_xmit
_start to start the transmission phase for this adaptation window.

4.3.8 The Initiation Function

INITIATION(pps, win)

1 if (win.number = 0)
2 pps.workahead_limit = 0
3 pps.layer_increase_allowed = 0
4 pps.bytes_pr_sec_interval_x = 0
5 pps.bytes_pr_sec_interval_y = 0
6 win.percentage_kind = 0
7 win.percentage = 0
8 pps.layer = 0
9
10 BANDWIDTH_PREDICTION(pps, win)
11
12 if (pps.workahead_limit ≥ low_workahead_thresh)
13 pps.layer_increase_allowed = 1
14 else if (pps.workahead_limit < low_workahead_thresh & win.number ≠ 0)
15 pps.layer_increase_allowed = 0
16 UPDATE_LAYER(pps, win, 30)
17
18 if (win.number ≠ 0 & pps.layer_increase_allowed = 1)
19 UPDATE_LAYER(pps, win, 0)
20
21 get_current_time(win.win_xmit_start)
22 pps.time1 = win.win_xmit_start

This function is called each time a new adaptation window is entering its transmission
phase. The purpose of this function is to initiate and update the necessary variables for
later use. Lines 2-8 initiate certain variables of the first adaptation window. Lines 3 and 9
set the variables layer_increase_allowed and layer to 0. This indicates that StreamServ is
only allowed to send the base layer for the first adaptation window. Line 10 calls the
‘bandwidth prediction’ function, which makes a prediction with an outcome that is
relevant for all adaptation window except the first one. The assumption is that the
network bandwidth should be good enough for StreamServ to transmit the base layer of
the first window.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

66

The variable layer_increase_allowed is set to 1 when the workahead time has reached the
threshold low_workahead_thresh (lines 12-13), which means that StreamServ is allowed
to transmit more than the base layer for the current new adaptation window. This triggers
the condition of line 18, in which the ‘layer update’ function is called to update the
number of allowed enhancement layers (layer variable) for this window.

Line 21 simply marks the current time as the transmission start time of the window and
stores it in the variable win_xmit_start, which is a helper variable for the ‘transmission
crisis check’ function. Line 22 stores this time value in another variable called time1,
which is relevant for the ‘written bytes update’ function.

Also worth noticing is the condition of line 14, which is triggered whenever the
workahead time falls below the threshold low_workahead_thresh. This is usually caused
by a long period of network connectivity loss. Line 15 sets the layer_increase_allowed
variable back to 0 as to indicate that increasing the layer variable is not allowed right
now, due to the low workhead time and possible network failure. Line 16 calls the ‘layer
update’ function with the number 30 passed as an argument (reason explained in section
4.3.4).

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

67

4.4 An Illustration of the Improvement Code

This section provides an illustration of how the functions described in section 4.3 co-
operate to form the quality-adaptive algorithm needed to handle a streaming session over
a wireless network with varying bandwidth. Figure 25 shows phase IV of the streaming
scenario, which is described in section 3.1.6 of chapter 3. The two parts marked by 1 and
2 in the circles indicate the insertion points of the improvement code. Sections 4.4.1 and
4.4.2 present the codes of these two parts.

Figure 25: Phase IV of the Streaming Scenario with Marked Areas that Indicate the Insertion Points

of the Improvement Code

 StreamPlay

 StreamServ

sp_parent_recv_stream_start() ss_start_stream()

ss_child_send_
stream_start()

ss_win_xmit_start()

ss_win_prep_next()

ss_child_send_win_start()

 ss child send sdu head()

 ss_child_send_adu()
(if finished
 transferring
all adus in a sdu)

ss_sdu_next()

(if window not
 expired & there
 are more sdus
 for the window)

(if heap is empty or window
 expired & base layer received)

ss_win_done()

ss_child_eof()

(if xmit_wins
 queue is empty)

ss_helper_send_read_range()
 (PHASE III)

sp_parent_recv_win_start()

sp_parent_recv_sdu()

sp win decode start()

sp_schedule_decode()

sp_decode()

sp_win_xmit_done()

 (if base
 layer
 received
 & time-
 out for
 window) (if all sdus received)

(current window
 is done, if it’s
 still in
 transmission
 when a new
 window start
 message is
received)

(if there are more
 windows in xmit_wins
 queue)

1

2

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

68

4.4.1 Part I – Initiation

This part of the improvement code takes care of the initiation and updating of a couple of
important variables. It is depicted in figure 26.

Figure 26: Implemented Code I: Initiation

1) In phase IV of the streaming scenario described in section 3.1.6 of chapter 3, the
function ss_child_send_win_start is called to start the transmission of a new
adaptation window. This function will call the implemented INITIATION function
(4.3.8).

2) The INITIATION function initiates all the necessary variables. Among them are

two essential ones that correspond to the predicted bandwidth information
(percentage_kind, percentage) and the number of allowed enhancement layers
(layer). These variables are updated by calling the implemented BANDWIDTH_
PREDICTION and UPDATE_LAYER functions.

StreamServ

 ss_child_send_win_start()

 INITIATION()

 BANDWIDTH_PREDICTION()

 UPDATE_LAYER()

 ss_child_send_sdu_head

 1

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

69

4.4.2 Part II – Quality Adaptation

This part of the improvement code contains the improved quality-adaptation algorithm.
According to how the network condition is, which is estimated with the help of the
bandwidth prediction function, this algorithm determines the most efficient way to stream
a multimedia file (SPEG file) over the wireless network, with regard to video quality and
workahead/buffering.

Figure 27: Implemented Code II: Quality-Adaptation Algorithm

1) The function ss_sdu_next is called each time an SDU is finished transmitting. The
purpose is to check if there are still any SDUs left in the adaptation window
currently in transmission phase. This is where the implemented ADAPTATION
function comes into the picture. If the heap of SDUs is not empty, then
StreamServ considers if it can afford transmitting another SDU of the adaptation

StreamServ

ss_child_send_sdu_head()

 ss_sdu_next()

 ADAPTATION()
 2

CHECK_TRANSMISSION_CRISIS()
UPDATE WORKAHEAD()

UPDATE WRITTEN BYTES()

ss_win_done()

UPDATE WORKAHEAD()

 UPDATE_LAYER()

 workahead_limit >
crisis_workahead_thresh
 &
 layers transferred <
 layers allowed

 no crisis
 &
layers transferred <
 layers allowed

 workahead_limit >
crisis_workahead_thresh
 &
 layers transferred >=
 layers allowed

 workahead_limit <=
 crisis_workahead_thresh
 &
at least base layer is done

workahead_limit >=
low_workahead_thresh

 no crisis
 &
layers transferred >=
 layers allowed

 workahead_limit <
low_workahead_thresh
 &
 base layer done

 workahead_limit <
 low_workahead_thresh
 &
 base layer not done

WORKAHEAD_START_NEXT_WIN()

(if the adaptation function
skipped an adaptation window
before the entire content was
transmitted)

ss_win_xmit_start()

(PHASE III)

ss_child_send_adu()
 pps.bytecount
 is
 updated here

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

70

window, based on the predicted network condition. Therefore, it is reasonable that
ss_sdu_next calls the adaptation function.

2) For the bandwidth prediction to work, the variable bytecount of the ServPps-

Session object needs to be updated whenever a number of bytes is successfully
written to TCP. This update is done in the functions ss_child_send _sdu_head and
ss_child_send_adu, which was explained at the end of section 3.1.6 of chapter 3.

3) The procedure of the ADAPTATION function is provided in section 4.3.6 and

will not be repeated. This is depicted in figure 27.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

71

Chapter 5: Testing the Improvement Code

This chapter introduces a number of test cases which are designed to investigate how
efficient the improvement code is. Section 5.1 provides an overview of the bandwidth
scenarios that are used in the test cases. These scenarios are emulations of various
conditions that could occur in a wireless network. Section 5.2 describes two test cases
that are based on the original implementation of Qstream. The purpose is to verify that
this original implementation is not quite suitable for streaming over a wireless network
with intensely varying bandwidth (section 3.2.1 of chapter 3). Section 5.3 provides an
insight into the improved outcomes when using the quality-adaptive algorithm of the
improvement code. Section 5.4 introduces an objective quality metric that is required to
make an objective assessment of the improvement code. Section 5.5 reviews a number of
test cases that are performed on the improvement code. In order to make an objective
assessment of the improvement code, the outcome of these test cases are evaluated by
using the objective quality metric. Finally, section 5.6 provides an evaluation of the
overall performance of improvement code.

These simplified names for the threshold variables (section 4.2 of chapter 4) are
introduced for the purpose of easy reference in the further discussions of the test cases:

• low_workahead_thresh – l_wt
• ignore_bw_workahead_thresh – ig_wt
• crisis_workahead_thresh – c_wt
• overall_stable_percentage_thresh – os_pt
• bad_percentage_thresh – b_pt
• better_percentage_thresh – be_pt
• bad_layer_thresh – ba_lt
• bad_stable_layer_thresh – bs_lt
• stable_layer_thresh – s_lt
• stablecount_thresh - st

The initial values of the variables are as follow:

- l_wt = 5
- ig_wt = 40
- c_wt = 10
- os_pt = 2
- b_pt = 10
- b_pt = 40
- ba_lt = 8
- bs_lt = 5
- s_lt = 5
- st = 5
-

For all the subsequent tests that make use of the threshold variables, the initial values of
these variables are used, unless stated otherwise.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

72

5.1 Bandwidth Scenarios

As discussed in section 2.2.2 of chapter 2, a simulated wireless network is required for
this thesis. With the help of the Token Bucket Algorithm (TBF), the varying network
bandwidth can be emulated by adjusting the token rate at various times during a
streaming session. Simple scripts are written to control the rate changes, and a sample of
such a script can be seen in appendix B. The scripts give the following bandwidth
scenarios that are used to test the quality-adaptation algorithm of the implemented code.

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
its

/s
ek

)

Time(Sec)

Figure 28: Bandwidth Scenario 1

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
its

/s
ek

)

Time(Sec)

Figure 29: Bandwidth Scenario 2

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

73

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
its

/s
ek

)

Time(Sec)

5 kbit/sec
10 kbit/sec
15 kbit/sec
20 kbit/sec
25 kbit/sec
30 kbit/sec
35 kbit/sec
40 kbit/sec
45 kbit/sec
50 kbit/sec
55 kbit/sec
60 kbit/sec
65 kbit/sec

 Figure 30: Bandwidth Scenario 3

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
it/

se
c)

Time(Sec)

5 kbit/sec
10 kbit/sec
15 kbit/sec
20 kbit/sec
25 kbit/sec
30 kbit/sec
35 kbit/sec
40 kbit/sec
45 kbit/sec
50 kbit/sec
55 kbit/sec
60 kbit/sec
65 kbit/sec

 Figure 31: Bandwidth Scenario 4

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

74

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
it/

se
c)

Time(Sec)
 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
it/

se
c)

Time(Sec)
 (1) (2)

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
it/

se
c)

Time(Sec)
 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
it/

se
c)

Time(Sec)
(3) (4)

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
it/

se
c)

Time(Sec)
 (5)

Figure 32 – Bandwidth Scenario 5

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

75

5.2 Using the Original Qstream Code

As discussed in section 3.2.1 of chapter 3, the original implementation of Qstream can’t
handle a streaming session over a network with varying bandwidth efficiently enough.
Since the original implementation assumes a good and stable network bandwidth all the
way along, StreamServ attempts to achieve top quality streaming by transmitting all the
video layers for each adaptation window.

The two cases of this test show that when the original streaming system of Qstream is
applied over a network with unstable condition, the achieved video quality is quite
varying and unsatisfactory.

Items in use for this test:

• Media Content: An MPEG-1 file of about 2 minutes running time converted to
 SPEG
• Bandwidth Scenario: 1, 2

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
its

/s
ek

)

Time(Sec)

 Figure 33: Bandwidth Scenario 1

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

76

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120

V
id

eo
 L

ay
er

s

Time (Sek)

Figure 34: Outcome of Streaming Test, Case I

Figure 33 shows the bandwidth scenario used for the first case. When streaming over a
network with this kind of bandwidth variation, the original streaming system of Qstream
produces an outcome as seen in figure 34.

In figure 34, the horizontal axis indicates the running time of the streaming video, while
the vertical axis corresponds to the quality level (number of video layers received)
reached at StreamPlay at different times. As figure 34 shows, the quality change is quite
drastic at places (marked with round dots). This happens because StreamServ’s attempt to
transmit top quality video, at all time, is limited by the unstable network condition.

When the bandwidth drops to an unusable level, it affects the transmission of the window
at that moment. This leads to late SDUs of the window being dropped, and as a
consequence the video content of this particular window has relatively bad quality.
However, if the bandwidth suddenly increases when the next window starts its
transmission phase, then StreamServ immediately continues to aim at top quality
transmission. This is the reason why the graph of figure 34 is quite jumpy at the two
marked areas. From a general viewpoint, this is unacceptable because the quality changes
of the streaming video are too abrupt.

An extremely bad network connectivity also heightens the risk of getting timeouts for
windows, as the next case shows.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

77

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
its

/s
ek

)

Time(Sec)

Figure 35: Bandwidth Scenario 2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120

V
id

eo
 L

ay
er

s

Time (Seconds)

Figure 36: Outcome of Streaming Test, Case II

Figure 35 shows the bandwidth scenario used for the second case. When streaming over a
network with this kind of bandwidth variation, the original implementation of Qstream
produces an outcome as seen in the graph of figure 36.

As the graph shows, the running time of the streaming video is only about 60 seconds.
Since the SPEG file that is used for this test is about 2 minutes of running time, it means
that about 60 seconds of the video is missing. This is caused by timeout of several
adaptation windows due to the extreme loss of connectivity seen in the graph of figure

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

78

35. In addition to this, the video layers received for the streaming video are quite uneven
and result in major quality changes.

The conclusion to be drawn from these two test cases is that the original implementation
of Qstream is not quite suitable for streaming over a network with highly varying
bandwidth. Even though the system is equipped with the work conserving strategy which
allows StreamServ to start transmitting the next adaptation windows a fixed time earlier,
this still doesn’t solve all the issues. It can prevent timeout of future adaptation windows
from happening by transmitting faster than playback speed whenever it’s possible.
However, if the network bandwidth is highly varying and the duration of bad connectivity
is long, then the quality changes will still follow an edgy pattern if StreamServ can’t keep
up with its transmission schedule.

5.3 The Addition of the Improvement Code

In the two following test cases, the streaming system with the additional improvement
code is used. Bandwidth scenario 1 from the previous test is re-used for the streaming
session, as the purpose is to show that the improvement code contributes in giving a
better outcome compared to the one seen in figure 34.

Items in use for this test:

• Media Content: An MPEG-1 file of about 2 minutes running time converted to
 SPEG
• Bandwidth Scenario: 1
• Threshold Variable Values: The initial values of the variables are used in the

first case. The second case of the test makes use of the following different values
of ig_wt: 15, 30 and 40.

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
its

/s
ek

)

Time(Sec)

Figure 37: Bandwidth Scenario 1

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

79

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120

V
id

eo
 L

ay
er

s

Time (Seconds)

Figure 38: Outcome of Streaming Test, Case I: Streaming with Initial Values of the Threshold
Variables

The graph of figure 38 shows an outcome that is quite improved compared to the one
achieved from the first case of the test in section 5.2.

For the first few seconds, the graph shows that the streaming video has the lowest
possible quality. This is because the l_wt variable is set to 5 seconds, which means that
only the base video layers are transmitted for the first couples of adaptation windows.
When the collected workahead amount reaches this threshold, the number of allowed
enhancement video layers starts increasing in a slow manner for each consecutive
adaptation window, which means that the quality of the streaming video is getting better.

The first dot in the graph indicates the corresponding moment of bandwidth scenario 1 in
which the bandwidth starts dropping heavily (at about 8 seconds in figure 37). Since
StreamServ has put some workahead time aside, by transmitting small amounts of video
layers of the earlier windows, the streaming session is not facing an immediate critical
situation at this moment even though the network connectivity is getting bad. By utilizing
the workahead time, StreamServ can afford to decrease the number of allowed
enhancement video layers for each consecutive window in a slow manner, as long as the
predicted bandwidth is bad and there is enough workahead time left. The slow
increase/decrease of allowed enhancement layers is desirable, because it prevents the
video quality from changing in an abrupt way, as seen in the two test cases of section 5.2.
In other words, the workahead time is aiding by giving the implemented quality-adaptive
algorithm some time to smooth out heavy rate changes of the video, which are caused by
partially or completely lost network connectivity.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

80

The second dot in the graph indicates the corresponding moment of bandwidth scenario 1
in which the bandwidth starts increasing again (at about 55 seconds in figure 37). Since
the bandwidth is increasing, the bandwidth prediction should indicate good network
connectivity for the next windows. This triggers StreamServ to transmit more
enhancement layers for the consecutive adaptation windows. Although the predictions
indicate good connectivity, the implemented quality-adaptive algorithm only allows an
increase of a few extra enhancement layers for each window, which means that the video
quality of the streaming video is getting slowly better. As mentioned, the purpose is to
prevent an instantaneous, high change in the video quality. Another reason for the slow
increase is to maintain the precaution against a possible future loss of network
connectivity.

With the implemented quality-adaptive algorithm present, clearly the abrupt changes of
the video quality are minimized when streaming over a wireless network with highly
varying bandwidth. The quality changes are instead evenly distributed over the streaming
session, providing a less noticeable quality adaptation on the video.

Recall that the threshold variables were implemented with the intention of finding a
balance point for the trade-off between video quality and workahead. If some of these
variables are adjusted, then the quality of video is also likely to change in a different way
as the next test case will show.

In the second case of the test, it will be shown that by adjusting the ig_wt variable, the
achieved video quality is significantly changed when streaming over a network with the
varying bandwidth of scenario 1. Notice that in the first case of the test, the ig_wt
variable is set to the initial value 40. This means that StreamServ is allowed to ignore a
bad connectivity prediction and increase the layers until top video quality is achieved,
only when the collected workahead time is longer than 40 seconds. As mentioned, this is
a precaution against sudden network connectivity loss whose duration might be long.

The larger the value of ig_wt is, the more it ensures that StreamServ has enough
workahead time to handle a connectivity loss well, in the sense that the video quality is
gradually reduced rather an extreme rapid change towards bad quality. Unfortunately, if
the duration of bad connectivity is long, then this is done at the expense of the overall
achieved quality of the streaming video. However, if a risk is taken by lowering the value
of ig_wt, then parts of the streaming video might reach the highest quality level. The
lower the ig_wt value is, the more greedy is the consumption of the workahead time to
provide higher video quality during a period of bad connectivity. Thus, it heightens the
risk of getting abrupt video quality degradation when the connectivity is bad over a
longer period, because not enough workahead is available to maintain a slow decrease of
quality.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

81

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120

V
id

eo
 L

ay
er

s

Time (Seconds)

ig_wt=15
ig_wt=30
ig_wt=40

Figure 39: Outcome of Streaming Test, Case II: Streaming with Different Values of the Threshold
Variable ig_wt

The graphs of figure 39 represent the outcome of three streaming sessions based on three
different values of the ig_wt variable. With a value of 15 for the ig_wt variable, the
quality of the streaming video reaches the top at about 40 seconds into the video and lasts
for about 10 seconds. Then a drastic loss in quality occurs, and within a couple of
seconds the video quality reaches the lowest quality level. The larger the value of ig_wt
gets, the less are the occurences of such drastic quality changes, as seen in the streaming
sessions where the value of ig_wt is 30 or 40. This is good, as less noticeable quality
adaptation is preferable. But clearly a disadvantage with larger ig_wt values is that top
video quality is seldom reached, unless the network connectivity is continuously good
over a longer period.

The above test case is mainly to show that by adjusting a threshold variable, the outcome
of the streaming might be different. However, to verify how efficient the implemented
algorithm is, an objective assessment is required. There is need for an objective metric
that can be used to present the objective quality of the streaming video. This is covered in
the next section.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

82

5.4 An Objective Metric to Represent the Perceived Quality

To make an assessment of the performance of the implemented quality-adaptive
algorithm when streaming over a unreliable network, there is need for an objective metric
that can be used to represent the perceived quality of layer-encoded video.

The PSNR is a popular metric to present the objective quality of video data. It is
described by the following mathematical expression:

PSNR = 10 log10
2255

MSE
 where MSE is the mean square error. [15] (b)

However, this metric does not represent the perceived quality of layer-encoded video
well enough [4], so further details about it will not be provided in this thesis.

The lack of a metric to represent the perceived quality of layer-encoded video led to a
new metric that was developed by Michael Zink (currently a postdoctoral fellow in the
Computer Science Department at the University of Massachusetts in Amherst) for his
dissertation about scalable Internet Video-on-Demand systems [4]. This metric is called
the spectrum.

The objective quality metric spectrum is described by the following mathematical
expression:

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑

∑
−∑

=

=

=
=

T

j
T

i

zvs jj

i

t

T

t
hz

z
ht

1

1

)(
1

2

1

 (c)

The variables ht and zt are defined as:

• ht – number of layers in time slot t, where t = 1, …, T.
• zt – indication of a step in time slot t, where zt∈{0,1} and t = 1, …, T.

The spectrum captures the frequency (the number of layer variations) and the amplitude
(amount of layers decreased/increased in each layer variation) of quality variations. The
frequency of variations is represented by zt. Thus, a step in a time slot corresponds to an
increase or decrease of video layers between two consecutive adaptation windows. A
value of 0 for the spectrum represents the best possible quality, while the spectrum
increases with a decreasing quality.

After further investigation, it turns out that the spectrum doesn’t always capture well the
fact that gradually reduced video quality (slow decrease of video layers) is generally
better than rapid quality drops.

http://www.cs.umass.edu/
http://www.umass.edu/

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

83

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

V
id

eo
 L

ay
er

s

Adaptation Windows 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

V
id

eo
 L

ay
er

s

Adaptation Windows
 s(v) = 2 s(v) = 2

Figure 40: Rapid and Gradual Drops

In the two figures above, the spectrum calculation gives a result of 2 for both cases. In a
crisis situation, the implemented algorithm of this thesis tries to achieve good video
quality adaptation by gradually adjusting the amount of video layers to transmit. Thus,
the algorithm is based on the assumption that gradual quality change is an essential
strategy that leads to better perceived quality than a rapid change, which unfortunately is
not well represented by the spectrum.

Another drawback with the spectrum metric is that the quality levels are not well
represented either. A constant reception of only base layers (lowest quality level) for a
number of adaptation windows is indicated by the spectrum to have equally good quality
as a constant reception of all 16 layers (highest quality level) for the adaptation windows.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10

V
id

eo
 L

ay
er

s

Adaptation Windows 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10

V
id

eo
 L

ay
er

s

Adaptation Windows
 s(v) = 0 s(v) = 0

Figure 41: Lowest and Highest Quality Reception

The two figures above show that the spectrum calculation does not take into account the
fact that the quality level (level of video layers) has an influence on the perceived quality.
As long as there are no layer changes during the streaming session, the result calculated
from the spectrum corresponds to perfect quality. In regard to the improvement code of
this thesis, this is not an appropriate way to interpret the perceived video quality.

In order to achieve a reasonable assessment of the improvement code, it is necessary to
develop a new simple metric for objective quality assessment with regard to the
following two issues, as discussed above:

1) The metric must capture the fact that gradual quality changes are better than rapid
quality changes.

2) The quality levels have an influence on the perceived video quality and must be
taken into consideration by the metric.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

84

Inspired by the spectrum, the following new objective quality metric is developed for this
thesis, based on the two issues above. For easy reference, this new metric will be called
spectrum2:

s2(v) =
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+

∑

∑

∑
=

=

=

T

k

T

j
T

t
k

jj

t z

dz

T

h
1

1

1

1
 (d)

The variables ht, zt and dt are defined as:

• ht - number of layers in time slot t, where t = 1, …, T.
• zt - indication of a step in time slot t, where zt∈{0,1} and t = 1, …, T.
• dt – number of layer difference between ht-1 and ht, when zt = 1.

Notice that the definition of ht and zt are the same as for the spectrum. In this thesis, the
time slot mentioned above corresponds to an adaptation window of fixed duration. That
is, there are T adaptation windows in total for the streaming video. Similar to the
spectrum metric, the lower the value, the better is the perceived quality.

The first part of the equation (d) corresponds to

average
1 , where average indicates the

average number of total received layer amounts for all the adaptation windows. This
means that the higher the quality level is, the lower is the value of the ‘layer average’
part. The following example describes this situation.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10

V
id

eo
 L

ay
er

s

Adaptation Windows 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10

V
id

eo
 L

ay
er

s

Adaptation Windows
 (1) (2)

Figure 42: Lowest and Highest Quality Level

Value of ‘layer average’ part Value of ‘layer average’ part
 for (1) of figure 42: for (2) of figure 42:

12

1

1
11

0
∑

 = 1

12

16

1
11

0
∑

 = 0.0625

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

85

As the calculations above show, if the entire streaming video is represented by the lowest
quality level, the ‘layer average part’ of the equation (d) gives a value of 1. On the other
hand, if the highest quality level is achieved all the way, then the value is 0.0625. In other
words, this metric takes the quality level into consideration when representing the
perceived quality, unlike the spectrum where the result of both cases above are 0. It
should be noted that if the perceived quality is perfect, then spetrum2 gives a value of
0.0625, which in the case of spectrum is 0.

The second part of the equation (d) corresponds to
changelayernumtot

difflayersum

__ , where

sum_layer_diff indicates the sum of all layer difference amounts between the adaptation
windows, and tot_num_layer_change indicates the total number of layer changes for the
entire streaming session. In other words, this is a measure of the average layer difference
between all the adaptation windows. That is, the higher the quality change is, the higher
is the value of the average layer difference. The following example describes this.

 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

V
id

eo
 L

ay
er

s

Adaptation Windows 0

 1

 2

 3

 4

 5

 0 2 4 6 8 10

V
id

eo
 L

ay
er

s

Adaptation Windows
 (1) (2)

Figure 43: Higher and Lower Quality Changes

Value of ‘average layer difference’ part Value of ‘average layer difference' part
 for (1) of figure 43: for (2) of figure 43:

1

)24(− = 2
2

)23()34(−+− = 1

The calculations above show that if the quality drops gradually, then the ‘average layer
difference’ part of the equation (2) gives a smaller value compared to when the quality
changes faster. This is good in the sense that it matches the way good perceived quality is
defined in this thesis, which is the fact that gradual quality changes are preferable when
streaming over a network with highly varying bandwidth.

Since quality changes play a significant role in the assessment of the video quality, the
weight is put on the ‘average layer difference’ part of the equation (2). That is, if the
quality level is high for the streaming video and there are high quality changes during the
playout, then the perceived quality of this video is considered to be less good in
comparing to a video in which both the quality level and the quality changes are low. The
following example explains this more clearly.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

86

 Figure 44: Higher Quality Level, High Quality Change

 Figure 45: Lower Quality Level, Low Quality Change

s2(v) for the streaming session of figure 44:

s2(v) =

2
)116()116(

12

16116

1
3

0

5

4

11

6

−+−
+

++∑ ∑ ∑
 ≈ 15.074

s2(v) for the streaming session of figure 45:

s2(v) =

5
)23()34()34()23()23(

12

234323

1
3

0

6

5

8

7

10

9

11

11

4

4

−+−+−+−+−
+

+++++∑ ∑ ∑ ∑ ∑∑
 ≈ 1.333

The example above shows that even though the highest quality level (16 video layers) for
the video is reached most of the time during the streaming session of figure 44, the
perceived quality of this video is still considered by spectrum2 to be worse than the one
seen in figure 45, because of the high quality drop. As mentioned earlier, one of the
purposes of the implemented quality-adaptive algorithm is to prevent high quality
changes in the video from occuring, such as the one depicted in figure 43. Thus, it is

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

87

approriate that spectrum2 indicates the quality changes of figure 43 to be less good than
those of figure 44.

Based on the examples given, this new objective metric is verified to a degree of being
suitable for representing the perceived quality of layer-encoded video. The fact that it can
distinguish between gradual and rapid quality changes, and that the objective quality is
based on the quality levels of the video whenever there are no quality changes during a
streaming session, makes it appropriate enough for the objective assessment of the further
test cases in this thesis.

Although this metric works for the objective assessments in this thesis, it is not
guaranteed to work in other circumstances. Since the development of an objective metric
is not part of the goals of this thesis, further investigations are probably required in order
for this metric to be working on a general basis.

5.5 An Objective Assessment of the Improvement Code

The objective assessment of the implemented quality-adaptive algorithm is based on a
number of test cases. Since the bandwidth of an unreliable, wireless network can vary in
numerous ways, it is hard to pick a specific scenario that can be used to verify how
efficient the implemented algorithm is. Thus, it is better to show how the algorithm reacts
upon different rates of bandwidth development. In a wireless network, the available
bandwidth for a mobile receiving device can increase or decrease at different rates
according to the condition of the network and the signal strength between the sender and
the receiver. Thus, it is interesting to show how the implemented algorithm handles the
different bandwidth rates. This section concludes with an objective quality comparison
between the original Qstream code and the improvement code. The comparison is based
on bandwidth scenario 5, which consists of 5 sub-scenarios that capture some interesting
network conditions.

5.5.1 Objective Quality when Connectivity is Getting Bad

Items in use for this test:

• Media Content: An MPEG-1 file of about 2 minutes running time converted to
 SPEG
• Bandwidth Scenario: 3
• Threshold Variable Values: Different values of ig_wt: 10, 15, 20, 25, 30, 35,

40, 45, 50, 55 and 60.

The following test cases are based on bandwidth scenario 3 of section 5.1.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

88

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
its

/s
ek

)

Time(Sec)

5 kbit/sec
10 kbit/sec
15 kbit/sec
20 kbit/sec
25 kbit/sec
30 kbit/sec
35 kbit/sec
40 kbit/sec
45 kbit/sec
50 kbit/sec
55 kbit/sec
60 kbit/sec
65 kbit/sec

Figure 46: Bandwidth Scenario 3

The different graphs of bandwidth scenario 3 represent 13 sub-scenarios in which the
bandwidth drop rate starts out at 5 kbit/sec and grows by 5 kbit/sec for each sub-scenario.

Recall that the threshold variable ig_wt decides when StreamServ can ignore the
bandwidth prediction. Thus, when this threshold is reached, StreamServ is able to
increase the video layers to transmit for each consecutive adaptation window until the
highest quality level is reached. When the bandwidth drops at different rates, it is
interesting to see how various values of this threshold variable affect the objective quality
of the streaming video.

Notice that in each of the 13 sub-scenarios, the bandwidth starts out at 2 Mbit/sec and
remains at this value for 15 seconds before it starts dropping. The following objective
assessments that make use of these sub-scenarios are based on the period after these 15
seconds, since the interesting part of the assessments lies in the moments in which the
bandwidth is dropping.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

89

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60

A
ve

ra
ge

 s
pe

ct
ru

m
 -

 s
2(

v)

Banwidth drop rate (kbit/sec)

ig_wt=10
ig_wt=15
ig_wt=20
ig_wt=25

Figure 47: Objective Quality when Bandwidth Decreases, ig_wt = 10 to 25

Figure 47 and figure 48 show the objective quality for a number of test cases (streaming
sessions) with different combinations of the sub-scenarios (different bandwidth drop
rates) and ig_wt values. The horizontal axis indicates the different bandwidth drop rates,
while the vertical axis indicates the average spectrum2 value, which corresponds to the
objective quality achieved from the different streaming sessions. According to the
definition of spectrum2, a value of 0.0625 represents the best possible quality, while the
spectrum2 increases with a decreasing quality. That is, the objective quality decreases
with each increasing y value.

An interesting detail to notice from figure 47 is that for the ig_wt values of 10 to 25, the
perceived quality of the streaming sessions are nearly perfect for drop rates up to 25
kbit/sec. As mentioned, the bandwidth starts out at 2 Mbit/sec and remains at this value
for 15 seconds before it starts dropping. During these 15 seconds of good network
condition, the implemented quality-adaptive algorithm put aside an amount of workahead
for a time of crisis. In other words, the bandwidth drop rates up to 25 kbit/sec did not
cause any problems for the streaming sessions, since the collected workahead amounts
were sufficient to cover the period in which the bandwidth was dropping.

Since the quality achieved is nearly perfect even when the drop rate reaches 25 kbit/sec,
this means there has been a greedy consumption of workahead time to provide better
video quality during the period when the bandwidth was dropping, due to the low values
of ig_wt. The risk in such behaviour is that high quality changes can occur, if the
condition of the network stays bad for a longer period or the bandwidth drop rate gets
higher. When the drop rate surpasses 25 kbit/sec in figure 47, there is a noticeable high
jump in the objective quality of the streaming sessions with ig_wt values of 10 to 25. The
interesting detail to notice here, is that the larger ig_wt is, the lower the quality jump is.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

90

The reason high quality jumps occur at the lower ig_wt values, is because of the threshold
variable c_wt. This variable is also known as the crisis workahead threshold variable. As
described in section 4.2 of chapter 4, it decides how much of the workahead time that can
be used for transmitting late adaptation windows. The initial value of this variable is 10
seconds. The lower the ig_wt value is, the more workahead time is spent to transmit
better quality during a period of bad connectivity. Thus, the possibility of the workahead
time reaching the threshold c_wt is also larger. If it happens that the workahead time falls
below c_wt during the transmission of an adaptation window X, then the rest of the
contents of window X are dropped. However, if the amount of data transmitted for
window X-1 was much more than for window X, due to greedy consumption of
workahead, then there will be a high quality jump in the transition from window X-1 to
window X. This explains why low ig_wt values might lead to high quality changes, as
figure 47 shows.

Figure 48 shows the objective quality of the streaming sessions with ig_wt values 30 to
60. Notice that the spectrum2 values achieved from the sessions of drop rates up to 25
kbit/sec are higher than the ones seen in figure 47. Since the ig_wt values are higher, it
means that the consumption of workahead time is less greedy. StreamServ spends more
time limiting the amount of data to transmit according to the threshold variables b_pt,
ba_lt and bs_lt (section 4.2 of chapter 4). In other words, StreamServ is more cautious
when transmitting the contents of the adaptation windows, and as a result certain
enhancement video layers for a number of adaptation windows are dropped in favour of
more workahead time. The consequence is reduced video quality, which is reflected by
the higher spectrum2 values. But although the perceived quality is less good for drop
rates up to 25 kbit/sec, the payoff is seen in the streaming sessions with higher drop rates.
The quality jump at drop rate 30 kbit/sec and the spectrum2 values of the sessions above
this drop rate are lower than those seen in figure 47.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60

A
ve

ra
ge

 s
pe

ct
ru

m
 -

 s
2(

v)

Banwidth drop rate (kbit/sec)

ig_wt=30
ig_wt=35
ig_wt=40
ig_wt=45
ig_wt=50
ig_wt=55
ig_wt=60

Figure 48: Objective Quality when Bandwidth Decreases, ig_wt = 30 to 60

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

91

These test cases clearly show that the threshold variable ig_wt has an effect on the
achieved objective quality. However, the question that ought be asked, is whether a high
value of ig_wt always gives a good result.

When looking at the streaming sessions of these test cases from another perspective, it
turns out that increasing ig_wt is not always a good idea, if the decreasing bandwidth is
not yet critical for the performance of the streaming process.

 Figure 49: Objective Quality for ig_wt = 10 to 60 from a Different Perspective

Figure 49 represents the same streaming sessions from figure 47 and figure 48, but
viewed from a different perspective. In this figure, the horizontal axis indicates the
different values of ig_wt, while the vertical axis indicates the average spectrum2 value as
before.

An important thing to notice here is the development of the objective quality when using
the sub-scenarios that correspond to drop rates up to 25 kbit/sec. At the value of 30 for
ig_wt, there is a high jump in the objective quality, which indicates that the perceived
quality is reduced. Since StreamServ could afford transmitting nearly perfect quality at
the lower ig_wt values, despite the fact that the bandwidth was dropping, this means it
was not the decreasing bandwidth that was causing the reduced quality. The reason this
happened, was because the increased ig_wt values made the implemented algorithm
behave more cautiously than necessary when transmitting the contents of the adaptation
windows. In other words, precaution against network failures was preferred most of the
time rather than taking risks to transmit more contents, even though the slowly decreasing
bandwidth was still sufficient for more contents to be transmitted. This means the
available bandwidth was not utilized well enough, because the ig_wt was set too high.

Bandwidth
drop rates:
 30-65 kbit/sec

 Bandwidth
 drop rates:
 5-25 kbit/sec

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

92

If the bandwidth decreases at a higher rate than 25 kbit/sec, the spectrum2 values of the
sessions with lower ig_wt values are also higher. This can be seen in the graphs of
Figure 49 49 that represent the sessions with drop rates above 25 kbit/sec. Even though
the quality achieved with low ig_wt values are bad compared to the sessions in which the
drop rate is lower, this is made up for as ig_wt increases. The implemented algorithm is
less greedy as ig_wt grows, and thus, the quality changes occur in a slower manner.

The point to grasp here, is that high ig_wt values are not always efficient for the
streaming process, if the bandwidth initially is good but starts dropping at a low rate. On
the other hand, if the bandwidth drop rate is high and leads to bad connectivity over a
longer period, then it’s the low ig_wt values that might impede the efficiency of the
streaming. The low ig_wt values make StreamServ over-estimate the capacity of the
available bandwidth. Thus, more workahead time is consumed, and high quality changes
might occur if the workahead time falls below the threshold c_wt.

The conclusion to be drawn from the test cases of this section, is that high values of ig_wt
are preferable if the bandwidth is decreasing. Although high values of ig_wt can lead to
under-estimation of the capacity of the available bandwidth, it is probably better to take
precaution after all, rather than to risk getting high quality changes or playout
interruptions. Another way to avoid high quality jumps when using low ig_wt values
during periods of bad connectivity, is to lower the threshold c_wt. This doesn’t actually
solve the problem, but at least it provides StreamServ with some more time to transmit
the late adaptation windows. However, it also heightens the risk of getting playout
interruptions sooner, if the bad connectivity lasts over a longer period.

Since the actual future condition of a wireless network is unknown, it is impossible to
predict exactly how the bandwidth will behave whenever it seems to decrease/increase.
Thus, it is a matter of choice whether to transmit fewer data in favour of workahead time,
or to transmit more data at the risk of getting higher quality changes.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

93

5.5.2 Objective Quality when Connectivity is Getting Good

Items in use for this test:

• Media Content: An MPEG-1 file of about 2 minutes running time converted to
 SPEG
• Bandwidth Scenario: 4
• Threshold Variable Values: Different values of ig_wt: 10, 15, 20, 25, 30, 35,

40, 45, 50, 55 and 60.

The following test cases are based on bandwidth scenario 4 of section 5.1.

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
it/

se
c)

Time(Sec)

5 kbit/sec
10 kbit/sec
15 kbit/sec
20 kbit/sec
25 kbit/sec
30 kbit/sec
35 kbit/sec
40 kbit/sec
45 kbit/sec
50 kbit/sec
55 kbit/sec
60 kbit/sec
65 kbit/sec

 Figure 50: Bandwidth Scenario 4

The different graphs of bandwidth scenario 4 represent 13 sub-scenarios, in which the
bandwidth growth rate starts out at 5 kbit/sec and increases by 5 kbit/sec for each sub-
scenario.

Similar to the test cases of the previous section, the following ones are also making use of
different values of the threshold variable ig_wt. However, in these test cases the purpose
is to show how the implemented algorithm reacts upon different bandwidth growth rates.

In each of the sub-scenarios, the bandwidth starts out at 500 kbit/sec and remains at this
value for 10 seconds before it starts increasing. The intention is to investigate how the
implemented algorithm handles the gradual transition from bad to good connectivity. The
following objective assessments that make use of these sub-scenarios are based on the
period after the 10 seconds. Similar to the test cases of bandwidth drops, the interesting
part of the assessments lies in the moments in which the bandwidth is increasing.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

94

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 10 20 30 40 50 60

A
ve

ra
ge

 s
pe

ct
ru

m
 -

 s
2(

v)

Bandwidth growth rate (kbit/sec)

ig_wt=10
ig_wt=15
ig_wt=20
ig_wt=25

Figure 51: Objective Quality when Bandwidth Increases, ig_wt = 10 to 25

Figure 51 and figure 53 provide an illustration of the objective quality achieved from the
test cases (streaming sessions). These are based on combinations of different bandwidth
growth rates and ig_wt values. The horizontal axis indicates the different bandwidth
growth rates, while the vertical axis indicates the objective quality of the streaming
sessions.

An interesting graph of figure 51 is perhaps the one that corresponds to the ig_wt value of
10. This graph shows that the objective quality is quite bad for the streaming sessions that
are based on low bandwidth growth rates. This happens because of the low ig_wt value.
When the workahead time surpasses the ig_wt threshold, StreamServ aims at top quality
transmission. Thus, the number of enhancement video layers is increased by 1 for each
consecutive window with the intention of reaching the highest quality level. However, if
the bandwidth growth rate is low, the bandwidth will probably be overloaded at some
point during the transmission. In other words, the slowly increasing bandwidth can not
keep up with the continuous increasing amount of data to transmit. Thus, the time interval
(section 3.2.2 of chapter 3) used to transmit an amount of data will eventually be longer.
This results in a percentage of loss being returned from the bandwidth prediction
function. However, if the ig_wt value is very low, then the possibility of StreamServ
ignoring the prediction is also larger. If this is the case, then the workahead time will still
be consumed in a greedy way. Thus, the workahead time might fall below the threshold
c_wt. The consequence are high quality jumps, which are reflected by the high spectrum2
values. Figure 52 provides an illustration of a streaming session in which the ig_wt value
and the bandwidth growth rate are low. Notice all the quality jumps, which are caused by
the issues mentioned above.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

95

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 20 40 60 80 100 120 140

V
id

eo
 L

ay
er

s

Time(Sec)

Figure 52: Streaming Session with Low ig_wt and Low Bandwith Growth Rate

As the growth rate increases in figure 51 and figure 53, the objective quality of the
sessions get better, which is indicated by the lower spectrum2 values. This is not
surprising, as higher bandwidth makes it possible for more data to be transmitted without
complications. Thus, higher video quality is achieved.

Figure 51 also shows that when ig_wt increases, the objective quality is better for the
streaming sessions that are based on low bandwidth growth rates. Larger ig_wt values
mean that StreamServ spends more time limiting the amount of data to transmit
according to the threshold variables os_pt, be_pt, s_lt and st (section 4.2 of chapter 4).
Thus, certain enhancement layers are dropped if the bandwidth is limited, and the
probability of overloading the available bandwidth is smaller. On the contrary, the lower
ig_wt is, the sooner StreamServ ignores the four threshold variables and further
bandwidth predictions with the intention of increasing the quality. If the bandwidth
initially is low and the growth rate is also low, then such behaviour heightens the risk of
getting high quality jumps, as described above.

In figure 53, the graphs correspond to the streaming sessions with ig_wt values 30 to 60.
Notice that when the bandwidth growth rate is low, the objective quality achieved from
these sessions are better than the ones of figure 51. StreamServ is more cautious with the
amount of data to transmit for each increasing ig_wt value. Thus, even though the growth
rate is low, there is a higher possibility that the bandwidth will not be overloaded. The
result is better objective quality.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

96

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 10 20 30 40 50 60

A
ve

ra
ge

 s
pe

ct
ru

m
 -

 s
2(

v)

Bandwidth growth rate (kbit/sec)

ig_wt=30
ig_wt=35
ig_wt=40
ig_wt=45
ig_wt=50
ig_wt=55
ig_wt=60

Figure 53: Objective Quality when Bandwidth Increases, ig_wt = 30 to 60

There is another interesting detail to notice from figure 51 and figure 53. The higher
ig_wt is, the less good is the objective quality of the sessions with high growth rates.
Figure 54 provides a better and clearer illustration of this.

Figure 54: Objective Quality when Bandwidth Increases from a Different Perspective

Bandwidth
growth rates:
30-65 kbit/sec

Bandwidth
growth rates:
5-25 kbit/sec

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

97

Figure 54 shows that when the bandwidth growth rate is high, lower ig_wt values give the
best objective quality. On the other hand, if the bandwidth growth rate is low, the
objective quality is better with higher ig_wt values. However, if both the growth rate and
the ig_wt value are high, then the capacity of the available bandwidth might be under-
estimated by StreamServ. Recall from the test cases of the previous section, that when the
bandwidth drop rate is low, high ig_wt values might lead to under-estimation of the
available bandwidth. Thus, the bandwidth is not utilized well enough for the streaming. A
similar problem occurs when the bandwidth increases. In this case, as mentioned above, it
is the high growth rate that might lead to inefficient streaming if the ig_wt value is set too
high. The logical explanation to this might be clear by now. If the bandwidth is good and
keeps increasing at a high rate, then there is no point in transmitting data in a cautious
way by dropping enhancement video layers. By doing so, the perceived quality of the
video is unnecessarily bad, because the available bandwidth is not utilized well enough.

From the result of the test cases in this section, there is an indication that high ig_wt
values might result in better objective quality in general. Even though a high ig_wt value
can lead to bad utilization of the available bandwidth, it is probably better this way. If the
bandwidth is under-estimated (due to high ig_wt value), the probability of getting fewer
high quality jumps is larger, but at the expense of achieving lower quality levels. On the
other hand, if the bandwidth is over-estimated (due to low ig_wt value), the probability of
getting more high quality jumps is larger. But the advantage is that higher quality levels
are more likely to be achieved, if the bandwidth is sufficient. According to the goal of
this thesis, fewer high quality jumps are preferable. Thus, a higher ig_wt value is
probably more preferable.

5.5.3 An Objective Quality Comparison Between The Original
Qstream Code and The Improvement Code

Items in use for this test:

• Media Content: An MPEG-1 file of about 2 minutes running time converted to
 SPEG
• Bandwidth Scenario: 4
• Threshold Variable Values: Different values of ig_wt: 10, 60

This final test is designed with the intention of comparing the performances of the
improvement code and the original Qstream code. There are many different ways in
which the bandwidth can vary. Rather than investigating all sorts of variations, this test is
based on bandwidth scenario 5 of section 5.1. This scenario consists of 5 sub-scenarios.
Sub-scenarios 1-4 are meant to represent the kinds of intense bandwidth variations that
will lead to high quality jumps in the streaming video, if the original Qstream
implementation is used. The purpose is to verify that the improvement code handles these
variations in a better way. The last sub-scenario shows the bandwidth being constantly
good. It should be noted that the bandwidth in this sub-scenario is sufficient for an entire
SPEG file (converted from MPEG-1) to be transmitted at full quality. The purpose is to

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

98

show whether there is any difference in the perceived quality when using either the
original Qstream code or the improvement code for streaming over a network, in which
the bandwidth is good with no variations.

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
it/

se
c)

Time(Sec) 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
it/

se
c)

Time(Sec)
 (1) (2)

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
it/

se
c)

Time(Sec) 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120
B

an
dw

id
th

 (
kb

it/
se

c)
Time(Sec)

 (3) (4)

 0

 500

 1000

 1500

 2000

 0 20 40 60 80 100 120

B
an

dw
id

th
 (

kb
it/

se
c)

Time(Sec)
 (5)

Figure 55: Bandwidth Scenario 5

The first sub-scenario shows that the bandwidth starts out low, but gradually increases
through a period of intense variations. The second sub-scenario shows the opposite. The
third sub-scenario simulates a situation in which the connectivity either is very good or
very bad. An important detail to notice here is that the durations of bad connectivity are
longer than those of good connectivity. The fourth sub-scenario shows a similar
bandwidth variation pattern as the third. However, the difference is that the connectivity
is never really good. It is either bad or worse. As described, the fifth sub-scenario
represents a bandwidth that is constantly good with no variations. It should be good
enough for an SPEG file (derived from an MPEG-1 file) to be transmitted at top quality
without any complications.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

99

0

1

2

3

4

5

6

7

1 2 3 4 5

Bandwidth Scenario 5

Sp
ec

tr
um

 -
s2

(v
)

Using Improvement Code
with ig_wt=60
Using Improvement Code
with ig_wt=10
Using Original Qstream
Code

Figure 56: Comparing the Improvement Code with the Original Qstream Code

Figure 56 provides an illustration of the outcome of the test cases (streaming sessions).
The horizontal axis indicates the 5 sub-scenarios of bandwidth scenario 5. The vertical
axis indicates the spectrum2 value achieved from the streaming sessions.

This figure shows that when the bandwidth varies intensely over a longer period, the
original Qstream code is not able to handle the quality-adaptation too well in comparing
to the improvement code. This is reflected by the highest spectrum2 values in the figure,
which are achieved from using the original Qstream code. Worth noticing is the
streaming session in which the original Qstream code is used with sub-scenario 3. This
one has the highest spectrum2 value of all the sessions depicted in the figure, which
means that the objective quality of this session is the least good of them all. Since the
bandwidth in sub-scenario 3 is very good in certain periods, StreamServ’s attempts to
transmit top quality during these periods are successful. However, when the bandwidth
suddenly drops to an unusable level, the streaming process is affected instantaneously,
which results in a high quality jump. This session is depicted in figure 57.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

V
id

eo
 L

ay
er

s

Adaptation Windows

Figure 57: Streaming Session Using Original Qstream over Sub-Scenario 3

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

100

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

V
id

eo
 L

ay
er

s
Adaptation Windows

Figure 58: Streaming Session Using Improvement Code over Sub-Scenario 3, with ig_wt = 60

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

V
id

eo
 L

ay
er

s

Adaptation Windows

Figure 59: Streaming Session Using Improvement Code over Sub-Scenario 3, with ig_wt = 10

When the improvement code is applied to the original Qstream code, a much better
objective quality is achieved for the streaming sessions over the 5 sub-scenarios, as seen
in figure 56. Figure 58 and figure 59 show the outcomes of two streaming sessions using
the improvement code. Sub-scenario 3 is used for these two sessions, and the outcomes
are quite improved compared to the one depicted in figure 57. Even when the ig_wt value
is set to 10, the outcome is still better than the one achieved with the original Qstream
code. Because of the greedy consumption of workahead time, there are still a couple of
high quality jumps, as seen in figure 59. However, with a ig_wt value of 60, all the high
jumps are successfully avoided. As explained earlier, StreamServ is more cautious with
the transmission, and more workahead time is put aside for emergency cases. Thus,
whenever the bandwidth drops, StreamServ can afford applying a gradual decrease of
quality to the streaming video as desired. The disadvantage is that the overall quality
levels achieved are rather low. As long as high quality jumps are avoided, the objective
quality of the sessions with higher ig_wt values are still better, even though the quality
levels might be low. This is clearly shown in all the test cases in figure 56 that are using
sub-scenarios 1-4.

On the other hand, if the bandwidth is good with no variations, then the original Qstream
code is the clear winner when it comes to the objective quality. This can be seen in figure
56 when using sub-scenario 5.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

101

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

V
id

eo
 L

ay
er

s

Adaptation Windows 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

V
id

eo
 L

ay
er

s

Adaptation Windows 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60

V
id

eo
 L

ay
er

s

Adaptation Windows
 (1) (2) (3)

 Improvement Code, Improvement Code, Original Qstream Code
 ig_wt=60, s2(v) = 1.092199 ig_wt=10, s2(v) = 1.074286 s2(v) = 0.0625

Figure 60: Streaming Sessions over Sub-Scenario 5

The reason is illustrated in figure 60. This figure shows the outcome of streaming
sessions achieved from using the improvement code and the original Qstream code over
sub-scenario 5. When using the original code, top quality is achieved for the entire
streaming video. This is not a surprise, as the original StreamServ aims at top quality
transmission no matter how the condition of the network is. However, when using the
improvement code, the threshold variables make StreamServ act more cautious during the
transmission. Based on the fact that the future condition of a wireless network is
unknown, the improved StreamServ puts aside a certain amount of workahead time
before it starts top quality transmission. Thus, the quality of the first adaptation windows
are low. An additional enhancement layer is added for each consecutive window, as long
as the bandwidth is predicted to be good. So it takes a while before the highest quality
level is reached. This is the reason why the objective quality achieved from the
improvement code is lower than when using the original code.

The figure above also shows that the top quality level is reached sooner if the ig_wt value
is low. In other words, the objective quality is better if a low ig_wt value is used instead,
which is also shown in figure 56. Unfortunately this doesn’t come out very clear in figure
56, since the difference is just 0.017913. But notice that the value of the ‘average layer
difference’ part is the same for both (1) and (2) of figure 60. So although the difference
value is small, it is still a significant value in regard to the ‘layer average’ part of the
metric.

To summarize, the test cases of this section show that when the bandwidth is highly
varying, the improvement code leads to a much better outcome compared to the original
code. The perceived quality of the video is more balanced throughout the streaming
session, which is expressed by both the objective quality metric and the supporting
figures. However, if the bandwidth is constantly good and sufficient for top quality
transmission, then the original code leads to better performance.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

102

5.6 Evaluation of the Improvement Code

Based on the test results of the previous sections, it is now appropriate to claim that the
improvement code handles streaming sessions over a network with intensely varying
bandwidth in a more efficient way than the original code does.

The threshold variables (section 4.2 of chapter 4) are one part of the improvement code
that determine the level of efficiency. Originally all the threshold variables were intended
to be adjusted, in order to investigate the trade-off between video quality and workahead.
However, further research showed that most weight is put on the ig_wt variable. By
adjusting this variable, it led to the most visible and essential results of the test cases.
Another threshold variable closely related to the ig_wt variable, is the c_wt variable.
Recall that it is the c_wt variable that actually causes the high quality jumps. The lower
the ig_wt value is, the sooner the workahead time reaches the c_wt threshold, if the
connectivity is bad. Thus, the possibility of getting high quality jumps is larger. By
lowering the value of this variable, StreamServ is able to get some extended time to
transmit late adaptation windows. If the connectivity is bad over a longer period, then a
low value of c_wt might lead to playback interruption sooner. Although in general, if the
duration of bad connectivity is very long, then the playback interruption will occur after a
while anyway.

The ‘bandwidth prediction’ function is another part of the improvement code that has a
significant influence on the level of efficiency achieved. This function is based on a
comparison of two values, which correspond to the number of bytes written to TCP per
second for the two latest fixed time interval. The comparison makes it possible to predict
whether the bandwidth is increasing or decreasing, by computing a percentage of gain or
loss based on the two values. However, the outcome of the function does not reflect the
actual capacity of the available bandwidth. Thus, whenever the predicted percentage is
either a gain or a loss, StreamServ only knows that the bandwidth is either increasing or
decreasing, respectively. It does not actually know the amount of data that will lead to
fully utilization of the current available bandwidth. Therefore, the amount of data to be
transmitted is determined by comparing the predicted percentage with the threshold
variables os_pt, b_pt and be_pt. The idea behind these threshold variables is to help
avoiding over-estimation of the available bandwidth. This can be achieved by setting the
b_pt threshold to a low value (initial value 10) and the be_pt to a high value (initial value
40). In other words, precaution is preferred rather than taking risks.

However, during the research it turned out that the predicted percentages of gain rarely
reached the initial value of be_pt. Unless the bandwidth was changing rapidly from low
to high, the percentages of gain normally were below be_pt, which corresponded to a
‘stable’ network condition. When lowering the value of be_pt, it led to over-estimation of
the bandwidth, which resulted in more frequent high quality jumps whenever the
bandwidth was not too high. Thus, it was better off leaving the be_pt variable at the
initial value.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

103

Since the predicted percentages of gain mostly corresponded to a ‘stable’ network
condition, it was necessary to introduce the threshold variable st, in order to increase the
efficiency of the streaming process. Recall that this threshold variable decides when a
‘stable’ network condition is good enough for increasing the number of enhancement
layers to transmit. Thus, in the case of a ‘stable’ network condition, the number of
allowed enhancement layers is not always restricted by a fixed value of the s_lt threshold
variable.

In the test cases of section 5.5.3, it was shown that when the bandwidth was constantly
good, the improvement code led to a poorer outcome compared to the original code.
Since the future condition of an unstable network is unknown, the improvement code
must make sure that StreamServ acts more cautiously. This is a necessary precaution that
should be considered, even if the bandwidth is high at the start-up of a streaming session.
However, if the viewer accepts the risks of getting playback interruptions or frequent
quality jumps, then it is possible to achieve better quality by lowering the values of the
threshold variables ig_wt, l_wt and c_wt, provided that the bandwidth is good enough.

Apart from the issues mentioned above, generally the improvement code delivers the
desired outcomes. However, it should be mentioned that certain factors might have
affected the outcome of the test cases. This is the reason why it was necessary to compute
the average spectrum2 values for most of the test cases. The average value was based on
several outcomes of the same test case.

The following factors might have affected the outcomes:

• Computer performance - The processor and memory chips of the sender and
receiver machines are important hardwares which play a significant role in the
efficiency of the performance.

• Accuracy of bytes written to TCP – Investigations reveal that the number of

bytes written to TCP for the different time intervals is a little varying, even
though the numbers are based on a fixed time interval, and the bandwidth is
equally good throughout the streaming session. However, when the bandwidth is
highly varying, these minor variations are not significant at all. Since the time
intervals differ greatly whenever the bandwidth varies intensely, they compensate
for the minor variations of the written bytes.

• Human delays - A test case is run by manually starting the streaming process

and a bandwidth scenario script simultaneously.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

104

Chapter 6: Conclusion

This chapter provides a description of the achievement of this thesis and some ideas
about future work.

6.1 The Achievement of this Thesis

The primary goal of this thesis was to implement an optimal solution for efficient
utilization of the varying bandwidth of a wireless network when streaming a video.

An improvement code was developed and added to the existing Qstream software. This
software supported quality-adaptive streaming by dynamically adjusting the data rate of
the streaming video, according to the condition of the network. The video was rate-
adjustable, because it was in a layer-encoded format. This made it possible to apply a
priority data dropping strategy, which basically meant that the less important video layers
(aka. enhancement layers) were dropped if the connectivity of the network was getting
bad during the streaming session. Thus, the data rate of the video got lower. In other
words, the streaming video was dynamically adapted to the condition of the network.

An important fact that the improvement code was based on, was the independency
between the transmission speed and the playback speed of the video. Buffering was
employed at the client side, and thus, whenever the connectivity was good, data could be
transmitted faster than playback speed and got temporarily stored in the buffer for later
use.

The fact that the video data could be transmitted faster than playback speed, was a
fundamental assumption for developing the improvement code. Whenever an amount of
data was transmitted faster than the playback speed, the streaming server would be lying
ahead of time.. This amount of time was known as the workahead time. Basically, the
idea behind the improvement code was to collect workahead time during a period of good
network connectivity, and then make use of that amount of time in a most efficient way
during the period in which the connectivity was bad. If there was no workahead time
available during a period of bad connectivity, then either the streaming process would
stop immediately, or there would be high quality jumps occuring in the streaming video.
This was not considered to be a desirable outcome. Thus, the workahead time would
assist in smoothing out the rate changes, providing a gradual change of the video quality.
The workahead time would also help lowering the risk of getting playback interruptions
during a period of bad connectivity.

Since the bandwidth of a wireless network could be intensely varying, a challenge would
be to decide wisely the amount of workahead time to acquire during good connectivity,
and the amount to spend during bad connectivity.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

105

In chapter 3 and 4, the improvement code was proposed and implemented, respectively.
The improvement code consisted of a number of functions that would co-operate with
each other and the existing software to achieve the goal. The functions solved the
following tasks:

• Perform predictions of the future condition of the network on a regular basis,
based on past conditions of the network.

• Determine the amount of data that can be transmitted, based on the outcome of
the prediction of the network condition.

• Update and keep an overview of the amount of workahead time available for the
streaming server to use.

• Determine the amount of workahead time to acquire based on the outcome of the
prediction of the network condition. This is done by dropping enhancement video
layers.

• Determine the amount of workahead time that the streaming server can make use
of during a period of bad connectivity, in order to achieve the most efficient way
of transmitting data.

Since there was a trade-off between the quality of the video and the workahead time, it
was necessary to implement a set of threshold variables. These variables would help
finding a balance point for the trade-off.

In chapter 5, the improvement code was tested with a number of streaming sessions (test
cases). In order to investigate how efficient the improvement code was, the streaming
sessions were based on bandwidth scenario scripts which emulated different bandwidth
variations of a wireless network. In order to make an objective assessment of the
performance of the improvement code, an objective quality metric was needed.
Originally the intention was to use a pre-developed objective metric called spectrum to
make the objective assessment. However, after further investigations, it turned out that
this metric did not work as it was supposed to. Thus, this led to the development of a new
objective metric spectrum2.

By making use of the new objective metric, it was possible to evaluate the outcomes
achieved from the test cases. By adjusting a certain threshold variable, the outcomes were
significantly changed. According to the condition of the network, some outcomes were
better than other. Although certain threshold variables didn’t lead to any visible
improvements when adjusted, it didn’t change the fact that they should be adjustable
variables. It would be wrong to claim that one specific value of the threshold variables
would lead to the best outcome in all situations, because in reality, the bandwidth of an
unreliable, wireless network could behave in unexpected ways.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

106

6.2 Future Work

Given the time constraints that were provided for this thesis, there are still some issues
that would have been interesting to elaborate.

• In several of the test cases, there was still an amount of workahead time left when
StreamServ had finished transmitting the entire video stream. Since the actual
future condition of the network is unknown, StreamServ does not really know the
most efficient amount of workahead time to put aside. Thus, it happens that
StreamServ puts aside more workahead time than needed. This results in a video
stream with poorer quality than it should be. The workahead time left could have
been used to increase the quality of some of the already transmitted adaptation
windows, but unfortunately this is not possible with the current implementation.
An idea could be to implement a solution that would utilize this remainding
amount of workahead time. Since the transmission is ahead of the playback, a
possibility could be to find a way to increase the quality of some of the already
transmitted adaptation windows that have not reached the display phase yet.

• The improvement code of this thesis is based on a linear video stream. Consider a

stream that is not linear, which means that the viewer will choose to pause, fast
forward, rewind, etc. It would be interesting to implement a solution based on the
current improvement code that considers such a case.

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

107

Appendix A

This appendix presents the complete C-coded version of the implemented code. This is
the actual code of the one described in pseudo-code in section 4.3 of chapter 4. As
chapter 4 already provides descriptions of the different functions, the sections of this
appendix will not provide any further comments on the code.

A.1 The Bandwidth Prediction Function

void
bandwidth_prediction(ServSession *pps, ServWindow *win){

 float t1,t2, t3;
 float percent;

 pps->b_k1 = pps->b_k;

 if(pps->delta_k > (tau / 2)){
 pps->delta_k = tau / 2;
 pps->cur_win_bytes = 0;
 }

 pps->b_k = (2 * tau - pps->delta_k) / (2 * tau + pps->delta_k) *
 pps->b_k1 + pps->delta_k * (pps->cur_win_bytes +
 pps->last_win_bytes) / (2 * tau + pps->delta_k);

 if(win->number != 0 && pps->b_k != 0 && pps->b_k1 != 0){

 if(pps->b_k < pps->b_k1){

 t1 = pps->b_k1 - pps->b_k;

 percent = (t1 / pps->b_k1) * 100;

 #if PERCENT
 printf("\n Loss percent: %f % \n", percent);
 #endif

 #if PRINTLOG_TO_FILE
 fprintf(pps->logfile, "\n Loss percent: %f \n", percent);
 #endif

 win->percentage_kind = 0;
 win->percentage = percent;

 }
 else if(pps->b_k > pps->b_k1){

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

108

 t1 = pps->b_k - pps->b_k1;

 percent = (t1 / pps->b_k1) * 100;

 #if PERCENT
 printf("\n Gain percent: %f % \n", percent);
 #endif

 #if PRINTLOG_TO_FILE
 fprintf(pps->logfile, "\n Gain percent: %f \n", percent);
 #endif

 pps->goodcount++;

 win->percentage_kind = 1;
 win->percentage = percent;

 }
 else if(pps->b_k == pps->b_k1){

 win->percentage_kind = 1;
 win->percentage = 0;
 }

 }
 else{
 win->percentage_kind = 0;
 win->percentage = 0;
 }

}

A.2 The Written Bytes Update Function

void
update_written_bytes(ServSession *pps, ServWindow *win){

 size_t bytes_written;

 bytes_written = pps->bytecount;
 pps->bytecount = 0;

 #if BYTESWRITTEN
 printf("\n Amount bytes written for time interval: %d n",
 bytes_written);
 #endif

 #if PRINTLOG_TO_FILE
 fprintf(pps->logfile, "\n Amount bytes written for time interval: %d
 \n", bytes_written);
 #endif

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

109

 g_get_current_time(&pps->time2);

 timersub(&pps->time2, pps->time1, &pps->timediff);
 pps->difftime = (pps->timediff.tv_sec * 1000000) +
 pps->timediff.tv_usec;

 pps->time_used = (float) pps->difftime / 1000000;

 pps->last_win_bytes = pps->cur_win_bytes;
 pps->cur_win_bytes = roundf(bytes_written / pps->time_used);

 pps->delta_k = pps->time_used;

}

A.3 The Layer Update Function

void
update_layer(ServSession *pps, ServWindow *win, gint nr){

 if(nr == 0){

 if(win->number != 0){

 if(win->percentage_kind == & win->percentage >=

 bad_percent_threshold){ //BAD BW

 pps->stablecount = 0;
 pps->goodcount = 0;
 if(pps->stablelayer_incr > 0) pps->stablelayer_incr--;

 if(pps->vid_ahead.tv_sec < ahead_bw_threshold){
 if(pps->layer > bad_layer_threshold) pps->layer =
 pps->layer - 2;
 else if(pps->layer <= bad_layer_threshold && pps->layer
 != 0) pps->layer = pps->layer - 1;
 }
 else{
 if(pps->layer < 15) pps->layer = pps->layer + 1;
 }
 } //STABLE BW, BUT OVERALL BAD
 else if(win->percentage_kind == 0 & win->percentage <
 bad_percent_threshold && win->percentage >
 overall_stable_percent_threshold){

 pps->stablecount = 0;
 pps->goodcount = 0;
 if(pps->stablelayer_incr > 0) pps->stablelayer_incr--;

 if(pps->vid_ahead.tv_sec < ahead_bw_threshold){

 if(pps->layer < bad_stable_layer_threshold) pps->layer =
 pps->layer + 1;

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

110

 else pps->layer = pps->layer - 1;
 }
 else{
 if(pps->layer < 15) pps->layer = pps->layer + 1;
 }
 } //STABLE BW
 else if(win->percentage_kind == 0 & win->percentage <=
 overall_stable_percent_threshold){

 pps->stablecount++;

 if(pps->vid_ahead.tv_sec < ahead_bw_threshold){
 if(pps->stablecount < stablecount_threshold){
 if(pps->layer < (stable_layer_threshold +
 pps->stablelayer_incr)){ pps->layer =

 pps->layer + 1;
 }

 else if(pps->layer > (stable_layer_threshold +
 pps->stablelayer_incr)){ pps->layer =
 pps->layer - 1;
 }
 }
 else{
 if((stable_layer_threshold + pps->stablelayer_incr)

 < 15) pps->stablelayer_incr++;

 pps->stablecount = 0;
 }
 }
 else{
 if(pps->layer < 15) pps->layer = pps->layer + 1;
 }
 } //STABLE BW
 else if(win->percentage_kind == 1 & win->percentage <
 better_percent_threshold){

pps->stablecount++;

 if(pps->vid_ahead.tv_sec < ahead_bw_threshold){
 if(pps->stablecount < stablecount_threshold){
 if(pps->layer < (stable_layer_threshold +

 pps->stablelayer_incr)){ pps->layer =
 pps->layer + 1;

 }
 else if(pps->layer > (stable_layer_threshold +

pps->stablelayer_incr)){ pps->layer =
 pps->layer - 1;

 }
 }
 else{
 if((stable_layer_threshold + pps->stablelayer_incr) <
 15) pps->stablelayer_incr++;

 pps->stablecount = 0;

 }
 }

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

111

 else{
 if(pps->layer < 15) pps->layer = pps->layer + 1;
 }
 }
 else if(win->percentage_kind == 1 && win->percentage>=
 better_percent_threshold && pps->goodcount > 2){

 pps->stablecount++;
 pps->goodcount = 0;

 if(pps->layer < 15) pps->layer = pps->layer + 1;

 }
 }
 }
 else if(nr == 30) pps->layer = 0;
 else if(nr == 40){

 if(pps->layer >= 3) pps->layer = pps->layer / 2;
 else pps->layer = 0;

 }
 else pps->layer = nr;

}

A.4 The Workahead Update Function

void
update_video_ahead(ServSession *pps, ServWindow *win, gint mode){

 GTimeVal temp;

 if(mode == 0){

 timersub(&win->xmit_deadline, &pps->global_tvnow, &temp);
 pps->vid_ahead = temp;

 if(temp.tv_sec < 0 || temp.tv_usec < 0){
 pps->vid_ahead.tv_sec =_u48 ?;
 pps->vid_ahead.tv_usec = 0;

 pps->workahead_limit.tv_sec = 0;
 pps->workahead_limit.tv_usec = 0;
 }

 #if WORKAHEAD
 printf("\n In update_video_ahead, vid_ahead: %d \n",

 pps->vid_ahead.tv_sec);
 #endif

 #if PRINTLOG_TO_FILE
 fprintf(pps->logfile, "\n In update_video_ahead, vid_ahead: %d

 \n", pps->vid_ahead.tv_sec);

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

112

 #endif
 }
 else if(mode == 1){ //ONLY FOR WINDOW-TIMEOUT SITUATION
 timersub(&win->xmit_deadline, &pps->global_tvnow, &temp);
 pps->vid_ahead = temp;
 }
}

A.5 The Transmission Crisis Check Function

gint
check_video_ahead_crisis(ServSession *pps, ServWindow *win){

 GTimeVal t1;
 GTimeVal t2;
 GTimeVal t3;

 g_get_current_time(&win->win_tvnow);

 /* win_start_xmit oppdateres i ss_child_send_win_start */
 timersub(&win->win_tvnow, &win->win_start_xmit, &win->t2);

 timersub(&win->xmit_end, &win->xmit_start, &win->t3);

 if(timercmp(&win->t2, &win->t3, >)){
 return 0;
 }
 else if(timercmp(&win->t2, &win->t3, <)){
 return 1;
 }

}

A.6 The Adaptation Function

void
adaptation(ServSession *pps, ServWindow *pps_win){

 if(pps_win->xmit_timeout){

 if(pps->vid_ahead.tv_sec < lower_workahead_threshold){

 if((QSF_MAX_PRIORITY - pps->layer) > sdu->priority){
 update_video_ahead(pps, pps_win, 0);
 goto win_done;
 }

 }
 else{

 no_crisis = check_video_ahead_crisis(pps, pps_win);

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

113

 if(no_crisis == 1){

 if((QSF_MAX_PRIORITY - pps->layer) > sdu->priority){
 update_video_ahead(pps, pps_win, 0);
 goto win_done;
 }
 }
 else if(no_crisis == 0){

 #if PRINTLOG_TO_FILE
 fprintf(pps->logfile, "\n CRISIS!! \n");
 #endif

 update_video_ahead(pps, pps_win, 0);

 if(pps->vid_ahead.tv_sec > crisis_workahead_threshold){
 if((QSF_MAX_PRIORITY - pps->layer) > sdu->priority){
 update_video_ahead(pps, pps_win, 0);
 goto win_done;
 }
 }
 else{
 printf("CRISIS: NO TIME LEFT FOR THIS WINDOW! \n");

 #if PRINTLOG_TO_FILE
 printf(pps->logfile, "\n CRISIS: NO TIME LEFT FOR

 THIS WINDOW! \n");
 #endif

 if(QSF_MAX_PRIORITY > sdu->priority){
 update_layer(pps, pps_win, (15 - sdu->priority));
 printf("\n crisis updated layer is: %d \n", pps->layer);

 #if PRINTLOG_TO_FILE
 fprintf(pps->logfile, "\n crisis updated layer is: %d

 \n", pps->layer);
 #endif

 update_video_ahead(pps, pps_win, 0);
 goto win_done;
 }
 }
 }

 }//slutt else
 } /*slutt my if(pps_win->xmit_timeout)*/
}

A.7 The Workahead Transmission Function

void
workahead_start_next_win(ServSession *pps){

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

114

 ServWindow *win;
 GTimeVal tvnow;

 win = g_queue_peek_head(pps->mapped_wins);

 if(win == NULL){
 pps->workahead_limit = pps->vid_ahead;
 }
 else {
 g_aio_cancel_timeout(win->start_timeout);
 g_get_current_time(&tvnow);
 ss_win_xmit_start(&tvnow, win);
 }
}

A.8 The Initiation Function

void
initiation(ServSession *pps, ServWindow *pps_win){

 char wo[30];
 GTimeVal test;

 #if PRINTLOG_TO_FILE
 if(pps_win->number == 0) pps->logfile = fopen("servlog-auto", "a_);
 #endif

 #if WINDOW
 printf("\n");
 printf("\n WINDOW: %d \n", pps_win->number);
 #endif

 #if PRINTLOG_TO_FILE
 fprintf(pps->logfile, "\n");
 fprintf(pps->logfile, "\n WINDOW: %d \n", pps_win->number);
 #endif

 pps->myfile = fopen("text", "r");

 fscanf(pps->myfile, "%s \n", wo);
 #if BW
 printf("\n Current bandwidth from script: %s \n", wo);
 #endif

 #if PRINTLOG_TO_FILE
 fprintf(pps->logfile, "\n Current bandwidth from script: %s \n",
 wo);
 #endif

 pps_win->marked_baselayer_bytes = 0;

 if(pps_win->number == 0) pps->teller = 0;
 pps->teller = pps->teller + 1;

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

115

 if(pps_win->number == 0){
 pps->vid_ahead.tv_sec = 0;
 pps->vid_ahead.tv_usec = 0;
 pps->start_up = 0;
 pps->cur_win_bytes = 0;
 pps->last_win_bytes = 0;
 pps->b_k = 0;
 pps->b_k1 = 0;
 pps->goodcount = 0;
 pps->stablecount = 0;
 pps->stablelayer_incr = 0;

 update_layer(pps, pps_win, 30);
 }

 bandwidth_prediction(pps, pps_win);

 if(pps->vid_ahead.tv_sec >= lower_workahead_threshold){

pps->start_up = 1;
 }
 else if(pps->vid_ahead.tv_sec < lower_workahead_threshold &&
 pps_win->number != 0){
 pps->start_up = 0;
 update_layer(pps, pps_win, 40);
 }

 if(pps_win->number != 0 && pps->start_up == 1){
 update_layer(pps, pps_win, 0);
 }

 g_get_current_time(&pps_win->win_start_xmit);
 pps->time1 = pps_win->win_start_xmit;

}

A.9 Registering the Number of Bytes Written to TCP

void
ss_child_send_adu(ServSession *pps)
{
 ServWindow *pps_win;
 QsfMsg *msg;
 PpsSdu *sdu;
 PpsAdu *adu;
 off_t offset;
 size_t count;
 gint flush;
 gint may_drop;
 gboolean is_audio_adu;

 GTimeVal tid1, tid2, tid3;

 g_assert(pps);

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

116

 /*MY CODE*/
 pps->bytecount = pps->bytecount + pps->temp_count_store;

 pps_win = g_queue_peek_head(pps->xmit_wins);
 msg = heap_min_data(pps_win->sdus);
 QSF_SET_AFTER(msg, sdu);

 if(pps_win->adu_count == sdu->num_adus) {
 /* We've finished the entire SDU */
 goto sdu_done;
 } else if(!pps_win->frag_num_adus) {

 /* We finished the current frag. */
 if(ss_arg_drop_mid_sdu &&
 (!pps_win->xmit_timeout) &&
 (sdu->priority != QSF_MAX_PRIORITY)) {

 /* Drop the remaining frags */
 qsf_log_session(pps->log_session,
 "win %d: "
 "drop adus after sending %d of %d",
 pps_win->number,
 pps_win->adu_count,
 sdu->num_adus);
 goto sdu_done;
 } /* if */
 ss_child_send_frag_start(pps, 0);
 } /* else */

 QSF_SET_AFTER(sdu, adu);

 offset = adu[pps_win->adu_count].offset;
 count = adu[pps_win->adu_count].length;
 is_audio_adu = adu[pps_win->adu_count].is_audio;

 /*MY CODE*/
 pps->temp_count_store = count;

 …
 …
 …
}
/* ss_child_send_adu */

void
ss_child_send_sdu_head(ServSession *pps)
{
 QsfMsg *msg;
 PpsSdu *sdu;
 ServWindow *pps_win;
 PpsAdu *adu;
 size_t total = 0;

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

117

 size_t limit;
 size_t count;
 gint i;

 #if FULL_DATA_DEBUG
 MD5_CTX md5_ctx;

 #endif /* FULL_DATA_DEBUG */

 g_assert(pps);
 …
 …
 …

 count = sizeof(QsfMsg) + sizeof(PpsSdu) +
 sdu->num_adus * sizeof(PpsAdu);

 /*MY CODE*/
 pps->temp_count_store = count;
 …
 …
 …
}
/* ss_child_send_sdu_head */

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

118

Appendix B

This appendix provides a sample of the bandwidth scenario scripts that were used in this
thesis. Also the code for the spectrum2 filter is provided.

B.1 Sample of a Bandwidth Scenario Script

#!/bin/sh

tc qdisc add dev eth0 root handle 1:0 netem delay 100ms

tc qdisc add dev eth0 parent 1:1 handle 10: tbf rate 2mbit buffer 10000
limit 10000

echo "2mbit"
echo "2mbit" > text

sleep 8

tc qdisc change dev eth0 parent 1:1 handle 10: tbf rate 500kbit buffer
10000 limit 10000

echo "500kbit"
echo "500kbit" > text
sleep 10

for data in 590 680 770 860 950 1040 1130 1220 1310 1400 1490 1580 1670
1760 1850 1940 2030; do

tc qdisc change dev eth0 parent 1:1 handle 10: tbf rate
${data}kbit buffer 10000 limit 10000

 echo "${data}kbit"
 echo "${data}kbit" > text
 sleep 2
done

B.2 The Code for Computing the Spectrum2 Value

#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include <string.h>

int main()
{
 char wo[10];
 double getdata[65];

 double x;
 int teller = 0;
 int counter = 0;

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

119

 int arraycount = 1;
 double result;
 double newcount = 0;

 FILE *writefile;
 writefile = fopen("specvalue", "a");

 while(scanf("%s \n", wo) != EOF){
 newcount++;

 getdata[counter] = atof(wo);
 counter++;
 arraycount++;
 }

 arraycount--;

 double h[arraycount];
 double z[arraycount];
 double average;
 double layer_change_avg;

 x = 0;

 while(teller < arraycount){
 x = x + getdata[teller];
 teller++;
 }

 average = x / newcount;

 teller = 0;
 x = 0;
 counter = 0;
 newcount = 0;

 while(teller < arraycount){

if(teller != 0){
 if(getdata[teller-1] != getdata[teller]){
 if(getdata[teller-1] < getdata[teller]){
 x = x + (getdata[teller] - getdata[teller-1]);
 }
 else x = x + (getdata[teller-1] - getdata[teller]);

 newcount++;
 }
 }

 teller++;

 }/*slutt while*/

 if(newcount != 0) layer_change_avg = x / newcount;
 else layer_change_avg = 0;

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

120

 result = (1 / average) + layer_change_avg;

 printf("Specvalue: %f \n", result);
 fprintf(writefile, "%f \n", result);

}/*slutt main*/

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

121

Bibliography

[1] Eyal Menin, “Streaming Media Handbook”, Upper Saddle River, NJ :
 Prentice Hall, c2003, ISBN: 0-13-035813-4 (h.)

[2] Steve Mack, “Streaming Media Bible”, New York : Hungry Minds, c2002,
 ISBN: 0-7645-3650-8 (h.)

[3] Peter Symes, “Digital Video Compression”, New York : McGraw-Hill, c2004,
 ISBN 0-07-142487-3 (bok+CD-ROM), 0-07-142494-6 (bok) (h.),
 0-07-142495-4 (CD-ROM)

[4] Michael Zink, “Scalable Internet Video-on-Demand Systems”, Darmstadt University
 of Technology, September 2003, pp. 47- 66

[5] P.N Tudor, N.D Wells, ”Digital Video Compression: Standardisation of
 Scalable Coding Schemes”, Tadworth: Research and Development
 Department, Engineering Division, British Broadcasting Corporation, 1994

[6] John Watkinson, ``The MPEG Handbook : MPEG-1, MPEG-2,
 MPEG-4”, Amsterdam : Elsevier, c2004, ISBN: 0-240-80578-x (ib.)

[7] Bob O'Hara, Al Petrick, “The IEEE 802.11 Handbook - A Designer's Companion” ,
 New York : IEEE, 1999, ISBN: 0-7381-1855-9 (h.)

[8] Andrew S. Tanenbaum, “Computer Networks”, Prentice Hall International
 Edition 2003; fourth edition, pp. 292-302, 402-405, 547-550.
 ISBN 0-13-038488-7

[9] Richard W. Stevens, Gary R. Wright, “TCP/IP Illustrated Volume 1 & 2”,
 Reading, Mass. : Addison-Wesley, c1994-1996

[10] Charles Krasic, “A Framework for Quality-Adaptive Media Streaming:
 Encode Once – Stream Anywhere”, PhD thesis, Oregon Graduate Instituate,
 chapter 1-5, Portland, OR, USA, February 2004

[11] Charles Krasic, Kang Li, Jonathan Walpole,
 “The Case for Streaming Multimedia with TCP + Extended Version”,

Oregon Graduate Institute, Beaverton OR 97206, USA, September 2001

[12] Charles Krasic, Jonathan Walpole, “Priority-Progress Streaming for
 Quality-Adaptive Multimedia”, ACM Multimedia Doctoral Symposium,
 Ottawa, Canada, October 2001

[13] Charles Krasic, Jonathan Walpole, Wu-chi Feng, “Quality-Adaptive

The Department of Informatics Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network

122

 Media Streaming by Priority Drop”, 13th International Workshop on Network
 and Operating Systems Support for Digital Audio and Video (NOSSDAV 2003),
 June 2003

[14] Luigi Alfredo Grieco, Saverio Mascolo, ”End-to-End Bandwidth Estimation for

Congestion Control in Packet Networks”, Second International Workshop,
QoS-IP 2003, section 4, 4.3, Milano, Italy, February 2003.

[15] Belgacem Bouallegue, Ridha Djernal, Hattab Guesmi, Rached Tourki, “A Flow
 Control Approach and Interleaving Method for Real-Time Application in High-speed
 Network, section 4.2, Dedicated Systems Magazine, France, 2004

	
	Acknowledgments
	
	
	
	
	
	
	
	
	Abstract
	
	List of Figures
	
	Chapter 1: Introduction
	1.1 Streaming
	1.2 Problems Related to Streaming
	1.3 The Goal of this Thesis
	1.4 Thesis Structure
	Chapter 2: Background Materials
	2.1 Streaming in Practice
	2.1.1 Streaming with UDP
	2.1.2 Streaming with TCP

	2.2 Wireless Network
	2.2.1 IEEE 802.11 WLAN
	2.2.2 Simulation of a Wireless Network

	2.3 Scalable Video Format
	2.3.1 The MPEG Video Format
	2.3.2 Scalable Video
	2.3.3 SPEG – A Modification to MPEG

	2.4 Priority-Progress Streaming (PPS)
	2.5 Priority Mapping
	2.6 Overview of Qstream
	2.6.1 Collaboration of the Three Programs
	2.6.2 GAIO and QSF

	Chapter 3: The Analysis
	3.1 Part I – A Closer Look at Qstream
	3.1.1 Naming Conventions
	3.1.2 Data Structures
	3.1.3 Phase I – The Setup
	3.1.4 Phase II – The File Request
	3.1.5 Phase III – The File Fetching and Window Preparation
	3.1.6 Phase IV – The Transmission
	3.1.7 Work Conserving Strategy
	3.1.8 Window Scaling

	3.2 Part II - Ways of Improvement
	3.2.1 A Way to Confront the Wireless Network
	3.2.2 Prediction of the Network Bandwidth
	3.2.3 The Trade-Off between Quality and Workahead
	3.2.4 Proposal of Improvement Code

	Chapter 4: The Implementation
	4.1 Additions to the Data Structures
	4.2 Threshold Variables
	4.3 The Functions
	4.3.1 The Bandwidth Prediction Function
	4.3.2 The Written Bytes Update Function
	4.3.3 The Layer Update Function
	4.3.4 The Workahead Update Function
	4.3.5 The Transmission Crisis Check Function
	4.3.6 The Adaptation Function
	4.3.7 The Workahead Transmission Function
	4.3.8 The Initiation Function

	4.4 An Illustration of the Improvement Code
	
	4.4.1 Part I – Initiation
	4.4.2 Part II – Quality Adaptation

	Chapter 5: Testing the Improvement Code
	5.1 Bandwidth Scenarios
	5.2 Using the Original Qstream Code
	5.3 The Addition of the Improvement Code
	5.4 An Objective Metric to Represent the Perceived Quality
	5.5 An Objective Assessment of the Improvement Code
	5.5.1 Objective Quality when Connectivity is Getting Bad
	5.5.2 Objective Quality when Connectivity is Getting Good
	5.5.3 An Objective Quality Comparison Between The Original Qstream Code and The Improvement Code

	5.6 Evaluation of the Improvement Code

	Chapter 6: Conclusion
	6.1 The Achievement of this Thesis
	6.2 Future Work

	Appendix A
	A.1 The Bandwidth Prediction Function
	A.2 The Written Bytes Update Function
	A.3 The Layer Update Function
	A.4 The Workahead Update Function
	A.5 The Transmission Crisis Check Function
	A.6 The Adaptation Function
	A.7 The Workahead Transmission Function
	A.8 The Initiation Function
	A.9 Registering the Number of Bytes Written to TCP

	Appendix B
	B.1 Sample of a Bandwidth Scenario Script
	B.2 The Code for Computing the Spectrum2 Value

	Bibliography

