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Abstract 
 
The aim of this thesis is to find and implement an optimal solution for efficient utilization 
of the varying bandwidth of a wireless network when streaming a video, between a 
streaming server and a mobile wireless device. The video used in the research is in a 
layer-encoded format, which makes it possible to achieve quality-adaptive streaming 
through priority dropping of video layers. The research is based on an existing streaming 
software called Qstream. This software supports quality-adaptive streaming, by making 
use of the layer-encoded video format SPEG for streaming and an algorithm known as 
Priority-Progress Streaming (PPS) for priority data dropping. This thesis contributes by 
providing an improvement code, which is added to this software to make the quality-
adaptation work in a network with intensely varying bandwidth. The challenge also lies 
in the task of verifying how efficient the improved system is when handling different 
degrees of bandwidth variations 
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Chapter 1:  Introduction 
 
Through the years, video and audio have rapidly become an essential part of the Internet. 
As the interest for instant access to continuous media was growing, technology was 
improved to overcome the fact that multimedia files have to be fully downloaded before 
viewing is possible. Streaming was developed to support this instant access feature.  
However, achieving full utilization of streaming is not an easy task due to a number of 
technical problems. Network resources are probably the one of primary concern, as 
streaming in a satisfying way mostly depends on a good network bandwidth, which costs 
are expensive and slow to improve for wide areas. The following two sections, 1.1 and 
1.2,  provide a deeper insight into the meaning of streaming and the technical problems 
related to it. Section 1.3 gives an overview of the goal of this thesis. Finally, section 1.4 
provides a brief description of the structure of this thesis.  
 

1.1  Streaming 
 
Streaming is a term used to describe the process of transmitting multimedia data from a 
sender to a receiver over the Internet, or other kinds of network, for instant viewing. 
This is a precondition for live communication (telephony, video conferencing) and will 
improve user satisfaction in on-demand services. It is also favourable in the case of 
playing back multimedia files stored on remote machines. 
 
The benefit is that a receiver doesn't need to have access to the entire multimedia content 
before the playback can begin. The content will usually be played as soon as it arrives at 
the receiver. This is the reason why live viewing is possible, as streaming allows 
playback  to occur in real-time. Satisfaction in using streaming depends on continuous 
playout. Once the playback of the multimedia content begins, it should proceed according 
to the original timing of the content. The receiver must get data from the sender in time, 
or else jitter in playback will occur. 
 
In some streaming cases the receiver may have a buffer to store some future data. It is 
meant as a precaution against network problems that might result in data not arriving in 
time. Buffering is possible because transmission speed and playback speed are to a very 
large degree independent, which is explained in section 1.3. The receiver will be able to 
play the video/audio while it receives and buffer the later parts concurrently. This is 
typical when streaming a pre-recorded multimedia file from a remote sender. 
 
However, this is not always the case due to higher real-time demand in certain kinds of 
streaming. In a live communication for instance, it is not possible to buffer future data as 
these data might not have been captured yet. With network problems present, the receiver 
will likely have to accept jitter in this kind of presentation. 
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Streaming supports the three kinds of network traffic, unicast-, broadcast- and multicast-
traffic. In a unicast streaming, the multimedia content is transmitted separately from the 
sender to all the receivers that  request it. When broadcasting, a single copy of the 
multimedia content is sent to all receivers on the network. In general, both these methods 
waste bandwidth when the same data needs to be sent to only a portion of the receivers 
on the network. Unicast wastes bandwidth by sending multiple copies, while broadcast 
wastes bandwidth by sending to the whole network whether or not the multimedia 
content is wanted. Multicast was introduced to solve this problem as its strategy is to send 
a single copy of the data only to those receivers who request it. 
 

1.2  Problems Related to Streaming 
 
The problems that might arise when streaming are caused by limitations of the 
fundamental resources: processors, storage and network. These limitations may affect the 
performance of the streaming in the sense that continuous viewing is interrupted by errors 
like delay and jitter. The most crucial resource today, in regard to such failures, is 
perhaps the network, where the available network bandwidth plays a significant role.  
 
Since wide-area bandwidth costs are expensive and slow to improve, the primary 
challenge is to find ways to deliver video in a most efficient manner at low bandwidth 
costs. To reduce bandwidth costs, video compression and video distribution techniques 
have been developed. 
 
Video compression is basically a technique to reduce the size of a video file, but still 
maintain a good and acceptable video quality in comparing to the original one. Thus, the 
compressed video file requires less bandwidth to transmit. Different compression formats 
have been developed through the years. Among them is one named Moving Picture 
Experts Group (MPEG), which is of interest to this thesis and is elaborated in section 
2.3.1 of chapter 2. Most compression formats also have the ability to carry video with 
variable data rate. 
 
On the distribution side, improvements in speed and cost have been made to basic 
networking technologies such as link types, switchers, routers, etc. Techniques like 
caching and multicasting have also been taken into account to achieve efficient 
distribution of video content.  
 
Apart from the transmission cost problem, there is another issue for streaming that needs 
to be resolved. That is the handling of variable video and network rates. The main 
purpose of streaming is to deliver video across the network with proper timing, so that it 
is displayed at the receiver at the proper rate and without interruption. To be able to do 
this, the sender application is required to transmit the video in a most efficient way, with 
the variable video and network rates taken into consideration. Quality-adaptive 
approaches to streaming have been developed to solve this problem. As compression 
controls the rate of the video, these approaches have the task of adjusting the 
compression ratio of the video adaptively, so that timeliness of video playout is 
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maintained. According to how the network bandwidth is, the quality-adaptive approach 
will attempt to match the rate of the video to the rate of the network to achieve as 
efficient streaming as possible.  
 

1.3  The Goal of this Thesis 
 
The goal of this thesis is to determine how to deliver video to a mobile device, through a 
wireless network with varying bandwidth, in a most efficient manner. It should be noted 
that the wireless network is simulated in this thesis, but the idea is to develop a code that 
will also work in a real wireless network with varying bandwidth.  
 
A quality-adaptive streaming approach is required for the research as well as a scalable 
layer-encoded video format that is rate-adjustable. The quality-adaptive streaming 
algorithm Priority-Progress Streaming (PPS) and the scalable video format SPEG  
(scalable version of MPEG) are the two chosen candidates for this thesis. These are 
further explained in sections 2.4 and 2.3 of chapter 2, respectively. 
 
This thesis is based on unicast streaming over the Internet protocol Transmission Control 
Protocol (TCP), and the multimedia content used for streaming is a pre-recorded SPEG 
file stored on the sender machine. The issues about streaming over TCP are covered in 
section 2.1.2 of chapter 2. 
 
Qstream is a software that includes a quality-adaptive streaming system. It makes use of 
the PPS algorithm and is specifically developed for streaming over TCP. Improvement of 
this software is the primary interest of the research, as the goal is to make the quality of 
the streaming video adapt gracefully to the varying bandwidth condition caused by a 
wireless network. The details about Qstream is further elaborated in sections 2.6 of 
chapter 2 and 3.1 of chapter 3. 
 
The wireless network is simulated by using a network emulator, and thus different 
network bandwidth scenarios can be created to be used in tests, to verify the efficiency of 
the quality-adaptive streaming in different circumstances. The wireless network 
simulation is explained in section 2.2.2 of chapter 2.  
  
A scalable video stream indicates a stream that can be divided into several video layers. 
The details are covered in section 2.3.2 of chapter 2. Thus, it’s possible to adjust the 
amount of video layers that the streaming server is allowed to transmit, according to how 
the network condition is. Qstream has the ability to divide the video stream into smaller 
time intervals called adaptation windows, which is described in section 2.4 of chapter 2. 
Each window’s amount of layers, which defines the video quality, is independent of the 
other windows. Therefore, an adaptation window that consists of a small amount of  
video layers will result in a video with lower data rate, within the time interval that is 
covered by the window, compared to another adaptation window with more layers. It 
follows that the transmission speed of the video stream can differ from the playback 
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speed, as the transmission time of the adaptation windows depends on how many video 
layers the windows contain, and also on  the condition of the network. 
 
A concrete example will explain this more clearly. Assume that the maximum layers a 
video stream can be divided into is L, and among all the adaptation windows to be 
transmitted, there are two in the spotlight called A and B. Thus, each of the window 
contains L video layers that are possible to transmit.  
 
If the quality-adaptation algorithm decides that L1 layers of adaptation window A and L2 
layers of adaptation window B are to be transmitted, then the transmission time for 
adaptation window A is shorter than for adaptation window B if L1 < L,  L1 < L2 ≤ L, and 
the network bandwidth is equally good when transmitting the two adaptation windows.  
 

 
 

Figure 1: Independent Transmission Time 
 
Apparently this indicates that by decreasing the number of layers to be transmitted for a 
number of adaptation windows, the transmission time might get ahead of the playback 
time. The time difference is called the workahead time. This is the same as to say that the 
receiver is buffering some future data. Since the transmission is ahead of time, the 
receiver gets data that is not supposed to be displayed yet. These data are stored in a 
temporary buffer until the time for decode and display arrives.  
 
The buffering of future data is an important assumption for handling a streaming session 
over a wireless network with varying bandwidth. In a network with unpredictable 

   
            Adaptation Window A 

    Adaptation Window B 

    L  video layers in total for both windows

 L1 

L2 

Transmission    
    Timeline 

 End transmit A 

   End transmit B 
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bandwidth, the streaming system must be able to adapt to the condition of the network at 
all time, by estimating the balance point between workahead/buffering and video quality.  
This means that less layers for each adaptation window leads to reduced video quality, 
but more workahead/buffering. Buffering provides support in the sense that the playout 
doesn’t stop immediately if the connectivity suddenly is gone. How long the playout can 
keep going, depends on how much video left there is in the buffer. On the other hand, 
more layers for the adaptation windows give better video quality, but at the expense of 
workahead/buffering. This trade-off theory is elaborated in section 3.2.3 of chapter 3.  
 
To summarize, streaming over a unreliable wireless network with varying bandwidth 
needs to be controlled and quality-adapted. The main goal of this thesis is to develop an 
algorithm on the server side that makes the streaming server aware of the condition of the 
network at all time throughout a streaming session. Based on this awareness, the 
algorithm makes it possible for the streaming server to adapt the quality of the video 
stream according to the network condition. The adaptation is based on the issues 
discussed above, which consists of estimating the amount of video layers to transmit for 
each adaptation window, and the amount of workahead time to acquire at different times.  
 

1.4  Thesis Structure 
 
Chapter 2 provides a detailed description of the relevant background materials that this 
thesis is based on. The focus is put on the materials that are mentioned in the previous 
section.  
 
In chapter 3, a detailed analysis is performed on the Qstream software to reveal the areas 
that need to be improved in order to achieve the goal of this thesis. A proposal of an 
improvement code is also introduced and discussed.  
 
Chapter 4 provides an insight into the way the improvement code is implemented, which 
is based on the proposal made in chapter 3. The improvement code uses the C 
programming language, since Qstream is based on this language. However, to simplify 
and make it easier to understand, the code presented in this chapter is written in pseudo-
code.  
 
In chapter 5, the improvement code is tested and evaluated. The test part is based on a 
number of test cases (streaming sessions) that are performed on the code. The goal is to 
investigate if the improvement code solves the issues introduced in this thesis efficiently 
enough.  
 
Chapter 6 is the final chapter of this thesis, which consists of a conclusion and ideas 
about future work.  
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Chapter 2:  Background Materials 
 
This chapter provides an introduction to the background materials that are relevant for 
this thesis, which is based on a number of sources ([1], [2], [3], [5], [6], [7], [8], [9] [10], 
[11], [12], [13]). Section 2.1 describes the streaming technique in practice. Section 2.2 
and 2.3 cover the issues of wireless network and scalable video format, respectively. 
Section 2.4 and 2.5 introduce two algorithms, Priority-Progress Streaming (PPS) and 
Priority Mapping, which are fundamental for achieving quality-adaptive multimedia 
streaming. The last section of this chapter gives an overview of the Qstream software that 
is used and further developed in this thesis. 
 

2.1  Streaming in Practice 
 
Today there are several internet protocols available for streaming data, TCP, UDP, RTP, 
MMS and HTTP.  
 
User Datagram Protocol (UDP) is probably the most preferable protocol for streaming,  
and the following section will provide further details of this protocol. 
 
Transmission Control Protocol (TCP) has been considered less suitable for streaming, but 
in recent years there have been arguments against this claim [18]. Streaming softwares 
were also developed to prove that TCP might not be as bad as it's claimed to be. One 
example is the Qstream software which is used in this thesis. As this thesis is based on 
TCP streaming, the issues about TCP streaming are further elaborated in section 2.1.2. 
 
Microsoft introduced Microsoft Media Server (MMS) as the primary server protocol of 
their media technologies. MMS includes both Microsoft Media Server protocol/UDP 
(MMSU) and Microsoft Media Server protocol/TCP (MMST) as subsets to explicitly 
request the stream to use UDP or TCP respectively. This protocol has both a data delivery 
mechanism to ensure that packets reach the receiver and a control mechanism to handle 
client requests such as Play/Stop. 
 
Hyper Text Transport Protocol (HTTP) is the slowest of the protocols and is used by 
Internet Web Servers. HTTP is a well known protocol used everyday by people who 
browse the Internet. This protocol has the ability to simulate streaming by using a method 
called progressive download, and it is great for short contents. As the multimedia content 
is in downloading progress, the receiver computer will start playing the video/audio while 
it keeps downloading it concurrently. This will make it look like a real streaming, but in 
reality it's just a normal downloading process. The receiver must support this feature, or 
else the simulated streaming will not work. 
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2.1.1 Streaming with UDP 
 
User Datagram Protocol (UDP) provides a way for applications to send encapsulated IP 
datagrams. The transmit is possible without having to establish a connection, and UDP is 
therefore defined as a connectionless protocol. UDP transmits packets which consist of 
an 8-byte header followed by a payload. The header contains the source and destination 
ports, which helps the transport layer to deliver the packet to the right destination. UDP 
does not support flow control, error control (FEC, etc.) or retransmission upon receipt of 
a bad segment. All of that is up to the user processes. However, retransmission is 
generally considered bad for streaming because it adds latency at the application layer. So 
the fact that UDP is missing this feature, has been one of the reasons why it's favourable 
for streaming. A protocol widely used for streaming which runs on top of UDP, is the 
real-time protocol (RTP). Before sending a file into the network for streaming, it has to 
be split into smaller packets. The packets are typically encapsulated with special header 
fields that include sequence numbers and timestamps. Usually RTP is chosed to serve this 
purpose. 
 
RTP, defined in RFC 3550, is a standard used for transporting common formats such as 
PCM, GSM, MP3 for sound and MPEG and H.263 for video. What the sender side 
actually does is that it encapsulates a media segment within an RTP packet. The media 
segment along with the RTP header form the RTP packet. This packet is further 
encapsulated in a UDP segment which will be handed to IP (Network layer). The 
receiving side extracts the RTP packet from the UDP segment. From the RTP packet it 
will extract the media segment and use the header fields to properly decode and play back 
the segment with a media player. However, RTP does not provide any mechanism to 
ensure timely delivery of data or provide other quality-of-service (QoS) guarantees for 
the client application, and the delivery of packets to the application can also be out-of-
order. 
 
The RTP header consists of the following important header fields: 
 

• Payload type - This field is 7 bits long. For an audio stream, the field is used to 
indicate the type of audio encoding that is being used, for example PCM, adaptive 
delta modulation, linear predictive encoding, etc. For a video stream, the field 
indicates the type of video encoding, for example JPEG, MPEG-1, MPEG-2, 
H.261, etc. The space for payload types is limited, so only very common video 
and audio encodings are assigned static (permanent) types, such as those 
described above. On the other hand, dynamic payload types are not assigned in 
the RTP profile. They are dynamically assigned, and the meaning is carried by 
external means. They map an RTP payload type to an audio and video encoding 
for the duration of a session. Different members of a session could, but usually 
not, use different mappings. Dynamic payload types use the range 96 to 127 while 
static payload types use range below 90. 
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• Sequence number - This field is 16 bits long. The sequence number increments 
by one for each RTP packet sent, and may be used by the receiver to detect packet 
loss and to restore packet sequence. 

 
• Timestamp - This field is 32 bits long. The receiver can use timestamps in order 

to remove packet jitter introduced in the network and to provide synchronous 
playout of the media file. This timestamp is derived from a sampling clock at the 
sender. 

 
• Synchronization source identifier (SSRC) - This field is 32 bits long. SSRC is a 

number used to identify which packets that belong to the same RTP stream, and 
this number is randomly assigned by the source when the new stream is started.   

 
 
In addition to RTP there are also two other protocols defined, the RTP Control Protocol 
(RTCP) and the real-time streaming protocol (RTSP). 
 
As the name indicates, RTCP packets are control packets. These are sent periodically and 
contain sender and/or receiver reports that announce statistics useful to the application. A 
sender generates a sender report for each RTP stream that it is transmitting, while a 
receiver generates a reception report for each RTP stream that it receives. The 
sender/receiver aggregates its report into a single RTCP packet, and this packet is sent 
into the multicast tree that connects all the session's participants. 
 
The real-time streaming protocol (RTSP) is a signalling protocol. The following control 
actions are possible, pause/resume, fast-forward, rewind and repositioning of playback. 
The protocol is based on a set of request and response messages between the client and 
the server. It is similar to the HTTP protocol where all request and response messages are 
in ASCII text. The client employs standardized methods (SETUP, PLAY, PAUSE, etc.), 
and the server responds with standardized reply codes. The following example shows a 
client (C) requesting for playback of an audio file by sending a "PLAY"-RTSP message, 
and the server (S) that responds with an "OK"-RTSP message: 
 
 
C: PLAY rtsp://audio.example.com/twister/audio.en/lofi RTSP/1.0  
   Range: npt=0-  
   Cseq: 2  
   Session: 4231  
    
S: RTSP/1.0 200 OK  
   Cseq: 2  
   Session: 4231  
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2.1.2 Streaming with TCP 
 
Transmission Control Protocol (TCP) was considered unsuitable for streaming due to its 
two basic mechanisms, packet retransmissions and congestion control [18] . 
 
TCP was designed to provide a reliable end-to-end byte stream over an unrealiable 
internetwork. An internetwork may have different topologies, bandwidths, delays, packet 
sizes, etc. This led to the design of TCP which could dynamically adapt to the conditions 
of the internetwork and to handle various kinds of failures. 
 
TCP is a connection-oriented protocol which provides a connection-oriented service. For 
TCP service to be obtained, a connection must be explicitly established between 
instances of TCP on the sending machine and the receiving machine. Each machine 
supporting this protocol has a TCP transport entity that manages TCP streams and 
interfaces to the IP layer. This entity will accept user data streams from local processes 
and break them up into pieces not exceeding 64 KB. Each piece will be sent as a separate 
IP datagram. When the datagram arrives at the receiving machine, it is given to the TCP 
entity which is responsible for reconstructing the original byte stream from the received 
datagrams. 
 
The IP layer does not give any guarantee that datagrams will be delivered properly, so it 
is up to TCP to retransmit them when necessary. When TCP sends out data, it requires an 
acknowledgment (ACK) from the receiver in return. If the acknowledgment arrives 
several times or doesn't arrive at all, TCP must retransmit the data.  
 
TCP has an implemented function known as the fast retransmit algorithm which deals 
with retransmission. On the sender side TCP will count the ACKs for a sent datagram. If 
the ACK for datagram N is received three times at the sender, it will assume that the sent 
datagram N+1 is lost. The sender will then retransmit datagram N+1. Also it is the 
reponsibility of TCP to reassemble datagrams into messages in the proper sequence if the 
datagrams arrive in wrong order. 
 
In a streaming situation this is considered unacceptable, since it will introduce end-to-end 
latency. The claim is that re-sending is not appropriate in regard to the real-time nature of 
video, because the resent data would arrive too late at the receiver for display [18] . 
Another problem that might occur with retransmission is its potential to limit the 
effectiveness of end-to-end feedback mechanisms. 
 
The other drawback with TCP streaming is the congestion control mechanism. 
Congestion occurs when a network is offered more data than it can handle. A possible 
way to solve this problem is to refrain from injecting a new data packet into the network 
until an old one is delivered. TCP achieves this goal by dynamically manipulating the 
window size of a congestion window. This window will help exploring how much traffic 
the network can handle, and it will react upon a congestion. When a connection is 
established, the sender initializes the congestion window to the size of the maximum 
segment in use on the connection. After sending one maximum segment, hopefully an  
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acknowledgment will come back. If the acknowledgment arrives before timeout, the 
sender will add one segment's worth of bytes to the congestion window to make it two 
maximum size segments and sends two segments. When a congestion window is n 
segments and all n are acknowledged, the window is increased by the byte count 
corresponding to n segments.  
 
All TCP implementations support an algorithm called slow start. The idea of the 
algorithm is that if bursts of packets of size like 1024, 2048 or 4096 bytes work fine but a 
burst of 8192 bytes gives a timeout, then the congestion window should be set to 4096 to 
avoid congestion. The point is that whenever a congestion occurs, the congestion window 
will be set to half its size. When the transmission begins, slow start will be used to 
determine what the network can handle. The slow start algorithm will stop when a 
threshold (initally 64KB) is reached, and from that point on successful transmissions 
grow the congestion window linearly (by one maximum segment for each burst). When a 
timeout occurs, the threshold will be set to half of the current congestion window. The 
window is reset to one maximum segment, and the transmission will continue using the 
slow start algorithm again until the new threshold is reached. So basically this congestion 
algorithm probes available bandwidth, through deliberate manipulation of the 
transmission rate. When viewed over shorter time-scales, the transmission rates form a 
sawtooth shape. This shape indicates abrupt transmission rate changes, which 
unfortunately might impede efficient streaming. 
 

 
Figure 2: TCP Congestion Algorithm [8] 

 
Figure 2 shows how the TCP congestion algorithm works. The maximum segment size in 
use here is 1024 bytes. Initially, the congestion window was 64 KB. But because a 
timeout occurred, the threshold is set to 32 KB and the congestion window to 1 KB for 
transmission 0 here.  
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A way to resolve the problems introduced by TCP, is to employ buffering at the receiver 
application to smooth out the rate change. Protection from sudden rate reductions will be 
achieved by borrowing some current bandwidth to transmit future data and buffer these at 
the receiver. It is also a favourable solution to use a scalable video format for this 
purpose, since the video can be divided into different layers. When time or bandwidth is 
critical, the less important layers of the video is dropped. Scalable video is explained in 
section 2.3.2. 
 

2.2  Wireless Network 
 
This section provides some background materials about the wireless network standard in 
use today, along with a description of how to create a simulated wireless network which 
is necessary for the research of this thesis. 
 

2.2.1  IEEE 802.11 WLAN 
 
This section provides a short introduction into the IEEE 802.11 WLAN (Wireless Local 
Area Network). This was the first international standard for WLANs that was adopted 
back in 1997. 
 
The main difference from wired networks is that wireless networks make use of the air 
link instead of wires, which could either be the radio or infrared link between WLAN 
transmitters and receivers. The mobility provided here is an important feature and gives 
users the opportunity to move around freely with their laptops for instance. Since the data 
on a WLAN is broadcasted for everybody to hear, the IEEE 802.11 standard has provided 
a cryptographic mechanism in the protocol to protect the data being sent through the air. 
 
The IEEE 802.11 architecture consists of the following components: 
 

• The Station (STA) - This is the most basic component of a wireless network. It's 
a device that has the functionality of the 802.11 protocol and has the ability to  
connect to the wireless medium. It consists of a MAC (Medium Access Control) 
and a PHY (Physical Layer) which is explained more later. The station may be 
mobile, portable or stationary, and it also supports station services such as 
authentication, deauthentication, privacy and data delivery. A station could be a 
laptop PC or a handheld device, and they are usually referred to as the network 
adapter or network interface card (NIC). 

 
• The Basic Service Set (BSS) - This is known as the basic building block of an 

802.11 wireless LAN, and it's defined as a group of any number of stations. When 
all the stations in the BSS are mobile and not connected to a wired network, the 
BSS is called an independent BSS (IBSS). In an IBSS all stations can 
communicate directly with other stations under the condition that they are within 
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range of each other. When the BSS includes an access point (AP), it is no longer 
independent and is called an infrastructure BSS, usually referred to simply as a 
BSS. The difference now is that the stations do not communicate directly with 
each other, but go via the AP. 
 

• The Access Point (AP) - The AP provides the local relay function for the BSS 
and the connection to a wired LAN if there is any. As told in the previous section, 
a station in an infrastructure BSS doesn't communicate directly with another  
station. Instead the communication is first sent to the AP and then forwarded from 
the AP to the other mobile station, aka. data being relayed between the mobile 
stations by the AP. One major advantage about this is that the AP can buffer data 
frames for mobile stations. So when these data frames are requested by another 
mobile station and the source station is in power saving mode, the AP can provide 
the station with the requested data frames from the buffer, without having to 
'wake up' the source station. That way mobile stations in power saving state can 
remain in such condition for longer periods. 

 
• The Wireless Medium - The IEEE 802.11 standard defined three physical (PHY)  

layers which are an infrared (IR) baseband PHY, a frequency hopping spread 
spectrum (FHSS) radio in the 2.4 GHz band and a direct sequence spread 
spectrum (DSSS) radio also in the 2.4 GHz band. 
 

• The Distribution System (DS) - The DS could be defined as a mechanism by  
which an access point communicates with another access point to exchange data 
frames for stations in their BSSs, forward frames to follow mobile stations from 
one BSS to another, and exchange frames with a wired network. The requirements 
of the DS is that it must provide certain distribution services. There are no 
restrictions on the implementation of the DS,  and it can be referred to as an 
abstract medium. 

 
• The Extended Service Set (ESS) - An ESS is a set of infrastructure BSSs,  

where APs communicate among themselves to forward traffic from one BSS to 
another and to facilitate the movement of mobile stations from one BSS to 
another. 

 
The IEEE 802.11 architecture has defined nine services which are divided into two 
groups, station services and distribution services. 
 
Station services: 
 

• Authentication - Provides a mechanism for a station to identify another station. 
Without such proof of identity, a station is not allowed to use the WLAN for data 
delivery. 
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• Deauthentication - This is used to eliminate a previously authorized user from 
any further use of the network. Once a station is de-authenticated, it can not 
access the WLAN without performing the authentication function again. 
 

• Privacy - This mechanism is supposed to protect the data as it traverses the 
wireless medium. The level of security of this protection is equally good as that of  
a wired network. The privacy service is an encryption algorithm based on the 
802.11 Wired Equivalent Privacy (WEP) algorithm. 

 
• Data delivery - This provides a reliable delivery of data frames from the MAC in 

one station to the MAC in one or more other stations. 
 
 
Distribution services: 
 

• Association - A logical connection between a mobile station and an AP is 
required before a station can send data through the AP onto the distribution 
system. This is also known as an association between a mobile station and an 
access point. 

 
• Reassociation - This enables a station to change its current association with an 

access point to be able to associate with a new access point. The station can 
provide information to the new AP,  so that it can contact the previous AP to 
obtain frames that may be waiting there for delivery to the mobile station, or other 
relevant information. 

 
• Disassociation - This is used to make a mobile station eliminate its association to 

an access point. The mobile station can also use this service to inform an access 
point that it no longer needs the services of WLAN. When a station becomes 
disassociated, it must go through the association process to be able to 
communicate with an access point again. 

 
• Distribution - This is the primary service used by a 802.11 station. A mobile 

station uses the distribution service every time it sends MAC frames across the 
distribution system. This service provides the information to determine the proper 
destination BSS for the MAC frame.  

 
• Integration - This service connects the IEEE 802.11 WLAN to other LANs, 

including one or more wired LANs, or other IEEE 802.11 WLANs. It is also 
capable of translating IEEE 802.11 frames to frames that may traverse another 
network, and vice versa. 

 
 
Medium Access Control (MAC) 
The 802.11 MAC layer provides the functionality to allow reliable data delivery for the  
upper layers over the noisy, unreliable wireless media. Another function it provides is a  
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fair controlled access to the shared wireless medium. A third function is to protect the 
data that it delivers, and the MAC layer does this by providing a privacy service that's 
been mentioned earlier, Wireless Equivalent Privacy (WEP). This layer also implements 
a frame exchange protocol to allow the source of a frame to determine when the frame 
has been successfully received at the destination. 
 
Physical Layer (PHY) 
This layer is the interface between the MAC and the wireless media where data frames 
are being transmitted and received. The PHY provides three functions. The first one is an 
interface with the upper MAC layer for transmission and reception of data. The second 
function is that the PHY uses signal carrier and spread spectrum modulation to transmit 
data frames over the media. And thirdly, the PHY provides a carrier sense indication back  
to the MAC to verify activity on the media. 
 

2.2.2  Simulation of a Wireless Network 
 
Since a real-world wireless network is not completely predictable, a simulated wireless 
network is necessary for this thesis. 
 
The Linux network emulator Netem is used to emulate the variable bandwidth of a 
wireless network. This emulator supports a range of queuing disciplines, where the first-
in first-out (FIFO) discipline is the one of interest. By queuing it means to manipulate the 
way in which data is sent. In FIFO, the data packets are placed in a single queue and are 
served in the same order they were placed. 
 
In addition, the Token Bucket Filter (TBF) algorithm, which is also supported by Netem, 
is used to control the amount of outgoing data packets. It consists of a buffer (bucket) that 
is constantly filled by some virtual pieces of information called tokens, at a specific rate 
(token rate). Each generated token collects a certain amount of bytes from the data queue 
and is then deleted from the bucket. The collected bytes of data are then allowed to be 
transmitted. If the bucket becomes empty of tokens, then the arriving data must wait for 
more tokens to be generated before they can be transmitted. 
 
The TBF algorithm allows saving, up to the maximum size of the bucket, n. This property 
means that bursts of up to n bytes can be sent at once, allowing some burstiness in the 
output stream and giving faster responses to sudden bursts of input. 
 
The relation between tokens and data packets gives three possible scenarios: 
 

• The data arrives in TBF at a rate that is equal to the rate of tokens being 
generated. In this case each incoming byte gets a token and passes the queue 
without delay.  

 
• The data arrives in TBF at a rate that is smaller than the token rate. Only a part of 

the tokens are taken by the incoming data. The number of tokens eventually 
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accumulates up to the bucket size. The unused tokens can then be used to send 
data at a speed that's exceeding the standard token rate, in case short data bursts 
occur.  

 
• The data arrives in TBF at a rate bigger than the token rate. This means that the 

bucket will soon be devoid of tokens, which causes the TBF to throttle itself for a 
while. This is called an 'overlimit situation'. If data keeps coming in, they will 
start to get dropped. 

 
To emulate a wireless network with a highly varying bandwidth, a simple script can be 
written to vary the token rate at different times throughout a streaming session.  
 

2.3  Scalable Video Format 
 
This section introduces the meaning of scalable video. The scalable video format SPEG is 
a modification of a compressed video format called MPEG and is used in the research of 
this thesis. Section 2.3.1 provides a description of the MPEG format. Section 2.3.2 
describes scalable video in general, while section 2.3.3 focuses on the SPEG format.  
 

2.3.1  The MPEG Video Format 
 
Moving Picture Experts Group (MPEG) is the name of  a family of standards used for 
coding audio-visual information in a digital compressed format. With its sophisticated 
compression techniques, the video quality achieved is equally good compared to other 
coding formats, but at lower file sizes which is a major advantage. 
 
The MPEG family of standards include MPEG-1, MPEG-2 and MPEG-4, formally 
known as ISO/IEC-11172, ISO/IEC-13818 and ISO/IEC-14496. The MPEG-2 format is 
an improvement of  the MPEG-1 format with higher picture resolution and data rate. 
Because of this, MPEG-2 requires more space than MPEG-1 when storing a video file of 
equal running time.  
 
An MPEG video stream basically consists of consecutive picture frames which define the 
motion picture. There are three different picture frames: I (Intra) -frames, P (Predicted) -
frames and B (Bidirectional) -frames. I-frames are complete pictures that can be decoded 
without needing any other information. It is similar to a JPEG still image. This type of 
frame requires the most storage space compared to the other two types. P-frames are 
predictions from the previous reference frames, which could be I-frames or P-frames. The 
idea is to 'borrow' parts of the reference frame that are common with the current frame. It 
can for instance be a macroblock in the previous I-frame that hasn't moved an inch since 
then, so there is no need to recreate that block for this frame. The format makes use of a 
motion vector to derive these common parts, which are called “predictive coded” 
macroblocks. Parts that are not possible to borrow from the reference frame must be 

http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=11172
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=13818
http://www.iso.ch/isob/switch-engine-cate.pl?searchtype=refnumber&KEYWORDS=14496
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encoded as I-frames, also known as “intra coded” macroblocks. So basically a P-frame 
consists of “intra coded” and “predictive coded” macroblocks. An estimation of the size 
of a P-frame is about 30-50 % of an I-frame. B-frames are also predictions from other 
reference frames. The difference here is that these can be predictions from both previous 
and later frames. This is possible due to the fact that the encoder already has access to the 
later frames at the start of encoding of the frame. The size of a B-frame is estimated to be 
around 50 % of a P-frame. A collection of consecutive frames in MPEG is known as a 
GOP (Group Of Pictures). An MPEG videostream is therefore built from a row of GOPs. 
One GOP usually corresponds to about 0.5 - 1 second of video length and consists of a 
combination of the three types of video frames described above. The first frame in a GOP 
must be an I-frame. Because of this the MPEG video stream will be easy to edit. 
Corruptions in the stream can be skipped by searching to the next I-frame, and it will also 
be possible to perform "random access" on the video stream. 
 

2.3.2  Scalable Video 
 
The purpose of scalable video is to make the video stream adaptable to different 
conditions of server and client applications, in addition to a varying bandwidth of a 
unreliable wired/wireless network. Scalable video can achieve this adaptability by 
splitting the video stream into different layers.  
 
The lowest layer is called the base layer and has the lowest acceptable video quality. This 
layer is the minimum requirement that must be transmitted when streaming the video. 
Apart from this, there is also one or more enhancement layers. To achieve a better picture 
quality, these layers can be added to the base layer when possible, but at the cost of 
higher data rate. The amount of enhancement layers to be used will depend on the 
streaming application and the network capacity. 
 
The following primary methods of scalable coding are explained in details below: 
 

• SNR (signal-to-noise ratio) scalability 
• Temporal scalability 
• Spatial scalability 

 
Each of these methods has their own way to create the base layer and the additional 
enhancement layer(s). 
 
SNR (signal-to-noise ratio) scalability 
This coding technique is based on the DCT (Discrete Cosine Transform) encoding. The 
DCT can transform a signal or image from the spatial domain to the frequency domain. 
As a result we get a set of frequency coefficients which measure how fast intensities of an 
image are changing. It should be noted that the frequency coefficients measure the 
difference between two neighbour pixels. The frequency coefficients can be runned 
through a process called quantization. The main goal of this process is to transform near-
zero coefficients into zeroes. These zero coefficients represent the high frequency area. In 
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other words, high frequency data have been removed. Because the human eye is less 
sensitive to high frequency information, we can remove this without actually getting any 
visible loss. It is possible to adjust the level of quantization. By increasing the 
quantization factor, more data will be removed, and as a result we will get a reduced 
picture quality. In SNR scaling this is how the base layer is created. The raw video data is 
DCT encoded and then quantized with a large factor which will result in large amounts of 
data being removed. The enhancement layer is made by first running Inverse DCT on the 
quantized base layer. This data will then be subtracted from the original data, and the 
outcome will be DCT encoded once again with a lower quantization factor. This is 
illustrated in figure 3. The idea here is that if an enhancement layer manages to arrive at 
the client, then it will be added to the base layer before running Inverse DCT.  
  
 

 
Figure 3: SNR Scalable Coding [5] 

 
Temporal scalability 
Frame rate is defined as frames per second (fps), which is the number of video frames 
being displayed per second. High frame rate means smoother playback of a video stream, 
while low frame rate results in choppy playback. The normal playback framerate is 25-30 
fps. Temporal scalability is based on the manipulation of the frame rate of a video stream. 
The purpose here is to create a base layer video stream with low frame rate but with a 
minimum acceptable picture quality. The enhancement layers will be added to the base 
layer when possible to achieve a video stream with higher frame rate. The idea is to 
remove B-frames from the video stream, so that the base layer will only consist of I-
frames and P-frames. It's also possible to remove P-frames if necessary. The removed 
frames will then become the enhancement layer(s). 
 
Spatial scalability 
In this coding technique we work at the pixel level of a video frame. The base layer 
consists of downsampled frames of the original images where we code less pixels. To 
create the enhancement layer we subtract the base layer pixels from all the pixels of a 
frame. If the enhancement layer manages to arrive at the client, the layers are added 
(DCT decoded) together to create higher resolution images. 
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2.3.3  SPEG – A Modification to MPEG 
 
As mentioned, SPEG is the scalable video format used in this thesis, which is a 
modification to MPEG and introduces scalability in the transmission rate of a video 
stream. SPEG was implemented because there was no freely available implementations 
of layered extensions for existing video standards (MPEG-2, MPEG-4). SPEG combines 
temporal and SNR scalability which improves the granularity of scalability. 
 
One thing to notice is that SPEG can be derived from the different MPEG standards, and 
still maintain the different standards’ properties, such as picture resolution and the range 
of capable data rate. It follows that a SPEG file (S1) converted from an MPEG-1 source 
has video layers of smaller sizes than the layers of a SPEG file (S2) converted from an 
MPEG-2 source. This means that when streaming S2, a higher network bandwidth is 
required to achieve satisfying playback, compared to when streaming S1. 
 
It should be noted that the Qstream software (section 2.6), that is used and further 
developed in this thesis, operates with 16 video layers in total. It divides the SPEG video 
stream into smaller time intervals in which each interval has 1 base layer and 15 
enhancement layers. These intervals are known as adaptation window. This is explained 
in section 2.4. Section 4.3.6 of chapter 4 further elaborates on how the video layers are 
used and referred to.  
 

2.4  Priority-Progress Streaming (PPS) 
 
Priority-Progress Streaming (PPS) is a streaming algorithm which has the ability to adapt 
to the rate decisions of a TCP congestion control mechanism. The basic idea is that 
higher prioritized data packets are transmitted before those with lower priorities. The PPS 
algorithm also defines how to manage timing and priorities simultaneously. 
 
To realize the idea of prioritized data packets, a scalable video format like SPEG has 
been taken into account. Since the video stream can be split into many layers, it's possible 
to apply priorities to the different video layers. The base layer will get the highest 
priority, while the enhancement layers will be marked with lower priorities. The layers 
are represented by units called Application Data Units (ADU). 
 
By using an algorithm called priority mapping (explained in section 2.5), the ADUs are 
grouped into units called Streaming Data Units (SDU). The ADUs with the same 
timestamp will become part of the same SDU. The SDUs are then marked with priorities 
according to the ADUs they contain, and they are placed into a so-called adaptation 
window.  
 
An adaptation window is meant to represent a specific time interval of the streaming 
video, as the PPS algorithm subdivides the timeline of the video into a sequence of time 
intervals using the SDU timestamps. Therefore, an adaptation window contains all the 
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SDUs with timestamps within its time interval. The relationship between ADUs, SDUs 
and adaptation windows is illustrated in figure 4. The SDUs of an adaptation window are 
processed by priority. The idea is that by the end of the transmission timeline of an 
adaptation window, all the SDUs within the window that haven't been transmitted are 
discarded. Recall that Qstream operates with 16 video layers in total. That is, each 
adaptation window has 1 base layer and 15 enhancement layers. These layers are 
represented by the SDUs. The SDUs of the enhancement layers are of lower priority than 
the SDUs of the base layer. The different levels of enhancement layers are also sorted by 
priority. 
 
 

 
 

 
Figure 4: The Relationship Between ADU, SDU and Adaptation Windows 

 
 
Based on the SDU timestamp labels, PPS can regulate the progress of the video stream to 
ensure that the receiver can achieve proper playback timing. The PPS algorithm consists 
of three subcomponents, the upstream buffer, the downstream buffer, and the progress 
regulator.  
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Figure 5: PPS Conceptual Architecture [17] 

 
The upstream buffer admits SDUs within the time boundaries of an adaptation window. 
Time boundaries are chosen by the progress regulator, which is also responsible for 
advancing the window forward. This will trigger unsent SDUs from the old window 
position to be expired and dropped, and the window is then populated with SDUs from 
the new position. The SDUs flow in priority-order from the upstream buffer through the 
bottleneck (for example the TCP transport) to the downstream buffer, where the 
transmission rate is controlled by the bottleneck. Upon arrival of data, the downstream 
buffer will collect ADUs contained in SDUs and re-order them to their original 
timestamp order. The contents are then passed on for decoding and display. In the case of 
late arrival of SDUs, the process regulator will adjust the phase between the regulator 
clock and the downstream clock, in an attempt to prevent late SDUs in the future. As the 
bottleneck can have a varying bandwidth in certain cases, like in a wireless network, the 
downstream buffer may not always be able to receive all the SDUs. It will receive as 
many SDUs as the bottleneck allows, and the rest which are of lower priority will be 
dropped at the server. This method of prioritized dropping will adapt the video quality to 
match the network conditions between the sender and the receiver.  
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2.5  Priority Mapping 
 
The previous section briefly introduced the algorithm called priority mapping. The 
priority mapper used in this thesis is the one included in the Qstream software. The 
details about this software is covered in section 2.6 and section 3.1 of chapter 3. A 
priority-mapper assigns priorities to the units of a media stream, so that priority drop 
yields the most graceful degradation, as appropriate to the viewing scenario. The mapper 
used by Qstream is depicted in figure 6. 
 

 
Figure 6: Priority mapping  [17] 

 
 
The inputs are ADUs and the quality adaptation policy. The output of the mapper is a 
sequence of SDUs. Each SDU contains a subset of the input ADUs, a timestamp and a  
priority computed by the mapper algorithm. 
 
The adaptation policy consists of utility functions where users can specify their 
preferences. Figure 7 shows the general form of a utility function.  
 

 
Figure 7: Utility function  [17] 
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The horizontal axis describes an objective measure of lost quality, while the vertical axis 
describes the subjective utility of a presentation at each quality level. The region between 
the q-max and q-min thresholds is where a presentation has acceptable quality. The q-
max threshold indicates a point where the quality of the presentation is as good as perfect, 
while the q-min threshold marks a point where lost quality has reached beneath an 
acceptable level. In the case of priority mapping for SPEG, the adaptation policy contains 
two utility functions, one for spatial quality and one for temporal quality. 
 
The mapping algorithm subdivides the timeline of the video stream into intervals called 
mapping windows and prioritizes the ADUs within each window separately, which is 
done in two phases. 
 
In the first phase, the ADUs are partially ordered according to a “drop before” 
relationship. This means that base layer ADUs should not be dropped before their 
corresponding enhancement layer ADUs. This kind of ordering constraint represent hard 
dependency rules, in that they simply reflect SPEG semantics. There are also soft 
dependency rules which ensure that frame dropping is spaced as evenly as possible. For 
example, if half the frames are to be dropped, then it is better to drop every other frame 
rather than clustered dropping such as keeping even GOPs and dropping odd GOPs. 
 
In the second phase, the adaptation policy is used to refine the partial ordering from the 
first phase, generating the prioritized SDUs. The algorithm works through an iterative 
process of elimination of ADUs. For each iteration a set of candidate ADUs (initially all 
ADUs from the mapping window), that are still in the set of unprioritized ADUs, is 
considered. The mapper computes, for each of these candidate ADUs and quality 
dimension (spatial and temporal in SPEG), the presentation quality that would result if 
the candidate ADU was dropped. For the temporal quality dimension, the mapper 
computes the frame rate. For the spatial quality dimension, the spatial level is computed. 
The utility functions are used to convert the computed quality values to corresponding 
utilities. The candidate ADU that has the highest utility is selected as the next victim, as 
that ADU will have the smallest impact on utility when dropped next. The priority value 
for the victim ADU is a linear (inverse) fitting of the utility into the range of priority 
values. The iterations stop when all ADUs have been assigned a priority. Once the 
mapper has assigned priorities to all of the ADUs in a map window, it groups them into 
SDUs. In this mapping algorithm, there is one SDU per priority level, which contains all 
the ADUs that ended up with the same priority. Another main attribute of an SDU is its 
timestamp. The SDUs are all set to have the same timestamp as the first video frame in 
the whole map window. All the ADUs in a map window are grouped into a single set of 
SDUs, distinguished by priority, but sharing the same timestamp. 
 
 
 
 
 
 



The Department of Informatics                     Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network                                         

 

23  
 

2.6  Overview of Qstream 
 
Qstream is one of the softwares that makes use of the PPS protocol. It consists of several 
components. Among them is a component called Qvid, which is the video streaming 
system that supports quality-adaptive streaming over TCP, and is based on the notion of 
priority data dropping. It uses the scalable video format SPEG for streaming. 
 
Qvid is actually a collection of several programs, and these are the most significant ones 
for this thesis: 
 

• StreamServ - The main functions of this program are video retrieval, priority 
mapping and PPS transmission. The video retrieval is either a stored SPEG file, or 
a live video capture from a webcam that's being encoded to SPEG in real time. It 
should be mentioned that this thesis doesn't include the latter part. 

 
• StreamPlay - This player represents the receiver side of the PPS protocol. It takes 

care of video decoding and display, and also defines the usual functions of a video 
player. 

 
• FileServ - This program is responsible for checking that a requested video 

bitstream and index files are available for streaming. It also prepares the requested 
media file for StreamServ to fetch. 

 

2.6.1  Collaboration of the Three Programs 
 
In this thesis Qstream is configured to work in a unicast streaming mode, as figure 8 
shows. The architecture basically consists of two nodes, the upstream node and the 
downstream node. The upstream node contains the two programs FileServ and 
StreamServ, while the downstream node consists of StreamPlay. FileServ and 
StreamServ were initially two separated programs, but were later merged into a single, 
dual-threaded program for an ease of use purpose. 
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Figure 8: Qstream architecture for unicast mode  [17] 
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streaming session. The PPS session of StreamServ takes care of everything that happens 
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responsible for all that happens, within the same streaming session, at the client side.  
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forwards to FileServ. Upon receiving the message, FileServ tries to find the requested 
video. Details about the message passing protocol used are covered in section 2.6.2. 
 
The next step for StreamServ is to initialize an adaptation window. As mentioned earlier, 
an adaptation window represents a fixed timeline in the streaming video. Thus, it requires 
several adaptation windows to cover the whole timeline of the streaming video.  
 
After initializing an adaptation window, StreamServ contacts FileServ to retrieve the 
range of video data that falls within the interval of the window. The window is 
responsible for this range of video data in the sense that it contains a pointer to the data. It 
should be noted that as soon as an adaptation window is ready to be transmitted, 
StreamServ initializes and prepares the next adaptation window in the video timeline.  
 
When the range of data is retrieved, StreamServ runs the adaptation window through the 
mapping function, which is described in section 2.5. A deadline is computed for the 
adaptation window to determine when the transmission of the window should start. When 
the time comes for the adaptation window to be transmitted, StreamServ sends a window 
start message to the client to indicate that the streaming is about to begin. The client will 
initialize its stream clock and be prepared for the adaptation window to arrive. 
StreamServ also schedules a timeout for the adaptation window to mark when the 
window expires. If the timeout fires before the transmission of the entire adaptation 
window contents complete, then the algorithm proceeds to drop unsent data for the 
window. If an adaptation window finishes before its expiry timeout, then StreamServ has 
to cancel the timeout scheduled for that specific window. 
 
As mentioned, StreamServ prepares the next adaptation window when the current 
window is ready for transmission. The preparation of the next adaptation window is then 
done concurrently with the transmission of the current one. If the preparation of the new 
window finishes before its transmission time, then it is scheduled with a deadline as 
indication of when to start the transmission. However, if the deadline happens to have 
already past by the time the preparation finishes, the scheduler starts the transmission of 
the window as soon as possible. 
 
On the client side a play window is created when the client receives the window start 
message from StreamServ. The play window is initiated with the contents of the window 
start message, and later it is used to store the data that arrive. That is, one play window is 
created for each adaptation window arriving. The expiration time of the play window is 
also being computed and put into a scheduling scheme. When the window expires, it is 
put into a scheduling queue for decoding and display.  
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2.6.2  GAIO and QSF 
 
Another component of Qstream is qsf. This is actually a collection of modules that 
collectively makes up the Quasar Streaming Framework library (libqsf). This library is 
used by the rest of the Qstream software and contains two main modules, GNU 
Asynchronous IO (GAIO) and Quasar Streaming Framework (QSF). These two modules 
realize the idea of a reactive programming model, which basically means an event-based 
programming model. 
 
An event is a notification of either a result of a requested IO operation being ready, an 
expiration of a scheduled deadline or an available time slot to do a computation. Only one 
event is active at a time. Once invoked, it is allowed to execute to completion. This 
means that a long running computation should be spread across multiple events. IO and 
computation events are prioritized, and an application can dynamically set these priorities 
according to its own needs. 
 
The GAIO library provides the core Application Programming Interface (API) for 
reactive programming in Qstream. It offers services that make it possible to schedule 
events for execution immediately or at a given time deadline. It also contains a GAIO 
event dispatcher which is the core of the application's state machine. The applications 
(StreamServ and StreamPlay) call functions of GAIO and QSF, providing an event-
handler callback parameter (in the form of a C function pointer) to be invoked when the 
requested action is complete (the IO has completed or the deadline expired). The GAIO 
event dispatcher can schedule the handlers for the mix of IO completion events, deadline 
events and immediate events. It ensures that executions of event handlers are atomic, 
which means that every time an event handler is dispatched, it is allowed to run to 
completion before another handler can be dispatched. 
 
An event handler of a specified priority can be scheduled for execution as soon as 
possible. For example, if computations are running by scheduling and dispatching a long 
running loop of separate events, the loop may be interrupted if another higher priority 
event occurs, such as an IO completion or a deadline expiry. It's also possible to allow the 
application to schedule an event handler for execution at a set deadline time by using a 
timer primitive. The deadline can be specified as an absolute time, or time relative to the 
current time. When the deadline expires, the event dispatcher will execute the handler as 
soon as possible.  
 
GAIO also provides a tool called Worst Case Execution Time (WCET). As the name 
indicates, this tool measures the duration of event handlers that are dispatched, with the 
purpose of estimating if the running time of the handlers affect the overall timeliness of 
an application. 
 
Qstream includes a second library called QSF (Quasar Streaming Framework) which 
provides services that are more specialized to network streaming applications. QSF is a 
higher level API built on top of GAIO for message passing protocols, including 
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connection establishment for clients and servers (initiate and accept connections), 
message creation helpers for clients, and message dispatching for servers. 
 
A set of routines for message formatting for logging and debugging are also implemented 
to help understanding the dynamics of the program executions. QSF also provides 
support for using OS real-time scheduling. However real-time running might be 
dangerous, as it could lead to live-locks which could crash the whole system. QSF solves  
this by creating a watchdog process that can detect and kill the application if a live-lock 
occurs. QSF was developed with the intention of directly supporting the message oriented 
style of the PPS protocol. It provides a generic API for message oriented protocols, of 
which PPS is one instance. The goal is to provide a simple API for sending and receiving 
messages.  
 
All messages share a generic message header. The length and type fields contain the 
essential information necessary to implement message oriented communication over a 
(TCP style) reliable, byte-stream session. The length field indicates the size in bytes of 
the message body that follows the header. The type field indicates what kind of message 
that is contained in the body, and it’s application specific. The magic field is for 
debugging purposes, like to detect corruption of the basic framing of messages. 
StreamServ, StreamPlay and FileServ make use of this message passing protocol to 
communicate with each other during a streaming session. To distinguish between the 
different connections and functions of these programs, naming conventions have been 
introduced. StremServ’s connection to FileServ is called helper. Whenever StreamServ 
wants to send a message to FileServ, it passes the message via functions with the word 
helper as part of name indication. StreamServ’s downstream connection to StreamPlay is 
called child, and StreamPlay’s upstream connection to StreamServ is called parent. The 
messages exchanged between StreamServ and StreamPlay comprise the PPS protocol. 
Each PPS session begins with StreamPlay establishing a transport level connection to 
StreamServ, which in turn establishes a connection to Fileserv. From then on, the PPS 
session consists of a sequence of application level messages exchanged across the 
transport connections.  
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Chapter 3:  The Analysis 
 
This chapter is divided into two main sections of analysis. The first section is an 
elaboration of section 2.6.1 of chapter 2, which provides a deeper insight into the code of 
Qstream. The second section proposes improvements to the existing code. 
 

3.1  Part  I – A Closer Look at Qstream 
 
This first part of the analysis presents the server and client algorithms for PPS in more 
depth. The focus is put on the various C-coded functions of StreamServ and StreamPlay. 
Sections 3.1.3 – 3.1.6 present the streaming scenario in four phases, which are explained 
in details with references to the functions called in the different steps. These four phases 
include start-up of programs, creation and initiation of data structures, requesting and 
fetching of a media file, preparation of adaptation windows, and the actual streaming 
process. Section 3.1.1 describes the naming conventions used by the functions of 
StreamServ and StreamPlay, while section 3.1.2 provides a description of the most 
relevant data structures used by these two programs. Section 3.1.7 describes an important 
strategy of Qstream, which is known as work conservation. Finally, the last section of 
this chapter describes an option included in the PPS algorithm, which is known as 
window scaling.  
 

3.1.1  Naming Conventions 
 
Each of the programs (StreamServ, StreamPlay and FileServ) contains several functions 
which have a particular naming convention. Each function name begins with a prefix that 
identifies which Qstream program or to which library the function belongs. The ss prefix 
is for functions in the StreamServ program, sp is for functions in StreamPlay, and fs is for 
functions in FileServ.  
 
The qsf prefix is used for QSF library functions. The second component of the name, as 
mentioned in section 2.6.2 of chapter 2, refers to the object on which the function acts or 
was triggered by. These are the words helper, child and parent which refer to 
StreamServ's connection to FileServ, StreamServ's downstream connection to Stream-
Play, and StreamPlay's upstream connection to StreamServ, respectively. The remaining 
suffix of the name describes the action performed by the handler. 
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3.1.2  Data Structures 
 
There are two main data structures in the StreamServ program, one for state related to a 
PPS session and the other for individual adaptation windows. These are shown in figure 9 
and figure 10. 
 
The ServPpsSession object is allocated for each PPS session (section 2.6.1 of chapter 2). 
As the names child and helper are references to StreamPlay and FileServ respectively, the 
child_session and helper_session fields are handles used to exchange messages with the 
programs via QSF.  
 
The next three fields show the different queues for adaptation windows that each session 
maintains. As mentioned in section 2.6.1 of chapter 2, the adaptation windows go through 
different steps in the preparation stage. The recv_windows queue holds adaptation 
windows as they are initialized with the video data range fetched from storage. The 
mapped_windows queue holds adaptation windows that have been prioritized but are not 
ready for transmission yet. The xmit_windows queue holds adaptation windows that the 
mapper has finished prioritized and are eligible for transmission.  
 
The workahead_limit field is used for configuration of a work conserving mode. In this 
mode, the transmission of an adaptation window is allowed to start immediately if 
bandwidth was enough for the previous window to finish before its deadline. However, 
this is allowed only up to the configurable workahead_limit of the session. It should be 
noted that this workahead_limit variable is an essential part in the research of this thesis. 
More details are covered in section 3.1.7.  
 
The map_session field is a pointer to a MapSession object that contains state for the 
mapper algorithm. The variables expand_end, shrink_start and growth_rate are used to 
update the size of adaptation windows for an option of PPS called window scaling 
(section 3.1.8).  
 
ServPpsSession { 
 QsfSession child_session; //Handle for TCP connection downstream 
 QsfSession helper_session; //Handle for local connection to FileServ 
 Queue recv_windows; //Windows captured/fetched from storage 
 Queue mapped_windows; //Windows mapped beyond workahead limit 
 Queue xmit_windows; //Adaptation windows ready to stream 
 StreamHeader stream_header; //Contains video duration, fps, etc. 
 Integer video_fd; //File descriptor for video data 
 Time session_origin; //Base time of regulator clock 
 Time phase_offset; //Worst case transport latency 
 Time  workahead_limit; //For work conserving mode 
 MapSession mapper_session; //Mapper specific session state 
 Time expand_end; //When window sizes stop growing 
 Time shrink_start; //When window sizes start shrinking 
 Time prev_vid_end; //Video end position of latest window 
 Float growth_rate; //How fast the windows grow/shrink 
 Boolean serv_ready; //First window ready for transmit 
 Boolean child_ready; //Child has sent start request 
} 

Figure 9: The PPS Session  Object for StreamServ [17] 
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The ServPpsWindow object is allocated per adaptation window (section 2.4 of chapter 2). 
The vid_start and vid_end fields delimit the position of this window within the video 
timeline. The xmit_start and xmit_end fields are the window's position within the 
transmission timeline.  
 
The start_timeout field stores a handle to a scheduled GAIO event (section 2.6.2 of 
chapter 2), which in this case is the event that enqueues the window for transmission. 
This field can be manipulated by the workahead_limit variable in the work conserving 
mode, as a decrease of value in the start_timeout field will make the window start its 
transmission phase earlier than originally planned (step 5 of phase III, section 3.1.5). On 
the other hand, the xmit_timeout field is used to issue an GAIO event that will trigger the 
transmission phase to stop for the current window. In this case, recall from section 2.4 of 
chapter 2 that unsent SDUs are dropped, and the next window is allowed to start. 
 
The fetch_done flag is used to track whether FileServ has fetched the contents. When the 
contents from FileServ are received, the adus field will store these unprioritized ADUs. 
The mapper algorithm will consume the content of adus, and then prioritize and group the 
ADUs transforming them into SDUs (sections 2.4 and 2.5 of chapter 2). The mapper will 
proceed to insert the SDUs into a heap data structure, which is pointed to by the sdus 
field. 
 
ServPpsWindow { 
 Time vid_start; //Start position in video timeline 
 Time vid_end; //End position in video timeline 
 Time xmit_start; //Start position in transmit timeline 
 Time xmit_end; //End position in transmit timeline 
 Time xmit_deadline; //End position in absolute time 
 Boolean fetch_done; //Window has arrived 
 Queue adus; //Window contents before mapping (time order) 
 Heap sdus; //Window contents after mapping (priority order) 
 Timeout start_timeout; //Handle to timeout scheduled to start transmit 
 Timeout xmit_timeout; //Handle to timeout scheduled to stop transmit 
} 

Figure 10: The Adaptation Window Object for StreamServ [17] 
 
 
PpsSdu { 
 Time timestamp; //Derived from map window 
 Integer priority; //Assigned by mapper 
 Integer num_adus; //PpsAdus follow, then ADU payloads 
 PpsAdu adus[num_adus]; //Index ADU payloads 
 Bytes payloads[]; //ADU payloads (variable length) 
} 
 
PpsAdu { 
 FileOffset offset; 
 Integer length; 
} 

Figure 11: SDU and ADU objects [17] 
 
 
The data structures for the SDU and ADU objects can be seen in figure 11. An SDU 
contains the timestamp and priority, along with a group of ADUs. The adus field is an 
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array with pointers to the ADU objects, which describe the logical location of the ADUs 
within the video bitstream.  
 
 
Similar to StreamServ, there are two main data structures in StreamPlay, a per-session 
object called PlayPpsSession and a per-adaptation window object called PlayPpsWindow, 
shown in figure 12 and figure 13. 
 
A PlayPpsSession object is allocated for each active PPS session (section 2.6.1 of chapter 
2). The parent_session field is a handle to the network socket to StreamServ 
corresponding to the PPS session. The session_origin field contains the start time of the 
transmission phase for this session and is used as the basis for converting time of day 
values to the transmission and display timelines. The slack field is used to mark, for each 
arriving SDU, the remaining time before the deadline for the adaptation window 
currently in transmission phase. A negative slack value means that the last SDU received 
was late, and the value is then used to maintain the correct phase offset between the 
StreamServ and StreamPlay clocks. 
 
The xmit_window field is a pointer to a PlayPpsWindow object (seen in figure 13) which 
corresponds to the current adaptation window of the transmission phase. The 
decode_windows field is a queue of PlayPpsWindow objects for adaptation window(s) in 
the process of decoding. In the work conserving mode, this queue makes it possible for 
the transmission phase to work more than one window ahead of the decode and display 
phase. 
 
PlayPpsSession { 
 QsfSession parent_session; //Handle for TCP connection upstream 
 StreamHeader stream_header; //Contains video duration, fps, etc. 
 Time session_origin; //Base time of regulator clock 
 Time slack; //How early did last SDU arrive? 
 PlayPpsWindow xmit_window; //Window in transmission 
 Queue decode_windows; //Adaptation window in decode/display 
} 

Figure 12: The PPS Session Object for StreamPlay [17] 
 
 
The PlayPpsWindow object is instantiated for each adaptation window in the video 
timeline. The vid_start and vid_end fields delimit the position of the window in the video 
timeline. The xmit_start field indicates when the window must begin its transmission 
phase, while the xmit_end field contains the time at which the decode/display phase for 
the window must start. The xmit_timeout field is a handle to a scheduled timeout, which 
can also be used to cancel the timeout in the event that processing of the window 
completes prior to the timeout deadline.  
 
The num_base_sdus and num_sdus field are used to detect conditions such as when the 
base layer is complete and when the entire window is complete. The adus field is a 
handle to the heap data structure that is used to sort the contents of SDUs from priority 
order back to the original time order. 
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PlayPpsWindow { 
 Time vid_start; //Start position in video timeline 
 Time vid_end; //End position in video timeline 
 Time xmit_start; //When should xmit start 
 Time  xmit_end; //When should xmit end 
 Timeout xmit_timeout; //Handle for cancellation 
 Boolean decode_started; //Has decode already started? 
 Integer sdu_count; //How many SDUs so far 
 Integer num_base_sdus; //How many SDUs in base layer 
 Heap adus; //Window contents (time order) 
}  
 

Figure 13: The Adaptation Window Object for StreamPlay[17] 
 
 
A field that both the ServPpsSession and PlayPpsSession objects share in common, is the  
stream_header field which points to a StreamHeader object that contains configuration 
information from the video. The StreamHeader object is shown in figure 14. 
 
StreamHeader { 
 VideoRate video_rate; //Fps, timecode settings 
 Time duration; //Total duration of stream 
 Integer h_size; //Horizontal resolution 
 Integer v_size; //Vertical resolution 
 Time preroll_duration; 
}  
 

Figure 14: The StreamHeader Object [17] 
 
When StreamServ receives this object from FileServ, it passes it forward to StreamPlay. 
The resolution information (h_size and v_size fields) is used by StreamPlay to initialize 
the display window during startup. The preroll_duration variable is used to inform the 
PPS of the smallest feasible adaptation window duration. The video_rate and duration 
fields indicate the framerate and running time of the video respectively. Both StreamServ 
and StreamPlay need to have this information. 
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3.1.3  Phase I – The Setup 
 
This phase involves the start-up of the three programs and the process of how they 
connect to each other. The necessary data objects will be created and initiated, like the 
ServPpsSession and PlayPpsSession objects. This is depicted in figure 15. 
 

1) When StreamServ starts up, it creates a thread that triggers FileServ to start 
running as well. The two programs will then put themselves in a ready  state for 
further requests. 

 
2)  When StreamPlay starts up, its main function calls sp_stats_ready to get the name 

of the requested media file by parsing a list of names built from the input 
command. This function then calls sp_parent_connect, passing the name as an 
argument. Sp_parent_connect creates and initiates the necessary data objects, like 
the PlayPpsSession object. The name of the requested file is stored in the 
PlayPpsSession object for later use. Then by calling qsf_connect, StreamPlay 
initiates a connection to StreamServ.  

 

 
 

Figure 15: Phase I 
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3) The function ss_child_acceptor of StreamServ is called when the new connection 
with StreamPlay has been accepted. This function creates a ServPpsSession 
object, and then it initiates a local connection to FileServ. 

 
4) FileServ's function fs_push_accept is called when the new connection with 

StreamServ has been accepted. FileServ then calls the function qsf_msg_ 
start_recv to enable the application-level message dispatching for incoming 
messages. FileServ then responds to StreamServ, reporting that the connection has 
been accepted. 

 
5) When the response from FileServ arrives at StreamServ, the function ss_helper_ 

connected is called. This function calls qsf_msg_start_recv twice, to enable the 
application-level message dispatching for both the downstream TCP connection 
to StreamPlay and the local connection to FileServ. 

 
6)  It follows that StreamPlay gets the similar kind of response from StreamServ,              
     reporting that the connection to StreamServ has been accepted. StreamPlay's      

           function sp_parent_connected is called to start message dispatching for incoming    
           messages on the connection to the parent (StreamServ). It then calls the function  
           sp_parent_send_open_file which is the starting point of phase II. 
 
 
The code of this phase will remain unchanged in the further research of this thesis, as it’s 
not a part of the code that needs to be improved. 
 

3.1.4  Phase II – The File Request 
 
This phase will describe how the file request process is handled by the three programs 
and is depicted in figure 16. 
 

1) StreamPlay's function sp_parent_send_open_file prepares a qsf message with all 
 the necessary information about the file to be requested, like the name of the file 
 and the length of the name. The qsf message is then sent to StreamServ via the  
 application-level message passing protocol enabled in phase I, also discussed in    
 earlier sections. 

 
2) StreamServ's function ss_child_recv_open_file is called upon receiving the qsf 

message from StreamPlay. This function simply forwards the message to 
FileServ. 

 
3)  Upon receiving the message, FileServ's function fs_push_open_file is called. This  

function performs a look-up for the requested file. If the look-up succeeds, then 
the function prepares a StreamHeader object (refer to data structure section) with 
relevant information about the requested file, that it sends back to StreamServ via 
a qsf message. 
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4)  The function ss_helper_recv_open_file of StreamServ is called upon the arrival of 

the response message from FileServ. This message is then forwarded to 
StreamPlay, as it includes the StreamHeader object which StreamPlay needs to 
initialize its display. The function ss_win_prep_first will then be called by 
ss_helper_recv_open_file, with the starting time point of the video passed as an 
argument.  

 
5) The purpose of the function ss_win_prep_first is to allocate a ServPpsWindow      

object for the first adaptation window. It initializes all the necessary variables of 
the window object and puts the new window in the recv_windows queue, where it 
will stay until the preparation is complete. The function ss_helper_send_read_ 
range is then called to initiate FileServ to locate and fetch the contents of the 
window from storage. This marks the entrance to phase III. 

 
       

 
      

Figure 16: Phase II 
 
 

     6)   When StreamPlay receives the message from StreamServ, the function sp_parent   
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initialize play-out, such as duration of the stream, width and height of the video, 
and frame rate. The function then sends a qsf message to StreamServ to             
indicate that the player is ready to commence streaming. 

 
7)   The message from sp_parent_recv_open_file triggers StreamServ's function      

ss_child_recv_start_stream to be called. This is an indication that the child 
(StreamPlay) is ready to receive the first adaptation window. The function 
ss_child_recv_start_stream tests if the first adaptation window has been fully 
prepared. If so, then the function ss_start_stream is called, which starts phase IV. 
This assumes that phase III has finished, which is explained in the next section. 
  

The code of this phase will remain unchanged in the further research of this thesis, as it’s 
not a part of the code that needs to be improved. 

 

3.1.5  Phase III – The File Fetching and Window Preparation 
 
This phase provides a description of how the requested file is fetched and prepared for 
streaming, and it is depicted in figure 17. It should be noted that the processes of this 
phase is repeated for each new adaptation window.  
 

1) When StreamServ has finished preparing an adaptation window, as explained in             
phase II, it will call the function ss_helper_send_read_range. This function 
prepares a qsf message which includes the starting and ending time points of the 
window. The message is sent to FileServ to locate and retrieve all the ADUs 
(from the requested media file) that fall within the time points specified. 

 
      2)  When the message arrives at FileServ, it triggers the function fs_push_range_get.  

This function fetches the requested range of the media file and prepares a reply 
message with necessary information, that it sends back to StreamServ. 

 
2) The response message from FileServ triggers the function ss_helper_recv  
      _read_range of StreamServ. The message is parsed by the function to get the  
      content, which is an array of ADU descriptors for the ADUs that fall within the  

range requested. These are stored for later processing by the priority mapper. The  
window is then put into a scheduling queue, where the mapper function ss_map 
_adus is scheduled to be run as soon as no other higher priority events are 
pending. 
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Figure 17: Phase III 
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The code of this phase will remain unchanged in the further research of this thesis, as it’s 
not a part of the code that needs to be improved. 
 

3.1.6  Phase IV – The Transmission 
 
This final phase describes the process of transmitting an adaptation window. It should be 
noted that when an adaptation window is starting its transmission phase, the preparation 
of the next window is being done concurrently (phase III). The following presentation is 
depicted in figure 18. 
 

1) The call of the function ss_start_stream marks the start of this phase. This func-
tion can be dispatched in two different ways. If StreamServ is not ready with the 
preparation of the first adaptation window by the time the child (StreamPlay) is 
ready to receive this window, then ss_map_done will be responsible for calling 
ss_start_stream when the preparation is finished (phase III). However, if the child 
is not ready by the time StreamServ is finished preparing the first adaptation 
window, then ss_map_done will not call ss_start_stream. Instead the function 
ss_child_recv_start_stream, which is dispatched when the child is ready, calls the 
function ss_start_stream (phase II). That is, the main task of  ss_start_stream is to 
initiate the transmission phase for the first adaptation window in the stream. It 
calls the function ss_child_send_stream_start, which purpose is to send a 
message to StreamPlay reporting that the streaming is about to begin. 
Ss_start_stream also calls the function ss_win_xmit_start to begin the trans-
mission. 

 
2) When StreamPlay receives the streaming-start message from StreamServ, the     

function sp_parent_recv_stream_start is dispatched. The client side stream clock 
is initialized, and StreamPlay is then prepared to receive the first adaptation 
window. 

 
3) On the server side, ss_win_xmit_start has been called. The current adaptation 

window is moved from the mapped_wins queue to the xmit_wins queue. Thus, the 
window is ready to be transmitted. A timeout is scheduled to mark the expiration 
of the window. If the timeout fires before the transmission of the entire window 
contents complete, then the algorithm will proceed to drop unsent SDUs for this 
window. For the first adaptation window, ss_win_xmit_start calls the function 
ss_child_send_win_start to begin the transmission. Then the ss_win_prep_next 
function is called to initiate preparation of the next adaptation window in the 
video timeline. It calls ss_helper_send_read_range, which repeats the processes 
of phase III for the next window. This preparation will then proceed concurrently 
with the transmission of the current window. 

 
4) The function ss_child_send_win_start initiates a window start message and  
      sends it to StreamPlay before it starts the transmission. The window start message  
      contains infos such as the number of SDUs expected for this particular adaptation  
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      window, the start time of the video stream and the end times of the video and the  
transmission. Then the function initiates another message to be sent downstream  
to StreamPlay, containing a notification that the function ss_child_send_sdu_head  
is called whenever StreamPlay is ready to receive the adaptation window. 

 
5) The SDU data structure consists of a header and a payload. The header part of the     

SDU contains an array of ADU descriptors which specifies offset and length of   
each ADU within the video bitstream, and the payload consists of the ADUs that 
have been grouped together. StreamServ starts by sending the SDU header first. 
This is done by the function ss_child_send_sdu_head. This function then 
proceeds to call the ss_child_send_adu function to transmit the first ADU of the 
SDU. Ss_child_send_adu repeatedly calls itself to transmit the next ADU in the 
same SDU, until the SDU is empty. After finishing one SDU, the function 
ss_sdu_next is called. 

 
6) The function ss_sdu_next is called to transmit the next SDU in the adaptation     

   window. If there are still SDUs left, then ss_child_send_sdu_head is called to  
begin transmission of the next SDU. The pick of a SDU depends on the priority  
order. However, if the heap in which the SDUs are stored is empty or the current  
adaptation window is expired, then the function ss_win_done is called. It should  
be noted that an adaptation window is allowed to ignore its expiration deadline, if  
the expiration occurs before the base layer is finished transmitting. The trans-
mission will end as soon as the base layer is transmitted. 

 
7) The function ss_win_done checks if the current window finished before its expiry 

timeout occured. If that's the case, then the window's timeout is cancelled. If 
there's any adaptation windows left in the xmit_wins queue, then ss_win_done 
calls ss_child_send_win_start to initiate transmission of the next adaptation 
window in the queue. However, if the current window turns out to be the last one 
in the stream, then an end of stream message is sent downstream by calling the 
function ss_child_eof. 

 
8) Upon receiving a window start message from ss_child_send_win_start, Stream-

Play's function sp_parent_recv_win_start is dispatched. This indicates that a new 
adaptation window is about to arrive. Apart from the first adaptation window, this 
is also the normal indication that the previous adaptation window is done 
transmitting, and that it should be committed to decode and display. In this case, 
the function sp_win_xmit_done will be called after this step. A new instance of 
PlayPpsWindow is created for the new adaptation window to arrive, and it's 
initialized according to the contents of the window start message, such as the 
number of SDUs expected and the time value for transmission end, so that 
StreamPlay can compute an expected deadline for this new window. After the 
window start message, SDUs for this new window will start to arrive. 
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      9)  The function sp_parent_recv_sdu is responsible for receiving the incoming SDUs. 
A counter in the PlayPpsWindow object tracks the number of SDUs which have 
arrived. The purpose is to check whether the base layer of the window is complete 
or whether all of its SDUs have arrived. The ADUs contained within the SDU are 
entered into a heap, which has the effect of sorting all of the ADUs for the 
window back to their original time-order. If the current window receive all the 
SDUs before its expiration deadline, then sp_parent_recv_sdu calls the function 
sp_win_xmit_done. However, if the current window expires before being able to 
receive all the SDUs, then sp_parent_recv_sdu calls the function sp_win_ 
decode_start as soon as the base layer is received. 

 
 
 
 

 
Figure 18: Phase IV 
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It seems reasonable to apply a quality-adaptation algorithm each time an SDU of an 
adaptation window is transmitted. According to the condition of the network, a 
consideration is made to either transmit the next SDU of the window or to skip the rest of 
it. This indicates that step 6 is one important insertion point for the improvement code. 
Step 4 is extended with a call of an initiation function which is explained in section 4.3.8 
of chapter 4. 
 
Step 5 needs to be extended in order to register the number of bytes that is written to 
TCP. This is necessary for a bandwidth prediction to work as section 3.2.2 shows, and 
section 4.1 of chapter 4 presents the variable bytecount in the ServPpsSession object that 
takes care of this registration. Since the function ss_child_send_adu goes through an 
iteration to transmit the next ADU of the same SDU, the previous ADU is considered 
successfully written to TCP whenever a new ADU is to be transmitted. Thus, the number 
of bytes for the previous ADU is added to the variable. It should be noted that the byte 
amounts of the SDU header parts, transferred in the function ss_child_send_sdu_head, 
are also added to the same variable.  
 
The function ss_win_done mentioned in step 7 also needs to be extended with a little 
condition that is triggered whenever there is a need to ensure that the next adaptation 
window starts its transmission phase as soon as possible. A function is then called to 
handle this case, which is further explained in section 4.3.7 of chapter 4.  
 
Section 4.4 of chapter 4 gives a detailed overview and illustration of all these changes. 
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3.1.7  Work Conserving Strategy 
 
The work conserving strategy can be claimed to be a fundamental assumption for 
developing the improvement code. It was implemented to support quality-adaptive 
streaming over TCP. TCP's congesion control causes abrupt transmission rate changes, as 
discussed in section 2.1.2 of chapter 2, which might impede efficient streaming. This 
strategy helps smoothing the rate change out, by employing buffering at the client 
application. 
  
If the transmission of an adaptation window finishes earlier than its estimated deadline, 
then this strategy makes it possible for StreamServ to advance immediately to the next 
adaptation window, discarding that window's original deadline for transmission start. 
However, in a non work conserving strategy this is not the case. StreamServ instead waits 
for the start deadline of the next window, which leads to a temporarily network 
transmission pause. 
 
Qstream handles the work conserving strategy by adjusting the start deadline of an 
adaptation window according to a time variable called workahead_limit. This variable is 
part of the ServPpsSession object.  
 
If StreamServ manages to finish the transmission of a window at time T1 when the actual 
deadline of that window is T2, where T1 < T2, then the difference T2 –T1 forms the 
workahead time T3. This computed workahead time T3 is then subtracted from the start 
deadline of the next adaptation window. As a result the next window starts its 
transmission phase T3 time earlier than the original start deadline. 
 

 
Figure 19: Ilustration of Work Conservation 
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The transmission timeline then advances faster than the real-time rate of the video. As a 
consequence, StreamPlay receives some video data earlier than it needs them. As 
mentioned in section 1.3 of chapter 1, this is good in the sense that StreamPlay can store 
these data in its buffer/queue, as a protection against future rate reductions caused by 
either TCP or other network failures. 
 
This strategy is an essential part of the implementation of the improvement code, because 
it makes it possible for StreamPlay to buffer future data as a precaution against sudden 
loss of network connectivity. The usefulness of this strategy is further elaborated in 
section 3.2. 
 

3.1.8  Window Scaling 
 
The PPS algorithm includes an option called window scaling, which means that the size 
of adaptation windows is adjustable during a streaming process. The window starts out 
minimal to minimize the startup latency. Then the window durations grow with each new 
adaptation window as the stream plays. The adaptation windows grow by a rate of 
growth_rate, which is a variable that is specified in the ServPpsSession object. There are 
two other variables in addition, which are the time variables expand_end and 
shrink_start. The expand_end variable determines when the windows are to stop 
growing, which means that the window duration has reached the maximum allowed size. 
The next adaptation windows are initiated with this maximum size until the shrink_start 
time is reached. The shrink_start variable indicates that the next consecutive windows are 
to shrink according to a rate of 1 / growth_rate. Figure 20 provides an illustration of the 
window scaling. 
 
 

 
Figure 20: Window Scaling 
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Latency is a general problem that often occurs in a streaming session. All streaming 
algorithms buffer some data, which in turn add some latency to the overall end-to-end 
latency between the sender and the receiver. In the case of PPS, shorter adaptation 
windows will reduce its contribution to end-to-end latency. In PPS, the duration of the 
adaptation windows plays a significant role in achieving  consistent video quality. It is a 
goal to adapt the video quality with least noticeable effect to the user, and this is done by 
making fewer quality changes, which in the case of PPS can be achieved by increasing 
the duration of the adaptation windows. Thus, window scaling provides a way to yield a 
balance between latency and consistency.  
 
In this thesis, the improvement code is based on adaptation windows, whose size are of 
fixed duration. Section 3.2.2 of chapter 3 describes that bandwidth predictions are 
necessary for the improvement code to work. These predictions are based on bandwidth 
measurements of a past condition of the network, in which a prediction is done once for 
each new adaptation window. Based on these predictions, StreamServ is aware of the 
condition of the network at all time. To make sure the information of the network 
condition is up to date, the predictions should be made as regularly as possible. Thus, it’s 
reasonable to use a small, fixed size of adaptation window for this purpose. Another 
reason for using fixed size adaptation windows, is because of the usage of a low-pass 
filter for bandwidth measurement, which is described in section 3.2.4.  
 
When the window scaling option is turned off, the adaptation windows have a fixed 
duration of 2 seconds. That is, each adaptation window has a maximum transmission time 
of 2 seconds in the original implementation of Qstream.  
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3.2  Part II - Ways of Improvement 
 
This part of the analysis identifies the improvements that can be made, in order for 
Qstream to be able to handle a streaming session over a wireless network with varying 
bandwidth. The focus is put on the parts of the code that need closer analyzing, and a 
proposal of an improvement code is discussed and analyzed. 
 

3.2.1  A Way to Confront the Wireless Network 
 
As discussed in section 1.3 of chapter 1, the main goal of this thesis is to improve the 
code of Qstream in a way that it can handle a streaming session gracefully over a wireless 
network with bandwidth that varies intensely over a longer period. 
 
The wireless environment can be quite noisy and unreliable at times. Thus, it might lead 
to major changes in the available bandwidth over longer time intervals. This will 
unfortunately affect the performance of the streaming system.  
 
A critical point are the expiration deadlines of adaptation windows. If the network 
bandwidth falls below a useful level over a longer period of time, the transmission of an 
adaptation window will eventually not be able to catch up with its scheduled transmission 
time. The current implementation of Qstream assumes a continuously stable and good 
network bandwidth. For this reason, StreamServ always sends all the SDUs of the 
different video layers, of an adaptation window, to StreamPlay without any further 
restrictions. This is acceptable if the network bandwidth never drops to an unusable level 
at any time.  
 
In the case of a bandwidth drop, a timeout can occur for an adaptation window if its 
transmission phase begins too late. The solution to this problem of the current Qstream is 
to only send the base layer SDUs of the window and then move on to the next window in 
the transmission queue. Another way of getting a timeout is when a window exceeds its 
transmission time. The unsent SDUs for the remaining video layers are dropped, and the 
next window in the queue begins its transmission phase. 
 
In a network with an unpredictable and varying bandwidth, the algorithm described 
above is not appropriate for achieving a smooth and satisfying playback of a streaming 
video over a longer time-scale. If the bandwidth varies intensely over a longer period of 
time, the quality of the streaming video is also changing in a similar intense way. In the 
worst case, only the base layer of the adaptation windows is transmitted, and some 
windows can even be dropped completely due to timeout. This is unacceptable, as 
thoroughly bad or highly varying video quality is not pleasant for the human eye. A test 
is performed in chapter 5 to verify this. 
 
The work conserving strategy introduced in the first part of this analysis is appropriate for 
solving the problem regarding wireless network streaming. Since this strategy allows 
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StreamServ to work ahead of time, it is possible for StreamServ to transmit more data to 
StreamPlay than required, at a moment in which the network bandwidth is good enough. 
StreamPlay stores these future data in its buffer. Thus, the buffering of extra data at 
StreamPlay makes up for the possible loss of data transmission which might occur when 
the network connectivity is getting bad. When the network connectivity is partially or 
completely lost, and StreamServ has some workahead time to spare, then the situation is 
not critical for the playout at StreamPlay, as long as the loss doesn't exceed the 
workahead time. 
 
Although the work conserving strategy solves the issue of connectivity loss, there is need 
for an algorithm that knows how to make use of the workahead time in an efficient way. 
This is where the improvement code comes into the picture. The improvement code must 
assist StreamServ in computing how much workahead time that should be put aside in 
different circumstances in a fair manner. This depends on some kind of information about 
the condition of the network and how much data it can handle. A way to achieve this is 
by implementing an algorithm to predict the network bandwidth. This is elaborated and 
discussed in the next section. 
 

3.2.2  Prediction of the Network Bandwidth 
 
The predicted network bandwidth is an essential piece of information that StreamServ 
must have in order to estimate how much contents of the adaptation windows it should 
transmit. A real prediction of the future bandwidth is impossible, and thus the 
implemented prediction must be based on bandwidth measurements of the past condition 
of the network.  
 
A reasonable way to measure the bandwidth is by computing the number of bytes written 
to TCP per second by StreamServ, for every pre-defined time interval with start and end 
points that are fixed. The chosen time interval for this computation is the duration of the 
transmission of an adaptation window. For each new adaptation window to be 
transmitted, StreamServ compares the values of the last two intervals to predict if the 
network bandwidth is going to be good or bad. That way a decrease in value indicates a 
prediction in which the network bandwidth is falling. When the value eventually 
increases again, it indicates a prediction in which the bandwidth is increasing. If the 
network bandwidth is stable and good over a longer period of time, then the number of 
bytes written per second for each time interval should be about the same. The byte 
calculation is possible because StreamServ transmits the video parts by writing the 
bytestream to the downstream TCP socket using the system call write(). Upon successful 
completion, this function returns the number of bytes sent.  
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3.2.3  The Trade-Off between Quality and Workahead 
 
With the bandwidth information in place, the next challenge is to figure out how 
StreamServ should transmit the adaptation windows according to this information. 
 
One thing to notice is that if less SDUs of a window are transmitted, then more 
workahead time is gained. The minimum SDUs that have to be transmitted per window, 
are those corresponding to the base layer of a window. If the bandwidth prediction 
indicates that the network connectivity is getting bad, then StreamServ must be able to 
estimate how many video layers it can afford to transmit for a particular window to 
achieve a certain level of acceptable quality, and drop the rest to avoid unnecessary 
delays. The most it can drop are all the enhancement video layers for that window. 
However, if the bandwidth prediction indicates that the network connectivity is good, 
then StreamServ has two choices. Either StreamServ should transmit more video layers 
for the coming windows to increase the video quality, or it should transmit a small 
amount and gain some workahead time as precaution against possible network failures 
instead. In other words, there is a trade-off between video quality and workahead time.  
 
The more workahead time StreamServ saves up, the better is the protection against 
playback failures at StreamPlay which is caused by unstable network condition. The 
drawback is that the video quality of the playback might be quite bad over a longer period 
of time, since most of the enhancement layers for a number of adaptation windows have 
been dropped. On the other hand, if StreamServ chooses to transmit more layers for each 
window and put less workahead time aside, then the video quality of the playback is 
better, assuming the transmission is successful. However, the drawback in this case is the 
workahead time saved up, which might be too small to cover a longer period of bad 
connectivity. This could result in a sudden, drastic loss of quality while playing the video, 
or in the worst case the playback stops, due to late arrival of SDUs. 
 
The challenge lies in the task of finding a balance point for the trade-off between video 
quality and workahead time. This should depend on how StreamServ interprets the 
predicted bandwidth information. In general, StreamServ should treat a prediction of bad 
connectivity more seriously than a prediction of good connectivity, as precaution is better 
than taking risks. A prediction of good connectivity, which turns out to be true, doesn't 
necessarily mean that the bandwidth of the wireless network stays good for a longer 
period. Although this assumption is important, precaution must not dominate completely 
at the expense of video quality (throughout the streaming session) either. 
 
An idea could be to take precaution against connectivity loss by transmitting the least 
amount of video layers possible, until a certain amount of workahead time is reached, and 
then proceed to increase video layers to transmit for the next adaptation windows. 
 
It's also favourable that the video quality doesn't change too rapidly whenever the 
prediction indicates either good or bad connectivity, as fewer quality changes is generally 
desirable from a viewer's perspective. This means that the increasing/decreasing of video 
layers should be done in a slow manner.  
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3.2.4  Proposal of Improvement Code 
 
This section introduces the functions that ought to be implemented on the server side, to 
solve the issues discussed in the previous sections of this chapter.  
 

• Bandwidth prediction - As discussed in section 3.2.2, prediction of the network 
bandwidth is necessary. There is need for a function that can make a calculation 
to determine the prediction. This function is called once for each new adaptation 
window that is entering the transmission phase. The calculation is based on two 
values, which is the number of bytes written to TCP per second for the two latest 
time intervals. In other words, these two values are bandwidth samples computed 
at the two latest time intervals. 
 
An appropriate way to interpret a prediction is by computing and returning the 
result as a percentage of either gain or loss. If x is the value of the latest 
bandwidth sample, and y is the value of the previous bandwidth sample, then 
there's two possible outcomes: 

 
1.) Loss - The x value is smaller than the y value. That means the percentage of    
                 loss is ((y - x) / y ) * 100. 

  2.) Gain - The x value is larger than the y value. That means the percentage of  
                 gain is ((x - y) / y ) * 100.   
 
However, further investigation on the computations above shows that the 
achieved loss and gain values are not quite trustworthy when viewed over a short 
time scale. The problem is that the amount of time used to transmit the number of 
bytes for consecutive time intervals is not uniform, when the samples are 
computed based on the short pre-defined time intervals. This leads to inaccurate 
single bandwidth samples, and thus, the consequence is unreliable loss or gain 
values computed from bandwidth samples of the two latest consecutive time 
intervals. To solve this issue, a low-pass filter is taken into account. 
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This filter is employed to average sampled measurements and to obtain the low-
frequency components of the available bandwidth. Thus, single measurements are 
less significant, and the weight is put on the development over a longer period of 
time.  
 
The value bk is the filtered measurement of the available bandwidth, while bk-1 is 
the previous measurement. kΔ  is the time between the bandwidth samples x and 
y. In other words, kΔ corresponds to the time in which the total number of bytes is 
written for the latest time interval, which corresponds to the previous transmitted 
adaptation window. In order to satisfy the Nyquist-Shannon sampling Theorem, 
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kΔ  must be less than τ /2 [14]. τ  must not be less than 2 * window duration. 
Since the window duration is 2 seconds, the chosen value of τ  is 5. An extra 
second is added as a precaution against delays that might be caused by sudden 
bandwidth drops. If it happens that kΔ > τ /2, then kΔ  is set toτ /2 and x is set to 
0 for the computation of bk. 
 

• Written bytes update – This function has the task of updating the two variables 
used by the ‘bandwidth prediction’ function to compute the predicted percentage 
value. These two variables correspond to the number of bytes written to TCP per 
second for the the last two time intervals, in which the start and end points of the 
intervals are fixed. These are the bandwidth samples x and y mentioned above in 
the description of the ‘bandwidth prediction’ function. Since the ‘bandwidth 
prediction’ function is called each time a new adaptation window is entering its 
transmission phase, this function should be called to update the two values at the 
end of the transmission phase of each window.  

 
• Video layer update - Since the bandwidth of a wireless network could be highly 

varying, StreamServ should make sure that the workahead time saved up is above 
a minimum required amount at all time, if possible, for emergency cases. When 
that minimum amount of workahead time is in place, StreamServ is allowed to 
transmit additional enhancement layers for the next adaptation windows to 
increase the video quality. However, there must be a function that controls the 
amount of extra layers StreamServ is allowed to transmit for the next windows. 
Even if the network bandwidth is predicted to increase, the enhancement layers 
should be added in a slow manner, as a sudden major change in quality is not 
desirable. Another reason is that the bandwidth is not reliable, even if it seems to 
be stable at the moment. If StreamServ starts transmitting too much, it might 
affect  the overall performance if connectivity suddenly is lost. An idea could be 
to increase the number of allowed enhancement layers by a fixed small value for 
each consecutive window, as long as the bandwidth is predicted to be usable. The 
function should also be able to decrease the number of enhancement layers in a 
similar slow manner, if the bandwidth prediction indicates bad network 
connectivity. The function sets a global variable with a value that equals the 
number of allowed enhancement layers, which can be used by the rest of the 
StreamServ program. This value is set on the basis of the predicted bandwidth 
information. This global variable is called layer and is further described in section 
4.1 of chapter 4. The bandwidth information should be compared to some 
adjustable threshold variables, whose purpose it is to decide the degree of how 
good or bad the predicted bandwidth is. As discussed in section 3.2.3, precaution 
is better than taking risks. That means, a small degree of bad connectivity 
prediction should be taken more seriously than a large degree of good 
connectivity prediction. The ‘video layer update’ function should operate with 
this consideration in mind. 
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• Workahead update -  A function to update the workahead time is necessary. 
This function is called each time StreamServ finishes transmitting an adaptation 
window before the window's originally estimated deadline, which happens when 
StreamServ decides to drop some or all of the enhancement layers of the window. 
This workahead time is then used to adjust the the next window’s transmission 
start deadline.  

 
• Transmission crisis check - It should be clear by now that each adaptation 

window has a pre-determined transmission time. This transmission time should 
not be exceeded, so each window has a deadline that makes sure the transmission 
stops by then. This ensures that StreamServ is able to start transmitting the next 
window. However, if workahead time has been put aside, then a window is 
allowed to use more time than its determined transmission time, if StreamServ 
can afford it. In a network in which the connectivity is unstable, there's a 
probability that StreamServ will not manage to transmit the entire contents of an 
adaptation window by the time the deadline of the window is reached. There is 
need for a function that is regularly called to determine if the current adaptation 
window in transmission has used all of its time yet. In that case, the function must 
return some kind of crisis message to inform about this. 
 

• The adaptation function - This is the main function that takes care of the quality 
adaptation, according to how the condition of the wireless network is. This 
function is responsible for a task mentioned earlier, which is to check that a 
minimum amount of workahead time is constantly maintained, if possible, for 
emergency cases. This amount can be adjusted by implementing a threshold 
variable that is configurable. If the configured amount is not reached, then the 
function must initiate StreamServ to only transmit the minimum required SDUs of 
the coming adaptation windows, which corresponds to the base layers, so that the 
emergency amount of workahead time is collected as fast as possible. When the 
emergency workahead is reached, the function allows more layers of the next 
adaptation windows to be transmitted. The amount of enhancement layers allowed 
is found in the global variable set by the 'video layer update' function. For each 
SDU of a window that is transmitted, the 'transmission crisis' function is called to 
check if the current window has used all of its transmission time yet. If that's the 
case, then the adaptation function must estimate if StreamServ can afford to 
continue transmitting more contents of the window, based on the workahead time 
saved up. Again this can depend on an adjustable threshold variable, which is 
used to compare the workahead time with. This function ought to be called by 
ss_sdu_next, which corresponds to step 6 in phase IV of the streaming scenario 
described in the first part of the analyze. That is, the adaptation algorithm should 
make a consideration of what to do next, each time an SDU of a window is 
transmitted.  
 

• The workahead transmission function – The purpose of this function is to make 
sure that the next adaptation window (if it is ready to be transmitted) is able to 
start its transmission phase immediately, if the adaptation function decides to stop 
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transmitting the current adaptation window earlier than its originally scheduled 
transmission end deadline. Recall from section 3.1 that the preparation and 
mapping of the next adaptation window (phase III) and the transmission of the 
current window (phase IV) are done concurrently. If the adaptation function 
decides to end the transmission phase for the current window earlier than its 
deadline and phase III for the next adaptation window has already finished at this 
point, then the next window will not begin its transmission phase until the 
scheduled time is reached. This scheduled time corresponds to the original 
transmission end deadline of the current window. Thus, there is need for a 
function that ensures that the next adaptation window is allowed to enter the 
transmission phase as soon as possible, if the current window’s transmission is 
ended by the adaptation function before its original transmission end deadline.  
 

• The initiation function – The purpose of this function is to initiate and regularly 
update a couple of significant variables. One important update is the information 
about the predicted bandwidth. This is done by calling the 'bandwidth prediction' 
function. Another piece of information that needs updating is the number of 
allowed enhancement layers for the coming window. This is done by calling the 
'video layer update' function, which updates the global variable mentioned, based 
on the predicted bandwidth information. The variable is then used to regulate the 
number of allowed enhancement layers for the window to be transmitted. This 
function should be called by ss_child_send_win_start, which corresponds to step 
4 in phase IV of the streaming scenario described in part one of the analyze. That 
is, the function is called each time a new adaptation window is about to start 
transmission. 
 
 

Most of the functions described above make use of threshold variables, whose purpose is 
to help exploring and finding the balance point for the trade-off between video quality 
and workahead. These variables are further explained in chapter 4, and the tests in 
chapter 5 show that different values of certain threshold variables might lead to different 
outcomes. 
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Chapter 4:  The Implementation 
 
This chapter shows how the improvement code is implemented. The functions, discussed 
in section 3.2.4 of chapter 3, are coded using the C programming language, which is also 
the language that Qstream is written in. Section 4.1 describes the necessary additional 
variables that are implemented into existing Qstream data structures. Section 4.2 provides 
an overview of the threshold variables mentioned in section 3.2.4 of chapter 3. The 
descriptions of the functions in section 4.3 are in pseudo-code, which is based on the 
source code of the improvement. The purpose is to filter out the unnecessary details and 
preserve the most essential parts of the functions. The full source code is available in 
appendix A. Finally, the last section of this chapter provides an illustration of the 
implemented code, which shows how the implemented functions work together to adapt 
the quality of the streaming video with regard to the network condition.  
 

4.1  Additions to the Data Structures 
 
This section provides a description of additional fields that need to be implemented into 
the data structures of Qstream, which is necessary for the improvement code. The data 
structures that need to be updated are the ones that correspond to the ServPpsSession and 
the ServPpsWindow objects. These are shown in figure 21 and figure 22. 
 
 
  ServPpsSession { 
      Time               global_tvnow              //Marks the current time 
      Integer           layer              //Indicate nr of enh. layers allowed to send 
      Integer           layer_increase_allowed        //Indicate when layer increase  is allowed 
      Integer           bytes_pr_sec_interval_x      //Indicate bytes pr sec for interval just finished 
      Integer           bytes_pr_sec_interval_y      //Indicate bytes pr sec for last interval  
      Time              time1        //Mark start of time interval 
      Time              time2        //Mark end of time interval 
      Time              timediff                                   //Mark difference between time2 and time1 
      Unsigned Integer    difftime           //For converting timediff 
      Float              time_used       //For converting difftime to time in second in  
               decimal format 
      size_t   bytecount                     //Stores number of bytes written to TCP 
     GTimeVal                vid_ahead        //Marks how far ahead the playback is 
     Integer                stablecount       //Marks consecutive stable conditions 
     Integer                b_k        //Marks the current filtered bandwidth 
     Integer                b_k1       //Marks the previous filtered bandwidth                
     Integer                    tau      //Time constant used by low-pass filter 
    
   } 
     

Figure 21: Updated PPS Session Object for StreamServ 
 
 
Figure 21 shows the necessary variables that each PPS session has to maintain in 
addition. The variable global_tvnow is used to capture the current time whenever it’s 
needed.  
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The fields layer and layer_update_allowed take care of the amount of enhancement 
layers that StreamServ is allowed to transmit for the coming adaptation windows. The 
variable layer_increase_allowed has the task of enabling and disabling the possibility of 
increasing the layer variable. Section 4.3.8 shows that this is necessary.  
 
The fields bytes_pr_sec_interval_x and bytes_pr_sec_interval_y contain the number of 
bytes written to TCP per second for the last two time intervals. These two variables are 
also known as bandwidth samples x and y from section 3.2.4 of chapter 3, and they are 
used by the bandwidth prediction function to compute the prediction value.  
 
The next fields are time variables used to compute the time intervals. The result, which is 
a decimal number representing the interval in seconds, is stored in the float variable 
time_used.  
 
The field bytecount is used to store the number of bytes that is written to TCP. The usage 
of this field is shown in section 4.3.2. The vid_ahead field is used to store the amount of 
time that the playback is ahead of the transmission. The usefulness of this field is 
elaborated in section 4.3.4. The field stablecount is used to store the number of 
consecutive stable predicted network conditions. The details of this field is elaborated in 
section 4.3.3. The fields b_k and b_k1 are used to store the filtered measurements of 
bandwidth, which are computed by using the low-pass filter as described in section 3.2.4 
of chapter 3. The last field tau is the τ  variable that is also used in the low-pass filter. As 
discussed, this variable has a value of 5.  
  
 
 ServPpsWindow { 
       Time                win_start_xmit                    //Marks the time when the window start xmit     
      Integer             percentage_kind     //Indicate what the kind of percentage 
      Integer    percentage      //Indicate the percentage of gain or loss, 
           the bandwidht prediction has returned 
  } 

Figure 22: Updated Adaptation Window Object for StreamServ 
 
 
Figure 22 shows the additional fields that each ServPpsWindow object must maintain.  
The field win_start_xmit is used to capture the time when the window starts its 
transmission phase. This is important for later use, when a computation of how long the 
window has been transmitting is needed.  
 
The fields percentage_kind and percentage are updated by the bandwidth prediction 
function once for each new adaptation window. As the name indicates, the percentage 
variable stores the percentage of gain or loss, which is a result of the computation of the 
two variables bytes_pr_sec _interval_x and bytes_pr_sec_interval_y described above. 
The percentage_kind field is simply there to tell if the percentage value indicates a gain 
or a loss. A value of 1 means gain, while a value of 0 means loss.  
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4.2  Threshold Variables 
 
Section 3.2.4 of chapter 3 introduced the notion of threshold variables. Some of these 
might need to be adjusted in order to find a balance point for the trade-off between video 
quality and workahead. This section provides a more detailed description of these 
threshold variables.  
 

• low_workahead_thresh – This threshold variable indicates the minimum amount 
of workahead time that StreamServ should maintain at all time, if possible, 
throughout a streaming session. If the workahead time is below this threshold, 
then StreamServ must transmit as little as possible of the coming adaptation 
windows in order to quickly build up the workahead until it reaches above the 
threshold. The fastest way to do this is by transmitting only the base layers of the 
windows. There are two situations in which the workahead time is below this 
threshold. The first involves the start-up of a streaming session, which means that 
StreamServ only transmits the base layers of the first adaptation windows until the 
workahead time passes the threshold. The second situation occurs during a 
streaming session. If the connectivity is bad over a longer period of time due to 
unstable network condition, the collected workahead time is consumed rapidly by 
StreamServ. When the connectivity is back, the workahead time might have fallen 
below the threshold. This triggers StreamServ to start transmitting only the base 
layers again until the necessary amount of workahead is collected. 

 
• ignore_bw_workahead_thresh – As the name indicates, this threshold variable 

decides when StreamServ can ignore the bandwidth prediction. The reason for 
implementing this threshold variable, is because it’s not always a benefit to 
decrease the video quality immediately when predicting a bad network condition. 
If the amount of workahead time saved up is small, then reducing the quality (by 
lowering the number of allowed enhancement layers to transmit) is a right thing to 
do. However, if there is a lot of workahead time to spare, then decreasing video 
quality might be an act of waste due to bad utilization of the workahead time. The 
idea is that if the collected workahead time surpasses this threshold, then 
StreamServ can ignore the bandwidth prediction and proceed to increase the 
number of enhancement layers for each consecutive adaptation window until the 
maximum number of layers is reached. In such a case, a longer period of bad 
network connectivity leads to a rapid reduction of the workahead time. If the 
workahead time falls below the threshold, then StreamServ must take the 
bandwidth prediction into consideration again and control the amount of 
enhancement layers to be transmitted. As this threshold variable can cause greedy 
consumption of the workahead time, it should initially be set to a high value.  

 
• crisis_workahead_thresh –  Recall that each adaptation window has a limited 

transmission time. If the network is under a bad condition, then StreamServ might 
not be able to finish transmitting the contents of an adaptation window by the time 
the window’s transmission time has passed. However, with some workahead time 
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present, StreamServ can still afford transmitting the rest of the contents of the 
window. It follows that StreamServ must somehow know the maximum amount 
of  workahead time that it can use for this purpose. It’s not desirable to use all the 
workahead time on the late adaptation windows. That’s why there is a need for a 
threshold variable that controls the amount. If the workahead time falls below this 
threshold, then StreamServ has to stop transmitting the contents of the current late 
adaptation window.  

 
 
Whenever the bandwidth prediction gives a percentage of loss, this percentage value is 
compared to a couple of threshold variables to determine the condition of the network. 
There are three kinds of conditions that have to be taken into consideration. The first 
indicates a network condition that is ‘stable’. This means that the number of bytes written 
to TCP per second for two consecutive time intervals are about the same, but with the 
latest interval having a slight smaller value than the prior interval. The second condition 
indicates a network condition that is also kind of ‘stable’, but bad from an overall 
viewpoint. In other words, the number of bytes written to TCP per second for two 
consecutive time intervals differs more, with the latest interval having an even smaller 
value than the prior interval. In this case, the decreasing of quality should be limited to a 
reduction of only a certain number of  enhancement layers. The third is the ‘bad’ 
condition, in which the value of the latest interval is significantly smaller than the value 
of the prior interval. This condition is treated more seriously in the sense that the number 
of allowed enhancement layers is dropped by a few for each consecutive window until it 
reaches 0, if necessary. This could happen if the percentage of loss corresponds to this 
condition for several consecutive windows. To determine which amount of value 
difference between the intervals that corresponds to the different conditions, there is need 
for a couple of threshold variables. These are called overall_stable_percentage_thresh 
and bad_percentage_thresh.  
 

• overall_stable_percentage_thresh – A percentage of loss below this threshold 
corresponds to a ‘stable’ condition, while a percentage above this threshold 
corresponds to either a ‘stable, but overall bad’ or ‘bad’ condition. 

                                                                                                   
• bad_percentage_thresh – A percentage of loss below this threshold indicates a 

network condition that is either ‘stable’ or ‘stable, but overall bad’. On the other 
hand, a percentage of loss above this threshold indicates a real bad network 
condition. This threshold variable is implemented to ensure that a slight bad 
prediction does not cause unnecessary and exaggerated decreasing of video 
quality. However, this variable should initially be set to a low value, as 
‘precaution is better than taking risks’ when streaming over a network with 
unpredictable bandwidth.  
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Figure 23: Bad Condition Threshold 

 
• bad_layer_thresh – Since a drastic change in video quality is not desirable, only 

a few layers should be dropped each time a prediction of bad connectivity occurs. 
This threshold variable regulates the number of  layers to be reduced for the case 
when the percentage of loss corresponds to a ‘bad’network condition.  

 
• bad_stable_layer_thresh – This threshold variable indicates the maximum 

allowed enhancement layers for the case when the percentage of loss corresponds 
to a ‘stable, but overall bad’ network condition. If the number of enhancement 
layers lies above this threshold, then it has to be reduced. On the other hand, if the 
number lies below this threshold, then it’s allowed to increase with the threshold 
as a maximum.  

 
If the network condition is stable, which means that the percentage of loss is below 
the threshold overall_stable_percentage_thresh, then the number of enhancement 
layers is regulated as if the condition is stable in the case of a percentage of gain. This 
‘stable’ condition is described below.  
 
 
Whenever the bandwidth prediction gives a percentage of gain, this percentage value 
is compared to a threshold variable to determine the condition of the network. There 
are two kinds of conditions that have to be taken into consideration. The first is a 
‘stable’ condition. This means that the number of bytes written to TCP per second for 
two consecutive time intervals are about the same, but with the latest interval having 
a slight larger value than the prior interval. The second is a ‘better’ condition, in 
which the value difference between the two intervals is even larger. To determine 
which amount of value difference between the intervals that corresponds to the two 
different conditions, there is need for a threshold variable. This variable is called 
better_percentage_thresh.  
 
• better_percentage_thresh – A percentage of gain below this threshold 

corresponds to a ‘stable’ condition, while a percentage above this threshold 
corresponds to a ‘better’ condition.  
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Figure 24: Good Condition Threshold 
 

• stable_layer_thresh – This threshold variable is needed to regulate the number of 
allowed enhancement layers for the case when the percentage of gain corresponds 
to a ‘stable’ network condition.  

 
 

• stablecount_thresh – Whenever the condition of the network is predicted to be 
stable (when either the percentage of loss is below the threshold overall_ stable_ 
percentage_thresh or the percentage of gain is below the threshold better_ 
percentage_thresh), it is counted. If the number of counts reaches this threshold, 
then StreamServ is triggered to increase the threshold stable_layer_ thresh by 1. 
In other words, StreamServ is allowed to transmit better video quality for the next 
adaptation window if the number of stable network predictions reaches this 
threshold. In order for the number of counts to reach this threshold, the condition 
of the network must be stable and good for a consecutive number of adaptation 
windows that equals this threshold. However, if the bandwidth starts dropping and 
leads to a prediction of bad network condition, then the threshold stable_layer_ 
thresh must also be reduced accordingly by 1 for the next adaptation window. The 
variable that takes care of this counting is described in section 4.3.3. 
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4.3  The Functions 
 
This section presents the pseudo-code of the functions proposed and discussed in section 
3.2.4 of chapter 3.  
 

4.3.1  The Bandwidth Prediction Function 
 
BANDWIDTH_PREDICTION(pps, win) 

1 pps.b_k1 = pps.bk 
2 if  (pps.time_used > pps.tau / 2) 
3        pps.time_used = pps.tau / 2 
4        pps.bytes_pr_sec_interval_x = 0 
5  
6 pps.b_k = (2*pps.tau – pps.time_used) / (2*pps.tau + pps.time_used) * pps.b_k1 +  
7                  pps.time_used * (pps.bytes_pr_sec_interval_x + pps.bytes_pr_sec_interval_y) / 
8                  (2*pps.tau + pps.time_used)                
9  
10 if  (win.number != 0) 
11        if  (pps.b_k  < pps.b_k1) 
12            win.percentage_kind = 0 
13            win.percentage = ( (pps.b_k1 – pps.b_k) / b_k1 ) * 100 
14        else if (pps.b_k  > pps.b_k1)      
15            win.percentage_kind = 1 
16            win.percentage = ( (pps.b_k – pps.b_k1) / pps.b_k1 ) * 100 
17        else  
18            win.percentage_kind = 1 
19            win.percentage = 0 

 
 
A bandwidth prediction is made once for each new adaptation window. There are two 
kinds of outcome that the function can predict. Either it’s a prediction of bad connectivity 
(lines 11-13) or a prediction of good connectivity (lines 14-16). In both cases the function 
updates the two variables percentage_kind and percentage for the window. The variable 
percentage_kind  indicates what kind of percentage is being dealed with and can have 
either the value 0 or 1. The percentage variable contains the percentage of either gain 
(good connectivity prediction, indicated by percentage_kind = 1) or loss (bad 
connectivity prediction, indicated by percentage_kind = 0), which is computed by using 
the variables b_k and b_k1. Recall from section 3.2.4 of chapter 3 that these variables are 
filtered bandwidth measurements derived from a low-pass filter. Lines 1-8 show how the 
low-pass filter updates the variables b_k and b_k1. Notice that kΔ  from section 3.2.4 is 
represented here by the variable time_used (lines 2, 3, 6, 7, 8). Lines 17-19 correspond to 
a condition in which the two variables b_k and b_k1 have an equal value. In that case, the 
network condition should be considered to be stable and good.  
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4.3.2  The Written Bytes Update Function 
 
UPDATE_WRITTEN_BYTES(pps) 

1 get_current_time(pps.time2) 
2 gint bytes_written = pps.bytecount 
3 pps.bytecount = 0 
4  
5 pps.bytes_pr_sec_interval_y = pps.bytes_pr_sec_interval_x 
6  
7 pps.timediff = pps.time2 – pps.time1 
8 pps.difftime = (pps.timediff.tv_sec * 1000000) + pps.timediff.tv_usec; 
9 pps.time_used = (float) pps.difftime / 1000000 
10  
11 pps.bytes_pr_sec_interval_x = bytes_written / pps.time.used 

 
 
This function is called at the end of each window’s transmission phase. Its purpose is to 
update the two variables bytes_pr_sec_interval_x and bytes_pr_sec_interval_y for the 
bandwidth prediction function to use. Line 2 gets the value of the bytecount variable, 
which corresponds to the total number of bytes written to TCP since the last time the 
function was called. Line 3 resets the bytecount variable to 0 as preparation for the next 
interval. Lines 7-9 computes the time used to write this amount of bytes. The time is in 
seconds and is represented with a decimal value for accuracy purpose. Line 11 computes 
the number of bytes written per second and stores the result in the variable 
bytes_pr_sec_interval_x. The previous value of bytes_pr_sec_interval_x is stored in 
bytes_pr_sec_interval_y, which is done in line 5. 
 

4.3.3  The Layer Update Function 
 
UPDATE_LAYER(pps, win, nr)   

1 if (nr = 0) 
2      if (win.percentage_kind = 0 & win.percentage ≥ bad_percentage_thresh) 
3               stable_layer_thresh - 1 
4               if (pps.workahead_limit.tv_sec < ignore_bw_workahead_thresh) 
5                     if  (pps.layer > bad_layer_thresh)  pps.layer – 2 
6                     else pps.layer – 1  
7              else    
8                     if  (pps.layer < 15) pps.layer + 1 
9  
10      else if  (win.percentage_kind = 0 & win.percentage < bad_percentage_thresh  
11                    & win.percentage > overall_stable_percentage_thresh) 
12              stable_layer_thresh - 1 
13              if (pps.workahead_limit.tv_sec < ignore_bw_workahead_thresh) 
14                     if  (pps.layer < stable_bad_layer_thresh)  pps.layer + 1 
15                     else pps.layer – 1  
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16              else  
17                     if  (pps.layer < 15) pps.layer + 1 
18       
19      else if (win.percentage_kind = 0 & win.percentage <= overall_stable_percentage_thresh) 
20              pps.stablecount + 1 
21              if (pps.workahead_limit.tv_sec < ignore_bw_workahead_thresh) 
22                    if  (pps.stablecount < stablecount_thresh) 
23                     if  (pps.layer < stable_layer_thresh)  pps.layer + 1 
24                      else pps.layer – 1  
25                    else 
26                              if  (stable_layer_thresh < 15) 
27                                        stable_layer_thresh + 1 
28                                        pps.stablecount = 0 
29              else  
30                    if  (pps.layer < 15) pps.layer + 1 
31      
32      else if  (win.percentage_kind = 1 & win.percentage < better_percentage_thresh) 
33              pps.stablecount + 1 
34              if (pps.workahead_limit.tv_sec < ignore_bw_workahead_thresh) 
35                    if  (pps.stablecount < stablecount_thresh) 
36                     if  (pps.layer < stable_layer_thresh)  pps.layer + 1 
37                      else pps.layer – 1  
38                    else 
39                               if  (stable_layer_thresh < 15)  
40                                         stable_layer_thresh + 1 
41                                         pps.stablecount = 0 
42              else  
43                    if  (pps.layer < 15) pps.layer + 1 
44  
45      else if  (win.percentage_kind = 1 & win.percentage ≥ better_percentage_thresh) 
46               pps.stablecount + 1 
47               if  (pps.layer < 15) pps.layer + 1   
48                        
49  else if  (nr = 30)  
50       if  (pps.layer ≥ 3) pps.layer / 2 
51       else pps.layer = 0 
52  
53 else if  pps.layer = nr 
 

This function is responsible for updating the amount of enhancement layers allowed to be 
transmitted for the coming adaptation windows. It operates according to the values of the 
variables percentage_kind and percentage, which are updated by the ‘bandwidth 
prediction’ function.  
 
There are three main conditions that can be triggered by the variable nr, which is passed 
as an argument from the caller. These conditions are seen in lines 1, 49 and 53.  
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Line 1 is the first main condition. Lines 2-47 are sub-conditions to the one of line 1. If the 
bandwidth prediction gives a percentage of loss, then the update of the number of 
allowed enhancement layers are done by either lines 2-8, 10-17 or 19-30. Lines 2-8 are 
for the case when the percentage value is larger or equal to the threshold 
bad_percentage_thresh. The layer variable is then reduced by either 1 or 2 according to 
the threshold bad_layer_thresh. Lines 10-17 are for the case when the percentage value is 
smaller than the threshold bad_percentage_thresh. The layer variable is then regulated by 
the threshold stable_bad_layer_thresh. Lines 19-30 are for the case when the percentage 
value is smaller than the threshold overall_stable_percentage_thresh. In this case, the 
network bandwidth is assumed to be stable. The layer variable is regulated by the 
threshold stable_layer_thresh. In a similar manner, lines 32-47 handle the update of the 
allowed enhancement layers for the case when the prediction gives a percentage of gain. 
It’s worth noticing that when the percentage of gain indicates a ‘stable’ network 
condition (line 32), the update of the layer variable (lines 33-43) is similar to the one 
described above, when the ‘stable’ condition is derived from a percentage of loss (lines 
20-30). 
 
Line 49 corresponds to the second main condition that is triggered whenever the 
workahead time is below the threshold low_workahead_thresh. This is caused by either a 
long-lasting network connectivity loss that leads to a consumption of the entire (or most 
of it) collected workahead time, or the start-up of a streaming session in which the 
workahead time is still being built up towards low_workahead_thresh. The number of 
allowed enhancement layers (layer variable) is halved (line 50) if the current number is 
larger or equal to 3. Since there has been a connectivity loss, it’s better for StreamServ to 
be cautious with the transmission of the next window in the sense that less layers should 
be transmitted. Otherwise, the layer variable is set to 0 (line 51). Recall that StreamServ 
only transmits the base layer of the first adaptation windows until the workahead time 
passes the threshold low_workahead _thresh. That means the layer variable remains at 
the value of 0 until the workahead surpasses the threshold.  
 
Line 53 takes care of the third main condition, which is triggered whenever the threshold 
crisis_workahead_thresh stops StreamServ from using any more of the workahead time 
to transmit the contents of a late adaptation window. The number of enhancement layers 
that StreamServ manages to transmit for the window so far, is passed as an argument to 
this function which is indicated by the variable nr. Line 53 sets the layer variable equal to 
nr. That way StreamServ is allowed to transmit up to at least nr layers for the next 
adaptation window. This is to ensure that a drastic change in quality does not occur in the 
transition from the late window to the next window in the transmission queue.  
 
It should also be noted that the bandwidth prediction is considered as long as the 
workahead time is smaller than the threshold ignore_bw_workahead_thresh (lines 4, 13 
21, 34), as discussed in section 4.2. 
 
In addition, the stablecount variable is increased by 1 each time the predicted network 
condition is good (lines 20, 33, 46). That is, the value of the variable is increased 
whenever the condition is either ‘stable’ or ‘better’. If the value of this variable reaches 



The Department of Informatics                     Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network                                         

 

62  
 

the threshold stablecount_thresh (lines 22 and 35) and the network condition is still 
stable, then the threshold stable_layer_thresh for the coming window is allowed to 
increase by 1. The stablecount variable is then reset back to 0. However, if the bandwidth 
eventually starts dropping and leads to a bad connectivity prediction, then the threshold 
stable_ layer_ thresh is reduced by 1 (lines 3 and 12). It might be clear by now that the 
purpose of the stablecount variable is to ensure that better video quality is eventually 
achieved if the network condition is continuously stable. This way the amount of allowed 
enhancement layers is not completely controlled by a fixed value of the threshold 
stable_layer_thresh, if the condition of the network remains stable. 
 

4.3.4  The Workahead Update Function  
 
UPDATE_WORKAHEAD(pps, win) 

1. pps.vid_ahead = win.xmit_deadline – pps.global_tvnow        
 
This is a simple function that updates how much time the playback currently is ahead of 
the transmission, by computing how much earlier the current adaptation window finishes 
its transmission phase than it is supposed to. Thus, this function is called whenever 
StreamServ stops transmitting an adaptation window earlier than its scheduled 
transmission end deadline. If necessary, this amount of time is used to configure the 
transmission start deadline of the the next adaptation window, as section 4.3.7 shows.  
 

4.3.5  The Transmission Crisis Check Function 
 
CHECK_TRANSMISSION_CRISIS( pps, win) 

1 if  ( (pps.global_tvnow – win.win_xmit_start) > (win.xmit_end – win.xmit_start) ) 
2     return 0 
3 else if  ( (pps.global_tvnow – win.win_xmit_start) < (win.xmit_end – win.xmit_start) ) 
4     return 1 

 
This function has the task of checking if the current adaptation window in transmission 
has used all of its transmission time yet. The time that the window has used up to this 
moment, is computed by subtracting the time when the window started transmitting 
(win_xmit_start) from the current time. This is compared to the window’s limited 
transmission time, which is computing by subtracting the window’s transmission start 
time (xmit_start) from the window’s transmission end time (xmit_end). If the window 
has used all its transmission time, then the condition of line 1 is triggered, and the value 0 
is returned. Otherwise, the transmission is still within schedule. The condition of line 3 is 
triggered, which returns the value 1.  
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4.3.6  The Adaptation Function 
 
ADAPTATION(pps, win, sdu) 

1 if (pps.workahead_limit < low_workahead_thresh) 
2        if (sdu.priority < (15 – pps.layer) ) 
3              UPDATE_WORKAHEAD(pps, win) 
4              SS_WIN_DONE(pps, win) 
5 else  
6        no_crisis = CHECK_TRANSMISSION_CRISIS (pps, win) 
7       
8        if (no_crisis = 1) 
9             if (sdu.priority < (15 – pps.layer) ) 
10              UPDATE_WORKAHEAD(pps, win) 
11              SS_WIN_DONE(pps, win) 
12        else 
13              UPDATE_WORKAHEAD(pps, win) 
14               if (pps.workahead_limit > crisis_workahead_thresh)              
15                     if (sdu.priority < (15 – pps.layer) ) 
16                        UPDATE_WORKAHEAD(pps, win) 
17                           SS_WIN_DONE(pps, win) 
18               else  
19                     if (sdu.priority < 15) 
20                          UPDATE_LAYER (pps, win, 15 – sdu.priority)  
21                          UPDATE_WORKAHEAD(pps, win) 
22                           SS_WIN_DONE(pps, win) 

 
This function is responsible for the quality adaptation. For each SDU that is transmitted, 
it is called to determine if the number of layers transmitted has surpassed the amount of 
allowed layers, which is regulated by the layer variable (lines 2, 9, 15). If that’s the case, 
then the rest of the contents of the adaptation window are dropped. However, if the 
number of layers transmitted has not reached the allowed threshold yet, then the function 
must estimate if StreamServ can afford sending the next SDU of this window, based on 
the condition of the network.  
 
Since Qstream operates with 16 layers in total, each adaptation window contains SDUs 
with priorities in a range from 15 to 0. The SDUs with priority 15 correspond to the base 
layer, while those with priorities 14 to 0 correspond to the enhancement layers. This 
explains the way lines 2, 9, 15 and 19 are coded. In line 2 for instance, the layer variable 
is set to 0 (reason explained in section 4.3.4). The if-condition is supposed to check if 
StreamServ has finished transmitting the base layer of the current adaptation window. 
This is done by checking if the priority of the transmitted SDU is smaller than 15-0 = 15. 
As mentioned, SDUs with priorities less than 15 belong to enhancement layers.  
 
Lines 1-4 make sure that StreamServ only transmits the base layer of the adaptation 
window, as long as the workahead time is below the threshold low_workahead_thresh. 
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Otherwise, lines 5-22 are in charge of adapting the quality. Line 6 calls the ‘transmission 
crisis check’ function to determine if the current adaptation window has used all of its 
transmission time yet. If the returned value is 1, then the condition of line 8 is triggered. 
StreamServ is then allowed to transmit the next SDU, which belongs to an enhancement 
layer, provided that its priority is not exceeding the threshold set by the layer variable. 
When all the allowed SDUs are transmitted, line 10 updates the workahead time, and line 
11 calls ss_win_done to end the transmission phase of the window. 
 
In the case of a transmission time crisis, the returned value from the ‘transmission crisis 
check’ function is 0, which triggers the condition of line 12. Line 13 updates the 
workahead time. If the workahead time is larger than the threshold crisis_ workahead_ 
thresh, then StreamServ can afford transmitting the next SDU of the current late 
adaptation window (lines 14-17). On the other hand, if the workahead time is below 
crisis_workahead_thresh, then there is no time left for StreamServ to transmit the 
contents of the late window, provided that at least the base layer SDUs are done (line 19). 
Line 20 calls the ‘layer update’ function and passes the number of layers transmitted so 
far for this late window as an argument (reason explained in section 4.3.4). Lines 21 and 
22 update the workahead time and call ss_win_done to end the transmission phase of the 
late window.  
 

4.3.7  The Workahead Transmission Function 
 
WORKAHEAD_START_NEXT_WIN(pps) 

1. ServWindow win = g_queue_peek_head(pps->mapped_wins) 
2.  
3. if (win == NULL)  
4.       pps.workahead_limit = pps.vid_ahead 
5. else  
6.      g_aio_cancel_timeout(win->start_timeout) 
7.      ss_win_xmit_start(&tvnow, win) 

 
This function is called each time the adaptation function ends the transmission phase of 
an adaptation window earlier than its scheduled transmission end deadline. Its purpose is 
to ensure that the next adaptation window is allowed to start the transmission phase 
immediately, if the window is finished prepared and ready to be transmitted.  
 
Line 1 attempts to retrieve the next adaptation window that is finished prepared and 
mapped (phase III, section 3.1.5 of chapter 3) from the mapped_wins queue. If there is no 
window that is finished yet, then the condition of lines 3-4 is triggered. This condition 
makes sure that when the next adaptation window is ready to be transmitted (when it 
finishes phase III), it will know that it can start the transmission phase earlier than 
planned. The procedure of how to compute an earlier start time of the transmission phase 
is described in step 5 of phase III in section 3.1.5 of chapter 3. For this procedure to 
work, the variable workahead_limit of the ServPpsSession object needs to be updated 
with the time of the vid_ahead variable (line 4).  
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However, if there is an adaptation window in the mapped_wins queue, which means that 
the next window has finished its preparation and mapping phase, then the condition of 
lines 5-7 is triggered. In this case, the preparation of the next adaptation window finished 
before the adaptation function decided to end the transmission of the current window. 
This means that the next adaptation window was scheduled with a transmission start 
deadline that corresponded to the originally scheduled transmission end deadline of the 
current window. Thus, there is need for an update that makes it possible for the next 
adaptation window to start its transmission phase right away. Line 6 cancels the original 
transmission start deadline of the next window. Line 7 calls the function ss_win_xmit 
_start to start the transmission phase for this adaptation window.  
 

4.3.8  The Initiation Function 
       
INITIATION(pps, win) 

1 if  (win.number = 0) 
2        pps.workahead_limit = 0 
3       pps.layer_increase_allowed = 0 
4        pps.bytes_pr_sec_interval_x = 0 
5        pps.bytes_pr_sec_interval_y = 0 
6        win.percentage_kind = 0 
7        win.percentage = 0 
8        pps.layer = 0 
9    
10 BANDWIDTH_PREDICTION(pps, win) 
11   
12 if  (pps.workahead_limit ≥ low_workahead_thresh)   
13         pps.layer_increase_allowed = 1 
14 else if (pps.workahead_limit < low_workahead_thresh & win.number ≠ 0) 
15         pps.layer_increase_allowed = 0 
16         UPDATE_LAYER(pps, win, 30) 
17    
18 if  (win.number ≠ 0 & pps.layer_increase_allowed = 1) 
19        UPDATE_LAYER(pps, win, 0) 
20    
21 get_current_time(win.win_xmit_start) 
22 pps.time1 =  win.win_xmit_start     

 
This function is called each time a new adaptation window is entering its transmission 
phase. The purpose of this function is to initiate and update the necessary variables for 
later use. Lines 2-8 initiate certain variables of the first adaptation window. Lines 3 and 9 
set the variables layer_increase_allowed and layer to 0. This indicates that StreamServ is 
only allowed to send the base layer for the first adaptation window. Line 10 calls the 
‘bandwidth prediction’ function, which makes a prediction with an outcome that is 
relevant for all adaptation window except the first one. The assumption is that the 
network bandwidth should be good enough for StreamServ to transmit the base layer of 
the first window. 
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The variable layer_increase_allowed is set to 1 when the workahead time has reached the 
threshold low_workahead_thresh (lines 12-13), which means that StreamServ is allowed 
to transmit more than the base layer for the current new adaptation window. This triggers 
the condition of line 18,  in which the ‘layer update’ function is called to update the 
number of allowed enhancement layers (layer variable) for this window.  
 
Line 21 simply marks the current time as the transmission start time of the window and 
stores it in the variable win_xmit_start, which is a helper variable for the ‘transmission 
crisis check’ function. Line 22 stores this time value in another variable called time1, 
which is relevant for the ‘written bytes update’ function.  
 
Also worth noticing is the condition of line 14, which is triggered whenever the 
workahead time falls below the threshold low_workahead_thresh. This is usually caused 
by a long period of network connectivity loss. Line 15 sets the layer_increase_allowed 
variable back to 0 as to indicate that increasing the layer variable is not allowed right 
now, due to the low workhead time and possible network failure. Line 16 calls the ‘layer 
update’ function with the number 30 passed as an argument (reason explained in section 
4.3.4). 
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4.4  An Illustration of the Improvement Code 
 
This section provides an illustration of how the functions described in section 4.3 co-
operate to form the quality-adaptive algorithm needed to handle a streaming session over 
a wireless network with varying bandwidth. Figure 25 shows phase IV of the streaming 
scenario, which is described in section 3.1.6 of chapter 3. The two parts marked by 1 and 
2 in the circles indicate the insertion points of the improvement code. Sections 4.4.1 and 
4.4.2 present the codes of these two parts.   
 
 

 
Figure 25: Phase IV of the Streaming Scenario with Marked Areas that Indicate the Insertion Points 

of the Improvement Code 
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4.4.1  Part I – Initiation 
 
This part of the improvement code takes care of the initiation and updating of a couple of 
important variables. It is depicted in figure 26. 
 

 
Figure 26: Implemented Code I: Initiation 

 
 

1) In phase IV of the streaming scenario described in section 3.1.6 of chapter 3, the 
function ss_child_send_win_start is called to start the transmission of a new 
adaptation window. This function will call the implemented INITIATION function 
(4.3.8). 

 
2) The INITIATION function initiates all the necessary variables. Among them are 

two essential ones that correspond to the predicted bandwidth information 
(percentage_kind, percentage) and the number of allowed enhancement layers 
(layer). These variables are updated by calling the implemented BANDWIDTH_ 
PREDICTION and UPDATE_LAYER functions. 
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4.4.2  Part II – Quality Adaptation 
 
This part of the improvement code contains the improved quality-adaptation algorithm. 
According to how the network condition is, which is estimated with the help of the 
bandwidth prediction function, this algorithm determines the most efficient way to stream 
a multimedia file (SPEG file) over the wireless network, with regard to video quality and 
workahead/buffering.  
 

 
 

Figure 27: Implemented Code II:  Quality-Adaptation Algorithm 
 
 

1) The function ss_sdu_next is called each time an SDU is finished transmitting. The 
purpose is to check if there are still any SDUs left in the adaptation window 
currently in transmission phase. This is where the implemented ADAPTATION 
function comes into the picture. If the heap of SDUs is not empty, then 
StreamServ considers if it can afford transmitting another SDU of the adaptation 

 
StreamServ 

ss_child_send_sdu_head() 

   ss_sdu_next() 

       ADAPTATION() 
 2 

CHECK_TRANSMISSION_CRISIS() 
UPDATE WORKAHEAD() 

UPDATE WRITTEN BYTES() 

ss_win_done() 

UPDATE WORKAHEAD()

      UPDATE_LAYER() 

      workahead_limit > 
crisis_workahead_thresh 
  & 
    layers transferred < 
        layers allowed 

        no crisis 
            & 
layers transferred < 
   layers allowed 

     workahead_limit > 
crisis_workahead_thresh 
                 & 
    layers transferred >= 
       layers allowed 

       workahead_limit <= 
 crisis_workahead_thresh 
                & 
at least base layer is done 

workahead_limit >= 
low_workahead_thresh 

          no crisis 
               & 
layers transferred >= 
    layers allowed

    workahead_limit < 
low_workahead_thresh 
             & 
    base layer done 

         workahead_limit < 
    low_workahead_thresh 
                   & 
      base layer not done 

WORKAHEAD_START_NEXT_WIN() 

(if the adaptation function  
skipped an adaptation window 
before the entire content was 
transmitted)

ss_win_xmit_start() 

(PHASE III) 

ss_child_send_adu() 
 pps.bytecount 
          is 
  updated here 



The Department of Informatics                     Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network                                         

 

70  
 

window, based on the predicted network condition. Therefore, it is reasonable that 
ss_sdu_next calls the adaptation function.  

 
2) For the bandwidth prediction to work, the variable bytecount of the ServPps-

Session object needs to be updated whenever a number of bytes is successfully 
written to TCP. This update is done in the functions ss_child_send _sdu_head and 
ss_child_send_adu, which was explained at the end of section 3.1.6 of chapter 3.  

 
3) The procedure of the ADAPTATION function is provided in section 4.3.6 and 

will not be repeated. This is depicted in figure 27. 
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Chapter 5:  Testing the Improvement Code 
 
This chapter introduces a number of test cases which are designed to investigate how 
efficient the improvement code is. Section 5.1 provides an overview of the bandwidth 
scenarios that are used in the test cases. These scenarios are emulations of various 
conditions that could occur in a wireless network. Section 5.2 describes two test cases 
that are based on the original implementation of Qstream. The purpose is to verify that 
this original implementation is not quite suitable for streaming over a wireless network 
with intensely varying bandwidth (section 3.2.1 of chapter 3). Section 5.3 provides an 
insight into the improved outcomes when using the quality-adaptive algorithm of the 
improvement code. Section 5.4 introduces an objective quality metric that is required to 
make an objective assessment of the improvement code. Section 5.5 reviews a number of 
test cases that are performed on the improvement code. In order to make an objective 
assessment of the improvement code, the outcome of these test cases are evaluated by 
using the objective quality metric. Finally, section 5.6 provides an evaluation of the 
overall performance of improvement code.  
 
These simplified names for the threshold variables (section 4.2 of chapter 4) are 
introduced for the purpose of easy reference in the further discussions of the test cases:  
 

• low_workahead_thresh – l_wt 
• ignore_bw_workahead_thresh – ig_wt 
• crisis_workahead_thresh – c_wt 
• overall_stable_percentage_thresh – os_pt 
• bad_percentage_thresh – b_pt 
• better_percentage_thresh – be_pt 
• bad_layer_thresh – ba_lt 
• bad_stable_layer_thresh – bs_lt 
• stable_layer_thresh – s_lt 
• stablecount_thresh - st 

 
The initial values of the variables are as follow: 
 

- l_wt =  5 
- ig_wt = 40 
- c_wt = 10 
- os_pt  =   2 
- b_pt =  10 
- b_pt = 40 
- ba_lt =    8 
- bs_lt =   5 
- s_lt =   5 
- st =   5 
-  

For all the subsequent tests that make use of the threshold variables, the initial values of 
these variables are used, unless stated otherwise. 
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5.1  Bandwidth Scenarios 
 
As discussed in section 2.2.2 of chapter 2, a simulated wireless network is required for 
this thesis. With the help of the Token Bucket Algorithm (TBF), the varying network 
bandwidth can be emulated by adjusting the token rate at various times during a 
streaming session. Simple scripts are written to control the rate changes, and a sample of 
such a script can be seen in appendix B. The scripts give the following bandwidth 
scenarios that are used to test the quality-adaptation algorithm of the implemented code.  
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Figure 28: Bandwidth Scenario 1 
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Figure 29: Bandwidth Scenario 2 
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            Figure 30: Bandwidth Scenario 3 
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                 Figure 31: Bandwidth Scenario 4 
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Figure 32 – Bandwidth Scenario 5 
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5.2  Using the Original Qstream Code 
 
As discussed in section 3.2.1 of chapter 3, the original implementation of Qstream can’t 
handle a streaming session over a network with varying bandwidth efficiently enough. 
Since the original implementation assumes a good and stable network bandwidth all the 
way along, StreamServ attempts to achieve top quality streaming by transmitting all the 
video layers for each adaptation window.  
 
The two cases of this test show that when the original streaming system of Qstream is 
applied over a network with unstable condition, the achieved video quality is quite 
varying and unsatisfactory.  
 
 
Items in use for this test: 
 

• Media Content:  An MPEG-1 file of about 2 minutes running time converted to    
                                   SPEG 
• Bandwidth Scenario: 1, 2 
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    Figure 33: Bandwidth Scenario 1       
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Figure 34: Outcome of Streaming Test, Case I 
                     
Figure 33 shows the bandwidth scenario used for the first case. When streaming over a 
network with this kind of bandwidth variation, the original streaming system of Qstream 
produces an outcome as seen in figure 34.  
 
In figure 34, the horizontal axis indicates the running time of the streaming video, while 
the vertical axis corresponds to the quality level (number of video layers received) 
reached at StreamPlay at different times. As figure 34 shows, the quality change is quite 
drastic at places (marked with round dots). This happens because StreamServ’s attempt to 
transmit top quality video, at all time, is limited by the unstable network condition.  
 
When the bandwidth drops to an unusable level, it affects the transmission of the window 
at that moment. This leads to late SDUs of the window being dropped, and as a 
consequence the video content of this particular window has relatively bad quality. 
However, if the bandwidth suddenly increases when the next window starts its 
transmission phase, then StreamServ immediately continues to aim at top quality 
transmission. This is the reason why the graph of figure 34 is quite jumpy at the two 
marked areas. From a general viewpoint, this is unacceptable because the quality changes 
of the streaming video are too abrupt.  
 
An extremely bad network connectivity also heightens the risk of getting timeouts for 
windows, as the next case shows.  
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Figure 35: Bandwidth Scenario 2 
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Figure 36: Outcome of Streaming Test, Case II 
                      
Figure 35 shows the bandwidth scenario used for the second case. When streaming over a 
network with this kind of bandwidth variation, the original implementation of Qstream 
produces an outcome as seen in the graph of figure 36.  
 
As the graph shows, the running time of the streaming video is only about 60 seconds. 
Since the SPEG file that is used for this test is about 2 minutes of running time, it means 
that about 60 seconds of the video is missing. This is caused by timeout of several 
adaptation windows due to the extreme loss of connectivity seen in the graph of figure 
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35. In addition to this, the video layers received for the streaming video are quite uneven 
and result in major quality changes.  
 
The conclusion to be drawn from these two test cases is that the original implementation 
of Qstream is not quite suitable for streaming over a network with highly varying 
bandwidth. Even though the system is equipped with the work conserving strategy which 
allows StreamServ to start transmitting the next adaptation windows a fixed time earlier, 
this still doesn’t solve all the issues. It can prevent timeout of future adaptation windows 
from happening by transmitting faster than playback speed whenever it’s possible. 
However, if the network bandwidth is highly varying and the duration of bad connectivity 
is long, then the quality changes will still follow an edgy pattern if StreamServ can’t keep 
up with its transmission schedule.  
 

5.3  The Addition of the Improvement Code 
 
In the two following test cases, the streaming system with the additional improvement 
code is used. Bandwidth scenario 1 from the previous test is re-used for the streaming 
session, as the purpose is to show that the improvement code contributes in giving a 
better outcome compared to the one seen in figure 34.  
 
Items in use for this test: 
 

• Media Content:  An MPEG-1 file of about 2 minutes running time converted to    
                                   SPEG 
• Bandwidth Scenario: 1 
• Threshold Variable Values:  The initial values of the variables are used in the 

first case. The second case of the test makes use of the following different values 
of ig_wt:  15, 30 and 40.  
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Figure 37: Bandwidth Scenario 1 
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Figure 38: Outcome of  Streaming Test, Case I: Streaming with Initial Values of the Threshold 
Variables 

 
The graph of figure 38 shows an outcome that is quite improved compared to the one 
achieved from the first case of the test in section 5.2.  
 
For the first few seconds, the graph shows that the streaming video has the lowest 
possible quality. This is because the l_wt variable is set to 5 seconds, which means that 
only the base video layers are transmitted for the first couples of adaptation windows. 
When the collected workahead amount reaches this threshold, the number of allowed 
enhancement video layers starts increasing in a slow manner for each consecutive 
adaptation window, which  means that the quality of the streaming video is getting better.  
 
The first dot in the graph indicates the corresponding moment of bandwidth scenario 1 in 
which the bandwidth starts dropping heavily (at about 8 seconds in figure 37). Since 
StreamServ has put some workahead time aside, by transmitting small amounts of video 
layers of the earlier windows, the streaming session is not facing an immediate critical 
situation at this moment even though the network connectivity is getting bad. By utilizing 
the workahead time, StreamServ can afford to decrease the number of allowed 
enhancement video layers for each consecutive window in a slow manner, as long as the 
predicted bandwidth is bad and there is enough workahead time left. The slow 
increase/decrease of allowed enhancement layers is desirable, because it prevents the 
video quality from changing in an abrupt way, as seen in the two test cases of section 5.2. 
In other words, the workahead time is aiding by giving the implemented quality-adaptive 
algorithm some time to smooth out heavy rate changes of the video, which are caused by 
partially or completely lost network connectivity.  
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The second dot in the graph indicates the corresponding moment of bandwidth scenario 1 
in which the bandwidth starts increasing again (at about 55 seconds in figure 37). Since 
the bandwidth is increasing, the bandwidth prediction should indicate good network 
connectivity for the next windows. This triggers StreamServ to transmit more 
enhancement layers for the consecutive adaptation windows. Although the predictions 
indicate good connectivity, the implemented quality-adaptive algorithm only allows an 
increase of a few extra enhancement layers for each window, which means that the video 
quality of the streaming video is getting slowly better. As mentioned, the purpose is to 
prevent an instantaneous, high change in the video quality. Another reason for the slow 
increase is to maintain the precaution against a possible future loss of network 
connectivity. 
 
With the implemented quality-adaptive algorithm present, clearly the abrupt changes of 
the video quality are minimized when streaming over a wireless network with highly 
varying bandwidth. The quality changes are instead evenly distributed over the streaming 
session, providing a less noticeable quality adaptation on the video.  
 
Recall that the threshold variables were implemented with the intention of finding a 
balance point for the trade-off between video quality and workahead. If some of these 
variables are adjusted, then the quality of video is also likely to change in a different way 
as the next test case will show.  
 
In the second case of the test, it will be shown that by adjusting the ig_wt variable, the 
achieved video quality is significantly changed when streaming over a network with the 
varying bandwidth of scenario 1. Notice that in the first case of the test, the ig_wt 
variable is set to the initial value 40. This means that StreamServ is allowed to ignore a 
bad connectivity prediction and increase the layers until top video quality is achieved, 
only when the collected workahead time is longer than 40 seconds. As mentioned, this is 
a precaution against sudden network connectivity loss whose duration might be long.  
 
The larger the value of ig_wt is, the more it ensures that StreamServ has enough 
workahead time to handle a connectivity loss well, in the sense that the video quality is 
gradually reduced rather an extreme rapid change towards bad quality. Unfortunately, if 
the duration of bad connectivity is long, then this is done at the expense of the overall 
achieved quality of the streaming video. However, if a risk is taken by lowering the value 
of ig_wt, then parts of the streaming video might reach the highest quality level. The 
lower the ig_wt value is, the more greedy is the consumption of the workahead time to 
provide higher video quality during a period of bad connectivity. Thus, it heightens the 
risk of getting abrupt video quality degradation when the connectivity is bad over a 
longer period, because not enough workahead is available to maintain a slow decrease of 
quality. 
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Figure 39: Outcome of Streaming Test, Case II: Streaming with Different Values of the Threshold 
Variable ig_wt 

 
The graphs of figure 39 represent the outcome of three streaming sessions based on three 
different values of the ig_wt variable. With a value of 15 for the ig_wt variable, the 
quality of the streaming video reaches the top at about 40 seconds into the video and lasts 
for about 10 seconds. Then a drastic loss in quality occurs, and within a couple of 
seconds the video quality reaches the lowest quality level. The larger the value of ig_wt 
gets, the less are the occurences of such drastic quality changes, as seen in the streaming 
sessions where the value of ig_wt is 30 or 40. This is good, as less noticeable quality 
adaptation is preferable. But clearly a disadvantage with larger ig_wt values is that top 
video quality is seldom reached, unless the network connectivity is continuously good 
over a longer period.   
 
The above test case is mainly to show that by adjusting a threshold variable, the outcome 
of the streaming might be different. However, to verify how efficient the implemented 
algorithm is, an objective assessment is required. There is need for an objective metric 
that can be used to present the objective quality of the streaming video. This is covered in 
the next section.  
 
 
 
 



The Department of Informatics                     Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network                                         

 

82  
 

5.4  An Objective Metric to Represent the Perceived Quality 
  
To make an assessment of the performance of the implemented quality-adaptive 
algorithm when streaming over a unreliable network, there is need for an objective metric 
that can be used to represent the perceived quality of layer-encoded video.  
 
The PSNR is a popular metric to present the objective quality of video data. It is 
described by the following mathematical expression: 
 

PSNR = 10 log10 
2255

MSE
  where MSE is the mean square error.      [15]         (b) 

 
However, this metric does not represent the perceived quality of layer-encoded video 
well enough [4], so further details about it will not be provided in this thesis.   
 
The lack of a metric to represent the perceived quality of layer-encoded video led to a 
new metric that was developed by Michael Zink (currently a postdoctoral fellow in the 
Computer Science Department at the University of Massachusetts in Amherst) for his 
dissertation about scalable Internet Video-on-Demand systems [4]. This metric is called 
the spectrum.  
 
The objective quality metric spectrum is described by the following mathematical 
expression: 
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The variables ht and zt are defined as: 

• ht – number of layers in time slot t, where t = 1, …, T. 
• zt – indication of a step in time slot t, where zt∈{0,1} and t = 1, …, T. 

 
The spectrum captures the frequency (the number of layer variations) and the amplitude 
(amount of layers decreased/increased in each layer variation) of quality variations. The 
frequency of variations is represented by zt. Thus, a step in a time slot corresponds to an 
increase or decrease of video layers between two consecutive adaptation windows. A 
value of 0 for the spectrum represents the best possible quality, while the spectrum 
increases with a decreasing quality.  
 
After further investigation, it turns out that the spectrum doesn’t always capture well the 
fact that gradually reduced video quality (slow decrease of video layers) is generally 
better than rapid quality drops.  
 

http://www.cs.umass.edu/
http://www.umass.edu/
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Figure 40: Rapid and Gradual Drops 
 
In the two figures above, the spectrum calculation gives a result of 2 for both cases. In a 
crisis situation, the implemented algorithm of this thesis tries to achieve good video 
quality adaptation by gradually adjusting the amount of video layers to transmit. Thus, 
the algorithm is based on the assumption that gradual quality change is an essential 
strategy that leads to better perceived quality than a rapid change, which unfortunately is 
not well represented by the spectrum.  
 
Another drawback with the spectrum metric is that the quality levels are not well 
represented either. A constant reception of only base layers (lowest quality level) for a 
number of adaptation windows is indicated by the spectrum to have equally good quality 
as a constant reception of all 16 layers (highest quality level) for the adaptation windows.  
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Figure 41: Lowest and Highest Quality Reception 
 
The two figures above show that the spectrum calculation does not take into account the 
fact that the quality level (level of video layers) has an influence on the perceived quality. 
As long as there are no layer changes during the streaming session, the result calculated 
from the spectrum corresponds to perfect quality. In regard to the improvement code of 
this thesis, this is not an appropriate way to interpret the perceived video quality.  
 
In order to achieve a reasonable assessment of the improvement code, it is necessary to 
develop a new simple metric for objective quality assessment with regard to the 
following two issues, as discussed above: 
 

1) The metric must capture the fact that gradual quality changes are better than rapid 
quality changes. 

2) The quality levels have an influence on the perceived video quality and must be 
taken into consideration by the metric.  

 



The Department of Informatics                     Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network                                         

 

84  
 

Inspired by the spectrum, the following new objective quality metric is developed for this 
thesis, based on the two issues above. For easy reference, this new metric will be called 
spectrum2: 
 

s2(v) = 
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The variables ht, zt and dt are defined as: 

• ht - number of layers in time slot t, where t = 1, …, T. 
• zt - indication of a step in time slot t, where zt∈{0,1} and t = 1, …, T. 
• dt – number of layer difference between ht-1 and ht, when zt = 1. 

 
Notice that the definition of ht and zt are the same as for the spectrum. In this thesis, the 
time slot mentioned above corresponds to an adaptation window of fixed duration. That 
is, there are T adaptation windows in total for the streaming video. Similar to the 
spectrum metric, the lower the value, the better is the perceived quality.  
 
The first part of the equation (d) corresponds to 

average
1 , where average indicates the 

average number of total received layer amounts for all the adaptation windows. This 
means that the higher the quality level is, the lower is the value of the ‘layer average’ 
part. The following example describes this situation.  
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Figure 42: Lowest and Highest Quality Level 
 

Value of ‘layer average’ part          Value of ‘layer average’ part                         
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As the calculations above show, if the entire streaming video is represented by the lowest 
quality level, the ‘layer average part’ of the equation (d) gives a value of 1. On the other 
hand, if the highest quality level is achieved all the way, then the value is 0.0625. In other 
words, this metric takes the quality level into consideration when representing the 
perceived quality, unlike the spectrum where the result of both cases above are 0. It 
should be noted that if the perceived quality is perfect, then spetrum2 gives a value of 
0.0625, which in the case of spectrum is 0.  
 

The second part of the equation (d) corresponds to 
changelayernumtot

difflayersum
___

__ , where 

sum_layer_diff indicates the sum of all layer difference amounts between the adaptation 
windows, and tot_num_layer_change  indicates the total number of layer changes for the 
entire streaming session. In other words, this is a measure of the average layer difference 
between all the adaptation windows. That is, the higher the quality change is, the higher 
is the value of the average layer difference. The following example describes this. 
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Figure 43: Higher and Lower Quality Changes 
 
Value of ‘average layer difference’ part          Value of ‘average layer difference' part 
    for (1) of  figure 43:                for (2) of  figure 43: 
 

                 
1

)24( −  =  2                
2

)23()34( −+−  =  1 

 
The calculations above show that if the quality drops gradually, then the ‘average layer 
difference’ part of the equation (2) gives a smaller value compared to when the quality 
changes faster. This is good in the sense that it matches the way good perceived quality is 
defined in this thesis, which is the fact that gradual quality changes are preferable when 
streaming over a network with highly varying bandwidth.  
 
Since quality changes play a significant role in the assessment of the video quality, the 
weight is put on the ‘average layer difference’ part of the equation (2). That is, if the 
quality level is high for the streaming video and there are high quality changes during the 
playout, then the perceived quality of this video is considered to be less good in 
comparing to a video in which both the quality level and the quality changes are low. The 
following example explains this more clearly. 
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             Figure 44: Higher Quality Level, High Quality Change 
 

 
                                    

        Figure 45: Lower Quality Level, Low  Quality Change 
   
 
s2(v) for the streaming session of figure 44:  
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s2(v) for the streaming session of figure 45:  
 
s2(v) = 
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The example above shows that even though the highest quality level (16 video layers) for 
the video is reached most of the time during the streaming session of figure 44, the 
perceived quality of this video is still considered by spectrum2 to be worse than the one 
seen in figure 45, because of the high quality drop. As mentioned earlier, one of the 
purposes of the implemented quality-adaptive algorithm is to prevent high quality 
changes in the video from occuring, such as the one depicted in figure 43. Thus, it is 



The Department of Informatics                     Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network                                         

 

87  
 

approriate that spectrum2 indicates the quality changes of figure 43 to be less good than 
those of figure 44.  
 
Based on the examples given, this new objective metric is verified to a degree of being 
suitable for representing the perceived quality of layer-encoded video. The fact that it can 
distinguish between gradual and rapid quality changes, and that the objective quality is 
based on the quality levels of the video whenever there are no quality changes during a 
streaming session, makes it appropriate enough for the objective assessment of the further 
test cases in this thesis.  
 
Although this metric works for the objective assessments in this thesis, it is not 
guaranteed to work in other circumstances. Since the development of an objective metric 
is not part of the goals of this thesis, further investigations are probably required in order 
for this metric to be working on a general basis.  
 

5.5  An Objective Assessment of the Improvement  Code 
 
The objective assessment of the implemented quality-adaptive algorithm is based on a 
number of test cases. Since the bandwidth of an unreliable, wireless network can vary in 
numerous ways, it is hard to pick a specific scenario that can be used to verify how 
efficient the implemented algorithm is. Thus, it is better to show how the algorithm reacts 
upon different rates of bandwidth development. In a wireless network, the available 
bandwidth for a mobile receiving device can increase or decrease at different rates 
according to the condition of the network and the signal strength between the sender and 
the receiver. Thus, it is interesting to show how the implemented algorithm handles the 
different bandwidth rates. This section concludes with an objective quality comparison  
between the original Qstream code and the improvement code. The comparison is based 
on bandwidth scenario 5, which consists of  5 sub-scenarios that capture some interesting 
network conditions.  
 

5.5.1  Objective Quality when Connectivity is Getting Bad 
 
Items in use for this test: 
 

• Media Content:  An MPEG-1 file of about 2 minutes running time converted to    
                                   SPEG 
• Bandwidth Scenario: 3 
• Threshold Variable Values:  Different values of ig_wt:  10, 15, 20, 25, 30, 35, 

40, 45, 50, 55 and 60.  
 
The following test cases are based on bandwidth scenario 3 of section 5.1. 
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Figure 46: Bandwidth Scenario 3 
 

 
The different graphs of bandwidth scenario 3 represent 13 sub-scenarios in which the 
bandwidth drop rate starts out at 5 kbit/sec and grows by 5 kbit/sec for each sub-scenario.  
 
Recall that the threshold variable ig_wt decides when StreamServ can ignore the 
bandwidth prediction. Thus, when this threshold is reached, StreamServ is able to 
increase the video layers to transmit for each consecutive adaptation window until the 
highest quality level is reached. When the bandwidth drops at different rates, it is 
interesting to see how various values of this threshold variable affect the objective quality 
of the streaming video.   
 
Notice that in each of the 13 sub-scenarios, the bandwidth starts out at 2 Mbit/sec and 
remains at this value for 15 seconds before it starts dropping. The following objective 
assessments that make use of these sub-scenarios are based on the period after these 15 
seconds, since the interesting part of the assessments lies in the moments in which the 
bandwidth is dropping.  
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Figure 47: Objective Quality when Bandwidth Decreases, ig_wt = 10 to 25 
 
Figure 47 and figure 48 show the objective quality for a number of test cases (streaming 
sessions) with different combinations of the sub-scenarios (different bandwidth drop 
rates) and ig_wt values. The horizontal axis indicates the different bandwidth drop rates, 
while the vertical axis indicates the average spectrum2 value, which corresponds to the 
objective quality achieved from the different streaming sessions. According to the 
definition of spectrum2, a value of 0.0625 represents the best possible quality, while the 
spectrum2 increases with a decreasing quality. That is, the objective quality decreases 
with each increasing y value.  
 
An interesting detail to notice from figure 47 is that for the ig_wt values of 10 to 25, the 
perceived quality of the streaming sessions are nearly perfect for drop rates up to 25 
kbit/sec. As mentioned, the bandwidth starts out at 2 Mbit/sec and remains at this value 
for 15 seconds before it starts dropping. During these 15 seconds of good network 
condition, the implemented quality-adaptive algorithm put aside an amount of workahead 
for a time of crisis. In other words, the bandwidth drop rates up to 25 kbit/sec did not 
cause any problems for the streaming sessions, since the collected workahead amounts 
were sufficient to cover the period in which the bandwidth was dropping.  
 
Since the quality achieved is nearly perfect even when the drop rate reaches 25 kbit/sec, 
this means there has been a greedy consumption of workahead time to provide better 
video quality during the period when the bandwidth was dropping, due to the low values 
of ig_wt. The risk in such behaviour is that high quality changes can occur, if the 
condition of the network stays bad for a longer period or the bandwidth drop rate gets 
higher. When the drop rate surpasses 25 kbit/sec in figure 47,  there is a noticeable high  
jump in the objective quality of the streaming sessions with ig_wt values of 10 to 25. The 
interesting detail to notice here, is that the larger ig_wt is, the lower the quality jump is.  
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The reason high quality jumps occur at the lower ig_wt values, is because of the threshold 
variable c_wt. This variable is also known as the crisis workahead threshold variable. As 
described in section 4.2 of chapter 4, it decides how much of the workahead time that can 
be used for transmitting late adaptation windows. The initial value of this variable is 10 
seconds. The lower the ig_wt value is, the more workahead time is spent to transmit 
better quality during a period of bad connectivity. Thus, the possibility of the workahead 
time reaching the threshold c_wt is also larger. If it happens that the workahead time falls 
below c_wt during the transmission of an adaptation window X, then the rest of the 
contents of window X are dropped. However, if the amount of data transmitted for 
window X-1 was much more than for window X, due to greedy consumption of 
workahead, then there will be a high quality jump in the transition from window X-1 to 
window X. This explains why low ig_wt values might lead to high quality changes, as 
figure 47 shows.  
 
Figure 48 shows the objective quality of the streaming sessions with ig_wt values 30 to 
60. Notice that the spectrum2 values achieved from the sessions of drop rates up to 25 
kbit/sec are higher than the ones seen in figure 47. Since the ig_wt values are higher, it 
means that the consumption of workahead time is less greedy. StreamServ spends more 
time limiting the amount of data to transmit according to the threshold variables b_pt, 
ba_lt and bs_lt (section 4.2 of chapter 4). In other words, StreamServ is more cautious 
when transmitting the contents of the adaptation windows, and as a result certain 
enhancement video layers for a number of adaptation windows are dropped in favour of 
more workahead time. The consequence is reduced video quality, which is reflected by 
the higher spectrum2 values. But although the perceived quality is less good for drop 
rates up to 25 kbit/sec, the payoff is seen in the streaming sessions with higher drop rates. 
The quality jump at drop rate 30 kbit/sec and the spectrum2 values of the sessions above 
this drop rate are lower than those seen in figure 47.  
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Figure 48: Objective Quality when Bandwidth Decreases,  ig_wt = 30 to 60 
 



The Department of Informatics                     Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network                                         

 

91  
 

These test cases clearly show that the threshold variable ig_wt has an effect on the 
achieved objective quality. However, the question that ought be asked, is whether a high 
value of ig_wt always gives a good result.  
  
When looking at the streaming sessions of these test cases from another perspective, it 
turns out that increasing ig_wt is not always a good idea, if the decreasing bandwidth is 
not yet critical for the performance of the streaming process.  
 

 
 

        Figure 49: Objective Quality for ig_wt = 10 to 60 from a Different Perspective 
 
Figure 49 represents the same streaming sessions from figure 47 and figure 48, but 
viewed from a different perspective. In this figure, the horizontal axis indicates the 
different values of ig_wt, while the vertical axis indicates the average spectrum2 value as 
before.  
 
An important thing to notice here is the development of the objective quality when using 
the sub-scenarios that correspond to drop rates up to 25 kbit/sec. At the value of 30 for 
ig_wt, there is a high jump in the objective quality, which indicates that the perceived 
quality is reduced. Since StreamServ could afford transmitting nearly perfect quality at 
the lower ig_wt values, despite the fact that the bandwidth was dropping, this means it 
was not the decreasing bandwidth that was causing the reduced quality. The reason this 
happened, was because the increased ig_wt values made the implemented algorithm 
behave more cautiously than necessary when transmitting the contents of the adaptation 
windows. In other words, precaution against network failures was preferred most of the 
time rather than taking risks to transmit more contents, even though the slowly decreasing 
bandwidth was still sufficient for more contents to be transmitted. This means the 
available bandwidth was not utilized well enough, because the ig_wt was set too high. 

Bandwidth 
drop rates: 
  30-65 kbit/sec 

 
  Bandwidth 
  drop rates: 
    5-25 kbit/sec 
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If the bandwidth decreases at a higher rate than 25 kbit/sec, the spectrum2 values of the 
sessions with lower ig_wt values are also higher. This can be seen in the graphs of         
Figure 49 49 that represent the sessions with drop rates above 25 kbit/sec. Even though 
the quality achieved with low ig_wt values are bad compared to the sessions in which the 
drop rate is lower, this is made up for as ig_wt increases. The implemented algorithm is 
less greedy as ig_wt grows, and thus, the quality changes occur in a slower manner. 
 
The point to grasp here, is that high ig_wt values are not always efficient for the 
streaming process, if the bandwidth initially is good but starts dropping at a low rate. On 
the other hand, if the bandwidth drop rate is high and leads to bad connectivity over a 
longer period, then it’s the low ig_wt values that might impede the efficiency of the 
streaming. The low ig_wt values make StreamServ over-estimate the capacity of the 
available bandwidth. Thus, more workahead time is consumed, and high quality changes 
might occur if the workahead time falls below the threshold c_wt.  
 
The conclusion to be drawn from the test cases of this section, is that high values of ig_wt 
are preferable if the bandwidth is decreasing. Although high values of ig_wt can lead to 
under-estimation of the capacity of the available bandwidth, it is probably better to take 
precaution after all, rather than to risk getting high quality changes or playout 
interruptions. Another way to avoid high quality jumps when using low ig_wt values 
during periods of bad connectivity, is to lower the threshold c_wt. This doesn’t actually 
solve the problem, but at least it provides StreamServ with some more time to transmit 
the late adaptation windows. However, it also heightens the risk of getting playout 
interruptions sooner, if the bad connectivity lasts over a longer period.  
 
Since the actual future condition of a wireless network is unknown, it is impossible to 
predict exactly how the bandwidth will behave whenever it seems to decrease/increase. 
Thus, it is a matter of choice whether to transmit fewer data in favour of workahead time, 
or to transmit more data at the risk of getting higher quality changes.  
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5.5.2  Objective Quality when Connectivity is Getting Good 
 
Items in use for this test: 
 

• Media Content:  An MPEG-1 file of about 2 minutes running time converted to    
                                   SPEG 
• Bandwidth Scenario: 4 
• Threshold Variable Values:  Different values of ig_wt:  10, 15, 20, 25, 30, 35, 

40, 45, 50, 55 and 60.  
 
The following test cases are based on bandwidth scenario 4 of section 5.1. 
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      Figure 50:  Bandwidth Scenario 4 
 
The different graphs of bandwidth scenario 4 represent 13 sub-scenarios, in which the 
bandwidth growth rate starts out at 5 kbit/sec and increases by 5 kbit/sec for each sub-
scenario.  
 
Similar to the test cases of the previous section, the following ones are also making use of 
different values of the threshold variable ig_wt. However, in these test cases the purpose 
is to show how the implemented algorithm reacts upon different bandwidth growth rates.  
 
In each of the sub-scenarios, the bandwidth starts out at 500 kbit/sec and remains at this 
value for 10 seconds before it starts increasing. The intention is to investigate how the 
implemented algorithm handles the gradual transition from bad to good connectivity. The 
following objective assessments that make use of these sub-scenarios are based on the 
period after the 10 seconds. Similar to the test cases of bandwidth drops, the interesting 
part of the assessments lies in the moments in which the bandwidth is increasing.  
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Figure 51: Objective Quality when Bandwidth Increases, ig_wt = 10 to 25 
 
Figure 51 and figure 53 provide an illustration of the objective quality achieved from the 
test cases (streaming sessions). These are based on combinations of different bandwidth 
growth rates and ig_wt values. The horizontal axis indicates the different bandwidth 
growth rates, while the vertical axis indicates the objective quality of the streaming 
sessions.  
 
An interesting graph of figure 51 is perhaps the one that corresponds to the ig_wt value of 
10. This graph shows that the objective quality is quite bad for the streaming sessions that 
are based on low bandwidth growth rates. This happens because of the low ig_wt value. 
When the workahead time surpasses the ig_wt threshold, StreamServ aims at top quality 
transmission. Thus, the number of enhancement video layers is increased by 1 for each 
consecutive window with the intention of reaching the highest quality level. However, if 
the bandwidth growth rate is low, the bandwidth will probably be overloaded at some 
point during the transmission. In other words, the slowly increasing bandwidth can not 
keep up with the continuous increasing amount of data to transmit. Thus, the time interval 
(section 3.2.2 of chapter 3)  used to transmit an amount of data will eventually be longer. 
This results in a percentage of loss being returned from the bandwidth prediction 
function. However, if the ig_wt value is very low, then the possibility of StreamServ 
ignoring the prediction is also larger. If this is the case, then the workahead time will still 
be consumed in a greedy way. Thus, the workahead time might fall below the threshold 
c_wt. The consequence are high quality jumps, which are reflected by the high spectrum2 
values. Figure 52 provides an illustration of a streaming session in which the ig_wt value 
and the bandwidth growth rate are low. Notice all the quality jumps, which are caused by 
the issues mentioned above.  
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Figure 52: Streaming Session with Low ig_wt and Low Bandwith Growth Rate 
 
As the growth rate increases in figure 51 and figure 53, the objective quality of the 
sessions get better, which is indicated by the lower spectrum2 values. This is not 
surprising, as higher bandwidth makes it possible for more data to be transmitted without 
complications. Thus, higher video quality is achieved.  
 
Figure 51 also shows that when ig_wt increases, the objective quality is better for the 
streaming sessions that are based on low bandwidth growth rates. Larger ig_wt values 
mean that StreamServ spends more time limiting the amount of data to transmit 
according to the threshold variables os_pt, be_pt, s_lt and st (section 4.2 of chapter 4). 
Thus, certain enhancement layers are dropped if the bandwidth is limited, and the 
probability of overloading the available bandwidth is smaller. On the contrary, the lower 
ig_wt is, the sooner StreamServ ignores the four threshold variables and further 
bandwidth predictions with the intention of increasing the quality. If the bandwidth 
initially is low and the growth rate is also low, then such behaviour heightens the risk of 
getting high quality jumps, as described above.  
 
In figure 53, the graphs correspond to the streaming sessions with ig_wt values 30 to 60.  
Notice that when the bandwidth growth rate is low, the objective quality achieved from 
these sessions are better than the ones of figure 51. StreamServ is more cautious with the 
amount of data to transmit for each increasing ig_wt value. Thus, even though the growth 
rate is low, there is a higher possibility that the bandwidth will not be overloaded. The 
result is better objective quality. 
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Figure 53: Objective Quality when Bandwidth Increases, ig_wt = 30 to 60 
 
There is another interesting detail to notice from figure 51 and figure 53. The higher 
ig_wt is, the less good is the objective quality of the sessions with high growth rates. 
Figure 54 provides a better and clearer illustration of this.  
 

 
 

Figure 54: Objective Quality when Bandwidth Increases from a Different Perspective 
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Figure 54 shows that when the bandwidth growth rate is high, lower ig_wt values give the 
best objective quality. On the other hand, if the bandwidth growth rate is low, the 
objective quality is better with higher ig_wt values. However, if both the growth rate and 
the ig_wt value are high, then the capacity of the available bandwidth might be under-
estimated by StreamServ. Recall from the test cases of the previous section, that when the 
bandwidth drop rate is low, high ig_wt values might lead to under-estimation of the 
available bandwidth. Thus, the bandwidth is not utilized well enough for the streaming. A 
similar problem occurs when the bandwidth increases. In this case, as mentioned above, it 
is the high growth rate that might lead to inefficient streaming if the ig_wt value is set too 
high. The logical explanation to this might be clear by now. If the bandwidth is good and 
keeps increasing at a high rate, then there is no point in transmitting data in a cautious 
way by dropping enhancement video layers. By doing so, the perceived quality of the 
video is unnecessarily bad, because the available bandwidth is not utilized well enough. 
 
From the result of the test cases in this section, there is an indication that high ig_wt 
values might result in better objective quality in general. Even though a high ig_wt value 
can lead to bad utilization of the available bandwidth, it is probably better this way. If the 
bandwidth is under-estimated (due to high ig_wt value), the probability of getting fewer 
high quality jumps is larger, but at the expense of achieving lower quality levels. On the 
other hand, if the bandwidth is over-estimated (due to low ig_wt value), the probability of 
getting more high quality jumps is larger. But the advantage is that higher quality levels 
are more likely to be achieved, if the bandwidth is sufficient. According to the goal of 
this thesis, fewer high quality jumps are preferable. Thus, a higher ig_wt value is 
probably more preferable.  
 

5.5.3  An Objective Quality Comparison Between The Original 
Qstream Code and The Improvement Code 
 
Items in use for this test: 
 

• Media Content:  An MPEG-1 file of about 2 minutes running time converted to    
                                   SPEG 
• Bandwidth Scenario: 4 
• Threshold Variable Values:  Different values of ig_wt:  10, 60 
 

This final test is designed with the intention of comparing the performances of the 
improvement code and the original Qstream code. There are many different ways in 
which the bandwidth can vary. Rather than investigating all sorts of variations, this test is 
based on bandwidth scenario 5 of section 5.1. This scenario consists of 5 sub-scenarios. 
Sub-scenarios 1-4 are meant to represent the kinds of intense bandwidth variations that 
will lead to high quality jumps in the streaming video, if the original Qstream 
implementation is used. The purpose is to verify that the improvement code handles these 
variations in a better way. The last sub-scenario shows the bandwidth being constantly 
good. It should be noted that the bandwidth in this sub-scenario is sufficient for an entire 
SPEG file (converted from MPEG-1) to be transmitted at full quality. The purpose is to 
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show whether there is any difference in the perceived quality when using either the 
original Qstream code or the improvement code for streaming over a network, in which 
the bandwidth is good with no variations.  
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Figure 55: Bandwidth Scenario 5 
 
The first sub-scenario shows that the bandwidth starts out low, but gradually increases 
through a period of intense variations. The second sub-scenario shows the opposite. The 
third sub-scenario simulates a situation in which the connectivity either is very good or 
very bad. An important detail to notice here is that the durations of bad connectivity are 
longer than those of good connectivity. The fourth sub-scenario shows a similar 
bandwidth variation pattern as the third. However, the difference is that the connectivity 
is never really good. It is either bad or worse. As described, the fifth sub-scenario 
represents a bandwidth that is constantly good with no variations. It should be good 
enough for an SPEG file (derived from an MPEG-1 file) to be transmitted at top quality 
without any complications.  
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Figure 56: Comparing the Improvement Code with the Original Qstream Code 
 
Figure 56 provides an illustration of the outcome of the test cases (streaming sessions). 
The horizontal axis indicates the 5 sub-scenarios of bandwidth scenario 5. The vertical 
axis indicates the spectrum2 value achieved from the streaming sessions.  
 
This figure shows that when the bandwidth varies intensely over a longer period, the 
original Qstream code is not able to handle the quality-adaptation too well in comparing 
to the improvement code. This is reflected by the highest spectrum2 values in the figure, 
which are achieved from using the original Qstream code. Worth noticing is the 
streaming session in which the original Qstream code is used with sub-scenario 3. This 
one has the highest spectrum2 value of all the sessions depicted in the figure, which 
means that the objective quality of this session is the least good of them all. Since the 
bandwidth in sub-scenario 3 is very good in certain periods, StreamServ’s attempts to 
transmit top quality during these periods are successful. However, when the bandwidth 
suddenly drops to an unusable level, the streaming process is affected instantaneously, 
which results in a high quality jump. This session is depicted in figure 57.  
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Figure 57: Streaming Session Using Original Qstream over Sub-Scenario 3  
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Figure 58: Streaming Session Using Improvement Code over Sub-Scenario 3, with ig_wt = 60 
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Figure 59: Streaming Session Using Improvement Code over Sub-Scenario 3, with ig_wt = 10 
 
When the improvement code is applied to the original Qstream code, a much better 
objective quality is achieved for the streaming sessions over the 5 sub-scenarios, as seen 
in figure 56. Figure 58 and figure 59 show the outcomes of two streaming sessions using 
the improvement code. Sub-scenario 3 is used for these two sessions, and the outcomes 
are quite improved compared to the one depicted in figure 57. Even when the ig_wt value 
is set to 10, the outcome is still better than the one achieved with the original Qstream 
code. Because of the greedy consumption of workahead time, there are still a couple of 
high quality jumps, as seen in figure 59. However, with a ig_wt value of 60, all the high 
jumps are successfully avoided. As explained earlier, StreamServ is more cautious with 
the transmission, and more workahead time is put aside for emergency cases. Thus, 
whenever the bandwidth drops, StreamServ can afford applying a gradual decrease of 
quality to the streaming video as desired. The disadvantage is that the overall quality 
levels achieved are rather low. As long as high quality jumps are avoided, the objective 
quality of the sessions with higher ig_wt values are still better, even though the quality 
levels might be low. This is clearly shown in all the test cases in figure 56 that are using 
sub-scenarios 1-4.  
 
On the other hand, if the bandwidth is good with no variations, then the original Qstream 
code is the clear winner when it comes to the objective quality. This can be seen in figure 
56 when using sub-scenario 5. 
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Figure 60: Streaming Sessions over Sub-Scenario 5 
 
The reason is illustrated in figure 60. This figure shows the outcome of streaming 
sessions achieved from using the improvement code and the original Qstream code over 
sub-scenario 5. When using the original code, top quality is achieved for the entire 
streaming video. This is not a surprise, as the original StreamServ aims at top quality 
transmission no matter how the condition of the network is. However, when using the 
improvement code, the threshold variables make StreamServ act more cautious during the 
transmission. Based on the fact that the future condition of a wireless network is 
unknown, the improved StreamServ puts aside a certain amount of workahead time 
before it starts top quality transmission. Thus, the quality of the first adaptation windows 
are low. An additional enhancement layer is added for each consecutive window, as long 
as the bandwidth is predicted to be good. So it takes a while before the highest quality 
level is reached. This is the reason why the objective quality achieved from the 
improvement code is lower than when using the original code.  
 
The figure above also shows that the top quality level is reached sooner if the ig_wt value 
is low. In other words, the objective quality is better if a low ig_wt value is used instead, 
which is also shown in figure 56. Unfortunately this doesn’t come out very clear in figure 
56, since the difference is just 0.017913. But notice that the value of the ‘average layer 
difference’ part is the same for both (1) and (2) of figure 60. So although the difference 
value is small, it is still a significant value in regard to the ‘layer average’ part of the 
metric.  
 
To summarize, the test cases of this section show that when the bandwidth is highly 
varying, the improvement code leads to a much better outcome compared to the original 
code. The perceived quality of the video is more balanced throughout the streaming 
session, which is expressed by both the objective quality metric and the supporting 
figures. However, if the bandwidth is constantly good and sufficient for top quality 
transmission, then the original code leads to better performance.  
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5.6  Evaluation of the Improvement Code 
 
Based on the test results of the previous sections, it is now appropriate to claim that the 
improvement code handles streaming sessions over a network with intensely varying 
bandwidth in a more efficient way than the original code does.  
 
The threshold variables (section 4.2 of chapter 4) are one part of the improvement code 
that determine the level of efficiency. Originally all the threshold variables were intended 
to be adjusted, in order to investigate the trade-off between video quality and workahead. 
However, further research showed that most weight is put on the ig_wt variable. By 
adjusting this variable, it led to the most visible and essential results of the test cases. 
Another threshold variable closely related to the ig_wt variable, is the c_wt variable. 
Recall that it is the c_wt variable that actually causes the high quality jumps. The lower 
the ig_wt value is, the sooner the workahead time reaches the c_wt threshold, if the 
connectivity is bad. Thus, the possibility of getting high quality jumps is larger. By 
lowering the value of this variable, StreamServ is able to get some extended time to 
transmit late adaptation windows. If the connectivity is bad over a longer period, then a 
low value of c_wt might lead to playback interruption sooner. Although in general, if the 
duration of bad connectivity is very long, then the playback interruption will occur after a 
while anyway.   
 
The ‘bandwidth prediction’ function is another part of the improvement code that has a 
significant influence on the level of efficiency achieved. This function is based on a 
comparison of two values, which correspond to the number of bytes written to TCP per 
second for the two latest fixed time interval. The comparison makes it possible to predict 
whether the bandwidth is increasing or decreasing, by computing a percentage of gain or 
loss based on the two values. However, the outcome of the function does not reflect the 
actual capacity of the available bandwidth. Thus, whenever the predicted percentage is 
either a gain or a loss, StreamServ only knows that the bandwidth is either increasing or 
decreasing, respectively. It does not actually know the amount of data that will lead to 
fully utilization of the current available bandwidth. Therefore, the amount of data to be 
transmitted is determined by comparing the predicted percentage with the threshold 
variables os_pt, b_pt and be_pt. The idea behind these threshold variables is to help 
avoiding over-estimation of the available bandwidth. This can be achieved by setting the 
b_pt threshold to a low value (initial value 10) and the be_pt to a high value (initial value 
40). In other words, precaution is preferred rather than taking risks. 
 
However, during the research it turned out that the predicted percentages of gain rarely 
reached the initial value of be_pt. Unless the bandwidth was changing rapidly from low 
to high, the percentages of gain normally were below be_pt, which corresponded to a 
‘stable’ network condition. When lowering the value of be_pt, it led to over-estimation of 
the bandwidth, which resulted in more frequent high quality jumps whenever the 
bandwidth was not too high. Thus, it was better off leaving the be_pt variable at the 
initial value.  
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Since the predicted percentages of gain mostly corresponded to a ‘stable’ network 
condition, it was necessary to introduce the threshold variable st, in order to increase the 
efficiency of the streaming process. Recall that this threshold variable decides when a 
‘stable’ network condition is good enough for increasing the number of enhancement 
layers to transmit. Thus, in the case of a ‘stable’ network condition, the number of 
allowed enhancement layers is not always restricted by a fixed value of the s_lt threshold 
variable.  
 
In the test cases of section 5.5.3, it was shown that when the bandwidth was constantly 
good, the improvement code led to a poorer outcome compared to the original code. 
Since the future condition of an unstable network is unknown, the improvement code 
must make sure that StreamServ acts more cautiously. This is a necessary precaution that 
should be considered, even if the bandwidth is high at the start-up of a streaming session. 
However, if the viewer accepts the risks of getting playback interruptions or frequent 
quality jumps, then it is possible to achieve better quality by lowering the values of the 
threshold variables ig_wt, l_wt and c_wt, provided that the bandwidth is good enough.   
 
Apart from the issues mentioned above, generally the improvement code delivers the 
desired outcomes. However, it should be mentioned that certain factors might have 
affected the outcome of the test cases. This is the reason why it was necessary to compute 
the average spectrum2 values for most of the test cases. The average value was based on 
several outcomes of the same test case.  
 
The following factors might have affected the outcomes:  
 

• Computer performance -  The processor and memory chips of the sender and 
receiver machines are important hardwares which play a significant role in the 
efficiency of the performance. 

 
• Accuracy of bytes written to TCP – Investigations reveal that the number of 

bytes written to TCP for the different time intervals is a little varying, even 
though the numbers are based on a fixed time interval, and the bandwidth is 
equally good throughout the streaming session. However, when the bandwidth is 
highly varying, these minor variations are not significant at all. Since the time 
intervals differ greatly whenever the bandwidth varies intensely, they compensate 
for the minor variations of the written bytes.  

 
• Human delays -  A test case is run by manually starting the streaming process 

and a bandwidth scenario script simultaneously.  
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Chapter 6:  Conclusion 
 
This chapter provides a description of the achievement of this thesis and some ideas 
about future work.  
 

6.1  The Achievement of this Thesis 
 
The primary goal of this thesis was to implement an optimal solution for efficient 
utilization of the varying bandwidth of a wireless network when streaming a video.  
 
An improvement code was developed and added to the existing Qstream software. This 
software supported quality-adaptive streaming by dynamically adjusting the data rate of 
the streaming video, according to the condition of the network. The video was rate-
adjustable, because it was in a layer-encoded format. This made it possible to apply a 
priority data dropping strategy, which basically meant that the less important video layers 
(aka. enhancement layers) were dropped if the connectivity of the network was getting 
bad during the streaming session. Thus, the data rate of the video got lower. In other 
words, the streaming video was dynamically adapted to the condition of the network.  
 
An important fact that the improvement code was based on, was the independency 
between the transmission speed and the playback speed of the video. Buffering was 
employed at the client side, and thus, whenever the connectivity was good, data could be 
transmitted faster than playback speed and got temporarily stored in the buffer for later 
use.  
 
The fact that the video data could be transmitted faster than playback speed, was a 
fundamental assumption for developing the improvement code. Whenever an amount of 
data was transmitted faster than the playback speed, the streaming server would be lying 
ahead of time.. This amount of time was known as the workahead time. Basically, the 
idea behind the improvement code was to collect workahead time during a period of good 
network connectivity, and then make use of that amount of time in a most efficient way 
during the period in which the connectivity was bad. If there was no workahead time 
available during a period of bad connectivity, then either the streaming process would 
stop immediately, or there would be high quality jumps occuring in the streaming video. 
This was not considered to be a desirable outcome. Thus, the workahead time would 
assist in smoothing out the rate changes, providing a gradual change of the video quality. 
The workahead time would also help lowering the risk of getting playback interruptions 
during a period of bad connectivity.    
 
Since the bandwidth of a wireless network could be intensely varying, a challenge would 
be to decide wisely the amount of workahead time to acquire during good connectivity, 
and the amount to spend during bad connectivity.  
 



The Department of Informatics                     Potential of Quality-Adaptive Streaming of Layer-Encoded Video over a Wireless Network                                         

 

105  
 

In chapter 3 and 4, the improvement code was proposed and implemented, respectively. 
The improvement code consisted of a number of functions that would co-operate with 
each other and the existing software to achieve the goal. The functions solved the 
following tasks: 
 

• Perform predictions of the future condition of the network on a regular basis, 
based on past conditions of the network.  

• Determine the amount of data that can be transmitted, based on the outcome of 
the prediction of the network condition. 

• Update and keep an overview of the amount of workahead time available for the 
streaming server to use.  

• Determine the amount of workahead time to acquire based on the outcome of the 
prediction of the network condition. This is done by dropping enhancement video 
layers. 

• Determine the amount of workahead time that the streaming server can make use 
of during a period of bad connectivity, in order to achieve the most efficient way 
of transmitting data. 

 
Since there was a trade-off between the quality of the video and the workahead time, it 
was necessary to implement a set of threshold variables. These variables would help 
finding a balance point for the trade-off.  
 
In chapter 5, the improvement code was tested with a number of streaming sessions (test 
cases). In order to investigate how efficient the improvement code was, the streaming 
sessions were based on bandwidth scenario scripts which emulated different bandwidth 
variations of a wireless network. In order to make an objective assessment of the 
performance of the improvement code, an objective quality metric was needed. 
Originally the intention was to use a pre-developed objective metric called spectrum to 
make the objective assessment. However, after further investigations, it turned out that 
this metric did not work as it was supposed to. Thus, this led to the development of a new 
objective metric spectrum2.  
 
By making use of the new objective metric, it was possible to evaluate the outcomes 
achieved from the test cases. By adjusting a certain threshold variable, the outcomes were 
significantly changed. According to the condition of the network, some outcomes were 
better than other. Although certain threshold variables didn’t lead to any visible 
improvements when adjusted, it didn’t change the fact that they should be adjustable 
variables. It would be wrong to claim that one specific value of the threshold variables 
would lead to the best outcome in all situations, because in reality, the bandwidth of an 
unreliable, wireless network could behave in unexpected ways. 
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6.2  Future Work 
 
Given the time constraints that were provided for this thesis, there are still some issues 
that would have been interesting to elaborate.  
 

• In several of the test cases, there was still an amount of workahead time left when 
StreamServ had finished transmitting the entire video stream. Since the actual 
future condition of the network is unknown, StreamServ does not really know the 
most efficient amount of workahead time to put aside. Thus, it happens that 
StreamServ puts aside more workahead time than needed. This results in a video 
stream with poorer quality than it should be. The workahead time left could have 
been used to increase the quality of some of the already transmitted adaptation 
windows, but unfortunately this is not possible with the current implementation. 
An idea could be to implement a solution that would utilize this remainding 
amount of workahead time. Since the transmission is ahead of the playback, a 
possibility could be to find a way to increase the quality of some of the already 
transmitted adaptation windows that have not reached the display phase yet.  

 
• The improvement code of this thesis is based on a linear video stream. Consider a 

stream that is not linear, which means that the viewer will choose to pause, fast 
forward, rewind, etc. It would be interesting to implement a solution based on the 
current improvement code that considers such a case.  
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Appendix A 
 
This appendix presents the complete C-coded version of the implemented code. This is 
the actual code of the one described in pseudo-code in section 4.3 of chapter 4. As 
chapter 4 already provides descriptions of the different functions, the sections of this 
appendix will not provide any further comments on the code. 
 

A.1 The Bandwidth Prediction Function  
 
void  
bandwidth_prediction(ServSession *pps, ServWindow *win){ 
 
  float t1,t2, t3; 
  float percent; 
  
  pps->b_k1 = pps->b_k; 
  
  if(pps->delta_k > (tau / 2)){  
 pps->delta_k = tau / 2;  
 pps->cur_win_bytes = 0;  
  } 
  
  pps->b_k = (2 * tau - pps->delta_k) / (2 * tau + pps->delta_k) *  
              pps->b_k1 + pps->delta_k * (pps->cur_win_bytes +  
    pps->last_win_bytes) / (2 * tau + pps->delta_k); 
    
  
 if(win->number != 0 && pps->b_k != 0 && pps->b_k1 != 0){ 
  
    if(pps->b_k < pps->b_k1){ 
    
  t1 = pps->b_k1 - pps->b_k; 
    
     
  percent = (t1 / pps->b_k1) * 100; 
     
  #if PERCENT  
  printf("\n Loss percent: %f % \n", percent); 
  #endif  
   
  #if PRINTLOG_TO_FILE  
  fprintf(pps->logfile, "\n Loss percent: %f \n", percent); 
  #endif  
     
  win->percentage_kind = 0; 
  win->percentage = percent; 
    
    
 } 
 else if(pps->b_k > pps->b_k1){ 
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  t1 = pps->b_k - pps->b_k1; 
    
  percent = (t1 / pps->b_k1) * 100; 
     
  #if PERCENT   
  printf("\n Gain percent: %f % \n", percent); 
  #endif  
     
  #if PRINTLOG_TO_FILE  
  fprintf(pps->logfile, "\n Gain percent: %f \n", percent); 
  #endif  
    
  pps->goodcount++; 
      
  win->percentage_kind = 1; 
  win->percentage = percent; 
         
 } 
 else if(pps->b_k == pps->b_k1){ 
     
  win->percentage_kind = 1; 
  win->percentage = 0;  
 } 
    
   
    
 } 
 else{  
 win->percentage_kind = 0; 
 win->percentage = 0; 
 } 
 
} 
 

A.2 The Written Bytes Update Function 
 
void  
update_written_bytes(ServSession *pps, ServWindow *win){ 
 
  size_t bytes_written; 
 
  bytes_written = pps->bytecount; 
  pps->bytecount = 0;  
      
      
  #if BYTESWRITTEN  
  printf("\n Amount bytes written for time interval: %d n",    
           bytes_written); 
  #endif 
     
  #if PRINTLOG_TO_FILE  
  fprintf(pps->logfile, "\n Amount bytes written for time interval: %d  
          \n", bytes_written); 
  #endif  
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  g_get_current_time(&pps->time2);  
      
  timersub(&pps->time2, pps->time1, &pps->timediff); 
  pps->difftime = (pps->timediff.tv_sec * 1000000) +  
                   pps->timediff.tv_usec; 
      
  pps->time_used = (float) pps->difftime / 1000000; 
 
  pps->last_win_bytes = pps->cur_win_bytes; 
  pps->cur_win_bytes = roundf(bytes_written / pps->time_used); 
    
  pps->delta_k = pps->time_used;      
   
} 
 

A.3 The Layer Update Function 
 
void  
update_layer(ServSession *pps, ServWindow *win, gint nr){ 
 
  if(nr == 0){ 
     
 if(win->number != 0){ 
        
  if(win->percentage_kind == & win->percentage >=  

    bad_percent_threshold){   //BAD BW 
        

     pps->stablecount = 0;  
      pps->goodcount = 0; 
        if(pps->stablelayer_incr > 0) pps->stablelayer_incr--;  
      
      if(pps->vid_ahead.tv_sec < ahead_bw_threshold){  
   if(pps->layer > bad_layer_threshold) pps->layer =  
                pps->layer - 2;  
   else if(pps->layer <= bad_layer_threshold && pps->layer  
                     != 0) pps->layer = pps->layer - 1; 
      } 
      else{ 
   if(pps->layer < 15) pps->layer = pps->layer + 1; 
      } 
  } //STABLE BW, BUT OVERALL BAD 
  else if(win->percentage_kind == 0 & win->percentage <   
               bad_percent_threshold && win->percentage >   
               overall_stable_percent_threshold){      
    

      pps->stablecount = 0;  
  pps->goodcount = 0; 
       if(pps->stablelayer_incr > 0) pps->stablelayer_incr--; 
        
  if(pps->vid_ahead.tv_sec < ahead_bw_threshold){  
       
         if(pps->layer < bad_stable_layer_threshold) pps->layer =  
               pps->layer + 1; 
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    else pps->layer = pps->layer - 1; 
       } 
  else{  
    if(pps->layer < 15) pps->layer = pps->layer + 1; 
  } 
  }        //STABLE BW 
       else if(win->percentage_kind == 0 & win->percentage <=  
               overall_stable_percent_threshold){  
 
  pps->stablecount++;       
        
  if(pps->vid_ahead.tv_sec < ahead_bw_threshold){  
    if(pps->stablecount < stablecount_threshold){ 
       if(pps->layer < (stable_layer_threshold +  
                    pps->stablelayer_incr)){ pps->layer =  

         pps->layer + 1; 
     } 

       else if(pps->layer > (stable_layer_threshold +  
                         pps->stablelayer_incr)){ pps->layer =  
                                                  pps->layer - 1; 
           } 
    } 
    else{   
       if((stable_layer_threshold + pps->stablelayer_incr)  

   < 15) pps->stablelayer_incr++;  
          

     pps->stablecount = 0;  
    } 
  } 
  else{  
    if(pps->layer < 15) pps->layer = pps->layer + 1; 
  } 
  }      //STABLE BW 
  else if(win->percentage_kind == 1 & win->percentage <   
               better_percent_threshold){        
 

pps->stablecount++; 
        
            if(pps->vid_ahead.tv_sec < ahead_bw_threshold){  
    if(pps->stablecount < stablecount_threshold){ 
      if(pps->layer < (stable_layer_threshold +  

 pps->stablelayer_incr)){ pps->layer =  
  pps->layer + 1;  

       } 
      else if(pps->layer > (stable_layer_threshold +  

pps->stablelayer_incr)){ pps->layer =  
 pps->layer - 1;  

    } 
    } 
    else{   
      if((stable_layer_threshold + pps->stablelayer_incr) <  
      15) pps->stablelayer_incr++;  
 
          pps->stablecount = 0;  
          
         } 
            } 
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       else{  
     if(pps->layer < 15) pps->layer = pps->layer + 1; 
   } 
  } 
  else if(win->percentage_kind == 1 && win->percentage>=   
         better_percent_threshold && pps->goodcount > 2){ 
 
    pps->stablecount++; 
    pps->goodcount = 0; 
        
    if(pps->layer < 15) pps->layer = pps->layer + 1;  

 } 
   } 
 } 
 else if(nr == 30) pps->layer = 0;  
 else if(nr == 40){ 
 
   if(pps->layer >= 3) pps->layer = pps->layer / 2; 
   else pps->layer = 0; 
    
 }  
 else  pps->layer = nr; 
  
} 
 

A.4 The Workahead Update Function 
 
void 
update_video_ahead(ServSession *pps, ServWindow *win, gint mode){ 
 
 GTimeVal temp; 
 
 if(mode == 0){  
  
    timersub(&win->xmit_deadline, &pps->global_tvnow, &temp); 
    pps->vid_ahead = temp;   
   
   
    if(temp.tv_sec < 0 || temp.tv_usec < 0){ 
  pps->vid_ahead.tv_sec =_u48 ?; 
  pps->vid_ahead.tv_usec = 0; 
    
  pps->workahead_limit.tv_sec = 0; 
  pps->workahead_limit.tv_usec = 0; 
    } 
   
    #if WORKAHEAD  
    printf("\n In update_video_ahead, vid_ahead: %d \n",  

    pps->vid_ahead.tv_sec); 
    #endif  
   
   #if PRINTLOG_TO_FILE  
   fprintf(pps->logfile, "\n In update_video_ahead, vid_ahead: %d  

    \n", pps->vid_ahead.tv_sec); 
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   #endif   
 } 
 else if(mode == 1){ //ONLY FOR WINDOW-TIMEOUT SITUATION 
   timersub(&win->xmit_deadline, &pps->global_tvnow, &temp); 
   pps->vid_ahead = temp;   
 } 
} 
 

A.5 The Transmission Crisis Check Function 
 
gint 
check_video_ahead_crisis(ServSession *pps, ServWindow *win){ 
 
 GTimeVal t1; 
 GTimeVal t2; 
 GTimeVal t3; 
  
 g_get_current_time(&win->win_tvnow); 
  
 /* win_start_xmit oppdateres i ss_child_send_win_start */ 
      timersub(&win->win_tvnow, &win->win_start_xmit, &win->t2); 
     
 timersub(&win->xmit_end, &win->xmit_start, &win->t3); 
  
 if(timercmp(&win->t2, &win->t3, >)){ 
   return 0; 
   }  
 else if(timercmp(&win->t2, &win->t3, <)){ 
   return 1;  
 } 
 
}  
 

A.6 The Adaptation Function  
 
void 
adaptation(ServSession *pps, ServWindow *pps_win){ 
 
  if(pps_win->xmit_timeout){   
            
   if(pps->vid_ahead.tv_sec < lower_workahead_threshold){       
                     
      if((QSF_MAX_PRIORITY - pps->layer) > sdu->priority){ 
         update_video_ahead(pps, pps_win, 0); 
         goto win_done; 
      }         
                             
   }  
   else{ 
           
     no_crisis = check_video_ahead_crisis(pps, pps_win); 
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     if(no_crisis == 1){ 
                
        if((QSF_MAX_PRIORITY - pps->layer) > sdu->priority){ 
         update_video_ahead(pps, pps_win, 0); 
         goto win_done;  
        } 
     } 
     else if(no_crisis == 0){   
                            

  #if PRINTLOG_TO_FILE  
        fprintf(pps->logfile, "\n CRISIS!! \n"); 
        #endif  
                                                    
        update_video_ahead(pps, pps_win, 0);                  
         
        if(pps->vid_ahead.tv_sec > crisis_workahead_threshold){  
         if((QSF_MAX_PRIORITY - pps->layer) > sdu->priority){ 
             update_video_ahead(pps, pps_win, 0); 
             goto win_done; 
         } 
        } 
        else{ 
            printf("CRISIS: NO TIME LEFT FOR THIS WINDOW! \n"); 
                 
         #if PRINTLOG_TO_FILE  
         printf(pps->logfile, "\n CRISIS: NO TIME LEFT FOR  

 THIS WINDOW! \n"); 
         #endif  
                 
         if(QSF_MAX_PRIORITY > sdu->priority){ 
         update_layer(pps, pps_win, (15 - sdu->priority)); 
         printf("\n crisis updated layer is: %d \n", pps->layer); 
                  
         #if PRINTLOG_TO_FILE  
         fprintf(pps->logfile, "\n crisis updated layer is: %d  

    \n", pps->layer); 
         #endif  
                  
            update_video_ahead(pps, pps_win, 0); 
            goto win_done; 
          } 
          } 
        } 
            
       }//slutt else 
    } /*slutt my if(pps_win->xmit_timeout)*/ 
} 
 

A.7 The Workahead Transmission Function 
 
void 
workahead_start_next_win(ServSession *pps){ 
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 ServWindow *win; 
 GTimeVal tvnow; 
 
 win = g_queue_peek_head(pps->mapped_wins); 
 
 if(win == NULL){  
  pps->workahead_limit = pps->vid_ahead; 
 } 
 else { 
  g_aio_cancel_timeout(win->start_timeout); 
  g_get_current_time(&tvnow); 
  ss_win_xmit_start(&tvnow, win); 
 } 
} 
 

A.8 The Initiation Function 
 
void  
initiation(ServSession *pps, ServWindow *pps_win){ 
 
   char wo[30];  
   GTimeVal test; 
     
   #if PRINTLOG_TO_FILE  
   if(pps_win->number == 0) pps->logfile = fopen("servlog-auto", "a_); 
   #endif  
         
   #if WINDOW  
   printf("\n"); 
   printf("\n WINDOW: %d \n", pps_win->number); 
   #endif  
       
   #if PRINTLOG_TO_FILE   
   fprintf(pps->logfile, "\n"); 
   fprintf(pps->logfile, "\n WINDOW: %d \n", pps_win->number); 
   #endif  
            
   pps->myfile = fopen("text", "r");      
       
   fscanf(pps->myfile, "%s \n", wo); 
   #if BW  
   printf("\n Current bandwidth from script: %s \n", wo); 
   #endif  
     
   #if PRINTLOG_TO_FILE  
   fprintf(pps->logfile, "\n Current bandwidth from script: %s \n",  
           wo); 
   #endif  
     
   pps_win->marked_baselayer_bytes = 0;  
       
   if(pps_win->number == 0) pps->teller = 0; 
   pps->teller = pps->teller + 1;  
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   if(pps_win->number == 0){  
      pps->vid_ahead.tv_sec = 0;  
  pps->vid_ahead.tv_usec = 0;  
  pps->start_up = 0;  
  pps->cur_win_bytes = 0; 
  pps->last_win_bytes = 0; 
  pps->b_k = 0;  
      pps->b_k1 = 0;   
  pps->goodcount = 0; 
  pps->stablecount = 0; 
 pps->stablelayer_incr = 0;  
      
  update_layer(pps, pps_win, 30); 
    } 
            
    bandwidth_prediction(pps, pps_win);  
    
    if(pps->vid_ahead.tv_sec >= lower_workahead_threshold){  

pps->start_up = 1;  
    } 
    else if(pps->vid_ahead.tv_sec < lower_workahead_threshold &&  
            pps_win->number != 0){ 
      pps->start_up = 0;  
  update_layer(pps, pps_win, 40); 
    } 
     
     
    if(pps_win->number != 0 && pps->start_up == 1){ 
        update_layer(pps, pps_win, 0); 
    } 
        
    g_get_current_time(&pps_win->win_start_xmit); 
    pps->time1 = pps_win->win_start_xmit;  
     
}    
      

A.9 Registering the Number of Bytes Written to TCP 
 
void 
ss_child_send_adu(ServSession *pps) 
{ 
        ServWindow       *pps_win; 
        QsfMsg           *msg; 
        PpsSdu           *sdu; 
        PpsAdu           *adu; 
        off_t             offset; 
        size_t            count; 
        gint              flush; 
        gint              may_drop; 
        gboolean          is_audio_adu; 
     
    GTimeVal tid1, tid2, tid3; 
      
        g_assert(pps); 
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        /*MY CODE*/ 
        pps->bytecount = pps->bytecount + pps->temp_count_store; 
 

  pps_win = g_queue_peek_head(pps->xmit_wins); 
        msg     = heap_min_data(pps_win->sdus); 
        QSF_SET_AFTER(msg, sdu); 
 
   if(pps_win->adu_count == sdu->num_adus) { 
             /* We've finished the entire SDU */ 
                goto sdu_done; 
        } else if(!pps_win->frag_num_adus) { 
         
           /* We finished the current frag. */ 
                if(ss_arg_drop_mid_sdu &&  
                   (!pps_win->xmit_timeout) &&  
                   (sdu->priority != QSF_MAX_PRIORITY)) { 
                    
                       /* Drop the remaining frags */ 
                        qsf_log_session(pps->log_session,  
     "win %d: " 
     "drop adus after sending %d of %d", 
     pps_win->number,  
     pps_win->adu_count,  
     sdu->num_adus); 
                        goto sdu_done; 
                } /* if */ 
                ss_child_send_frag_start(pps, 0); 
        } /* else */ 
         
        QSF_SET_AFTER(sdu, adu); 
         
        offset       = adu[pps_win->adu_count].offset; 
        count        = adu[pps_win->adu_count].length; 
        is_audio_adu = adu[pps_win->adu_count].is_audio; 
         
 
        /*MY CODE*/ 
        pps->temp_count_store = count; 
 
     … 
     … 
     …  
} 
/* ss_child_send_adu */ 
 
 
void  
ss_child_send_sdu_head(ServSession *pps) 
{                
        QsfMsg     *msg; 
        PpsSdu     *sdu; 
        ServWindow *pps_win; 
        PpsAdu     *adu; 
        size_t      total = 0; 
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        size_t      limit; 
        size_t      count; 
        gint        i; 
 

  #if FULL_DATA_DEBUG 
        MD5_CTX     md5_ctx; 

  #endif /* FULL_DATA_DEBUG */ 
         
        g_assert(pps); 
                 … 
      … 
      … 
 
          count = sizeof(QsfMsg) + sizeof(PpsSdu) +  
                sdu->num_adus * sizeof(PpsAdu); 
                 
        /*MY CODE*/         
        pps->temp_count_store = count;               
                … 
     … 
     … 
} 
/* ss_child_send_sdu_head */ 
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Appendix B 
 
This appendix provides a sample of the bandwidth scenario scripts that were used in this 
thesis. Also the code for the spectrum2 filter is provided.  
 
 

B.1 Sample of a Bandwidth Scenario Script 
 
#!/bin/sh 
 
tc qdisc add dev eth0 root handle 1:0 netem delay 100ms 
 
tc qdisc add dev eth0 parent 1:1 handle 10: tbf rate 2mbit buffer 10000 
limit 10000 

echo "2mbit" 
echo "2mbit" > text 

sleep 8 
 
tc qdisc change dev eth0 parent 1:1 handle 10: tbf rate 500kbit buffer 
10000 limit 10000 

echo "500kbit"  
echo "500kbit" > text 
sleep 10 

 
for data in 590 680 770 860 950 1040 1130 1220 1310 1400 1490 1580 1670 
1760 1850 1940 2030; do 

tc qdisc change dev eth0 parent 1:1 handle 10: tbf rate 
${data}kbit buffer 10000 limit 10000 

  echo "${data}kbit"  
  echo "${data}kbit" > text 
  sleep 2 
done 
 
 

B.2 The Code for Computing the Spectrum2 Value 
 
#include <stdio.h> 
#include <ctype.h> 
#include <stdlib.h> 
#include <string.h>  
 
int main() 
{ 
 char wo[10]; 
      double getdata[65];        
   
 double x; 
 int teller = 0; 
      int counter = 0; 
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    int arraycount = 1;     
    double result; 
    double newcount = 0;    
 
   FILE *writefile; 
   writefile = fopen("specvalue", "a"); 
  
   while(scanf("%s \n", wo) != EOF){ 
        newcount++;  
         
        getdata[counter] = atof(wo); 
        counter++; 
        arraycount++; 
   } 
 
 
  arraycount--; 
 
  double h[arraycount]; 
  double z[arraycount]; 
  double average; 
  double layer_change_avg; 
   
  x = 0; 
 
  while(teller < arraycount){ 
 x = x + getdata[teller]; 
        teller++; 
  } 
 
  average = x / newcount; 
 
  teller = 0;   
  x = 0; 
  counter = 0; 
  newcount = 0; 
 
  while(teller < arraycount){ 
             

if(teller != 0){  
   if(getdata[teller-1] != getdata[teller]){  
     if(getdata[teller-1] < getdata[teller]){  
               x = x + (getdata[teller] - getdata[teller-1]); 
          } 
          else x = x + (getdata[teller-1] - getdata[teller]); 
 
     newcount++; 
   }   
 } 
    
 teller++;            
 
  }/*slutt while*/ 
 
  if(newcount != 0) layer_change_avg = x / newcount; 
  else layer_change_avg = 0; 
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  result = (1 / average) + layer_change_avg;   
 
  printf("Specvalue: %f \n", result); 
  fprintf(writefile, "%f \n", result);  
   
     
}/*slutt main*/ 
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