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Abstract. The goal of this thesis is to introduce polynomial processes and to present

some of the most important �ndings and applications in a clear and pedagogical way.

A polynomial process is a particular type of Markov process. Polynomial processes

are de�ned by being in a sense polynomial preserving in expectation. This enables

us to show that the calculation of moments can be done using matrix exponentials.

Furthermore, the matrix is easily obtained from the extend generator of the process.

As pricing of options and hedging often depends on the computation of moments,

polynomial processes are attractable in �nancial modeling. The class of polynomial

processes contains many of the processes already used in application, for example

Ornstein-Uhlenbeck processes and Jacobi processes. Electricity markets provide an

interesting application for polynomial processes. A case of hedging long-term elec-

tricity commitments with a risk-minimizing rolling hedge is introduced. Polynomial

processes can also be applied in many other areas from interest rate models to com-

puting life insurance liabilities.
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Introduction

Outline of the Thesis

Although polynomial processes were �rst time mentioned already in the 1960's by
Wong [24], the use of polynomial processes in �nancial applications is a quite new inven-
tion dating back to early 2000's, studied by among others Zhou [25]. First systematical
accounts treating polynomial processes as Markov processes (with jumps) were done
by Cuchiero et al. [9, 8], which we will follow closely in the de�nition of polynomial
processes in Chapter 2. However, �rst we give a short introduction to stochastic pro-
cesses and stochastic calculus in Chapter 1. Basic concepts in stochastic analysis, such
as �ltration, adapted processes and martingale are introduced. Further we will give
de�nitions of several stochastic processes, in an increasing order of complexity, starting
from Brownian motion and ending up with general semimartingales. Traditional calcu-
lus is not enough when dealing with a stochastic process, which is why we also give some
basics on stochastic calculus. This gives the tools to say something about the dynamics
and properties of stochastic processes. In the end of Chapter 1 we will also take a brief
look at Markov processes, as they are the building block of polynomial processes. In
Chapter 2 we de�ne polynomial processes as a type of Markov process, which is in a
sense polynomial preserving in expectation. The key point being that we can state the
expectation of a polynomial function of a polynomial process explicitly with the help
of a matrix exponential. The form of the matrix exponential is acquired through a
connection between the (extended) generator of a Markov process and characteristics
of a special semimartingale. Chapter 2 relies heavily on the work of Cuchiero et al. [9].
At the end of the chapter we brie�y review some examples of applications of polynomial
processes. In the last chapter we will give an example of the use of polynomial process
in electricity markets by studying a case of hedging long-term commitments with a risk-
minimizing rolling hedge, based on the work of Kleisinger-Yu et al. [18]. A model for
spot price of electricity is given by a quadratic function on the underlying d-dimensional
process that is going to be a polynomial process. Using the matrix exponential we can
then explicitly calculate both forward prices and a particular hedging strategy for a
long-term commitment to sell electricity. A simulation in the end of Chapter 3 shows
the e�ciency of the hedging strategy, by comparing hedged and unhedged exposures
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with each other. We will also test the robustness of our hedging strategy by doing a
stress test to see how changing some of the key parameters a�ects the hedge.

Polynomial Processes in Actuarial Sciences

This thesis is written under the master's program Stochastic Modeling, Statistics
and Risk with specialization in actuarial sciences. That is the reason we want to ex-
plain here why polynomial processes can be used in actuarial sciences and by insurance
companies in general. The methods for calculating moments and conditional expecta-
tions of polynomial processes can be used to pricing �nancial derivatives. Companies
providing life insurance have to deal with liabilities that can extend far in to the future.
Hedging these liabilities is of interest to life insurance companies. Polynomial processes
can be used in calculations of risk-minimizing hedging strategies, see Example 2.22.
Furthermore, whenever working with �nancial products that stretch over time one en-
counters interest rates, either deterministic or stochastic. These are used to calculate
current values of future payments. Modeling stochastic interest rates can be done by
using polynomial processes, for instance by using the state price density approach, see
Example 2.21.



CHAPTER 1

Stochastic Analysis

In this chapter we will give a brief introduction to stochastic processes and stochastic
calculus, in particular by introducing semimartingales and Markov processes, which are
going to be important when we consider polynomial processes in Chapter 2. As most of
the results and de�nitions in this chapter are well known from most stochastic analysis
books, we will not be giving rigorous proof in most of the cases. Most of this chapter
is based on the work of Klebaner [17] and Eberlein and Kallsen [10], while for more
rigorous approach we recommend for example Jacod and Shiryaev [14].

1.1. Stochastic Processes

A stochastic process X = (Xt) is a collection of random variables de�ned on the
same probability space (Ω,F ,P) and takes values in Euclidean space Rd for some d ∈ N.
We will be writing X for both real- and vector-valued processes. It should be clear
from the context which one is meant. The index t ∈ [0,∞) (or [0, T ] for some T > 0)
is usually interpreted as time and we are interested in how the process evolves through
time. The fact that the random variables Xt are de�ned on the same probability space
means that for any outcome ω ∈ Ω, we can consider the path t 7→ Xt (ω) of the process.
For example when modeling �nancial data, Xt could be the price of a stock at time t
and we would like to know how the price changes through time. One usually knows
what has happened up to time t, i.e. one observes the path s 7→ Xs (ω) for all s ≤ t,
and would like to know how the process is going to evolve from there. We call the
�history� of the process the �ltration and de�ne it as follows:

Definition 1.1. (Filtration) Let (Ω,F ,P) be a probability space and for every
t ≥ 0 let Ft be a sub-σ-algebra of F , then (Ft)t≥0 is called a �ltration if

Fs ⊆ Fu ⊆ F
for all s ≤ u. Filtration is thus a non-decreasing family of sub-σ-�elds. We call(
Ω,F , (Ft)t≥0 ,P

)
a �ltered probability space.

A closely related concept to the �ltration is called adaptedness. An adapted process
is a process that cannot �see in the future�. In the case of stock price it means that the
price Xt is known at time t, but we do not know what Xu is going to be at a future
time u > t. We de�ne it in the following way:

8
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Definition 1.2. (Adaptedness) Let Xt be a stochastic process on a �ltered proba-
bility space

(
Ω,F , (Ft)t≥0 ,P

)
. It is adapted, to the �ltration, if it is Ft-measurable for

all t ≥ 0.

Remark 1.3. There are two common assumptions made about �ltration, called the
usual conditions. The �rst one is that the �ltration is assumed complete in a sense
that each Ft contains every null set and the second one is the right continuity of the
�ltration, i.e.

Ft =
⋂
s>t

Fs.

These assumptions are rather technical, but allow us to simplify the results, as they for
example enable us to choose càdlàg versions of processes.

Basically one can think of a �ltration as the �ow of information through time. A
natural assumption when considering for example stock prices is that they are based on
the information available at each time. This gives rise to a de�nition of natural �ltration.
Starting with a process X, we can de�ne a �ltration with respect to which X is adapted,
namely the �ltration generated by the process X de�ned as F00

t = σ ({Xs, 0 ≤ s ≤ t}).
We use a slightly larger �ltration called minimal augmented �ltration FXt , de�ned to
be the smallest �ltration that satis�ed the usual conditions and with respect to which
X is adapted. If nothing else is mentioned, we assume that the �ltration in question is
the minimal augmented �ltration of the process.

When considering the paths of the processX, we assume them to be càdlàg, meaning
that they are right continuous with �nite left limits. We have the following de�nition
for jumps and left limits of a càdlàg process:

Definition 1.4. If X is a càdlàg process, its left limits are given

Xt− =

{
lims↑tXs if t > 0

X0 if t = 0

and its jumps

∆Xt = Xt −Xt−

are well de�ned.

Much of this paper is based on Markov processes, which are stochastic processes
that have the Markov property. Roughly speaking, this means that the future of a
Markov process depends only on its current state i.e. the process has �no memory�.
Again we can think of a stock price being a Markov process, meaning that all the
relevant information that a�ects the future of the stock price is included in the current
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price, which is not an unreasonable assumption 1. We will give a de�nition of Markov
property here and leave rest of the theory to the end of this chapter, in Section 1.6.

Definition 1.5. (Markov property) A stochastic process X satis�es the Markov
property if for any 0 ≤ s < t we have

E [f (Xt) | Fs] = E [f (Xt) |Xs]

where Fs denotes the σ-�eld generated by the process up to time s and f is a Borel-
measurable function satisfying E [|f(Xt)|] <∞ for all t ≥ 0.

When working with stochastic processes one often needs to use the concept of stop-
ping time. It is a random variable, whose value is interpreted as the time that a given
stochastic process exhibits a certain behavior, often de�ned by a stopping rule. One
way to think of stopping time is through a closely related concept of hitting time, which
is the �rst time a given process �hits� a given subset of the state space. Stopping time
plays important role in the branch of mathematics called decision theory, but it is also
used in mathematical proofs in order to control the time variable of stochastic processes.
The formal de�nition is as follows:

Definition 1.6. (Stopping time) A [0,∞]-valued random variable τ is called a
stopping time (w.r.t Ft) if

{τ ≤ t} ∈ Ft
for all t ∈[0,∞].

Basically this means that the �decision� to stop the process at time t has to be based
on the information available at that time (Ft). Furthermore we de�ne the stopped
process Xτ as

Xτ
t := Xτ∧t,

which evolves normally until it is stopped and is constant after the stopping time is
reached.

The concepts of (true) martingale and local martingale are essential in the study of
stochastic processes. The martingale property means that if we know the values of the
process up to time t, and let Xt = x, then expected future value of the process, given
the information up to time t, is E [Xs|Ft] = x. Martingales also play a major role in
pricing of assets, in what is called the martingale pricing theorem. This involves �nding
a risk-neutral measure under which the asset in question is a martingale.

Definition 1.7. (Martingale) A real valued process M = (Mt)t≥0 on a �ltered

probability space
(
Ω,F , (Ft)t≥0 ,P

)
is called a martingale if

• E [Mt | Fs] = Ms for all s ≤ t.

1If we accept the e�cient market hypothesis to hold. This is a somewhat controversial assumption

and not entirely supported by data from �nance markets.
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• E [|Mt|] <∞ for all t.
• Mt is Ft-measurable for all t ≥ 0.

A local martingale is de�ned similarly except that it is restricted to the stopped
processes:

Definition 1.8. (Local martingale) A stochastic process Mt on
(
Ω,F , (Ft)t≥0 ,P

)
is called a local martingale if there exists an increasing sequence of stopping times τn
such that

τn →∞ a.s as n→∞
and the stopped process Mt∧τn is a martingale for all n.

Remark 1.9. Every true martingale is clearly also a local martingale, but the
converse is not necessarily true. Processes that are strictly local martingales exists and
we will encounter one in Chapter 2. This concept of localization extends to many other
processes as well. Basically when we say that a process X belongs to a localized class,
we mean that the stopped process Xτ = Xt∧τ belongs to that class.

Finally we are giving a version of the very useful and well known Fubini's theorem,
that will be used regularly in this paper. We will omit the proof here, as it is quite
theoretical.

Theorem 1.10. (Fubini's theorem) Let Xt be an adapted càdlàg stochastic process.
Then we can change expectation and integral∫ T

0

E [|Xt|] dt = E
[∫ T

0

|Xt| dt
]
.

Furthermore if this quantity is �nite we have

E
[∫ T

0

Xtdt

]
=

∫ T

0

E [Xt] dt.

Another useful result we want to present here are the Doob's inequalities:

Theorem 1.11. Let M be a martingale with càdlàg paths, then

P
(

sup
s≤t
|Ms| ≥ λ

)
≤ E [|Mt|]

λ

and for 1 < p <∞

(1.1.1) E
[
sup
s≤t
|Ms|

]p
≤
(

p

p− 1

)p
E [|Mt|p] .

The �rst inequality is called Doob's inequality, while the second one is referred to as
Doob's maximal Lp-inequality.



1.2. BROWNIAN MOTION 12

Proof. Proof can be found for example from [2, Theorem 3.6]. �

In the next sections we will introduce a speci�c stochastic process called Brownian
motion and a way of dealing with integrals of Brownian motion called Itô calculus.

1.2. Brownian Motion

A Scottish botanist Robert Brown observed in 1828 that pollen particles suspended
in liquid moved in an irregular way. It turns out that this movement is best described
by a stochastic process and was later mathematically formalized by N. Wiener and P.
Levy, and is known as Brownian motion. This is the main process used in the stochastic
calculus of continuous processes and is de�ned as follows:

Definition 1.12. (Brownian motion) The standard Brownian motion, sometimes
called Wiener process, is a stochastic process (Bt)t≥0 with the following properties:

(1) B0 = 0.
(2) Bt is a continuous function of t, for all t.
(3) Bt has independent increments, that is

Bt1 , Bt2 −Bt1 , . . . , Btk −Btk−1

are independent for all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk.
(4) Every increment Bt − Bs is normally distributed with mean 0 and variance

t− s, that
Bt −Bs ∼ N (0, t− s) .

A d-dimensional Brownian motion is a random vector Bt =
(
B1
t , B

2
t , . . . , B

d
t

)
, with all

coordinates Bi
t being independent one-dimensional Brownian motions.

Remark 1.13. One can show the existence of a Brownian motion using results by
Kolmogorov (extension theorem and continuity criterion).

Remark 1.14. It follows from the property (3) of the de�nition above and substi-
tution property of conditional expectation (A.1) that Bt is a Markov process. Indeed
for h > 0, all t ≥ 0 and f a Borel-measurable function satisfying E [|f (Bt)|] < ∞ we

de�ne a function f̂ (x) = E [f (Bt+h −Bt + x)]. Then

E [f (Bt+h) | Ft] = E [f (Bt+h −Bt +Bt) | Ft]

= E [f (Bt+h −Bt + x)] |x=Bt = f̂ (Bt) .

On the other hand

E [f (Bt+h −Bt +Bt) |Bt] = E [f (Bt+h −Bt + x)] |x=Bt = f̂ (Bt) ,

which leads to
E [f (Bt+h) | Ft] = E [f (Bt+h) |Bt]
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as wanted. We have only used the independent increments property of Brownian mo-
tion here, which means that every stochastic process with independent increments is a
Markov process.

We present three examples of martingales constructed from Brownian motion.

Theorem 1.15. The following processes are martingales for Brownian motion B:

(1) Bt,
(2) B2

t − t,
(3) euBt−tu

2

2 .

Proof. Indeed E [Bt] = 0 <∞ and

E [Bt | Fs] = E [(Bt −Bs) +Bs | Fs] = Bs,

since Bt−s ∼ N (0, t− s) and is independent of Fs. For the second martingale we have
E [B2

t ] = t <∞. We use the following identity

B2
t = B2

s + 2Bs(Bt −Bs) + (Bt −Bs)
2

together with
E [Bs (Bt −Bs) |Fs] = BsE [Bt −Bs] = 0,

which follows from the Fs-measurability of Bs and the fact that Bt−s ∼ N (0, t− s)
and is independent of Fs. Combining these results gives

E
[
B2
t − t | Fs

]
= B2

s − t+ t− s = B2
s − s,

as wanted. Regarding the last one we notice that

E
[
euBt | Fs

]
= E

[
euBs+u(Bt−Bs) | Fs

]
= euBsE

[
eu(Bt−Bs)

]
= euBse(t−s)u2

2 .

The martingale property follows when we multiply both sides with e−t
u2

2 . In addition
to the same techniques used in the �rst two proofs, we have also used the moment

generating function of Brownian motion E
[
euBt

]
= et

u2

2 <∞. �

All of these martingales are used in the theory of stochastic integration. The sec-
ond one, B2

t − t, provides an alternative way of describing Brownian motion, called
Lèvy characterization, and the exponential martingale is useful for changing distribu-
tional properties of a process, for example Girsanov's theorem for changing probability
measure.

What we are often interested in, is the paths of the Brownian motion and their
properties:

Proposition 1.16. Brownian paths have the following properties, almost surely:
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(1) Is not monotone at any interval, no matter how small.
(2) Is nowhere di�erentiable, i.e. not di�erentiable at any point.
(3) Has in�nite variation on any interval.
(4) Has quadratic variation on [0, t] equal to t, for any t.

Proof. We will not give a rigorous proof here, rather a few comments are presented.
Property (1) is straight from the de�nition of Brownian motion. Property (4) follows
from property (5) and continuity, as the assumption of �nite variation leads to con-
tradiction, since all continuous �nite variation processes have zero quadratic variation.
Property (2) then follows from (4), as a monotone function has �nite variation. �

When considering a stock price or some other random process, we would like to know
the dynamics of that process, that is how it evolves through time. For a non-random
process this is done by considering a di�erential equation. In order to incorporate
randomness in to this we introduce a stochastic di�erential equation (SDE), where one
or more of the terms are stochastic. A typical SDE is of the form:

(1.2.1) dXt = b (t) dt+ σ (t) dWt,

where b and σ are some given functions and Wt denotes a Brownian motion. The fact
that the paths of Brownian motion are nowhere di�erentiable makes the last term un-
de�ned. Stochastic calculus is introduced in the next section to deal with this problem.

1.3. Stochastic Calculus

We are going to de�ne the stochastic integral with respect to Brownian motion and
give some of the main properties of these integrals. The integral we are interested in is
of the form: ∫ T

0

σ (s) dBs,

where σ (t,Xt) is a suitable function and B is Brownian motion. These integrals are
called Itô integrals, named after Kiyoshi Itô. One starts with simple processes and
by using limiting procedures they are de�ned for more general processes. We are not
going into all the details of this construction, instead we state the existence and some
fundamental properties with a short sketch of the proof. First some restrictions for
the integrands is needed for the Itô integral to make sense and to satisfy desirable
properties.

Definition 1.17. Let V = V (S, T ) be the class of functions

Xt (ω) : [0,∞)× Ω→ R
such that
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• Xt is Ft-adapted.
• Xt is jointly measurable, i.e. (t, ω)→ Xt (ω) is B × F -measurable.

• E
[∫ T

S
X2
t dt
]
<∞.

Next theorem provides the existence and some useful properties of Itô integrals.

Theorem 1.18. Let Xt, Yt ∈ V (S, T ) and let 0 ≤ S < U < T, then the Itô integral∫ T
S
XtdBt is well de�ned and it has following properties.

(1) Itô isometry

E

[(∫ T

S

XtdBt

)2
]

= E
[∫ T

S

X2
t dt

]
.

(2)
∫ T
S
XtdBt =

∫ U
S
XtdBt +

∫ T
U
XtdBt.

(3) Linearity ∫ T

S

(cXt + Yt) dBt = c

∫ T

S

XtdBt +

∫ T

S

YtdBt.

(4) Zero mean property

E
[∫ T

S

XtdBt

]
= 0.

(5)
∫ T
S
XtdBt is FT -measurable.

Proof. First we show that the integral
∫ T
S
XtdBt is well de�ned for Xt ∈ V (S, T ).

The idea is to de�ne the integral �rst for simple functions φ ∈ V and then by a limit
procedure to extend it to more general processes. We start with a simple process of the
form

φ (t) =
n−1∑
i=0

ξi1[ti,ti+1) (t) ,

for partition S = t0 < t1 < · · · < tn = T . We also require ξi to be Fti-measurable (since
φ ∈ V). For simple functions it is natural to de�ne the Itô integral as∫ T

S

φ (t) dBt =
n−1∑
i=0

ξi
(
Bti+1

−Bti

)
.
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The martingale property of B and the measurability of ξi's can be used to get the Itô
isometry for simple functions:

E

[(∫ T

S

φ (t) dBt

)2
]

= E

(n−1∑
i=1

ξi
(
Bti+1

−Bti

))2
 =

n−1∑
i=1

E
[
ξ2
i

(
Bti+1

−Bti

)2
]

+ 2
∑
i<j

E
[
ξiξj

(
Bti+1

−Bti

) (
Btj+1

−Btj

)]
(1.3.1)

= E

[
n−1∑
i=0

|ξi|2 (ti+1 − ti)

]
= E

[∫ T

S

|φ (t)|2 dt
]
,

where second to last equality follows when we condition on Fti and use the martingale
property. It is possible to show that there exists a sequence of simple functions {φn}
such that

(1.3.2) E
[∫ T

S

(Xt − φn(t))2 dt

]
→ 0 as n→∞.

Then the Itô integral can be de�ned as the limit

(1.3.3)

∫ T

S

XtdBt = lim
n→∞

∫ T

S

φn(t)dBt,

which by the Itô isometry exists in L2. Furthermore 1.3.3 does not depend on the
actual choice of {φn} as long as (1.3.2) holds, see Oksendal [21] for more details. For
the properties (1)-(5) it is enough to see that they hold for simple functions and thus
by taking limits we obtain them for all X, Y ∈ V (S, T ). �

The Itô integral with respect to the Brownian motion is itself a stochastic process
and also a martingale:

Theorem 1.19. Given Xt ∈ V (0, T ) the Itô integral

Y (t) =

∫ t

0

XsdBs

is a martingale. Furthermore it is square integrable on [0, T ], i.e. its second moments
are bounded

sup
t≤T

E
[
Y 2
t

]
<∞.

Remark 1.20. The Itô integral can be de�ned for a larger class of integrands than
V . One can relax the condition that Xt is Ft-adapted to Xt being Ht-adapted for
an increasing family of σ-algebras such that Bt is a martingale w.r.t Ht (implies that
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Ft ⊂ Ht). This allows the introduction of the multi-dimensional Itô integral. Moreover
we can weaken the square integrability in the following sense

P
(∫ T

S

X2
t dt <∞

)
= 1.

The construct of the more general Itô integral relies to convergence in probability instead
of L2 as in the proof of Theorem 1.18. For these extended Itô integrals Theorem 1.19 is
no longer true, instead we have that the extended Itô integral is in general only a local
martingale.

Itô's formula is an important tool in stochastic calculus and is also known as the
change of variables formula. Here is a version for Brownian motion:

Theorem 1.21. (Itô's formula for Brownian motion) Let Bt be a Brownian motion
on [0, T ] and g (x) a twice continuously di�erentiable function (g ∈ C2) on R, then for
any t ≤ T

(1.3.4) g (Bt) = g (0) +

∫ t

0

g′ (Bs) dBs +
1

2

∫ t

0

g′′ (Bs) ds.

Proof. Both integrals in (1.3.4) are well de�ned, since both g′ (Bs) and g
′′ (Bs) are

continuous and adapted. Let {tni } be a partition of [0, t], we have

g (Bt) = g (0) +
n−1∑
i=0

(
g
(
Btni+1

)
− g

(
Btni

))
.

Applying Taylor's formula to g
(
Btni+1

)
− g

(
Btni

)
gives

g
(
Btni+1

)
− g

(
Btni

)
= g′

(
Btni

) (
g
(
Btni+1

)
− g

(
Btni

))
+

1

2
g′′ (θni )

(
g
(
Btni+1

)
− g

(
Btni

))2

,

where θni ∈
(
Btni

, Btni+1

)
, resulting in

g (Bt) = g (0) +
n−1∑
i=0

g′
(
Btni

) (
g
(
Btni+1

)
− g

(
Btni

))
+

1

2

n−1∑
i=0

g′′ (θni )
(
g
(
Btni+1

)
− g

(
Btni

))2

.

Taking limits as πn = maxi
{(
tni+1 − tni

)}
→ 0, the �rst sum converges to the extended

Itô integral
∫ t

0
g′ (Bs) dBs while the second sum converges to the Lebesgue integral∫ t

0
g′′ (Bs) ds, see [17, Theorem 4.14] for the proof. This completes the proof. �
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Remember the equation 1.2.1 in the end section on Brownian motion. We can now
give a more precise de�nition of this type of equations called Itô processes.

Definition 1.22. (Itô process) An Itô process has the form

(1.3.5) Yt = Y0 +

∫ t

0

b (s) ds+

∫ t

0

σ (s) dBs, 0 ≤ t ≤ T,

where Y0 is F0-measurable, processes b (t) and σ (t) are jointly measurable, such that∫ T

0

|b (t)| dt <∞ and

∫ T

0

σ (t)2 dt <∞,P − a.s.

Remark 1.23. Note that the processes µ (t) and σ (t) can and often do depend on
Bt and/or Yt as well, or even in the whole past of those processes. Itô processes are
thus not in general Markov processes. Often the stochastic di�erential version is given
(see equation 1.2.1)

dYt = b (t) dt+ σ (t) dBt,

but this representation has only meaning in the sense of equation 1.3.5.

Next we will give the Itô's formula for Itô processes.

Theorem 1.24. Let Xt have the stochastic di�erential for 0 ≤ t ≤ T

dXt = b (t) dt+ σ (t) dBt.

Let f (x) be a twice continuously di�erentiable function, then the stochastic di�erential
of the process Yt = f (Xt) exists and is given by

df (Xt) = f ′ (X)t) dXt +
1

2
f ′′ (Xt) d [X,X]t .

where d [X,X]t = (dXt)
2(quadratic variation) and dXt are calculated according to the

rules
dBtdt = 0, (dt)2 = 0

and
(dBt)

2 = d [B,B]t = dt.

Proof. The proof is omitted here, but it is based on the same kind of ideas as the
proof of Theorem 1.21. �

We will only consider Markov processes in the next chapter and thus we restrict our
interest to Itô di�usions, which are Itô processes with some extra restrictions on the
functions b and σ.



1.3. STOCHASTIC CALCULUS 19

Definition 1.25. (Itô di�usion) A time-homogeneous process X is called an Itô
di�usion if it satis�es a stochastic di�erential equation

(1.3.6) dXt = b (Xt) dt+ σ (Xt) dBt,

where b : R→ R and σ : R→ R do not depend on time, unlike in De�nition 1.22.

These processes have many useful properties, among others they satisfy the Markov
property. The uniqueness and existence of a solution to 1.3.6 is guaranteed when b and
σ are uniformly Lipschitz, meaning that there exists a constant C < ∞ such that for
all x, y ∈ R,

|b (x)− b (y)|+ |σ (x)− σ (y)| ≤ C (x− y) .

This result is a simpli�ed form of the existence and uniqueness theorem, see [21, De�-
nition 7.1.1].

Most of the results in this section can be expanded to vector-valued processes. As

previously described a d-dimensional Brownian motion Bt =
(
B

(1)
t , B

(2)
t , . . . , B

(d)
t

)
is a

vector where all the coordinates are independent 1-dimensional Brownian motions. Let
Ht be a σ-�eld generated by Bs, s ≤ t and let H (t) be a jointly measurable, adapted
d-dimensional vector process. If for each j,∫ T

0

H2
j (t) dt <∞, P− a.s.,

or equivalently ∫ T

0

|H (t)|2 dt <∞, P− a.s.,

where |H (t)|2 =
∑d

j=1 Hj (t)2, then the (extended) Itô integrals
∫ T

0
Hj (t) dB

(j)
t are well

de�ned and we write ∫ T

0

H (t) dBt =
d∑
j=1

∫ T

0

Hj (t) dB
(j)
t .

This allows us to have an n-dimensional Itô process Xt driven by a d-dimensional
Brownian motion

dXt = b (t) dt+ σ (t) dBt,

where σ is an n× d matrix valued function, bt and Xt are n-dimensional vector-valued
functions and Bt is a d-dimensional Brownian motion. Again, the dependence of b (t)
and σ (t) on time can be via the whole path of the process or the Brownian motion,
with the only restriction being that they are adapted and integrable. Furthermore Itô
di�usion can similarly be de�ned for vector-valued processes. Also, the Itô's formula
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extends to a function of several variables. Let f (x1, x2, . . . , xn) be a C2 function of n
variables, then the stochastic di�erential is given by

df
(
X

(1)
t , . . . , X

(n)
t

)
=

n∑
i=1

Dif
(
X

(1)
t , . . . , X

(n)
t

)
dX t

i

+
1

2

n∑
i,j=1

Dijf
(
X

(1)
t , . . . , X

(n)
t

)
d
[
X(i), X(j)

]
t
,

where Di and Dij stand for the partial derivatives and
[
X(i), X(j)

]
t
is the covariation.

From the multidimensional Itô's formula we can deduce the useful integration by parts
formula.

Lemma 1.26. (Integration by parts) Let X and Y be two Itô processes, then the
following holds

XtYt −X0Y0 =

∫ t

0

XsdYs +

∫ t

0

YsdXs + [Xt, Yt].

Proof. An application of two dimensional Itô's formula with f ((x, y)) = xy leads
directly to the result. �

In the next section we are giving a larger class of stochastic processes, which will
allow us to include jumps in to our models.

1.4. Lévy Processes

We have previously de�ned Brownian motion, which is a continuous stochastic pro-
cess. In many real life situations it is not enough with a continuous path process.
Instead one needs processes that will allow jumps. A class of such processes is called
Lévy processes, named after the french mathematician Paul Lévy. We start with the
de�nition:

Definition 1.27. (Lévy process) A stochastic process Xt is called a Lévy process
on
(
Ω,F , (Ft)t≥0 ,P

)
if it satis�es the following properties:

(1) X0 = 0 almost surely.
(2) Xt has independent increments, that is for any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn <∞,

Xt2 −Xt1 , Xt3 −Xt2 , · · ·Xtn −Xtn−1

are independent.
(3) Xt has stationary increments, meaning that for any s < t, Xt −Xs is equal in

distribution to Xt−s.
(4) Continuity in probability. For any ε > 0 and t ≥ 0 it holds that

lim
h→0

P (|Xt+h −Xt| > ε) = 0.
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IfXt is a Lévy process then it is possible to construct a version ofX that is almost surely
right continuous with left limits (càdlàg). From now on we assume such a construction
is chosen.

Remark 1.28. We notice straight away that a Brownian motion is a Lévy process.
It is also true that any continuous Lévy process is of the form a + σB, where B is
a Brownian motion. Since Lévy process has independent increments it is a Markov
process, see Remark 1.14.

The characteristics of an arbitrary Lévy process are uniquely given by its Lévy-
Khintchine triplet.

Theorem 1.29. Any Rd-valued Lévy process X is characterized by its characteristic
function, given by Lévy-Khintchine formula. The characteristics function is of the form

ϕXt (θ) = exp (ψ (θ) t) , θ ∈ Rd

where the characteristic exponent has a unique representation (for a �xed truncation
function satisfying h(y) = y for small y) given by

(1.4.1) ψ (θ) = iθ>b− 1

2
θ>cθ +

∫
Rd

{
eiθy − 1− iθ>h (y)

}
v (dy) ,

where b ∈ Rd, c ∈ Rd×d a non-negative de�nite matrix and v a Borel measure on Rd

satisfying ∫
Rd

1 ∧ |y|2 v (dy) <∞

and v ({0}) = 0 (and thus called a Lévy measure).

Proof. For the proof see [14, Corollary II.4.19 and Theorem II.5.2]. �

Remark 1.30. The parameter a depends on the truncation function. Changing the
truncation function to h̃ in (1.4.1) leads to

b̃ = b+

∫ (
h̃ (y)− h (y)

)
v (dy) .

The truncation function makes the theory of Lévy processes, and more general semi-
martingales, more complicated, as they can be confusing and lead to complicated ex-
pressions. The point of truncation is to insure that the integral in equation (1.4.1) is well
de�ned. Fortunately many processes in mathematical �nance have �nite expectation
and in that case truncation function h (y) = y will work.

Because characteristic function completely determine the law of underlying proba-
bility distributions, every Lévy process is uniquely determined by the triplet (b, c, v):
b being the drift, c a covariance matrix of the Brownian motion component and v a
Lévy measure. This triplet suggests that Lévy process can be seen as having three
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independent components: a linear drift, a Brownian motion and a Lévy jump process
respectively. The notion in the Remark 1.28, that every continuous Lévy process is a
scaled Brownian motion, follows from the characteristics function when we set v = 0
(no jumps). The moments of a Lévy process can be stated with the Lévy-Khintchine
triplet as long as the moment condition is satis�ed.

Theorem 1.31. (Moments condition) Let X be Lévy process with Lévy-Khintchine
triplet given in Theorem 1.29. Then X has moment of order p ≥ 1 if and only if

(1.4.2)

∫
{|y|>1}

|y|p v (dy) <∞.

Furthermore the moments are obtained from the characteristic function by di�erentia-
tion.

Proof. We sketch the idea of the proof for real-valued Lévy processes while leaving
the details out, see [10, Theorem 2.19] for more details. The proof is based on the fact
that moments of random variable can be obtained by di�erentiating the characteristics
function. So for a Lévy process X we get

E [Xp
t ] = (−i)p dp

dup
exp (tψ (θ))

∣∣∣∣
θ=0

,

which by simple derivation leads to the �rst moment

E [Xt] = −iψ′ (0) t =

(
b+

∫
y − h (y) v(dy)

)
t.

The integral in the equation above only makes sense when
∫
|y − h (y)| v (dy) < ∞,

which is equivalent to
∫
{|y|>1} |y| v (dy) <∞. If we continue with higher order derivation,

we notice that the p'th derivative of ψ involves integrals of the form
∫
ypv (dy). Every

Lévy measure satisfy
∫
{|y|≤1} |y|

p v (dy), thus (1.4.2) is a necessary condition. It is also

possible to show that its also su�cient condition for both real-valued and vector-valued
Lévy processes. �

Since a general Lévy process is uniquely determined by the triplet (a, c, v), the
question arises whether we can decompose an arbitrary Lévy process X in to a sum of
three di�erent parts - a deterministic drift, a Brownian motion with a certain covariance
structure and a compound Poisson process. For this decomposition to exist we need to
add the limit of a compensated compound Poisson process to deal with the possibility of
having in�nitely many jumps, such a decomposition is called Lévy-Itô decomposition:
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Theorem 1.32. (Lévy-Itô decomposition) Let X be a Lévy process with Lévy-Khintchine
triplet (b, c, v) with truncation function h (y) = y1{|y|≤1}. Then we can write X as

Xt = bt+
√
cBt +

∑
s≤t

∆Xs1{|∆Xs|>1}

+ lim
ε→0

(∑
s≤t

∆Xs1{ε≤|∆Xs|≤1} −
∫
y1{ε≤|y|≤1}v (dx) t

)
,

with B being a standard Brownian motion. In the vector valued case
√
c is a square

root of c, that is, a matrix A such that AA> = c.

Proof. For an idea of the proof see [10, Theorem 2.33]. �

Remark 1.33. We shall see a more general version of this decomposition in the
next section, when we discuss general semimartingales.

One of the best known Lévy process, in addition to Brownian motion, is the Poisson
process. It is a counting process representing the number of �events� that have occurred
by a certain time. In other words it is a piecewise constant process that jumps by one
at random times, where the number of events at some interval follows the Poisson
distribution.

Definition 1.34. (Poisson process) A counting process Nt is called a Poisson pro-
cess with rate λ > 0 if it satis�es the following:

(1) N0 = 0
(2) Nt has independent increments
(3) Nt has stationery increments and for any s < t,

Nt−s = Nt −Ns ∼ Poisson (λ (t− s)) .
Remark 1.35. Unlike Brownian motion, the Poisson process is of positive and �nite

variation.

Poisson process is increasing and thus not martingale itself, however the compen-
sated process Nt − λt is a martingale.

Proposition 1.36. We have the following martingales for Poisson process Nt:

(1) Nt − λt
(2) (Nt − λt)2 − λt
(3) eln(1−u)Nt+uλt, for any 0 < u < 1.

Proof. For the �rst one we have for any s < t

E [Nt − λt | Fs] = E [Nt −Ns | Fs] + E [Ns | Fs]− λt
= λ (t− s) +Ns − λt = Ns − λs,
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where we have used independence of increments and the Poisson distribution of incre-
ments. Same idea works for the other two as well, so we skip the proofs. �

Other examples of Lévy processes include compound Poisson processes, the Cauchy
process, gamma processes and the variance gamma process. Interested reader is referred
to [10, section 2.4] for more details on these process and other Lèvy processes.

Stochastic calculus de�ned in the previous section is only de�ned for Brownian
motion. In the next section we introduce a more general process called semimartingales.
In fact it is the largest class of stochastic processes for which the stochastic integral
is de�ned. We will also give a generalized version of Itô's formula, that will work for
processes with jumps as well, including Lévy processes.

1.5. Semimartingales and Stochastic Calculus

Semimartingales are the most general processes for which stochastic calculus is de-
veloped. A semimartingale process is a sum of a local martingale and a �nite variation
process. Due to this representation the stochastic integral with respect to a semimartin-
gale is a sum of two integrals, one w.r.t a local martingale and the other w.r.t a �nite
variation process. The latter can be dealt as Stieltjes integral and is thus already famil-
iar. The integral w.r.t local martingale on the other hand is not familiar yet, as we have
so far only shown the existence of stochastic integral with respect to Brownian motion.
We are going to see that stochastic integral can be generalized to semimartingales. We
are also introducing some new concepts such as compensator, quadratic variation and
sharp bracket, which will help us to give the Itô's formula in its more general form.
First we de�ne semimartingales:

Definition 1.37. A real valued càdlàg process X on the �ltered probability space
(Ω,F ,(Ft)t≥0 ,P) is called a semimartingale if it can be written as

(1.5.1) Xt = X0 + At +Mt,

where M is a local martingale and A is an adapted càdlàg process of �nite variation.
A d-dimensional semimartingale is a process X = (X i)1≤i≤d where all the components

X i are real valued semimartingales. Furthermore X is called a special semimartingale
if the �nite variation process A is in addition predictable (see De�nition 1.38 below).

Example. Some examples of semimartingales.

(1) Xt = B2
t . HereMt = B2

t −t is a local martingale and At = t is a �nite variation
process.

(2) Xt = Bt as Bt is a martingale, and thus local martingale.
(3) Xt = Nt where N is a Poisson process with rate λ, as the Poisson process is of

�nite variation.
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(4) A Lévy process is a semimartingale (special if bounded or locally bounded
jumps, see [10, Proposition 2.14])

(5) Am Itô di�usion is a semimartingale. Indeed the integral with respect dBt is a
local martingale and integral with respect to dt is a predictable �nite variation
process.

(6) The application of Itô's formula. Meaning that for a function f ∈ C2, f (Xt)
is a semimartingale whenever X is a semimartingale.

Before we can move to integrals with respect to semimartingales and speci�cally the
general version of Itô's formula, we need to de�ne some important concepts. We start
with predictability which is a sort of stronger version of adaptedness and crucial to
stochastic calculus, since only processes that are predictable are integrable with respect
to general semimartingales. The de�nition of predictability is not very informative, but
we will give some examples of subclasses of predictable processes after the de�nition.
Intuitively one can think that a predictable process is being known a nanosecond in
advance. For example an investment strategy is usually assumed predictable (w.r.t
�ltration created by the assets), as the amount of assets owned at time t has to be
decided before the prices of those assets at time t is known.

Definition 1.38. (Predictability) Let X be a stochastic process on a �ltered prob-
ability space

(
Ω,F , (Ft)t≥0 ,P

)
. We call X predictable if it is P-measurable, P being

the predictable σ-algebra on R+ × Ω which is generated by all left-continuous adapted
processes.

Remark 1.39. A process H is predictable if it is one of the following:

(1) a left-continuous adapted process, thus also a continuous adapted process.
(2) a limit of left-continuous adapted process.
(3) a càdlàg process such that for any stopping time τ , Hτ is Fτ−-measurable.
(4) a Borel-measurable function of a predictable process.

As said earlier the stochastic integral with respect to semimartingales is a sum of
two integrals, one with respect to a local martingale

∫ t
0
HsdMs, which is the one that is

unde�ned so far. When M is a Brownian motion, the integral is the Itô integral from
Section 1.3. But now martingales are allowed to jump and this makes the theory more
complicated. It turns out that it can be shown, that for a locally square integrable
martingale M , the integral ∫ t

0

HsdMs

exists for the class of locally bounded predictable processes H, for the idea of the proof
see [10, Section 3.2.3].

Next we de�ne quadratic variation and covariation for semimartingales and give
some important properties of quadratic (co)variation.
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Definition 1.40. Let X and Y be semimartingales on a common space, then the
covariation process, also called the square bracket process, denoted by [X, Y ], is de�ned
as

[X, Y ]t = lim
πn→0

n−1∑
i=0

(
Xti+1

−Xti

) (
Yti+1

− Yti
)
,

where partition of the interval [0, t] is 0 = t0 < t1 < · · · < tn = t and the mesh
πn = max {ti+1 − ti : i = 0, . . . , n− 1}. Limit here is understood in probability. Taking
Y = X we get the quadratic variation process [X,X] .

This way of de�ning quadratic covariation is seldom used in actual calculation. In
fact an equivalent de�nition can be given by the integration by parts formula, already
stated for Brownian motion earlier (Lemma 1.26). We give it here as a theorem that
follows from the De�nition 1.40.

Theorem 1.41. If X, Y are semimartingales, then the quadratic covariation is given
by

[X, Y ] = XY −X0Y0 −
∫
X−dY −

∫
Y−dX.

Proof. For proof we refer to [14, Def I.4.46 and Theorem I.4.47], Jacod's proof
de�nes �rst quadratic covariation with integration by parts and then shows that the
sum in De�nition 1.40 converges in probability to [X, Y ]. �

We state some of the properties of (co)variation processes:

Proposition 1.42. Let X and Y be semimartingales, then the quadratic (co)variation
process has the following fundamental properties:

(1) [X, Y ] is bi-linear and symmetric. i.e. [X, Y ] = [Y,X] and

[aX + Y, bU + V ] = ab [X,U ] + a [X, V ] + b [U, Y ] + [V, Y ] .

(2) Polarization identity

[X, Y ] =
1

2
([X + Y,X + Y ]− [X,X]− [Y, Y ]) .

(3) [X,X] is a non-decreasing function in t.
(4) [X, Y ] is a process of �nite variation.
(5) If one of the processes Y or X is of �nite variation, then

[X, Y ]t =
∑
s≤t

∆Xs∆Ys.

(6) If X is a continuous and X or Y is of �nite variation, then [X, Y ] = 0.
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Proof. Statement (1) can be derived straight form the de�nition of quadratic co-
variation. The polarization identity (2) is a well known formula and follows from the
bi-linearity property. Property (3) is also obvious from the de�nition, since for t > s
and s = tm for some m

[X,X]t − [X,X]s = lim
πn→0

n−1∑
i=m+1

(
Xti+1

−Xti

)2 ≥ 0.

Finite variation is a consequence of property (2) and (3), as [X, Y ]t is a di�erence of
non-decreasing processes and as such it is of �nite variation. Property (6) follows from
property (5), as a continuous process has no jumps, i.e ∆Xs = 0 for all s if X is
continuous. �

Example 1.43. As seen earlier the quadratic variation of Brownian motion [B,B]t =
t, while the quadratic variation of a Poisson process is

[N,N ]t =
∑
s≤t

(∆Ns)
2 =

∑
s≤t

∆Ns = Nt,

where we have used that Poisson process is of �nite variation with jump size equal to
one.

In addition to quadratic variation we are going to need the concept of a compensator.

Definition 1.44. Let N be an adapted process of integrable or locally integrable
variation. It's compensator A is the unique predictable process such that

M = N − A
is a local martingale. Existence of compensators is assured by Doob-Meyer decomposi-
tion, see [17, Theorem 8.21].

Combining the idea of a compensator with the fact that quadratic variation of a
semimartingale X exists and is of �nite variation, see Proposition 1.42. We have the
following de�nition for predictable quadratic variation.

Definition 1.45. For a semimartingale X, the predictable quadratic variation (or
the sharp bracket) 〈X,X〉 process is the compensator of [X,X], i.e. it is the unique
predictable process such that

[X,X]− 〈X,X〉
is a local martingale. Likewise the compensator of [X, Y ]t is called the predictable
covariation and denoted by 〈X, Y 〉t.

Remark 1.46. Let X, Y be semimartingales, then we have [X, Y ] = 〈X, Y 〉 if either
X or Y is continuous and from this it naturally follows that [X,X] = 〈X,X〉 for contin-
uous semimartingale X. We will later see that the concept of compensator also extends
to jump measures and is used in the canonical decomposition of a semimartingale.
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Example 1.47. We recall that for Poisson process Nt the quadratic variation is the
process itself and we also know that Nt − t is a martingale, thus the compensator of
Poisson process is 〈N,N〉t = t.

We call a martingale M uniformly integrable if it converges, when t → ∞, to an
integrable limit random variable M∞ such that

E [Mt|Fs] = Ms

holds for t = ∞. The whole martingale is generated from its limit M∞ by conditional
expectation, thus we can identify the set of uniformly integrable martingales with the
set L1 (Ω,F∞,P) of integrable random variables. Furthermore we denote the space
of square-integrable martingales with H 2, where we also require that the limit vari-
able has a �nite second moment, E [M2

∞] < ∞. Correspondingly we identify the set
L2 (Ω,F∞,P), which is a Hilbert space of square-integrable martingales, endowed with
a scalar product de�ned as E [UV ] for U, V ∈ L2 (Ω,F∞,P). This naturally induces
H 2 with a scalar product E [M∞N∞] for N,M ∈H 2, turning it into a Hilbert space.
Using the scalar product we can de�ne the concept of purely discontinuous (square-
integrable) martingale M ∈ H 2 that is orthogonal to all continuous square-integrable
martingales, i.e.

E [M∞N∞] = 0,

for any continuous N ∈ H 2. This can be used to decompose any square-integrable
martingale uniquely as an orthogonal sum

M = M0 +M c +Md

of continuous martingale M c (with M0 = 0) and purely discontinuous martingale Md.
Moreover this decomposition can be extended to local martingales. One calls local
martingales M , with M0 = 0, purely discontinuous if they are strongly orthogonal (i.e.
to all continuous local martingales N , i.e. 〈M,N〉 = 0. If we now have a semimartingale
X = X0 + A + M , we denote the continuous part M c of the local martingale with Xc

and call it the continuous martingale part of X. It can be shown that this does not
depend on the choice of M . This allows us to decompose the quadratic covariation of
two semimartingales into a continuous martingale part and a pure jump part.

Proposition 1.48. For any two semimartingales X, Y we have

[X, Y ]t = 〈Xc, Y c〉t +
∑
s≤t

∆Xs∆Ys.

Proof. For the idea of of the proof, see [10, Proposition 3.9]. �

Now we can state the key result in this section, namely the general form of the
famous Itô's formula.
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Theorem 1.49. Itô's formula for semimartingales. Let X be a semimartingale and
f ∈ C2, then f (Xt) is a semimartingale and Itô's formula is given by

f (Xt)− f (X0) =

∫ t

0

f ′ (Xs−) dXs +
1

2

∫ t

0

f ′′ (Xs−) d 〈Xc, Xc〉s

+
∑
s≤t

(f (Xs)− f (Xs−)− f ′ (Xs−) ∆Xs) ,

where we have used Proposition 1.48, to divide the quadratic variation into two parts,
a continuous martingale and a purely discontinuous part. Similarly we have the multi-
dimensional Itô's formula. Let Xt be an n-dimensional semimartingale and let f be a
function of n-variables, then we have

f (Xt)− f (X0) =

∫ t

0

n∑
i=1

Dif (Xs−) dX i
s

+
1

2

∫ t

0

n∑
i,j=1

Dijf (Xs−) d
〈
X i,c, Xj,c

〉
s

+
∑
s≤t

(
f (Xs)− f (Xs−)−

n∑
i=1

Dif (Xs−) ∆Xs

)
.

Proof. For an idea of the proof see [10, Theorem 3.16]. �

Remark 1.50. Notice the left limits used in the formula, this ensures that Xs−
is left-continuous and thus predictable, which ensures that the two integrals are well
de�ned, while the jumps ∆Xs = Xs −Xs− are dealt by the last term.

In the end we are going to quickly go through the generalization of Lévy-Itô de-
composition for semimartingales. In order to do that we need the concept of random
measure and stochastic integral w.r.t a random measures. We will do this rather infor-
mally and refer to [10, Section 3.3] for more details. We let X be a semimartingale, we
call µ the integer-valued random measure of the jumps of the semimartingale X when
the following is satis�ed:

(1) µ (ω, ·) is a measure on R+ × Rd for �xed ω ∈ Ω,
(2) µ

(
{0} × Rd

)
= 0 for any ω ∈ Ω,

(3) µ (ω, ·) has values in N ∪ {∞} for any ω ∈ Ω,
(4) µ

(
ω, {t} × Rd

)
≤ 1 for any ω ∈ Ω, t ≥ 0,

(5) µ is adapted, meaning that µ (·, [0, t]×B) if Ft-measurable for �xed t ≥ 0 and
any Borel-measurable B ∈ Bd.

(6) µ is predictably σ-�nite.
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From now on we will mostly omit the argument ω, as we have done for processes.
Essentially the measure µ ([0, t]×B) counts the number of events belonging to B,
these events being the jumps of the process X. If (3) and (4) are not satis�ed we
call the µ more generally a random measure. It is possible to integrate functions with
respect to these measures. To achieve this we denote ξ (t, x) for a predictable function
on Ω×R+×Rd. It is predictable in the sense that ξ is measurable w.r.t product-σ-�eld
P ⊗ Bd on R+ × R. The integral process ξ ∗ µ is de�ned by pathwise integration of ξ
relative to µ, that is

(1.5.2) ξ ∗ µ (t) :=

∫ t

0

∫
R
ξ (s, x)µ (ds, dx) ,

whenever the right-hand side makes sense, that is if∫ t

0

∫
R
|ξ (s, x)|µ (ds, dx) <∞, t ≥ 0.

The integral 1.5.2 is an adapted càdlàg process of �nite variation and is in a semi-
martingale. For an integer-valued random measure it reduces to the sum

(1.5.3)

∫ t

0

∫
R
ξ (x)µ (ds, dx) =

∑
s≤t

ξ (s,∆Xs) .

This is sometimes used to simplify the general Itô's formula and we use it in Chapter
2 (see also Appendix A.2). We de�ne the compensator of µ is the unique predictable
random measure v such that

(1.5.4)

∫ t

0

∫
R
ξ (x) (µ (ds, dx)− v (ds, dx))

is a local martingale. Moreover, there exists a predictable process A and a kernel
K (t; dx) from (Ω× R+,P) to Rd such that

(1.5.5) v (ω; dt, dx) = dAt (ω)K (ω, t; dx) .

The kernel stands for a local jump intensity and it is called the intensity measure of µ.
We can now state the generalized version of the Lévy-Itô decomposition, that exists

for all semimartingales. At the same time we extend the three quantities given by the
Lévy-Khintchine triplet (b, c, v) to more general processes (B,C, v), that does not need
to be linear in t, contrasting to the Lévy case.

Definition 1.51. For a �xed truncation function h, we call the characteristics of
X the triplet (B,C, v) consisting of:

• B = (Bi)i≤d, a predictable �nite variation process (depends on the choice of
h).
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• C = (Cij)i,j≤d, a continuous �nite variation process, given by

Cij =
〈
X i,c, Xj,c

〉
.

• v, a predictable random measure, namely the compensator of the jump measure
µ of jumps of X.

Theorem 1.52. The canonical decomposition of a semimartingale X with charac-
teristics triplet (B,C, v) is given by

Xt = X0 +Bt +Xc
t +

∫ t

0

∫
R
h̄ (x)µ (ds, dx)(1.5.6)

+

∫ t

0

∫
R
h (x) (µ (ds, dx)− v (ds, dx)) ,

where h is some �xed truncation function, for example h(x) = 1‖x‖<1 (x), and h̄ (x) :=
x− h (x). For special semimartingales we can use h (x) = x, so that 1.5.6 simpli�es to

Xt = X0 +Bt +Xc
t +

∫ t

0

∫
R
x (µ (ds, dx)− v (ds, dx)) .

Proof. For rigorous proof we refer to [14, Theorem II.2.34 and Corollary II.2.38].
�

1.6. Markov Processes

Many process in application are Markov process, including all the processes we are
considering in this paper. As mentioned earlier Markov process is a process that has a
lack of memory property. The theory of Markov processes gives us an alternative way
of expressing local behavior of a stochastic process. In previous section we introduced
semimartingale characteristics which can be used to characterize local dynamics of a
semimartingale process. In this section we introduce generators of Markov processes
and see that these can also be used for �guring out the local dynamics. We are going
to be combining these two methods in the next chapter when de�ning polynomial
processes, which turn out to be both Markov processes and special semimartingales
with particular characteristics. We will here give a brief introduction to the theory
of Markov processes, concentrating on the results that are needed in next chapters.
We give a slightly di�erent de�nition of Markov processes than in the beginning of
this chapter. Here we give it in terms of a family of probability measures and a single
stochastic process X. We start with a measurable space (Ω,F) and a �ltration {Ft}t≥0.
Furthermore we denote a Borel set with B and Borel-σ-�eld with B.

Definition 1.53. Let E be a closed subset of Rd, E ⊆ Rd. We call an adapted
E-valued process X a time-homogeneous Markov process relative to Ft with state space
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E if
Px (Xs+t ∈ B | Fs) = PXs (Xt ∈ B) , s, t ≥ 0, B ∈ B (E)

holds for some family (Px : x ∈ E) of probability measures on E such that x 7→ Px(Xt∈
B) is measurable for a �xed B.

The function (t, x, B) 7→ Px (Xt ∈ B) is called the transition function of X and is
denoted by (pt)t≥0 from now on. The de�nition 1.53 says basically the same as the
De�nition 1.5. Markov process is without memory, meaning that the future evolution
of Xt+s, given the past up to time s, depends only on the present value Xs. Furthermore
we only consider time homogeneous Markov processes, so that Xt+s −Xs may depend
on Xs, but not on s itself. The transition function satis�es the Chapman-Kolmogorov
equation (up to a set of points almost never visited by the process),

pt+s (x,B) =

∫
pt (ξ, B) ps (x, dξ)

for s, t ≥ 0 and B ∈ B (E).
The transition function leads to a family of operators (Pt)t≥0 on Borel-measurable

functions f : E → R, called Markov semigroup. These operators are de�ned by

Ptf (x) :=

∫
f (ξ) pt (x, dξ) ,

for t ≥ 0, x ∈ E and all f for which the integral is well de�ned. The equation above
can be interpreted as the expectation of f(Xt) i.e.

Ptf (x) = Ex [f (Xt)] ,

the expectation being with respect to Px.

Remark 1.54. We say that X is Markovian relative to Ft, if for each x ∈ E, there
exist a probability measure Px such that the following holds

Ex [f (Xt+s) |Fs] = EXs [f (Xt)] = Ptf (Xs)

for all s, t ∈ [0,∞) and all Borel-measurable functions f satisfying E[|f(Xt)|] <∞.

The family of operators (Pt)t≥0 is a semigroup, because it satis�es

Ps+t = PsPt and P0 = I,

where I is the identity operator. The �rst identity can be derived from the Chapman-
Kolmogorov equation and second one is quite obvious as the expected value of X0 is
clearly the value of the process at time zero.

Sometimes it is useful to consider a Markov process up until a stopping time T∆,
called the lifetime of the process. In order for this make sense we add a cemetery
state ∆ to our state space E and consider the state space E∆ = E ∪ {∆} instead of
E. Further it is often assumed that f (∆) = 0 for every Borel measurable function f ,
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this to ensure that results like backward equation still hold. One reason to include a
cemetery point is to deal with a possible explosion of the process. Instead of letting
the process explode to in�nity we kill it and set X = ∆ after the explosion. In many
applications this killing is not necessary as there often exist growth conditions such that
processes won't reach the cemetery state.

In the case of semimartingales we described the dynamics of a process with the help
of semimartingale characteristics. For Markov process similar kind of tool is called the
extended (in�nitesimal) generator G.

Definition 1.55. (Extended generator) An operator G, with domain DG, is called
an extended (in�nitesimal) generator for a Markov process if for any function in DG

(1.6.1) M f
t := f (Xt)− f (x)−

∫ t

0

Gf (Xs) ds

is a (Ft,Px)-local martingale for every x ∈ E. When M f
t is a true martingale we write

G = A and call it the generator of X.

Remark 1.56. The extended generator is a generalization of the in�nitesimal gen-
erator A, for which (1.6.1) is a true martingale and the generator is equivalently given
by

Af (x) = lim
t≥0

Ptf (x)− f(x)

t
,

for the set of all functions f ∈ C0 (E) for which the limit exists in C0 (E), this being
the set of functions that vanish at in�nity. Clearly when both generators exist, we have
DA ⊂ DG and Af = Gf for f ∈ DA.

In the next chapter we will use the results given so far to de�ne polynomial process
as a kind of Markov process.



CHAPTER 2

Polynomial Processes

Pricing and hedging di�erent �nancial derivatives often involves calculating the
expected value of the price processes under some martingale measure. Polynomial pro-
cesses allow us to calculate the expectation by computing matrix exponentials, which is
a big computational advantage in contrast to general Markov processes, where one often
needs to solve higher dimensional partial di�erential equations. The class of polynomial
processes involves many of the processes currently used in �nancial modeling. We will
show later that for example Ornstein-Uhlenbeck processes, Jacobi di�usions and Lèvy
processes are indeed polynomial processes. After giving some preliminaries, we move on
to de�ning polynomial processes. The characterizing attribute of polynomial processes
is that the expected value of any polynomial of the process is again a polynomial in
the initial value of the process. This property is then used to show that the expected
value of a polynomial process can be computed by matrix exponential. Furthermore
the particular matrix can be deduced from the extended generator of the process. Next
a connection between characteristics of special semimartingales and Markov processes
is shown. This section is rather technical with somewhat complicated proofs, but in
return we will achieve an easy way to verify that a given process is in fact a polynomial
process. Having established the theory, a special case of Itô di�usion as polynomial
processes is presented and some examples of polynomial processes are given. Moreover,
we will give a formula for calculation of moments of a polynomial process. The theory
presented in this chapter is mainly due Cuchiero et al. [9], with contributions from the
work of Filipovi¢ and Larsson [13, 12]..

2.1. Some Preliminaries

We start by going through some general assumptions and notations used in this
chapter. We write X for a càdlàg Markov process {Xt}t≥0 de�ned on a �ltered space
(Ω,F , (Ft)t≥0) with state space E, a closed subset of Rd. We let pt denote the transi-
tion function de�ned in the Section 1.6 and we consider a time-homogeneous Markov
semigroup (Pt)t≥0 acting on all Borel-measurable functions f : E → R for which the
following expectation is well de�ned

34
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Ptf(x) = Ex [f (Xt)] :=

∫
E

f (ξ) pt (x, dξ) .

We add a cemetery state ∆ to the state space, with the convention f(∆) = 0 for
any function f on E∆ = E ∪ {∆}. The transition function pt satis�es the following
additional properties:

(1) for all x ∈ E∆, p0 (x, ·) = δx;
(2) for all t ≥ 0 and x ∈ E,pt (x, {∆}) = 1− pt (x,E) and pt (∆, {∆}) = 1.

Property (1) says that the process starts at x. Property (2) gives the probability for
the process to enter the cemetery state and states that when it enters there it does not
leave. We let (Ft)t≥0 be the minimal augmented �ltration mentioned in the start of
Chapter 1. We assume that a probability measure Px exists for each x ∈ E∆ such that
X is Markovian relative to (Ft) with semigroup (Pt).

We de�ne Pol(Rd) as the set of polynomials up to degree m ≥ 0 for m ∈ N and use
the following multi-index notation

Polm
(
Rd
)

:=

x 7→
m∑
|k|=0

αkx
k |αk ∈ R

 ,

with k = (k1, . . . , kd) ∈ Nd
0, |k| = k + · · ·+ kd and x

k = xk1
1 + · · ·+ xkdd . The dimension

of Polm is given by N < ∞ and it depends on the state space E . For example if the
state space is one dimensional, i.e. E ⊆ R, the dimension N of Polm (E) is m. We also
de�ne functions fk by setting

fk (x) =

{
xk if x ∈ E,
0 if x = ∆.

Finally we set the restriction of polynomials to E as

Polm(E) =
{
p|E : p ∈ Polm

(
Rd
)}
.

2.2. Polynomial Processes

We will start by de�ning polynomial process and then state some properties of the
process. Our de�nition will follow along the lines of Cuchiero (2012) [9].

Definition 2.1. We say that a E∆-valued time-homogeneous Markov process X is
m-polynomial if we for all k ∈ {0, . . . ,m}, all f ∈ Polm, x ∈ E and t ≥ 0 have that

x 7→ Ptf (x) ∈ Polm.
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Further, we assume that t 7→ Ptf(x) is continuous at t = 0 for all f ∈ Polm. If X is
m-polynomial for all m ≥ 0, then it is called polynomial.

It is worth noticing that in the de�nition above it is implicitly assumed that

Pt|f |(x) = Ex [|f(Xt)|] <∞,(2.2.1)

for all f ∈ Polm, x ∈ E and t ≥ 0. This ensures that the expectation is well de�ned.
Further it is important to assume Pt(Polk) ⊂ Polk for all k ∈ {0, ...,m}, not just for
m. Otherwise the proofs of some theorems, that are important for applications, fail.
The De�nition 2.1 says that if we are given a polynomial process X, we know that the
expected value of any polynomial of the process at any time t is again a polynomial.
There is an equivalent de�nition given in terms of G, the extended generator of X. We
will come back to that later, as we are going to need some results before we are able to
prove this equivalence. First we recall the de�nition of the extended generator.

Definition 2.2. An operator G, with domain DG, is called an extended (in�nites-
imal) generator for a Markov process if for any function in DG

(2.2.2) M f
t := f (Xt)− f (x)−

∫ t

0

Gf (Xs) ds

is a (Ft,Px)-local martingale for every x ∈ E∆.

We de�ne the lifetime of the process Xt as

T∆(ω) = inf {t |Xt (ω) = ∆} ,

where inf ∅ =∞. We notice that

{T∆ < t} =
⋃

s<t,s∈Q

{Xs = ∆} ∈ Ft.

Since (Ft) is assumed right-continuous, we have {T∆ < t} = {T∆ ≤ t} and thus T∆is
an Ft-stopping time. This means, due to the convention f(∆) = 0, that the local
martingale property reduces to

f(Xt)1{t<T∆} − f(x)−
∫ t∧T∆

0

Gf(Xs)ds

being a local martingale.
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Remark 2.3. It is worth noticing that, if f lies in the domain of DG and also
satis�es Pt|f | (x) <∞ for all t ≥ 0 and x ∈ E∆. Then, M

f is a true martingale if and
only if all the increments of

f(Xt)− f(x)−
∫ t

0

Gf(Xu)du,

have vanishing expectation. That is for all s ≤ t,

Ex
[
f (Xt)− f (Xs)−

∫ t

s

Gf (Xu) du

]
= Ptf(x)− Psf(x)−

∫ t

s

PuGf(x)du = 0,

This implies, by Fubini, that
∫ t

0
PsGf (x) ds exists on �nite intervals, since∫ t

0

PuGf(x)du = Ptf(x)− f(x) <∞,

and thus Ps|Gf | (x) exists for almost all s.

Our �rst theorem will establish a link between m-polynomial and the extended
generator of a Markov process. We will also get an important result that provides us
an e�ective way to calculate moments by computing matrix exponentials. In order to
prove the theorem we need a lemma connecting the Kolmogorov backward equation
with the extended generator.

Lemma 2.4. Let X be a time-homogeneous Markov process with semigroup (Pt) and
f : E∆ → R some function satisfying Pt|f |(x) <∞ for all t ≥ 0 and x ∈ E∆. If f ∈ DG
and M f is a true martingale, then:

(1) For any s ≥ 0, MPsf is a true martingale, Psf ∈ DG and GPsf = PsGf.
(2) If PtGf(x) is continuous at t = 0, then Ptf solves the Kolmogorov backward

equation
∂u(t, x)

∂t
= Gu(t, x), u(0, x) = f(x)

Proof. First we notice that as M f is a true martingale, by Remark 1.56 the in�n-
itesimal generator is given by

Gf(x) = lim
t→0

Ex [f(Xt)]− f (x)

t
= lim

t→0

Ptf (x)− f (x)

t
.

Suppose that MPsf is a true martingale, then

PsGf (x) = Ps lim
t→0

Ptf (x)− f (x)

t
(2.2.3)

= lim
t→0

PtPsf (x)− Psf (x)

t
= GPsf (x) ,
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and trivially Psf ∈ DG . Hence we need to show that MPsf is indeed a true martingale
to �nish the proof of (1). This is done by showing that

Psf (Xt)− Psf (x)−
∫ t

0

PsGf (Xu) du

is a true martingale and this is shown in the rest of the proof. From the assumption
Pt |f | < ∞ and Remark 2.3 we can deduce that f (Xt) and Gf (Xt) are integrable for
all t ≥ 0, which in turn means that Psf (Xt) and PsGf (Xt) are integrable as well. So
the expectation below is well de�ned for u ≤ t,

Ex
[
Psf (Xt)− Psf(x)−

∫ t

0

PsGf (Xr) dr|Fu
]

= Psf (Xu)− Psf(x)−
∫ u

0

PsGf (Xr) dr

+ Ex
[
Psf (Xt)− Psf (Xu)−

∫ t

u

PsGf (Xr) dr|Fu
]
,

which is a martingale if the conditional expectation on the right hand side of the equality
above is zero. Using the Markov property of X, the expectation is equal to

EXu

[
Psf (Xt−u)− Psf (X0)−

∫ t−u

0

PsGf (Xr) dr

]
.

And we know that for any y ∈ E∆, we have

Ey
[
Psf(Xt−u)− Psf(X0)−

∫ t−u

0

PsGf(Xr)dr

]
= Ps+t−uf(y)− Psf(y)−

∫ s+t−u

s

PrGf(y)dr

= 0,

where the last equality follows from Remark 2.3. For (2) we use the de�nition of the
derivative

g′(x) = lim
h→0

g(x+ h)− g(x)

h
,

the assumption of continuity of PtGf(x) at t = 0, Remark 2.3 and the results from (1)
to get the following

∂Ptf(x)

∂t
= lim

h→0

Pt+hf(x)− Ptf(x)

h
= Pt lim

h→0

Phf(x)− f(x)

h

= Pt lim
h→0

1

h

∫ h

0

PsGf(x)ds = PtP0Gf(x) = GPtf(x),

which shows that Ptf solves the Kolmogorov backward equation. �
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We can now move on the �rst theorem of the chapter, which will give the connection
between m-polynomials and the extended generator as promised. Some elementary
results from semigroup theory are needed to prove this theorem.

Theorem 2.5. For a time-homogeneous process X, with state space E∆ and semi-
group (Pt), the following are equal:

(1) X is a m-polynomial for m ≥ 0.
(2) There exists a linear map A on Polk such that for all t ≥ 0, (Pt) restricted to

Polk can be written as
Pt|Polk = eAt.

(3) For all f ∈ Polm, x ∈ E∆ and t ≥ 0

M f
t = f(Xt)− f(x)−

∫ t

0

Gf(Xs)ds

is a true martingale and the extended generator satis�es G(Polk) ⊂ Polk for all
k ∈ {0, 1, ...,m}.

Proof. First we �x a k ∈ {0, ...,m} for the duration of the proof. We start by
showing that (1) =⇒ (2) follows from the basic properties of semigroups. We know
from the de�nition that the Markov semigroup (Pt) satis�es Pt+s = PtPs and P0 = I.
Furthermore, Polm is �nite dimensional and t→ Ptf(x) is continuous at t = 0. Standard
results from semigroup theory then implies that some linear map A exists such that
Pt|Polk = eAt, see for example [11, Theorem 2.9].

In order to show (2) =⇒ (3), we have by (2) that for every f ∈ Polk, Af ∈ Polk and

Ptf − f −
∫ t

0

PsAfds = eAtf − f −
∫ t

0

eAsfds = 0

This shows that f(Xt)−f(x)−
∫ t

0
Af(Xs)ds is a true martingale, thus we have f ∈ DG

which in turn implies Gf = Af . Finally the fact that A is a linear map on Polk together
with Gf = Af imply that G(Polk) ⊂ Polk. That completes the proof of the implication
(2) =⇒ (3). For the last part, (3) =⇒ (1), we want to show that De�nition 2.1 is
satis�ed. We do this by using the Kolmogorov backward equation for an initial value
u(0, · ) = f ∈ Polk, i.e.

∂u(t, x)

∂t
= Gu(t, x).

From Lemma 2.4 we know that Ptf solves the Kolmogorov equation if t 7→ PtGf(x) is
continuous at t = 0 for any f , which follows from the fact that G maps Polk to itself
and the martingale property of M f . Since M f is a martingale Remark 2.3 gives

Ptf(x) = f(x) +

∫ t

0

PsGf(x)ds,
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which implies the continuity of Ptf(x) for any f ∈ Polk. We can de�ne a linear map A
such that G|Polk = A, by choosing a basis {e1, ..., eN} of Polk and setting

Gei =:
N∑
j=1

Aijej.

The Kolmogorov backward equation reduces now to the linear ordinary di�erential
equation

∂u(t)

∂t
= Au(t), u(0) = f,

with unique solution etAf , see [11, Proposition 2.8]. Thus on Polk, Ptf is equal to etAf
which in turn is a polynomial of same or smaller degree than k by de�nition of matrix
exponentials. This holds for all k ∈ {0, ...,m} and thus X is an m-polynomial. �

Remark 2.6. Part (2) of the previous proposition plays an important role in the
applications of polynomial processes in the �elds of mathematical �nance and insurance
mathematics. It namely allows us to calculate the moments of all orders of any process
f(X) with matrix exponentials, as long as f is a polynomial function and X is a
polynomial process. The matrix exponential is given as the power series

(2.2.4) eA :=
∞∑
k=1

Ak

k!
,

which is always convergent. Finding e�cient and reliable methods for computing matrix
exponential is an ongoing research topic in mathematics and numerical analysis. We
will come back to this at the end of this chapter.

Theorem 2.5 characterizes m-polynomial processes in terms of the extended gener-
ator, but only when we assume that M f is a true martingale. It turns out that M f is
a true martingale whenever m ≥ 2 is an even number. We state this in the following
theorem.

Theorem 2.7. Let X be a Markov process with state space E∆ and let m ≥ 2 be an
even number. Then X is an m-polynomial process if and only if the following conditions
are satis�ed:

• For all f ∈ Polm,x ∈ E∆, and t ≥ 0, M f is a local martingale, i.e Polm lies in
the domain of the extended generator.
• G(Polk) ⊂ Polk for all k ∈ {1, . . . ,m}.

Proof. It is straightforward to see from Theorem 2.5 (1) =⇒ (3) that when X is
an m-polynomial process, the conditions above are satis�ed. In fact they are satis�ed
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for all m, not just even numbers. In order to show the opposite way, we are going to
prove for every even number m ≥ 2, f ∈ Polm, x ∈ E∆ and t ≥ 0, that

Pt|f |(x) = Ex[|f(X)|] <∞

and that M f
t is a true martingale. After this, Theorem 2.5 (3) =⇒ (1) gives us the

wanted result. We start by showing that Pt|f |(x) = Ex[|f(Xt)|] < ∞. First we �x a
T > 0 and an increasing sequence of stopping times {Tj}j∈N with limj→∞ Tj =∞ such

that (M f
t∧Tj)t≥0 are martingales for all f ∈ Polm. We have fi(x) = xi and set

F (x) := 1 +
n∑
i=1

fi(x)m.

Notice that F (x) is an always positive polynomial with degree m, meaning that F (x) ∈
Polm and hence (MF

t∧Tj)t≥0 are martingales. By assumption G(Polk) ⊂ Polk, so Gf(x) ⊂
Polm when f ∈ Polm and it is not hard to see that for some �nite constant K

|Gf(x)| ≤ KF (x)

for all x ∈ E∆. Using the above inequality and the martingale property we get the
following estimate

Ex
[
F (Xt∧Tj)

]
= F (x) + Ex

[∫ t∧Tj

0

GF (Xu)du

]
≤ F (x) +KEx

[∫ t∧Tj

0

F (Xu)du

]
≤ F (x) +KEx

[∫ t

0

F (Xu∧Tj)du

]
.

Using Fubini we can change the order of expectation and integral, then Gronwall's
lemma (Appendix A, A.6) gives us the following inequality

(2.2.5) Ex
[
F (Xt∧Tj)

]
≤ F (x) eKt

for all t ≤ T , j ∈ N and x ∈ E∆. Since limj→∞ Tj =∞, we have F (Xt) = F (Xt∧Tj) as
j →∞. Thus we can use Fatou's lemma (since F is always positive) to conclude that

Ex[F (Xt)] = Ex
[

lim
j→∞

F
(
Xt∧Tj

)]
(2.2.6)

≤ lim inf
j→∞

Ex
[
F
(
Xt∧Tj

)]
≤ F (x) eKt <∞,

which shows that
Pt|f(x)| = Ex[|f(Xt)|] <∞

for f ∈ Polm.
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We move on to showing that for any f ∈ Polm and x ∈ E∆,M
f
t is a true martingale.

We do this by showing that for each f ∈ Polm and x ∈ E∆

(2.2.7) Ex
[
sup
t≤T

∣∣∣M f
t

∣∣∣] <∞.
This allows us to use the dominated convergence theorem to show that M f

s is a true
martingale,

M f
s = lim

j→∞
M f

s∧Tj = lim
j→∞

E
[
M f

t∧Tj |Fs
]

= E
[
M f

t |Fs
]
.

In order to show (2.2.7), we let f ∈ Polk for k < m be �xed and set p = m/k. Also
in this case there exists a constant K such that following inequalities hold

|f(x)|p ≤ KF (x) and |Gf (x)|p ≤ KF (x)

for all x ∈ E∆. Using inequality

|a+ b|p ≤ 2p−1 (|a|p + |b|p)

for p ≥ 0, we arrive to the following estimate

|M f
t∧Tj |

p =

∣∣∣∣f (Xt∧Tj
)
− f(x)−

∫ t∧Tj

0

Gf (Xu) du

∣∣∣∣p
≤ C

(
F
(
Xt∧Tj

)
+ F (x) +

∫ t

0

F (Xu) du

)
(2.2.8)

≤ C

(
F
(
Xt∧Tj

)
+ F (x) +

∫ t

0

F
(
Xu∧Tj

)
du

)
,

for a positive constant C (depending on p) and t ≤ T . Next we take expectation and
use (2.2.5) to get for each �xed x

Ex
[∣∣∣M f

t∧Tj

∣∣∣ p] ≤ Cx

for all j ∈ N and t ≤ T . Further, by Doob's maximal Lp-inequality (1.1.1), for p > 1,
we have for all j that

Ex
[
sup
t≤T

∣∣∣M f
t∧Tj

∣∣∣ p] ≤ CEx
[∣∣∣M f

T∧Tj

∣∣∣ p] ≤ Cx.

We can see that the left hand side is increasing in j and M f
t∧Tj → M f

t as j →∞, thus

monotone convergence gives us (2.2.7) for k < m, and in particular

(2.2.9) sup
t≤T

∣∣∣M f
t

∣∣∣ ∈ Lp.
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Finally we take a look at the case k = m. We use the fact that q = m/2 is by
assumption an integer. We consider the polynomial f (x) = fi (x)q = xqi for i ∈
{1, ..., n}. Also, to make notation clearer, we write N = M f . Estimating again gives

f (Xt)
2 =

(
Nt + f(x) +

∫ t

0

Gf (Xu) du

)2

≤ C

(
N2
t + f (x)2 +

∫ t

0

|Gf (Xu) |2du
)

≤ C

(
N2
t + f (x)2 +

∫ t

0

F (Xu) du

)
.

We take the supremum on both sides

sup
t≤T

f (Xt)
2 ≤ C

(
sup
t≤T

N2
t + f (x)2 +

∫ T

0

F (Xu) du

)
.

It follows from (2.2.9) that supt≤T |Nt| ∈ L2 and from (2.2.6) that Ex
[∫ T

0
F (Xu) du

]
<

∞. So the right hand side is integrable. Since f (x) = fi (x)q we just sum over all i to
get the integrability of supt≤T F (Xt) ,which implies (2.2.7) for all f ∈ Polm and we are
done. �

We end this section by giving a couple of remarks about the conditions in the
previous theorem.

Remark 2.8. It is worth noticing that the condition m ≥ 2 is necessary for M f to
be a true martingale in the proof of Theorem 2.7. It turns out that for example the
inverse 3-dimensional Bessel process de�ned as 1

‖B‖ , where B denotes the 3-dimensional

Brownian motion starting at B0 6= 0, has an extended generator that maps Pol1 to Pol0,
while

M f
t = f (Xt)− f (X0)−

∫ t

0

Gf (Xs) ds

is a strictly local martingale (not a true martingale) for f ∈ Pol1. Indeed, the 3-
dimensional Bessel process is the solution to the stochastic di�erential equation

dXt = −X2
t dWt, X0 =

1

‖B0‖
,

where W is a 1-dimensional standard Brownian motion. The process has extended
generator given by

Gf(x) =
1

2
x4d

2f (x)

dx2
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and it is clear that for a �rst degree polynomial f , we have Gf(x) = 0. On the other
hand as

Xt − x−
∫ t

0

GXsds = Xt − x,

is a strict local martingale, see [17, Example 7.10], X is not a 1-polynomial process
(Theorem 2.5 (1)→ (3)).

Remark 2.9. We also need m-polynomial processes to be k-polynomial for all k ∈
{0, ...,m}, as required in the De�nition 2.1. Meaning that we implicitly exclude process
that have an extended generator that maps polynomials of degree k < m to polynomials
of degree greater than k ≤ m, while G (Polm) ⊂ Polm holds true. Consider for example
the process

dXt =

(
1

2
− bXt +

1

2
X2
t

)
dt+

√
X2
t (1−Xt)dWt, X0 = x ∈ [0, 1]

where b ≥ 1, W is a standard Brownian motion and the state space is the interval
E = [0, 1]. The generator of X is

Gf (x) =

(
1

2
− bx+

1

2
x2

)
df (x)

dx
+

1

2
x2 (1− x)

d2f (x)

dx2
.

We see that G (Pol1) ⊂ Pol2, while G (Pol2) ⊂ Pol2. It can be shown (due to compact-
ness of E) that M f is a true martingale for f ∈ Pol2 and thus Pt (Pol2) ⊂ Pol2, but
Pt (Pol1) * Pol1 by the same arguments as in the proof of Theorem 2.5. This means
that Xt is not a 1-polynomial process and therefore not a 2-polynomial process either.

In this section we have given the de�nition of polynomial processes and shown the
useful connection to matrix exponentials. We still need to establish conditions which
guarantee that X is an m-polynomial process for all m ≥ 2, not just for even numbers.
This is done in the next section, where we characterize polynomial processes as special
semimartingales with particular characteristics.

2.3. Semimartingales and Polynomial Processes

We now turn to special semimartingales and their connection to polynomial pro-
cesses. Semimartingales play a huge role in �nancial mathematics, as a process can
model an asset price in a fair market with no arbitrage opportunity only if it is a semi-
martingale. Characterization of polynomial processes as special semimartingales allows
us to de�ne conditions that make it possible to check whether a Markov process X
is an m-polynomial process for all m ≥ 2, not just for even numbers. First we recall
the de�nition of a special semimartingale. A real valued process Y is called a special
semimartingale if it can be decomposed as

Y = Y0 +M + A,
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where M is a local martingale and A is a predictable process of �nite variation. Fur-
thermore a d-dimensional process Y = (Y i)1≤i≤d is a special semimartingale i� all of

its components Y i are special semimartingales. We denote the characteristics triplet of
a special semimartingale with (A,C, v) where:

• A = (Aij)1≤i≤d is the predictable process with �nite variation.
• C = (Cij)1≤i,j≤d is the quadratic variation of the continuous local martingale
part Xc of X, i.e. Cij = 〈X i,c, Xj,c〉.
• v is the (predictable) compensating measure of the jump measure µ = µXof
X, as de�ned in Chapter 1.

In the next proposition we will see that the process X1{t<T∆} is a special semimartingale
whose characteristics are polynomials in X, if the generator of X satis�es the conditions
in the Theorem 2.7. Furthermore, by an application of Itô's formula we can �gure out
the explicit form of the extended generator. These results enable us to later state the
conditions which guarantee that X is an m-polynomial for all m ≥ 2, not just for even
m as in Theorem 2.7.

To help formulate the proposition we set

Yt := Xt1{t<T∆} = (f1 (Xt) , ..., fn (Xt))
> ,

where fi (x) is the i'th component of x and fi (∆) = 0. By the notation introduced in
Section 2.1 this corresponds to fi (x) = fk (x), when k = ei is the standard basis vector
in Rn. We write C2

m for twice continuously di�erentiable functions g : E → R for which
there exists a constant C̃ such that

(2.3.1) |g(x)|+
n∑
i=1

|Dig(x)|+
n∑

i,j=1

|Dijg(x)| ≤ C̃ (1 + ‖x‖m) .

The inequality above is called the polynomial growth condition.

Proposition 2.10. Let X be a Markov process with state space E∆ and let m ≥ 2.
Then the following assertions are equivalent:

(1) Polk lies in the domain of G and GPolk ⊆ Polk for all k ∈ {0, ...,m}.
(2) Xt1{t≤T∆} is a semimartingale with respect to the stochastic basis (Ω,F , (Ft)t≥0,

Px). Furthermore

Px [t ≤ T∆] = e−γt

for some constant γ ≥ 0 called the killing rate and the semimartingale charac-
teristics (B,C, v) associated with the truncation function h(ξ) = ξ satisfy the
following

(2.3.2) Bt,i =

∫ t

0

bi (Xs) ds,
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(2.3.3) Ct,ij +

∫ t

0

∫
Rn

ξiξjv(ds, dξ) =

∫ t

0

aij(Xs)ds,

where bi ∈ Pol1 and aij ∈ Pol2. Moreover, the characteristics C and v can be
written as

(2.3.4) Ct,ij =

∫ t

0

cij(Xs)ds, v(ω; dt, dξ) = K(Xt(ω), dξ)dt,

where c is a predictable process and K is a predictable random measure on
(Rn,B(Rn)) satisfying K(x, {0}) = 0 and

∫
{‖ξ‖≤1} ‖ξ‖

2K(x, dξ) <∞. Finally,

for all |k| ∈ {3, ...,m} we have

(2.3.5)

∫
Rn

ξkK(x, dξ) =

|k|∑
|j|=0

αjf
j(x),

where αj denote some �nite coe�cients.
(3) C2

m lies in the domain of the extended generator of X, and for all g ∈ C2
m, the

generator is given by

Gg(x) =
n∑
i=1

Dig(x) (bi(x) + γfi(x)) +
1

2

n∑
i,j=1

Dijg(x) (cij(x)− γ)

+

∫
Rn

(
g(x+ ξ)− g(x)−

n∑
i=1

Dig(x)ξi

)
(2.3.6)

× (K(x, dξ)− γf0(x)δ−x(dξ)) ,

where γ and (b, c,K) satisfy the conditions of (2) and f0 (x) = 1− 1∆ (x) .

All the conditions above imply that Y is a special semimartingale.

Proof. We start by showing (1) =⇒ (2). Since Polk lies in the domain of G for all
k ∈ {1, ...,m}, it follows that for all f ∈ Polm

(2.3.7) M f
t = f (Xt)− f (x)−

∫ t

0

Gf (Xs) ds

is a local martingale. By rearranging the terms we can see that f(Xt) is a sum of

a local martingale M f
t and a predictable process

∫ t
0
Gf(Xs)ds , so f(Xt) is a special

semimartingale. The convention f(∆) = 0 leads to f(Xt) ≡ f(Xt)1t<T∆
and we note

that f (Xt) has cádlág paths, implying limt↑T∆
|f (Xt)| < ∞, so f (X) cannot explode.

By setting fi(x) = xi for i ∈ {0, ..., n}, we get that Yt = Xt1t<T∆
is an (n-dimensional)

special semimartingale. Next we take a look at (2.3.7) with f = f0, where f0(Xt) is
equal to one for t < T∆ and zero elsewhere i.e. f0(Xt) = 1{t<T∆}. As Gf0 ∈ Pol0, there
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exists a constant γ such that γ1{t<T∆} := −Gf0(Xt) and M
f0 is a true martingale, we

get the following,

Px (t < T∆) =Ex
[
1t<Tj

]
= Ex [f0(Xt)] = 1 +

∫ t

0

Ex [Gf0(Xs)] ds

=1− γ
∫ t

0

Ex
[
1s∧Tj

]
ds.

Which implies that Px(t < T∆) = e−γt.
We now turn to the characteristics (B,C, v) of Y with respect to the truncation

function χ (ξ) = ξ. We apply (generalized) Itô's formula (Theorem 1.49) to fk(Xt) for

k = |k| ∈ {1, ...,m} and Xt,i = xi +M fi
t +Bt,i for i ∈ {1, ..., n} to get the following (see

appendix A for more details):

fk(Xt) = fk(x) +

∫ t

0

n∑
i=1

Difk(Xs−)dM fi
s +

∫ t

0

n∑
i=1

Difk(Xs−)dBs,i(2.3.8)

+
1

2

∫ t

0

n∑
i,j=1

Dijfk(Xs−)dCs,ij +

∫ t

0

∫
Rn

W (s, ξ)µY (ds, dξ),

where µY denotes the random measure of the jumps of Y and

W (s, ξ) :=
k∑
|j|=2

(
k

j

)
fk−j (Xs) ξ

j.

As fk (X) is a special semimartingale it can thus be decomposed uniquely into a local
martingale and a predictable �nite variation process. We take a look at each term
on the right side of Equation (2.3.8) in order to �gure out which of them are local
martingales. The �rst term is just a function of the initial value of the process and
thus not a local martingale. The second term is an integral of a càdlàg adapted process
with respect to a local martingale and thus a local martingale itself . The third and
fourth terms are predictable processes of �nite variation, in particular they are of locally
integrable variation by [14, Lemma I.3.10]. For the last term it is enough to notice that
it is of �nite variation and for special semimartingales the �nite variation part is of
locally integrable variation (see [14, Proposition I.4.23]. We know from the section
on semimartingales, see equation (1.5.4), that the jump measure µ has a compensator∫ t

0

∫
Rn W (s, ξ) v (ds, dξ) such that∫ t

0

∫
Rn

W (s, ξ)µY (ds, dξ)−
∫ t

0

∫
Rn

W (s, ξ) v (ds, dξ)
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is a local martingale. Rearranging Equation (2.3.8) we get∫ t

0

n∑
i=1

Difk(Xs)dM
fi
s +

∫ t

0

∫
Rn

W (s, ξ)
(
µY (ds, dξ)− v (ds, dξ)

)
= fk (Xt)− fk (x)−

∫ t

0

n∑
i=1

Difk(Xs−)dBs,i

− 1

2

∫ t

0

n∑
i,j=1

Di,jfk(Xs−)dCs,ij −
∫ t

0

∫
Rn

W (s, ξ)v(ds, dξ),

where the left hand side is a local martingale. Now we can combine (2.3.7) with (2.3.8)
and use the fact that local martingale parts have to be equal due to the uniqueness of
the decomposition, so we get

M fk
t =

∫ t

0

n∑
i=1

Difk(Xs)dM
fi
s +

∫ t

0

∫
Rn

W (s, ξ)
(
µY (ds, dξ)− v (ds, dξ)

)
=fk (Xt)− fk (x)−

∫ t

0

n∑
i=1

Difk(Xs−)dBs,i

− 1

2

∫ t

0

n∑
i,j=1

Di,jfk(Xs−)dCs,ij −
∫ t

0

∫
Rn

W (s, ξ)v(ds, dξ).

It then follows that the extended generator has the form∫ t

0

Gfk (Xs) ds =

∫ t

0

n∑
i=1

Difk(Xs−)dBs,i +
1

2

∫ t

0

n∑
i,j=1

Dijfk(Xs−)dCs,ij(2.3.9)

+

∫ t

0

∫
Rn

W (s, ξ)v(ds, dξ).

In order to �nd the characteristics of Bt,i we take a look at (2.3.9) with |k| = 1, that
is the polynomials fi (x) = xi for i ∈ {1, ..., n} . We �nd that the last to terms on the
right hand side vanish and the �rst integral on the right hand side is just Bt,i,so we
have

(2.3.10)

∫ t

0

Gfi (Xs) ds = Bt,i.

De�ning bi (x) := Gfi (x) implies then that bi ∈ Pol1, as G (Pol1) ⊂ Pol1 and we have
thus shown (2.3.2).
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Next we take a look at (2.3.9) for quadratic polynomials fij(x) = xixj for i, j ∈
{1, ..., n}. We set∫ t

0

aij (Xs) ds :=

∫ t

0

Gfij (Xs) ds−
∫ t

0

n∑
k=1

Dkfij(Xs−)dBs,i

and notice that both Gfij (x) and Difij(x)bi(x) = fj(x)bi(x) are in Pol2, which implies
that aij ∈ Pol2 as well. For the second term on the right hand side of (2.3.9) we see
that

1

2

∫ t

0

n∑
k,l=1

Dklfij(Xs−)dCs,ij = Ct,ij

and sinceW (s, ξ) :=
∑k
|j|=2

(
k
j

)
fk−j (Xs) ξ

j, it is easy to see that it simpli�es toW (s, ξ) =

ξj = ξiξj when k = |k| = 2. Thus we end up with

(2.3.11)

∫ t

0

aij (Xs) ds = Ct,ij +

∫ t

0

∫
Rn

ξiξjv(ds, dξ),

which is (2.3.3) as wanted.
We move on to proving the equalities (2.3.4). We de�ne

A′t (ω) =

∫ t

0

∫
Rn

‖ξ‖2 v (ω; ds, dξ)

and using arguments from [14, Proposition II.2.9.b], we know there exists a random
measure K ′ (ω, t; dξ) on (Rn,B (Rn)) such that

v (ω; ds, dξ) = K ′ (ω, t; dξ) dAt (ω) .

Furthermore by (2.3.3) with i = j we have

n∑
i=1

Ct,ii (ω) + A′t (ω) =
n∑
i=1

∫ t

0

aii (Xs (ω)) ds =:

∫ t

0

as (ω) ds

and since Cii and A are non-negative increasing processes, they are also absolutely
continuous with respect to the Lebesque measure. Now [14, Proposition I.3.13] implies

the existence of predictable processes c̃ii and H such that Ct,ii =
∫ t

0
cs,iids and A′t =∫ t

0
Hsds. We thus have a predictable random measure

K̃ω,t (dξ) = Ht (ω)K ′ (ω, t; dξ)

satisfying v (ω; dt, dξ) = K̃ (dξ) dt almost surely. The equation (2.3.11) now becomes

Ct,ij =

∫ t

0

(
aij (Xs)−

∫
Rn

ξiξjK̃ω,s (dξ)

)
ds,
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implying that Cij for i 6= j is absolutely continuous with respect to the Lebesque

measure and can therefore be written as Ct,ij =
∫ t

0
c̃s,ijds. By [6, Theorem 6.27] we can

choose homogeneous versions for the processes c̃ and K̃ such that c̃t = c (Xt (ω)) and
K̃ω,t = K (Xt (ω) , dξ) .

Finally we are left with (2.3.5). We take a look at (2.3.9) again, this time for
‖k‖ = k ≥ 3, and notice that we can rewrite it using previous results getting

Gfk (x) =
n∑
i=1

Difk(x)bi (x) +
1

2

n∑
i,j=1

Dijfk(x)

(
cij (x) +

∫
Rn

ξiξjK (x, dξ)

)

+

∫
Rn

 k∑
|j|=3

(
k

j

) fk−j (x) ξjK (x, dξ) .

As Gfk (x), Difk (x) b (x) and Dijfk (x)
(
cij (x) +

∫
Rn ξiξjK (x, dξ)

)
all lie in Polk for all

k = |k| ≤ m, then ∫
Rn

ξkK (x, dξ) =

|k|∑
|j|=0

αjf
j (x) ,

for some �nite coe�cients αj, simply follows by induction, which is (2.3.5) as wanted.
Next we prove the implication (2) =⇒ (3), that is the characteristics of the extended

generator of X. In order to simplify the notation we set

V (Ys, ξ) := g (Ys + ξ)− g (Ys)−
n∑
i=1

Dig (Ys) ξi

for g ∈ C2
m. We know from (2.3.3) and (2.3.5) that

∫
‖ξ‖kK (Xs, dξ) < ∞ for all

k ∈ {1, ...,m}, it follows that∫
Rn

|V (Ys, ξ)|K (Xs, dξ) ≤ h (Ys) +H (Ys)

∫
Rn

(
‖ξ‖2 ∧ ‖ξ‖m

)
K (Xs, dξ) <∞,

where h and H denote some positive �nite- valued functions. So we have that the
process

∫ ·
0

∫
V (Ys, ξ)K (Xs, dξ) is of locally integrable variation and Itô's formula then

implies that

M g
t := g (Yt)− g (x)−

∫ t

0

n∑
i=1

Dig (Ys) bi (Xs) ds−
∫ t

0

1

2

n∑
i,j=1

Dijg (Ys) cij (Xs) ds

−
∫ t

0

∫
Rn

V (Ys, ξ)K (Xs, dξ) ds
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is a local martingale. We also see that

−1{T∆≤t} + γ (T∆ ∧ t) = 1{t<T∆} − 1 +

∫ t

0

γ1{s<T}ds

is a true martingale. Remembering that Ex
[
1{t<T∆}

]
= Px (t < T∆) = e−γt, we indeed

have

Ex
[
1{t<T∆} − 1 +

∫ t

0

γ1{s<T}ds

]
= e−γt − 1 +

∫ t

0

γe−γsds = 0.

Denoting the right-hand side of (2.3.6) with G#, we now need to prove that

M#g
t := g (Xt)− g (x)−

∫ t

0

G#g (Xs) ds

is a local martingale. By the de�nition of G# we have

M#g
t = M g

t − g (0)
(
1{T∆≤t} − γ (t ∧ T∆)

)
and since both terms on the right-hand side are local martingales, M#g

t is a local
martingale.

Finally we prove the implication (3) =⇒ (1). We obviously have Polm ⊂ C2
m and

thus Polk lies in the domain of G for all k ∈ {0, ...,m} . Also due to the assumptions on
the characteristics of the process, we have G (Polk) ⊆ Polk for all k ∈ {0, ...m}. �

Since every m-polynomial process satis�es the conditions in the Theorem 2.7, we
have the following corollary as a direct result of Proposition 2.10.

Corollary 2.11. Let X be an m-polynomial process with m ≥ 2. Then the process
Yt =

(
Xt1{t<T∆}

)
is a special semimartingale satisfying the conditions (2.2.5)-(2.3.5)

and its extended generator is of the form (2.3.6).

Theorem 2.7 together with Proposition 2.10 provide the opposite direction, whenever
m is an even number. The general case will be proven in the subsequent theorem, where
necessary conditions are given for the compensator of the jump measure, so that the
converse direction holds for all m ≥ 2. In order to prove it, we will need a maximal
inequality for semimartingales satisfying conditions (2.3.2)-(2.3.5). The lemma dealing
with this inequality is given afterwards.

Theorem 2.12. Let X be a time-homogeneous Markov process with state space E∆

and let m ≥ 2. Suppose that Yt =
(
Xt1{t<T∆}

)
is a semimartingale satisfying the

conditions (2.3.2)-(2.3.5) or equivalently that C2
m ⊂ DG and that its extended generator

G is given by (2.3.6). If one of the following conditions is satis�ed, then X is an
m-polynomial process.

(2.3.12) Ex
[∫

Rn

‖ξ‖mK (Xt, dξ)

]
<∞



2.3. SEMIMARTINGALES AND POLYNOMIAL PROCESSES 52

or

(2.3.13)

∫
Rn

‖ξ‖mK (Xt, dξ) ≤ C̃ (1 + ‖Yt‖m) ,

for almost all t ≥ 0 and some constant C̃.

Proof. As in the proof of Theorem 2.7, it is enough to show that for each f ∈
Polm,x ∈ E∆ and every �xed t ≥ 0,

Pt |f | (x) = Ex [|f (Xt)|] <∞

and

Ex
[
sup
s≤t

∣∣M f
s

∣∣] <∞,
which shows that M f

s is a true martingale and by Theorem 2.5 X is an m-polynomial.
The inequalities follow from the Lemma 2.14 below together with one of the assumptions
(2.3.12) or (2.3.13). �

Remark 2.13. The theorem above introduces a tool to verify that a stochastic
process is m-polynomial. One needs to have either the characteristics of the process or
its extended generator available and check that the conditions in Proposition 2.10 are
satis�ed. Checking the conditions for Itô di�usions is simple, since the assumptions in
the Theorem 2.12 are trivially satis�ed for processes without jumps.

Lemma 2.14. Fix t > 0 and let m ≥ 2. Let Y be a semimartingale with respect to(
Ω,F , (Ft)t≥0 ,Px

)
whose characteristics (B,C, v) associated with the truncation func-

tion χ (ξ) = ξ satisfy the conditions (2.3.2)-(2.3.4) in Proposition 2.10. Then there
exists a constant �C such that

Ex
[
sup
s≤t
‖Ys‖m

]
≤ C̃

(
‖x‖m + 1 +

∫ t

0

Ex
[∫

Rn

‖ξ‖mK (Xs, dξ)

]
ds(2.3.14)

+

∫ t

0

Ex [‖Ys‖m] ds

)
.

In particular, if either of the conditions (2.3.12) or (2.3.13) from Theorem 2.12 is
satis�ed, then there exists �nite constants K and �C such that

(2.3.15) Ex
[
sup
s≤t
‖Ys‖m

]
≤ KeC̃t.

Proof. In order to make the notation simpler we only look at the case where
Y is a one-dimensional. We know from Proposition 2.10 and from the assumptions
on the characteristics of Y , that Y is a special semimartingale. Its unique canonical
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decomposition is given by Y = x + M +
∫ ·

0
b (Xu) du where M = M f1 . We denote the

quadratic variation of the purely discontinuous martingale part of Y with Z,

Zt =
∑
s≤t

(∆Ys)
2 =

∫ t

0

∫
Rn

ξ2µY (ds, dξ) .

We also de�ne two stopping times as follows

T Yj = inf {t ≥ 0 | |Yt| ≥ j or |Yt−| ≥ j} ,
TZj = inf {t ≥ 0 | |Zt| ≥ j or |Zt−| ≥ j}

and put Tj = T Yj ∧ TZj . Now we estimate

sup
s≤t

∣∣Y Tj
s

∣∣m ≤ C̃

(
|x|m + sup

s≤t

∣∣MTj
s

∣∣m + sup
s≤t

∣∣∣∣∫ s∧Tj

0

b (Xu) du

∣∣∣∣m) ,
where �C denotes some constant that may vary from line to line during the proof. First
we deal with with the integral on the right hand side of the inequality above. Since, by
assumption, b ∈ Pol1 we have

sup
s≤t

∣∣∣∣∫ s∧Tj

0

b (Xu) du

∣∣∣∣m ≤ sup
s≤t

C̃

(
1 +

∫ s∧Tj

0

|Xu|,mdu
)

(2.3.16)

≤ C̃

(
1 +

∫ t

0

∣∣Y Tj
u

∣∣m du) ,(2.3.17)

where the last inequality follows as Yu = Xu for u < T∆. Next we consider sups≤t

∣∣∣MTj
s

∣∣∣.
We can use Burkholder-Davis-Gundy inequality (see appendix) to get

(2.3.18) Ex
[
sup
s≤t

∣∣MTj
s

∣∣m] ≤ C̃Ex
[
[M,M ]

m
2
t∧Tj

]
≤ C̃Ex

[
C

m
2
t∧Tj + Z

m
2
t∧Tj

]
.

We know that C satis�es (2.3.3), thus we can estimate it by Ct ≤
∫ t

0
a (Xs) ds,where

a ∈ Pol2 is non-negative. We then get the following estimate

Ex
[
C

m
2
t∧Tj

]
≤ C̃

(
1 +

∫ t

0

Ex
[∣∣Y Tj

s

∣∣m] ds) .
We are left with Z

m
2
t∧Tj . Here the same approach as [15, Lemma 5.1] is used. Since

Z is purely discontinuous, non-decreasing and ∆Zs = |∆Ys|2 , we get
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Zt∧Tj =
∑
s≤t∧Tj

(Zs− + ∆Zs)
m
2 − (Zs−)

m
2

=

∫ t∧Tj

0

∫
Rn

((
Zs− + ξ2

)m
2 − (Zs−)

m
2

)
µY (ds, dξ) .

Taking expectation and remembering that v is the predictable compensator of µY , we
have

(2.3.19) Ex
[
Z

m
2
t∧Tj

]
= Ex

[∫ t∧Tj

0

∫
Rn

((
Zs− + ξ2

)m
2 − (Zs−)

m
2

)
v (ds, dξ)

]
.

In the next part of the proof we will use the inequalities (see [15, Lemma 5.1, proof])

(z + x)p − zp ≤ 2p−1
(
zp−1x+ xp

)
,(2.3.20)

zp−1x ≤ εzp +
xp

εp−1
,(2.3.21)

for p ≥ 1, x, z ≥ 0 and ε > 0. We apply (2.3.20) to the equation (2.3.19) to get the
following

Ex
[
Z

m
2
t∧Tj

]
≤ Ex

[∫ t∧Tj

0

∫
R

2
m
2
−1
(
Z

m
2
−1

s− ξ2 + |ξ|m
)
v (ds, dξ)

]
.

First we check the part with ξ2. Due to the assumption on v (ds, dξ), we can use (2.3.4)
and (2.3.5) from Proposition 2.10 to get

Ex
[∫ t∧Tj

0

∫
R

2
m
2
−1
(
Z

m
2
−1

s− ξ2
)
v (ds, dξ)

]
= Ex

[∫ t∧Tj

0

2
m
2
−1Z

m
2
−1

s−

(∫
Rn

ξ2K (Xs, dξ)

)
ds

]
≤ Ex

[∫ t∧Tj

0

2
m
2
−1Z

m
2
−1

s− a (Xs) ds

]
≤ Ex

[∫ t∧Tj

0

C̃

(
εZ

m
2
s +

1 + |Ys|m

ε
m
2
−1

)
ds

]
,

where we have used that Z is non-negative, a ∈ Pol2 and the second inequality (2.3.21).
We estimate again ∫ t∧Tj

0

Z
m
2
s ds ≤ j

m
2 ∧ Z

m
2
t∧Tj ,
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which follows since Zs is non-decreasing and Zs− ≤ j for s ≤ Tj. Combining the
inequalities, we get

Ex
[
Z

m
2
t∧Tj

]
≤ C̃εEx

[
j

m
2 ∧ Z

m
2
t∧Tj

]
+ Ex

[∫ t∧Tj

0

C̃

ε
m
2
−1

(1 + |Ys|m) ds

]

+ Ex
[∫ t∧Tj

0

∫
R

2
m
2
−1 |ξ|mK (Xs, dξ) ds

]
.

Choosing ε = 1
2̃C

gives

1

2
Ex
[
Z

m
2
t∧Tj

]
≤Ex

[
Z

m
2
t∧Tj

]
− 1

2
Ex
[
j

1
2 ∧ Z

m
2
t∧Tj

]
≤C̃Ex

[∫ t

0

(
1 +

∣∣Y Tj
s

∣∣m +

∫
R
|ξ|mK

(
Xs∧Tj , dξ

))
ds

]
.

Putting this together with inequalities (2.3.16) and (2.3.18), we arrive at

Ex
[
sup
s≤t

∣∣Y Tj
s

∣∣m] ≤C̃ (|x|m + 1 +

∫ t

0

Ex
[∫

R
|ξ|mK

(
Xs∧Tj , dξ

)]
ds(2.3.22)

+

∫ t

0

Ex
[∣∣Y Tj

s

∣∣m] ds)
and by monotone convergence theorem (2.3.14) follows.

For (2.3.15) we notice that under assumptions (2.3.12) or (2.3.13), it follows from
(2.3.22) that

Ex
[
sup
s≤t

∣∣Y Tj
s

∣∣m] ≤ K + C̃

∫ t

0

Ex
[
sup
i≤s

∣∣Y Tj
u

∣∣m] ds
for some �nite constants K and C̃. Now the right hand side of above inequality is �nite
(due to the assumptions) and we have the following estimate

sup
u≤s

∣∣Y Tj
u

∣∣m ≤ |x|m + jm + Ex
[∣∣∆Ys∧Tj ∣∣m]

≤ |x|m + jm + Ex
[∫ s∧Tj

0

∫
R
|ξ|mK (Xs, dξ) ds

]
<∞,

thus Gronwall's lemma yields

Ex
[
sup
s≤t

∣∣Y Tj
s

∣∣m] ≤ KeC̃t

for all j ∈ N and monotone convergence gives the wanted result. �
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The last results have been quite technical and also general in nature, as it considers
the class of Markov processes that are special semimartingales with triplets satisfying
certain conditions. In the next subsection we are going to look at some examples of
processes that are polynomial. We will see that the conditions in Proposition 2.10 and
in Theorem 2.12 are not always so complicated especially when we consider processes
with no jumps or even in the case of Lévy processes that allow for jumps.

2.4. Examples of Polynomial Processes

Let us consider Itô di�usions de�ned in De�nition 1.25. For them the conditions for
being polynomial processes are simple to check.

Theorem 2.15. (Polynomial di�usion) Let Xt be a d-dimensional Itô di�usion
satisfying

dXt = b (Xt) dt+ σ (Xt) dWt,

where W is an m-dimensional Brownian motion, b : Rd → Rd and σ : Rd → Rd×m. If
µ and σ satisfy the following,

b (x) ∈ Pol1

σ (x)σ (x)> ∈ Pol2,

then Xt is a polynomial process. We call these processes polynomial di�usions.

Proof. As Itô di�usions are continuous processes, there are no jumps. So by
Theorem 2.12 it is enough that the characteristic triplet (B,C, v) satisfy the conditions

in Proposition 2.10. The triplet of Itô di�usion is given by Bt =
∫ t

0
b (Xs) ds, Ct =∫ t

0
σ (Xs)σ (Xs)

> ds and v = 0. Clearly Xt is a polynomial process whenever the
conditions on b and σ are satis�ed. �

This also means that the generator of a polynomial di�usion is given by (3) in
Proposition 2.10 (with γ = v = 0) as

Ag (x) =
d∑
i=1

bi (x)
∂f

∂xi
(x) +

1

2

d∑
i,j

σ (x)σ (x)>
∂2f

∂xi∂xj
(x) .

Example 2.16. (Ornstein-Uhlenbeck process) Ornstein-Uhlenbeck process (OU) is
mean-reverting stochastic process with applications in both mathematical �nance and
physical sciences. The Ornstein-Uhlenbeck process X on R is de�ned by the following
SDE

dXt = θ (µ−Xt) dt+ σdWt, X0 = x,

where θ, σ > 0, µ ∈ R and W is a standard Brownian motion. We have b (Xt) =
θ (µ−Xt) ∈ Pol1 and σ (Xt)

2 = σ2 ∈ Pol0 ⊂ Pol2, so OU process is a polynomial
di�usion. This is also true for vector-valued OU process X ∈ Rd, with µ ∈ Rd, θ ∈ Rd×d
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and anm-dimensional Brownian motion Bt, with σ anm×d matrix. In the next section
we are going to show how the moments of this process may be calculated by using matrix
exponentials.

Example 2.17. (Jacobi process) A solution of the SDE

dXt = −β (Xt − θ) dt+ σ
(√

Xt (1−Xt)
)
dWt, X0 = x ∈ [0, 1] ,

where β, σ > 0, θ ∈ [0, 1] and the state space E = [0, 1]. Again it is easy to see that
b (Xt) = −β (Xt − θ) ∈ Pol1 and σ(Xt)

2 = σ2 (Xt −X2
t ) ∈ Pol2.

Example 2.18. (Lévy processes) Let L be a Lévy process on Rn with characteriz-
ing triplet (b, c, v) satisfying the moment condition

∫
‖ξ‖>1

‖ξ‖m v (dξ), then the Markov

process X = X0 + L is m-polynomial. From Theorem 1.29 it follows that the char-
acteristics b and c are constant for Lévy processes, which means that they satisfy the
conditions in Proposition 2.10 (2) and when the moment condition is satis�ed, so does
the Lévy measure v. Again by Theorem 2.12 X is an m-polynomial.

2.5. Computation of Moments

One of the important properties of m-polynomial processes is that their moments

Ex
[
Xk
t

]
= Ptx

k,

can be calculated in a fairly easy and e�cient way. We know from Theorem 2.5 that, if
X is an m-polynomial process then there exists a linear map A such that the moments
of X can simply be calculated by computing etA. We can de�ne H : Rd → RN to
be a function whose components form a basis of polynomials for Polm, i.e. H (x) =
(h1 (x) , ..., hN (x)), then for each f ∈ Polm there exists a unique coordinate vector
−→p f = (α1, ..., αN) , such that

f (x) = H (x)>−→p f

and

Gf (x) = H (x)>A−→p f ,

where A is the matrix obtained from the generator G.

Theorem 2.19. (Moment formula) Let f be a polynomial of order m with coordinate
representation given above and let X be an m-polynomial process. Then for m ≥ 2 and
0 ≤ t ≤ T

Ex [f (XT ) | Ft] = H (Xt)
> e(T−t)A−→p f .

By setting t = 0, we get

Ex [f (XT )] = H (X0)> eTA−→p f .
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Proof. From Theorem 2.5 we know that

M f
T = f (XT )− f (x)−

∫ T

0

Gf (Xs) ds

is a true martingale. Taking expectation conditioned on Ft on both sides and rearrang-
ing we get

Ex [f (XT ) |Ft] = f (Xt)−
∫ t

0

Gf (Xs) ds+ Ex
[∫ T

0

Gf (Xs) ds|Ft
]

= f (Xt) + Ex
[∫ T

t

Gf (Xs) ds|Ft
]
.

Changing to coordinate representation and writing F (T ) = Ex [H (XT ) |Ft], gives

F (T )−→p f = H (Xt)
>−→p f + Ex

[∫ T

t

H (Xs)
>A−→p fds|Ft

]
= H (Xt)

>−→p f + EXt

[∫ T−t

0

H (Xs)
>A

]
−→p f

= H (Xt)
>−→p f +

∫ T−t

0

H (Xt)
> PsAds

−→p f

= H (Xt)
>−→p f +H (Xt)

>
∫ T−t

0

AeAsds−→p f

= H (Xt)
> e(T−t)A−→p f .

where we have used (2) from Theorem 2.5 and Markov property of X. �

Example 2.20. (OU process) We take again look at the one-dimensional OU process
de�ned in the Example 2.16 with simpli�cation µ = 0. We want to demonstrate how
to calculate moments up to order m of the process. The extended generator is given by

Gf(x) = −θxf ′ (x) +
σ2

2
f ′′ (x) .
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Applying G to the basis of the polynomial vector space i.e. {x0, x1, ..., xm}, we get the
(m+ 1)× (m+ 1) matrix

A =



0 0 σ2 0 · · · 0
... −θ 0 3σ2 ...

0 −2θ 0
. . .

... −3θ σ2

2
m (m− 1)

. . . 0
−θm


.

Thus the moment of order k ≤ m is given by

(2.5.1) Ex
[
Xk
t

]
= Ptx

k = H (X0)> etA−→p ,

where −→p is the coordinate vector of xk, i.e. a vector with number one at the (k+ 1)'th
place and rest zero, while H (x) is a function whose components form the basis of Polm,
that is H (x) = (x0, x1, ..., xm). If we want to �nd the expectation of one-dimensional
OU process X, we can apply 2.5.1 to H (X0) = (X0

0 , X
1
0 ), A = diag (0,−θ) and −→p =

(0, 1),

Ex [Xt] = (1, X0)> etA (0, 1) = X0e
−θt,

where we have used 2.5.2 to get etA = diag
(
e0t, e−θt

)
.

When the dimension of the process is higher than one, the basis of Polm becomes
somewhat more complicated and one often needs to use techniques from linear algebra
of polynomials to enumerate the basis e�ciently and to exploit sparsity properties of
A. We refer to [5] for more information about possible methods.

When it comes to computing the matrix exponential itself, we notice that A is
necessarily an upper triangular matrix when the dimension of the processX is one. This
is easy to see as the extended generator satis�es G (Polk) ⊂ Polk for all k ∈ {0, ...,m}
(Theorem 2.5 (1)→ (3)). The eigenvalues of an upper triangular matrix are its diagonal
elements, which in our particular case are distinct and thus the matrix is diagonalizable.
This allows us to use diagonalization of the matrix to get

A = UDU−1

and particularly

Ak =
(
UDU−1

)k
= UD

(
U−1U

)
D
(
U−1U

)
D · · ·

(
U−1U

)
DU−1 = UDkU−1,

where D is a diagonal matrix composed of eigenvalues of A and U is a matrix consisting
of the corresponding eigenvectors. Since eA is de�ned as a power series, it can be written
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as follows:

eA =
∞∑
k=0

Ak

k!
= U

∞∑
k=0

Ak

k!
U−1

= UeDU−1.

To calculate the matrix exponential of the diagonal matrix eD, one simply takes the
exponentials of the diagonal entries, i.e.

(2.5.2) eD =


ed1 0 · · · 0

0 ed2
...

...
. . . 0

0 · · · 0 edm+1

 .

In more general cases, there exists e�cient ways of calculating matrix exponentials,
many can be found from [19].

2.6. Applications

In this section some examples of applications of polynomial processes in mathemat-
ical �nance are given. In Chapter 3 a case study of modeling electricity markets is
presented. There have been published some papers during the last years that study
di�erent applications of polynomial processes. Here are a few examples of di�erent
ideas presented in them:

Example 2.21. (State price density) Filipovi¢ and Larsson [12] use a state price
density approach with a polynomial di�usion X as a factor process. This approach
allows for explicit expressions for any securities with cash-�ow speci�ed as a polynomial
function of X. The idea goes as follows: There is a state price density given by a
positive semimartingale ζ, de�ned on a �ltered probability space

(
Ω,F , (Ft)t≥0 ,P

)
,

that determines an arbitrage free market model. The price F (t, T ) of a time T cash
�ow CT at time t is given by

(2.6.1) F (t, T ) =
1

ζt
E [ζTCT |Ft] .

Choosing a polynomial di�usion X and positive polynomial p on the state space allows
one to specify the state price density by ζt = e−αtp (Xt), where α is a real parameter
chosen to control on the interest rates. Further, let the cash �ow of a security be given
by CT = q (XT ), where q is some polynomial. Since qp is a polynomial the expectation
in (2.6.1) can be given explicitly in terms of matrix exponential by an application
of moment formula, Theorem 2.19. This framework can be used for several di�erent
securities, for example interest rate models with CT = 1, stochastic volatility model
with CT the spot variance and commodities market with CT the spot price.
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Example 2.22. (Life insurance liabilities) Biagini and Zhang 2016[4] introduce a
polynomial di�usion model for pricing and hedging life insurance liabilities using a
benchmark approach. Unlike the approach used in the example above, existence of
state price density is not required here. Instead the existence of a benchmark portfo-
lio is assumed and derivative pricing is done under the real world probability P. The
benchmark portfolio and �nancial instruments are modeled explicitly in terms of state
variable which follows a polynomial di�usion. Pricing formula for products with poly-
nomial payo�s is then be given explicitly. Furthermore the explicit results are used to
approximate more general claims with polynomial functions. This enables the pricing
of key products for life insurance companies, such as pure endowments, annuities and
term insurances.

Example 2.23. (Variance reduction) Cuchiero et al. [9] present an e�cient way of
variance reduction in a Monte-Carlo simulation by using the explicit knowledge of the
conditional expectation of a polynomial function f ∈ Polm of an m-polynomial process
X. The idea is to approximate a general function with a polynomial function and
then use that as a control variate when estimating the price in Monte-Carlo simulation.
Suppose we want to estimate µ = E [g (X)] where X is an m-polynomial process and
that we can �nd a polynomial approximation f of g such that h (x) ≈ f (x). As the
value of E (f (X)) is explicitly known to us for f ∈ Polm, we can estimate µ by

µ̂ =
1

n

n∑
i=1

(
g
(
X i
)
− f

(
X i
))

+ E [f (X)] .

This is an unbiased estimator and furthermore the variance of µ̂ is

Var (µ̂) =
1

n
Var (g (X)− f (X)) ,

which is smaller than the variance of µ̃ = 1
n

∑n
i=1 g (X i). Same method also applies to

claims, where the current value is given as a conditional expectation, e.g. European
claims and forwards.



CHAPTER 3

Application on Electricity Markets

In this chapter we use a polynomial framework for pricing and hedging long-term
electricity forwards, based on the work of Kleisinger-Yu et al. [18]. We start with a
brief introduction of electricity markets and their distinctive features, before moving on
to de�ning our model framework. Our speci�c model is a two-factor model, which is a
polynomial process, allowing us to use the moment formula (2.19) in the computation
of forward prices. The moment formula is applied to set up a hedging strategy for a
long-term electricity commitment. Due to the special features of the electricity markets,
we propose a rolling hedge with risk-minimization based on Schweizer [23, 22]. In the
end of this chapter, a simulation of forward prices and study of the e�ectiveness of the
chosen hedging strategy.

3.1. Electricity Markets

Electricity markets were to a large extent deregulated in the beginning of the 1990's.
Prior to this, electricity markets were strongly regulated by governments, and trading
with electricity did not exist the way it does now. The deregulated electricity markets
have several unique features compared to other �normal� commodities, which makes the
theory behind derivative pricing and hedging interesting. Firstly, electricity has very
limited storage possibilities. For some producers, mainly hydro plants, it is possible to
store electricity by �lling up the water reservoirs. However general actors in the elec-
tricity markets do not have the possibility to store electricity. If you buy electricity, you
have to use it. Secondly, transferring electricity over long distances is ine�cient. This
leads to regional electricity markets. Prices between di�erent markets can di�er signi�-
cantly. Thirdly, supply and demand are highly dependent on the physical phenomenons
which are hard to predict, such as weather. Due to these features the wholesale market
of electricity is based on matching o�ers from producers to bids from retailers. This is
done in an auction between producers and retailers arranged by a transmission system
operator. Based on the o�ers and bids for the hourly prices for the next day, the day
ahead spot prices are decided. The complexity of the wholesale market, and the under-
lying physical phenomenons, leads to very high price volatility at times of peak demand
and/or supply shortage. The importance of �nancial risk management is therefore a
high priority for participants in electricity markets.

62
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There are several types of �nancial instruments used for risk management (hedging).
The two simplest and most common are �xed price forward contracts and contracts of
di�erence. We use forwards for hedging in this paper. A forward is a contract between
two parties to buy or sell an asset at a speci�c future time T at a price agreed in the
contract. The price at time t of an electricity forward f (t, T ), with delivery at time
T ≥ t is given by

(3.1.1) f (t, T ) := EQ [ST |Ft] ,

where St is the spot price (of 1 MWh) at time t and Q is the risk-neutral probability
measure. This follows from the well-known fact that the price of any derivative is the
present expected value of its payo�. Payo� of a forward contract is given by

ST − f (t, T )

and since the forward contract is entered at no cost, we have

EQ [ST − f (t, T ) | Ft] = 0,

which leads to (3.1.1) as f (t, T ) is Ft-measurable.
Since electricity is not delivered instantaneously, but gradually over time, we usually

consider forwards with delivery period [T1, T2] which leads to a time t price

(3.1.2) F (t, T1, T2) :=
1

T2 − T1

EQ

[∫ T2

T1

Sudu | Ft
]
.

This is the expected average price during the delivery period with respect to the risk-
neutral probability measure. The delivery period may range from a day up to a year,
and contracts can be extended many years in to the future.

The spot price will be modeled with a multi-factor polynomial di�usion, which
allows us to compute forward prices explicitly using matrix exponentials. Further a
hedging strategy using a rolling hedge with variance minimization of the cost process is
set up. A simulation of the forward prices is computed in order to study how the rolling
hedge strategy works in reducing the risk involved in long-term forward commitments.
Throughout this chapter we assume a �ltered probability space

(
Ω,F , (Ft)t≥0 ,Q

)
where

Q is the risk-neutral measure used for derivative pricing. Time t is measured in years.
For simplicity we make a couple of assumptions. Firstly, we assume zero interest rate.
Secondly, we assume that there are no market frictions, e.g. transaction costs, taxes
and that forward contracts are in�nitely divisible. Thirdly, there is no risk of default,
meaning that both parties of a forward contract honor their commitments.
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3.2. The Model

This section is dedicated to the underlying polynomial framework. We start by
giving a general setup of a spot price model as a quadratic function of an underlying d-
dimensional stochastic process Xt which will evolve according to a polynomial di�usion,
De�nition 2.15. We denote the spot price at time t with St de�ned as

St = pS (Xt) ,

where pS (x) = c + x>Qx with c ∈ R+ and Q a positive semide�nite d × d matrix.
Furthermore the underlying driving process Xt is a d-dimensional polynomial di�usion
given by

dXt = κ (θ −Xt) dt+ σ (Xt) dWt,

where κ ∈ Rd×d, θ ∈ Rd, W is a d-dimensional Brownian motion under Q and σ :
Rd → Rd×d is continuous. We also assume that the components of the di�usion matrix
α (x) := σ (x)σ (x)> are polynomials of degree two or less, which together with the linear
drift guarantees that Xt is a polynomial di�usion, see De�nition 2.15. This allows us to
use the matrix exponential given by the (extended) generator of the process to easily
and explicitly calculate conditional expectations of the process. Speci�cally we can use
them to calculate forward prices, given by (3.1.2). The (extended) generator of X for
f ∈ Polm is

(3.2.1) Gf (x) =
d∑
i=1

(κ (θ − x))iDif (x) +
1

2

d∑
i,j=1

(
σ (x)σ (x)>

)
i,j
Dijf (x) .

This framework makes it possible to calculate forward values at any given time t ex-
plicitly with help of matrix exponentials, as the following proposition shows.

Proposition 3.1. The forward price with delivery period [T1, T2) at time t ,0 ≤ t ≤
T1 < T2 is given by

F (t, T1, T2, Xt) =
1

T1 − T2

H (Xt) e
(T1−t)A

∫ T2−T1

0

esAds−→p S,

where −→p S is the coordinate representation of pS and H : Rd → RN is the basis vector
of Polm.

Proof. The result follows straight from Equation 3.1.2 together with Theorem
2.19. �

Remark 3.2. The integral involving matrix exponential can be easily evaluated if
the matrix A is diagonalizable. We have earlier shown that eA = UeAU−1, which leads
to ∫ t

0

eAsds = U

∫ t

0

eAsdsU−1.
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We can integrate eAs component wise and get 1
λi

(eλit − 1) for the i'th component. In
the case of λi = 0, the i'th component is reduced to t.

We use a two-factor model, where the short-term dynamics of the spot price are
driven by Yt and the long-term dynamics by Zt. These processes evolve according to
SDEs

dZt = −κZZtdt+ σZdW
(1)
t

dYt = κY (Zt − Yt) dt+ ρσY dW
(1)
t + σY

√
1− ρ2dW

(2)
t ,

where Z0, Y0 ∈ R, κZ , κY , σZ , σY ∈ R+,Wt =
(
W

(1)
t ,W

(2)
t

)
is a standard two-dimensional

Brownian motion and ρ ∈ (−1, 1) is the correlation between the two Brownian motions.
Furthermore, we assume 1 ≥ κZ ≥ κY ≥ 0 to re�ect the idea of long and short-term
dynamics Z and Y respectively. The long-term dynamic Z is an Ornstein-Uhlenbeck
process which is mean-reverting with rate κZ and with mean-reversion level zero. The
short-term dynamics Y is also an OU process, but its mean-reversion is towards the
long-term dynamics Z with rate κY , due to the term κY (Zt − Yt) dt. The dynamics Yt
and Zt drive the spot price through the quadratic equation

St := c+ αY 2
t + βZ2

t

for c, α, β ∈ R+. It is worth noticing that the spot price is always strictly positive. Al-
though this is a common restriction in modeling of commodities, it is not necessarily the
case for electricity. It is not impossible for the electricity price to be negative. Negative
prices are sometimes observed for example in Scandinavian countries, especially during
mild, windy and rainy winters. The reason is two-folded. During a mild winter the
consumption naturally is lower. At the same time the rainy and windy weather makes
the production through wind mills and hydro plants high. Running down power plants
is more costly than paying to get rid of the extra electricity, which leads to negative
prices. The phenomenon of negative electricity prices is rare and happens during low
consumption hours, for instance in the middle of the night. Therefore we choose to
ignore this weakness in the model, as it does not have a major e�ect on our goal of
using polynomial framework to calculate forward prices and hedging strategies.

In terms of the general set up, the model corresponds to

Q =

(
β 0
0 α

)
, κ =

(
κZ 0
−κY κY

)
, θ =

(
0
0

)
, σ (x) = σ (z, y) =

(
σZ 0

ρσY σY
√

1− ρ2

)
.

The polynomial basis for this quadratic model is H(x) = {1, z, y, z2, yz, y2} , x =

(z, y)>. Coordinate representation of pS(x) is then −→p S = (c, 0, 0, β, 0, α)> and thus

pS (Xt) = H (Xt)
>−→p S.
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Further, the matrix representation of the extended generator G of X with respect to
the basis given by H (x) is needed. For the two-factor model the extended generator is

Gf (x) =
2∑
i=1

(−κx)iDif (x) +
2∑

i,j=1

(
σ (x)σ(x)>

)
i,j
Dijf (x) ,

with

(−κx) =

(
−κZz

κY z − κY y

)
and σ (x)σ (x)> =

(
σ2
Z ρσZσY

ρσZσY σ2
Y

)
.

Applying the generator to the components of the basis function H (x) ,we get the fol-
lowing equations:

G1 =0,

Gz =− κZz,
Gy =κY z − κY y,
Gz2 =− 2κZz

2 + σ2
Z ,

Gyz =κY z
2 + (−κZ − κY )zy + ρσZσY ,

Gy2 =2κY zy − 2κY y
2 + σ2

Y .

These equations correspond to the matrix representation

A =


0 0 0 σ2

Z ρσZσY σ2
Y

0 −κZ κY 0 0 0
0 0 −κY 0 0 0
0 0 0 −2κZ κY 0
0 0 0 0 −κZ − κY 2κY
0 0 0 0 0 −2κY

 .

With theses tools it is possible to explicitly compute forward prices within the model,
but in order to use historical data to estimate the model parameters, we need to �nd
the dynamics of the model with respect to the historical probability measure P.

3.3. Market Price of Risk

So far we have worked with the risk neutral probability measure Q, which is used
for pricing the forwards. However, when historical data of forward markets is used
to estimate parameters, the dynamics of the model with respect to the real world
probability P is needed. The natural approach is to use Girsanov's theorem for the
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change of measure. The general idea is to de�ne a market price of risk function λ (x)
and then show that the associated Radon-Nikodym density process (for t ∈ [0, T ])

Eλ (Xt) = exp

(∫ t

0

λ (Xs)
> dWs −

1

2

∫ t

0

λ (Xs)
2 ds

)
of the risk function is a martingale. It is then possible to get the P-dynamics of Xt by
using Girsanov's theorem.

The change of measure for the speci�c two-factor model de�ned in the previous
section is shown below. The market price of risk function is de�ned as

λ (x) = (γ + Λx)σ (x)−1 ,

with some γ ∈ R2 and Λ a symmetric 2 × 2 matrix. Next we �nd the parameters
of λ for which Eλ (Xt) is a martingale. As it happens Eλ (Xt) is a martingale for all
choices of parameters. The proof involves using an augmented state vector and a result
from theory on exponentially a�ne martingales, see [18, Proposition 5.1]. Then by
Girsanov's theorem

W P
t = Wt −

∫ t

0

λ (Xs) ds

is a Brownian motion with respect to P. If we denote γ = (γZ , γY )> and Λ =
diag (λZ , λY ), then the P-dynamics of Xt are given by

dXt =

[(
γZ
γY

)
−
(
κZ − λZ 0
−κY κY − λY

)
Xt

]
dt+

(
σZ 0

ρσY σY
√

1− ρ2

)
dW P,

leading to the following dynamics for Z and Y under P

dZt = (γZ − (κZ − λZ)Zt) dt+ σZdW
P,Z
t

dYt = (γY + λY Yt − κY (Yt − Zt)) dt+ σY ρdW
P,Z
t + σY

√
1− ρ2dW P,Y

t .

The model under P is the same kind (OU) as the model under Q, but with additional
parameters de�ning the market price of risk. The interpretation of the risk parameters
is that γZ , γY contributes to the level of mean-reversion, leading to higher spot prices on
average as time evolves (if positive). Lambda parameters on the other hand a�ect the
mean-reversion rates of Z and Y respectively. Particularly λZ and λY can be critical
as they can change the sign of the mean-reversion rates of Z and Y , leading to non
mean-reverting dynamics. This can be problematic when modeling electricity prices,
as they generally are observed to be mean-reverting. One idea would be to restrict λZ
and λY when estimating the parameters, so that κZ − λZ > 0 and κY − λY > 0.

When considering a more general framework with d-dimensional underlying pro-
cess, the problem of �nding parameters that satisfy the martingale condition is more
complicated.
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3.4. Risk Minimizing Rolling Hedge

The basic de�nition of a hedge is an investment taken in order to reduce the risk
of another investment. Hedging is widely used in many di�erent sectors, from airlines
hedging against an increase in oil price to international funds hedging against changes
in foreign exchange rates. Hedging is generally done by using some kind of derivatives,
most often options or forwards. In our case we use forwards. What we want to hedge
is a long-term commitment to deliver electricity (say delivery time from year T̃ to year
T̃ + 1, with T̃ large). The value of this claim at time t in our model framework is given
by

F̃t := F
(
t, T̃ , T̃ + 1, Xt

)
= H (Xt)

> e(T̃−t)A
∫ T̃+1

T̃

esAds~pS

which follows from (3.1.2) and Proposition 3.1. The special characteristics of electricity
markets make the hedging somewhat more complicated than in a normal commodity
case. One cannot hedge the commitment with the basic buy and hold strategy, since
the long-term contracts are not liquid and thus rarely available for trading. Another
option would be a cash and carry strategy, where one buys the commodity and holds
it until delivery, but the non-storability of electricity makes this strategy inconceivable.
That is why we propose a rolling hedge, where we take a long position in the near-term
contracts and then roll the hedge forward. The idea of a rolling hedge works as follows:
First we enter the �rst-nearby one year forward, close it when it matures, and then
enter into a new �rst-nearby one year forward. We continue this until the delivery
period of the long-term forward starts. The idea is based on the paper by Neuberger
[20]. To give the mathematical de�nition, we start with the price process Pt at time t
de�ned as

Pt =


P 1
t

P 2
t
...

PN−1
t

PN
t

 =


F (t, T1, T2, Xt)
F (t, T2, T3, Xt)

...
F (t, TN−1, TN , Xt)
F (t, TN , TN+1, Xt)

 ,

with N = T̃ and PN
t = F̃t. There are N di�erent tradable assets and a bank account

to invest in. We write ξit for the amount of forward P i
t owned at time t and ηt for the

amount of cash in the bank. We have a hedging strategy consisting of N + 1 assets,

i.e ϕt = (ηt, ξt)
> =

(
ηt, ξ

1
t , ..., ξ

N
t

)>
, with the usual and natural assumptions that ξt is

predictable and ηt is adapted. The components of the price process P k
t are martingales

by de�nition (Equation 3.1.2). Due to the liquidity issues in the power forward markets,
only the �rst-nearby forward contract is tradable. So we require

(3.4.1) ξkt = 0 for all t /∈ [k − 1, k), k = 1, ..., N,
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which also means that a contract that has started to deliver is no longer tradable. The
value of the hedging process at time t ∈ [k − 1, k) is given by the value process Vt:

Vt (ϕ) = ηt + ξ>t Pt = ηt + ξkt F (t, k, k + 1, Xt) ,

and the cumulative gain of the hedge up to time t ∈ [k − 1, k) is

Gt (ϕ) =

∫ t

0

ξ>s dPs =
k−1∑
i=1

∫ i

i−1

ξisdP
i
s +

∫ t

k−1

ξksdP
k
s(3.4.2)

=
k−1∑
i=1

∫ i

i−1

ξisdF (s, i, i+ 1, Xs) +

∫ t

k−1

ξksdF (s, k, k + 1, Xs) .

Since ξt is predictable and Ps is a martingale the integrals above are well de�ned.
Combining these two gives the cost process of the hedge

Ct (ϕ) := Vt (ϕ)−Gt (ϕ) .

For a self-�nancing strategy the cost process is a constant and given by the initial value
(capital) V0. If the market is complete and arbitrage opportunities are not allowed, it
is possible to �nd a self-�nancing strategy that fully replicates the claim, but this is
not the case in our model.

What we are dealing with is an incomplete market, in the sense that we have
two sources of randomness (two Brownian motions) and only one tradable risky asset
available at each time. The spot price is not tradable itself and because of the restriction
3.4.1, there is only one forward available at each given time. In an incomplete market
a claim cannot be fully replicated by a self-�nancing hedging strategy. We can either
use a strategy that is self-�nancing, but does not fully replicate the claim or we can
fully replicate the claim, but we need to make additional investments through out the
hedge (not self-�nancing). In the �rst case we have some risk included since the claim
is not fully replicated (residual risk) and in the latter case we need to use money to
keep the hedge going, which is a source of risk. Either way we cannot fully remove the
risk involved, instead we will minimize it by the means of local risk minimization.

Our approach is based on Martin Schweizer's work and we refer to [22, 23] for
more details. The idea is that even though we cannot achieve a self-�nancing strategy
(constant cost process C), we can have a mean-self-�nancing (Ct a martingale) strategy
that minimizes the risk. First we de�ne the risk process as

Rt (ϕ) := EQ
[
(Ct (ϕ)− CT (ϕ))2 |Ft

]
,

for all strategies ϕ that fully replicate F̃ at maturity T̃ , i.e.

(3.4.3) VT̃ (ϕ) = F̃ ,
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which in our case amounts to ηT̃ = 0 and ξN
T̃

= 1. It is natural to call a strategy ϕ̌
risk-minimizing (RM) if for each ϕ we have

Rt (ϕ̌) ≤ Rt (ϕ)

for all t ≤ T̃ . Every RM strategy is mean-self-�nancing, see [22, Lemma 2.3]. It turns
out that the martingale property of the price process guarantees that RM strategy,
satisfying VT̃ (ϕ̌) = F̃ , exists and is uniquely given by Galtchouk-Kunita-Watanabe

(GKW) decomposition of F̃ , for the proof see [22, Theorem 2.4]. The decomposition is
given as

(3.4.4) F̃ = EQ[F̃ ] +

∫ T̃

0

ξ̃>s dPs + L̃T̃ ,

where L̃ is a Q-martingale strongly orthogonal to P , i.e.
〈
P, L̃

〉
t

= 0, and thus
[
P, L̃

]
t

is a martingale, see De�nition 1.45. This leads to the RM hedging strategy

ϕrm = (ηrmt , ξrmt )> =
(
Vt (ϕrm)− ξrm>t Pt, ξ̃t

)>
,

with value process

Vt (ϕrmt ) = EQ

[
F̃ |Ft

]
= F̃t = F̃0 +

∫ t

0

ξ̃>s dPs + L̃t

and cost process Ct = F̃0 − L̃t. It is not hard to see that this strategy satis�es (3.4.3)
and the risk process Rt (ϕrm) is zero at t = T̃ . Using the orthogonality of P and L̃

together with dVt (ϕrmt ) = dF̃t = ξ̃tdPt + dL̃t we get

(3.4.5) d
〈
F̃ , P

〉
t

= ξ̃td 〈P, P 〉t + d
〈
P, L̃

〉
t
⇔ ξ̌t =

d
〈
F̃ , P

〉
t

d 〈P, P 〉t
.

By combining our rolling hedge strategy with the risk-minimizing hedge we arrive to the
speci�c hedging strategy for our model. This is achieved by using (3.4.5) with (3.4.1)
and (3.4.2) to get, for t ∈ [k − 1, k),

ξ̃kt =
d
〈
F̃ , P k

〉
t

d 〈P k, P k〉t
(3.4.6)

=
~w01e

(T̃−t)AΣ (Xt) e
(k−t)A ~w01

~w01e(k−t)AΣ (Xt) e(k−t)A ~w01

.
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The second equality follows from instantaneous covariation process and identity F̃ =

P T̃ , see Appendix A.3 for more details of the calculations and the covariation matrix
Σ (Xt).

The risk minimizing hedging strategy of the forwards is given by

ξrmt =

{
ξ̃kt for t ∈ [k − 1, k),

0 else.

This leads to the time t ∈ [k − 1, k) cash amount for RM strategy

ηrmt = Vt (ϕrm)− ξrm>t Pt = F̃t − ξ̃kt P k
t

and cost process

Ct (ϕrm) = F̃t −
∫ t

0

ξrmdPs.

3.5. Simulation

In this section M = 3000 spot price curves are simulated using a simple Euler-
Maruyama method. As we do not have data available for estimation of the model
parameters, we base our model on parameters from [18], where they use a quadratic
Kalman �lter and estimate with the help of both Least-Squares and Maximum Likeli-
hood methods. The spot prices are calculated under the real world probability measure
P. It is worth noticing that when estimating the parameters there are no restrictions
on λZ and λY , which makes it possible to end up with a model where the long-term
dynamics Z is not mean-reverting under P. This is actually the case with the estimated
parameters, as κZ < λZ (see Table 1). In the next section we study what happens when
λZ is reduced so that Z reverts to the mean under P aswell.

To study the performance of the hedge, we compute forward surfaces with delivery
periods (T, T + 1) for T ∈ {1, ..., 10}, for each spot price simulation. The calculation
of the forward prices is done using Proposition 3.1. The forward surfaces are used
to calculate the risk-minimizing hedging strategy ξrmt for di�erent hedging horizons,
starting from T = 2 up to T = 10. We choose a monthly re-balancing, meaning that
the hedge is adjusted at the turn of each month. The results with and without the hedge
are then compared by looking at the percentage exposures. The unhedged exposure
percentage is given by

F (T, T, T + 1, XT )− F (0, T, T + 1, X0)

F (0, T, T + 1, X0)
,
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Table 1. Estimated parameters.

Parameter Estimate
c 0.23961
α 10.2500
β 0.17681
κZ 0.01002
κY 0.40021
σZ 0.40648
σY 0.88913
ρ 0.11244
λZ 0.08999
λY 0.11184
γZ 0.08679
γY 0.12737
z0 2.35805
y0 2.00746

while for the hedged exposure percentage

CT (ϕrm)− F (0, T, T + 1, X0)

F (0, T, T + 1, X0)

=
F (T, T, T + 1, XT )−

∫ T
0
ξrm

>
s dPs − F (0, T, T + 1, X0)

F (0, T, T + 1, X0)
.(3.5.1)

The integral in the equation 3.5.1 can be calculated using equation (3.4.2), by the
following sum of integrals

∫ T

0

ξrms dPs =
T∑
i=1

∫ i

i−1

ξ̃isdP
i
s .(3.5.2)

Moreover, since we use monthly re-balancing, at time t = 0 we buy ξ̃1
0 amount of the

�rst nearby forward P 1
0 = F (0, 1, 2, X0), hold it until the end of the month and then

readjust the holding to ξ̃1
1/12 with price P 1

1/12 = F
(

1
12
, 1, 2, X1/12

)
. Thus the integral in

(3.5.2) becomes∫ T

0

ξrms dPs =
T∑
i=1

11∑
j=0

ξ̌ii−1+j/12

(
P i
i−1+(j+1)/12 − P i

i−1+j/12

)
,
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where ξis is given by 3.4.6.
We have used R-language for the simulations (see Appendix B). In order to make

the simulations more e�cient the R-code package Expm (Expm package) is used for the
calculations of matrix exponentials. It is possible to calculate these exponentials explic-
itly using for example diagonalization, but this turned out to take more computation
time than the estimation techniques used from the package Expm.

Figure 3.5.1. Density of exposures for di�erent time horizons. Showing
both hedged and unhedged exposures.

3.6. Stress Test

In this section we test the robustness of the hedging strategy described in Section 3.4
by changing some of the parameters to more extreme values and see whether this has an
e�ect on the hedge. The purpose of this kind of stress testing is to see whether changes
in the underlying economical factors that in�uence the parameters in the model, have
an impact on the functionality of the hedging strategy. This is done by running new
simulations with changed parameters M = 1000 times and then adjusting the hedging
strategy for these new simulations. We study the new density plots to see how the
hedge reacts to the changes. First we recall the dynamics of the model under P, stated

https://cran.r-project.org/web/packages/expm/index.html
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in the Section 3.3,

dZt = (γZ − (κZ − λZ)Zt) dt+ σZdW
P,Z
t

dYt = (γY + λY Yt − κY (Yt − Zt)) dt+ σY ρdW
P,Z
t + σY

√
1− ρ2dW P,Y

t ,

which drive the spot price through the quadratic function pS (Xt) = c + αY 2
t + βZ2

t ,
X = (Z, Y ). We study three distinct scenarios with di�erent shocks changing speci�c
parameters of the model:

(1) A possible scenario would be a situation where the volatilities σZ and σY of
the dynamics are considerably higher. One could think of a situation where
electricity markets are more unstable due to a shock, for example a political
crisis. A simulation with twice as high σZ and σY ,

σ∗Z = 2σZ

σ∗Y = 2σY ,

is done to observe how the shock changes the results, see �gure 3.7.3.
(2) Another kind of shock would be one that has an impact on the rate of mean-

reversion parameters. Especially λZ (or eventually κZ) can have a big e�ect on
the model. In the original estimated parameters κZ − λZ < 0, meaning that Z
is not mean-reverting, when considering the real-world dynamics. This leads
to a tendency for the spot price to grow quite aggressively, which makes the
hedge more e�ective compared to the unhedged case. We set

λ∗Z = 0.00899

to see how the model and hedge reacts when Z is mean-reverting, see �gure
3.7.1

(3) In the third alternative scenario a shock disturbing the correlation ρ is tested
to see whether it has an impact on the hedge. We look at two extreme cases

ρ∗ = 0.9 and ρ∗ = −0.9

to how robust the hedge is when correlation much higher (lower), see �gure
3.7.2.

3.7. Conclusion

Looking at the �gure 3.5.1, one can see that our hedge signi�cantly reduces the
exposure percentages on average. It both decreases the mean of the exposures and it
reduces the variation, especially for the shorter time horizons. This is natural as the
correlation between the 1-year forward and the long-term commitment is greater in
shorter time horizons. It is also worth noting that the hedge reduces the skewness of
the exposures, which means that the probability of having a large exposure is reduced
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Table 2. Mean of the hedged and unhedged exposures respectively for
each time horizon.

Time Horizon Mean Hedged Mean unhedged

2 years 0.0322 0.6932
3 years 0.1648 1.0585
4 years 0.3636 1.5066
5 years 0.6188 2.0413
6 years 0.9303 2.6746
7 years 1.3013 3.3927
8 years 1.7328 4.2863
9 years 2.2469 5.3206
10 years 2.8494 6.5899

when hedging. We can conclude that our hedging strategy does signi�cantly reduce the
risk involved in the long-term commitment, but it does not completely remove it.

Looking at the density plots created by the di�erent scenarios and comparing them
to the original results, we see that in the case of increased volatilities (1), �gure 3.7.3,
the hedging strategy is working well. The case (2) where λZ was decreased does not
substantially end the relation between the hedged and the unhedged. Although both the
hedged and the unhedged exposures are signi�cantly smaller due to the mean-reversion
that draws the Z dynamics towards the long-term trend γZ . This e�ect can be seen
from the �gure 3.7.1. For the case of correlation (3), we see no big e�ect when ρ is
close to one. When ρ is close to minus one, we see from �gure 3.7.2 that the hedging
strategy does not work as well, especially for longer time horizons.

The use of polynomial processes in modeling electricity prices allows for easily ac-
cessible and explicit formulas for pricing forwards. The same results are also used in
creating a risk-minimizing strategy. One only needs to �nd the explicit form of the
generator of the polynomial process, then calculating moments and conditional expec-
tations is done using matrix exponentials. It would also be interesting to use jump
processes such as polynomial jump di�usion to model electricity prices. The inclusion
of jumps to the model could make them more realistic, since electricity prices tend to
have spikes.
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Table 3. Standard deviations of the hedged and unhedged exposures
respectively for each time horizon.

Time Horizon SD hedged SD unhedged

2 years 0.1142 0.7110
3 years 0.2240 0.9356
4 years 0.3507 1.2102
5 years 0.5033 1.5271
6 years 0.6893 1.9101
7 years 0.9134 2.3509
8 years 1.1778 2.8799
9 years 1.4939 3.5091
10 years 1.8662 4.2583

Table 4. Skewness of the hedged and unhedged exposures respectively
for each time horizon.

Time Horizon Skewness hedged Skewness unhedged

2 years 0.3653 0.7379
3 years 0.5164 0.7436
4 years 0.5825 0.7521
5 years 0.6530 0.7425
6 years 0.6839 0.8098
7 years 0.7543 0.8751
8 years 0.8209 0.8970
9 years 0.8741 0.9173
10 years 0.9123 0.9355
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Figure 3.7.1. The scenario with smaller λZ .
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Figure 3.7.2. Densities related to the correlation scenario with ρ∗ = −0.9.
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Figure 3.7.3. Density plots for increased volatility scenario.



APPENDIX A

Some Technical Results

A.1. Stochastic Analysis

Here are a few well known concepts and results used throughout the paper. They
can be found in most books on stochastic analysis, see for example [10, 14, 2].

Lemma A.1. (Substitution property) Let h : R × R → R be a measurable function.
If X is G-measurable, h (X, Y ) ∈ L1, and Y independent of G then

E [h (X, Y ) |G] = E [h (x, Y )] |x=X .

Definition A.2. The variation of a function f is de�ned as the limit

Vf (t) = Vf ([0, t]) = sup
n∑
i=1

∣∣f (tni )− f
(
tni−1

)∣∣ ,
where the supremum is taken over all partitions 0 = tn0 < · · · < tnn = t. The sums in
the equation above increase as new points are added to the partitions. This leads to

Vf (t) = lim
πn→0

n∑
i=1

∣∣f (tni )− f
(
tni−1

)∣∣ ,
where the mesh πn = max {ti − ti−1}.

Remark A.3. Clearly Vf (t) is a non-decreasing function in t. A function f is said
to be of �nite variation if Vf (t) <∞ for all t and of bounded variation if there exist a
constant C such that Vf (t) <∞ for all t.

Theorem A.4. (Doob-Meyer decomposition) Any local submartingale X with

E

[
sup
s∈[0,t]

|Xs|

]
<∞,

can be uniquely decomposed as

Xt = X0 +Mt + At,

with some martingale M and an increasing predictable cádlág process A, A0 = 0. The
process A is called the compensator of X.

80
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Theorem A.5. (Burkholder-Davis-Gundy inequality) For any 1 ≤ p < ∞ there
exists positive constants cp and Cp such that, for all local martingales M starting at 0,
the following inequality holds.

cpE
[
[M,M ]p/2t

]
≤ E

[
sup
s≤t
|Ms|p

]
≤ CpE

[
[M,M ]2/p

]
.

For a continuous martingale the result holds also for 0 < p ≤ 1.

Theorem A.6. (Gronwall's lemma) Let T, a, b ≥ 0 and u (t) : [0, T ] → R be a
continuous function satisfying

u (t) ≤ a+ b

∫ t

0

u (s) ds

for t ∈ [0, T ], then

u (t) ≤ aebt.

This is a special case found in [10, A.5] and is enough for our purposes.

A.2. Multi-notation and Itô's Formula

We use the following standard multi-index notation in the paper. An n-dimensional
multi-index is an n-tuple

k := (k1, k2, . . . , kn) ,

with the sum of components given by

|k| := k1 + k2 + · · · kn.

The power of an n-dimensional x is de�ned as

xk := xk1
1 · xk2

2 · · ·xknn ,
while the binomial coe�cient is de�ned as(

k

j

)
:=

(
k1

j1

)
·
(
k2

j2

)
· · ·
(
kn
jn

)
and the multi-binomial theorem for x, y ∈ Rn states the following:

(x+ y)k =

|k|∑
|j|=0

(
k

j

)
xk−jyj =

k1∑
j1=0

(
k1

j1

)
xk1−j1yj1 · · ·

(
kn
jn

)
xkn−jnyjn .

The following calculations are used in the application of the Itô's formula in the
proof of Proposition 2.10 :
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Solution A.7. Applying the Itô's formula for fk(x) = xk and special semimartin-

gale X i
t = xi +M fi

t + Bi
t, where B

i
t is the predictable variation part and M fi

t the local
martingale part, we get

fk (Xt) = f (x) +

∫ t

0

n∑
i=i

Difk(Xs−)dX i
s

+
1

2

∫ t

0

n∑
i,j=1

Dijfk(Xs−)d
〈
X i,cm, X i,cm

〉
s

+
∑
s≤t

(
fk(Xs)− fk(Xs−)−

n∑
i=1

Difk(Xs−)∆Xs

)
.

The �rst integral can be decomposed into two integrals with respect to M fi
t and Bi

t

respectively. For the second term we write Cij = 〈X i,cm, Xj,cm〉. For the last term we
use the fact that Xs = ∆Xs + Xs− and an application of multi-binomial theorem on
(∆X +Xs−)k to get

∑
s≤t

 |k|∑
|j|=0

(
k

j

)
Xk−j
s− ∆X j

s −Xk
s− −

n∑
i=1

Difk (Xs−) ∆Xs

 .

The |j| = 0 term of the sum is equal to Xk
s− so it cancels out and the |j| = 1 term is

equal to
∑n

i=1 Difk (Xs−) ∆Xs and cancels out as well. We are then left with

∑
s≤t

 k∑
|j|=2

(
k

j

)
fk−j (Xs−) ∆X j

s

 ,

using the integral notation introduced in the Section 1.5 equation (1.5.3),
∑

s≤t ∆Xs =∫ t
0

∫
Rn ξµ (ds, dξ), and we arrive at the claimed result

fk(Xt) = fk(x) +

∫ t

0

n∑
i=1

Difk(Xs−)dM fi
s +

∫ t

0

n∑
i=1

Difk(Xs−)dBs,i

+
1

2

∫ t

0

n∑
i,j=1

Dijfk(Xs−)dCs,ij +

∫ t

0

∫
Rn

W (s, ξ)µY (ds, dξ),

with

W (s, ξ) :=
k∑
|j|=2

(
k

j

)
fk−j (Xs) ξ

j.
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A.3. Instantaneous Covariation Matrix and Hedging Strategy

The instantaneous quadratic covariation process between two forwards with di�erent
delivery periods is given by

d
[
P k, P j

]
t

= d
〈
P k, P j

〉
t

= d
〈
H (Xt)

> e(k−t)Aw01, H (Xt)
> e(j−t)Aw01

〉
= w>01e

(j−t)A>Σ (Xt) e
(k−t)w01,

where

w01 =

∫ 1

0

euAdu−→p S

and Σ (Xt) = 〈H (X) , H (X)〉t is the covariation matrix. Each component in the co-
variation matrix corresponds to the covariation of the corresponding elements of H(X).
The matrix Σ (Xt) is stated below:

0 0 0 0 0 0

0 σ2
Z ρσZσY 2σZZt σ2

ZYt + ρσY σZZt 2ρσY σZYt

0 ρσZσY σ2
Y 2ρσY σZZt σ2

YZt + ρσY σZYt 2σ2
Y Yt

0 2σZZt 2ρσY σZZt 4σ2
ZZ

2
t 2σ2

ZYtZt + 2ρσY σZZ
2
t 4ρσY σZYtZt

0 σ2
ZYt + ρσY σZZt σ2

ZZt + ρσY σZYt 2σ2
ZYtZt + 2ρσY σZZ

2
t σ2

ZY
2
t + σ2

YZ
2
t + 2ρσY σZYtZt 2ρσY σZY

2
t + 2σ2

Y YtZt

0 2ρσY σZYt 2σ2
Y Yt 4ρσY σZYtZt 2ρσY σZY

2
t + 2σ2

Y YtZt 4σY Y
2
t



.

The hedging strategy is obtained from the following calculations for any t ∈ [k−1, k),
k ∈ N: 〈

P k, F̃
〉
t
−
〈
P k, F̃

〉
k−1

=

∫ t

k−1

d
〈
P k, F̃

〉
u

=

∫ t

k−1

d

〈
P k,

∫ ·
k−1

ξ̃ksdP
k
s

〉
u

+

∫ t

k−1

d
〈
P k, L̃

〉
u

=

〈
P k,

∫ ·
k−1

ξ̃ksdP
k
s

〉
t

−
〈
P k,

∫ ·
k−1

ξ̃ksdP
k
s

〉
k−1

=

∫ t

k−1

ξ̃ksd
〈
P k, P k

〉
s
,

where we have used that
〈
P k, L̃

〉
t

= 0 as P k and L̃ are orthogonal. Rearranging the

terms and applying
〈
P k, F̃

〉
k−1

= 0 since F̃k−1 is constant and known at t ≥ k− 1, we
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arrive at

ξ̃kt =
d
〈
F̃ , P k

〉
t

d 〈P k, P k〉t
,

as wanted.
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R-code

library(expm)
library(e1071)
library(xtable)
library(ggplot2)
library(reshape2)
library(gridExtra)

#parameters
c <- 0.2396
alpha <- 10.25
beta <- 0.176
kZ <- 0.01
kY <- 0.4002
sigmaZ <- 0.406
sigmaY <- 0.889
rho <- 0.112
lambdaZ <- 0.0899
lambdaY <- 0.112
gammaZ <- 0.0868
gammaY <- 0.1274
z0 <- 2.358
y0 <- 2.0076

#Matrix representation of the generator

Mdata=c(0, 0, 0, sigmaZ^2,rho*sigmaY*sigmaZ,sigmaY^2,
0,-kZ,kY,0,0,0,0,0,-kY,0,0,0,0,0,0,-2*kZ,
kY,0,0,0,0,0,-kZ-kY,2*kY,0,0,0,0,0,-2*kY)

A=matrix(ncol = 6,nrow = 6, data = Mdata, byrow = TRUE)
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#the quadratic equation vector
pS <- c(c,0,0,beta,0,alpha)

#Calculation by diagonalization.
d1 <- eigen(A)$values
p1 <- eigen(A)$vectors
eGd1 <- p1%*%diag(exp(d1))%*%zapsmall(solve(p1))
w01 <- p1%*%diag(c(exp(d1[-6])/d1[-6]-1/d1[-6],1))%*%(solve(p1))%*%pS

#dataframes of OU process and forward calculations
twodOU=function(N,Ty){

dt <- 1/N
ts <- seq(0,Ty,dt)
tl <- length(ts)
Z <- c(z0,2:tl)
Y <- c(y0,2:tl)
epsZ <- rnorm(tl,0,1)
epsY <- rnorm(tl,0,1)
for (i in 2:tl) {

Z[i] <- Z[i-1]+gammaZ*dt-(kZ-lambdaZ)*dt*Z[i-1]+
sigmaZ*sqrt(dt)*epsZ[i]

Y[i] <- Y[i-1]+gammaY*dt+kY*dt*Z[i-1]-
(kY-lambdaY)*dt*Y[i-1]+sigmaY*sqrt(dt)*
(rho*epsZ[i]+sqrt(1-rho^2)*epsY[i])

}
return(as.data.frame(cbind(ts,Z,Y)))

}

#Using Expm package for matrix exponentials,
#as more effective than our explicit calculations

ForwardPrice=function(Tm,Z,Y,dt){
HX0 <- t(c(1,Z[1],Y[1],Z[1]^2,Z[1]*Y[1],Y[1]^2))
F0 <- HX0%*%expm(Tm*A)%*%w01
Ft <- c(F0,2:length(Y))
for (i in 2:length(Ft)) {

HXi <- t(c(1,Z[i],Y[i],Z[i]^2,Z[i]*Y[i],Y[i]^2))
Ft[i] <- HXi%*%expm((Tm-((i*dt)%%1))*A)%*%w01

}
return(Ft)
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}

forwardcurves=function(l=10,data1){
Z <- data1$Z
Y <- data1$Y
ts <- data1$ts
fc=data.frame(ts)
for (i in 1:l) {

fc[[i+1]] <- ForwardPrice(i,Z,Y,1/N)

}
fc$Z <- Z
fc$Y <- Y
return(fc)

}

#instantaneous covariation, used in hedging strategy
CovS=function(Yt,Zt){

SX1 <- c(0,0,0,0,0,0)
SX2 <- c(0, sigmaZ^2, rho*sigmaY*sigmaZ, 2*sigmaZ^2*Zt,

sigmaZ^2*Yt+rho*sigmaY*sigmaZ*Zt, 2*rho*sigmaY*sigmaZ*Yt)
SX3 <- c(0, rho*sigmaY*sigmaZ, sigmaY^2,

2*rho*sigmaY*sigmaZ*Zt, sigmaY^2*Zt+rho*sigmaY*sigmaZ*Yt,
2*sigmaY^2*Yt)

SX4 <- c(0,2*sigmaZ^2*Zt, 2*rho*sigmaY*sigmaZ*Zt,
4*sigmaZ^2*Zt^2, 2*sigmaZ^2*Yt*Zt+2*rho*sigmaY*sigmaZ*Zt^2,
4*rho*sigmaY*sigmaZ*Yt*Zt)

SX5 <- c(0, sigmaZ^2*Yt+rho*sigmaY*sigmaZ*Zt, sigmaY^2*Zt+
rho*sigmaY*sigmaZ*Yt, 2*sigmaZ^2*Yt*Zt+2*rho*sigmaY*
sigmaZ*Zt^2, sigmaZ^2*Yt^2+sigmaY^2*Zt^2+2*rho*sigmaY*sigmaZ*Yt*Zt,

2*rho*sigmaY*sigmaZ*Yt^2+2*sigmaY^2*Yt*Zt)
SX6 <- c(0,2*rho*sigmaY*sigmaZ*Yt, 2*sigmaY^2*Yt,

4*rho*sigmaY*sigmaZ*Yt*Zt, 2*rho*sigmaY*sigmaZ*Yt^2+
2*sigmaY^2*Zt*Yt, 4*sigmaY^2*Yt^2)

SigmaS=rbind(SX1,SX2,SX3,SX4,SX5,SX6)
return(SigmaS)

}

#hedging strategy
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xik=function(t,kt,Zt,Yt,Tt){
xi <- (t(w01)%*%t(expm((Tt-t)*A))%*%CovS(Zt, Yt)%*%expm((kt-t)*A)%*%w01)/

(t(w01)%*%t(expm((kt-t)*A))%*%CovS(Zt, Yt)%*%expm((kt-t)*A)%*%w01)
return(xi)

}

#Total cost of the rolling hedge.

hedge=function(k, Ft, ty, N=N){
hedge <- 0
dt <- 1/N
Zti <- Ft[[k]]$Z
Yti <- Ft[[k]]$Y
dk=seq(0,length(Zti)-N/12,N/12)
for (j in 1:ty) {

for (i in dk[(N/10*j-11):(N/10*j)]) {
hedge <- hedge + xik(i*dt, kt=j, Zt=Zti[i+1],

Yt=Yti[i+1], Tt=ty)*(Ft[[k]]$V2[i+11]-Ft[[k]]$V2[i+1])

}
}
return(hedge)

}

#Making 3000 simulations of forwardcurves
M <- 3000
N <- 120
ty <- 10

set.seed(194)
sims <- replicate(M,forwardcurves(ty, twodOU(N, ty)), simplify = FALSE)

#plotting an example of rolling forwards and spot price
data2 <- within(sims[[1]], rm(Z,Y))
data2 <- setNames(data2, c("time", "1 year", "2 year",

"3 year", "4 year", "5 year", "6 year",
"7 year", "8 year", "9 year", "10 year"))

data2long <- melt(data2, id="time")
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ggplot(data=data2long, aes(x=time, y=value, colour = variable)) + geom_line() +
labs(y="Price", colour="Forward", title = "Rolling forwards")

S1 <- c + beta*sims[[1]]$Z^2 + alpha*sims[[1]]$Y^2

qplot(sims[[1]]$ts, S1, main = "Spot price",
xlab = "Time", ylab = "Price", geom = "line")

#Unhedged exposures

e <- as.data.frame(matrix(nrow = M, ncol = 9))
e <- setNames(e, c("2 year", "3 year", "4 year", "5 year", "6 year",

"7 year", "8 year", "9 year", "10 year"))

etemp <- 1:M
for (j in 1:9) {

for (m in 1:M) {
etemp[m] <- (sims[[m]]$V2[(j+1)*120+1]-

sims[[m]][[j+2]][1])/sims[[m]][[j+2]][1]

}
e[[j]] <- etemp

}

#Hedged exposures

eh <- as.data.frame(matrix(nrow = M, ncol = 9))
eh <- setNames(eh, c("2 year", "3 year", "4 year", "5 year",

"6 year", "7 year", "8 year", "9 year", "10 year"))
ehtemp=1:M
for (j in 1:9) {

for (m in 1:M) {
ehtemp[m] <- (sims[[m]]$V2[(1+j)*120+1]-sims[[m]][[j+2]][1]-

hedge(k=m, Ft=sims, ty=j+1, N=120))/sims[[m]][[j+2]][1]
}
eh[[j]] <- ehtemp

}
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#Exposure density plots
p <- list()
for (i in 1:9) {

te <- data.frame(Unhedged=e[i], Hedged=eh[i])
colnames(te) <- c("Unhedged", "Hedged")
data1 <- reshape2::melt(te, measure.vars = c("Unhedged", "Hedged"))
p[[i]] <- ggplot(data1, aes(x=value, fill = variable)) +

geom_density(alpha = 0.25) +
labs(x="Percentage of Exposure", title = paste(i+1, "year horizon"))

}

do.call(grid.arrange, p)
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