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Abstract
In this thesis a new method for the unfolding of γ-ray spectra using Bayesian statistics has been investigated.

The method in question goes by the name Fully Bayesian Unfolding. By making use of Bayes’ theorem the

method samples from a likelihood function and prior distribution to achieve a posterior distribution for each

energy-bin of the spectrum.

The γ-ray spectra are obtained from experiments at the Oslo Cyclotron Laboratory with OSCAR an array of

LaBr3:Ce scintillator detectors and SiRi a particle telescope. The reaction chosen to test the method was the
28Si(p,p′γ) reaction.

The new FBU method was compared to the iterative unfolding method that was developed and is currently used

for unfolding in the Oslo nuclear physics group. In addition, the iterative unfolding method is a well known

unfolding method used in nuclear physics research outside of the Oslo nuclear physics group.

The motivation of the study is to extract the uncertainty from the unfolding method. These uncertainties can be

propagated into further analysis such as the Oslo-Method or others. In addition the iterative unfolding method

can suffer from negative fluctuations. Using Bayesian unfolding prevents this since the priors can have lower

bounds set to zero, thus only the positive solutions are presented in the outcome. The Fully Bayesian Unfolding

was found to deliver on these terms both giving reasonable uncertainty estimates and give a stable solutions

for the γ-ray spectra tested in this work. The main source of discrepancy was found in the threshold region

([0, 160] keV), which in turn seems to have an effect on the re-distribution of counts to the γ-ray peaks. The

discrepancy was decreased for the FBU when including the background into the unfolding. Since the raw spectra

do not contain counts in the threshold area the discrepancy can only come from the response matrix. The

response matrix was made under different conditions than the experiment tested in this thesis, and is still a

work in progress. The total efficiency of OSCAR has not been fully established either and was estimated using

the geometric efficiency. There is uncertainty in the total efficiency calculated in this thesis and it can also have

an affect on the discrepancies seen in the unfolded spectrum.
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Chapter 1

Introduction

Having aspirations of becoming a scientist, what

I really wanted to know was how to analyse

experimental data. Thus, I eagerly looked

forward to the lectures on statistics. Sadly, they

were a great disappointment.

D. S. Sivia

Data Analysis: A Bayesian Tutorial

The probability formulations of Bayes where published posthumously in 1763 in the essay called ’An Essay

Towards Solving a Problem in the Doctrines of Chances’ [1]. The question that Bayes’ tried to answer in the

essay had been up for debate for a long time already then: how should one reason where it is not possible to

argue with certainty [2]? While the answer came in Bayes’ essay the ideas of Bayes, at the time, where not

considered to be groundbreaking. There was nothing wrong with the ideas published in the essay, but rather

the concept itself, seen in light of science. While Thomas Bayes was alive he was a fellow of the Royal Society,

and was a known theologian, philosopher and mathematician. Still the ideas published in the essay where

disregarded and forgot, until 1812 when Laplace wrote down the idea mathematically which is known today as

Bayes’ theorem. Laplace rediscovered the ideas Bayes’ and the theorem by himself, and also used it to solve

problems in various fields as celestial mechanics and medical statistics [2].

To introduce probabilistic thinking, one should start with two concepts: deductive logic and inductive logic. A

typical question that is often encountered is: given y, find x. This is a typical example where deductive logic can

be applied. For this problem the well-defined axioms of algebra can be used to find the correct answer. This

kind of logic is very helpful in many mathematical problems. Many scientists today, however, have the reversed

problem: given the outcome what are the causes of the outcome? For example, when throwing a dice and one

gets the number 6 three out of four times, is the dice fair? In this type of problem one has to use inductive

logic to find the plausible cause of the outcome. By pondering over this problem one might realize that this is
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Chapter 1. Introduction

more challenging than using the axioms of algebra to find x. In a case where the outcome is known but the

cause unknown, it might seem reasonable to make an inference based on the experimental data and any prior

knowledge accessible, while still being open to revising the starting position if new information comes to light [2].

The above sentence is Bayes’ theorem put into words,

prob(X | Y, I) = prob(Y | X, I)× prob(X, I)
prob(Y | I) .

The term prob(X, I) is called the prior, it represents the state of knowledge or ignorance about the truth of X.

This is modified by the term prob(Y | X, I) which is called the likelihood and presents the data, here called

Y , that one wishes to infer knowledge about. The denominator is the marginal probability of Y , and plays a

crucial role in some data analysis problems (model selection problems). The term on the left side is called the

posterior and represents the state of knowledge achieved about X being true in the light of Y . I denotes the

relevant background information at hand. Going back to inductive logical thinking: If there is a hypothesis that

needs testing, let say, is the dice fair, it might be a good place to start with how much one believes that the

dice is fair. From a probabilistic view point, if one specifies how much one believes the dice to be fair, at the

same time one is specifying how much one believes that the dice is not fair. The second assertion one can make,

is slightly more complicated [2]: If one specifies how much one believes that a hypothesis Y is true, and how

much one believes that X is true given Y , then automatically one has stated the belief of them both being true.

Making the following constraint: given the data, one should always arrive at the same conclusion even if different

analysing paths are chosen. This can only be true if the rules of probability theory are used when making the

guess of how much one believes something to be true:

prob(X | I) + prob(X | I) = 1

and

prob(X,Y | I) = prob(X | Y, I)× prob(Y | I),

where the notation X means when X is false, and the vertical bar | stands for ’given’. The first equation is called

the sum rule and the second equation is called the product rule. From these two equations Bayes’ theorem can

be derived.
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Chapter 1. Introduction

Figure 1: Illustration of the resulting posterior distribution of the mass of Saturn

Going back to the story of Laplace: After his death the Bayesian ideas where yet again disregarded because

of the problematic concept of probability represented as a degree of belief, i.e how much one thinks something

is true, based on the evidence at hand [2]. Instead the idea of probability being tied up to the frequency of

an event occurring, became the winning approach. Since frequency can be measured, it was seen as the most

objective way of dealing with random phenomena. However, in many scientific problems, the frequency of an

event is not always available, and the approach thus has limits. A great example of this comes from the work

of Laplace himself. He used his probability theory (Bayes’ theorem) to estimate the mass of Saturn. This was

before much data on the orbit of Saturn was collected, thus the frequency approach was not possible at the time.

In short, he started by calculating the posterior probability distribution function (PDF) of the mass M , given

the data and all the relevant background information I (i.e knowledge of classical mechanics). This gave him a

PDF as illustrated in figure 1. The PDF shows where the mass of Saturn is most likely to be. The best estimate

of the mass is represented by the maximum of the PDF, and the width represents the uncertainty in Laplace’s

estimate. Over the past 150 years, data has been collected on the orbit of Saturn and Laplace’s estimate has

change only by 0.63% [2]. In the 17th century, before enough observations where made, looking at the mass of

Saturn in the light of the frequency definition one is prohibited from using probability theory, since the mass of

Saturn is a constant and not a random variable. This means it has no frequency distribution and probability

theory can not be applied [2]. If the PDF in the figure should be interpreted with a frequentist approach, one

could have sampled data from a large ensemble of universes, where everything remained constant apart from the

mass of Saturn. This immediately sounds like a far fetched idea. Problems similar to estimating the mass of

Saturn appears in many fields of physics and the Bayesian approach has therefore been growing in terms of use

the past years.

In this thesis, new methods using Bayes’ theorem for unfolding of data from nuclear experiments performed at

the Oslo Cyclotron Laboratory (OCL), will be investigated. However, this method is general and can be applied

to other types of data. As previously mentioned, Bayes’ theorem includes the relevant background information I,

in this study the relevant background information is the well-known behavior of experimental setup and data

processing at OCL. The setup at the laboratory consists of a ∆E − E Silicon Ring particle-detector system

– 6 –



Chapter 1. Introduction

(SiRi) [3] and 30 LaBr3:Ce scintillator detectors referred to as the Oslo Scintillator ARray (OSCAR). In this

thesis γ-ray spectra obtained from experiments with OSCAR will be used to investigate the Bayesian unfolding

method. When the γ-ray hits the detector it undergoes different types of interactions with the matter, such as

the photo-electric effect, Compton scattering and pair production. The aim of unfolding, is to reconstruct the

spectrum to a set of full-energy peaks, i.e when the γ-ray energy is fully absorbed by the detector. To obtain

such a spectrum, accurate knowledge of the detector response functions is crucial. This knowledge presents the

background information I that are known beforehand.

The question of unfolding is the following: Given the data and the response function, what was the actual

truth-spectrum? Then if Bayes’ theorem is stated, without X and Y , and instead with the hypothesis of what is

believed to be the truth and the data, it might become clear that the question above fits the theorem:

prob(truth | data, I) ∝ prob(data | truth, I)× prob(truth | I). (1.1)

In this version of the theorem the term in the denominator is omitted and thus there is a proportionality instead

of an equal sign. In many data analysis problems this is sufficient since often the posterior is not dependent on

the term [2]. By making a hypothesis about what is the truth and test it against the evidence (the data), Bayes’

theorem proves useful in the estimation of the unfolded spectrum. Since the true quantity of interest is not

known in the case of unfolding, the data is the only measurement one has. The power of Bayes’ theorem lies in

the fact that it relates the quantity of interest, i.e the truth-spectrum, to the observed data and evidence at hand.

In other words, it is easier to examine the data, given the hypothesis of the truth, than it is to examine our

hypothesis given the data. In addition, by applying Bayesian statistics to the unfolding, one obtains uncertainty

estimates of the method, which can be very useful for the further analysis.

Since Bayesian statistics is rather new in the field of nuclear physics, chapter2 of this thesis is dedicated to an

introduction of the Bayesian approach. Chapter 3 will elaborate further on the background information, that is

the experimental setup and data processing at OCL. Part II of the thesis includes chapter 4 of the method for

unfolding. In chapter 5 the results for unfolding will be presented and in chapter 6 the model checking and results

of the unfolding will be discussed. The thesis ends with a summary and future outlook in chapter 7.

– 7 –



Part I

Part 1: Theory and Background

Knowledge
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Chapter 2

The Bayesian Approach

A decision was wise, even though it led to

disastrous consequences, if the evidence at hand

indicated it was the best one to make; and a

decision was foolish, even though it led to the

happiest possible consequences, if it was

unreasonable to expect those consequences

Herodotus around 500 BC [2]

In recent years Bayesian statistics or Bayesian inference has become more popular among scientist in many

different fields. Inference meaning when a conclusion can be achieved on the basis of evidence and reasoning.

The upside of using Bayes’ theorem instead of the classical frequentist approach is the inherent flexibility. A

well defined Bayesian model can incorporate multiple levels of randomness, and in addition has the ability to

combine information from different sources, while offering uncertainty summaries of the estimates. In some

cases, it gives more nuanced results which can better describe real-world problems. Another motivation for

focusing on Bayesian methods is its philosophical aspects. If not being familiar with classical statistics and its

frame work, a receiver of statistical information, for example the likelihood of it raining tomorrow stated by the

weather forecaster on the news will often be interpret in a Bayesian ’frame of mind’ (without being aware of

this, of course). Meaning, they will interpret the numbers as probability statements about the likely values of

unknown quantities conditional on the evidence in the data [4]. One can argue that Bayesian statistics is more

naturally intuitive than the frequentist approach, but at the same time one has to be careful when making that

statement. Since Bayes’ theorem incorporates prior knowledge and the likelihood of the data, a good model needs

to be specified to infer meaningful estimates. After specifying a good model the resulting posteriors should be

evaluated. As with classical statistics, there is a need for verifying the model after sampling the posteriors. The

drawback with Bayesian inference is that specifying a model might not be clear cut, there are many paths that

can be taken and all models are dependent of the user understanding the data, and having enough knowledge to

9



Chapter 2. The Bayesian Approach 1. Probability Models

initialize and defined it. The same argument goes for inferring estimates from posteriors and model checking. It

is a job that requires careful consideration and can lead to conclusions that are more open to interpretation.

This chapter aims to shed light on the possibilities within the Bayesian frame work. Construction of a well

defined probability model will be discussed, including choosing priors and likelihood functions in section 1. The

posterior distribution and how it can be interpreted together with model checking is presented in section 2 and 3.

In the end the sampling method used in this thesis is introduced.

1 Probability Models

1.1 Bayes’ Theorem

As stated before, Bayes’ theorem follows directly by combining the definition of conditional probability with the

product and sum rules [2]. The sum rule being

prob(X | I) + prob(X | I) = 1 (2.1)

which states that the probability of X being true plus the probability of X not being true equals to one. The

product rule

prob(X,Y | I) = prob(X | Y, I)× prob(Y | I), (2.2)

states that the joint event of X and Y , given I equals the probability of X being true given that Y and I

is true, times the probability of Y given I. If the above equation 2.2 is transposed, that is X and Y are

interchanged

prob(Y,X | I) = prob(Y | X, I)× prob(X | I), (2.3)

the statement says that the joint event of X and Y given I equals the probability of Y being true given that X

and I is true, times the probability of X given I. The right side of equation 2.2 thus equals the right side of

equation 2.3, so

prob(X | Y, I)× prob(Y | I) = prob(Y | X, I)× prob(X | I). (2.4)

If both sides of the equal sign is divided by prob(Y | I), this gives Bayes’ theorem for X being true given that Y

and I is true

prob(X | Y, I) = prob(Y | X, I)× prob(X | I)
prob(Y | I) , (2.5)

– 10 –
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where I stands for all the background information at hand, because there is no such thing as an absolute

probability [2]. Example of background information is the experimental setup of the experiment where the

observed values Y where obtained and the data processing done before the statistical analysis takes place. In

the case of experiments in nuclear physics the signals detected comes from a nuclear reaction. This is taken

into account when it comes to unfolding. The data that to be unfolded are γ-ray transitions from a nuclear

decay. So the probability assigned in detecting a γ-ray for a given energy will depend on the conditions of the

experiment. All this information is relevant and is included into the background information I of Bayes’ theorem.

It may affect how the hypothesis (prior belief) is initiated, but it is not directly included into the prior. The

conditioning on I is often omitted, but it must always be remembered that it exists [2]. Therefore, chapter 3 is

dedicated to the relevant background information of the data used in unfolding, and Bayes’ theorem will thus be

presented without it for the rest of the thesis.

1.2 Likelihood

The likelihood function is a function of the parameters that one wishes to infer given a set of observed data, and

the function is defined on the parameter scale. It then gives the unnormalized probability of a particular parameter

value for a fixed data set, so it is a measurement of the fit of a statistical model to sampled data [5].

In the Bayesian frame work, the likelihood is the conditional probability of the observations Y being true given

the hypothesis X. So the data is the evidence at hand, and the hypothesis is the prior [2]. As more samples are

drawn the evidence should influence the posterior (outcome) more than the prior beliefs. In theory, if the prior is

very objective, the likelihood (evidence) should update the prior belief so that the posterior distributions includes

the wanted parameter that one aims to infer [6]. If this is not the case, the model might be misspecified. In this

thesis the likelihood function used is the Poisson likelihood. The Poisson distribution is often used to model

numbers of events occurring in a fixed time period, i.e. count data, which are assumed to be independent of each

other [7]. When using a Poisson likelihood for sampling it is assumed that the observed values Y = [y1, ..., yn]

are independent and an identically distributed sequence of Poisson random variables [7]. The probability mass

function of the sequence is then

probY (yj) =


Xyj

yj ! exp(−X) yj ∈ RY

0 yj 6∈ RY
, (2.6)

where RY is the set of realizations yj can take, and X is the parameter of interest [7]. The likelihood function of

the Poisson distribution is

L(X; y1, ..., yn) =
N∏
j=1

Xyj

yj !
exp(−X). (2.7)

The resulting posterior distribution should then be centered at a point between the maximum likelihood estimate

(MLE) of X and the maximum of the prior distribution, thus a weighted average of likelihood and prior

– 11 –



Chapter 2. The Bayesian Approach 2. The Posterior Distribution

estimates [6]. If the sample size is small the posterior should be closer to the prior, and if the sample size is large

it will be closer to the likelihood. The MLE for the estimator of the unfolding problem is derived in chapter

4.

1.3 Priors

When using Bayes’ theorem to infer knowledge of an observation a prior is needed, that is prob(X | I). A prior

represents all the knowledge that the user has about the observations before inference. The prior should be a

known probability distribution, like the Normal distribution, Uniform distribution and so on. These are used,

with some initial values as the prior belief of how the estimated parameters are distributed. There exist two main

groups of priors, objective priors and subjective priors [8]. If the user does not wish the prior to influence

the likelihood of the observations an objective prior is more suitable for the model, and in the opposite case

a subjective prior is better suited. An example where an subjective prior can be used is in situations where

there might exist evidence from previous experiments or theory, that can be incorporated into the prior and

then tested against the observed data. Meaning that the probability mass assigned to prior is distributed so it

prioritises some areas more than others [8]. Objective priors can be used when the data is the only evidence

and the scientist wishes the likelihood to influence the outcome more than the prior belief. That said, a fully

objective prior is hard to achieve. The uniform prior is an example of a distribution often used when talking

about an objective priors,

prob(X | lower, upper) =


1

upper−lower for lower ≤ X ≤ upper

0 for X < lower or X > upper

, (2.8)

where lower is the lower bound and upper is the upper bound of the probability distribution. The objectiveness

of the uniform prior comes from that the bounds can be adjusted to include all observations, and each observation

is sampled with equal probability [8]. It sounds as a good objective prior, but in some cases it may not be

objective to say that every region should be sampled with equal probability. There exists as many priors as

there exists probability distributions, which can be confusing for someone new to Bayesian statistics, as it seems

to be an ocean of possibilities. Luckily, good knowledge of the data and having an idea of what likelihood should

be chosen makes it easier to pick a suitable prior. In addition there are many ways to verify if the prior was a

good choice when analysing the posteriors.

2 The Posterior Distribution

The posterior distribution is the result of Bayesian inference and thus the result of the likelihood multiplied with

the prior 2.5. There are many possible ways to infer knowledge from the posterior distribution, and this section

aims to give an overlook over the analysis of the posteriors done in this thesis.

– 12 –



Chapter 2. The Bayesian Approach 2. The Posterior Distribution

2.1 Credible Interval

Instead of retrieving a point estimate when applying Bayes’ theorem, one ends up with a posterior distribution

prob(X | Y, I). Credible intervals are tools often used in Bayesian statistics to estimate how certain (or uncertain)

the model is. A standard measure of confidence in some quantity X is typically the width of the posterior

distribution, that can be measured using a 100(1 − α)% credible interval [9], which then include 1 − α of

the posterior density mass. The α stands for the level of credibility. In addition, credible intervals gives the

uncertainty related to the wanted estimated quantity.

Cα(Y ) = (lower, upper) : P (lower ≤ X ≤ upper | Y ) = 1− α (2.9)

where Cα(Y ) is a continuous interval and lower and upper are the bounds of the interval.

When first being introduced to credible intervals it might appear similar to the frequentist confidence intervals,

but they are actually quite different. The credible intervals are the intervals (simply a certain ’width’) of the

obtained posterior distributions, while the confidence interval is an estimation itself. Meaning that with the

frequentist approach the given experiment is designed so that out of a 100 experiments there is a confidence that

100(1− α)% of the experiments can be expected to include the true value of the parameter [10]. Whilst credible

intervals are measures of confidence in the statistical model itself. There exist three main credible intervals that

are often used in Bayesian Statistics:

• The Highest Posterior Density interval (HPD): Finding the value with highest probability density

in the posterior, and the area that covers 100(1 − α)% on both sides of this point is the HPD credible

interval. By finding the highest probability point p∗ in the posterior such that

1− α =
∫
X:prob(X|Y )>p∗

p(X | Y )dX, (2.10)

then the HPD is defined as

Cα(Y ) = X : prob(X | Y ) ≥ p∗ (2.11)

[9].

• The Equal Tailed interval (ETI): Is found by estimating the median of the distribution so that there

is (1− α)/2 mass in each tail [9]. This interval gives the percentiles with the median at 50th percentile,

therefore densities are irrelevant. If the 50th percentile is not positioned around the highest probable

density, the ETI might not include the values of highest probability. The HPD is typically narrower than

the ETI, even though it contains the same amount of mass, since every point inside of it has higher density

than every point outside of it [9].
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• Assuming a Mean of the Distribution: Estimating the mean of the distribution and finding the

standard deviation within an area 100(1− α)% of both sides of the mean, typically:

µ± 2σ. (2.12)

2.2 Maximum A Priori

After estimating a credible interval it is possible to find a point estimate of the distribution by choosing the

mean of the interval or the median. However, when computing a posterior it involves sampling and this can

be computationally expensive, at least in high dimensions. The solution can be to compute the Maximum A

Priori (MAP) estimate, which is the mode of the posterior distribution. It reduces the optimization problem, so

efficient algorithms can be used [9]. In addition the MAP estimation has many similarities with the well known

Maximum Likelihood Estimation (MLE). In fact, by using a uniform prior for the MAP so that the prior assigns

equal weights on all possible values of X the MAP is equal to MLE. When finding the MAP estimate, Bayes’

theorem is used

prob(X | Y, I) = prob(Y | X, I)× prob(X | I)
prob(Y | I)

∝ prob(Y | X, I)× prob(X | I).

First the maximum of the parameter X must be found by computing

XMAP = arg maxX prob(Y | X)prob(X)

= arg maxX
∏
i

prob(yi | X)prob(X)

= arg maxX
∑
i

log(prob(yi | X)) + log(prob(X))

.

If the prior is uniform prob(X) = constant, it vanishes under the derivation when maximizing for X and in that

particular case XMAP = XMLE .

The drawback of using MAP estimation is the same as for MLE; it does not provide a measure of uncertainty [9].

The MAP estimates the mode of the posterior distribution, which is the number that appears most frequently

in the posterior. The mode is a point of measure zero, while the mean and median take the volume of the

distribution into account. Also, choosing the mode as a summary of a posterior distribution can be a poor choice,

since it can be untypical of the posterior distribution [9]. Lets say that the posterior is a continuous distribution

including various numbers, then the most likely number does not have to be the most frequent.
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3 Model Checking

Bayesian prior-to-posterior inference is dependent on a well defined probability model and can give misleading

inference if the model is poorly initialized. Often, the suspect of a bad initialized model is the prior distribution,

but the likelihood can make the model equally sensitive, by not making a good fit to the data [4]. Therefore,

model checking has been developed, with the two main analysing tools being posterior predictive checks

and sensitivity analyses. Both can be incorporated into the usual prior-posterior analysis.

3.1 Posterior Predictive Checks

The question one should ask after the posteriors are retrieved: is the model consistent with the data? If the

model fits the observed data, then sampling S replicated data under the specified model should be consistent

with the observed data. After the new posteriors (the posterior predictive distributions) are retrieved for the

replicated data, these can be compared with the observed data. If there are systematic differences between the

replications and the data, this indicates a potential failure of the model [4]. So the posterior predictive check

is the comparison of the real tested quantities T (Y,Xs) and the predicted test quantities T (Y rep, Xs). From

there, different metrics can be applied to reveal discrepancies. One such metrics is the p-values, which is the

proportion of the S simulations where the test quantities are equal or exceed the real values:

T (Y rep, Xs) ≥ T (Y,Xs) s = 1, ..., S. (2.13)

The p-values are known to many from classical statistics, but in the Bayesian case the usage is different. Extreme

p-values does not lead to rejection of the model, instead it sheds light on the limits of the model. There may

be need to make further improvements to the model, or the model simply cannot be expected to capture the

wanted aspects of the observed data. The solution can be to expand the model in an appropriate way, or check if

the data contains the information that one set out to infer. Another way to find systematical differences is to

look at the relative difference between the real tested quantities and the predicted test quantities. Also, the

prior distribution and posterior distributions can be compared, if the prior distribution contradict the posterior

distribution another prior distribution can be chosen, that fits the problem better. This can be compared to

the frequentist approach, where the model is iteratively altered to provide a better fit to the data [4]. However,

in contrast to the frequentist approach, Bayesian model checking does not requite special methods to handle

nuisance parameters, by drawing samples from the posteriors one automatically averages over all parameters in

the model [4].

3.2 Sensitivity Analysis

Another question to ask when the model has returned a posterior distributions is: If using another reasonable

approach, how much will the posterior change? How sensitive is the result to changes? As an example, the model

will often overestimate the uncertainty since all the background knowledge of the data is not incorporated into
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the priors. The basic method of sensitivity analysis is to fit many probability models to the same observations [4].

By replacing objective priors with subjective priors that contain substantial prior knowledge, can reveal if the

objective prior is influencing the posteriors in an unwanted way. If the model is correctly initialized, the median

of the posteriors should not change, since they are in general less sensitive to changes in the model compared to

the mean or highest density estimates.

4 Sampling Methods

When sampling from the likelihood and prior the main algorithm used is Monte Carlo sampling. The numerical

Monte Carlo methods are widely used in a variety of areas (physics, chemistry, biology,engineering etc). These

methods imply statistical simulation which allows omitting writing all differential equations that describe a

system and its dynamics, since the process is simulated directly. If the given system can be described by certain

probability distribution functions, the random sampling based on these functions allows the passage through the

number of steps and achieve a solution. However, the separate results of these samplings should be accumulated

in a way that the final result is obtained in the most efficient way. That is why the Monte Carlo technique should

be based on a combination of some sampling technique and a selection algorithm. Here there is a variety of

algorithms that can be applied like the Metropolis algorithm or Gibbs sampling, where the aim is to govern the

movement of the samples towards the most probable result. Unless this algorithm is implemented the step sizes

and directions for movement of components of the system are independent and random, making the movement

towards the equilibrium state much less efficient. In this thesis, the No-U-Turn sampler was used, which is a

Hamiltonian Monte Carlo (HMC) that is a Markov chain Monte Carlo (MCMC) algorithm. The algorithm was

developed by M. D. Hoffman and A. Gelman and published in 2014 [11], it is implemented into the PyMC3

library [12]. The HMC avoids the random walk behavior and sensitivity to correlated parameters that often

plague many MCMC methods [11]. The drawback of many sampling algorithms when applying them to complex

Bayesian models is that they take long time to converge. When the parameters are continuous rather than

discrete, HMC suppresses the random walk behavior by transforming the sampling from a target distribution

into a problem of simulating Hamiltonian dynamics [13]. This minimizes the cost of the HMC per sample, if

the target distribution has dimension D the cost is around O(D5/4), compared to the random-walk Metropolis

O(D2) cost [14]. Unfortunately, the HMC is sensitive to two parameters, the step size and the number of steps.

This is what the extension to HMC, called the No-U-Turn sampler (NUTs) want to eliminate. The HMC can

drop dramatically in efficiency if the step size and number of steps is poorly chosen, requiring costly tuning

runs. NUTs was thus developed as a MCMC algorithm that closely resembles the HMC, where the step size is

automatically tuned and the number of steps does not need to be initialized [11].
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Background Knowledge

The experimental nuclear physics group at the OCL [15] is well known for their investigation of the γ-ray strength

function and nuclear level density in the excitation energy region from ground state and up to the neutron

separation energy. To be able to study this region the Oslo-method has been developed [16–19]. The γ-ray

strength function measures the average nuclear electromagnetic response, which is directly related to the reduced

transition probabilities and γ-transmission coefficients. The nuclear level density is the number of nuclear energy

levels per energy unit (MeV−1) as a function of excitation energy. For their method and work the OCL group

has gained international attention, thus paving the way for important collaborations with other experimental

nuclear physics groups around the world. The laboratory is in addition used to study medical isotopes (e.g.
18F, 211At, 205Bi). In this chapter the instrumental setup of the OCL will be elaborated, as well as the processing

of data obtained in a nuclear experiment, this is the background knowledge I mentioned in chapter 2, which

is taken into consideration when unfolding. This knowledge is not directly implemented into the prior, but it

heavily influences the users understanding of the raw data that is to be unfolded. In this thesis the 28Si(p,p′γ)

reaction was used to test the fully Bayesian unfolding method.

1 Experimental setup

The data used for study of the Bayesian unfolding method has been obtained from an experiment at the OCL

(4.6). The cyclotron at the OCL is a MC-35 Scanditronix. The cyclotron accelerates light particles (e.g. p, d,
3He, 4He), with a beam energy between 2 MeV and 47 MeV. The beam is focused with quadruple analyzing

magnet, then the dipole magnets bends the beam 90◦, before it enters the experimental hall, where it hits the

target placed in the center of a target chamber. In the experimental hall the detectors, SiRi and OSCAR are

placed. SiRi is a ∆E − E silicon particle telescope and is either placed in forward or backward position relative

to the beam direction. OSCAR is a LaBr3:Ce scintillator array designed to detect γ-rays.
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Figure 3.1: Sketch of the setup at the Oslo Cyclotron Laboratory (not to scale)

The particle telescope SiRi

The telescope system consists of two types of silicon detectors, the thin ∆E detector (130 µm) and the thick E

detector (1550 µm) [3]. These detectors are designed for measuring the energy, of the charged particle and to

differentiate between various particle species [3]. SiRi is designed with 8 modules of E detectors set up behind 8

∆E detectors, which make a trapezoidal shape. A picture of the SiRi detector and an illustration of the front

∆E detector are shown in figure 3.3.

SiRi is placed 5 cm from the center of the target. The pads of the ∆E detectors correspond to 2◦ of the scattering

angle, that means they cover the angle in forward position θ = 47± 7◦ and in backwards position θ = 133± 7◦.

Figure 3.2: a) a picture of the SiRi particle telescope. b) An illustration of the ∆E detector with the angles in

forward position. The both figures are taken from M. Guttormsen et al. [3]
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Figure 3.3: A picture of the SiRi particle telescope set up for the 28Si(p,p′) experiment.

Since the recoil corrections are important, especially for light nuclei, the measurement of θ must be with an

uncertainty of typically ±1◦ [3]. The goal is to be able to identify the initial excitation energy Ex of the reaction

product. When charged particles travel through matter, they will interact with electrons that are on its path

through the electromagnetic force. This interaction makes the particles lose speed and therefore also lose energy,

until stopped completely, depositing all their energy into the detector. Silicon detectors go under the category

called semiconductors. When these detectors are connected to a voltage the charge is collected [20]. The signal

produced will then be proportional to the energy deposited.

The ∆E−E technique is based on the energy loss of charged particles in matter, which is given by the Bethe-Bloch

equation [20–22]:

dE

dx
= 2πNar2

emec
2ρ
Z

A

z2

β2

[
ln
(

2meγ
2v2Wmax

I2

)
− 2β + δ − 2C

Z

]
, (3.1)
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the parameters can be written as [20]:

A− atomic weight of absorber ρ− density of absorber

Z − atomic number of absorber z − charge of an incident particle

Na −Avogadro’s constant β − v

c

me − electron mass γ − Lorentz factor1/
√

1− β2

re − classical electron radius δ − density correction

I −mean excitation potential C − shell correction

Wmax −maximum energy transfer per collision

dE
dx , put in words, means the energy loss per unit length or stopping power. When the incoming particles have

relatively low energy, the stopping power and the particle energy have the following relationship

∆E ∼ z2

β2 ∼
mz2

E
, (3.2)

where m is the mass of the detected particle. The equation above shows that the energy loss depends on the

charge and the mass of given particle. When a particle interacts with the ∆E − E-detectors, this principle

is used to identify the particle in question. The particle may travel through the thin ∆E detector and lose

some of its energy, before the rest is lost in the thick E detector. Since each particle type has different charge

and mass they can be distinguished following the Bethe-Bloch formula. These can be represented in so-called

’banana’-plots, where each ∆E channel is plotted with the corresponding E channel (3.7). More information on

the typical data representation and processing will be elaborated in the section below 2.

The OSCAR Array

The Cerium doped Lanthanum bromide (LaBr3:Ce) is an inorganic scintillator detector. It stands out among

scintillators with its excellent properties, such as an energy resolution around 2.7 − 3.3% FWHM at 661.6

keV, almost perfect light yield proportionality (> 100 keV) and very good intrinsic time resolution (< 1

ns) [23]. OSCAR is fairly new and was officially applied for the first time at OCL in 2018. It consists of 30

3.5′′ × 8′′(89mm× 203mm) LaBr3:Ce scintillators. Each scintillator is connected to voltage dividers (LABRVD)

and Hamamatsu’s R10233-100 photomultiplier tubes [23]. A picture of OSCAR is shown in figure 3.4. Each

scintillator and corresponding photomultiplier tube is wrapped in an aluminium housing and is mounted in a

icosahedron-shaped frame. The frame can be adjusted to achieve the desired distance between detector and

target.

A scintillator has the ability to convert γ-rays into photons in the visible range of the spectrum [20]. These

γ-rays will excite atoms in the crystal, which again de-excite with visible light photons. These are collected

by photocathodes that transform the photons into electrons. The photomultiplier amplifies the electric signal

further. When penetrating the matter of the detector, there are various interactions the γ-ray can undergo,

where the three most important are: photoelectric effect, Compton scattering and pair creation:
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Figure 3.4: Picture of the detector OSCAR array

• Photoelectric effect: Full absorption of the γ-ray by an atomic electron. When absorbing all the energy

the atom the ejects the now energetic electron, the energy of the electron being

Ee = Eγ − B.E, (3.3)

where B.E is the binding energy of the electron [20].

• Compton scattering is the elastic collision between a γ-ray and a free electron [24]. The electrons in

the detector are not free, however if the γ-energy is high with respect to the electron binding energy, the

electrons can be considered as free [20]. The energy of the scattered γ-ray, E′γ is thus

E
′

γ = Eγ

1 + Eγ
mec2 (1− cos θ)

, (3.4)

where θ is the angle between the incident γ-ray and the electron [20]. In figure 3.5 the Compton distribution

is that of the recoil electrons. The maximum recoil energy is known as the Compton edge, and is also

illustrated in the figure.

• Pair Production occurs when the incident γ-ray has an energy at least two times larger than the mass of

the electron (1022 keV) [24]. The process involves the transformation of a γ-ray into an electron-positron

pair [20]. Another necessity for pair production to take place is the presence of a third body (nucleus),

for the momentum conservation. The positron will annihilate with a nearby electron creating two new

γ-rays of energy 511 keV in the process. These can both escape the detector, or one escapes the detector,

or none of them escape. In figure 3.5 the resulting single escape (Efull − 511 keV) and double escape
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(Efull − 1022 keV) peaks are shown. The annihilation peak in the figure is when the positron annihilates

with the electron [25].

The true photon spectrum thus differs from the measured spectrum, which makes it necessary to unfold the raw

spectrum. The unfolding is described in 4. In figure 3.6, the 28Si(p,p′γ) reaction is illustrated. A kinematics

analysis of the given experiment is carried out beforehand, and the detectors will be setup accordingly. The

beam energy, target thickness, and the type of reactions expected, decides how far OSCAR is placed from the

target and also if SiRi is put in backward or forward position. The application Qkinz is used to calculate how

the 8 SiRi angles will register particles based on the kinematic conditions used as input [26].

Figure 3.5: Illustration of a measured spectrum for an incoming mono-energetic γ-ray.

Figure 3.6: A typical reaction of an the experiment at OCL, with the particle telescope in backward position.

The LaBr3:Ce of OSCAR are placed around the target as indicated in the figure.
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2 Data Processing

When a particle interacts with SiRi, it will free electrons and these will be collected and form an electric pulse.

Similarly for OSCAR, the photons are transformed to electrons which form an electric signal. The signal travels

through a digital pulse processor called Digital Gamma Finders (DGF). Each DGF has 16 channels and each

channel is connected to a separate detector, 64 channels for each ∆E detector, 8 channels for each E detector

and 30 channels for each LaBr3:Ce detector. The DGF simultaneously measure the amplitude and analyse the

pulse shape for the channels [27]. The signals travel through optic cables and are stored on a computer. These

signals are time stamped, and the events in the E detectors and OSCAR arriving within ±1 µs with respect to a

reference ∆E detector, are grouped together. The raw data are then ready for further processing.

2.1 Data processing for SiRi

The total energy deposited in the telescope detector SiRi is proportional to the charge of the particle. Furthermore,

the signal that is produced has a pulse shape, and there is proportionality between the integral of the pulse

shape observed and the charge. The pulse height and pulse integral are again also proportional. The pulse

heights are distributed over sequential channels, and they are therefore proportional to the energy deposited in

the detector. However, they do not contain information on the absolute value of the energy. The first step in the

data processing is to connect the channel number to their respective energies. Often, some of the peaks can be

established, i.e the energy is known beforehand. By setting a dependency of that energy to the given channel

number, and assuming a linear response, the proportionality between energy and channel becomes

E = a×Nch + b, (3.5)

where E is the energy, Nch is the channel number, a is the gain (keVch ) and b is the energy shift. For this

assumption, at least two peaks must be identified. There is a total of 64 combinations of E −∆E detectors,

since there are 8 ∆E detectors for each 8 E detector. Due to the different performance and attached electronics

of each detector, all the combinations have their distinctive energy-to-channel correspondence. Figure 3.7 shows

one combination of a calibrated E −∆E spectrum, the so-called banana spectrum, for the 28Si(p,p′) reaction.

As the Bethe-Bloch formula 3.1 states, each banana, is designated to a different type of scattered particle. The

lowest banana is designated to the lightest scattered particle, the proton (Z= 1). As indicated in the figure, the

first blob to the far right of the (p,p′) channel is the ground state of 28Si, and to the left of it is the first excited

state of the 2+ of 28Si at energy 1779 keV. The peaks calibrated are compared to the theoretically predicted

values taken from Qkinz [26].

The time stamp of the E-detectors with respect to the different ∆E detectors, also has to be accounted for. The

aim is to find the true coincidences between a given E and ∆E detector. A time gate can be applied, from when

the particle hits the ∆E detector until it is stopped in the E detector. Typically, a graphical cut is made to
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select the events from both the E −∆E spectrum and the time spectrum, to get the events from both detectors

that originate from the same event.

Figure 3.7: The calibrated ∆E-E spectrum for the 28Si(p,p′) experiment, with SiRi in backward position. The

x-axis displays the energy deposited in the E-detector, and the y-axis the energy deposited in the ∆E detector.
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2.2 Data processing for OSCAR

The main difference between SiRi and OSCAR is that the channel number and energy correspondence is not

always linear for OSCAR. The qualities that make the LaBr3:Ce good detectors is, unfortunately, the origin of

the nonlinear effects [23]. The high light yield and the short decay time induces a large current in the PMTs,

which leads to saturation effects. A polynomial calibration is therefore recommended,

E = β0 + β1Nch + β2N
2
ch +O(N2

ch) (3.6)

where E is the energy, Nch is the channel number and β0, β1, β2, ... are the calibration fit coefficients. An

in-beam nuclear reaction can be used to produce monochromatic γ-rays for the calibration of OSCAR. The
28Si(p ′p γ) reaction is used for calibration. By calibrating 28Si(p,p′) for the particle detectors, using the process

mentioned above, one uses the knowledge of the excitation energies to identify the γ-peaks in OSCAR. Achieving

a good polynomial fit for these γ-transitions of 28Si(p,p′γ) can give values for the coefficients to be used in the

calibration for the actual nuclear reaction under investigation.

The time alignment for the OSCAR detectors need to be treated in reference to the particle detectors. When a

particle hits the ∆E detector and the corresponding E detector, a γ-ray from the same reaction might be incident

in one of the LaBr3:Ce detectors. Therefore, the zero time reference for one scintillator should correspond with

the zero time reference of the particle telescopes. The ∆E detectors have better time resolution compared to the

E detector. It is thus best to consider the time difference between the signals in the ∆E and the LaBr3:Ce, to

optimize the resolution in the time spectrum. All the combinations of LaBr3:Ce and ∆E (64× 30) should be

accounted for. When combining all the 30 scintillator detectors with one ∆E detector one sees high intensity

lines, these are the prompt peaks for LaBr3:Ce. The prompt peaks are then shifted to the 0 time value as can

be seen in figure 3.8 a). In the prompt peak lies the true events that coincide with a particle detected in the

particle telescopes. To get as many true events as possible a narrow time gate is often put on this peak (see

figure 3.8 b)). As sorted events are taken within ±1µs, it will also include signals that do not come from the true

coincidences. After applying a gate on the prompt peak there will still be random background present within

the time gate. The solution is to apply another gate on one of the other beam pulses, of the same width as the

prompt gate 3.8. This is then subtracted from the prompt peak.
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Figure 3.8: a) Time spectrum for all the 30 LaBr3:Ce (y-axis) and time (x-axis). b) The projection of LaBr3:Ce

number 20 on the x-axis. The red line is the time gate on the prompt peak, and the orange line is the gate on

one of the beam pulses that are subtracted from the prompt peak.

2.3 The raw matrix

After the calibration and time alignments of all detectors the data can be presented in the raw coincidence matrix.

The matrix contains the γ-ray spectra for each excitation energy. Figure 3.9 shows the background-subtracted

raw matrix for the 28Si(p,p′γ) reaction. This matrix is put together based on the data processing described

in this chapter, where the data for all the detectors with the calibration and time alignment is included. This

means that the matrix contain the events from the detection of a scattered proton and the γ-ray emitted in

the same reaction. The background subtraction should have excluded most false coincidence events. In figure

3.9 one might notice that there are counts below the diagonal. These leftover counts should fluctuate around

zero. The γ-energies emitted from a nucleus can not exceed the excitation energy of the nucleus, that would

violate the energy conservation laws. In further analysis the counts exceeding the diagonal are usually cut. The

coincidence matrix is the main input in the present study of the Bayesian unfolding method.
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Figure 3.9: The raw coincidence matrix for the 28Si(p,p′γ) reaction
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Chapter 4

The Unfolding Methods

In the section 1 the motivations behind why unfolding methods are used on γ-ray spectra will be outlined. The

response matrix used in this thesis and how it is obtained will be explained in section 2. Section 3 describes the

iterative unfolding method and in section 4 the Fully Bayesian Unfolding will be explained.

1 Why Unfold?

In the introduction to statistical analysis one often starts by learning about parameter estimation. The aim is

to estimate the parameters of a distribution by fitting to a given dataset. As an example, in many cases one

can assume that the dataset follows a normal distribution for which one can obtain the mean and the standard

deviation. Another, more complicated branch of statistical analysis, is non-parametric estimation. In this case,

the data does not rely on parameters that can be estimated, but rather on ranking or order. For example, data

ordered in a histogram is a non-parametric estimate of a probability distribution. In the field of nuclear physics,

the problem of estimating probability distributions, where no parametric form is available, is the main part of

the data analysis and is often referred to as unfolding [28].

In signal processing one learns that an input signal is registered in the receiving device which again provides an

output signal. The input signal differs from the output signal since the receiving device has a certain response to

the incoming signal. So, by knowing the input and output signal one can use convolution and find the response

of the device. In nuclear physics, the input signal originates form a γ-ray, but it is smeared by the detector

response. The output signal is folded with the response function of the detector device. Therefore, the unfolding

is a deconvolutional problem where the goal is to find the true distribution of the original signal that hit the

detector. Figure 4.1 helps visualize the problem: one can imagine a sharp peak with N counts, it is then folded

so the counts are not longer all in the peak but are redistributed according to the detector response. This is one

of the first challenges one meets when analysing γ-ray spectra. It is impossible to get back to the exact true

29



Chapter 4. The Unfolding Methods 1. Why Unfold?

signal, but with an accurate knowledge of the detector response, one can retrieve a good estimation of the true

signal, down to the precision of the detector resolution (shown in the middle panel of figure 4.1).

Figure 4.1: Upper panel: the true signal hitting the detector. Middle panel: folded with the detector resolution.

Bottom panel: actual response of the detector.

1.1 The Bias-Variance tradeoff in Unfolding

As mentioned before, if there exists a probability density function (PDF), g(y), as a function of a random

variable y and the wish is to determine the PDF by sampling from data, there are two options. If the PDF has

a parametric form that is known, g(y;φ), where φ is a set of vectors of these parameters φ = [φ1, φ2, ..., φn],

one can use the method of maximum likelihood to obtain the estimators φ̂. If no parametrization is available,

the random variable y can be represented with histograms, with D number of bins [28]. An advantage of

representing the data in histograms is that the expectation value µi of the number of entries in a bin i can be

calculated [28]. The sum of the expectation values and the probability of y to be found in bin i are: µtot =
∑
µi

and pi = µi
µtot

.

When unfolding the data one infers the estimators for the D parameters µ = [µ1, ..., µD], or, as another possibility,

the probabilities p [28]. The true values y of a nuclear experiment will be subjected to random fluctuations

due to the measuring process, which introduces a non-trivial aspect of this problem: there exists a true but

unknown y for each measured value x [28]. If the detector was perfect, the measured value would be the true

value but this is not the case. The measured value and the true value are therefore, as mentioned in the last
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section, related through folding (convolution):

gmeas(x) =
∫
R(x | y)gtrue(y), (4.1)

where R(x | y) is the response function for the detector used in the given experiment, and can be interpreted as

a conditional probability

Rij = P (observed in bin i | true value in bin j). (4.2)

By summing over i, that is all observed values in the bins, the efficiency ε of the detector can be calculated for

each j which is the bins of the expected values of y

N∑
i=1

Ri,j = εj . (4.3)

The response function and how it is obtained will be elaborated further in section 2. Breaking the integral over

y in equation 4.1 into a sum over bins [29], the expected number of events to be observed in bin i is

fi =
D∑
j=1

Rijuj , i = 1, . . . , N (4.4)

where

gmeas(x)→ fi

gtrue(y)→ uj

Where f = [f1, . . . , fN ] is the expectation values of the events in the bins of the observed variable x and u

= [µ1, . . . , µD] is the expectation values of the true value y. One can be tempted to think that by unfolding

one obtains the original signal hitting the detector, but this shows that by unfolding one merely retrieves

the expectation value of the true value. The counts in each histogram, the data, are given by the vector

n= [n1, . . . , nN ]. These will differ from f, since they are the actual number of entries observed and f are

expectation values. Suppose that there is background events for each bin i, the expectation value βi for the

number of entries that originate from these, also need to be accounted for. To relate the data with the expectation

value of the measured spectrum f, and the true spectrum u, together with the response and the background

events β, the expected value of the data is given as

E[n] = f = Ru + β. (4.5)

The inversion gives

u = R−1(f − β). (4.6)

– 31 –



Chapter 4. The Unfolding Methods 1. Why Unfold?

In nuclear physics experiments, the data is independent and Poisson distributed [28] and the likelihood function

is given as

L = P (ni; fi) =
N∏
i=1

fnii
ni!

e−fi . (4.7)

To determine the maximum likelihood for fi the natural logarithm of the likelihood function:

lnL = [
N∑
i=1

ln(fnii ) + ln
(
e−fi

)
− ln(ni!)] (4.8)

=
N∑
i=1

[−fi − ln(ni!) + ni ln(fi)]. (4.9)

(4.10)

Taking the derivative of this gives

d lnL
dfi

= 0 (4.11)

⇒ −1 + ni
fi

= 0 (4.12)

⇒ ni = fi (4.13)

⇒ f = n. (4.14)

This shows that by taking the maximum likelihood estimation of fi gives the expectation value of the data ni
and the inversion problem from 4.6 thus becomes

û = R−1(n− β), (4.15)

where û is the estimator of u. This is a non-parametric problem subjected to random fluctuations, as illustrated

in figure 4.2. By performing a matrix inversion on the raw data, the resulting spectrum shows large fluctuations

as is illustrated in figure 4.2 c).

The reason for these large fluctuations lies in the fact that the expectation values of the data f is not known

beforehand, only the data itself n. By applying R−1 to the expectation value f it would indeed give the true

value u. Since it is applied to the data, which does have statistical fluctuations, it will result in a large variance,

giving oscillations in the estimators û. However, it is worth noting that by performing a matrix inversion there

is no bias present:

E[û] = R−1(E[n]− β) = u. (4.16)
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Taking a look at the covariance between independent bins gives

Uij = cov [ûi, ûj ]

=E[(ûi − E[ûi])(ûj − E[ûj ])]

=
N∑

k,l=1
(R−1)ik(R−1)jlE[(nk − fk)(nl − fl)]

=
N∑

k,l=1
(R−1)ik(R−1)jl cov[nk, nl]

=
N∑
k=1

(R−1)ik(R−1)jlfk,

(4.17)

since the covariance of the data n is independent and Poisson distributed, and remembering that both k and l

both sum up to N :

cov[nk, nl] = E[(nk − E[nk])(nl − E[nl])]

= E[nknl]− E[nk]E[nl]− E[nk]E[nl] + E[nk]E[nl]

= E[nknl]− E[nk]E[nl]

⇒ E[n2
k]− E2[nk]

= E[n2
k]− f2

k = Var(nk) = fk

.

(4.18)
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Figure 4.2: a) Example of raw data, b) Unfolded spectrum, using the iterative unfolding method, c) the

spectrum obtained by matrix inversion.
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In matrix form, the covariance can be denoted as cov [ûi, ûj ] = Uij . Using the Rao-Cramér-Frechet (RCF)

inequality, which gives a lower bound of an estimator’s variance [29, p. 76], for the case of multiple parameters,

the inverse of the covariance matrix becomes

(
U−1)

kl
= −E

[
∂2 logL
∂uk∂ul

]
=

N∑
i=1

E [ni]RikRil
f2
i

=
N∑
i=1

RikRil
fi

.

(4.19)

If the minimal estimation of the variance is multiplied on both sides by U and twice by R−1, then summed

over the indices, it will give the same answer as the covariance in equation 4.17. As the RCF gives the minimal

variance of the parameters, by performing a matrix inversion one actually obtains the minimum variance for all

unbiased estimators, even though it has shown itself to be large (see figure 4.2). It also results in an “un-physical”

solution that is more or less impossible to interpret.

By applying other unfolding methods the reduction of variance is possible, and an interpretation of the data can

be achieved. All methods will introduce bias to this problem. Therefore, one has to be prepared to accept a

certain bias (systematic error) in exchange for reducing the variance (statistical error), and in return attain data

that can be interpreted.

2 The Response Matrix

The response function and efficiency of OSCAR is obtained by simulating the detector response with GEANT4

[30–33], a simulation toolkit, and compare these with experimentally measured mono-energetic in-beam γ-ray

spectra. GEANT4 is a toolkit for simulating the passage of particles through matter. The Full-Width Half

Maximum (FWHM) of the detector must be extracted from data. The FWHM for OSCAR was analyzed by

fitting a Gaussian on an exponential background of the in-beam γ-ray lines from a 28Si(p,p′) reaction. To obtain

FWHM for all γ-energies, the function for FWHM was estimated to be (FWHM(E))2 = c0 + c1 ∗ E + c2 ∗ E2,

with fitted parameters c0 = 1.13× 10−3, c1 ≈ 0 and c2 = 2.05(42)× 10−4 [34]. In GEANT4, the whole geometry

of the detector setup is implemented using a class called Constructed Solid Geometry (CGS) solids. Then

G4EmStandardPhysics is used, which implements standard electromagnetic interactions and neutron interactions

through data-driven high-precision cross-sections [34]. The target is placed in the center of the sphere of the

detector array and the energy deposited in each detector is stored in a ROOT tree [35]. The simulations are then

compared to the experimental results. It was found a deviation of about 10− 15% between the simulated spectra

and the experimental spectra in the number of counts below the full energy peak. The simulated spectra tended

to underestimate the amount of counts. Therefore, the Compton contribution was corrected for with a factor of

1.15 for the present response function. It should be noted here that the work on the response of OSCAR is still
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under completion. The response function used in this thesis was made whilst there still was analog electronics,

which since has been replaced by digital electronics [34].

The aim of comparing simulations to experimental in-beam γ-rays is to ensure a correct proportion of counts

belonging to the different interactions that the γ-ray undergoes within the active volume of the detector. These

counts can then be normalized so that

pFE + pSE + pDE + pCP + p511 = 1, (4.20)

p denotes probability, and where pFE is the probability for the full energy peak, pSE for the single escape, pDE
for the double escape, p511 for the annihilation peak and pCD for the Compton distribution. In an ideal case, the

response functions would be found for all incident γ-energies Eγ , but unfortunately they can only be measured

for a few mono-energetic γ-lines. The normalized values from simulations, are stored in files, where the pFE , pSE ,

pDE , p511, together with the γ-energy, FWHM and total efficiency are stored in one file, while the pCD for each

γ-energy, are in separate files. This simplifies the interpolation of the energies, since interpolating the Compton

spectra differs from the interpolation of the peaks. The first file containing the energy peaks, can be interpolated

by adding a Gaussian distribution at the interpolated peaks with the same intensity and energy resolution [19].

The Compton distribution has to be interpolated more carefully, since its shape will differ for each incident

energy. Therefore, the interpolation of the Compton distributions is separated into three parts:

• Energies below the back scattering energy: linear interpolation.

• Energies between the back scattering angle and the Compton edge: interpolated using the fan method

introduced by Guttormsen et al [19].

• Energies above the Compton edge: linear interpolation.

The backscattering energy is defined as

Emeasb.sc = Etrueγ /

(
1 +

2Etrueγ

mec2

)
, (4.21)

where Etrueγ is the true energy of the γ-ray.

Figure 4.3 illustrates how the fan interpolation of the Compton spectra is done. As seen in the figure the angle

of which the γ-ray scatters goes from 0 degree to 180 degrees. A reasonable approach is then to interpolate

between channels that have the same angle for the scattered γ-ray [19]. The Compton scattering is when a γ

scatters of the nucleus and transfers energy to the electron by the amount

Ee = Eγ −
Eγ

1 + Eγ
mec2 (1− cos θ)

(4.22)
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Figure 4.3: Illustration of the fan method. ∆θ increases with the energy

where θ is the angle between the incident γ-ray and scattered γ-ray. This energy is heavily dependent on the

angle and the incident γ-ray energy Eγ , so these have to be taken into account for the normalization of the

interpolated Compton spectra: [19]

c(E) =
(

dEe
dθ

)−1

Eγ

[
c1 (Ee1)

(
dEe
dθ

)
Eγ1

+ Eγ − Eγ1

Eγ2 − Eγ1

×

(
c2 (Ee2)

(
dEe
dθ

)
Eγ2

− c1 (Ee1)
(

dEe
dθ

)
Eγ1

)]
.

(4.23)

Here Eγ , Eγ1 and Eγ2 are the incident energies Eγ for the interpolated spectra a end the reference spectra, while

Ee, Ee1 and Ee2 are energies of the electrons deposited in the detector due to the Compton scattering.

After the interpolation of each γ-energy the distribution are placed in a matrix with the rows representing the

true γ-energies Etrueγ , and the columns are filled with the probability distributions for each measure γ-energy

Emeasγ . So for each row i the probability distribution over the columns is

Ri = pCD + pFE + pSE + pDE + p511 (4.24)

Each bin, i.e measured energy, in the row, contains the summed probabilities of an event belonging to one of

the five components for that bin, and each row should sum up to 1. Figure 4.4 shows an example of a response

matrix.
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Figure 4.4: The Response Matrix of OSCAR with γ-energies from 0 to 10 MeV

The response matrix is modelled as conditional probability distributions [36]

R = P (Emeasγ | Etrueγ ), (4.25)

where the intensities in the contour plot represent the detection probabilities for each Etrueγ . The probabilities

together with the FWHM, total efficiency and γ-energy will be stored in a table, figure 4.5 shows an example of

this.

Figure 4.5: Table for the response matrix, interpolated with 30 keV energy-bins
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3 The Iterative Unfolding Method

The iterative unfolding method explained here was developed by Guttormsen et al. in 1996 [19]. The method

was first written in FORTRAN, but has recently been remade in the Python library package OMpy [37]. In this

thesis only the OMpy package has been used for unfolding.

3.1 The Iterative method

The measured spectrum f is represented by

f = Ru (4.26)

Where R is the response matrix of the discrete probabilities Rij = R
(
Emeasγ,j |Etrueγ,i

)
∆Emeasγ [36]. The folded

spectrum f is the expected number of events in the bins of the actual observed variable Emeasγ [28], and the

matrix u is the expected values for the histogram of Etrueγ . As mentioned before there is background in the

experimental data B. The expected folded matrix, the response matrix and the expected true histogram is

therefore related by

E[Emeasγ ] = f = Ru+B. (4.27)

Before the iterative method is applied the background is usually subtracted, as explained in section 2 in chapter

3. The aim of the unfolding is to obtain u given the raw data r. As discussed before, the straight-forward

inversion of the problem, where R−1 is used on the expected value of the data E[Emeasγ ] = f , will result in

a spectrum with large oscillations between neighbouring bins [28]. Therefore, the iterative method is applied

instead to approximate u. The iterative method is here presented step-vise:

• At iteration l = 0, the initial spectrum, for the expected true spectrum u is set to be u0 = r

• Then the folded spectrum is calculated f1 = Ru1

• The initial spectrum is then updated to ul+1 = ul + (r − ul)

• The above steps are repeated over a number of iterations chosen beforehand, until f ≈ r. This is checked

by taking the root-mean-square error of f − r and the relative fluctuations in ul, which are estimated as
|ul,i−〈ul〉|
〈ul〉 , where 〈ul〉 is a smoothed version of the spectrum ul [36].

The last point in the list describes the score method used to choose the best solution. In OMpy the fluctuations

and the χ2 is weighted

score = (1− p)× χ2 + p× fluctuations, (4.28)
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where p is the weight of the score and should range between [0, 1]. The weight is set by default to 0.23 in OMpy,

but can be changed by the user. The iterative method can potentially lead to matrix inversion if given enough

iterations, and this will result in a very good χ2 value, but given large fluctuations as discussed before. Therefore

the fluctuations are given a weight in the scoring when choosing the best solution for the unfolded spectrum.

After the iterations are performed the unfolded matrix with the smallest score, is returned.

The Uncertainty Propagation of the Iterative Method

OMpy offers a method to estimate the statistical uncertainties for the unfolded matrix based on the Monte

Carlo (MC) technique [36]. The method creates a number of randomly perturbated copies of the raw data. The

random variables are the number of counts that are present in each bin k of the Eγ − Ex coincidence matrix. It

is assumed that the variables are independent and follow a Poisson distribution with parameter λi,

Pλ = p(n | λ) = λn

n! e
−λ, (4.29)

where the number of counts nk in bin k of r is an estimate for the Poisson parameter λk. As mentioned in

previous sections the estimator λ is unbiased, since 〈n〉 = λ. To generate an ensemble of rk matrices, the counts

in each bin k are replaced by a MC-sample from the distribution P . This creates N matrices where all are

sampled from the distribution above. These matrices then represent different realizations of the experiment [36].

Defining r̃ = [r̃1
k, r̃

2
k, ..., r̃

N
i ]T as the vector for all the bins k of the N matrices. Making it possible to calculate a

mean 〈r̃k〉,

〈r̃k〉 = 1
N

N∑
m=1

r̃mk , (4.30)

and also the standard deviation σk

σk =
√

1
N

N∑
m=1

(r̃mk − 〈r̃k〉)
2
. (4.31)

In the case of the raw-data the standard deviation and mean is not significant since it is given by the distribution

Pλ, but this can be used to estimate the statistical uncertainties due to the counting statistics in the unfolding

as well. One can also propagate these errors to the first generation method and level-densities used in the

Oslo-Method.

When it comes to the bias (systematic errors) of the iterative method, there is no good way to estimate this at

present. Applying any unfolding method will introduce bias, in order to reduce the variance.
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Figure 4.6: The iterative unfolding method demonstrated on 28Si. On the left side is the unfolded spectrum and

the on the right is the folded spectrum compared to the raw spectrum. The iterations shown are 1, 10 and 33,

where u0 is the initial spectrum. Note that from iteration 1 the unfolded is outside the scale.
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3.2 Compton Subtraction Method

After applying the iterative method, the usual next step is to apply the Compton subtraction method. The

iterative method will reduce the oscillations in the spectrum, due to the score inducing a weight on the fluctuations.

However, there will typically be large fluctuations still present, inherited from the iterative method itself. The

Compton subtraction aims to smooth the spectrum further. The method is presented in the following:

• The method takes as input:

– r(i) = the raw spectrum obtained from experiment

– u0(i) = the unfolded spectrum obtained from the iterative method

Using the unfolded spectrum u0(i) obtained from the iterative method, and and the raw spectrum r(i) to

create a spectrum consisting only of the Compton spectrum c(i).

• To do this without the loss of important features, the probabilities (pFE , pSE , pDE , p511) are extracted

from the response matrix table 4.5. These are all multiplied with u0(i), except for the Compton distribution.

The new spectrum obtained by this is:

v(i) = u0(i)pFE(i) +w(i), (4.32)

where w(i) represents

w(i) = pSE(i)u0(i) + pDE(i)u0(i) +
∑
i

p511(i)u0(i). (4.33)

To avoid getting delta functions where the peaks are located, a Gaussian smoothing function, using the

resolution from given experiment (FWHM), is applied.

• To obtain the Compton distribution-spectrum, the v(i)-spectrum is subtracted from the raw matrix:

c(i) = r(i)− v(i), (4.34)

leaving the contributions from the Compton scattering in the spectrum c(i). The resulting Compton

spectrum should, due to the nature of the Compton scattering process, be a slowly varying function with

no fluctuations, so it is smoothed with a Gaussian function.

• The unfolded spectrum is obtained by subtracting the Compton spectrum and the w(i)-spectrum from the

raw spectrum r(i)

u(i) = r(i)− c(i)−w(i)
pFE(i) (4.35)

where the division by pFE(i) is the correction for the full energy probability. The resulting spectrum

u(i) should inherit the statistical fluctuations that where present in the raw data, but should contain less

fluctuations from the iterative unfolding method itself.
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• In the end, the final unfolded spectrum is divided by the total efficiency εtot:

u(i) = u(i)
ε(i)tot

(4.36)

The resulting unfolded matrix has fewer fluctuations than u0(i) from the iterative method alone. If u0(i) was

only smoothed and presented as the final unfolded, the statistical fluctuations of the original raw spectrum r(i)

would be lost. Instead this method smooths the artificial fluctuations of the u0(i) but at the same time it will

preserve the statistical fluctuations from r(i).

4 Fully Bayesian Unfolding

The following section will explain the Fully Bayesian Unfolding (FBU) method used in this thesis. In the first

part the formulation of the theorem will be described. Then the priors that are tested in this thesis are shown.

In this method no iteration is used, instead the Monte Carlo NUTs algorithm [11] samples from the likelihood

and prior which results in posterior distributions for each energy-bin of the spectrum. This method was originally

developed by Georgios Choudalakis [38] for unfolding in High Energy Physics (HEP). Though, the problem

of unfolding for HEP differs from unfolding in nuclear physics in many ways, both use detectors with a given

response and efficiency. So the methods used for unfolding in high energy physics can be tested for unfolding

γ-ray spectra as well.

The library used to develop the method is PyMC3, which is a Python package for Bayesian statistical modeling

and Probabilistic Machine Learning, focusing on advanced Markov chain Monte Carlo (MCMC) and variational

inference (VI) algorithms [12].

4.1 Bayes’ Theorem used in Unfolding

One can ask the question; what was the actual truth spectrum T given the data r? This sounds like a Bayesian

question, and the aim of the method presented here is to answer it. By using Bayes theorem, matrix inversion is

avoided. Instead one samples from the likelihood function and the prior. These two express the region that will

be sampled from. Using Bayes’ theorem the equation becomes

p(T | r) ∝ L(r | T )p(T ), (4.37)

where T represents the truth spectrum [38]. Since the actual truth spectrum T cannot be obtained, the estimated

truth spectrum T̂ is the goal, and this can then be represented as the unfolded spectrum u. The raw spectrum

is binned j ∈ {1, 2, ...Nj} where each bin represents a certain energy (keV) and contains events measured

in given experiment r =
(
r1, r2, ..., rNj

)
. Likewise, the estimated truth spectrum is also binned and energy

dependent t ∈ {1, 2, ...Nt} where each bin contains the number of events expected to be produced in given

bin T̂ =
{
T̂1, T̂2, ...T̂Nt

}
[38]. Each expected event will be estimated, so each bin t needs a prior probability

– 42 –



Chapter 4. The Unfolding Methods 4. Fully Bayesian Unfolding

distribution, hopefully containing the expected parameter T̂Nt . This results in a posterior distribution for each

truth-bin t. Since the results are a set of distributions, the Bayesian unfolding does not necessarily end up with

one specific solution, it rather gives a distribution that shows where the expected truth value will most likely be.

In some cases, there can be two or more solutions that are equally likely, and this will show in the posterior for

the given bin.

The likelihood function of the data is assumed to be independent and Poisson distributed

L(r | T ) =
Nj∏
j=0

f
rj
j

rj !
e−fj , (4.38)

where f is the folded spectrum, i.e. the expected values of the data is

fj =
Nt∑
t=1

Tt ·R, (4.39)

where R is the response matrix [38]. In FBU the response matrix is treated differently from the response matrix

explained in section 2. Instead of the rows summing up to 1, it is scaled with the efficiency of the detector [38].

The response matrix is the conditional probability of the events in bin j of the raw spectrum, given that the

events are present in the truth bin

R(j | t) = P (t, j)
P (t) (4.40)

and each row should sum up to the efficiency

εt =
∑Nj
j=0 P (t, j)
P (t) (4.41)

[38]. Since the folded is spatially dependent it can be represented in vector form

f = RT , (4.42)

this looks similar to the section about the iterative method 3, but there the unfolded u spectrum is inferred

directly. In the Bayesian method the distribution for each truth bin is inferred using the likelihood and prior

belief about the truth spectrum T . After sampling, a posterior distribution is achieved. How the estimated

truth spectrum T̂ (that can then be represented as the unfolded spectrum u), is inferred from the posterior

distribution will be discussed later on in this section.
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In all experiments there will be some background events due to different processes. These do not originate from

the real truth spectrum T . If the background has not been subtracted beforehand, one can include it in the

Bayesian method as

fj = Bj +
Nt∑
t=1

Tt ·R, (4.43)

where Bj is the background events in the bin j [38]. The Bayesian method thus introduces a new treatment of

the background.

4.2 The Posterior Distributions

The posterior is proportional to the likelihood and the prior, p(T | D) ∝ L(D | T )p(T ), and it results in a

distribution for each bin. In figure 4.7, examples of posterior distributions for a given truth-bin t is shown.

Inferring the estimated truth spectrum T̂ from these posteriors is not always straightforward. When it comes to

unfolding (in the Oslo-method especially) one typically is after a point estimate of the values represented as

the unfolded spectrum u, to use in further calculations. This can be retrieved in many different manners with

Bayesian unfolding, and it will be up to the user to decide what makes sense in terms of the raw data. In the

following list are some of the possible estimations presented:

(i) Estimate the HPD interval: Find the most likely value of the posterior distribution and from that point

integrate an area of 34% on each side and thus obtain an 68% HPD credible interval. Then choose the

unfolded u from the middle of the HPD-interval [9].

(ii) Assuming there exists a mean and choosing the credible interval of 68% where the mean is in the center,

for each posterior distribution.

(iii) Choosing a ETI (equal-tailed interval) which will have the median at its center [9].

(iv) Finding the MAP (maximum a posteriori) [9].

Choosing the highest posterior density will answer the question: where the most credible values of T̂ are, and

what range the highest density values have. ETI gives a overview of the posterior distribution in terms of

percentiles with its median at its center (50 percentile). The range of uncertainty will be in percentiles [9]. So

choosing the median will not necessarily tell where the highest probability density of the parameter is located.

The same argument goes for choosing a credible interval with the estimated mean at the center, it will not

necessarily give the values of highest probability. The only exception is if the posteriors are normally distributed,

then the mean, median and the mean of the HPD-interval will give the same estimated values. The MAP is

calculated differently than the other points (see (i), (ii), (iii)). In the PyMC3 library a optimization code is used

to calculate the MAP [12]. In this work the L-BFGS-B (Large-scale Bound-constrained optimization) has been

used, which originates from the scikit-learn library [39]. MAP is similar to the Maximum Likelihood Estimation

and will only provide a point estimate of the parameters of T̂ [9].
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Since, in the case of unfolding, the estimated parameters have meaningful interpretations, choosing the value

with highest probability is reasonable since the value with highest probability might be wanted. That said, the

EIT-interval is a good choice as well, where the spectrum is then represented by the median. In chapter 5, where

the results are presented this topic will be discussed and presented further.

The number of bins and the sampling will effect the resulting posterior distribution. A larger sample set, can

give narrower posteriors, as the method becomes more certain. If the total amount of bins in the spectrum is

large the method will require more samples.

Figure 4.7: Examples of posteriors retrieved after sampling

4.3 Updating Prior Beliefs

The prior, is a very important input in this method, as the truth spectrum T is often unknown beforehand.

The raw spectrum r can differ significantly from the truth spectrum, because of the detector response. In the

Bayesian frame work, the prior could be chosen from the evidence at hand like theory or past experiments or one

could choose what is called an objective prior. That said, there does not exist a fully objective prior, there will

always be some assumptions made no matter how objective the user sets out to be. In the iterative method one

uses the raw spectrum r as an initial guess for the iteration. So one can argue that the raw spectrum is a prior

in that case. In the same manner, the fully Bayesian method require initial assumptions. How specific these are,

is up to the user. To be as objective as possible a uniform distribution can be used

p (T ) =


1
a−b Tt > 0

0 otherwise
, (4.44)

where a represents the upper bound and b represents the lower. To reduce the volume sampled from, it can be a

good idea to apply an efficiency correction the prior

p (T ) =


r
ε + c if Tt ∈

[
T bt , T

a
t

]
∀t ∈ [1, Nt]

0 otherwise
, (4.45)
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where c is a constant and
[
T bt , T

a
t

]
represent the upper and lower bounds a and b. The efficiency correction

to the prior is the most basic information about the spectrum: if the efficiency to detect γ-rays at 6 MeV is

0.5 it means that roughly twice as many events in that bin should be expected. That said, another important

aspect is that the prior distribution for each bin is multiplied with the response matrix, in fact creating a prior

for the folded spectrum: f = RT [38]. The likelihood sampled is, as stated: L(r | T ) =
∏Nj
j=0

f
rj
j

rj ! e
−fj . The

prior constructed should resemble the raw spectrum r when multiplied with the response matrix. Since only

the solutions above zero are interesting in a physical sense, the lower bound should be zero or above. This will

exclude the negative solutions, since these are ’unphysical’. However, the negative solutions may be just as likely

as the positive ones, thus resulting in posterior distributions like the example distribution on the far right in

figure 4.7. The user of the Bayesian unfolding method is free to use other priors than the ones mentioned in

this section. For example, can a normal prior be used, but one has to be careful since the normal distribution

allows negative values. A good way to avoid to much fluctuations is to use regularization, one example is the

max entropy (MaxEnt). This is then implemented in the uniform prior

p (T ) =

exp(αS(T )) if Tt ∈
[
T b
t , T

a
t

]
∀t ∈ [1, Nt]

0 otherwise
, (4.46)

where

S(T) ≡ −
(
−

Nt∑
t=1

Tt∑
Tt

log Tt∑
Tt

)
(4.47)

[38]. In this thesis only the prior in equation 4.45 is used.
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Chapter 5

Results

In this chapter the results for the unfolding using the Fully Bayesian Unfolding (FBU) method, will be presented.

The experimental data used in this thesis was taken from the reaction 28Si(p, p′γ) has been used to verify the

method. The target used has thickness 8 − 9 mg/cm2 and consists of 92.223% 28Si, 4.685% 29Si and 3.092%
30Si. The detector telescope SiRi was set in backward angels and the OSCAR array was placed 16 cm from the

target. The protons travel through the target and then into the SiRi detector and since the target is thick, this

will affect the resolution of the experiment. The pile-up rate in OSCAR was high, which impacts the amount

of low-energy γ-rays and the counts inside the 511-annihilation peak. The electronics of this experiment was

digital, while the response matrix used is made for analog electronics. The experimental conditions of therefore

differ from the conditions of which the response functions were made. In addition, the total efficiency of OSCAR

is not fully established, which might effect the precision of the results.

First section is dedicated to the unfolding of γ-rays emitted from the 1st excited state of 28Si. This is seen as a

rather easy case to unfold as it has one γ-transition from the 2+-state to the ground state. As mentioned in

chapter 4, the FBU offers the inclusion of background and this function is tested in section 2. In section 3 the

unfolding of the photon spectrum from all excited states is presented.

1 Fully Bayesian Unfolding Spectrum From the First Excited state

of 28Si

As a first test for the FBU, the first excited state of 28Si is extracted from the raw coincidence matrix and

projected onto the Eγ-axis. Usually, when the raw data is intended for the Oslo-method everything below the

diagonal (> Eγ = Ex) is set to zero, since the counts over the diagonal after the background subtraction should

fluctuate around zero (i.e sum to zero). The matrix in 5.1 shows the raw coincidence matrix where the diagonal

is set to zero. There was still negative counts in the matrix after cutting the diagonal, so the function from the

OMpy library [37] called fill and remove negatives was used. The function fills some of the negative counts with
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counts from neighbouring bins. To prevent losing to many positive counts the rest of the negative values are set

to zero. In addition, the matrix itself is cut so it ranges from 0− 10000 keV for both the Ex and the Eγ axis,

since the original matrix contains few counts beyond these ranges. The binning was originally 5 keV energy per

bin, but to speed up the sampling process used in the FBU, the matrix was re-binned to 20 keV energy-bins. For

the first excited state in 28Si this was considered to be fine enough binning to describe the spectrum. In figure

5.1 the red line shows the area which was projected onto the Eγ-axis, the boundaries where Ex = 1400 and

Ex = 2200. This specific range was found by projecting the data onto the Ex-axis that can be seen in figure 5.18,

this reveals where it is best to cut-off to get the relevant counts that belong to the first excited state. Also, the

resolution in the particle detector SiRi for the 2+ peak was found to be 360 keV, which verifies the boundaries

chosen (1779± 360 keV).

The first excited state of 28Si has energy 1779 keV, and when the nucleus de-excites to the ground state it will

send out a γ-ray with an energy of 1779 keV, which is a 2+ transition [40]. When setting the counts below the

diagonal to zero, the aim is to cut everything after the 1779 keV energy. However, the target is not 100% pure
28Si, but also consists of 29Si and 30Si [40]. The transitions of their first excited state ((2/5)+ and 2+) to their

respective ground states is visible in the raw data. Since these will have counts that should be re-distributed

to them when unfolding, it is important not to cut them out of the spectrum. When setting everything below

the diagonal to zero one needs to be careful, the risk is the loss of valuable information. The diagonal was thus

chosen to include the full energy peaks for the high energies (Ex = Eγ > 7000 keV), which resulted in the range

of the first excited state being 3220 keV on the Eγ axis, as can be seen in figure 5.1. Since the counts below the

diagonal are zero, these are not necessary to include in FBU. Figure 5.2 shows the projected raw data for the

first excited state, a) is the raw data after setting the counts above 3220 keV to zero, and with 5 keV binning,

Figure 5.1: The Eγ −Ex matrix for 28Si(p, p′γ)-reaction. The red lines indicates where the cut was made for the

projected 1st excitation energy.
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Figure 5.2: The 1st excitation energy projected on the γ-axis where all features of the spectrum are identified. a)

is the projected raw data where the diagonal has been cut at Eγ = 3220keV . b) The projected raw data cut and

re-binned.

b) shows the raw spectrum after cutting out the zeros and re-binning the data with 20 keV binning. All the

features in the raw spectrum are identified for both plots [40].

The treatment of the threshold is important to notify. The threshold area ([0, 160] keV) is the lower energy

detection threshold in OSCAR, meaning that no signal is detected in this area. The response for the digital

electronics has not been fully established yet. In figure 5.2 it can be seen that the energies from 0 keV and up til

160 keV are zero in the raw matrix. Since there is no treatment of this area implemented in OMpy or in the

current response matrix, it was cut out before applying FBU.

As mentioned in chapter 4, FBU requires that the response matrix is scaled with the efficiency. The response

matrix is made by applying the class called Response in the OMpy library, and each row sums up to 1. The

efficiency is normalized to 1 for the γ-energy 1332 keV, while the actual efficiency for this energy will differ from

experiment to experiment. It is assumed that the total efficiency is close to the geometric efficiency, which is

calculated as

εgeo = Covered Area of OSCAR
Solid Angle , (5.1)

where the covered area is the number of detectors multiplied with the detector ’nose’= πr2. The diameter of one

scintillator detector is 8.89 cm so the radius is r = 4.45 cm. Multiplied this with all 30 detectors, the covered

area of OSCAR is equals 0.1862 m2. The Solid Angle, when the OSCAR array is R = 16 cm from the target is:

4πR2 = 0.3217 m2. Then the geometric efficiency εgeo = 0.579 so approximately 58%. The actual total efficiency

is expected be somewhat smaller than the geometric, since this was the case for the old detector CACTUS

(replaced by OSCAR). The total efficiency for CACTUS was the geometric efficiency reduced by 14% for the

energy 1332 keV. Assuming the same reduction for OSCAR the total efficiency for energy 1332 keV is 50%, when

the distance between target and detector is 16 cm. In this present work it was decided to use this value, as a

measured value has not been established yet. The efficiency was scaled from 1 to 0.5 for energy 1332 keV, as
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can be seen in figure 5.3, where the scale for the full energy peak is also included. The response matrix was

then scaled so the rows sum up to the efficiency instead of summing up to 1, which is the case when using the

Iterative Method in OMpy.

The prior chosen for the raw data was a uniform prior, corrected with the efficiency and the scale of the full

energy peak, and an added constant. The area sampled from is bound between a upper and lower bound. The

sampling will take longer the bigger area that needs to be sampled. Each bin will add a dimension to the

sampling, with the current 156 bins gives 156 dimensions. To make a good and efficient prior it is important to

look at the prior for the folded, which is what is being sampled f = RT . In a perfect case, for the 2+-state with

γ-energy = 1779 keV, all the counts should be re-distributed to this peak. A good first try for an upper bound is

to correct for the efficiency and the scale of the full energy peak. After correcting, the upper bound for the 2+

peak did not include all the counts in the raw spectrum. A constant was therefore added to the energy-bins

containing the peak, so the upper bound contained more than the sum of counts in the raw spectrum. The lower

bound was set to zero, since negative solutions are ’unphysical’ in this case. Figure 5.4 shows the lower and

upper bound for the prior, a) shows the upper and lower bound for the actual truth spectrum, and b) shows the

upper and lower bound for the folded (i.e upper and lower bounds multiplied with the response function). The

priors now include the only knowledge one has about the spectrum: the prior for the folded spectrum should

include all the counts of the raw spectrum, and the efficiency and full energy peak should be corrected for, and

Figure 5.3: The efficiency ε and the scale of the full energy peak for the OSCAR array, where the actual

efficiency for the 1332 keV is assumed to be 0.5.
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Figure 5.4: Efficiency corrected prior with an added constant. a) Upper and lower bounds for the uniform prior

for the unfolded spectrum. b) Upper and lower bounds for the uniform prior multiplied with the response matrix.

lower bounds should be set to zero. In figure 5.4 b), one should note the effect from the response matrix on the

upper bound of the area 0− 200 keV.

The uniform prior for each bin together with the response matrix and raw data are the inputs of FBU. It was

sampled with 10000 samples and 2000 tuning steps for each bin, with the Monte Carlo NUTs algorithm [4].

The posterior distributions for each bin are the output of the FBU. In addition, the MAP was calculated using

L− BFGS− B optimization which is also included in FBU. The posterior distributions can be, among other,

evaluated in histograms, which shows where the highest probability for the values are located, see figure 5.5.

When using an unfolding method the goal is to find a point estimate that in turn can be presented as an unfolded

spectrum. Figure 5.5 show some different approaches to finding a point estimate. The shaded area is the 68%

HPD-interval which is retrieved by an inbuilt function in the PyMC3 library. The interval will always include

the highest posterior density probability. The MAP which is the mode of the posterior distribution, is also

included in the figure. Using the MAP will only give a point estimate, and the parameters can be biased if the

mode is not representative of the posterior distribution. In figure 5.5 d) the MAP deviates the most from the

sampled posteriors, which shows that the MAP is not representative for all bin-distributions. For 5.5 a), b)

and c) the MAP estimates the highest probable points in the posteriors distributions. Furthermore, The MAP

optimization is a faster method than using Monte Carlo sampling, it can thus be used as a good indicator for the

unfolded spectrum if needed, but will not provide uncertainty estimates. The estimated mean and median are

also represented in figure 5.5. A credible interval for these estimates can also be used, but as seen in the figure

the HPD-interval includes the values with highest probability, while a 68% credible interval for the median and

mean will not necessarily include these. In figure 5.5 a), b) and c) shows the estimated mean being positioned

on the outskirts of the HPD interval, a 68% credible interval around this point would then not include the

highest probability. When the posteriors are skewed towards zero the mean of the HPD will give the value

closest to highest density probability. When the posteriors are closely to normally distributed the mean of the
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Figure 5.5: Posterior distributions showing the estimated HPD-interval with the mean of the interval as well as

the estimated mean, median and MAP. a) Truth-bin for Eγ = 511 keV, where the 511-peak is located in the raw

spectrum. b) Truth-bin for Eγ = 754 keV, where the double escape peak is located in the raw spectrum. c)

Truth-bin for Eγ = 1267 keV, where the single escape peak is located in the raw spectrum. d) Truth-bin for

Eγ = 1778 keV, where the 2+-state of 28Si is located. e) Truth-bin for Eγ = 2028 keV, where the ( 2
5 )+-state of

29Si is located. f) Truth-bin for Eγ = 2235 keV, where the 2+-state of 30Si is located.

HPD, the estimated mean and the median will all give the same values. The posteriors shown in figure 5.5 are

truth-bins for the features shown in the raw spectrum 5.2. d), e), f) are the truth-bins for the 2+-transition of
28Si, (2/5)+-transition of 29Si, and 2+-transition of 30Si respectively. As is shown, the distributions are normally

distributed. Where there are high amounts of counts, the posteriors tend to be normally distributed and it is

rather straight forward to find a point estimate, since the mean, median and mean of the HPD-interval all give

the same estimated value. On the other hand, a), b) and c) in figure 5.5 shows the truth-bins for the 511, double

escape and single escape peaks. They are all skewed towards zero. This indicates that there might be a more

probable solution that is located below zero, but those solutions are of little interest. When unfolding, the aim is

to re-distribute all counts in these peaks to the full energy peaks, and these posteriors show that the highest

probability is around zero.

In figure 5.6 the log plot of 500 samples picked randomly for each bin and presented together with the MAP,

mean of the HPD-interval, median and the HPD-interval itself are shown. This is another way to present the

posteriors for each bin in a meaningful way. Logging the MAP and HPD-interval will transform the values, as

can be seen in the figure. If choosing a EIT-interval which includes the median, logging the interval does not

transform the values. The median and mean of the HPD do not deviate much from each other, showing that
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both can be used as estimates for the unfolded. Since a HPD-interval was chosen in this case, the mean of the

HPD is picked as the estimate to represent the unfolded and folded of the FBU.

Figure 5.7 shows the log plot of the mean of the HPD plotted together with the unfolding of the Iterative

Unfolding method (OMpy). The energies containing zero counts are here added to the FBU unfolded. There are

fluctuations around 100 for the OMpy unfolded for lower energies. The HPD-interval is also largest in this area

for the FBU, and as seen in figure 5.6 the samples are also fluctuating in this area, indicating that both methods

are more uncertain here. For higher energies both methods fluctuates less and follow each other within the HPD

interval.

By looking at the folded in figure 5.8 and 5.9 one can see how well the methods have unfolded the raw spectrum,

as the folded spectrum should reproduce the raw spectrum. Figure 5.8 shows the folded spectrum without

zeros added, for both FBU and the iterative method (OMpy) together with their relative difference to the raw

spectrum. Figure 5.9 shows the same spectrum with the zero-bins added. When adding the zero-bins, the

threshold is added and the effects it has on the folded spectrum can be seen. By looking at the relative difference,

the adding of the threshold area does not seem to have an effect on the Iterative Method (OMpy), but it has

clear effects on FBU. Before adding the threshold area the relative difference around the 2+-transition peak of
28Si is smaller than when the threshold is added. As described before, the response matrix for the threshold is

Figure 5.6: Log-plot of the estimated truth-spectrum T̂ for the 1st excitation energy for the 28Si(p, p′γ)-

reaction. 500 samples have been picked randomly for each bin and plotted together with the MAP, median,

HPD-interval and the mean of the interval.
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Figure 5.7: The unfolded spectrum represented with the mean of the HPD-interval and the iterative method

(OMpy), for the 1st excitation energy for the 28Si(p, p′γ)- reaction.

not updated for the digital electronics. Since there are no counts in the raw spectrum in this area, the likelihood

function in FBU will not have any effect here. The change in relative difference can therefore not be traced to

the evidence in the data. Therefore the effect might be traced to the response matrix, which is multiplied with

the unfolded of FBU to produce the folded spectrum (f = T̂R.

Table 5.1 shows the percentage of counts that are in the main three peaks (2+, (5/2)+, 2+) of the unfolded as well

as the percentage of the rest-counts that have not been re-distributed. OMpy has 2% more counts in the rest,

while FBU includes more counts into the 2+-transition. The percentage redistributed to the three peaks do not

Peaks (keV): FBU (%) OMpy (%)

1779-peak: 91.7 % 89.8 %

2028-peak: 1.3 % 1.1 %

2235-peak: 1 % 1 %

Rest: 6 % 8 %

Table 5.1: The percentage of counts in each peak and the rest that has not been re-distributed, after unfolding.
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coincide fully with the percentage of 29Si and 30Si that are present in the target. However, 91.7% of the counts

have been re-distributed to the 2+-transition peak of 28Si for the FBU unfolding and 89.9% in OMpy.

2 Fully Bayesian Unfolding on first excited state of 28Si including

background

The FBU library offers a new method for treating the background. Instead of subtracting it from the raw matrix

the user can choose to use the raw matrix with background included as an input into the method. Figure 5.10

Figure 5.8: a) The folded spectrum represented with the mean of the HPD-interval and the iterative method

(OMpy) compared with the raw data before adding the zero-bins, for the first excited state of the 28Si(p, p′γ)-

reaction.

Figure 5.9: The folded spectrum represented with the mean of the HPD-interval and the iterative method

(OMpy) compared with the raw data with zero-bins included, for the first excited state of the 28Si(p, p′γ)-

reaction.
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shows the raw matrix with background included together with lines indicating the energy projected onto the

Eγ-axis. The projection is the same described in last section 1.

In addition to the inclusion of background in the raw spectrum, a spectrum of the background is needed as

input. Figure 5.11 shows the raw spectrum including background and the background spectrum, together with

the important features of the spectrum. The FBU offers a background normalization estimate when there is

uncertainty in the prompt peak versus background ratio. In chapter 3 the background used was shown in figure

3.8, the time gate for both the prompt peak and the background where chosen to be a width of 10 ns. The

prompt peak time cut was 0 ± 5 ns and the background 55 ± 5 ns. Since the background and prompt peak

where measured in the same experiment and the time ratio between them is 1, the background normalization

uncertainty was set to zero.

The response matrix, prior, number of samples and tuning steps where initiated in the same way as previous

section. Only difference is the treatment of the threshold, as the background includes counts in this area it is

included. Also, the re-binning of the matrix was set to 30 keV per bin. Since no counts are set to zero under the

diagonal in this case, the dimensions increase significantly making the sampling process slower.

Figures 5.12 and 5.13 show the posteriors of the truth-bins represented in histograms, with the HPD-interval,

the mean of the interval and the median included. Figure 5.12 shows the truth-bins for the 511 keV peak,

double escape and single escape peaks, while figure 5.13 shows the truth-bins for the 2+-transition of 28Si,

( 2
5 )+-transition of 29Si and 2+-transition of 30Si. By comparing the mean of the interval of the 2+-state of 28Si

in figure 5.13 with the same state in the figure 5.5 from previous section one sees that in this case more counts

are re-distributed to this peak.

Figure 5.10: The Eγ − Ex matrix for 28Si(p, p′γ)-reaction including background. The red lines indicates where

the cut was made for the projected first excited state.
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In figure 5.14 the log-plot of the unfolded spectrum is presented. The HPD-interval with its mean and the

median together with 500 samples that have been randomly picked for each bin are shown. It should be noted

that there are some peaks present for energies higher than the 2+-state of 30Si, most notably the 2425 keV

peak from ( 3
2 )+-state of 29Si [40] and also others over the Eγ = Ex diagonal. This might indicate that a better

Figure 5.11: The first excited state projected on the γ-axis including background together with the background

plotted separately. The features of the spectrum are also described.

Figure 5.12: Posterior distributions for the truth-bins when background is included, showing the estimated

HPD-interval with the mean of the interval as well as the estimated median. a) Truth-bin for Eγ= 511 keV,

where the 511-peak is located in the raw spectrum. b) Truth-bin for Eγ= 754 keV, where the double escape

peak is located in the raw spectrum. c) Truth-bin for Eγ= 1267 keV, where the single escape peak is located in

the raw spectrum
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background subtraction is needed, but on the other hand that can result in the loss of important information.

There are some rest counts left in the single escape peak of ( 5
2 )+-state of 29Si, located at 1517 keV and the

double escape peak of 2+-state of 30Si located at 1213 keV [40], meaning they have not been re-distributed back

Figure 5.13: Posterior distributions for the truth-bins when background is included, showing the estimated

HPD-interval with the mean of the interval as well as the estimated median. d) Truth-bin for Eγ = 1778 keV,

where the 2+-state of 28Si is located. e) Truth-bin for Eγ = 2028 keV, where the ( 2
5 )+-state of 29Si is located. f)

Truth-bin for Eγ = 2235 keV, where the 2+-state of 30Si is located.

Figure 5.14: Log-plot of the estimated truth-spectrum T̂ for the first excited state for the 28Si(p, p′γ)- reaction

including background. 500 samples have been picked randomly for each bin and plotted together with median,

HPD-interval and the mean of the interval.
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to the peaks. These features are not show significant in the raw spectrum, probably because of the Compton

contribution in this area.

Using FBU should result in a unfolded and folded spectrum without background present. Therefore the folded

spectrum of FBU should be compared with the background subtracted raw-spectrum, instead of the raw spectrum

containing background. This comparison is shown in figure 5.15 between both raw spectrum with and without

background present. The raw-spectrum without background is obtained by subtracting the background from the

raw-spectrum with background. Since there are counts present in the background spectrum in the threshold area

and not in the raw-spectrum this leads to negative counts. This is also the case in the area above the 2+-peak of
30Si. The function fill and remove negative is thus used, explained in previous section 1. The folded of FBU

closely resembles the raw spectrum without background and is consistently lower than the raw-spectrum with

background included. In figure 5.16 the relative difference between the folded of FBU and the raw-spectrum

without background is shown. The relative difference is greatest for the 2+-peak of 28Si and in the threshold

area, which is expected at this point. The factor between the sum of the raw-spectrum without background and

the folded of fbu is only 1.015.

Table 5.2 includes the percentage of counts in each prominent peak in the spectrum and the rest counts. As

mentioned before, the counts re-distributed to the 2+-peak of 28Si is higher than in the previous section where

the background was not included. The ( 2
5 )+-peak of 29Si and 2+-peak of 30Si are approximately the same as

Figure 5.15: The folded spectrum of FBU represented with the mean of the HPD-interval plotted with the raw

spectrum with and without background.
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Figure 5.16: The relative difference between the folded spectrum of FBU and the raw spectrum without

background.

Peaks (keV): FBU (%)

1779-peak: 94.5 %

2028-peak: 1.3 %

2235-peak: 0.9 %

Rest: 3.3 %

Table 5.2: The percentage of counts in each peak and the rest that has not been re-distributed, after unfolding.

in the case of no background included. The rest counts are lower than in section 1, since more counts are

re-distributed to the 1779-peak.

3 Fully Bayesian Unfolding for all Excited States

The first test to unfold a raw matrix using FBU will now be presented. The test took 7 days and includes the

excitation energy range [0, 8000] keV. As can be seen in figure 5.18 showing the raw matrix projected onto the

Ex-axis, there is approximately no counts below 647 keV, this can also be verified by looking at figure 5.1 where

there are little counts below this energy in the raw matrix. The unfolding with FBU was started at energy

647 keV, therefore the matrix in figure 5.17 has a defined cut there. Because of long computation time it was

concluded that the upper bound of 8000 keV for the Ex-axis was sufficient to show as a first test of unfolding a

matrix using FBU. To make the computation time as fast as possible it was decided to unfold the raw matrix

without background. The number of bins can then be reduced without the loss of structure in the spectrum,

since all bins set to zero are cut out before unfolding. For each excitation energy the spectrum was projected
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Figure 5.17: The unfolded matrix for a) FBU and b) Iterative unfolding method, in the range [0, 8000] keV for

the Ex-axis

onto the Eγ axis and then unfolded. The priors, efficiency and response matrix where all initiated in the same

way as in previous sections. The bin size for both the Ex and the Eγ axis where set to 30 keV. The sampling

was set to 6000 with 2000 tuning steps, these where reduced compared to previous sections.

Figure 5.17 a) shows the unfolded matrix of FBU and b) shows the unfolded matrix of iterative method (OMpy)

for the [0, 8000] keV for the Ex-axis. The main difference is the fluctuations in the unfolding method. For the

Figure 5.18: The raw matrix values projected on the Ex axis with all excitation energies in the range [0, 8000]

keV.
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1st excited state in section 1, the iterative unfolding method fluctuated from zero to a few hundred counts in the

low energy region (< 1700 keV). This fluctuation can be seen in the unfolded matrix as well. FBU does not

fluctuate as much and does not give values equal to zero. Other than this difference the methods both show

clear peaks where the full energy peaks are located. Both showing vertical yellow lines for the 2+ transition and

a diagonal line for the full energy peaks of each excited state, except for the states that cascade (e.g. the 4617

keV state).

In figure 5.19 a) the unfolded spectrum of FBU and the iterative method for the second excited state (4617 keV)

is projected onto the Eγ axis. The γ-rays cascades, first to the first excited state (1779 keV) then to the ground

state. Therefore there is no well defined peak at energy 4617 keV, but rather at energy 2838 keV (4617− 1779

keV), and energy 1779 keV. The vertical line of 2838 keV peak can also be seen in the unfolded matrices in

figure 5.17. The unfolded of FBU is presented with the HPD-interval showing the uncertainty in the estimation.

FBU estimates higher values for the γ-ray peaks at 1779 keV and 2838 keV, and the iterative method fluctuates

more for lower energies (< 2500 keV), otherwise the methods coincide more or less. In figure 5.19 b) shows the

unfolded spectrum of FBU and the iterative method for the tenth excited state (7416 keV) projected onto the

Eγ axis. Looking at figure 5.18 where the counts have been projected onto the Ex-axis, it can be seen that tenth

excited state is close to the ninth excited state (7380 keV). Because of the resolution of the particle detector SiRi

these peaks are hard to separate. The projection seen in 5.19 b) will therefore include the counts from both

the ninth (7380 keV) and the tenth excited state (7416 keV). In this plot the FBU and the iterative unfolding

(OMpy) coincide better compared to the other figures shown in previous section 1, since the iterative method

does not fluctuate much here. The tenth excited state of energy 7416 keV can cascade, first to the first excited

state (1779 keV) with an energy of 5636 keV, or transition directly to the ground state. The ninth excited state

of energy 7416 keV can cascade through the third excited state (4980 keV) with energy 2400 keV or the first

excited state (1779 keV) with energy 5600, or transition directly to the ground state. These γ-transitions are all

Figure 5.19: The unfolded spectrum of FBU and OMpy for a) the 4+ excitation state (4617 keV) projected onto

the Eγ axis, and b) the 2+ excitation state (7416 keV) projected onto the Eγ axis,
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visible in the figure. In addition, there are single and double escape peaks that have not been fully re-distributed

to their respective full energy peaks, the same is the case for the 511-peak. The ( 2
5 )+-transition of 29Si and

2+-transition of 30Si are also present. In the end, the third excited state (4980 keV) cascades through the first

excited state with an energy of 3200 keV, and this peak can also be seen in the figure. The case of tenth excited

state of energy 7416 keV is an example of a spectrum where there are many cascades and it is not clear cut to

identify all features of the spectrum. In most cases where one is investigating the behaviour of a nucleus, it is for

γ-ray transitions in continuum, so to identify all the features of the spectrum is highly difficult. The result for

the tenth excited state of energy 7416 keV, shows that FBU is able to unfold a complex spectrum to the same

degree as the iterative method with the inclusion of uncertainty estimates.
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Discussion

The following chapter aims to shed more light on the results presented in the previous chapter. In section 1, the

background subtraction versus the inclusion of background in the FBU will be discussed. The similarities and

differences between the FBU and the Iterative Method will be addressed in section 2. A model checking of the

FBU will be presented in section 3. In the end section 4 will address the uncertainty estimates that the OMpy

library offers, are shown for the 28Si(p, p′γ) reaction.

1 Background Subtraction

The raw matrix without background subtraction is obtained by

raw = (prompt + bg)− bg ratio× bg, (6.1)

where bg is the background that is found in the time spectra in figure 3.8, prompt is the prompt peak and

bg ratio is the ratio of the background chosen [37]. The background subtracted spectrum is known, but the

actual background spectrum inside the prompt peak is unknown, and therefore bg ratio is used to subtract more

or less background. When enough background is subtracted the counts above the Ex = Eγ-line should sum

up to zero. If the background is greater than the counts in the raw data the subtraction will lead to negative

counts. Since negative counts is ’unphysical’ the function fill and remove negative from the OMpy library [37]

is used, and it takes as input a window size. The function includes two functions called fill negative gauss

and remove negative. The first function takes as input the values of the raw matrix, the Eγ axis and window

size. It aims to fill the negative counts with positive counts from neighbouring bins that are within the window

size of the neighbouring bins. The basic idea is that the negative counts are connected to the resolution and

can therefore be filled from a channel within the resolution [37]. The window size should therefore reflect the

detector resolution. By using a truncated Gaussian distribution, weights are made and used to fill the channels

that contain negative counts. The truncation is solely for speeding up the code. Since the function is based on
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weighting there might still be negative counts left in the matrix, meaning there are not enough bins with positive

counts available within the window size. Then the remove negative function is used, which simply sets the

negative counts left to zero. Both codes from the OMpy library source code, can be found in Appendix A. Ideally,

after subtracting the background, if enough background is subtracted the counts should approximately fluctuate

around zero. If that is the case, filling and removing negatives to ’zero-out’ the negatives is a reasonable solution.

Under the study of the first excited state of 28Si the pile-up rate was high which again impacts the counts inside

the 511-annihilation peak. The background ratio was thus set to 1.2, so enough background would be subtracted

in the area. This resulted in the sum of the counts for higher energies (> 2235 keV) being −182. It is not zero,

but usually the filling and removing negatives can be justified for a few hundred counts if the statistics of the

experiment is good. Meaning, that there is considerable amount of counts which in this case equals 1621107

for the 1st excited state. The negative counts then amounts to 0.011% of the total amount of counts. Figure

6.1 shows the raw spectrum including background, the background itself and the background subtracted raw

spectrum without filling and removing negatives of the 1st excited state of 28Si, on a symmetric logarithmic scale.

In the threshold area the background includes counts while the raw spectrum including background does not. It

is important to remember that the background shown here is taken from a pulse beam entering the detector at

another time than the prompt beam. The actual background of the prompt beam is not known. What one can

say from this plot is that the background of the prompt peak does not have counts in the threshold area while

the background used for subtraction does. In this area the justification of removing negatives holds.

When using FBU the subtraction of the background is avoided. Instead it is included into the likelihood by adding

it to the folded: f = B +RT . The likelihood measures the fit between the statistical model and the evidence

sampled from the data. By including the background in the likelihood the method knows the background to

prompt ratio, and can thus deduce the probability of counts belonging to the background or the raw spectrum.

As seen in figure 5.16 in section 2 from chapter 5, the FBU give better results when including the background

when compared to the subtracted raw spectrum, when looking at the relative difference. Also, the factor the raw

specturm and the folded spectrum of FBU is 1.015. This might indicate that the filling and removing negatives

counts works well in this case, since the folded of FBU coincides with the background subtracted raw spectrum.

In those cases when the background subtraction does not fluctuate around zero, FBU offers a solution which can

be explored further.

2 The Unfolding Methods

When using unfolding methods on the raw data the goal is to deduce information that can be explained physically,

and then used in further analysis. What the methods are doing is avoiding matrix inversion. Even so, many

unfolding methods suffer from huge fluctuations and can sometime result in negative counts. The iterative

method has proved itself to be valuable and has been tested against unfolding methods such as matrix inversion

with and without regularization in the paper of P.-A. Söderström et al. Where the conclusions was that ’the

iterative method gives the best qualitative reproduction of the emitted γ-ray spectrum’ [41]. It is the only
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method used for unfolding in the Oslo Method, which have produced many highly regarded scientific papers

using the Iterative approach. Unfortunately, the method can give negative fluctuations and offers no uncertainty

estimates. In figure 5.7 from chapter 5, it can be seen that the method fluctuates heavily for energies lower than

the 1779 peak, though these are not negative. The FBU on the other hand is stable in this area. In cases where

there are great negative fluctuations, the FBU offers a solution. Since the uniform prior has lower bounds set

to zero the method will find the most likely positive solution which is desired, this is a strength compared to

the iterative method. In addition, the uncertainty estimates and can be propagated into further analysis. The

unfolding has been the main suspect when it comes to inconsistencies in the Oslo Method [42] [36], so with

the usage of FBU this can finally be investigated. The main problem with using Bayesian inference on heavy

problems like unfolding is the time it takes to sample. Over the years the methods have been greatly improved

but there is still a way to go in terms of computation time. Most often there is a raw matrix that the user

wishes to unfold, and if using the FBU library (built on the PyMC3 library [12]) this can take days of running

time, even when parallelizing the sampling. The computer used in this thesis was a Lenovo Yoga with Intel®

Core™ i7-7500U CPU @ 2.70GHz × 4 and 7.5 GiB memory. This means that the process can be faster using a

computer with more than two cores and more memory, but it can never be expected to be as fast in terms of the

Iterative method computation time. Another way to reduce sampling time is to re-bin the spectrum, since FBU

Figure 6.1: The first excited state of 28Si including the raw spectrum including background, the background

itself and the background subtracted raw spectrum before filling and removing negatives. The y-axis is

symmetric logarithmic scale.
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makes a prior for each bin the computation time extends for each bin. However, this has to be done without the

loss of important features in the spectrum. In cases where fine binning is necessary it might become to complex

for a typical office computer to handle. This again can be solved with varying bin size. The FBU method offers a

intuitive way of analysing the raw data and unfolding them and also including uncertainty estimates. In addition

the model itself can be evaluated in greater detail than in the case of other unfolding methods with various

model checking techniques, some of them presented in the next section.

3 Model Checking of FBU

To make sure the model used in this study gives consistent answers, Bayesian statistics offers tools to evaluate it

which are described below. The model under evaluation is

T ∼ Uniform(lower,upper)

f = B +RT

T̂ ∼ Pois(f),

where the background isincluded, but can be omitted if using background subtraction. The first check of the

model is a posterior predictive check, which was explained in chapter 2. The basic idea of posterior predictive

checks is that it simulates data rawrep by drawing samples under the fitted model, and then compare these to

the actual observed data raw [6]. Doing this might reveal systematic discrepancies between the real data and

the simulated data rawrep under the model. An important note on posterior predictive checks is that they do

not reveal if the model is better than other models, it is just a check to verify that the model makes sense in

respect to the data. In theory this check is re-using data, thus violating the likelihood principle. However, since

it is used as a check to see if the model fits the data and nothing else, it has been largely accepted as a model

checking method and it is implemented into the PyMC3 library [12].

Figure 6.2 a) shows the replicated sampled data rawrep and their mean compared to the raw spectrum of the

first excited state of 28Si. The background has been subtracted, and the diagonal and threshold have been cut

out of the spectrum, since they do not contain counts. Figure 6.2 b) shows the relative difference between the

replicated data and the raw spectrum. Here one sees the main discrepancies between the model and the actual

data. There are huge differences in the threshold area and where the 1779 keV-peak is centered. In figure 6.3 the

same is shown but for the background-included spectrum. The same discrepancies are present but to a much

smaller degree. It is worth noting that a relative difference in the threshold area seem to have an effect on the

1779 keV-peak. In chapter 5 the relative difference changed for the folded of the FBU when adding the zeros to

the threshold area as was shown by comparing figure 5.8 with 5.9. Looking at the projected response for the

same cut in excitation energy as was made in the raw matrix ([1400, 2200] keV) in figure 6.4, shows the threshold
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area. The prior of the unfolded is multiplied with the response matrix, and the effects from the response thus

has an influence on the posteriors. Since the data is zero in this area the effects seen in the threshold area stem

from the prior and response function. This might be solved by updating the response matrix according to the

digital electronics.

Another interesting observation is that the model seems to perform better when the background is added. It

can mean that information is lost when setting the counts below the diagonal to zero, at least in the case of

unfolding with FBU. The more information fed to the method the better it performs it seems.

Figure 6.2: a) Replicated data rawrep drawn from samples versus the actual raw spectrum where the diagonal

and threshold is cut. b) The relative difference for the replicated data rawrep relative to the raw spectrum

Figure 6.3: a) Replicated data rawrep drawn from samples versus the actual raw spectrum with the inclusion of

background. b) The relative difference for the replicated data rawrep relative to the raw spectrum
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Another technique used to check the model is to compare the prior probability to the posterior distribution

as mentioned in chapter 2. Is the uniform prior used the best for describing the data? From looking at the

posteriors for each truth-bin in figure 5.5 they vary from bin to bin, but none of them are uniformly distributed.

By inspecting the posteriors a varying prior for each bin can be suggested, for example: A normal distribution

where there should be peaks and a exponential distribution in the bins that are skewed towards zero. The

problem with doing so is the lack of knowledge of the spectra in question. In the case of the first excited state

of 28Si the features of the spectrum can be identified, but this is far from the case with many other nuclei.

The prior for the bin containing the counts from the 1779 keV peak ranged from 0 to 1.522e6, after correcting

for efficiency and the scale of the full energy peak. Before running the sampling it was clear that the counts

in this peak should not be around 0, since it is a full energy peak. Then again, making a informed prior is

challenging when taking the spectrum as a whole into consideration. Features can be hidden inside the Compton

distribution and therefore be easy to miss. The uniform prior does not seem to have much influence on the

posterior distribution, meaning the evidence of the data is altering the prior belief. This is desired in the case

of unfolding γ-ray spectra, since the outcome is often unknown. A well defined objective prior that allows the

likelihood of the data to alter the posteriors so values for the unfolding can be estimated is highly desired. The

only informed decision for the prior in this case, is that the lower bound is set to zero and the upper bound is

corrected for the efficiency and the scale of the full energy peak.

Figure 6.4: The Response projected onto the Eγ axis for excitation energy Ex = [1400, 2200] keV.
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Figure 6.5: The standard deviation of the iterative unfolding method.

4 The Statistical Variance of the Iterative Method

Using the class called Ensemble from the OMpy library, the statistical variance from the raw data can be

estimated. This enables the estimation of the variance for the iterative unfolding method and also for later

stages in the Oslo Method. The method was explained in chapter 4. In figure 6.5 the matrix containing the

standard deviation (only) after unfolding with the iterative method is shown. The method takes as input the

raw matrix shown in figure 5.1, then 100 perturbed raw matrices where generated by randomly drawing from a

Poisson distribution, as was explained in chapter 4. This is an unbiased estimation since the Poisson estimator λ

equals the estimated value of the number of counts, thus giving the statistical variance (statistical errors) of the

unfolded matrix.

In figure 6.6 the iterative method with its standard deviation and FBU with uncertainty estimates for the first

excited state of 28Si is presented, with background subtracted. The statistical variance of the iterative unfolding

is wide in the areas where the method itself fluctuates more. Both the statistical variance and the HPD-interval

are narrower in the area with high amount of counts. This is expected since in the areas with more information

(i.e higher statistics) both variance for the iterative method and the uncertainty of FBU is smaller. In chapter 4

the difference between statistical error (variance) and systematic errors (bias) was explained. Figure 6.6 shows

the variance of the iterative unfolding method and the FBU with its uncertainty in the estimations. The FBU

offers an evaluation of itself by giving uncertainty in the estimated unfolded spectrum. Since the actual truth

spectrum is not always achievable one cannot know the exact bias of the model, but rather the uncertainty of the

method. The ensemble method together with FBU gives a wider picture of the error estimates of the unfolding,

and both can be propagated into further analysis.
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Figure 6.6: The iterative unfolding (OMpy) with standard deviation and FBU with HPD-interval, where the

y-axis is symmetric logarithmic scale.
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Chapter 7

Summary and Future Outlook

1 Summary

In this thesis the unfolding of γ-ray spectra attained from OSCAR, an array of LaBr3:Ce scintillator detectors,

was investigated using a new method called Fully Bayesian Unfolding. The FBU has never been investigated

fully with nuclear physics data but was developed for high energy physics data [38]. The library is built on

another library called PyMC3 [12] which is a package for Bayesian statistical modeling in python.

The FBU method uses Bayes’ theorem and thus samples from a likelihood and prior resulting in posterior

distributions for each bin. The posterior distributions can be evaluated in binned histograms where the probability

of each values can be seen. To extract the uncertainties of the model a credible interval was chosen, in this

thesis the highest probability density interval. This will give the interval including the highest probable values of

the posterior distribution. There exist other credible intervals such as the Equal Tailed Interval (ETI), then

including the median of the distribution. Both are often used within Bayesian statistics and it is advised that

the user of the method evaluates what best describe the posterior distributions. In addition, the Maximum A

Priori (MAP) was also considered during this study. To calculate the MAP a optimization code was used taken

from the PyMC3 library [12]. The MAP is efficient and estimates the mode of the posterior distribution. The

drawback of the method is that the mode does not always represent the posterior distribution and it does not

provide uncertainty estimates. Since the unfolding requires estimated values with uncertainty the mean of the

HPD-interval was chosen to describe the unfolded spectrum.

The aim of the thesis was to use Bayesian statistics to unfold raw data and thus attain uncertainty estimates

that can be propagated into further analysis like the Oslo-Method. That said, the unfolding is general and can

be used on data intended for other means. The data used to evaluate the FBU was taken from an experiment on

the 28Si(p,p′γ) reaction. The first excited state of this reaction has a clear full energy peak and features that are
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easily identified. Thus making it a good candidate to evaluate the method. In addition the first test of unfolding

a matrix with the unfolding method was done.

The experimental setup consisted of the particle detector SiRi in backward angles and OSCAR-array placed 16

cm away from the target. The target consists of 92.223% pure 28Si, 4.685% 29Si and 3.093% 30Si [40] and was

8− 9 mg/cm2 thick. The thick target and SiRi in backward angles resulted in a poorer resolution than can be

expected in forward angles. With the resolution being 360 keV for the full energy peak of the first excited state.

The pile up rate was high making the contribution of the 511 keV peak high.

When it comes to unfolding it is assumed that the response matrix is known. The response matrix used is made

by simulating γ-ray transition with the GEANT4 toolkit [30–33]. For the iterative unfolding method each row of

the matrix is normalized and sums up to zero. In FBU however, the response is scaled by the total efficiency.

The total efficiency of OSCAR has not been fully established, but a value of 50% was assumed in this study for

the 1332 keV energy. This value was found by calculating the geometric efficiency and then assuming that the

total efficiency was reduced by 14% of the geometric efficiency (as was the case for the previous detector setup

CACTUS). The high pile up rate makes the condition for which the response matrix was made quite different to

the condition of the experiment under study. In addition, the response matrix was made for analog electronics,

the system has later been upgraded to digital electronics. The treatment of the threshold area for the analogue

electronics and digital electronics do not seem to coincide, at least not according to the results obtained in this

work.

The iterative unfolding method was compared to FBU. The main difference between the models is that the

iterative method does not include background. Rather it requires background subtraction, and the user has to

specify a diagonal where all the counts below it are set to zero. This treatment of the raw data has its physical

motivation in the fact that counts over the Ex = Eγ line cannot stem from γ-ray transitions. In the case of the
28Si(pp′γ) reaction, the background subtraction seems reasonable. Nonetheless, the FBU performs better when

the background is included. The iterative unfolding method fluctuates more than the FBU for lower energies (¡

1700 keV).

Using FBU offers a model checking to a greater extent than just evaluating the uncertainty of the credible

interval. In this thesis a posterior predictive check was done for the first excited state of 28Si with and without

background subtraction. By replicating data under the model, the models fit to the data can be considered.

For the background subtracted case, the discrepancies in the threshold area and for the 1779 peak where huge.

Indicating that an evaluation of the treatment of the threshold area is needed. For the background-included

spectrum the discrepancies in these areas where less but still present. In addition to the posterior predictive

checks the prior chosen was evaluated. In the case of unfolding a uniform prior was used and it had the desired

effect: it did not seem to influence the posterior distributions in an unwanted way.
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The OMpy library [37] offers a method to estimate the statistical variance of the iterative unfolded method by

using the class ensemble. This together with the FBU gives a broader knowledge of the variance and uncertainty

of the unfolding methods used in this thesis.

2 Outlook

In the present work a new method for unfolding has been investigated. Since FBU has never been explored to

this extent for γ-ray spectra, there is still much work to be done. The method has shown itself to be intuitive and

helped shed light on some possible parts of the unfolding process that may need to be revised, like the treatment

of the threshold area. The response matrix has been exploited as a possible source of the discrepancies seen in

the unfolding. That said, one can never expect a perfect response function for each experiment. The condition

under which the response matrix was made does not always coincide with the condition of the experiment. Also,

the response matrix of OSCAR is a work in progress.

The FBU as a method for unfolding γ-ray spectra is stable and shows great potential to further use. As shown

in the results for both the first excited state and unfolded matrix, the FBU re-distributes more counts to the full

energy peaks, fluctuates less than the iterative unfolding method and offers uncertainty estimates. The problem

is the sampling and the computation time. This is often the down side of using Monte Carlo sampling on high

dimensional problems. The computation time gets better when reducing the bin size of the spectrum, but this is

not always desired. This can be solved by using varying bin size, which should be explored further. Nonetheless,

the user must be prepared for more computation time than the iterative unfolding method.

The FBU library is built on the PyMC3 library and the developers are currently working on PyMC4. The main

difference between the two is that PyMC4 [43] is built on top of TensorFlow and the TensorFlow Probability

library [44], instead of the theano library [45] which PyMC3 is built upon. It might be worth exploring the new

library when it is published to full extent. The FBU library is developed for high energy physics unfolding and

the code was made in 2013 [38]. Other probabilistic libraries might be worth looking into. When a good review

of the possible libraries has been done a code can be implemented into the OMpy library. Made specifically for

the unfolding of γ-ray spectra, not for high energy physics. Bayesian statistics is being used more extensively

now than ever before since better sampling algorithms have been developed. Many computational scientist are

working on bettering the computation time, and it is therefore important to keep up to date on the topic and

follow the developments.

When it comes to the unfolding itself there are more possibilities to explore outside the scope of this thesis. For

example, the prior used in this work was the uniform distribution which was corrected for efficiency and the scale

of the full energy peak. Other priors can easily be tested and can work better for some cases than the uniform

prior. In the original paper of FBU written by Georgios Choudalakis [38], priors including regularization showed

promising results. Conjugate priors can also be explored, the conjugate prior distribution of a Poisson being

a Gamma distribution. Choosing more specified priors that do not distribute equal probability to each draw
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(like the uniform prior will) can make the computation time for FBU faster since the sampling algorithm faster

reaches convergence.

Model checking is a topic that was briefly touched in this thesis and can be done to much greater extent. A

sensitivity analysis could be done: then comparing the currently used model to a simpler model or a complex

model. If the currently used model is sensitive to these changes it might indicate problems. If doing a thorough

check of the model the outcome can be achieving more knowledge of model and also potentially bettering it for

future cases.

The motivation of this thesis was to test a new unfolding method for γ-ray spectra which could provide uncertainty

estimates, as well as explore the possibilities for less fluctuations and negative counts in the resulting unfolding

spectra. Bayesian statistics is a powerful tool and the FBU method has shown itself to be very useful in the

unfolding of γ-ray spectra. Providing priors so a lower bound can be set on the outcome, preventing it from

giving negative values. The uncertainty estimates will prove useful when propagating into further analysis and

can also be helpful when it comes to the unfolding itself. The user can test the model with various model checking

tools and refine it for their own cases. It deserves more revising and to be tested for other reaction.
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Appendix A

import numpy as np

from scipy.stats import truncnorm

from typing import Optional, Tuple, Iterator, Any, Union

def fill_negative_gauss(array: np.ndarray, Eg: np.ndarray,

window_size: Union[int, float, np.array],

n_trunc: float = 3) -> np.ndarray:

if isinstance(window_size, (int, float)):

window_size = np.full(array.shape[1], window_size)

sigma = window_size/2.355 # convert FWHM to sigma

else:

assert len(window_size) == array.shape[1], "Array length incompatible"

sigma = window_size/2.355 # convert FWHM to sigma

# generate truncated gauss for each Eg bin, format [Eg-bin, gauss-values]

lower, upper = Eg - n_trunc*sigma, Eg + n_trunc*sigma

a = (lower - Eg) / sigma

b = (upper - Eg) / sigma

gauss = [truncnorm(a=a, b=b, loc=p, scale=sig).pdf(Eg)

for p, sig in zip(Eg, sigma)]

gauss = np.array(gauss)

array = np.copy(array)

N_Ex = array.shape[0]

for i_Ex in range(N_Ex):

row = array[i_Ex, :]
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for i_Eg in np.nonzero(row < 0)[0]:

positives = np.where(row < 0, 0, row)

weights = positives * gauss[i_Eg, :]

for i_from in np.argsort(weights):

if row[i_from] < 0:

break

shuffle_counts(row, i_from, i_Eg)

if row[i_Eg] >= 0:

break

return array

def remove_negative(self):

""" Entries with negative values are set to 0 """

self.values = np.where(self.values > 0, self.values, 0)

[37], [46], [47], [48].
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Link to Github where all the codes and files used in this thesis are available:

Github Link
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