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Abstract

Density Driven Convection (DDC) is an interesting effect which appears through a coupling between
a flow field and the diffusion of some density altering component. In this project, the convective
mechanics of dissolved CO2 in water are investigated. When CO2 comes into contact with water it
partially dissolves and forms carbonic acid which gives rise to a small density increase and change
in acidity level (pH).

A proprietary color indicator and analysis method was used to estimate the pH field from digital
images and sample colors, which when coupled with a chemical equilibrium model can estimate the
actual concentration field of dissolved carbon species. This goes beyond the more conventional single
indicator methods, which are only sensitive to change in a very narrow region on the pH scale. While
the strengths of the multi indicator method were clearly demonstrated, the tolerances in physical
dimensions of the flow cell constructed were inadequate to guarantee a uniform permeability field,
which caused some experimental artifacts to appear.

Along with flow cell experiments a numerical model was developed, which can simulate DDC.
The method used is a combination of the Finite Volume Method (FVM) for the advection-diffusion
equation, the Finite Difference Method (FDM) for the flow field and an Alternating Direction Implicit
(ADI) method for time propagation. A linear algebra solver was optimized for the resulting matrix
operations, which resulted in a computationally efficient and versatile program. The numerical
results agree well with those obtained from theoretical studies and also demonstrate the complicated
non-linear dynamics of DDC.
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Preface

Given my interest in inter-disciplinary problems, and previous experience from the
field of chemical engineering, I took great interest in tackling a problem which couples
chemistry with fluid mechanics. Having gone through the entire process from countless
early preliminary tests, to more systematic experimental design and execution, as well
as later gaining insight in the world of computational physics, I can safely say that I’ve
been acquainted with a strong arsenal of problem solving tools, which I’ll carry with
me on my future scientific endeavours.

As is often the case with experimental work, everything rarely goes as planned.
Unfortunately, the COVID-19 pandemic did leave its mark on this project due to re-
strictions in access to campus laboratories during the main round of experiments. To
make the best of an otherwise tragic situation, I seized the opportunity to delve deeper
into the world of computational physics and simulations. Although not initially a part
of the plan, given the circumstances, this part turned out to become a notable portion
of the presented work. In a perfect world, more time and resources could have been
used to further improve the experiments, but all things considered, I’m grateful for how
this project turned out.

Despite this slight setback I’m very thankful for my time at the University of Oslo.
I could not have accomplished this thesis without the support of my advisors, PoreLab
staff, close friends and relatives, which despite distancing limitations helped me stay
on track until the end of this project.
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List of commonly used symbols and abbreviations

Dimensional quantities regarding DDC
X, Y Position
U Velocity
P Pressure
t Time
g Gravitational acceleration
ρ Fluid density
Ψ Stream function
D Molecular diffusivity constant
C Volumetric concentration
b Hele-Shaw cell aperture
k Permeability
µ Dynamic viscosity

Dimensionless quantities
x, y Position
u Velocity
τ Time
Ra Rayleigh number
ψ Stream function
f Permeability fluctuation function
c Volumetric concentration

Chemical equilibrium quantities
pCO2

Partial pressure of CO2

K Chemical equilibrium constant
[A] Concentration of chemical species A
pH Acidity, − log10([H])
pK Shorthand for ”potency of”, defined as − log10(K)
CT Total carbon concentration

Mathematical operators
∂
∂ζ Partial derivative
D
Dt Material derivative
∇ Dimensional gradient, with respect to X, Y

∇̃ Dimensionless gradient, with respect to x,y
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1 Introduction

Consider a system consisting of gaseous Carbon Dioxide (CO2) and liquid water. At ambient condi-
tions a chemical equilibrium exists which causes the CO2 to dissolve and diffuse into the water and
form carbonic acid. The rate of dissolution depends on the CO2 concentration at the boundary and
thus slows down and stagnates when the equilibrium is reached. However when one couples these
dissolution dynamics to a flow field, something interesting happens. Since carbonic acid slightly
increases the density of the liquid, the chemical dissolution at the boundary will cause a natural
convective flow - which in turn brings more ”fresh” liquid to the boundary. We call this phenomena
Density Driven Convection (DDC). This has the effect of increasing the potential rate of CO2 uptake
of the system compared to the purely diffusive case.

Understanding these dynamics better is paramount to understanding the hydrodynamic effects
involved with carbon capture and storage (CCS), since CCS is often realized by pumping CO2 into
underground geolocigal formations sealed by some cap rock. Because of buoyancy the gas will seek
to the top and the previously described dynamics take place at the gas-liquid interface [1].

To simulate this, first density driven convective flow is modelled in 2D porous media and cou-
pled with the advection diffusion equation. Using dimensional analysis one can quantify different
convective regimes and see the effect of varying the Rayleigh number, which is a number which
balances the rate of convection and diffusion. Previous theory suggests the existence of a Rayleigh
number threshold - below which the diffusion is fast enough to continuously stabilize the concentra-
tion front. Above the critical Rayleigh number, fluctuations in the concentration front can increase
exponentially, which leads to a strong instability which causes the sinking finger-like structures to
form.

The plumes which form during DDC have an interesting morphology, which can vary with system
conditions. Therefore an experiment will be designed from the ground up, that is able to visualize
said plumes by developing suitable experimental hardware, colorful solutions and image analysis.
An example of plumes visualized with this method is shown in Fig.1. This approach is aimed at
attempting to determine how the pH field of these plumes appear and vary with time. Given the
pH field and certain assumptions from chemistry, this approach will also be used to try and deduce
the spatial fluctuations in carbon dioxide content.

Figure 1: The liquid consists of water and a pH indicator, which is turquoise at
neutral conditions and becomes yellow and orange at more acidic conditions. When
gas is introduced at the top of the cell, the boundary becomes very acidic, and mildly
acidic fingers begin to sink further into the media.
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2 Previous work

2.1 A brief introduction to carbon capture and storage

With the current state of our energy affairs, and the climate risk associated with greenhouse gas
emissions, scientists keep pursuing different ways of pushing our energy society towards a greener
future with lower emissions. In tandem with a goal for reducing emissions is the relatively new
approach of carbon capture and storage (CCS), which is an approach that can help achieve carbon
neutrality, and although unfeasible today, could in theory be carbon negative.

Figure 2: Change in the contribution of the carbon-trapping mechanism of CO2

storage over time when injecting pure supercritical CO2 into sedimentary basins (part
a) and when injecting water-dissolved CO2 for mineralization (part b), based on data
from field injection experiments from the CarbFix project. Figure reprinted from [2]

CCS is most commonly realised by isolating CO2 from high emission point sources, such as power
plants, cement factories, aluminum refineries etc. and pumping it at high pressure or supercritical
conditions into underground geological formations [2]. These formations need to be sealed with a
relatively impermeable cap rock to prevent seepage or leakage of the buoyant CO2. Certain oil and
geothermal reservoirs have proven very useful in this regard [3].

One of the most important considerations of CCS is how the CO2 is actually trapped for storage,
as to not leek and contaminate the surrounding environment with carbonic acid. In literature, the
process is often broken down into several trapping mechanics [2][3]. Initially, CO2 is physically
trapped by being injected below a caprock of low permeability. As the name suggests, this implies
the injection site has a suitable geometry and low enough permeability to sufficiently contain the
buoyant CO2 from rising upwards. These traps commonly consists of folded or fractured rock.

Due to the aforementioned buoyancy of CO2, it will migrate through the surrounding structure,
and some of it will in turn be retained in pore spaces by capillary forces. The capillary forces block
the formation water from entering these pore spaces again, and therefore the residing CO2 becomes
immobilized. This mechanism of trapping is typically referred to as residual trapping [1].
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When the injected CO2 comes in contact with formation water, solubility trapping will also
contribute to the carbon storage process. Solubility trapping refers to trapping by dissolution into
liquids already present in the geological feature. The precise details of this depends heavily on the
conditions[4]. For example higher pressures and supercritical conditions speed up the dissolution
process. Density Driven Convection (DDC) is also a key component of the solubility trapping
mechanic, since it can accelerate the diffusive mixing that drives the dissolution process. One clear
desirable aspect of solubility trapping is that the CO2 enters the water phase, and dissolved CO2 is
thus not prone to seeping out of the reservoir due to buoyancy [1] [3]. On the contrary, solubility
trapping increases fluid density and the affected liquid will instead sink. The physical and chemical
modeling of this is the main subject of the work at hand, and will be discussed in further detail in
the following sections.

Last but not least is the process commonly referred to as mineral trapping. Upon dissolution,
the CO2 will with the present formation water form carbonic acid. Depending on the geochemistry
of the surrounding rock, a chemical reaction may take place between the ionized acidic liquid and
minearls. On a longer time scale, carbonate minerals may form, which get deposited in the pore
spaces of the formation rock. This is considered the most permanent form of carbon storage, but is
also the slowest to take effect.

The comparison of the contributions and time scales of these individual dynamics are illustrated
on Fig.2. For clarification, subplot b is derived from the CarbFix project, in which a mixture of
CO2 and water is injected into highly reactive basaltic formations, so the structural and residual
steps do not apply. subplot a is a more convenctional approach [2][3]. This underlines the important
contribution of solubility trapping and DDC with regards to CCS. This is a clear motivation to
better understand DDC, both the complicated nature of natural convection and its potential role in
climate mitigation methods.

2.2 Theoretical work

The nonlinear dynamics of DDC are complicated by nature. At or around the onset of convection,
linear stability analysis can be used to lay a theoretical foundation for the growth of an instability,
caused by a density gradient [5]. From a mathematical standpoint, the modeling of DDC caused
by CO2 dissolution is analogous to that of density gradients due to thermal expansion, which linear
stability methods have also been applied towards [6][7]. Studies like these first determine the relevant
equations (and boundary conditions) of motion, diffusion of heat and/or solute and how the density
varies with concentration or temperature. Then by imposing a small perturbation, one can solve for
how these perturbations grow or shrink with time. These studies agree that the critical Rayleigh
number at which DDC becomes possible is Rac = 4π2.

Furthermore, linear stability analysis also demonstrates that different wavelengths will grow
with different rates. Hassanzadeh et al. found a reciprocal relationship between fastest growing
wavenumber and Rayleigh number [8]. Thus if the underlying assumptions are valid, one would
expect the emerging wavelength to decrease noticeably with increasing Rayleigh number.

Additionally, the same theory can also estimate the time at which convective dynamics start to
dominate [8], often referred to as the onset time or critical time. It is shortly after this time that
the nonlinear behaviour takes over. Through linear stability analysis, the onset time is expected to
be inversely proportional to the Rayleigh number squared, indicating that lower density gradients
take significantly longer to develop convection plumes. This was reported by Ennis-King et al., who
also demonstrated that the anisotropy of the porous media can play a significant role in the onset
time [4].
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2.3 Experiments

2.3.1 Quantitative Experiments

In this category, experiments that are concerned with the macroscopic observables are placed. Most
prominently, this involves the time dependent rate of mass transfer to the system. From this one can
deduce the mass flux at different times, and estimate an effective diffusion constant. These experi-
ments are conducted in so called PVT cells. The fundamental idea is to build a an isolated chamber
in which DDC is to take place. During experiments the chamber contains only a water saturated
porous medium and gaseous CO2, which starts the DDC process. There are two approached to
obtain useful data from such experiments. One can either inject a known quantity of CO2 and then
fully isolate the cell, and track the reduction in gas pressure as it dissolves into the water [9], or use
a metered pump to maintain a constant pressure while measuring the flux of gas needed to maintain
said pressure [10][11]. Both of these approaches show that the effective diffusion rate during density
driven convection is around one order of magnitude faster than that of purely molecular diffusion.
As time progresses, the water wet porous medium becomes more and more saturated. Therefore
at later times, there is a much smaller density gradient driving the flow, and thus less fresh fluid
is getting replenished to the liquid-gas interface, slowing down the mass flux until it approaches
the flux expected by molecular diffusion. This behaviour was clearly visualized by Tang et al. who
determined a time dependent effective diffusion constant which at its peak was roughly 24 times
that of molecular diffusion of CO2 [11].

2.3.2 Experiments on convection plume patterns

Much of the experimental work on plume patterns relies on the use of pH color indicators to visualize
the convection plume patterns in 2D Hele-Shaw cells [12][13]. These studies can relatively easily show
the CO2 affected fluid regions, and how they propagate in time. This offers the possibility of tracking
plume locations, lengths, areas etc. Compared to their relative simplicity, these experiments can give
much intuitive insight into the complex plume patterns observed during DDC. This has in turn raised
questions about the methodology of this visualization technique. Thomas et al. demonstrated that
the resulting morphology of the convection plumes largely depends on the color indicator being used
[14]. This was determined by repeated experiments in Hele-Shaw cells colored by Bromocresol Green
and Bromocresol Purple. Additionally, the group compared the colored plume morphology obtained
via a color indicator to fluctuations in refractive index obtained by Schlieren imaging. Among the
conclusions were that the choice of indicator does in fact dictate what the imaged patterns will look
like, but did not appear to have an effect on the dynamics themselves. This comes from the fact
that the previous color indicator approaches have no meaningful way of estimating an amount of
dissolved carbon, and as such, the collected data more resembles a binary image of an affected vs an
unaffected area. This is a motivation to try and improve on the color indicator approach, in search
of data more suitable to quantitative analysis. This will therefore be the main goal of this project,
to design a DDC experiment with a suitable color indicator and image analysis method which is able
to capture a continuous pH field and estimate the amount of dissolved carbon species from image
data alone.
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3 Theory and modelling

3.1 Modeling a quasi-2D flow in porous media

The system under consideration is a Hele-Shaw cell, which is characterized by confining fluid flow be-
tween two plates with a narrow spacing between plates. For the flow to be modelled as 2-dimensional,
we assume the spacing between the plates is minuscule compared to the width and height of the cell.
As an example of scale the plate spacing is usually about a few mm, while the width and height are
typically on the scale of half a meter. For creeping flows, one typically uses Darcy’s law to model
fluid flow in porous media.

~U = −k
µ

(∇P − ρ~g) (1)

which states that the flow follows the negative pressure gradient (in this case biased by gravity). k
is the permeability of the medium and µ the viscosity of the liquid. For a typical Hele-Shaw cell
with inner spacing b, the permeability would be k = b2/12. Here the sign has been chosen such that
the Y coordinate increases downwards and is 0 at the gas-liquid interface.

If one is mainly interested in the velocity field, Eq.1 can be manipulated to eliminate the pressure
field - and thus reduce the amount of unknowns. For now, assume that only µ and ~g is constant,
but all other terms of Eq. 1 are generally 2D vector or scalar fields. One finds that:

1

k
~U = − 1

µ
(∇P − ρgêY )

Assuming 2D geometry, there is no Z-dependence, but it can still be helpful to consider these fields
as a subspace in 3D. Then one can take the curl of both sides. Knowing that the curl of a field is
always orthogonal to the field in question - the resulting curls will only have z-components, from
which the following expression is obtained:

∂

∂X

UY
k
− ∂

∂Y

UX
k

=
∂

∂X

ρg

µ

Here the pressure field was eliminated - since the curl of any gradient field is 0. One can further
reduce the amount of unknowns by introducing a vector potential:

~U = −∇×ΨêZ (2)

Which similarly is confined to the 2D plane, since the curl of a purely Z-directed field will be
orthogonal to the Z-direction. Thus instead of solving for a velocity field with 2 components, one
can solve for a scalar function Ψ, which contains the velocity field as its partial derivatives:

UX = −∂Ψ

∂Y
UY =

∂Ψ

∂X
(3)

Such a function ψ is commonly known as a stream function, and is a very helpful tool for solving
2-Dimensional creeping flows. With this redefinition of the velocity field, the equation for Ψ becomes:

∇ ·
(

1

k
∇Ψ

)
= − 1

k2
∇k · ∇Ψ +

1

k
∇2Ψ =

g

µ

∂ρ

∂X
(4)

An interesting side effect of the stream function method is that the contours of the stream function
correspond to stream lines, which are always tangential to the flow field. This can easily be shown
by the fact that:

∇Ψ · ~U = −∂Ψ

∂Y

∂Ψ

∂X
+
∂ψ

∂Y

∂Ψ

∂X
= 0
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We know that gradients of scalar fields are orthogonal to the contour lines of said fields. Thus if the
velocity field is orthogonal to the gradient of the stream function, that must mean that the velocity
field is tangential to the contours of ψ.

A few words on continuity

For mass conservation to be fulfilled, we need the material derivative of the density to be zero.

Dρ

Dt
=
∂ρ

∂t
+∇ ·

(
ρ~U
)

= 0 (5)

Which tells us that any change in mass of a fluid element is caused by some net imbalance (di-
vergence) of mass flux in and out of the element. Now, although the density itself is the driving
force of the flow under consideration, the density changes are minuscule, and thus a Boussinesq
approximation can be applied. This reduces the continuity equation to:

∇ · ~U = 0 (6)

Which is already satisfied by Eq.2, since the divergence of any curl is 0.

3.2 The advection diffusion equation

Consider some scalar parameter γ, defined in the liquid. The material derivative of γ refers to the
time-change of γ as viewed from a frame of reference which moves with a given volume element.

Dγ

Dt
=
∂γ

∂t
+ ~U · ∇γ (7)

This could in principle be any scalar quantity, like heat or a concentration of a solute material. For
DDC we’re interested in the transport of dissolved CO2, or carbonic acid. For modeling purposes
we will simply refer to this as chemical, and represent its volumetric concentration with a scalar
field C. Any dissolved chemical species will diffuse through the solvent via molecular diffusion. The
rate of molecular diffusion is proportional to the laplacian of the field. Thus:

∂C

∂t
+∇ · (~UC) = D∇2C (8)

So the time rate of change of the chemical concentration becomes:

∂C

∂t
= ∇ ·

(
D∇C − ~UC

)
(9)

3.3 Density Driven Convection in 2 dimensions

When the aqueous system is exposed to gaseous CO2, the gas will slowly diffuse into the liquid.
If the water is exposed to a constant partial pressure of CO2, the volumetric concentration will be
determined by the carbonic acid equilibrium. Thus, assume that the liquid has a density ρ0 at little
or no chemical content C0, and a density ρe, when the chemical equilibrium concentration Ce has
been reached. Assuming the density change is linear between these points, we expect:

ρ = (ρe − ρ0)
C − C0

Ce − C0
+ ρ0 (10)
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From which the right hand side of Eq.4 becomes dependant on the horizontal partial derivative of
the chemical concentration field. Introduce the following rescaling factors:

Xc = H Uc =
φD

H
tc =

H2

D
(11)

Where H is the vertical height of the porous media. φ is the porosity of the porous media, which
is the fraction of volume accessible by the liquid. Finally, D is the molecular diffusion constant.
One should note that D is generally dependant on the chemical solute species, the solvent and
thermodynamic conditions. The concentration field is rescaled linearly, such that dimensionless
concentration is 0 initially and approaches 1 at equilibrium:

c =
C − C0

Ce − C0
(12)

A dimensionless function f is introduced, which serves to introduce permeability fluctuations. The
permeability is then k = fkm where km is an average permeability. For this definition to be
applicable, f needs to be strictly positive and average to 1. Now the dimensionless Rayleigh number
can be introduced:

Ra =
∆ρgkmH

φDµ
(13)

Here ∆ρ = ρe − ρ0 is a constant which determines the density change caused by the dissolved
chemical. g is the gravitational acceleration, µ and the liquid viscosity. This number compares the
rate of convective transport to diffusive transport, and a change in Ra can represent many different
changes in physical parameters. An increase in Ra can for instance be achieved by making the porous
medium more permeable or the liquid less viscous, increasing the fluid flow and thus convection.
Similarly one can lower Ra by for instance increasing the porosity (which is the volume fraction of
the porous medium accessible by the liquid) or by introducing a tilt, replacing g by g sin θ.

With these definitions of characteristic scales, the coupled system of equations can be written in
dimensionless units:

− 1

f2
∇̃f · ∇̃ψ +

1

f
∇̃2ψ = Ra

∂c̃

∂x
(14)

∂c

∂τ
= ∇̃ ·

(
∇̃c− ~uc

)
(15)

ψ = 0 on all boundaries c(x, y, t = 0) = 0

c(x, y = 0, τ) = 1 ∇̃c · ~n = 0 on the remaining boundaries

In these two equations, a tilde denotes a dimensionless variable. Note that the gradient terms
are also derivatives with respect to dimensionless variables. When the equations have been non-
dimensionalized in this manor, the Rayleigh number is the one remaining constant which governs
the set of coupled equations. For the numerical section the tildes will be dropped, and all presented
values will be dimensionless as per the rescaling shown in this section, unless otherwise is specifically
stated.

3.3.1 A simplified 1D case

It is known that at low Rayleigh numbers, the diffusing concentration front is stable enough to
inhibit convection fingering. In this case, the flow field has neglectable effect on the propagation of
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the front, and in this limit, we can solve for the time dependent concentration field using separation
of variables. This simple case will of course tell us nothing about the convective transfer, but can
serve as a comparison to a system in which only diffusion takes place, that is a Ra → 0 limit.
Consider the simplified 1D case: (

∂

∂t
− ∂2

∂y2

)
c(y, τ) = 0 (16)

c(y, 0) = 0
∂c

∂y

∣∣∣
y=1

c(0, τ) = 1

So here we assume an initial concentration field of 0, a zero-flux criteria at the bottom of the box and
a constant concentration at the top. Using separation of variables, one can find a shifted sine-series
expansion which satisfies the PDE and the boundary conditions. A more detailed derivation of this
is given in the appendix.

c(y, τ) = 1− 2

∞∑
n=0

k−1
n exp(−k2

nτ) sin kny kn =
π(1 + 2n)

2
(17)

Which when integrated over the domain gives an analytical expression describing the total mass of
dissolved chemical in the liquid:

m(τ) =

∫ 1

0

c(y, τ)dy = 1− 2

∞∑
n=0

k−2
n exp(−k2

nτ) (18)

These expressions are difficult to express in other terms than infinite series. They can however be
plotted, if truncated after the first ' 1000 terms. If the mass is instead plotted as a function of the
square root of time, which is often more descriptive of diffusion in open systems, one observes linear
behaviour before the system gets saturated. The concentration profiles of Eq.17 and absorbed mass
of Eq.18 is shown on Fig.3.

(a) Concentration fields at various times. Notice
how initially the front is very sharply defined, but
smoothes out over time.

(b) Total amount of dissolved chemical as a func-
tion of the square root of time. Initially the mass
change with respect to

√
t is linear, with a slope

of 1.126.

Figure 3: Analytical solutions for a simplified 1D case. Notice how our choice of di-
mensionless time (dictated by the diffusive time scale) implies that the system saturates
via diffusion at t ' 1
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Now if the effect of the flow field is strong enough, one would expect the rate of chemical disso-
lution to be quicker. The analytical solutions presented in Fig.3 can however serve as a comparison
between the purely diffusive case, and the advection-diffusion case.

3.4 The fundamentals of the involved chemical equilibria

In the previous sections, we have referred to a concentration field of some chemical. That does suffice
as a simple physical model, which is able to account for density driven convection of some dissolved
species which alters the fluid density. However, as the chemical in question is carbonic acid, one
should also familiarize with the involved chemical reactions and equilibria. Consider, without loss
of generality a chemical reaction of the form:

αA + βB 
 γC + δD (19)

The two sided arrow indicates that the reaction can go both ways. When A and B react to form
C and D one says that the reaction goes forwards. When the rate of the forward going reaction
matches that of the backwards reaction, a chemical equilibrium is reached. For the reaction above
the associated equilibrium constant is:

K =
[C]γ [D]δ

[A]α[B]β
(20)

Here we adopt the conventional notation that square brackets around the name of a chemical species
denotes the concentration of said species once equilibrium is reached. The equilibrium constant is
derived as the ratio of the rate constants of the forwards and backwards reaction of Eq.19. Thus
one says that an equilibrium is reached when these rates are equal, and at this equilibrium, the
concentration of all components are constrained by the equilibrium constant. Furthermore, one
should mind the following [15]:

• Equilibrium constants are generally defined for reactions of aqueous solutions and/or gases.
The concentration of the solvent (e.g. water) does not appear in the expressions, even though
it might take part in the reaction.

• For reactions in which one or more of the components are in a gaseous phase, the concentration
of said species is generally replaced by it’s partial pressure.

• Granted the units of equilibrium constants depend greatly on the particular reaction, most
literature unfortunately leaves the units out and assumes molar concentration (M=mol/L)
for dissolved species and atm for gaseous species.

• In general, equilibrium constants are very temperature dependent (since the forwards and
backwards rate laws typically include a Boltzmann term).

Table 1: Equilibrium constants relevant to the carbonic acid equilibrium at ambient
conditions [16][17]. Acid pKa values are presented for the dissociation equilibria.

Equilibrium Definition Eq. Constant pKa

Henry dissolution Kh =
[CO2]
pCO2

3.4 · 10−2 M/atm -

Hydration KH =
[H2CO3]

[CO2] 1.66 · 10−3 -

First Dissociation Ka1 =
[H+][HCO3

−]
[H2CO3] 2.67 · 10−4 M 3.6

Second Dissociation Ka2 =
[H+][CO3

2−]
[HCO3

−] 4.47 · 10−11 M 10.3
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3.4.1 The carbonic acid equilibrium

The equilibrium reactions between CO2 and water is an example of a more involved system of
equilibrium reactions. This equilibrium is of interest to various fields of the natrual sciences, as it
dictates processes ranging from how oceans acidify due to increased carbon emissions to how living
organisms regulate their pH by breathing.

Consider a body of water in contact with the atmosphere. Assume the idealized glass of water
is initially pure, containing no CO2 or other dissolved species. Conceptually one can think of the
acidifying process as the following reactions.

• Gas dissolution:
CO2(g) 
 CO2(aq) (21)

• Hydration:
CO2(aq) + H2O 
 H2CO3(aq) (22)

• First dissociation:
H2CO3(aq) 
 H+ + HCO3

−
(aq) (23)

• Second dissociation:
HCO3

−
(aq) 
 H+ + CO3

2−
(aq) (24)

So through dissolution, hydration and two dissociations, each CO2 molecule has the potential to
yield 2 hydrogen ions in the glass of water, thus acidifying it. Each of the 4 steps have their
associated equilibrium constants. It should be stressed that although presented in this order, the 4
reactions form a coupled system of simultaneous equilibria. The equilibrium constants are in general
temperature dependent, and can also depend on ionic strength, i.e. the presence of other ions in
solution. For the presented work, neglectable effect of other ions is assumed, so values for pure water
at ambient conditions are used. The associated constants are presented in Tab. 1. These equilibria
are able to account for how a body of water left for a long time in contact with gaseous CO2 will
acidify. Through a derivation, similar to the one in the following section, one can show that at
equilibrium (and for pH << pKa2), the equilibrium hydrogen ion concentration is governed by the
following equation:

[H+] = −1

2
[Na+] +

√
1

4
[Na+]2 + pCO2

KhKHKa1 + 10−14M2 (25)

This tells us exactly how a body of water in equilibrium with a known partial pressure of gas will
become acidic. This equation is not explicitly used in the future experimental methods, but gives
an idea about the range and nature of the chemical dynamics to be investigated. With no NaOH
addition, at normal atmospheric conditions (' 350ppm), the pH would be around 5.7. However the
samee body of water is in equilibrium with pure 1 atm CO2, the pH reaches just below 4. The exact
relationship is shown on Fig.4a, both for pure water and for a small addition of NaOH matching
that of the liquid used for experiments.

Similarly, the so called Bjerrum plot on Fig.4 shows the fractional composition of carbon species
for a given total amount of carbon by Eq.29. The plot is derived by taking the individual components
and evaluating their concentrations with respect to the total dissolved carbon CT .
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(a) The pH of a body of water in contact with
specific partial pressures of CO2 gas. Two plots
are shown, one for pure water and the other for
water which initially has a small concentration of
NaOH base, equal to the concentration used in the
presented experiments. With the added base, at 1
atm, the equilibrium is reached slightly above pH
4.

(b) A Bjerrum plot, displaying how the fractional
composition of dissolved carbon species vary with
pH due to the involved chemical equilibria. Note
that the blue line includes both hydrated carbonic
acid and unhydrated CO2, since hydration is inde-
pendent of acidity. However, the hydration equi-
librium constant in Tab.1 tells us that at any time,
there is roughly 600 times as much unhydrated CO2

as there is carbonic acid [16].

Figure 4: Some analytical chemical characteristics of the carbonic acid equilibrium.
Here the partial pressure dependence on pH, and the relative compositions are shown.

3.4.2 Connecting pH and carbon concentration

The four aforementioned chemical equilibria describe how gaseous CO2 can interact with water
solutions to acidify them. Ultimately the goal with respect to experimental work is to estimate
a concentration of dissolved carbon for a given observed pH value. Chemical equilibria, such as
the carbonic acid system are inherently macroscopic definitions, often used in analytical chemistry
in which solutions are commonly assumed to be completely homogeneous, having uniform concen-
trations throughout the entire solution. With that in mind, one can with relative ease deduce
equilibrium concentrations and acidities of bodies of water in contact with carbon dioxide with a
known partial pressure. However, in the system under consideration, the concentration fields are
clearly not uniform, and thus the equilibrium models need to be applied differently.

Therefore a model is proposed, in which every small fluid element will be treated as being in
pseudoequilibrium, such that the various forms of dissolved carbon are in equilibrium with each
other, but not in equilibrium with the gaseous CO2. This is intuitive in the sense that the fluid
elements under consideration are below the gas-liquid interface. Thus each fluid element will be
treated as having some total carbon content (which gives rise to its density increase) and some
observable pH. Of the dissolved species, only the dissociated carbonic acid forms affect pH, so for
a given pH the concentration of dissociated carbonic acid can easily be found. If the underlying
assumption that the dissolved species are in equilibria with each other is applied, this can in turn
determine the total amount of dissolved carbon.

In order to use the equilibria to estimate a connection between pH and carbonic acid content,
one needs to introduce two other useful equations, commonly used in analytical chemistry. These
are the electrical charge conservation of the solution and the self-ionization equilibrium of water.
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The charge conservation requirement simply states that the charge weighted total concentration of
positive and negative ions must cancel each other out, thus:

[H+] + [Na+] = [OH−] + [HCO3
−] + 2[CO3

2−] (26)

Apply the water self-ionization condition [H+][OH−] = 10−14M2, to find the amount of carbonic
acid for a given proton concentration (and thus a given pH). Also, it’s helpful to introduce the second
dissociation equilibria so one can solve for just one of the components:

[HCO3
−] =

1

1 + 2Ka2/[H+]

(
[Na+] + [H] − 10−14M2

[H+]

)
(27)

Now for applications within DDC, it’s ultimately the total amount of dissolved carbon that’s of
interest. Thus, define the total amount of dissolved carbon as the following:

CT = [CO3
2−] + [HCO3

−] + [H2CO3] + [CO2] (28)

Here [CO2] implies dissolved carbon dioxide (CO2aq), not to be confused with the gaseous carbon
dioxide above the liquid interface. Solving the equilibrium equations for these three forms of carbon
species, one finds that:

CT =
1

1 + 2Ka2/[H+]

(
[Na+] + [H+]− 10−14M2

[H+]

)(
Ka2

[H+]
+ 1 +

[H+]

Ka1
+

[H+]

Ka1KH
+

)
(29)

where KH , Ka1 and Ka2 are the equilibrium constants for the hydration of CO2 and dissociation
steps of carbonic acid respectively. Their values are given in Tab.1. The expression above, along
with the fact that [H+] = 10−pH, gives an estimation of the total carbon concentration of a given
fluid element based on its observed pH. A more detailed derivation of this result as well as Eq.25 is
given in the appendix.

The prefactor in Eq.29 involving Ka2 accounts for the behaviour at high pH. One can clearly
see that if pH<<pKa2 that the fraction would vanish and approach 1. Therefore, as indicated on
the Bjerrum plot on Fig.4b, it’s safe to neglect the presence of the carbonate ion at pH values
significantly lower than 10. The term can for instance be dropped in cases where one might want to
solve this expression for pH rather than CT . In such cases, dropping said fraction yields a simple
quadratic formula, much simpler to solve than the otherwise qubic expression. For CT estimations
from pH however, the term is left in, although it has diminishing effect at the pH values that are of
interest.

It should be clearly stated that this estimate of total dissolved carbon is rather crude by nature.
In general, equilibrium reactions are most commonly used in a macroscopic sense (i.e. to represent
the entire cell). The presented pseudoequilibrium approach is only valid if the underlying equilibrium
reactions have rates faster than the charecteristic time scale. For non-equilibrium situations, one
would have to solve the full reaction kinetic equations, which is not possible by only observing pH.
Therefore this shortcoming is simply stated as fact, and all estimated carbon concentrations will
assume that the characteristic time scales of the convective transport is significantly slower than
those of the equilibrium reactions. Also, the presence of pH indicators and NaOH will change the
ionic strength and charge balance equation slightly. Considering the crudeness of the assumptions
already made, these corrections have been left out.
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4 Simulating density driven convection

4.1 Developing a suitable numerical model

As with any problem of a differential nature, it needs to be discretized in order to simulate it
numerically. Granted we have derived two coupled differential equations, we need to find a suitable
domain on which we can approximate a solution to Eq.14 and Eq.15. For the concentration field, it is
advantageous to utilize a Finite Volume Method (FVM), due to the fact that it’s derived from fluxes
between control volumes and is thus guaranteed to be mass conserving, in such a way that the total
mass only changes due to the flux at the top [18]. For the flow field, the finite difference method
(FDM) is used, which yields a largely similar discretization, albeit with a simpler representation
of the Dirichlet boundary conditions [19]. The methodology described in the following sections
is comparable to that of Farajzadeh et. al. The previous work concerns the same dimensionless
equations, but does not fully explain the computational method utilized [20]. Therefore, the following
proprietary scheme is developed, suitable for the task at hand:

4.1.1 Spatial discretization of the concentration field via FVM

The FVM utilizes the integral form of the differential problem at hand and quantifies fluxes of
chemical solute between so-called control volumes. Consider a control volume, in our case defined as
a small area in the xy plane. If we consider the rate of change of chemical inside the control volume
and average it over the area of the control volume, one finds that:

∂cCV
∂t

' 1

A

∫
CV

∂c

∂t
dA (30)

From Eq.15 we see that the right hand side is the divergence of a vector field. Thus we can apply
Gauss’ divergence theorem, to find that:∫

CV

∂c

∂t
dA =

∫
δCV

(∇c− ~uc) · n̂dS (31)

Figure 5: An example of a rect-
angular control volume with di-
mensions hx and hy. The lower
case letters denote the name of
the boundary segments.

Where ∂CV denotes the boundary of the control volume and
dS an infinitessimal line segment of the boundary. Here n̂ is an
outward facing unit normal, which the diffusive and advective
current is dotted with. Until now we have made no assumptions
regarding the control volume geometry. For the following com-
putations a rectangular CV geometry will be assumed. In the
FVM, each CV contributes one algebraic equation linking it to
its neighbours, so for a rectangular CV we need to express across
4 line segments. In each of these equations, the CV it is derived
from will be denoted P, and its neighbors N,S,E and W as per the
compass directions (see Fig. 5. Lower case letters of the compass
directions will denote the corresponding boundary between CV’s,
where as upper case letters represent the boundary line segments
between them.)

Without loss of generality, consider the flux through the east-
ern boundary of a control volume.

Fe =
1

A

∫
e

(∇c− ~uc) · êxdy
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Since the integration takes place on the cell boundary, the diffusive and advective currents need to
be evaluated on the boundary:

Fe =
1

hx

(
∂c

∂x
− uxc

) ∣∣∣∣
e

Now evaluating the concentration gradient on the boundary is very easy - we simply apply a central
difference approximation, since the cell centers of P and E are equal distances away from the bound-
ary. For the advective current, we need to approximate the horizontal velocity and the concentration
at the boundary. The value of C on e can similarly be determined as the average of C at P and E, or
rather, linearly interpolated between P and E. For the flow velocity, recall that ux is a y-derivative
of the stream function. Since the discretized domain on which we solve for ψ will affect how and
where we can apply derivatives, it is therefore helpful to choose to solve for ψ on the CV corners.
Thus the chemical flux across the eastern boundary becomes:

Fe =
1

hx

(
cE − cP
hx

− ψse − ψne
hy

cP + cE
2

)
(32)

Where ψse and ψne is the value of ψ on the south- and north-eastern corner of the cell P repectively.
For any internal point, the remaining fluxes are found in a similar manor, and when summed together,
we obtain the full algebraic expression for the time rate of change of the C at the CV in question:

∂c

∂t
= Fn + Fs + Fe + Fw =

∑
i

aici (33)

Where a are coefficients and the sum is over P, and its 4 compass neighbours. Thus any internal
point yields an algebraic expression which couples together 5 CVs via one equation.

A few words on boundary conditions in the FVM

Since the FVM is based on evaluating fluxes between neighbouring cells, flux-related boundary
conditions are very easy to implement. On 3 of the 4 system walls, a zero concentration gradient
boundary condition is imposed. Also ψ = 0 on the boundaries. This means that the flux on any line
segment on these 3 system walls are 0, so edge and corner points just have 1 or 2 fewer couplings,
but the algebra is otherwise the same.

On the top boundary however, there is clearly a non-zero diffusive flux, since c = 1 on the
boundary. To impose this, the northern flux on the top row of CVs need some slight manipulation.
By writing a taylor approximation of c in the y-direction and evaluating it at cP and cS , one can
solve for the gradient and find that:

∂c

∂y

∣∣∣
y=0

=
3

hy
cP −

1

3hy
cS −

8

3hy
c(xP , 0) +O(h2

y) (34)

which only holds true for all CVs on the top row of the system. Here c(xP , 0) can in fact be any
function one wants to impose as a Dirichlet BC, but will in most cases be set to 1. A more detailed
explanation of this is given in the appendix.

4.1.2 Labeling volumes and points

In order to effectively turn the FVM into a managable linear algebra problem, one needs to keep
track of points, volumes and adjacencies. Since we ultimately need to construct and solve a series
of matrix equations, one must find a way to efficiently convert a 2D field into a column vector and
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vice versa. Thus each CV will have a single index as well as a row/column type index. To convert
between the two, modular arithmatic is used. A diagram of these coordinates is shown on Fig.6.

Figure 6: An example grid geometry for Nx = 4 and Ny = 3. The grey cells are CVs,
and their indices are shown as per Eq.35. Between the CVs are blue circles on which
the value for ψ will be solved for. The value of ψ can also be accessed on the red circles,
but is given by the Dirichlet boundary condition ψ = 0. The staggered grid also follows
a similar indexing scheme - albeit with one fever point count in each direction.

i = r ∗Nx + c r = bi/Nxc c = mod (i,Nx) (35)

Where i is a 1 dimensional index ranging from 0 to the number of points NxNy, and (r, c) is the
associated 2 dimensional row/column type index. These definitions are only used for demonstration
of array indexing, and should not be confused with the concentration field itself. These definitions
are mainly important to simplify accessing neighbouring values between the staggered grids. The
staggered grids 1D index will have little in common, but their row/column type index will be
adjacent. On Fig.6 an example is shown for (Nx, Ny) = 4, 3. The grey cells represent C-field CVs,
and the circles represent the interlaced grid on which ψ will be approximated. The value of ψ is
given on the boundary, so we need only solve for it on internal points. Thus in general this domain
will be (Nx − 1, Ny − 1). A general stream function index (i, j) will thus be centered around CVs
(i, j), (i, j + 1), (i + 1, j) and (i + 1, j + 1). A similar expression can be found for which stream
function indices corner a given CV. Note that when converting back and forth, ones has to be careful
when using Eq.35, since the two lattices have different Nx.

When this indexing scheme has been applied, a matrix equation can be constructed. Earlier an
example for one of the fluxes in Eq.33 was shown. After carrying out the remaining 3, a matrix
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equation for the time rate of change can be found. In this representation, a general internal CV i
will have the following equation associated with it:

∂c

∂t

∣∣∣
i

=

(
1

h2
y

+
uy|ni
2hy

)
ci−Nx +

(
1

h2
x

+
ux|wi
2hx

)
ci−1

+

(
−2

(
1

h2
x

+
1

h2
y

)
+
uy|ni − uy|si

2hy
+
ux|wi − ux|ei

2hx

)
ci

+

(
1

h2
x

− ux|ei
2hx

)
ci+1 +

(
1

h2
y

− uy|si
2hy

)
ci+Nx

(36)

Thus an equation of the form ∂t~c = A~c can be constructed. How the time propogation will be
handled is to be discussed later. To reduce cluttering the velocity terms are simply referred to
by their direction and on which phase of the i-th CV it is sampled. They are found as numerical
derivatives of the staggered grid, by going back and forth between i-indices and (r, c) indices of the
staggered grids, as has been previously discussed. Note that CVs coinciding with edges and corners
will lose couplings. For example a CV on the left edge will not have a Ci−1 term, and only one
−h−2

x term instead of two in the diagonal, since there is one less CV to diffuse to. Also the ux|wi
term would disappear from the diagonal.

4.1.3 Constructing a linear algebra problem for the flow field

In this section we shall consider how to solve Eq.14 for a known C-field. The simplest way to
approach this is using the Finite Difference Method (FDM). The FDM differs slightly from the
FVM by the fact that it uses the differential form of the equation to construct a linear algebra
problem. That being said, the resulting matrix equations are usually very similar.

If we assume F is defined on a similar domain as C, we need some meaningful way of reducing a
Nx×Ny sizes grid to a (Nx−1)×(Ny−1), on which the interpolated function will be denoted f . On
this reduced grid one needs to be able to access the value and the gradient. As previously discussed,
using Eq.35 we can easily find the 4 surrounding F and C indices associated with a given ψ index.
For the terms in Eq.14 where function values are represented (f−1 and f−2), we resort to an average
over the 4 surrounding sites. Where a gradient is needed, we average the partial derivative over the
orthogonal direction:

fr,c ≡
Fr,c + Fr,c+1 + Fr+1,c + Fr+1,c+1

4
(37)

Where capital F corresponds to function values on the Nx×Ny grid, and f is the averaged value on
the interlaced (Nx − 1)× (Ny − 1) grid, the same domain as ψ will be calculated on. This sampling
is shown schematically on Fig.38. Similarly, an averaged partial derivative becomes:

∂f

∂x

∣∣∣
r,c
≡ Fr,c+1 − Fr,c + Fr+1,c+1Fr,c+1

2hx
(38)
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Figure 7: Sampling of values from the large grid to form averages and derivatives on
the interlaced grid. The schematic here shows the weights applied to obtain Eq.37 and
Eq.38.

A similar method is used for the horizontal partial derivative of C and the vertical partial derivative of
f , albeit with swapped signs and step lengths. This is effectively an average of two central difference
quotients. The only remaining derivatives are those of ψ. Eq.14 requires both first derivatives and
the laplacian (the sum of second derivatives).

∂ψ

∂x

∣∣∣
r,c

=
ψr,c+1 − ψr,c−1

hx
(39)

∂2ψ

∂x2

∣∣∣
r,c

=
ψr,c+1 + ψr,c−1 − ψr,c

h2
x

(40)

And similar quotions for y- partial derivatives. It is these definitions that allow us to represent the
differential equation as a linear algebra problem, since these derivatives can be defined as a matrix
operator acting on a ψ vector. When all numerical derivatives are applied, and row/column type
indexing exchanged for 1 Dimensional indices as per Eq. 35, the resulting matrix equation becomes:(

1

h2
yfi

+
1

hyf2
i

∂f

∂y

∣∣∣
i

)
ψi−Nx +

(
1

h2
xfi

+
1

hxf2
i

∂f

∂x

∣∣∣
i

)
ψi−1

− 2

fi

(
1

h2
x

+
1

h2
y

)
ψi +

(
1

h2
xfi
− 1

hxf2
i

∂f

∂x

∣∣∣
i

)
ψi+1 +

(
1

h2
yfi
− 1

hyf2
i

∂f

∂y

∣∣∣
i

)
ψi+Nx

= Ra
∂c

∂x

∣∣∣
i

(41)

Which can be represented by an equation of the form A~ψ = ~b. One should note that the matrix in
question only has non-zero indices on the diagonal and bands offset by 1 and Nx from the diagonal.

4.1.4 Time discretization and propagation of the C-field

We have previously shown how the FVM leads to representing the time rate of change of the C-
field as a matrix operator acting on said field. The remaining aspect of the numerical model is
concerned with how to update the C-field to propagate it in time. Consider a snapshot of the
spatially discretized c-field at time-step k. That instance of the C-field is represented by a column
vector, which has the following time derivative associated with it:

∂~ck

∂τ
= T~ck +~b (42)
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Where T is the time rate of change matrix, which accounts for diffusion and advection and follows
the general template presented in Eq.36. The vector ~b represents any source term coming from
the Dirichlet boundary condition via Eq.34, but is zero everywhere except the first Nx rows, which
correspond to the CVs on the top of the cell (see appendix). There are now a few ways in which we
can discretize the system in time:

• Explicitly, via a Forward Euler

∂~ck

∂τ
' 1

∆τ

(
~ck+1 − ~ck

)
As the name suggests, this type of time discretization assumes that at each individual element
at time k + 1 can be calculated explicitly from the information present at time k. This leads
to the following time propagation rule:

~ck+1 = (I + ∆τT ) ~ck + ∆τ~b (43)

• Implicitly, via a Backward Euler

∂~ck+1

∂τ
' 1

∆τ

(
~ck+1 − ~ck

)
The actual discretization of the time derivative is the same here, but now we’ve shifted the time
step at which the derivative is associated. This means that we can in principle never calculate
the time derivative from present data, but we can instead construct a matrix equation for the
k + 1 step with a right hand side dependant on step k

(I −∆τT )~ck+1 = ~ck + ∆t~b (44)

• Crank-Nicholson, via Midpoint Euler

∂~ck+1/2

∂τ
' 1

∆τ

(
~ck+1 − ~ck

)
Here an intermediate state between k and k + 1 is introduced. The first half-step is done
explicitly and the last half-step is done implicitly. Thus the following equation needs to be
solved, to propagate the system in time:(

I − ∆τ

2
T

)
~ck+1 =

(
I +

∆τ

2
T

)
~ck + ∆τ~b (45)

The different methods have strengths and weaknesses. First of all an explicit method is computa-
tionally easy, since it is essentially repeated matrix multiplication. The computational ease however
comes with a cost in terms of accuracy and numerical stability. A forward Euler difference quotient
has error of order O(∆τ) and if the time step is too large the sequence of ~ck will quickly diverge.
For stability, the implicit approach is much better. Implicit methods are unconditionally stable for
all ∆τ , but a pure implicit method still has a linear error term, and the computations are more
demanding, since for each time-step a matrix needs to be reduced and solved, compared to a simple
matrix multiplication. The Crank-Nicholson hybrid improves on the implicit approach, since the
leading error term is O(∆τ2). Compared to an implicit approach, the computational workload is
similar albeit slightly higher, since the right hand side contains a matrix multiplication. This added
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increase is quite small, granted matrix multiplication is generally one order of magnitude faster than
solving the left hand side matrix.

An even better alternative than Cran-Nicholson is the so called Alternating Direction Implicit
(ADI) method. The fundamental idea is similar, since it relies on explicit and implicit half-steps,
but comes with a much lower computational workload - since the resulting matrices are of a simpler
nature. It involves splitting the advection-diffusion matrix into two operators, one for the x− and
one for the y− direction. The general recipe for the two operators are the same as presented in
Eq.36, albeit all the x− dependant terms are gathered into one matrix and all the y− dependant
terms are gathered into another.

T = Tx + Ty

These both contain only 3 non-zero bands. The Tx matrix will be tridiagonal, having only non-zero
elements on the diagonal and next to the diagonal. The Ty matrix will similarly only have non-zero
elements on the diagonal and two bands offset by Nx on both sides of the diagonal. We then alternate
the directions which will be treated implicitly and explicitly. We first take a half step where the y−
direction is treated explicitly and the x− direction is treated implicitly, then vice versa for the last
half step . (

1− ∆t

2
Tx

)
~Ck+1/2 =

(
1 + ∆t

2 Ty
)
~Ck + ∆t

2
~b (46)(

1− ∆t

2
Ty

)
~Ck+1 =

(
1 + ∆t

2 Tx
)
~Ck+1/2 + ∆t

2
~b (47)

While this is clearly more linear algebra problems to solve, as will be shown later in the computational
section, the structures of Tx and Ty make solving each of these much simpler. The ADI method
takes an intrinsic 2D problem and converts it into a sequence of independent 1D problems, which
are much easier to solve [18] [19].

Figure 8: Schematic representation of time propagation from time step k to k+1 via 4
different time discretization methods. Red denotes points that are solved for implicitly.
At each step a matrix equation is solved, in which red points are treated as unknowns
and blue points are in the right hand side vector. In ADI, the intermediate step is first
solved implicitly, then applied explicitly.
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4.2 Computational aspects

All programming was done in Python 3.7. Since most matrices being constructed and solved have
very few non-zero elements, the scipy package, as well as its sparse linear algebra modules was used.
It includes highly efficient methods for constructing and solving matrix problems of a sparse nature.
The presented methods were written in an object oriented fashion.

A proprietary Field class was written, which represents the 2D fields being worked with, and
handles storing them as column vectors and most elementary operations performed on them, such
as basic arithmetic, matrix multiplication and partial derivatives. These operations are vectorized
by storing the row/column type indices accessed for each of these operations, reducing the amount
of repeated calculations.

Additionally a StreamSolver class was written for the stream function FDM. Since the matrix
Eq.41 is very sparse, the 5 non-zero bands are constructed as vectors and turned into a scipy.sparse

matrix. They have built-in highly efficient LU decomposition functionality, so after constructing and
decomposing the matrix for ψ it can be solved rapidly for different concentration fields. The general
usage is:

def f(x,y):

#Set a uniform permeability function

return 1

#Construct a permeability field on [1,1] with 100x100 pts.

F = Field(1,1,100,100)

F.init_from_func(f)

#Construct a StreamSolver for this permeability field

SS = StreamSolver(F)

SS.factorize() #LU decompose

#Assuming C and Ra has already been defined elsewhere, solve for Psi

Psi = SS.solve(Ra*C.ddx())

Also a FVM class was written, which simplifies constructing the advection diffusion operator as
per Eq.36. The class is first initialized with the Field geometry, from indices for each CV are
precalculated to rapidly access the correct stream function values on the interlaced grid. This object
constructs a diffusion operator (which never changes), and construct the advective terms (different
for each time step) when updated with a stream function. The FVM object also has a method for
applying Dirichlet boundary conditions on the top of the system built in. Assuming the StreamSolver
has already been prepared, and C, Ra and dt are defined elsewhere the general usage would be:

#Make the FVM object, make the sparse diffusion matrix

Method = FVM(C,dt)

Method.make_pt_lists() #Allocate r,c indices

Method.make_diff_op()

for k in range(0,time_steps):

Psi = SS.solve(Ra*C.ddx()) #solve for stream function

#Make an implicit time prop. operator. EYE is a sparse identity matrix

Method.make_advect_op(Psi)

IMPLICIT = (EYE - Method.diffuse - Method.advect)

#Apply the top BC

Method.apply_dirichlet_top(C)

#Update the C-field, use the built in sparse solver

C.vector = splin.spsolve(IMPLICIT,C.vector)
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A slightly modified ADI FVM class was written and optimized for computational efficiency. It functions
practially the same as the FVM class, albeit it splits the operator into two, one for x and one for y.
It also returns 6 vectors instead of a sparse matrix. The vectors represent the 3 non-zero bands of
the two matrices, since the solver algorithm does not require a full matrix to be constructed.

All presented code is available on GitHub [to be cited later...]. As roughly outlined above, the
general solution procedure is:

1. Initialize the system, by defining a permeability field, a domain grid and construct the velocity-
and concentration field objects. LU factorize the stream function operator.

2. Solve Eq.14 for the stream function.

3. Use the FVM or FVM ADI object to construct the advection-diffusion operator.

4. Propogate the system in time.

5. Save relevant data (e.g. ψ or C fields) to an external file.

6. Repeat from (2).

4.2.1 Efficient solvers for the constructed matrices

With the chosen spatial discretization, it is now possible to delve deeper into analyzing how the
structure of the matrix might affect the solution procedure. Fig.9 outlines the general structure of
all matrices involved in the numerical model proposed.

(a) The general layout of a 5
point stenciled matrix operator.

(b) A tridiagonal x-component
only matrix operator.

(c) A banded y-component only
matrix operator

Figure 9: The different types of matrices used in the numerical methods. FDM and
FVM are generally 5 point stenciled. Time propagation with ADI splits the 5 point
stencil into a tridiagonal and banded matrix. The letters indicate which CV couplings
the bands represent. For example E represents the eastern or right hand side neighbour.

A convenient solution procedure for tridiagonal matrices as the so called Thomas algorithm
(sometimes simply referred to as the tridiagonal matrix algorithm or TDMA) [19]. It utilizes the
fact that due to the simple structure of the matrix, each row can be reduced using only the row
right above it. Consider a problem of the form A~x = ~b, with A being a tridiagonal matrix, where
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each column has non-zero indices li, di and ui, where l represents the lower and u the upper off-
diagonals. To put this matrix into echelon form, we need to get rid of the lower diagonal. This is
done by forward elimination, where each row gets updated via:

Ri →
li−1

ld−1
Ri−1 i = 1, 2, ...,M − 2,M − 1

Where M is the rank of A. This guarantees that the lower diagonal in line i becomes 0. Nothing
changes in the upper band, but the diagonal gets updated. Similarly, the right hand side is also
updated

si =
li−1

di−1
di → di − siui bi → bi − sibi−1

Since the matrix is now in row echelon form, the solution can be found by back substitution:

xM−1 = bM−1/dM−1, xi =
bi − ui+1xi+1

di
i = M − 2,M − 3, ..., 1, 0

Now for the ADI procedure, this is half the battle completed. But we also need an efficient solution
procedure for banded structures as shown in Fig.9c. We will find that the algorithm is actually
very similar, and has only a slight difference from the conventional Thomas algorithm. As before
we assume the notation that every column i has non-zero elements li, di and ui, and that u and l
are offset by N indices from the diagonal. Thus the first N rows are already in echelon form. The
forward elimination is performed in a similar fashion, the difference being that row operations for
row i are now based on row i−N .

si =
li−N
di−N

di → di − siui bi → bi − sibi−N

After the forward eliminations, the last N elements can be found right away. The rest are found by
back substitution:

xj = bj/dj j = M − 1,M − 2, ..,M −N xi =
bi − ui+Nxi−N

di
i = M −N − 1, .., 1, 0

As one can see, the Thomas algorithm is actually just a special case of this procedure for N = 1.
These methods are much faster than brute force Gaussian elimination, since the amount of floating
point operations is only proportional to M , not M3 [19].

One can speed up these methods even further by identifying patterns in the sequences above.
In the Thomas algorithm (used for x-component only operators), notice that si = 0 if li−1 = 0. In
such cases the dependancy of earlier matrix elements are lost, and the method practically restarts
at this i. This is very beneficial, because in the FVM, we can predict the occurance of such zeroes
in the lower band, since they correspond to CVs with no western neighbour. Thus every row which
is an integer multiple of Nx, the coupling to previous matrix elements are lost. This means that we
can do Ny instances of the Thomas algorithm simultaneously, by using vectorization.

Similarly for the general banded algorithm (applied to y-component only operators), we notice
that every block of Nx rows are completely independent from each other and only rely on the
previous block of Nx rows. In a similar fashion, this means that we can do Nx instances of this
banded algorithm, each responsible for a sequence of Nx rows. Both of these advantages are outlined
in Fig.10.
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(a) A tridiagonal x-component only matrix op-
erator. Every Nx = 4 rows, there’s a 0 in the l-
band, meaning each block seperated by the green
dotted lines can be treated independently.

(b) A banded y-component only matrix opera-
tor. Since the forward elimination only relies on
the Nx-th previous row, neighbouring rows have
no coupling. For example, the black and grey
sequences are independent.

Figure 10: Sparsity diagrams of x- and y- component operators on the 4 × 3 grid
shown in Fig.6. Squares correspond to non-zero elements. The green squares represent
indices which are zeroed out in the forward elimination. The arrows show which rows
are utilized for the forward elimination.

This further illustrates the fact that ADI for each time step takes a 2D problem and splits it into
a series of 1D problems. Depending on the direction treated implicitly we get either Ny instances
of sequences with length Nx to be solved with the Thomas algorithm or Nx instances of sequences
with length Ny to be solved with the banded algorithm.

4.3 Testing the algorithms

4.3.1 A quick matrix solver benchmark

Having outlined how to construct the linear operators, and proposed a few methods for solving
them, their computational efficiencies are tested, by averaging the time which it takes to solve
similar problems with the different approaches. Two tests are performed: First, the scipy.sparse

package is compared to the simple Thomas and banded algorithms and their vectorized versions.
Secondly, the iteration time of a Crank-Nicholson (CN) and Alternating Direction Implicit (ADI)
time step is compared. The CN approach utilizes a 5 point stencil and is thus solved using the
scipy.sparse direct solver, whereas the ADI approach is solved using both the sparse solver and
our vectorized algorithms described earlier. In the second comparison, solving for the flow field and
constructing the advection operator is also included.

By doing these simplified tests, one can see how the calculation time scales with amount of
CVs. For simplicitly, let Nx = Ny = N . Each time value is averaged over 1000 executions, to
combat clock granularity. Keep in mind that the size of the matrices involved are N2, but due to
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the sparse natrue of the matrices, the amount of non-zero elements are only proportional to N2.
The Thomas algorithm is known to be linear in time with respect to the matrix size (so t ∝ N2),
which is indeed the finding on Fig.11a. Interestingly enough however, the build in sparse algorithm
has a near identical scaling, but is almost one order of magnitude faster. The scipy.sparse direct
solver is likely performing a similar solution algorithm, but may be programmed more efficiently,
with less overhead. At N ≥ 100, the vectorized versions however beats both, and exhibits scaling
like t ∝ N1.25, which had been linear in a perfectly parallelized case. Still the speed up is well
noticable, especially for larger systems.

When comparing the calculation times of actual advection-diffusion time steps, we learn even
more about the pros and cons of the algorithms. Consider log10(N) = 2. Here we found earlier that
the sparse and vectorized banded solvers were very similar in calculation time, or about log10(t) '
−2.5. Still the vectorized algorithm is about 100.4 ' 2.5 times faster. Also, we notice that the scaling
relations of full time steps are quite different from those showing only the 1D operator solver times.
This indicates that a big part of the VEC-ADI speed up comes not only from the efficient solver, but
from the fact that we never construct matrices, but rather store only the non-zero element bands in
1D vectors and use vectorized algorithms for working with those.

Another take away lesson from this test is that the VEC-ADI approach is fast enough, so that
in the time it takes for it to time-step a system with N = 200, the Crank-Nicholson approach can
only handle a system with N = 75 in the same calculation time. Another way to think about this is
that in this case VEC-ADI is able to produce (200/75)2 ' 7 times the amount of data in the same
calculation time. Due to the slow scaling of CN, this difference is only going to be bigger if larger
systems are compared.

(a) Averaged solution times for implicit ADI
steps. The x- and y- component problems are
overlayed, but are very similar in execution time.

(b) Averaged solution times for a full time step.
Here Crank-Nicholson and ADI with two differ-
ent matrix solvers are compared.

Figure 11: Averaged calculation times on Nx = Ny = N sized grids. SPS refers to
the inbuilt sparse solver in scipy.sparse, TDMA and BAND refer to the tri-banded
algorithms described earlier and the VEC prefix refers to the more efficient vectorized
versions of those.
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4.3.2 Sanity checks

Due to the non-linear mechanics involved in Eq.14 and Eq.15, it is difficult to find analytical solutions
to compare numerical results to. However, there are still some sanity checks one can perform to at
least gain more confidence in the numerical model and program. These include:

• Check that the 1D diffusion results of Eq.17 and Eq.18 are recovered, if Ra=0.

• Check that chemical mass conservation is fulfilled, if the system is fully isolated.

• Check that an altered permeability field does in fact result in an altered stream function and
velocity field.

First the 1D case is tested, by setting Ra = 0. A uniform box of width and height equal to 1 is
discretized into a 100× 100 grid of CVs. The system is time-stepped 200000 times with a time step
of ∆τ = 2 · 10−5. The comparison with Eq.17 and Eq.18 is shown on Fig.12.

(a) A handful of concentration profiles, where
the simulated data comes from taking a vertical
slice of the 2D field. The analytical values for
each time step presented is found using Eq.17.

(b) Total chemical mass as a function of the
square root of elapsed time. For the simulated
results, this is found simply by summing the con-
centration value of each CV times the area of
the CVs. The analytical values are found using
Eq.18.

Figure 12: Comparing the Ra = 0 case to a 1 dimensional diffusion only problem.
The simulations agree well with analytical results.

The mass conservation condition is checked by imposing no-flux boundary conditions on all edges
and initializing the C-field with a Gaussian blob of the form:

C0 = exp(−50(x− 0.5)2 − 50(y − 0.5)2)

We then place the blob in a 100 × 100 box with side length 1. The Rayleigh number is set to
2000 and the time step 2.5 · 10−7. The system is time stepped 1200 times, and the resulting fields
and their total chemical masses are found and displayed on Fig.13. Over the length of the short
simulation, the fractional mass deviation was of the order of magnitude 10−14, which is low enough
to be attributed to round off error.
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Figure 13: A visual representation of the C− fields used check for mass conservation.
As expected the heavier blob sinks to the bottom and diffuses.

Finally, one can experiment with applying non-uniform permeability fields. For this we initialize a
C-field with the same Gaussian shape as before, and set a permeability fluctuation of the form:

f = a
(
1− 0.1(x− y)2

)
Where a is a normalization constant, such that f averages to 1 over the domain. Notice that this
function has a maximum on the line y = x, and is an inverted parabola in the direction away from
this line. Our intuition would tell us that the blob would be more inclined to travel down the y = x
line than before. We then use the StreamSolver class to solve for the stream function associated
stream function. On Fig.14, we can clearly see that the stream lines are more biased towards the
y = x line, indicating that the permeability field does in fact alter

Figure 14: The stream functions of centered Gaussian concentration fields at t = 0
compared for a uniform and parabolic permeability field. The white lines are contours
of ψ, which correspond to stream lines of the flow field.

4.3.3 The need for perturbation

Since the system starts in a pseudo-equilibrium, the onset of density driven convection requires some
small perturbation. If no perturbation is enforced, the inherit round-off error involved in floating
point operations will effectively act as a small perturbation. To combat this, for each timestep, the
top-boundary condition (c(x, y = 0) = 1) is slightly altered to include a source of randomness, such
that:

c(x, y = 0) = 1− δ(x)
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Where δ is confined to [0, 10−6] and sampled from the uniform distribution. For each time step,
a new random number is sampled for each of the top CV boundaries, which is independent of
its neighbours both in time and space. Farajzadeh et al solved this by adding a small sinusoidal
perturbation to the first time steps, and found that the convective behaviour was largely independent
of the imposed sinusoid [20], but to eliminate all bias to specific wavelengths, the uniform distribution
with a minuscule amplitude is applied here, imitating for example thermal fluctuations.

5 Numerical results

5.1 Understanding the base case

As an example of the general mechanics, consider a system in which the width is twice the height.
Initially, a Rayleigh number of 3000 is tested. The spatial domain is a rectangle of width 2 and
height 1, which is discretized on 250x125 points, with a time step of 5 ·10−9 as per the dimensionless
diffusive time scale. Note that all presented results are as per the rescaling of Eq.11.

5.1.1 A qualitative analysis of the observed patterns

Initially, the system exhibits only diffusive behaviour. After some time, while the concentration
field is still very uniform in x, as expected by pure diffusion, the flow field slowly starts to become
oscillatory, albeit with a low amplitude. This amplitude then grows and causes the initial onset
of the convective dynamics. Around the onset, the observed characteristic wavelength is clearly
well defined. At later times, the non-linear dynamics commence, and the merging and splitting of
convection plumes become increasingly apparent. These dynamics are shown on Fig.15-19.

Note that to properly display the dynamics of interest, the individual figures are cropped slightly
differently, as the length scales of these dynamics vary. Also, to reduce cluttering, each arrow
represents the flow field averaged over CVs in a square around that vector arrow. When refering to
the velocity magnitude, note the large variations between the early snapshots and the later ones.

Figure 15: Initially, the concentration field is very uniform. Within the concentration
gradient, the flow field is starting to become oscillatory, but with a very low magnitude,
with respect to the natural scales of the system.
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Figure 16: Around the onset time, the oscillatory behaviour is now clearly visible, both
in the concentration field and the flow field. Notice the increased magnitude in the flow
field compared to Fig.15. At this time, one might expect a characteristic wavelength
to be well defined, both in the concentration field and the vertical component of the
flow field.

Figure 17: After the onset of initial convection plumes, upward streams of fresh
unaffected fluid heavily influence the concentration field. These strong upward flowing
regions are spaced with significantly wider intervals than the initial plumes, thus when
these ascending plumes reach the surface they push the top of the descending plumes
laterally, merging them together.
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Figure 18: Another mechanism, which becomes noticeable after the first merging
events is plume splitting. As can be seen in this time slice, upward currents are observed
to split some previously merged plumes in two. In this time slice, one can notice a clear
difference in characteristic wavelength between the horizontal slice near the surface,
and the descending front, which has been split.

Figure 19: At significantly later times than the initial onset, the previously men-
tioned plume formation- merging- and splitting dynamics all intertwine to produce the
convective pattern.

5.1.2 A closer look at the top boundary

Given that the mass enters the system from above, understanding how the concentration field near
the top boundary varies with time can learn more about the DDC dynamics. To do this, the top
5 rows of CVs (corresponding to y ∈ [0, 0.04]) are averaged vertically for each time step. This data
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is then used to produce a so called space-time map of the vertically averaged top portion of the
concentration field, to track the regions which emit carbon to the sinking concentration plumes. As
shown on Fig.20, one can clearly identify how the system initially exhibits only diffusive behaviour.
A short time later, the front spontaneously becomes unstable and becomes oscillatory. This is when
DDC sets in, and one can see upward streams diverge and force the yellow plumes to shift laterally,
which later merges them together. After the first series of merging events, we notice smaller plumes
appear spontaneously, only to merge with the already established one shortly there after. Finally,
the dynamics all coexist, and balance each other out, to the point where changes in characteristic
length scale between the plumes varies much slower.

Figure 20: A space-time map of the top 4% of the concentration field for Ra=3000.
The vertical axis represents time, and the horizontal represents the x coordinate. The
ongoing mechanics are annotated roughly at the times at which they start occurring.
These dynamics come quickly after one another in the transient time domain from
initially uniform to the general DDC behaviour.

5.1.3 Estimating the characteristic wavenumber

By visually interpreting Fig.20, one can clearly see that the system goes through a range of dynamics
which change the characteristic length scale of the system. To better quantify this, a power spectrum
approach can be used to identify the distribution of different modes, and how that distribution
undergoes change over time. To utilize this, a one dimensional function needs to be defined, which
Fourier analysis can then be applied on. Since the absorbed mass of the system is continuously
growing, we introduce the fluctuation in the vertically averaged concentration field:

ζ(x) =

∫ 1

0

c(x, y)dy −
∫ 2

0

∫ 1

0

c(x, y)dxdy (48)
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This is a one dimensional signal which averages over x to 0, so any oscillations found in this signal
represent fluctuations with respect to the horizontal coordinate in the concentration field. We then
take the fast Fourier transform (FFT) of the signal ζ(x) using the built-in numpy.fft package. The
sample count was set to 4096 and a Hanning window was applied to reduce the weight of the bound-
aries. Let F (κ) denote the obtained complex frequency spectrum with κ being the wavenumber.
The expectation value and standard deviation of the spectrum of wave numbers can then determined
via the following expressions:

E[κ] =

∑
κ κF (κ)F ∗(κ)∑
κ F (κ)F ∗(κ)

σκ =

√∑
κ κ

2F (κ)F ∗(κ)∑
κ F (κ)F ∗(κ)

− E2[κ] (49)

Note that when working in the dimensionless x units, κ is also dimensionless, but represents
reciprocal wavelength as is convention. As can be seen in Fig.21, the characteristic wavenumber
is initially poorly defined, with a very high standard deviation. Around the onset of DDC, the
wavenumber suddenly becomes well defined, and in this case evaluates to E[κ] ' 17, where the
standard deviation has a local minimum at τ ' 0.0004. This agrees well with the visual observation
on Fig.20, which shows that there are 34 concentration peaks around the onset of DDC, when
one takes into account that the system has a width of 2 dimensionless units. The time dependent
statistical values also clearly show that the system undergoes rapid change shortly after the onset of
convection, where the characteristic wavenumber plummits, and then stays roughly constant with
only a very slow decay.

Figure 21: The time variation in characteristic wavenumber and width of the power
spectrum for horizontal fluctuations in the Ra = 3000 system.

5.2 Varying the Rayleigh number

As previously discussed, the Rayleigh number balances the rate of advection and diffusion. Therefore,
one can expect significantly different patterns, with regard to plume morphology when the Rayleigh
number is varied. This is well within the capabilities of the written code, but comes with the added
complication that the velocity is also strongly dependant on the Rayleigh number. This implies that
one should reduce the time step for high Ra simulations, to increase the precision and stability of
the simulations. For this reason, a time step of ∆τ = 5 · 10−6Ra−1 was settled on. A snapshot of
the system is saved every 500 time steps, which proved sufficient to catch all events from start until
the fingers reach the bottom of the cell within 1000 snapshots.
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5.2.1 The variation in plume patterns

Two visual examples of pattern variations from the previous Ra = 3000 case are shown on Fig.22-23.
These examples display the cases of Ra = 1000 and Ra = 5000. Upon investigation it becomes very
apparent that the length and time scales vary significantly with the Rayleigh number. This tendency
holds also for intermittent Rayleigh numbers, not displayed here to reduce cluttering.

(a) A lower Ra case, shortly after the onset of convective dynamics.

(b) A lower Ra case, shortly before the plumes contact the bottom of the cell.

Figure 22: Two snapshots of the concentration- and velocity fields for Ra = 1000.
Note how the relatively few plumes merge into a much wider plumes than in the Ra =
3000 case shown on Fig.19. The velocity magnitude is also significantly lower.
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(a) A higher Ra case, shortly after the onset of convective dynamics.

(b) A higher Ra case, shortly before the plumes contact the bottom of the cell.

Figure 23: Two snapshots of the concentration- and velocity fields for Ra = 5000.
Note how the plume count is much higher than in the Ra = 3000 case shown on Fig.19.
In this case, the merging and splitting dynamics become apparent much earlier, and at
lower depths.
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5.2.2 Determining the onset time of DDC

As shown on the space-time map on Fig.20, the onset of DDC happens when the top of the cell goes
from being a uniform front to taking on an oscillatory form. Thus to determine the time at which
DDC starts to become apparent, it should suffice to determine a condition on top concentration field
at the top of the cell. For each instance of different Ra, a space-time map is created, similar to that
on Fig.20, and then for each horizontal slice, the mean value and standard deviation of the top of
the concentration field is calculated. These properties of the top of the c−field are then compared,
such that when the ratio of standard deviation to the mean value grows beyond 10−6, we conclude
that the instability has in fact started. The first time value when this happens is logged for each
simulation.

Figure 24: A logarithmic plot of the onset time of DDC as a function of Rayleigh
number. The linear fit indicates a relation of τons ∝ Ra−1.97

As can be seen on Fig.24, when plotted logarithmically, a power law trend is found which suggests
that the onset time of convection scales roughly with τons ∝ Ra−2. The Rayleigh numbers shown
here range from 100 to 5000. Simulations for Rayleigh numbers 25, 50 and 75 were also performed,
but they never fulfilled the onset condition.

5.2.3 Determining the initial wavenumber

As earlier mentioned, the morphology also depends greatly on the Rayleigh number. Having found
the onset times of DDC, the same power spectrum method (Eq.49) is used to identify the charac-
teristic wavenumber of the emerging instability.
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Figure 25: A logarithmic plot of the wavenumbers initially dominant in the instability
with respect to Rayleigh number. The linear fit indicates a relation of κ ∝ Ra0.94

As can be seen on Fig.25, the wavelengths which initially dominate the instability appear to scale
almost linearly with Rayleigh number. This in turn means that the characteristic length scales of
initial plumes should approximately scale with the reciprocal of the Rayleigh number. This along
with the findings of onset times agree well with results presented in linear stability analysis studies
[8].

5.2.4 The time dependence of characteristic wavenumbers

Using the same power spectrum method eq Eq.49 one can define the time dependant characteristic
wavenumber of the concentration fields in simulations with varying Ra. As has been shown in
Fig.24 and Fig.25, both the onset time and initial wavenumber have a power law behaviour with
Ra. Therefore the presented time dependent characteristic wavenumbers in Fig.26 have been scaled
both in the time and wavenumber axes. As one can see, when rescaled in this manor, the dynamics
are very similar at or around the onset of DDC. The transient region around τ ' 4τons is quite
dependent on the individual Rayleigh number, and thus not a direct consequence of the onset
values, but after the traansient region, the characteristic wavenumber appears to settle at roughly
a quarter of wavenumber of the initial instability.
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Figure 26: The time dependent characteristic wavenumbers of simulations with vary-
ing Ra. The time and wavenumber axes have been rescaled in terms of the onset time
and initial wavenumber.

5.2.5 Total adsorbed mass

After the diffusive front breaks up and the convective mechanics begin, the rate of mass transfer
from gas to liquid increases significantly. To quantify this, the total amount of dissolved carbon
species is estimated by integrating the concentration fields over the area domain for each snapshot
in time. The results of this are shown in Fig.27 for a handful of selected Ra values. The results are
compared to the pure diffusion case of Eq.18. As can be seen, each of the runs start similarly, but
diverge from the straight corresponding to their onset times. After the onset, the slopes increase
significantly, resulting in a much higher effective macroscopic diffusion constant between the gas and
the liquid.

Figure 27: The time dependent absorbed chemical mass as a function of square root
of time for various values of Ra.
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6 Experimental methods

6.1 Designing the experiment

6.1.1 The experiment holder

For the design of the experimental apparatus itself, the following criteria were imposed:

• The main purpose of the experiment holder is to provide a sturdy base for attaching flow cells
illuminated by a back light.

• The plane in which the experiment takes place must be able to tilt from vertical to near
horizontal.

• An emphasis is laid on modularity - that is being able to re-purpose the experiment holder for
experiments of various sizes. Also if parts need to be replaced for unforeseeable reasons, this
should be as easy as possible.

To meet these criteria, a frame was built around a consumer grade LED light box (IKEA FLOALT
60x60cm). The frame consists of machined aluminum blocks and 20x5mm profiles, to which the light
box is attached. This frame is hinged to a sturdy base at the bottom, and connected in a triangular
fashion to a pair of cylindrical rails. This telescoping action along with locking wing nuts allows for
setting the light box at any angle with respect to the ground. The front-most profiles are connected
to the rest of the assembly with M6 bolts, which can be attached in multiple places, such that
experiments from 30cm to 54cm can be placed on the holder without visual obstruction from the
rails.

Figure 28: A CAD drawing of the experiment holder, with its most distinctive features
pointed out.
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6.1.2 Constructing the flow cell

For the design and construction of the flow cell, the following criteria was imposed:

• As a starting point, the flow cell should be a conventional Hele-Shaw cell, thus have a well
defined uniform thickness.

• The flow cell must allow for gas flow in and out. The aim is to maintain a constant atmospheric
pressure of CO2. Other gases should be expelled from the cell during experiments.

• The cell must be easy to clean and rinse, so no leftover gas or dissolved carbon species remain
in the cell between experiments, potentially contaminating consecutive experiments.

• The flow cell should be modular, in the sense that one can perform experiments with different
plate spacings and with or without glass beads, which can impose a non-uniform permeability.

The requirements listed above were met by constructing a flow cell, consisting of two plates,
sealed by a custom molded silicone gasket. The plate dimensions are 50x50cm. The outer plate is
conventional glass, and the inner plate which is placed against the model holder is made of clear
acrylic. The acrylic plate has machined inlets and outlets that allow for gas and liquid flow in and
out of the cell. Depending on the task at hand, the various holes can be blocked or left open.

The gaskets are made of an addition-curing silicone moldmaking compount (Köraform). The
benefits of this compound for creating a custom gasket is low pouring viscosity before hardening,
fast curing, neglectable shrinkage and high mechanical strength. After mixing the two components,
a uniform slab is made by letting the silicone compound cure while being clamped between the two
plates. Metal spacers are inserted between the plates at the points of clamping to discourage warping
of the plates, to achieve a thickness which is as uniform as possible. After curing, slab is demolded
and then trimmed to the desired dimensions. Since the holes in the acrylic backplate are spaced over
a region of roughly 30cm, the gasket is trimmed to similar dimensions. During the entire molding
and trimming process one has to be mindful of any eventual air bubbles which may be present in
the silicone compound. Most of these can be expelled before molding, and any remaining pockets of
air can be removed by a suitable trim layout. The entire process is visualized in Fig.29. The silicone
gasket used in the majority of the experiments has a thickness of 2mm and is trimmed to contain
experiments confined within a 32x32cm region.

When clamping the cell together for experiments, a small amount of silicone grease is spread over
the gasket, where it interfaces the two plates. The purpose of this is to ensure a good liquid seal
around the entire gasket, without having to resort to high clamping pressures, which might warp
the plates and cause a non-uniform permeability within the cell. With the silicone grease in place,
one can easily see when a good seal is achieved while clamping the cell together, before adding any
liquid.
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(a) The liquid silicone com-
pound is distributed around
the region of interest, and is
clamped between the two plates.

(b) After curing, a pre-cut tem-
plate of the desired dimensions
is used to find the most suitable
trim.

(c) The finished gasket af-
ter trimming, ready for experi-
ments.

Figure 29: The molding process. Note the holes left behind by the metal spacers used
to assure a constant thickness.

6.2 Visualizing acidity

The raw data in the experiments conducted come in the form of images of the liquid under con-
sideration. As previously mentioned, the carbonic acid equilibrium is a system of various dissolved
inorganic carbon species which interact with each other, the solvent and the gas phase. Thus a
relatively straight forward method of visualizing changes in acidity is to utilize pH indicators. This
method is rather common in previously conducted work, but comes with some limitations [14].

A pH indicator is for all intents and purposes a weak acid, which has the added property that
the protonated and dissociated forms of the molecule have different absorption spectra in the visible
range. As per the definition of weak acids, this implies that each pH indicator has an associated
equilibrium constant, according to the reaction:

HInd 
 H+ + Ind− Ka =
[H+][Ind−]

[HInd]
(50)

This implies that there is a similar concentration of the protonated and dissociated forms of
the indicator around pH ' pKa. Due to the logarithmic nature of the pH scale, the relative
concentrations of these two forms grow and shrink exponentially around this acidity value. Therefore
a color change is only observed when pH ' pKa. Typically a deviation in pH of about 1 logarithmic
unit makes either form completely dominate, and no color change is observed past this point. For
the application in question, this means that any single pH indicator is only useful to visualize a
limited range of carbonic acid concentration. Therefore, the choice of pH indicator inherently sets
an upper and lower bound on the concentrations one can deduce.
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6.2.1 Making a suitable indicator liquid

Figure 30: A visual representation of the the various pH indicators investigated. The
colored regions show at which acidity values the indicators transition, and between
what colors. Outside of the shown ranges the indicators hold a solid color. For instance
Bromothymol Blue is active in a pH range from 6 to 7.6 In more acidic conditions it
stays yellow, and in more basic conditions it stays blue.

To combat this limitation, several pH indicators are combined in an attempt to form a more contin-
uous color spectrum, such that more information about the pH fluctuations can be extracted from
the image data. Fig.30 shows the active ranges and colors of the pH indicators considered for this
purpose. The goal is to produce a solution of these indicators that is as active as possible down
to the equilibrium pH of water in contact with atmospheric pressure of pure CO2. Thus the ideal
solution goes through significant and distinctive color variations from neutral conditions, to a pH of
about 4.

One inconvenient fact about pH indicators, is that they are generally not very water soluble
(although this varies greatly between the different compounds). To work around this, the color
mixtures under consideration are first dissolved in a small amount of 2-propanol, in which they are
all highly soluble. Since the solid indicator powder obtained for these experiments contain the acid
form of these compounds, the solution is then diluted with Type II water and neutralized with 0.01M
NaOH base.

The mixtures under consideration are then titrated to various acidity levels using 0.01M NaOH
and HCl along with a pH electrode. The mixtures are checked for color change in the desired pH
ranges and components are added or dropped where appropriate to achieve better color resolution.
After successive tests, a satisfactory candidate was found. A concentrated solution was mixed and
used as a stock for later dilution. The details of this solution is shown in Tab.2 This indicator
solution is then titrated to various pH levels of interest, injected to the flow cell and photographed.
This is done to estimate an RGB value of the different values for calibration purposes. This is then
interpolated to further visualize how this wide-range indicator fluctuates over a much wider range,
compared to the more binary nature of its individual counterparts.
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Table 2: The wide-range pH indicator developed for CO2 DDC experiments. The
first column is a stock solution, and the second column is the 1:50 dilution of the stock,
which is used for experiments. In addition to the color content, the solvent additives
are shown below.

Stock 1:50 Dilution
Thymol blue [mg/L] 1250 25
Bromothymol blue [mg/L] 2500 50
Methyl red [mg/L] 1600 32
2-pronanol %vol 12.5 0.25
NaOH [mol/L] 2.5 · 10−3 5 · 10−5

Note: The proposed indicator has distinctive color fluctuations over most of the pH levels of
interest. Due to the logarithmic pH scale, definition is most important closer on the acidic end of
the scale, i.e. around pH 4. That begs the question why an addition of bromocresol green and/or
methyl orange was not applied to this mixture, as they are active in this range. The addition
of bromocresol green was found to have neglectable effect, and although methyl orange makes the
yellow-orange-red transition more pronounced - the small gain in resolution comes with the drawback
that methyl orange is known to be acutely toxic and was not deemed safe considering the fact that
the flow cell is a prototype, which will be disassembled and possibly repurposed multiple times.
Even with proper personal protective equipment, the risk of exposure during experimental setup or
cleaning after completed experiments is deemed too great to warrant it. For future work with a
more robust flow cell and experimental routine, it might be worth reconsidering.

A side note on the use of pH indicators

As previously explained, the fundamental working principle of pH indicators is that they themselves
are weak acids. This by definition implies that their respective acid-base equilibria couple with the
carbonic acid equilibrium system under concideration. Upon taking molar weights into account, one
can check from Tab.2 that the concentration of the color components are of the order of magnitude
10−5M . Literature suggests that the total concentration of CO2 derivatives in water in equilibrium
with atmospheric pressure of pure CO2 is of the order of magnitude 10−2M , which is 3 orders
of magnitude greater than that of the indicators [16]. That being said, the concentration of the
individual carbonic species can be significantly lower as demonstrated on Fig.4b.

Thus the use of color indicators in general could in theory interfere with the very thing under
observation. This potential issue is simply postulated here, and the later analysis will neglect
any chemical equilibrium interference which might arise from these interference effects. Previous
literature suggests this should be a valid assumption [14].

6.2.2 Image analysis

All image analysis is performed in Python 3.7, using the image analysis and computer vision library
OpenCV 4.2. This library interfaces with NumPy for numerical calculations and transformations and
Matplotlib for plotting and visualization. The applied image analysis consists of taking the raw
image, applying a simple geometrical transformation to it, identifying and masking the liquid region
and determining the pH field from the color of the liquid.

Before applying the color interpolating method, every picture frame needs to be pre-processed
geometrically and masket to display only the liquid region. The steps taken are displayed in Fig.31.
Since the camera is never perfectly aligned with respect to the flow cell, a bounding box for the
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Figure 31: Going from raw image to an image of only the liquid region with the
correct perspective.

liquid region is found and a perspective transformation is applied to transform this into a rectangle.
By applying this perspective transformation, the plane of the experiment now matches the plane
of the transformed image. Afterwords, a mask is applied to identify the non-liquid regions. This
is a relatively simple procedure considering three of the edges are black and one of the edges are
white. A simple threshold of one of the color channels with a little mask dilation is enough to
sufficiently determine the mask. The masked pixels are then removed, and do not take part in the
color interpolation algorithm.

Interpolating color

Now that the fluid region has been isolated, the task at hand is finding a meaningful way of correlating
a color to a pH level. From the raw image file, the color of each pixel is represented by three 8-bit
integers, for respectively the red, green and blue channel. For all intents and purposes, this can be
thought of as a 3D vector space, and each pixel can be treated as an element of said vector space.

By interpreting the three channels as coordinates of a vector space, we can produce a scatter
plot that visualizes the color change undergone by the liquid throughout the experiment. Fig.32
shows three ways of visualizing said change. Each point of the scatter plots are colored in with the
associated value. First, we see that the observed color values are essentially scattered around a path
which traverses through the color space. The goal is then to parameterize this path in terms of pH,
to correlate a location in color space with an acidity value

Consider a region cropped from the center of the final frame of Fig.31. The region is chosen
to be representative of the color spectrum the interpolation method must deal with. Before doing
any interpolation, it’s worth considering the general properties of the color change under study. By
interpreting the three channels as coordinates of a vector space, we can produce a scatter plot that
show the placement of each individual pixel in the color space. Upon inspection of Fig.32, one can
see that representative collection of pixels are scattered around a path in the three dimensional color

47



space.
If the coordinates of the color space are transformed from typical Cartesian (R,G,B) to spheri-

cal, one obtains a radial coordinate (analogous to brightness) and two angular coordinates, which
represent the color hue. Since the brightness of a pixel has no effect on which pH value should
be assigned to it, this component can be discarded. The valuable information is in the polar and
azimuthal angles, which can then be used to correlate a pixel color to a pH.

(a) The unaltered RGB space. The acid-
ification process can be viewed as a path
through this space.

(b) The normalized RGB space represented
by a polar and azimuthal angle. The black
path is calibrated with known pH values.

Figure 32: Two coordinate systems for the RGB color space. The points represent
pixels from the center region of the pre-processed frame in Fig.31. In each case the pixel
is placed according to the color space representation, and colored in for clarification.

Figure 33: A visual representation of the pH deter-
mination procedure. Here a pH value is determined
for 4 example colors, by finding their closest point on
the calibration path.

By titrating the pH indicator solution to
various known acidity levels, one can con-
struct a calibration path by injecting the
mixtures with known pH levels into the flow
cells and imaging them. For each calibra-
tion image, a uniform region, free of air bub-
bles and other artifacts is found, and used
to produce an averaged color value associ-
ated with that pH value. This is repeated
multiple times, to produce a piecewise linear
calibration path. To deduce the pH of any
unknown pixel, one then finds the shortest
distance from it to this calibrated path in
the angular representation of the RGB color
space. The shortest distance from any point
to the calibration path can be found analyt-
ically, and said point is then assigned to the
line segment to which the distance is short-
est. On this line segment, the distance be-
tween the two neighbouring calibration col-
ors can be used to interpolate the pH value, which will then be assigned to the pixel in question.
This method is less sensitive to image noise, as it relies on both coordinates, rather than for in-
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stance interpolating pH as a function of one value, such as the color hue of the HSV color space.
Despite this, a small Gaussian filter is still applied to the resulting pH field, to filter out pixel-scale
fluctuations, and to combat the fact that the raw image data is discrete. The end result of the pH
determination algorithm is shown in Fig.34, where the input image is a cropped section of Fig.31,
for clarification purposes.

Due to the nature of the data being imported, the quickest way to perform the pH determination
is to produce a look-up table of all the possible 2563 combinations of RGB values. By doing this,
every analyzed pixel essentially accesses a pre-calculated array of pH values, which is much faster
than performing the coordinate transforms and collapsing them to the calibration path for every
pixel of every analyzed image. Additionally, during image analysis, the frame can often be resized
severely without loss of pH definition, to reduce the computational requirement and file storage.

(a) A cropped region of the pre processed
frame of Fig.31

(b) The result of the pH determination algorithm.

Figure 34: An example input and output of the complete pH determination method.
With this pH indicator mixture and color analysis method, a continuous pH field is
determined, yielding much more information than a conventional thresholding and/or
edge detection method.

6.3 Refining the experiments

The majority of experiments were performed by placing the molded silicone gasket, such that the
row of liquid inlet holes were exactly on the lower boundary of the flow cell. The idea behind this
was to set up the experiments in such a way that the flow cell can be undisturbed, and simply
flushed out and replenished for consecutive experiments. This could be achieved by clamping the
gasket between a glass plate and a plexiglass plate with suitable connectivity in the form of tubing
inlets, as shown on Fig.35.

Initially, this method appeared to work well, but strong artifacts were noticed. Considerable
amounts of time was spent attempting to eliminate these. Among the strongest unknown effects as
well as their remedies are:

• Rinsing out the old fluid before a new experiment proved more challenging than first assumed.
Despite repeated drainage and refilling, streaks of low pH regions were frequently observed.
Swapping around the inlet and outlet ports in order to promote flow across the entire cell
helped this issue, but never got rid of it completely.
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• Evacuating remaining CO2 posed an issue, since even small amounts of left over gas would
immediately produce a color change when fresh indicator liquid was injected into the cell. This
was solved by injecting more fluid after each experiment, to expel gas by reducing the gaseous
volume between consecutive experiments.

• After long experiments, some components developed a slight red tint. This is likely due to
some discoloration or possibly slight precipitation of methyl red. Because of this and the
aforementioned issues, a cleaning solution of dilute NaOH and 2-propanol was mixed, to flush
through the flow cell between experiments. This mixture is a good solvent with respect to
methyl red, and also encourages dissolution of CO2 gas due to its relatively high pH.

(a) A schematic drawing showing the
available tubing inlets and outlets on
the plexiglass back plate.

(b) An example of the usage of the
inlets and outlets of the system uti-
lizing the aforementioned plexiglass
backplate.

Figure 35: A diagram explaining the available fluid connectivity for the experiments.
For most runs, all the liquid inlets and outlets were connected together with t-joins,
and through a set of valves, these could either be isolated, connected to a reservoir of
indicator liquid or drain to the sink. This was done by placing the reservoir of fresh
fluid high enough and the drain low enough as to utilize gravity for these operations.
Three of the gas inlets were connected to CO2, while the remaining two served as vents
to assure steady atmospheric pressure.

While the initial issues were dealt with in a suitable manor, by the remedies listed previously,
another artifact still remained. After the initial onset of convective dynamics, the fingers would
rapidly translate towards the edges of the cell and sink there. Further details of this is shown in the
results section, but it had the effect of making vast amounts of carbonic acid flow down the sides, to
the point where it would clearly dominate the dynamics in the rest of the cell. Troubleshooting this
proved a lengthy process. A few plausible reasons for this artifact were considered. Among these
were whether or not chemical residue on the gasket could be the cause of the density growing faster
there, due to for example dissolution of any possible residue. The concern for this was in part due to
some slight discoloration mentioned above, and so proper rinsing should solve that. Also, the tubing
inlets used for indicator liquid could potentially be at fault, allowing for some added permeability
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between the various holes (promoting flow between the opposing edges of the cell). This was dealt
with by by clamping each separate liquid inlet, instead of only closing valves to and from the sink
or source.

This, while sensible, didn’t seem to solve the tendency towards flow down along the cell edges.
Therefore, the approach of having a refillable cell was discarded, and it was instead dismantled,
cleaned and reassembled between each experiment, with proper cleaning and drying of all compo-
nents. While the artifact still persisted, it was only significantly later that it was discovered that the
plexiglass plate with the tubing inlets and outlets was in fact slightly warped. While near impossible
to spot with the bare eye, when placed against a known flat surface, the warp was detectable. It was
measured with calipers that the height discrepancy between the middle of the plexiglass plate and
the four corners was around 2mm. It was also measured that the distortion was very similar in both
directions. Thus one can assume that the plexiglass plate is parabolically shaped with curvature
' 1mm/2502mm2 = 1.6·10−5mm−1 in both the X and Y directions, granted the curvature is similar
in both directions and half the plate width is 250mm.

Considering how the molding process was performed, this in fact means that the edge of the
gasket has a well defined 2mm thickness, but the effective thickness of the flow cell varies within the
liquid region. With this previously mentioned curvature, after taking the thickness and placement of
the gasket into account, a parabolic approximation estimates that the effective plate spacing in the
center is less than 1.6mm. That’s a roughly 25% thickness increase, and although the permeability

k = b2

12 only applies for uniform thickness, one can assume the permeability discrepancy to be closer
to 55%, which is clearly not insignificant.

While this wasn’t noticed until late in the experimental phase, another system was constructed
without said plexiglass plate. Instead the new system would consist of two glass plates, neither of
which had any tubing in- or outlets. The glass plates measured 35cm x 35cm with a thickness of
12mm and 16mm respectively, and are thus much stiffer than the previous setup. Due to the lack
of connectivity, the filling of fluid and injection of gas would need to be handled in another manor.
A similar gasket was molded, with a flow domain of 30x30cm. Only the bottom half of this region
is used, and two slits are made in the top, to allow for Luer lock syringe needles to be inserted into
the cell. The layout of this is shown on Fig.36. The needles are flattened to allow them to fit into
the 1.0mm gap. Since the previous system was expected to be 2.0mm, but the reality being that
the center of it was significantly thinner, it was decided to make this gasket thinner as well.
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(a) A schematic of the construction of the revised
flow cell. The liquid inlet needle is only used for
filling up the cell, and the opening serves as a
vent for excess gas during experiments.

(b) Photo of the revised flow cell after
clamping the plates together. Outside
the liquid region, an experiment identifier
is written on the glass with whiteboard
marker, and a ruler is attached to scale the
images correctly.

Figure 36: The simpler, yet improved flow cell, constructed of two glass plates with
a similar silicone gasket as the previous system. The liquid region is 30cm wide and
15cm tall with a thickness of 1mm.

Artifacting due to non-uniform permeability was definitely less in the revised cell, and the edge-
seeking trend of the previous flow cell configuration was not appearing any more. However, either
due to clamping pressure or some other uncontrollable variable, the newer system appears to exhibit
the opposite trend, where most of the carbonic acid would now sink down towards the center. This
will be shown in the results section. Therefore, from an experimental design perspective, we come to
the undeniable conclusion that the flatness of plates and in turn the uniformity of the permeability
field can be incredibly difficult to achieve.
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7 Experimental results

7.1 Patterns in the 2mm cell

As discussed in the previous section, the first flow cell had a warped plate and thus a very uneven
permeability field. Two concentration fields from an experiment in the θ = 90◦ angle are shown in
Fig.37. The two snapshots in Fig.37 clearly show how plumes that sink down along the edges cause
convection on a cell scale, which in turn washes out the other plumes so they becme very distorted.
This effect was noticable in all experiments in this flow cell, and as was discussed in the previous
section, the warping of one of the plates was deemed the reason for this artifact.

To demonstrate the importance of the permeability field in this situation, a simulation is per-
formed to see qualitatively how a small plate separation difference can have major consequences for
the dynamics and patterns. The developed numerical model is used to simulate a case of Ra = 3000
with a permeability fluctuation function:

f(x, y) = A
(

1 + a
(
(x− 1)2 + (y − 0.2)2

)2)
Note that this permeability field as well as the results shown for the simulation are in the non-
dimensional units as per Eq.11. This function imitates a roughly constant thickness with a small
additional parabolic element in both directions, centered at x, y = (1, 0.2) such that the thickness
grows away from this center. A modest height difference from center to edge of 10% is applied by
setting a = 0.1 and A is determined such that the function is correctly normalized. Two snapshots
of the corresponding concentration- and flow fields are shown on Fig.38. These results qualitatively
show how even a small imbalance in permeability can majorly affect the observed concentration
fields and how they develop.
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(a) Once the experiment is underway, the plumes translate towards the edges and sink rapidly there.

(b) A cell scale convection takes place, since fluid is being forced down along the edges, which com-
pletely dominate the dynamics in the rest of the cell.

Figure 37: The edge artifact which persisted in all experiments in the 2mm flow cell
with a warped plexiglass plate. Already after the initial onset, plumes shift laterally
towards the edges and sink rapidly there, causing cell scale convection which dominates
the DDC dynamics in the rest of the cell.
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(a) After the DDC dynamics begin, plumes shift towards the edges where they sink rapidly.

(b) Shortly afterwords, the sinking liquid at the cell edges cause cell scale convection. Strong upwards
currents are being driven by this on either side of the middle.

Figure 38: A simulation meant to imitate the effect of a plate seperation which
varies parabolically. The expression for the permeability field is thus assumed to be a
fourth order polynomial, in this case centered at x, y = (1, 0.2). The strength of this
fluctuation imitates a 10% difference in plate seperation from the center to the edges.
This can give rise to an experimental artifact which is qualitatively similar to the one
observed in Fig.37 Note the dimensionless units as per Eq.11.
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7.2 Patterns in the 1mm cell

Images obtained of flow patterns in the refined 1mm cell were used along with the proprietary pH
color analysis method and Eq.29 to determine the concentration fields. Numerous experiments were
performed with cell tilt angles ranging from θ = 30◦ to θ = 75◦. Fig.40-Fig.44 show a few snapshots
from one of the runs at each angle. Although this cell was refined specifically to improve on the
unfavourable permeability fluctuations of the previous one, the results clearly indicate that there is
a strong tendency for very asymmetric flow. This is also shown in the space-time maps on Fig.45-49,
in which we clearly see the plumes gravitate towards the right. This is most likely due to some
remaining permeability fluctuations, which could originate from the experimental design itself (i.e.
materials used, such as the plates and/or molded gasket), or simply by the act of opening cleaning
and reassembling and potential inaccuracies accompanied with that. One of these possibilities is that
the clamping pressure could be warping the plates slightly, which could be enough to cause minor
fluctuations in effective plate spacing. There is inherently no way to guarantee that the clamping
pressure is similar between the experiments, and as such, this could give rise to some warping which
is not necessarily consistent between different experiments.

The time dependent characteristic wavenumbers as per Eq.49 is shown on Fig.39. The results
clearly indicate the characteristic wavenumber decreasing with time, but upon further inspection one
finds that the height of the wavenumber peaks do not follow the pattern one would have expected.
For instance, in the case of 45◦ and 60◦, the latter appears to have a lower peak wavenumber than
the former. This goes against the expectation, that for Ra ∝ sin θ one would expect the more
vertical angle to have a noticably higher finger count and thus higher characteristic wavenumber.

Despite this inconsistency, the obtained concentration field data does demonstrate that the de-
veloped pH indicator method can indeed account for concentration variations within and around
convection plumes, and give an estimate of the total amount of dissolved carbon. This is data
which can not be well defined with single indicator methods or schlieren imaging. Despite the issues
with asymmetrical flow, the results indicate do demonstrate how the indicator, color analysis and
chemical equilibrium model can help investigate the continuous nature of the concentration fields.

Figure 39: Characteristic wavenumbers for experiments in the 1mm cell.

56



Figure 40: Snapshots from one run with tilt angle θ = 75◦. The middle of the cell
clearly dominates the rest.
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Figure 41: Snapshots from one run with tilt angle θ = 60◦. In this case, the plumes
appear to shift laterally to the right.
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Figure 42: Snapshots from one run with tilt angle θ = 45◦. In this case, the plumes
appear to shift laterally to the right.
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Figure 43: Snapshots from one run with tilt angle θ = 37◦. In this case, the plumes
appear to shift laterally to the right.
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Figure 44: Snapshots from one run with tilt angle θ = 30◦. In this case, the plumes
appear to shift laterally to the right.
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Figure 45: A space-time map of one of the runs with tilt angle θ = 75◦. This clearly
demonstrates how the plumes gravitate towards the middle or slightly to the right.

Figure 46: A space-time map of one of the runs with tilt angle θ = 60◦. In this case,
the plumes move laterally to the right.
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Figure 47: A space-time map of one of the runs with tilt angle θ = 45◦. In this case,
the plumes move laterally to the right.

Figure 48: A space-time map of one of the runs with tilt angle θ = 37◦. In this case,
the plumes move laterally to the right.
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Figure 49: A space-time map of one of the runs with tilt angle θ = 30◦. In this case,
the plumes move laterally to the right.

8 Conclusions

The inspiration for this project came mainly from previous work on plume patterns in DDC [12][13],
and especially an article by Thomas et al. which demonstrated the importance of proper use of pH
color indicators for visualization of the acidic plume formations [14]. This was an inspiration to at-
tempt to derive a more rigorous method by using the principles of analytical chemistry, a proprietary
color indicator mixture and image analysis to shed light on the continuous nature of the pH and
concentration fields that is often neglected in similar experiments. Most comparable experiments
rely on a single indicator only, and thus puts an inherent threshold on which concentrations one
can detect, and most concentration values beyond that point remain undetectable due to the binary
nature of pH indicators.

As a necessary pre-requisite for this, a DDC experiment was designed from scratch, and an
emphasis was put on the prototype being easy to re-purpose or reconfigure. A working setup was
made, which was able to perform DDC experiments at various angles and which was also easy
to reconfigure for other system sizes and/or thicknesses. However while the desire for easy re-
configuration was welcomed for prototyping purposes, the conclusion is drawn that this may in turn
also be what made the experiments so unreliable.

The first flow cell suffered from a warped plexiglass plate, which meant that the permeability
was far from uniform within the liquid region. Various potential issues were tackled before the
warping of the plate was later discovered to be the root of the problem. Simulations qualitatively
back this up, and demonstrate how a parabolic change in cell aperture of only ' 10% can strongly
affect the obtained concentration field patterns. Even after building another flow cell from scratch,
this problem was never truly avoided. Therefore the conclusion is drawn that the single biggest
improvement one could make to the presented work would be to design a more rigorous flow cell
using a completely different build method. On a side note, both Faisal et al. and Kneafsey and
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Pruess reported similar issues with non-uniform plate seperation, but not the same extent as here
[12] [13]. It is quite plausible that the act of clamping together the model is a source of inconsistency.
Given that the model needs to be cleaned between each experiment, one needs to be certain that
when reassembled, the flow cell geometry is sufficiently consistent in order to investigate the effect
of external parameters such as the reduction in gravitational force.

One of the ideas behind the modular design was to simplify adding for instance glass beads or
other sources of varying permeability fields, with only little modification to the experimental setup.
It was decided to first focus on experiments without beads, to fully develop the color indicator
method and leave such experiments for later. This was done with the idea in mind that the uniform
case should be easier to start with and develop the concept. However, one might argue that the
addition of packed beads could actually help stabilize the permeability field and might reduce some
of the experimental artifacts seen here.

While this does mean that the experimentally obtained plume morphologies are heavily affected
by experimental artifacts, the developed proprietary color analysis method was clearly able to iden-
tify the varying pH field, and coupled with the assumed pseudoequilibrium model, was able to
estimate the carbon concentration fields. Therefore one can conclude that using a universal pH
indicator, or a mixture of multiple individual color indicators can in fact prove useful to visually
investigate patterns of fluids in which chemical reactions take place. A recommendation for further
study within this topic would be to more rigorously validate at which indicator-concentrations does
the presence of an indicator significantly alter the system dynamics. For this system it has been
argued that the concentrations used do not affect the system in a meaningful way [14], but that may
not be the case for other systems one might want to apply a similar approach to.

Due to unforeseen circumstances, a significant portion of the project was spent outside of the
laboratory. During this time, a numerical scheme was developed, which is able to simulate DDC
with various conditions including geometries, boundary conditions and non-uniform permeabilities.
The developed code utilizes a Finite Volume Method for the concentration field, a Finite Difference
Method for the flow field and an operator splitting ADI method for time propogation. An optimized
direct solver algorithm was written which scales incredibly well with growing system size while the
error is maintained at second order in time increments and with guaranteed stability. Therefore
the presented flow patterns are significantly denser than most other results in literature on similar
systems [20]. The results with regards to onset of DDC match those of linear stability analysis to a
reasonable degree of accuracy [8]. The code proved especially useful to investigate the general trends
in plume morphology, and to give better insight into why the experimental artifacts appeared how
they did. The developed code is openly available on GitHub for all to use and/or improve upon [21].
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Appendix: Mathematical expressions

An analytical solution of the 1D diffusion equation

Consider Eq.16, which needs to be solved for a concentration field as a function of position and time.
By using seperation of variables, introduce the basis function:

Φ(y, τ) = f(τ)g(y)

When acted on with the differential operator of Eq.16, one finds a condition for fractions of derivatives
of f and g, which must hold true for all y and τ , thus they must be constant.

f ′(τ)

f(τ)
=
g′′(y)

g(y)
= const. = α

Now one can find different types of solutions for different α. Note that if α is positive, that implies
that f becomes a diverging exponential, which can not be the case, since we know that as τ → ∞
the concentration field remains finite. Additionally, one can check that the corresponding g(τ) would
not fit the BCs. Therefore we focus on the remaining two cases.

If α = 0, one finds that f(τ) = const. and g(y) = ay+b. So in the steady state, the concentration
profile is linear. This along with the zero-flux boundary condition at y = 1 tells us that there must
be a contribution of Φ0 = 1, in the τ →∞ limit.

Last but not least consider α < 0. In this case, the argument in the exponential function for f
will be real, but using the characteristic polynomial one finds a complex argument for g. This gives
rise to oscillatory solutions:

f(τ) = e−|α|t g(y) = A cos(
√
|α|y) +B sin(

√
|α|y)

The cosine function interferes with the boundary condition at y = 0, so only the sine function is
valid for this solution. Furthermore, given the zero-flux boundary condition at y = 1, we must have:

g′(y)
∣∣∣
y=1

= B
√
|α| sin(

√
|α|y) = 0

√
|α| = kn =

π(1 + 2n

2

Having identified the possible basis solutions, we construct a linear combination of the form c(y, τ) =∑
n cnΦn, as follows:

c(y, τ) = 1 +

∞∑
n=1

cne
−k2nτ sin(kny)

In order to determine the cn constants, we apply the condition that at τ = 0 the concentration field
is 0 everywhere on the domain of the solution. Therefore:

∞∑
n=1

cn sin(kny) = −1

And due to the orthogonality of the sine functions, by taking an inner product with a sinusoid of
the form sin(kmy) on both sides, one finds that cn = −2/kn. Thus we conclude that:

c(y, τ) = 1− 2

∞∑
n=1

k−1
n e−k

2
nτ sin(kny)
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A more detailed derivation of Eq.25 and Eq.29

From the charge conservation equation Eq.26, we find that:

[HCO3
−] + 2[CO3

2−] = [H+] + [Na+]− [OH−]

From the expression for Ka2 in Tab.1, we find that:

[CO3
2−] = [HCO3

−]
Ka2

[H+]

Insert this into the charge equation to find that:

[HCO3
−] =

1

1 + 2Ka2/[H+]

(
[H+] + [Na+]− kw

[H+]

)
(?)

Having found an expression for the bicarbonate ion as a function independent of the other carbon
species, we now derive similar relations for the remaining two species, in terms of the bicarbonate
concentration:

[H2CO3] = [HCO3
−]

[H+]

Ka1

[CO2] = [H2CO3]
1

KH
= [HCO3

−]
[H+]

Ka1KH

Insert these in the expression for total dissolved carbon as per Eq.28 to find that:

CT = [HCO3
−]

(
Ka2

[[H+]
+

]
+ 1 +

[H+]

Ka1
+

[H+]

Ka1KH

)
Finally insert the independent expression for [HCO3

−], (labeled ?) derived from the charge
conservation condition to arrive at Eq.29. As discussed in the relevant section, this gives an estimate
for the total carbon content of a fluid element in which these four carbon species are in equilibrium
with each other, but not with the gaseous CO2.

The derivation of Eq.25 is done in a very similar manor. Assuming that pH << pKa2, we can
neglect the fraction in (?), to find that:

[HCO3
−] = [H+] + [Na+]− kw

[H+]

Now in Eq.25, the system is a body of water in total equilibrium with a known partial pressure of
CO2, and as such we apply all the equilibrium constants of Tab.1 to find that:

Ka1KHKh

[H+]
pCO2

= [H+] + [Na+]− kw
[H+]

By multiplying both sides with [H+] a parabolic expression is obtained which can be solved for [H+].
Only the positive solution lies within the domain of possible solutions.
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Taylor approximations, and special cases in the FVM

Throughout the computational section about the Finite Volume Method and Finite Difference
Method, centered difference quotients were used, as their error is second order in grid spacing
[19]. However, one needs a different numerical scheme to handle the coupling between the top row
of CVs and the top boundary, since there is no cell on the opposite side of the boundary to access.
As a more detailed explanation of the derivations, consider without loss of generality the equations
governing the top left corner CV. This cell has all cases of interactions. On its left side, there is no
neighbour, and thus a zero-flux BC is introduced. In its top there is a Dirichlet BC, with constant
concentration, and on the remaining two sides are other CVs to which advection and diffusion can
happen. Recall that this cell is indexed 0, and its neighbours are 1 to the East and Nx to the South.
Due to the non-zero BC in the West direction, this flux is ommtied, and we need to evaluate the
following fluxes:

∂c

∂t
= Fn + Fs + Fe

As mentioned in the relevant section, when the path integral over the east facing line segment is
evaluated, as per Eq. 32, once we take into account that the stream function is zero on the boundary,
we find that:

Fe =
1

hx

(
cE − cP
hx

− ψse
hy

cP + cE
2

)
Similarly, the southern flux is evaluated

Fs =
1

hy

(
cS − cP
hx

+
ψse
hy

cP + cS
2

)
Thus only the Northern flux where the Dirichlet BC condition is located remains. We start by
applying the definition of the flux to be evaluated. Note that the unit vector is now in the negative
direction, due to the coordinate system being defined as increasing downwards. The velocity term
dies out on the top border because by definition the stream function is constant there

Fn =
1

A

∫
n

(∇c− ~uc) · (−êy)dx =
1

hy

(
− ∂c
∂y

) ∣∣∣∣
n

Since the partial derivative needs to be evaluated at the domain boundary y = 0, it becomes helpful
to express the values cP and cS in terms of a taylor series around y = 0. In general:

c(x, y) ' c(x, 0) + y

(
∂c

∂y

) ∣∣∣∣
y=0

+
y2

2

(
∂2c

∂y2

) ∣∣∣∣
y=0

+O(y3)

This can then be evaluated at cP and cS , recall that the y−coordinate of these are hy/2 and 3hy/2

cP = c(x, 0)c(x, 0) +
hy
2

(
∂c

∂y

) ∣∣∣∣
y=0

+
h2
y

8

(
∂2c

∂y2

) ∣∣∣∣
y=0

+O(y3)

cS = c(x, 0)c(x, 0) +
3hy
2

(
∂c

∂y

) ∣∣∣∣
y=0

+
9h2

y

8

(
∂2c

∂y2

) ∣∣∣∣
y=0

+O(y3)

Ultimately, we need to obtain an expression for the first derivative, so we weight these expressions
and subtract them as to cancel the second derivative entirely:

cS − 9cP = −8c(x, 0)− 3hy

(
∂c

∂y

) ∣∣∣∣
y=0
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Solving this for the derivative yields an expression which is now second order in error with respect
to hy. (

∂c

∂y

) ∣∣∣∣
y=0

=
9cP − cS

3hy
− 8

3hy
c(x, 0) +O(h2

y)

Here c(x, 0) represents the concentration value given by the boundary condition. Naturally, the x−
coordinate matches that of the CV in question, and can in theory vary between neighbouring CVs
if one wants to introduce non-uniform behaviour. Inserting this expression for the Northern flux
yields:

Fn = − 1

hy

(
9cP − cS

3hy
− 8

3hy
c(x, 0)

)
=
cS − 9cP

3h2
y

+
8

3h2
y

c(x, 0)

One can now evaluate the sum of fluxes to determine the time derivative:

∂c

∂t
= Fn + Fs + Fe =

cE − cP
h2
x

− ψse
hxhy

cP + cE
2

+
cS − cP
h2
y

+
ψse
hxhy

cP + cS
2

+
cS − 9cP

3h2
y

+
8

3h2
y

c(x, 0)

When the coefficient for each CV is isolated, and their numeric indexes are inserted, the matrix form
of this equation becomes:(

− 4

h2
x

− 1

h2
y

)
c0 +

(
1

h2
x

− ψse
hxhy

)
c1 +

(
1

h2
y

+
ψse
hxhy

)
cNx

= − 8

3h2
y

c(x0, 0)

Where c(x0, 0) is the value dictated by the Dirichlet BC on the Northern line segment of CV with
index 0. This effectively becomes a source term for the top cell, and is the only way new mass can be
introduced to the system. Within the rest of the system (that is rows 1-Ny) mass is only transferred

between CVs and can not be created or destroyed. This is in turn how the right-hand-side vector ~b
appears in section 4.1.4, but from this derivation one can see that it is only non-zero in the first Nx
elements (corresponding to the top row), and zero everywhere else.
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