

Thesis Submitted for the Degree of

Hovedfag/Master

A Model Driven Approach to domain standard
specifications examplified by Finance

Accounts receivable/ Accounts payable

By

BAHADAR KHAN

Department of Informatics

The Faculty of
Mathematics and Natural Sciences

University of Oslo

Oslo 2005

 1

 2

Preface

This thesis was written as a part of a master degree at the University of Oslo. The
thesis work was conducted at SINTEF. The work has been carried out in the
period November 2002 and April 2005.

This thesis might be interesting to anyone interested in Domain Standard
Specification Language developed by using the MDA approach to software
development. The Model Driven Architecture (MDA) allows to separate the
system functionality specification from its implementation on any specific
technology platform. I have suggested UML-SSS (it stands for UML for
Standards Service Specifications) in thesis and applied it to Finance domain with
example Account Receivable and Account Payable.

I would like to thank all who helped me especially, my supervisor professor Dr.
Arne Jørgen Berre at SINTEF for encouraging me in this thesis, reading the text,
giving advice, and providing timely and valuable feedback.

I am thankful to friends and family who have supported me and shown interest in
my work: thank you for the motivation you have provided me! And special thanks
to my wife Asima Tehseen who encouraged me in the work to complete this
thesis.

Oslo, May 2005
Bahadar Khan

3

Contents

Preface ...3
Contents...4
List of Figures ...7
List of Tables...8
1 Introduction ..9 Introduction

1.1 Domain Standard Specification Language ..9
1.2 Domain Standard Example – Finance AR/AP.......................................10

1.2.1 Standard Specification ...11
2 Background and Problem Statement..12 Background and Problem Statement

2.1 Domain Standard Specification Language ..12
2.1.1 Model Driven Architecture (MDA)...13

2.2 Problem Statement for AR/AP ..14
2.2.1 E-commerce ...15
2.2.2 Account receivable and Account Payable15
2.2.3 External integration..17
2.2.4 Internal integration...17
2.2.5 Resolution of business differences ..17
2.2.6 Levels of aggregation...18

2.3 The Maintenance and Documentation Problem.....................................18
2.4 Hypothesis ...18

3 Requirements..19
3.1 Requirements for Domain Standards Specification Language19

3.1.1 R 1 - Formal Language ..20
3.1.2 R2 - CIM, PIM and PSM...20
3.1.3 R2a - Structure ...20
3.1.4 R2b - Behaviour...20
3.1.5 R 2c - Constraints ..20
3.1.6 R 3 - Ease of use - graphical notation..20
3.1.7 R4. Data Types ..21
3.1.8 R5- Computer processability ...21
3.1.9 R6. Non functional aspects ..21
3.1.10 R7- IT "Standard" and continuous development22
3.1.11 R8 - Supporting software...22
3.1.12 R9 - Methodology and process description22

3.2 Requirements for AR/AP service – A finance example22
3.2.1 Requirements table for AR/AP ..23
3.2.2 Req.1 MDA specification ..23
3.2.3 Req.2 – Interfaces and behavior ..24
3.2.4 Req.3 – Views of balances...24
3.2.5 Req.4 - Classic Double Entry Accounting (CDEA)24
3.2.6 Req.5 – Party roles...24
3.2.7 Req.6 – Group-by Queries ...24
3.2.8 Req.7 – Non functional aspect like security24
3.2.9 Req.8 - Relationship to Existing OMG Specifications25

 4

4 Evaluation of existing Standard specification languages.............26
4.1 CORBA IDL (General Ledger Facilities and AR/AP)27
4.2 XBRL XML (W3C XML) General Ledger Schema29
4.3 Electronic Business using extensible Markup Language (ebXML)31

ebXML System Overview ...31
Core Components (CC) ...33
Business Information Entity ..33
4.3.1 Business Process Specification Schema (BPSS)34
4.3.2 ebXML and Standard Specification...35

4.4 OASIS..36
4.4.1 UBL 1.0 ...36
4.4.2 Business Centric Methodology (BCM) ...37

4.5 UN/CEFACT UMM ..38
4.6 Evaluation of existing language candidates...40

5 UML-SSS: “UML method for Standards Service Specifications”41
5.1 Modeling Language and Notations..41

5.1.1 Unified Modeling Language (UML) ...41
5.1.2 COMET 2.4 ...42

5.2 Model Overview in UML-SSS ..43
5.2.1 Business Model (CIM)...44
5.2.2 Requirements Model..46
5.2.3 Architecture Model (PIM) ...46
5.2.4 Data types ..47
5.2.5 Platform-Specific Model..48

5.3 Methodology and Process..49
5.4 Applying the MDA framework..49
5.5 Working tool ..50

6 UML-SSS Application to Finance AR/AP51
6.1 Computation Independent (Business) Model (CIM)51

6.1.1 Scoping Statements..51
6.1.2 The Business Process & Role Model...54
6.1.3 The Business Resource Model...62

6.2 Architecture Model (PIM) ...63
6.2.1 Component structure model...64
6.2.2 Component interaction model..66
6.2.3 Interface model ..69
6.2.4 Information Model...70

7 Platform specific Modeling..74
7.1 PIM to PSM Mapping..74

7.1.1 EJB PSM..74
7.1.2 WEB PSM..75
7.1.3 Web services PSM...77

7.2 Mapping PSM to Code ..79
7.2.1 EJB Code ...79
7.2.2 Web Code ..82
7.2.3 Web Service code ..82

7.3 Summary..83

 5

8 Analysis and Evaluation...84
8.1 Evaluation of UML-SSS..84
8.2 Evaluation of Example, UML-SSS applied to Finance AR/AP ref.
Requirements ...85

9 Conclusion and further work..87
9.1 Requirement...87
9.2 Evaluation of Existing Standard Specification Languages....................88
9.3 UML-SSS...88
9.4 UML-SSS application to Finance AR/AP ...88
9.5 Future Work...89

Terminology ..90
References: ..94

 6

List of Figures
Figure 2.1 Model to model transformation in MDA ...14
Figure 4.1 OMG AR/AP interfaces ...28
Figure 4.2 XBRL general Ledger Process [16] ...30
Figure 4.3 A high level overview of the interaction of two companies conducting

eBusiness using ebXML [11] ..32
Figure 4.4 Core Component Library [11]..34
Figure 4.5 Relationship of ebXML Business Process Specification Schema to

UMM, CPP/CPA and Core Components [12] ...35
Figure 4.6 BCM processes [15] ...38
Figure 4.7 Overview of UMM Worksheets and Models [14]................................39
Figure 5.1 UML-SSS model overview ..44
Figure 5.2 Business model structuring concept ...45
Figure 5.3 Business Process & Role Model ..46
Figure 5.4 Architecture model work products ...47
Figure 5.5 PIM data types..48
Figure 5.6 Applying MDA to UML-SSS...50
Figure 6.1 Buying and selling context diagram for AR/AP52
Figure 6.2 Order-to-Invoice processes...53
Figure 6.3 purchase order process ...55
Figure 6.4 Fulfilment of purchase order ..56
Figure 6.5 Invoice and AR/AP ..57
Figure 6.6 AR/AP processes..59
Figure 6.7 Activity diagram post invoice ..60
Figure 6.8 Activity diagram post vendor invoice ..61
Figure 6.9 Business Resource Model for AR/AP..62
Figure 6.10 AR/AP Component Interaction ..64
Figure 6.11 Compiere component overview..65
Figure 6.12 AR/AP components..66
Figure 6.13 Sequence diagram Component interaction...67
Figure 6.14 Sequence diagram for Order-to-Invoice with AR/AP........................68
Figure 6.15 Sequence diagram ARAP posting ..69
Figure 6.16 Interfaces provided by ARAP to Selling component69
Figure 6.17 Interfaces between GL and ARAP ...70
Figure 6.18 AR/AP class diagram ...71
Figure 6.19 AR/AP Data types ..72
Figure 6.20 Enumeration data type..73
Figure 6.21 AR/AP Accounts ..73
Figure 7.1 EJB Model from OpmtimalJ ..75
Figure 7.2 WEB (presentation) PSM from OptimalJ ..76
Figure 7.3 All components of WEB (presentation) PSM77
Figure 7.4 Web Services PSM from OptimalJ ..78
Figure 7.5 Model to Model transformation with ATL...78
Figure 7.6 Web Service PSM from RSM ..79
Figure 7.7 Java codes for EJB. ..80
Figure 7.8 Java code for interface NewAccount..81
Figure 7.9 Code generated with ATL transformation RSM.81
Figure 7.10 Java code for Web PSM ...82

 7

List of Tables

Table 3.1 Requirements for domain standard specification language19
Table 3.2 Requirements for AR/AP...23
Table 4.1Existing standard specification candidates ...26
Table 4.2 AR/AP Packages..28
Table 4.3 Evaluation of language candidate..40
Table 6.1 Description of stakeholder in AR/AP context diagram52
Table 6.2 Order-to-Invoice processes..53
Table 6.3 Risk Analysis for AR/AP...54
Table 6.4 Documents sent and received in purchase order process and Change PO.

...56
Table 6.5 Documents sent and received in Fulfilment of purchase order.57
Table 6.6 Documents sent and received in invoice and AR/AP process...............58
Table 6.7 Description of AR/AP processes ...59
Table 6.8 Description of post invoice processes..60
Table 6.9 Post vendor invoice..61
Table 6.10 Classes in Business Resource Model...63
Table 6.11 Interfaces between ARAP and Selling component..............................70
Table 6.12 Description of AR/AP Data Types ..72
Table 8.1 Evaluation of UML-SSS..84
Table 8.2 Evaluation of Finance AR/AP example...86

 8

1 IInnttrroodduuccttiioonn

 In this chapter I will describe the developments of IT technology especially
related to raise abstraction level and need of software based on accounting
standards. The thesis has two focus areas.

A. Domain standard Specifications Language
B. Finance AR/AP standard specification

1.1 Domain Standard Specification Language

Domain standards in the IT industry, for technology areas such as communication
and storage, and for domains such as Finance, Healthcare, Geographic
information has so far typically been specified in concrete technologies such as
EDIFACT representation, CORBA interfaces or Web service interfaces (WSDL)
or SQL table structure. However, it seems that such implementation technologies
are more varied, and are changing faster than the domain semantics.

It takes a lot of time to change one technology to another for a specific domain.
This problem is crucial because all new technologies tend to be discarded and
forgotten due to the continuous development of computer and information
technologies. For example COBOL programs that were written in the 80's for the
banking sector and some of them are still in use today, are now it is desirable to
convert to some modern technology but it is a very expensive task. If we can find
documentation of these programs with platform independent models it may be
easy to convert these programs to new technologies.

We can see that without some smart techniques and methodology we should not
be able to take advantage of all opportunities that the technological progress can
offer us. It is not the first (and certainly not the last) time we meet this problem
and it has been always solved by using the same approach: by raising the
abstraction level in software development.

At the early age of computer industry the programs were written in machine
codes. People soon realized that this was a very inefficient method of
programming. Writing programs with '0's and '1's needed enormous efforts from
programmers and development of large systems was impossible. Assembly
languages added a level of abstraction to programming by introducing human
readable commands. Later on 3GL languages added another level of abstraction.
The commands became even closer to human languages by encapsulating
processing logic. The major benefit of 3GL was portability. Another step in the

 9

raising of abstraction in software development is the appearance of middleware
and virtual machines. Middleware offers common services which are independent

f operating systems and platforms.

es

L) in

ness

help us to analyze complex systems that we cannot

omprehend in its entirety.

ique like

re
bject Management Group (OMG), OASi, OASIS, UN/CEFACT and XBRL.

.2 Domain Standard Example – Finance AR/AP

 is

n
try

ter software systems
ought many changes in financial markets globally.

f
 for

f

o

We can see that the complexity of software increases as the technology evolv
and to deal with this complexity new abstraction levels must be added to the
development process. The development of Unified Modelling Language (UM
recent years gives us an alternative to raise the abstraction level of software
systems. It is used in many phases of software development process like: busi
modelling, requirements modelling, architecture modelling, database design
modelling and many more. It is popular to build models because they represent a
simplification of reality and
c

Only models are not enough, we need models with some modelling techn
MDA, PIM and PSM for standards specifications of software systems to
overcome the complexity of software system. There are many international
organizations which are doing very good job of specifying standards for many
software systems and part of systems in the world, but standards developed by
these in the field of modeling, data exchange, messaging, services and processes
are of special interest for financial sector. Some of leading name in this regard a
O

1

Accounting concepts have been stable for over 500 years but the majority of GL
systems are still non-standard and difficult to make interoperable. Generally it
due to the lack of domain standards for accounting software. Accounting and
financial sector was one of the first sectors which started using the first computer
in 1943 and computer accounting became globally introduced in early fifties whe
computer revolution became global. Use of computers became de facto indus
standard soon after the computer revolution and compu
br

Changes in financial markets happen very often and rapidly. Innovation of
computer and information technology has many folded changes in management o
financial accounting. These changes make new opportunities and challenges
both the financial sector and for software developers. Most of the financial
institutions and companies demand new and better IT software systems, to
compete with market rivals in these new and demanding situations. These
institutions are turning to new technologies as a way to drive globalization,
deregulate product offerings, integrate legacy systems and improve the overall
quality of service. The ability to write such highly functional programs for the
financial sector is not an easy task, and the price we must pay for that ability is the
increasing complexity of the software development process. As the complexity o
the system gets greater and greater, the task of building the software gets harder
and harder. It is not unusual nowadays that the source code for some programs is

 10

many hundred thousands of lines. It is obvious that such code is very difficult
comprehend and maintain. Because of this growing complexity, the financ
industry needs software systems based on international standards that are
sufficiently adaptable, interoperable, that can be reused later in development of
other software, that can handle the massive amounts of

to
ial

 information generated, and
can deliver it to where it is needed when it is needed.

.2.1 Standard Specification

hem?,
se

uestions in this thesis, but I shall take a brief look at these questions.

ces, or

ial

 on the
 end in themselves but a means for

romoting sound financial systems.

in standards specification i.e. data exchange, messaging, services
nd processes.

or
stems are UN/CEFACT, ISO, ANSI,

NTDI, OASIS, OMG and many others.

cial

ides us in constructing a system

and helps us to realize a standards specification

1

We can not get involved with financial systems without hearing about standards,
but what do we mean by standards?, what do they comprise?, who makes t
and how do we choose which one to use? It is difficult to answer all the
q

Standards set out what are widely accepted as good principles, practi
guidelines in a given area. The development and implementation of
internationally accepted IT, economic, and financial standards can help to
promote sound domestic financial systems and stable international financ
systems. The development, adoption, and successful implementation of
international standards yield both national and international benefits. But
other hand standards alone are not an
p

Standards are formed to serve the business community and not vice-versa. Often
we need to implement two standards, one for domestic community, and other for
international community. The important thing to know about IT standards is that
there is more than one or, more accurately, more than one syntax upon which the
messages are built. The following concepts have significant importance when we
talk about doma
a

Standard specification of software systems is often region characterized i.e. one
for EU, other for USA and Asia. The leading organizations, which are working f
standards in the area of IT and financial sy
U

It is difficult to compare these standard specifications or systems developed by
different standardizing bodies because most of them are developed for spe
purposes with special demands and needs. But I look into some common
properties of system models like visualization of a system, specifying the structure
or behaviour of a system and the template that gu

 11

2 BBaacckkggrroouunndd aanndd PPrroobblleemm SSttaatteemmeenntt

This chapter includes the background and problem statement for both focus areas
of the thesis. First section includes the background and developments in modeling
techniques. The second section includes issues and background of Accounts
Receivable and Accounts Payable along with problem statement for AR/AP. At
the end of chapter, a general documentation problem faced by software developer
is discussed.

2.1 Domain Standard Specification Language

In system development the main goal of the activity is production of a running
system. The most important assets for the running system are the developed or
generated code that is compiled and executed. Technology-specific standards will
have trouble, getting established, where platform incompatibility prevents
achieving this critical mass. Sometimes the problem is even deeper than this. In
some industries, architecturally excellent standards have been adopted in the
formal sense but failed to gain hold because they were written for a platform that
few companies were willing to support.

Traditionally, software development has been a series of mappings from the
domain idea, to design models, and on to source code. These mappings tend to be
slow and lead to errors and duplication of effort in problem solving, designing and
coding. Model-based development of software systems is not new it has been used
around since the 70’s, but we have not had tools that would help to address the
requirements of model based development

In a model based development a system is described from different aspects using
different models. A model can be abstract or detailed it depends on the modeling
language. OMG (Object Management Group) states some requirements for a
model:

“A model is a representation of part of the function, structure and /or
behavior of a system.” [5]

 Or
“A model has to be formal, which means that it has to have a well-defined
syntax and semantics. The syntax may be graphical or textual.”[5]

Modeling is useful for a wide spectrum of domains and activities, some of which
are unrelated to coding. At the highest level of abstraction, a business or domain
model focuses not on software, but instead on the nature of the problem under
consideration and at the next stage architecture modeling will focus on internal

 12

structure of software. The success of software development lies in the domain
standard specification language and methodology which ties these models
together. A model-driven form of software development is becoming more and
more effective for the advanced and progressive software.

2.1.1 Model Driven Architecture (MDA)

MDA is an effort of OMG to raise the level of abstraction for development of
software. As mentioned in above section software developer have gradually lifted
the abstraction level from 1s and 0s, to assembly language, to third generation
languages, and now to yet more abstract modeling languages. Model Driven
Architecture is a comprehensive approach to information systems engineering that
systematically addresses the complete life cycle of automating business processes
through software. MDA focuses on formalizing and standardizing the artifacts
associated with designing, deploying, integrating, and evolving supporting
software applications and therefore a good technique for developing domain
standards.

The MDA is based on the idea of meta-modeling. It merges the different OMG
standards having been developed and used separately so far into a common view
by applying common meta models to them. However, it is not necessary to step in
too deep into the meta worlds of modeling to understand the underlying concepts.
The core of Model Driven Architecture is based on OMG’s modeling standards:

• the Unified Modeling Language (UML),
• the Meta-Object Facility (MOF),
• and the Common Warehouse Meta-model (CWM).

The MDA defines an approach to system specifications that separates the
specification of the system functionality from the specification of the platform
specific implementation. This is done by specifying standards to model the system
in a reusable way. This allows two main applications:

• A system can be defined platform independently and then can be realized
on multiple platforms through auxiliary mapping standards.

• Different applications can be integrated by explicitly relating their models,
even if they do not run on the same platform type.

Key to MDA is the importance of models in the software development process.
Within MDA the software development process is driven by the activity of
modeling our software system. MDA defines PIM, PSM, and code and how these
are related to each.

 13

Figure 2.1 Model to model transformation in MDA

We build a PIM model in MDA with a high level of abstraction that is
independent of any implementation technology; this is called a Platform
Independent Model (PIM).

Next, the PIM is transformed into one or more Platform Specific Models (PSM).
A PSM is tailored to specify our system in terms of the implementation constructs
that are available in one specific implementation technology, for example a
database model, an EJB model. A PIM is transformed automated into one or more
PSM.

The final step is to transform a PSM to code. Because a PSM fits its technology
very closely, this transformation is rather trivial. The complex step is the one in
which a PIM is transformed to a PSM. Recent development in OMG has also
added the CIM level, Computational Independent Model, - which describes the
context for a system.

The above discussion means that MDA has shifted the focus of software
developers from PSM and code to PIM. The PSM, that are needed are generated
by transformation from PIM to PSM. We will work independently of the details
and specifications of the target platforms, there is a lot of technical detail that we
don’t need to bother with. These technical details will be automatically added by
the PIM to PSM transformation. This improves the productivity and will help to
make domain standards for a long time.

2.2 Problem Statement for AR/AP

All businesses have external balances. These balances include accounts receivable
from customers, accounts payable to suppliers and various financial liabilities and
assets such as bank accounts and borrowings. The human resources spent on
administering, communication, billing, reconciliation, and settlement of interparty
balances in western countries is certainly above 10 million person years per year.

 14

Commercial banking itself consists largely of mechanisms for correct and secure
interparty balances. The lack of standardization in managing interparty balances
also imposes logistical costs such as printing, postage, and driving to banks. It has
been made good efforts to specify standards for e-commerce and eProcurement in
recent years but mostly these specifications cover order to invoice process and do
not specify standards for Account Receivable and Account Payable which always
follow the invoice.

2.2.1 E-commerce

Internet has opened the door for almost all companies and many of them are doing
their business through e-commerce. Purchase orders and invoices are exchanged
electronically. AR/AP is closely related to purchase order and invoice because
input like party name, amount, due date etc. come from invoice. Many companies
experience a number of problems like data exchange, messaging and processing
when they come to an electronic peer-to-peer collaboration. Therefore we need
international standards to overcome these problems.

Data exchange is becoming a necessity in ERP because any data which is output
of one process could be input for another process. Problems that occur at data
exchange between independent systems are that when one company sends an
invoice to the buyer, it is possible that different terms are being used in the
models.

For example the supplier company uses the term itemName and the buyer uses the
term productName which refer to the same semantic meaning. The problem with
use of synonym terms occurs when integration of data is required. Similarly other
problems like semantic incompatibility i.e. the same term may be chosen by two
systems to denote completely different concept, data representation conflicts and
attribute integrity constraint conflicts can also occur during integration of data. It
means that two parties' assessment of both character and timing of recognition
into payables, receivables, inventory, or other accounts will sometimes be
inconsistent. In other words, the accounting processes will not be completely
automated and they will be costly.

2.2.2 Account receivable and Account Payable

Accounts receivable is unpaid customer invoices, and any other money owed to
seller by his customers. The sum of all customer accounts receivable is listed as a
current asset on balance sheet. Seller should keep accounts receivable ledger for
each customer. The accounts receivable ledger is a record of each customer's
charges and payments.

When a customer purchases something, supplier will first record the sale in the
sales and cash receipts journal. This journal will have accounts receivable debit
and credit columns. Charge sales and payments on account are entered in these
two columns, respectively. Then, each day, the credit sales recorded in the sales

 15

and cash receipts journal is posted to the appropriate customer's accounts in the
accounts receivable ledger. This allows us to know not only the total amount
owed to us by all credit customers, but also the total amount owed by each
customer.

Entries made in the sales and cash receipts journal are also totaled at the end of
the month, and the results are posted to the accounts receivable account in General
Ledger. This account is often called accounts receivable "control account." It
means that after all posting is completed the total amount of customer balances in
the accounts receivable ledger will be the same as the balance in the control
account in the general ledger. If they aren't the same, we have made an error
somewhere along the line.

For most businesses, statements should be sent once a month to all customers with
an account balance. The statement should show the following:

• a beginning balance (the previous month's ending balance)

• all invoices charged during the month

• payments on account during the month

• any debit memos or credit memos

• an ending balance

• a due date

Which mean that invoice, payment, due date and balance or amount are key words
in account receivable ledger.

Accounts payable is the unpaid bills of the business; the money buyer owe to his
suppliers and other creditors. The sum of the amounts he owes to his suppliers is
listed as a current liability on your balance sheet. Buyer should keep accounts
payable ledger account for each supplier. Expenses from the cash disbursement
journal are, at the end of each day, posted to the appropriate accounts payable
ledger. The accounts payable ledger is a record of what he owes each vendor.

Accounts payable ledger helps buyer to control his expenditures and payables. If
he maintains accurate payable ledgers, it will be easy for him to double check the
bills you get from his suppliers. At the end of the month, reconcile accounts
payable ledgers with the accounts payable control account. The control account is
the total accounts payable balance from your general ledger. The beginning
accounts payable total, plus purchases on account during the month, minus
payments on account during the month, should equal the ending accounts payable
total. Compare this amount to the sum of the individual accounts payable ledgers.
This will help to discover any errors made in recording payables. Reconciliation
might also help to catch any errors on vendor bills.

 16

AR and AP systems, historically, have interoperated very closely with software
applications involved in selling, purchasing, cash management, and inventory.
AR/AP has two levels of integration i.e. External integration and Internal
integration.

2.2.3 External integration

External integration must address the expectations for AR/AP in an Internet
environment, in which the transaction creation, management and settlement cycle
is increasingly automated. External balance in AR/AP ledger has some common
properties. These properties are universal and inherent. The universal attributes
of an external transaction entry in the subject’s books mostly include identity of
the party (e.g. customer or supplier), amount of money, date and time the
transaction was concluded or executed, description of what was exchanged (e.g.
string, document, document reference or XML message.), due date (expectations
regarding date of settlement), and settlement method (expectation regarding bank,
settlement agent or method)

2.2.4 Internal integration

Along with the external integration AR/AP must have internal integration within
the software environment of the enterprise in which the efficiency of applications
for selling, purchasing and other operations are not compromised by the fact that
receivables collection, payables settlement and other balance sheet operations are
performed centrally within a single AR/AP system. In a successful integration,
users of these applications have complete and timely views of the state of
payables and receivables settlement which are essential to operation. Conversely,
the AR/AP system has complete and timely knowledge of the payables,
receivables and other balance sheet actions executed by users on various operating
applications.

The internal integration of an AR/AP with the other information or accounting
systems is therefore be a large and difficult task, especially in the absence of
standard specification of data exchange, messages and interfaces. The lack of
standardization in managing external party balances imposes costs beyond
software or IT costs, to include rigidities in people’s activities and roles, rigidities
in organizational structure, inability to take advantage of new vertical and
horizontal business solutions, and loss of access to markets both in sales and
sourcing especially when business is being done through E-commerce.

2.2.5 Resolution of business differences

It is also relevant that at the moment of consummating a transaction, the amounts
and consideration are sometimes ambiguous. It is inherent in the operation of
many markets that these invalid or open contracts are created and ultimately must

 17

be adjusted or canceled after the fact, within AR/AP systems. We need least-
common-denominator interfaces or usage models which facilitate the finding,
correction and resolution of business differences between parties to transactions.

2.2.6 Levels of aggregation

Different parties have different levels of aggregation. For example, some parties
have historically maintained AR/AP records as Customer or Supplier accounts
containing only Statement totals, or containing only Invoice totals, while
maintaining large numbers of line items or details in sub-systems not accessible to
the AR/AP system. As a result, automation of reconciliation with these
companies at the detail level is a problem. Numerous side effects arise in these
situations such as credit/debit memos at inappropriate levels of aggregation.

2.3 The Maintenance and Documentation Problem

Another general problem with large software programs is maintenance and
documentation. Software developers mostly concentrate on code writing and feel
their main task is code writing. Document writing during development process
costs time and slow down the development process. The availability of
documentation supports the task of those that come later. So, developer feels like
doing something for the sake of prosperity, not for your own sake. It is more
difficult to keep up to date documentation. Developers make changes in source
code under and after the development process. It becomes very difficult for new
comer to maintain such systems.

The main task of developer is to develop a system that can be changed and
maintained afterwards. Despite the feelings of many developers, writing
documentation is one of their essential tasks. Some programming languages
support to produce documentation from code i.e. Java and Eiffel, but it is low-
level documentation, the higher level documentation still needs to be maintaining
by hand. It is difficult to make standards when developers don’t give priority to
documentation and only rely on source code. The documentation at higher level of
abstraction is an absolute must due to the given complexity of the systems that are
built.

2.4 Hypothesis

"It is possible to create a UML profile, suitable for the specification of domain
standard services - that may be implemented on various platforms." i.e. a UML
Standard Service Specification profile.

 18

3 Requirements

The section 3.1 presents the requirements for domain standard specification
language. The solution for these requirements for domain standard specifications
is presented in chapter 5. The requirements for finance AR/AP are given in
section 3.2. The solution for these requirements is presented in chapter 6.

3.1 Requirements for Domain Standards Specification

Language

Table 3.1 shows the requirements for domain standard specifications and further
description of important requirements is given below. Requirements have also
been adapted from the ISO TC211 19103 [18] and CEN/TC287 requirements to a
Conceptual Schema language.

Requirement Description

R1 Formal Language

R2 Specification of CIM and PIM and PSM models
R2a Structure
R2b Behaviour (Process/Services)
R2c Constraints
R3 Ease of use – graphical notation.

R4 Platform independent data types.

R5 Computer processability
R6 Non functional aspects like performance, QoS, error handling,

security issues, usability, reliability, availability, adaptability,
supportability.

R7 IT standard and continuous development.

R8 Support from existing working tools.
R9 Methodology and process description.

Table 3.1 Requirements for domain standard specification language

 19

3.1.1 R 1 - Formal Language

The modeling and description language shall be formal and applicable in
describing data, services and process – and constraints at the PIM level. The
language shall be independent of implementation and PSM level. (i.e. support for
MDA)

Ideally, the language should adhere to some international standard like ISO 100%
principle for conceptual modelling, and be able to describe all necessary static and
dynamic concepts (structure and behaviour) and related constraints. Formal -
means well-defined semantics, and both a lexical and a graphical computer-
processible syntax would be necessary.

3.1.2 R2 - CIM, PIM and PSM

The modeling language shall support the MDA approach, and should be able to
express the three types of models, Computation Independent Model, Platform
Independent Model and Platform Specific Model.

3.1.3 R2a - Structure

The requirements for structural descriptions include requirements for description
of structure in terms of entities/features/objects and their properties and
relationships/associations. It is a need to be able to describe aggregation and
ordering and to be able to specialize/generalize entities/features/objects.

3.1.4 R2b - Behaviour

The requirement for description of behaviour comes in particular for
operations/behaviour of entity types, multiple inheritance. In addition it has been
said that a description of semantics preferably should be done through algebraic
(mathematical) specifications . It also required support for the specification of
interfaces for the description of services. In addition it has been required that the
description of semantics of behaviour should be supported by some kind of
assertions, pre/post-conditions or predicate calculus.

3.1.5 R 2c - Constraints

Both structural and behavioural constraints should be explicitly expressible.

3.1.6 R 3 - Ease of use - graphical notation

The description language shall either include or be easily linked to a graphic
notation. The graphic notation can be a subset of the lexical description language.

 20

Ease of use also means that descriptions in the language should be easy to
understand, formulate and change.

3.1.7 R4. Data Types

Data types should be independent of any target platform. It needs to define a set of
platform independent data types for PIM modeling. Data types can categorized
into two main kinds, basic types and composite types.

• Basic types
The requirement for basic types is that it must be small set that represent
the basic needs for identifying types for model properties.

• Composite types or derived types

Composite types consist of one or more basic types.

3.1.8 R5- Computer processability

The description language shall be interpretable and processable by computers.
Consequently, checking and consistency of data descriptions, i.e. conceptual
schemas, expressed by the language can be made by software. The processing
possibility could also be a basis for executable specifications.

3.1.9 R6. Non functional aspects

This requirement is self explained but security issues are precise below.
Security Issues
For most applications, the use of the network depends on the assured security
level and functions. These functions should be as transparent as possible to the
user and involve a minimum of effort, and at the same time, should provide an
agreed level of security. Security aspects that need consideration for individuals
are:
• Confidentiality: The user must be assured that the services provided will

not expose the data kept or transported to any party, who is not authorised to
see it.

• Availability: Constant availability of the services may be crucial to the end
user. For this reason, the operator must guarantee the agreed availability,
and take all necessary steps to maintain it.

• Consistency, integrity: The network provider must guarantee that the data
kept or transported is not changed in any way, in order to preserve the
integrity of the information content.

• Authentication, access control: When exchanging information between
end users and systems it may be necessary to supplement the data exchange
with a procedure to verify the identity of the user and/or the system, and to
allow/deny access. This involves an authentication procedure that can take
place at two different levels:

 21

• at network level (address exclusion range, closed user groups
mechanisms);
• at application or operating system level (access by user identification,
accompanied by some token and/or certificate).

• Non-repudiation: For some types of information exchange, it may be of
significance (formally, legally, or commercially) that neither the sender
nor the receiver can repudiate the fact that the information was sent and
received.

3.1.10 R7- IT "Standard" and continuous development

The description language should be an official, preferably international accepted
standard. It is NOT a requirement that the language is a current international
standard, however, it should be ongoing and continuous development around the
language, - and this is best ensured if there is some strategy for standardization
around the language.

3.1.11 R8 - Supporting software

Software products shall be available to support the usage of the description
language in respect of the requirements listed above. Various kind of tools-
support is useful, such as syntax/semantic checkers, various translators, etc.

3.1.12 R9 - Methodology and process description

The methodology should be simple and practicable. A methodology should define
the process that we use to gather requirements, analyze them, and design an
application that meets them in every way.

3.2 Requirements for AR/AP service – A finance example

I have developed the following requirements specification for an AR/AP example,
in the context of work done in the Object Management Group and problems
described in section 2.2. Proposals are solicited for the definition of interfaces for
a universal, AR/AP ledger which meets two top-level, conceptual requirements of
external interfaces and internal interfaces. I will identify the external interfaces,
relationships and semantics that are required for accounting and business
application interoperability with AR/AP systems. Some of these requirements
have also been adopted from Revised Submission in response to OMG’s Finance
DTF RFP for an AR/AP Facility [1].

The key concepts of an AR/AP Ledger are defined as follows:

• AR/AP Ledger – A superset of the General Ledger including all of its
interfaces, but having further extensions necessary to provide a

 22

permanent repository of transactions executed with respect to external
parties, and to achieve the other goals of General Ledger.

• Transaction – a balanced set of two or more entries (debits and credits)
to a general ledger or AR/AP ledger.

• AR/AP entry – a discrete amount, together with its associated reciprocal
party identifier, transaction date, description, expected settlement date
and method, and account code.

• Posting – The act of committing an individual transaction consisting of a
balanced set of two or more entries (debits and credits) to a general
ledger or AR/AP ledger.

• Account – An attribute of a transaction entry (row), which classifies that
entry with any valid value in the Chart of Accounts list. The values in the
chart of accounts may be statutory classifications for tax or financial
reporting, but are usually short or mnemonic values which support
additional purposes in workflow, transaction validation, reporting, etc.

It define how other applications like General Ledger, Purchasing, Invoicing, and
other similar applications could interface and interoperate with the AR/AP.
Briefly it should support:

• The interfaces required to support interoperability of AR/AP applications
with independently developed GL, sales/purchasing, and AR/AP
systems.

• How to create, read, update and delete transactions and entries in the
AR/AP ledger.

3.2.1 Requirements table for AR/AP

The requirements for AR/AP are shown in table given below and described in
next subsections.

Requirement UML-SSS example
Req.1 MDA specification
Req.2 Interfaces and behavior
Req.3 Views of balances
Req.4 Classic Double Entry Accounting (CDEA)
Req.5 Party roles
Req.6 Group-by Queries
Req.7 Non functional aspect like security
Req.8 Relationship to existing OMG specification

Table 3.2 Requirements for AR/AP

3.2.2 Req.1 MDA specification
It shall provide UML models along with MDA technique and describing CIM, a
platform-independent UML model of AR/AP (PIM), a platform-specific model

 23

(PSM) based on the UML profile EJB, and platform-specific models (PSM) for
other technologies.

3.2.3 Req.2 – Interfaces and behavior

Example shall provide a sufficient level of description of interfaces and behaviors
to allow for independently developed accounting applications (including legacy)
to interoperate using submitted AR/AP interfaces.

3.2.4 Req.3 – Views of balances

Example shall provide views of the balances and details of AR/AP transactions as
they existed at any specific point in time.

3.2.5 Req.4 - Classic Double Entry Accounting (CDEA)

We shall incorporate classic double entry accounting (CDEA) as the basic
semantics of representing transactions. CDEA is the system of recording
transactions in two or more offsetting debits and credits, which add up to zero,
with each row having date/time and account classifications necessary for statutory
GAAP and tax reporting (generally accepted accounting principles).

3.2.6 Req.5 – Party roles

AR/AP shall support party roles, identifiers or structures which unambiguously
support the distinction between AR and AP items for the same party not having
right of offset (netting), but which are not bound to particular roles (or names of
roles) such as Customer or Supplier.

3.2.7 Req.6 – Group-by Queries

AR/AP shall support interfaces that enable roll-up. For purposes of this
requirement, roll-up is defined as the summarizing of multiple rows of AR/AP
into aggregates along at least two dimensions (i.e. group-by queries). These
dimensions will include summaries by party ranges (customer or supplier), by
date ranges, and by party ranges by date ranges as a minimum.

3.2.8 Req.7 – Non functional aspect like security

Security aspects that need consideration for are confidentiality, availability,
consistency, and access control.

 24

3.2.9 Req.8 - Relationship to Existing OMG Specifications

This is optional requirement. We may reuse or depend upon the following existing
OMG technologies or we shall discuss relationships to these OMG specifications
in our specification.

• General Ledger Facility
• AR/AP
• Currency Facility
• Event Service
• Transaction Service
• Party Management Facility

 25

4 Evaluation of existing Standard specification
languages

In this chapter I will evaluate some existing standard specification languages. The
existing candidates chosen are described first, and at the end of section they are
evaluated for the requirements described in chapter 3.

There are many international institutions and groups which are working on
standard specifications of different software systems. They are using different
languages, techniques and methods. I will look into some existing approaches
used by different internal organizations or groups for domain standard
specifications which are directly or indirectly relevant to my work. And I will
analyse these existing specification in the light of requirements mentioned in
section 3.1. The choice of existing candidates for standard specification is made
on the basis of notations e.g. language and methodology they use in standard
specification.

Name Notation Method
OMG IDL Adhoc
OASIS XML BCM
UN/CEFACT XML UMM
XBRL XML Adhoc

Table 4.1Existing standard specification candidates

Table 4.1 shows the existing candidates for evaluation with language for notation
and methodology. The existing candidates can be divided into two groups
according to notations or languages i.e. one group who uses IDL, and other who
uses XML. OMG uses the IDL for notations and have not any specific
methodology in this case but it is adhoc. Second group consists of OASIS,
UN/CEFACT and XBRL which use XML as notation language and have different
methodologies for specification of domain standard. I decided to go into details of
two finance related standards and one methodology or process related standard
specification chosen from above mentioned candidates i.e.

• CORBA IDL (General Ledger specification)
• XBRL XML (W3C XML) (General Ledger Schema)
• UN/CEFACT UMM

 26

4.1 CORBA IDL (General Ledger Facilities and AR/AP)

CORBA IDL is the product of Object Management Group (OMG). OMG has
established many widely used standards like IDL, UML and MOF. They have
used these languages to standardize a number of software like General Ledger
(GL), AR/AP and many others. I have chosen GL example to evaluate IDL.

General Ledger
The incomes and expenditure of a company or person who is doing business will
be registered in a book/system called General Ledger. General Ledger is a
collection of accounts and their associated postings. GL interoperates with many
other systems like salary, Accounts Receivable and Accounts Payable, Inventory,
Sales and Purchase Order Processing systems, therefore the developer have to
care about theses integration. Management of a general ledger is a fundamental
responsibility of all individuals and companies through accounting systems. The
general ledger facility of OMG is open source specifications to manage the
general ledger interoperate problems.

The OMG General Ledger Facility is platform specific based on CORBA IDL.
The main idea behind the development of GL was the platform independent
ability of middleware CORBA. It defines the interface, and their semantics, that
are required to enable interoperability between General Ledger systems and
accounting applications, as well as other distributed objects and applications for
accounting purposes. It uses Core Components and Business Information Entities
(BIEs), from ebXML for data types and has some UML models and XML
schemas. But it does not fulfill the requirements of MDA CIM, PIM and PSM. It
is a PSM based on CORBA/IDL.

OMG AR/AP Facility

AR/AP is another example from OMG where IDL is used to specify standards.
The first submission was platform specific based on IDL. Revised submission of
OMG’s AR/AP facility is PIM based but it is again based on first Platform
Specific Model submission. Data types are used from GL and ebXML core
component types in the UN/CEFACT. IDL data types used in first specification
was converted into platform independent types which can also be used in ebXML
and are user-defined types.

The AR/AP facility is a set of 12 interfaces using OMG/ IDL to support
interoperable with other ledger/systems. These interfaces provide basic
requirements for interpretability with different clients for example to identify
payment transaction not already posted an e-banking application will use the
ArapTransactionRetrieval interface and similarly use the
ArapTransactionLifecycle interface to post the new payment transaction as shown
in figure 4.1.

 27

pd OMG ARAP
50 Unregistered Trial Version EA 4.50 Unregistered Trial Version EA 4.50 U

50 Unregistered Trial Version EA 4.50 Unregistered Trial Version EA 4.50 U

50 Unregistered Trial Version EA 4.50 Unregistered Trial Version EA 4.50 U

50 Unregistered Trial Version EA 4.50 Unregistered Trial Version EA 4.50 U

50 Unregistered Trial Version EA 4.50 Unregistered Trial Version EA 4.50 U

50 Unregistered Trial Version EA 4.50 Unregistered Trial Version EA 4.50 U

50 Unregistered Trial Version EA 4.50 Unregistered Trial Version EA 4.50 U

50 Unregistered Trial Version EA 4.50 Unregistered Trial Version EA 4.50 U

50 Unregistered Trial Version EA 4.50 Unregistered Trial Version EA 4.50 U

50 Unregistered Trial Version EA 4.50 Unregistered Trial Version EA 4.50 U

50 Unregistered Trial Version EA 4.50 Unregistered Trial Version EA 4.50 U

50 U i t d T i l V i EA 4 50 U i t d T i l V i EA 4 50 U

Sales Application

E-banking Application

Reconciliation Tool

Auditing Tool

Year-End Closing Application

General Ledger Facility

«interface»
ArapAccountRetrieval

«interface»
ArapAccountLifiecycle

«interface»
ArapTransactionLifeCycle

«interface»
ArapTransactionRetrieval

«interface»
ArapReconciliationLifecycle

«interface»
ArapBalanceRetrieval

«interface»
ArapPartyStatementVerification

«interface»
ArapBalanceRetrieval

Figure 4.1 OMG AR/AP interfaces

The packages used in above figure are described in table number 4.2.

Name Description

Sales/Purchase
Application

A sales application, in order to register the sales transaction associated
with an invoice will use the ArapAccountRetrieval interface to verify
whether accounts already exist for the customer and the products
involved, make appropriate calls to ArapAccountLifecycle to create
any necessary accounts, and finally the ArapTransactionLifecycle
interface to post the sales transaction to the AR/AP ledger.

E-banking
Application

An e-banking application will use the ArapTransactionRetrieval
interface to identify payment transactions not already posted, and then
the ArapTransactionLifecycle interface to post the new payment
transactions

Reconciliation A reconciliation tool will use ArapTransactionRetrieval to retrieve
payment and debt entries, and ArapReconciliationLifecycle as the
accountant reconciles the payments with the debts

Auditing Tool An auditor would use an application that calls
ArapTransactionRetrieval and ArapBalanceRetrieval to verify
transaction details and the resulting balances, and
ArapReconciliationRetrieval to verify the matching of debts against
payments.

Year-End Closing
Application

An accountant preparing for year-end closing has to identify any
discrepancies between the company and its business partners
regarding debts and payments. For this purpose, a supporting
application will use the ArapPartyStatementVerification interface to
extract statements to send to each business partner, and to verify the
statements received from the business partners

General Ledger
Facility

An OMG General Ledger could use the ArapBalanceRetrieval
interface in order to update the balance of its control accounts
“Accounts Payable” and “Accounts Receivable”.

Table 4.2 AR/AP Packages

 28

AR/AP fulfils some requirements, but it does not fully matches the requirements
described in chapter 3 especially CIM and massages in a real sense. But it can be
a good start for further work in this field.

4.2 XBRL XML (W3C XML) General Ledger Schema

eXtensible Business Reporting Language (XBRL) is a member of the family of
languages based on XML, or Extensible Markup Language, which is a standard
for the electronic exchange of data between businesses and on the internet. Under
XML, identifying tags are applied to items of data so that they can be processed
efficiently by computer software. XBRL utilizes the World Wide Web consortium
(W3C)

After the success of reporting program, XBRL wants to grip the chance of using
the power of XML for General Ledger. They know the limitations and
inefficiencies of data interchange standards before XML, which was designed to
be inflexible and limited to trading partners. Recent changes happened in IT and
financial sector require extensible, flexible, multi-national solution that can
exchange the data required by internal finance, accountants, and creditors that can
be used in XBRL financial reporting. XBRL GL is an effort to bring to gather US
and European accounting systems. It contains the information necessary to drill
down from XBRL for financial reporting. It also provides details for audit and
budget planning. XBRL GL will serve to store or convey information beyond that
expected by either US or European users.

XBRL GL will help a company in its upgrade from a low-end accounting product
to a mid-range accounting product. Small companies will get data easily data from
out side. The receiving end will get data, and will review the data and understand
what it has been given. In a consolidation across different accounting techniques,
system will not miss data elements because automated tools collect the necessary
information.

XBRL can export and import data without undue mapping. It does not lose
information because it doesn’t need human entry. Other errors like rekeying are
also limited.

 29

Accounting
SystemXBRL GL

Automated EntryAutomated
Creation

Accounting
System

Figure 4.2 XBRL general Ledger Process [16]

It doesn’t need to change formatting for report writing. The main advantage of
XBRL GL is that it uses mapping which is easy to maintain.

XBRL and Standard Specification

XBRL is a subset of XML, the common language of data exchange on Internet
which provides a widely embraced open standard technology for data exchange
and transformation. It does not create new standards in this field but uses
standards developed for XML. It provides the users with a standard format in
which to prepare reports that can be subsequently presented in a variety of ways
and information can be exchanged between different software applications.

XBRL is an open framework that provides for concurrent development of XBRL
specifications in other countries and jurisdictions. The IASB has developed its
taxonomy to accomplish this purpose. The countries like Australia, New Zealand,
UK, Germany and Spain are taking this international framework to create their
own taxonomies. Harmonization between IASB and national XBRL taxonomies
will create greater interoperability of financial statement data for faster and better
analysis.
Microsoft has a long-standing commitment to help, develop and promote the
widespread adoption of fundamental Internet standards. The company sees XBRL
as not only the future standard for financial reporting, but also a logical business
choice. As such, Microsoft is a charter member of the XBRL Consortium, an
international consortium of more than 140 of the world’s largest accounting,
technology, government and financial services bodies devoted to developing and
promoting the adoption of XBRL as a standard.
XBRL is not a set of accounting standards. Accounting standards are the domain
of the existing Generally Accepted Accounting Principles (GAAP) and regulatory
standards bodies. But XBRL should support international accounting standards
and languages other than the American dialect of English. XBRL is a platform on
which reporting standards content will reside and be represented.

As mentioned above XBRL is based on XML, let us explain first ebXML before
moving toward next candidate in our discussion.

 30

4.3 Electronic Business using extensible Markup Language (ebXML)

It is not directly related to my work but it makes possible the idea of using World
Wide Web and Internet for exchanging business messages. Internet opened a new
window for business developers which is expending very fast. By taking
advantage of the Internet and other available networks, ebXML opens up business
to many more potential trading partners, in more places in the world than before.
It provides a single framework for exchanging business data anywhere in the
world that has access to these networks. There for I decided to include in existing
standard specification and evaluate.

ebXML is designed to extend the benefits of e-business to much wider aspect. It
provides a common way to electronically exchange business data expressed in
XML from one computer to other. ebXML seeks to develop “A single set of
internationally agreed upon technical specification that consists of common XML
semantics and related documents structures to facilitate global trade.’’ (ebXML by
Alan Kotok & David R.R. Webber)

ebXML uses UML to overcome hurdles of hardware platform, operating systems,
software packages and network services. XML itself provides the ability to utilize
any written language using a technique called Unicode double byte encoding
systems. On other hand ebXML cuts across industry and business function
boundaries, it is accessible to all trading parts in any kind of business or line of
business.

ebXML System Overview
Overview of the interaction of two companies is shown in figure below. It shows
a high-level use case scenario for two Trading Partners, first configuring and then
engaging in a simple business transaction and interchange.

 31

ebXML compliant
system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details
1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agre on Busines Ar angement

e

s
r

4
O

Query about C
MPANY A profile

Download Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B
ebXML compliant

system

Business Profiles
Business Scenarios

ebXML
Registry

XML

Request Business Details
1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

3

2

5
Agre on Busines Ar angement

e

s
r

4
O

Query about C
MPANY A profile

Download Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B
ebXML compliant

system

Business Profiles
Business Scenarios

XML

ebXML
Registry

Request Business Details
1

Build Local System
Implementation

Register Implementation Details
Register COMPANY A Profile

2

3

5
Agre on Busines Ar angement

e

s
r

4
O

Query about C
MPANY A profile

Download Scenarios and Profiles

DO BUSINESS TRANSACTIONS

6

COMPANY A

COMPANY B

Figure 4.3 A high level overview of the interaction of two companies conducting eBusiness

using ebXML [11]

Company A has become aware of an ebXML Registry that is accessible on the
Internet. Company A, after reviewing the contents of the ebXML Registry,
decides to build and deploy its own ebXML compliant application. Custom
software development is not a necessary prerequisite for ebXML participation.
ebXML compliant applications and components may also be commercially
available as shrink-wrapped solutions.

Company A then submits its own Business Profile information (including
implementation details and reference links) to the ebXML Registry. The business
profile submitted to the ebXML Registry describes the company’s ebXML
capabilities and constraints, as well as its supported business scenarios. These
business scenarios are XML versions of the Business Processes and associated
information bundles (e.g. a sales tax calculation) in which the company is able to
engage. After receiving verification that the format and usage of a business
scenario is correct, an acknowledgment is sent to Company A.

Company B discovers the business scenarios supported by Company A in the
ebXML Registry. Company B sends a request to Company A stating that they
would like to engage in a business scenario using ebXML. Company B acquires
an ebXML compliant shrink-wrapped application.

As ebXML gained rapidly attention internationally and they continued to work for
more flexible and technology-neutral business architecture where it was possible.
UN/CEFACT Steering Group (CSG) created the e-Business Transition Working

 32

Group (eBTWG) in July 2001 for the purpose of continuing the UN/CEFACT's
role in pioneering the development of XML standards for electronic business. The
group was formed to build on the success of the earlier ebXML Joint Initiative
between UN/CEFACT and OASIS, which delivered its first set of specifications
in May 2001. This group has written a working draft for Electronic Business
Architecture(UEB) where they have defined Core Components. Using Core
Components as part of the ebXML framework will help to ensure that two trading
partners using different syntaxes (e.g. XML and EDIFACT) are using business
semantics in the same way on condition that both syntaxes have been based on the
same Core Components. This enables clean mapping between disparate message
definitions across syntaxes, industry and regional boundaries.

Core Components (CC)

A Core Component is a Design Phase artifact. A Core Component that represents
a singular business concept with a unique business semantic definition. A Basic
Core Component is constructed by using a Core Component Type. Basic Core
Components are used in developing Aggregate Core Components. The Core
Component may be modified or constrained for use within a particular Business
Collaboration instance. During the Design Phase only, a Business Context may be
used to constrain the Core Component to a specific adaptation of the Business
Collaboration. Once constrained or modified by a Business Context, it is called a
Business Information Entity (BIE).

Business Information Entity

A piece of business data or a group of pieces of business data with a unique
business semantic definition is called BIE. A Business Information Entity can be
either a Basic Business Information Entity (BBIE) or an Aggregate Business
Information Entity (ABIE).

A BIE may be further modified prior to multiple Trading Partners designing a
Trading Partner Agreement. The Business Context is finalized when a specific
Business Process is bound to a Trading Partner Agreement; for example, it would
not be possible to know the geo-political Context Driver until the geographical
information is available from both Trading Partner Profiles. Once a Trading
Partner Agreement has been finalized, it is not possible to modify or constrain the
Business Message Payloads any further, without changing the Trading Partner
Agreement

 33

Figure 4.4 Core Component Library [11]

When it will interface with other components, Core Component or Business
Information Entity may be referenced indirectly or directly from a Business
Collaboration. This may be done via an intermediary document (Assembly
Document) that describes how to construct a Business Message Payload during
the Design Phase. The Assembly Document may specify a single, or group of
Core Components, or Business Information Entities (required or optional) as part
of a Business Message Payload instance.

4.3.1 Business Process Specification Schema (BPSS)
BPSS is developed by ebXML, the main goal of it is to provide the bridge
between e-business process modeling and specification of e-business software
components. It is available in both UML version and XML version. The UML
version of ebXML is merely a UML class diagram. The XML version of the
ebXML Business Process Specification Schema provides the specification for
XML based instances of ebXML Business Process Specifications, and as a target
for production rules from other representations. Both a DTD and a W3C Schema
is provided.

 34

The architecture of the ebXML Business Process Specification Schema consists of
the following functional components:

• UML version of the Business Process Specification Schema.
• XML version of the Business Process Specification Schema.
• Production Rules defining the mapping from the UML version of the

Business Process Specification Schema to the XML version.
• Business Signal Definitions.

Figure 4.5 Relationship of ebXML Business Process Specification Schema to UMM,

CPP/CPA and Core Components [12]

These components together allow to specify the run time aspects of a business
process model.

4.3.2 ebXML and Standard Specification

UN/CEFACT and OASIS, the two leading organizations in the field of
standardization sponsor electronic Business using Extensible Markup Language.
ebXML uses existing standards for e-commerce and XML. It is a "suite" of
specifications that includes an "open" architectural framework for global B2B
interchanges. The ebXML framework is based upon non-proprietary technology
that encourages interoperability.

ebXML is composed of three infrastructure components and several other efforts
such as ones focused on document creation, business process definition, etc. The

 35

infrastructure components are orthogonal in design. They may be used together or
separately in implementing an infrastructure. ebXML infrastructure components
which are approved by OASIS AND UN/CEFACT include:

• Collaborative Protocol Profile (CPP): It defines XML data structures
which describe what each trading partner supports, the components
necessary to conduct electronic commerce, such as data communications,
security, processes, document types, telephone contacts, etc.

• Registry and repository: It defines the access interfaces, security and
information storage format for any information that needs to be widely, yet
securely shared among trading partners or potential trading partners.

• Messaging: It defines the means to move data between trading partners in
a secure, reliable manner.

Standard specifications developed by OASIS in the form of ebXML Core
Component are widely used for data types and messaging. It is very helpful to
establishing new standard specifications especially PIM data types.

4.4 OASIS
Organization for the Advancement of Structured Information Standards (OASIS)
is international consortium that drives the development, convergence, and
adoption of e-business standards. The consortium produces Web services
standards along with standards for security, e-business, and standardization efforts
in the public sector and for application-specific markets. Two standards developed
by OASIS, one for e-commerce i.e. UBL and other for methodology i.e. BCM are
related to both parts of my thesis.

4.4.1 UBL 1.0

Universal Business Language is designed to provide a universally understood and
recognized commercial syntax for legally binding business documents generated
during order-to-invoice business process. UBL operate within a standard business
framework such as ISO 15000 (ebXML) to provide a complete, standards-based
infrastructure that can extend the benefits of existing EDI systems to businesses of
all sizes.

UBL consists of schemas which are modular, reusable, and extensible in XML-
aware ways. It is an implementation of ebXML Core Components Technical
Specification 2.01, the UBL Library is based on a conceptual model of
information components known as Business Information Entities (BIEs). These
components are assembled into specific document models such as Order and
Invoice. These document assembly models are then transformed in accordance
with UBL Naming and Design Rules into W3C XSD schema syntax. This
approach facilitates the creation of UBL-based document types beyond those
specified in this 1.0 release.

 36

UBL order-to-invoice business process include the UML class diagrams of the
document components on which the schemas are based and UML class diagrams
describing all the document assemblies. It has also Spreadsheet models defining
the document assemblies and descriptions of two example implementations and
formatting specifications for UBL basic business document types.

UBL provides the basic information which is very important for Account
Receivable and Account Payable. AR/AP could be based on invoice package of
UBL.

4.4.2 Business Centric Methodology (BCM)

BCM is a methodology developed by OASIS for business integration. The
Business-Centric Methodology (BCM) is a complementary approach to current
architectures and methods for constructing business-oriented services. The main
features of the BCM are:

• Involves a layered approach for strategically managing artifacts and
constraints while achieving semantic interoperability.

• Enables precise communication between business users and technical
experts as well as between Enterprise applications and their respective
business partner systems

• Addresses integration problems through pragmatic and semantic
interoperability mechanisms

• Exploits the dynamic nature of common mechanisms

BCM layers and information architecture is illustrated in diagram given below.

 37

Figure 4.6 BCM processes [15]

4.5 UN/CEFACT UMM
United Nations Centre for Trade Facilitation and Electronic Business
(UN/CEFACT) has developed the Modeling Methodology. The UMM [14]
is an incremental business process and information model construction
methodology that provides levels of specification granularity suitable for
communicating the model to business practitioners, business application
integrators, and network application solution providers. The main objectives
of UMM are given below.

• Have a comprehensive business process and business information

meta-model as well as a comprehensive process analysis
methodology.

• Retains business acumen that is reusable over generations of
implemented technology

• Provides a methodology and supporting components to capture
business process knowledge, independent of the underlying
implemented technology

• Helps discover and define a set of reusable process and information
descriptions. Patterns help enforce consistent, reproducible results
from the UMM-MM across business domains and their business
domain experts and analysts

• Implements processes that help insure predictable results from a
software project

o Facilitates the specification of reusable/reproducible
process models, in objects and interface-specific object

 38

behaviour descriptions that are technology and protocol in-
sensitive.

o Focuses on technology and protocol independent steps of a
software engineering process.

• Is an extension of UML
o Is a UML profile used to describe the UMM components to

specify the business do- main specific stereotyping that
supports a complete business process and information
definition to describe and analyze individual business
processes.

• Structures the Business Operational View (BOV) of the Open-edi
Reference Model into layers of “views”.

The UMM can be employed by business analysts to define external and internal
Business Collaboration Frameworks. The UMM can be used to define the
Business Collaboration Framework implemented between two or more parties.
The UMM can be employed from the top-down or bottom-up or using both
approaches simultaneously. The end result of an integrated use of the UMM
would be a defined Business Collaboration Framework.

Figure 4.7 Overview of UMM Worksheets and Models [14]

Modeling using the UMM
Business modelling in UMM has three major UMM views, i.e. Business Domain
View (BDV), Business Requirements View (BRV) and Business Transaction
View (BTV). Procedures within each of these views describe how to populate the
worksheets. The worksheets help to collect and organize the information needed

 39

to produce the minimum UMM models for that work area. A high-level overview
of these worksheets and models is shown in Figure 4.7.

Data Types in UMM
Data types in UMM include primitive pre-defined types and user-definable types.
Pre-defined types include numbers, string and time. User-definable types include
enumerations. An enumeration is a user-defined data type whose instances are a
set of user- specified named enumeration literals. The literals have a relative order
but no algebra is defined on them. UML avoids specifying the syntax for
constructing type expressions because they are so language-dependent.

4.6 Evaluation of existing language candidates

Table number 4.3 shows that there is no single language that meets all
requirements. The closest to a solution is UML-UMM therefore we propose to use
UML as standards specification language with some improvements in UMM in
the next chapter. The main problem with IDL and XML is that they are platform
specific and do not fulfill the requirement of model-driven technique with CIM
and PIM. UML-UMM has a structural way of presenting the models but it does
not meet all requirements mentioned in section 3.1.

Language
Requirement

IDL XBRL
XML-

XSchema

UML-
UMM

R1 Formal Language

+/- +/- +/-

R2 Specification of CIM and PIM and PSM
models

- - +/-

R2a Structure - - +
R2b Behaviour (Process/Services) + + +
R2c Constraints - -/+ +/-
R3 Ease of use – graphical notation.

+ - +

R4 Platform independent data types.

- + +

R5 Computer processability

+ + +/-

R6 Non functional aspects like performance,
QoS, error handling, security issues,
usability, reliability, availability,
adaptability, supportability.

+/- + -

R7 IT standard and continuous development. + + +
R8 Support from existing working tools. + + -/+
R9 Methodology and process description. - - +

Table 4.3 Evaluation of language candidate

 40

5 UML-SSS: “UML method for Standards
Service Specifications”

We propose UML-SSS as an improvement to the UML UMM approach, by
having a simplified methodology following MDA ideas. In addition to UMM and
MDA we have used COMET [9] method to develop UML-SSS. The core of
UML-SSS is: modeling language UML, COMET Methodology and MDA.
UML-SSS stands for UML for Standards Service Specifications.

5.1 Modeling Language and Notations

As software becomes more and more complex, the need for modeling increases
similarly. We must have a modeling language for making models otherwise the
purpose of modeling and raising abstraction level will not be fruitful. I will use
UML as modeling language, based on the conclusions from chapter 4.

5.1.1 Unified Modeling Language (UML)

The Unified Modelling Language (UML) can be used for the modelling of
software architectures. According to OMG definition of UML is:

“UML is a language used for specifying, visualizing, constructing, and
documenting artefacts of software systems, as well as for business
modelling and other non software systems” [2].

UML has been excessively used in modelling Object Oriented Systems. The
notation it provides mostly supports the specification of a system’s artefacts at
each phase of the system’s lifecycle. Thus, UML is able to document and describe
a system’s requirements using e.g. use-case diagrams, a system’s structure and
behaviour using e.g. class diagrams, sequence diagrams, state and activity
diagrams, etc. or even a system’s physical deployment using deployment
diagrams. The diagrams can be divided into two groups:

Structural diagrams

• Class diagram: This shows the relationships between a set of classes. This
is the most common diagram in UML, and is a structural view of how
classes are related.

• Collaboration diagram: This shows the structural organization of objects
that communicate with each other.

 41

• Component diagram: This shows the relationship between components.
A component is a physical manifestation of software, and may be a library,
executable, DLL, and so on. Components are built and combined to form
applications.

• Deployment diagram: This shows the relationship between physical
entities like a CPU, printer, or workstation. It can also show where
components are deployed.

Behavioural diagrams

• Use Case Diagram: This captures functional requirements. It shows the
relationships between actors and use cases. Actors are entities external to
the system, such as users and other systems. A use case is an end-to-end
sequence of actions (including variants) that result in an observable and
useful result.

• Sequence Diagrams: This is an interaction diagram that shows the
communication between objects in a time-ordered fashion.

• State Diagram: This contains a finite state machine that describes the
behaviour of a class. State machines are an excellent way to describe
event-driven behaviour.

• Activity Diagram: This shows the flow of control through activities in a
system.

Furthermore, UML is capable of producing code out of the system’s specification.
UML is becoming more and more important in software architecture and
development. Another strong reason in the favour of UML is that we can model
just about any type of application, running on any type and combination of
hardware, operating system, programming language, and network, in UML. Its
flexibility lets us model distributed applications that use just about any
middleware on the market. Built upon the MOF metamodel which defines class
and operation as fundamental concepts, it's a natural fit for object-oriented
languages and environments such as C++, Java, and the recent C#.

5.1.2 COMET 2.4

COMET [9] is a methodology for constructing software systems by using
components. COMET methodology was developed in COMBINE project. It
means Component and Model based development Methodology and COMbine
Methodology. It is en object-oriented analyses and design methodology. It follows
the object-oriented paradigm for modelling where software systems are viewed
and modelled as a set of collaborating objects. During analysis, design and
implementation it encourages the use of business objects. Briefly we can describe
COMET as model-focused, UML based approach aimed at supporting the process

 42

of developing and maintaining products and product families. It is object-oriented,
component based analysis and design methodology.

COMET is a stepwise description that gives practical guidelines of how to
analyse, design, and implement software systems that is based on business
objects. The focus is on systems running in a distributed, component based
environment. It encourages the belief that systems based on self contained
components with sound system architecture will be easier to maintain. It also
encourages the reusability with reference model concept which provides a mean
of standardising concepts, models, and patterns within a domain.

5.2 Model Overview in UML-SSS

We propose two main domain models i.e. Business Domain and System Domain
where system domain will be derived from business domain. UML-SSS consists
of following four models:

• Business Model (CIM)
• Requirements Mode
• Architecture Model (PIM)
• Platform Specific Model (PSM)

Requirement Model may be optional. These models contain work products that
provide the viewpoint specifications for the component-based system or the
individual component that is being developed. My focus will be on business
model in Business Domain and architecture model and Platform specific model in
System Domain. The model overview is shown in figure 5.1 which also shows the
relationship between the model word and the real word.

The modelling activity starts with Business model and requirements model, both
these models are business domain of system. These models could be mapped to
architecture model with help of QVT, MOF transformations or architecture model
is derived manually from business model. All models are further described in next
subsections.

 43

Figure 5.1 UML-SSS model overview

5.2.1 Business Model (CIM)

Business Model corresponds to CIM in general. The business model contains
human actors and technical systems, some of which are software systems. Models
on the business level involving a software system depict the intended use of this
software system by the actors. In other words, the collection of business models
that involve a software system gives the functional requirements for that system.
Models on the business level are therefore of paramount importance in software
development to ensure that business needs are catered for by the software
systems. However, if these models are not related to the software system level
they loose much of their value. The software systems in the business models
should be decomposed into a configuration of interacting software components so
that the software system requirements are met by this configuration. The figure
below illustrates the structuring concepts of the business model. Business Model
consists of Scoping Statement, Business Resource Model and Business Process &
Role Model.

 44

Figure 5.2 Business model structuring concept

Scoping Statement
It will be used to denote mostly those pars of business model that are not
presented in UML. It consists of Context Statement, Vision for change and Risk
Analysis. The main purpose of Context Statement is to define the scope of
business model and position in its context. This informal representation takes the
form of a domain picture aiming to give an overall understanding of the domain.
The risk analysis describes marketing factors that might influence the product,
good or bad, and things that are required that are not described in the business
vision and product description work product like non functional requirement. In a
vision for change we’ll explain what to improve, the motivation, a description or
indication of what the improvements might be and a gap analysis.

Business Process and Role Model
Business Process and Role Modelling is a behavioural model that defines, in
terms of roles and steps, the business processes of the domain which are relevant
to the Product, and which will enable the goals to be met, and gives a full
definition of the roles in the business, including those fulfilled by the Application
Components which are to be developed. The main objective of the Business
Process Model is to identify and detail all the business processes supported by the
Product to the extent necessary to detail the roles of the Product.

This model may be at a number of levels of detail, from a high level description of
the business processes down to detailed specifications for the business services
that each IT element in the Product will provide. It includes a full definition of the
roles in the business, focusing on those fulfilled by the system or component to be
developed. Figure 5.3 is an example of business process and role model.

 45

Figure 5.3 Business Process & Role Model

Business Resource Model
The Business Resource Model is an information model that identifies and defines
the main things (and concepts) of the domain that are relevant to the Product,
these being, in general, those things that do things in the business (including the
Product itself), and those things that have things done to or with them, and details
the relationships between these concepts.

5.2.2 Requirements Model

Requirement Model will be optional model in UML-SSS. We can specify
requirement by using this model instead of writing them in plain text. The
requirements model identifies the system requirements. These include functional
requirements, non-functional requirements (quality of service) and constraints.
Non-functional requirements are statements concerning performance, availability,
security, reliability and so forth. There are also other requirements specifying
constraints that will have impact on the system to be developed, for instance
available resources, special customer preferences, company strategy etc. The
following models are important in requirement modelling.

• System Boundary
• Use case Model
• Use case Scenario Model

5.2.3 Architecture Model (PIM)

The Architecture Model is the core model for development of a software, it
describes the overall architecture of the system and its partitioning into
components in terms of collaborations of components and subsystems, component
structures, component interactions, and component interfaces and protocols. It
describes two aspects of the component collaboration, namely the static
(structure) and dynamic (behaviour). The structural model describes the
components, their dependencies, and their interfaces; the dynamic model
describes the component interactions and protocols. The result is to define
components in terms of what interfaces they provide, what interfaces they use,
and how these interfaces should be used

 46

Figure 5.4 Architecture model work products

Figure 5.4 shows the models (work products) that are part of an architecture
model specification. The main models used in architecture model are as follows:

• Component structure model describes the high-level components and
their interdependencies.

• Component interaction model describes the interactions between the
high-level components.

• Interface model describes the details of the component interfaces, i.e.
their operations and detailed behaviour.

• Information model describes the information structures that are
conveyed through component interfaces. The information model may be
included in the Interface Model if convenient.

5.2.4 Data types

Data types are specified in Platform Specific Modeling. We use the basic data
types provided by PSM and generate or construct other one which we need. But
when we talk about PIM we have to think about platform independent data types.
PIM data types are needed to keep the PIM to platform independent. COMET
support the platform independent data types which we require in business
resource model or architecture model. We can choose data types from three
international standards which are:

• OMG’s IDL which is ISO standard
• Core Component types of ebXML.
• The third option is the ISO/IEC 10404 “Language Independent datatypes”

which is also a set of data types independent of any target implementation.
If we divide data types into two main categories like basic type or primitive type
and composite types or derived types then data types from ISO/IEC 10404 will be
used as basic data types and composite data types will be derived from Core
Component data types.

 47

The example of Core Component types is show in figure below. I have used
String, Boolean, Integer and UnlimitedNatural as basic types.

Figure 5.5 PIM data types

The decision of PIM data types is also related to UML because it is assumed
language for PIM modelling. Therefore a set of chosen base types can be used as
types for UML attributes, parameters, and return values for operations. The
representation of data types in UML will not be difficult. The simple base types
can be used directly. Enumerates (enumerations) and state must be defined as
UML data types. Named data types can be defined as UML data types. (How is
their base defined?). Subtypes and extended types like “range” can be used
directly as types in attribute/operation declarations or as part of a type definition.
The aggregate data types Set, Bag, Array, Sequence, and Table can be used
directly as types in attribute/operation declarations or as part of a type definition.

5.2.5 Platform-Specific Model

The Platform-specific Model contains the following work products:

• The Platform Profile Model (explicit PSM), which specifies the system in
alignment to the actual technology profile for the specific platform.

 48

• The Component Implementation Model, which describes the
implementation of the component specifications in a given programming
language, and the deployment properties/configurations for the target
computing platform (hardware, operating system, etc.) in which the system
is to run.

In addition two other work products may be used i.e. UMT Configuration Model
(Implicit PSM in a code generator tool) and the Deployment Model should
describe the deployment properties/configurations for the target computing
platform (hardware, operating system, etc.) in which the Product is to run.

5.3 Methodology and Process

A methodology formally defines the process that we use to gather requirements,
analyze them, and design an application that meets them in every way. There are
many methodologies, each differing in some way or ways from the others. I will
primarily use COMET methodic with MDA concept and modeling language UML
in my proposal. It will be iterative and incremental process.

Iterative and incremental
UML-SSS stands for a combination of iterative and incremental development,
where an initial statement of requirements is developed in the beginning. Then the
system is designed and implemented in increments, one or a few use-cases at a
time. Each increment should result in a usable system.

5.4 Applying the MDA framework

The first step when creating an MDA-based application is to create a Platform-
Independent application Model (PIM). In the MDA, a model is defined to be a
representation of a part of the function, structure and/or behaviour of a system;
i.e., the definition is usable in the Modeling and Simulation domain quite well.
The PIM will be expressed in UML in terms of the appropriate core model. The
core models are available in form of UML Profiles of which a number already are
well along their way to be standardized by the OMG.

The next step is that if the model shall run as an application, then we have to
convert this model from general application to a Platform Specific Model (PSM).
The PSM is derived from the PIM using standardized transformation rules. While
the PIM defines the necessary functionality, the PSM specifies how this
functionality is realized on a special platform. The focus of MDA is on PIM and
PSM but UML-SSS starts its modeling process with business model i.e. CIM.
Therefore I will start from Business Model as described in UML-SSS and
transform it into PIM. This transformation from CIM to PIM is not supported by
working tools mentioned in next subsection it is manual process which guides to
PIM.

 49

But next two transformations i.e. from PIM to PMS and then code generation
from PSM are supported by working tool at some extent. The figure 5.6 shows the
process of transformations.

Business Model

Plattform Independent Model

Trans

 Plattform Specific Model

 PSM1

 PSM3 PSM2

PIM

Code Model

Code1 Code2

CIM

Trans

Trans

Code3

Figure 5.6 Applying MDA to UML-SSS

The PIM to PSM Transformations
To start the MDA process we need to build a platform-independent model (PIM)
that comprises the all models described in UML-SSS, I have used UML to
develop PIM. Number of transformations is equal to number of PSMs, in this case
there are three PSMs, and therefore we need three transformations.

The PSM to Code Model Transformation
I will generate code for each PSM therefore the number of transformation will be
equal to number of PSMs.

5.5 Working tool

Mostly UML-based tools implement a particular methodology; it is often not be
practical to pick a tool and then try to use it with a methodology that it wasn't built
for. But, some methodologies have been implemented on multiple tools so this is
not strictly a one-choice environment.

I will use the IBM Rational Software Modeller/Architect connected with a Model
Transformation tool (UMT or similar) to generate (in principle) WSDL/XML and
EJB/Java interfaces or CORBA IDL from the same models). I will use OptimalJ
too for generating PSM from PIM.

 50

6 UML-SSS Application to Finance AR/AP

In this chapter we will apply the UML-SSS as described in chapter 5 to Finance
AR/AP. We will take a typical example some purchase and sale to explain AR/AP
interaction with other systems and to describe the business context for the AR/AP
application using UML-SSS methodology. To understand the whole domain we
will start from order-to-invoice process and then this broad domain will be broken
down into different processes. As my focus is on accounts receivable and account
payable therefore it will be explained or modeled in detail and other processes are
taken to understand the business domain.

6.1 Computation Independent (Business) Model (CIM)

CIM is enterprise view point of the AR/AP system or component for business
owners, developers, managers and users. CIM models focus on a system’s
environment and requirements rather than on its structure. CIM models are referred to as
AR/AP system domain models. As mentioned in the chapter 5 the Business Model
consists of a Scoping Statement, the Business Process & Role Model and the
Business Resource Model.

6.1.1 Scoping Statements
Scoping Statements in UML-SSS, consisting of the following:

• The context statement
• Vision for change
• Risk analysis

6.1.1.1 The context statement

The context statement defines the scope and positions of AR/AP model in its
context. There are four important actors some are involved in AR/AP scenario i.e.
buyer, seller, General Ledger and Banks (Buyer bank and seller bank), these are
shown in figure below and described in table 6.1.

 51

Figure 6.1 Buying and selling context diagram for AR/AP

Stakeholder Description
Buyer Buyer sends purchase order, receives goods and invoice and

pay it through its bank. (Invoice is registered in AP).
Seller Seller responds PO, sends goods through shipment, sends

shipment invoice and sales invoice through Sales system and
receives payment from buyer in its bank account.

General Ledger GL is the main financial book where all accounting entries are
registered. In this case posting to relevant AR/AP accounts in
GL.

Buyer Bank Receives payment order from Buyer and pay it to seller bank,
which sends information to the Seller.

Seller Bank Receives payment from buyer’s bank and credit the seller
account.

Table 6.1 Description of stakeholder in AR/AP context diagram

Order-to-invoice process with AR/AP
The activity diagram for order-to-invoice process shown below has five major
steps. It shows the general processes involved in purchasing and selling. I will
focus on last two steps i.e. Invoice and AR/AP, Payment and AR/AP. Theses two
processes are important for AR/AP ledger. I will describe generally the first two
steps but last two steps with more detail in the next subsections.

 52

Figure 6.2 Order-to-Invoice processes

The description of each step show in Order-to-Invoice process is given below in
table 6.2.

Process Description
Purchase Order Purchase order is send by buyer to Seller with description

of goods or services which he wishes to buy. It is a
promise to buy. It may support revision or cancellation of
the Purchase Order.

Fulfilment of Order Fulfilment of Order is a process where Seller receives
purchase order, checks the stock and sends shipment
invoice to shipping company. He may send fulfilment
information i.e. Sales Order to Buyer.

Shipment Shipment process covers all shipping details.
Invoice and AR/AP After fulfilment of purchase order and shipping, seller

sends invoice to Buyer and it is posted to Account
Receivable in accounting ledger. On the other side Buyer
receives the invoice and posts it to Account Payable in
accounting ledger.

Payment and AR/AP This process is initiated by Buyer. He pays the invoice
through his bank and entry is made in AP ledger. Buyer
bank sends information to seller bank and Seller receives
the payment in his bank account and entry is made in AR
ledger.
Table 6.2 Order-to-Invoice processes

 53

6.1.1.2 Vision for change

As mentioned in chapter 1&2 software system are becoming more and more
complex and complicated. We have to raise the level of abstraction to understand
and control the system development in future. We can save time by reusing the
standards specified components for AR/AP. It will be highly automated tool to
support the posting, retrieval and reconciling to account receivable and account
payable directly at the end of order-to-invoice process.

6.1.1.3 Risk Analysis
The risks and non functional aspect involved in the AR/AP specification is listed
below. The software developer, who will implement the AR/AP should take care
of these issues.

Issue Description

Security The AR/AP system will contain very business sensitive
information about the customer and must implement a very
strict access control mechanism. Only authorized customer
or supplier should have access to system.

Compatibility AR/AP must be compatible with old versions and other
internal and external systems.

Technology The PIM and PSM based models in UML.

Muti-user and
transactions

The system must support multiple users in a distributed
organization to work in parallel and synchronize their
schedules into one common global schedule.

Performance The system must support an efficient communication
protocol between the clients and the server.

Table 6.3 Risk Analysis for AR/AP

6.1.2 The Business Process & Role Model

This model is the further detail of general purchase and sale process illustrated in
the above subsection. Order-to-Invoice Process is a very large process. It consists
of five steps i.e. Purchase Order, Fulfilment of Order, Shipment, Invoice and
AR/AP, and Payment and AR/AP. I will not go into details of all these steps here,
but Purchase Order and Fulfillment of Purchase Order steps will be explained
generally in activity diagrams below, Invoice and AR/AP step is described in
more details and it is further divided into many sub steps and explained with
different activity diagrams in the following subsections.

 54

6.1.2.1 The purchase order process:
This step has many sub steps and two main documents which are explained in
table given below. When buyer wants to buy some thing from seller it sends
purchase order to the buyer. He initiates the process the Complete-PO, which
creates document for purchase i.e. Purchase Order with all necessary information
which buyer has registered in the system. The next step Send PO sends this
document to the Seller. The Seller has a step Receive PO to handle the Purchase
Order from the Buyer, which receives the document and pass control to Process
PO. The Seller checks the ordered goods in warehouse and responds to the buyer
request. The seller can respond the buyer in three ways: It can reject the order if
goods are not available at warehouse, or accept the order, or accept the order with
some changes, these steps are handled in Reject order, Accept order and Accept
with changes respectively and PO response is send to the buyer.

Figure 6.3 purchase order process

When the Buyer receives the PO response, he has two options, if it is a acceptance
of order, he waits for delivery of goods. In other case he may change or cancel the
purchase order it depends on trading agreement this should be done in Change PO
step which is not described here.

 55

Name Description
PurchaseOrder It is a document send by Buyer to Seller to inform him

that he wishes to purchase goods or services.
PO response It is a document send by Seller to Buyer in the response of

PurchaseOrder. It has information weather the order is
accepted, rejected or accepted with changes.

Change PO Change PO is a further step to change or cancel the order.
It has the same steps as mentioned in purchase order.

Table 6.4 Documents sent and received in purchase order process and Change PO.

6.1.2.2 Change PO
This step is similar to the Purchase Order process, it repeats approximately all the
steps listed in section 6.1.2.1 above.

6.1.2.3 Fulfilment of Purchase Order
This step is initiated by the Seller as illustrated in diagram 6.4 for the fulfilment of
purchase order. The goods are despatched to Buyer or messages is send to
Transport Company for transportation of goods to the Buyer. The Transport
Company issues transport advice and send it to the Seller who further sends it to
the Buyer.

Figure 6.4 Fulfilment of purchase order

 56

Buyer first receives Despatch Advice from the Seller and ordered goods later on.
He checks the goods delivered against the advice. The two documents in this
process are explained in the table given below.

Name Description
Dispatch Advice It is a document sends by the Seller to Buyer to inform him

that goods or services ordered have been despatched or
delivered to him through transport company.

Transport Advice Transport company issues advice for the fulfilment of order
received from Seller and confirms that good are despatched to
buyer.

Table 6.5 Documents sent and received in Fulfilment of purchase order.

6.1.2.4 Invoice and AR/AP
The accounting process starts with sending of invoice by supplier to buyer.
Invoice is the request for payment by the seller to the buyer, for the payment of
goods or services delivered. Activity diagram for Invoice and AR/AP shown
below has many steps involved in invoice to posting to AR/AP ledger, and it has
two documents i.e. Invoice and Invoice response. The three steps which are
marked light grey will be further divided into sub steps and are explained in the
table given below.

Figure 6.5 Invoice and AR/AP

 57

Invoice and AR/AP is mostly initiated by seller, with the step “Send invoice”. When
invoice is sent to buyer, it is also posted to account receivable in the seller’s ledger,
by debiting respective buyer party’s account and crediting tax and revenue
accounts. When buyer receives the invoice he also posts it in his ledger by crediting
the account payable and debiting other relevant accounts.

Name Description

Invoice It is sent by the seller to the buyer to request for payment for
goods or services.

Invoice
Response

Response is send by the buyer to the seller in response to an
invoice to inform him of discrepancies in the invoicing
process.

Posting to AR In this step I will explain the process of posting to account
receivable in next sub section.

Posting to AP In this step I will explain the process of posting to account
payable in next sub section.

Payment and
AR/AP

This is the last step in Order-to-Invoice process with
accounting details.

Table 6.6 Documents sent and received in invoice and AR/AP process

If invoice does not match with goods delivered or services provided, the buyer can
send invoice response to the seller. He can send new credit or debit invoice, by
going through the same processes as mentioned above.

6.1.2.5 Activity diagram for Account Receivable and Account Payable
The main purpose of an Accounts Receivable and Accounts Payable is to keep
track of money owed to seller by his customers and the money buyer owe to his
suppliers and other creditors. It means that Account Receivable is the value of the
issued invoices or shipments that have not yet been paid and the Accounts
Payable are the value in shipments or invoices received that have not been paid. In
order to keep track of these unsettled payments, an AR/AP facility must support

• Posting of outgoing and incoming invoices, usually originating in separate
sales and purchasing systems.

• The registration of outgoing and incoming payments, usually received
through a bank or other external settlement agency.

• Matching of the payments against the invoices.
• Identification of business differences with customers and suppliers which

have lead to discrepancies between debts and payments.
• Posting of adjustments or corrections that arise as a result of resolving

differences with debtors and creditors (customers and suppliers).

Thus, the main classes/objects in AR/AP will be Invoice, Account, Party
Accounts, Product Account, Payment, Payment terms, Bank information and Tax.
The activity diagram 6.6 is a graphical illustration of all points mentioned above.

 58

Figure 6.6 AR/AP processes

I will not make activity diagrams for all theses issues, but I concentrate on posting
only, other steps can be done similarly. The AR/AP process activity diagram
shows the steps from invoice to payment and reconciliation, and each step is
explained in table nr 6.7.

Name Description
Post Invoice This step starts posting to accounts receivable by

debiting AR and crediting trade revenue and tax
account.

Payment If payment is for a single invoice it can be allocated
directly to that invoice both in buyer and seller’s
ledgers.

Payment Allocation If payment is for multiple invoices or is a partial
payment then it should be processed in payment
allocation.

Reconcile It reconciles the invoices paid.
Posting vendor invoice This step starts posting to accounts payable by crediting

AP and debiting other relevant accounts.
Table 6.7 Description of AR/AP processes

The firs two steps i.e. post invoice and post vendor invoice are explained with
activity diagrams in next subsections but the other steps mentioned in diagram 6.6
are not explained with activity diagrams. They can be explained similarly when
we implement AR/AP system. They are dropped here for simplicity.

 59

6.1.2.6 Post Invoice
The activity diagram for post invoice shows the process of invoice registration to
Accounts Receivable and General Ledger. Account Receivable ledger initiates the
process after receiving message from Seller entity as explained above.

Figure 6.7 Activity diagram post invoice

The invoice is posted for each party in account receivable ledger and the same
balance is sent to General Ledger for posting to respective other accounts. This
whole process will be posted in one transaction. This step has five sub steps some
are explained in table under.

Process Description

Process AR posting It initiates the posting of invoice to AR for each party
separately.

Account Receivable A/C in general ledger where to registered outstanding
balance of AR in GL.

Tax account A/C in general ledger where to registered outstanding
balance of tax payable to authorities in GL.

Revenue account A/C in general ledger where to registered outstanding
balance of income by sale of goods or services in GL.

Posted It shows the entries posted to AR.
Table 6.8 Description of post invoice processes

Similarly activity diagram for accounts Payable will be explained in next sub
section, as posting vendor invoice.

 60

6.1.2.7 Posting vendor invoice
This step is similar to posting invoice described in above subsection; the activity
diagram for post vendor invoice shows the process of registration of invoice to
Accounts Payable and General Ledger. Account Payable entity initiates the
process after receiving message from Buyer entity as explained above.

Figure 6.8 Activity diagram post vendor invoice

The vendor invoice is posted for each party in account payable ledger and the
same balance is sent to General Ledger for posting to respective other accounts,
this posting is also done in a single transaction. This step has five sub steps some
are explained in the table given below.

Process Description

Process AP posting It initiates the posting of invoice to AP for each party
separately.

Account Payable A/C in general ledger where to registered outstanding
balance of AP in GL.

Merchandize
ePurchase

A/C in general ledger where to registered outstanding
balance of purchase of goods or services by in GL.

Tax account A/C in general ledger where to registered outstanding
balance of tax payable to authorities in GL.

Other Accounts Other account s like discount, trade discount etc.
Posted It shows the entries posted to AP.

Table 6.9 Post vendor invoice

 61

6.1.3 The Business Resource Model
The Business Resource Model identifies and defines the main concepts of the
domain that are relevant to AR/AP. Information resources are modelled using
classes and class diagrams as described in UML-SSS. The AR/AP Business
resource diagram shows a simple resource model for AR/AP. I have not listed all
classes here because my focus is on the methodology for specification of
standards. This document is not a complete standard specification of AR/AP but it
shows how to apply UML-SSS to specify a domain standard. Figure 7.9 shows
important classes in Business Resource Model.

Figure 6.9 Business Resource Model for AR/AP

All the classes in Business Resource Model are describes precisely in table given
below. The main classes in business resource model are Party, Invoice, Purchase
Order, Shipment, Tax, Item and Document; these classes may contain further
aggregation of different classes relevant to each main class.

 62

Name Description
Party This class contains general information to identify

party.
Seller It is a seller entity.
Buyer It is a buyer entity.
AccountReceivable Suppliers party for payment issues.
AccountPayable Buyer party for payment issues.
Invoice General Class for invoice
InvoiceLine This class inherits from invoice and contains

information that allows identifying to which order and
order line the invoice line refers.

Order Purchase order class for identification of order
information.

OrderLine Class for description of purchase order at line level,
each order has one or more lines.

Document Document is a main container for information sent
from a sender to a recipient i.e. from buyer to seller or
vice versa.

DocumentLine This is the further description of document at line
level, each document contain one or more lines

Tax Class to mention tax information. It may be further
divided into more classes under implementation.

PriceLine Detail of price at line level for different item.
PriceItem Class to represent price of items.
Shipment General class to identify shipment party, may have

own packages under implementation.
Payment Payment Information of invoices.

Table 6.10 Classes in Business Resource Model

The Business Resource Model for internal AR/AP components may have classes
like Account, PartyAccount, ProductAccount, Entry and Transaction. Theses
classes may be used with or with out AR/AP prefix.

6.2 Architecture Model (PIM)

UML-SSS architecture model consists of following four models, component
structure model, component interaction model, interface model and information
model. I have chosen two ERP systems to interoperate with each other in buying
and selling scenarios. Compiere and SAP are used for this purpose. Compiere is
an open source ERP and is available for experiment. I have used Compiere to
understand the whole process from order to invoice and payment to accounting
entries in respective ledgers. SAP is proposed to use at other end, but I have not
used it directly.

 63

6.2.1 Component structure model
It describes the high-level components and their interdependencies.General
context diagram for communication between different systems involved in AR/AP
is given below. There are six systems or subsystems which are involved in AR/AP
interoperation. The two ERP’s are the main buyer and seller systems where one
let us Compiere sends purchase order to SAP and the SAP respond it and sends
message to Transport Company who has his own subsystem to handle transport
orders. After the transport information SAP sends invoice to Compiere. It may
happen that some ERP does not have AR/AP in this case it will interoperate with
external AR/AP to fulfill the accounting entries after creation of invoice.

Figure 6.10 AR/AP Component Interaction

The Buyer and Seller banks are involved when payment of an invoice is made by
the buyer i.e. SAP communicate with its bank for payment to Compiere. Buyer
bank sends information to seller bank which further sends message to seller
system. The communication is proposed through ports, where each system
provides ports for interoperation.

Further we will go into details of different parts of ERP1 i.e. Compiere, especially
those parts which are concerned with AR/AP.

6.2.1.1 Details of ERP1
The important components in an ERP1 are GL, AR/AP, Selling, Purchasing and
Inventory components. It may have modules like Payroll, System Management,
Cash management and many others but these are not related to AR/AP.

 64

Figure 6.11 Compiere component overview

Figure 6.11 shows the internal interaction of components and external interaction
with other systems through two ports. AR/AP interacts with minimum three
components Selling, Purchasing and General Ledger. AR/AP interaction will be
further specified with required interfaces and provided interfaces in next sub
sections but first we see the internal structure of AR/AP.

6.2.1.2 AR/AP Component

Component diagram for AR/AP shows the communication of AR/AP with other
components within ERP and outside ERP along with important internal structure
of AR/AP. The explanation of internal parts of AR/AP is given below.

 65

Figure 6.12 AR/AP components

Entry is a discrete amount, together with its associated reciprocal party,
transaction date, description, expected settlement date and method, and XBRL
type or account code.

Transaction is a balanced set of two or more entries (debits and credits) to a
general ledger or AR/AP ledger. Account is an attribute of a transaction entry
(row), which classifies that entry with any valid value in the Chart of Accounts
list. The values in the chart of accounts may be statutory classifications for tax or
financial reporting, but are usually short or mnemonic values which support
additional purposes in workflow, transaction validation, reporting, etc.

Posting is the act of committing an individual transaction consisting of a balanced
set of two or more entries (debits and credits) to a general ledger or AR/AP
ledger.

Party is an identifier to specify the parties involved in the given transaction.

6.2.2 Component interaction model

Interaction model describes the interactions between the high-level components.
Buying and selling process often start with quotations, buyer sends request for
quotation to Seller Company and it sends quotation to Buyer Company which can
be binding or not it depends on contract between involving partners. The next step
in purchasing and selling is Purchase Order send by Buyer Company to Seller

 66

Company and Sales Order vice versa. The following sequence diagram is a
simplified process based on the activity diagrams written in section 6.1.

Figure 6.13 Sequence diagram Component interaction

In the next step we go into further detail with transportation of goods or services
which may go through the Transport Company. It involves three objects i.e. Buyer
Company, Seller Company and Transport Company.

Here I have used notations from UML 2.0 some “ref” and “alt” to cover
maximum information in one sequence diagram. After purchase order, sales order
and transportation Seller Company sends invoice to Buyer. Posting of invoice will
affect the accounts receivable in Seller Company’s AR Ledger and similarly AP
Ledger of Buying Company it is explained in sequence diagram ARAP-posting.
Last step is payment which involves three objects i.e. Seller and Buyer Bank(s) in
addition to Buying and Selling Companies it can be explained in a separate
sequence diagram Payment Invoice. Payment will reverse the entries posted

 67

during invoice in AR/AP. The details of posting to AR/AP will be described in
sequence diagram “ARAP-posting” which is decomposition of both ERP systems
but for simplicity I have decomposed only one of them.

Figure 6.14 Sequence diagram for Order-to-Invoice with AR/AP

Here are the details of invoice posting to AR. Seller component sends message to
ARAP component for posting to AR. ARAP get the account receivable for
respective party and other relevant accounts and oppdateAccount updates
balances in all relevant accounts.

 68

Figure 6.15 Sequence diagram ARAP posting

6.2.3 Interface model
 Interface model describes the details of the component interfaces, i.e. their
operations and detailed behaviour. My focus is on Accounts receivable and
Accounts Payable, therefore I will discuss only interfaces required and provided
by AR/AP to other components like Selling and Purchasing, and General Ledger.
But I will not illustrate all interfaces here I mention some examples of interfaces
in AR/AP. Three Interfaces provided to Selling component are shown in figure
6.16 i.e. RetrieveAccount, PostToARAP and NewAccount.

Figure 6.16 Interfaces provided by ARAP to Selling component

 69

When Selling component sends messages to AR/AP component for posting to AR
for particular Party and Product account, interface RetrieveAccount checks the
respective accounts in AR/AP ledger. If accounts already exist, RetrieveAccount
call the PostToARAP to complete the transaction, otherwise it calls to
NewAccount for creating new account and then call to PostToARAP interface for
completion of transaction. The description of interfaces is given in table given
below.

Interface Description

RetrieveAccount The RetrieveAccount interface supports to retrieve the
chart of accounts, including customer, supplier, and
product accounts, in the ledger for the current
company.

NewAccount The NewAccount service manages the accounts in the
ledger, facilitating the customization of the chart of
account selected when the ledger was created,
including the creation, modification, and deletion of
accounts for customers, suppliers, and products.

PostToARAP The PostToARAP interface is used for entering
transactions into the AR/AP facility.

Table 6.11 Interfaces between ARAP and Selling component

Similarly another example of interfaces is the interfaces between GL and AR/AP.
It is shown in diagram number 6.17 given below.

Figure 6.17 Interfaces between GL and ARAP

6.2.4 Information Model

The information model describes the information structures that are conveyed
through component interfaces. The information model may be included in the
Interface Model but I have chosen it some separate model. The Component
Information Model should contain a set of UML class diagrams representing the
types/classes with attributes and relationships. The Component Information
Model is platform independent, i.e. we use the platform-independent data types
mentioned in section 5 and omit detailed technology details.

 70

Let us see a general class diagram for AR/AP in a wider perspective of Order-to-
Invoice scenario. It shows the interaction between different objects. These classes
can further be divided into subsystem or component by grouping them according
to functionality. I will not use this diagram to generate PSM but instead use only
class Account with Arap prefix, and data types required for account entities.

Figure 6.18 AR/AP class diagram

Data Types - As mentioned in chapter 5 I have decided to use data types from
existing standards like Core Component from ebXML and data types used in old
AR/AP submission. It means that I will use some basic types and derived types.
Figure 6.19 shows some important derived data types which I will use in AR/AP
account classes; it can be shown in UML class diagram with stereotype.

 71

Figure 6.19 AR/AP Data types

Table given below explains the semantic of main Data Type in above class
diagram.

Type
Name

Description

PartyId It is a legal person which can be a customer or a supplier. A
PartyId is tied to customer and supplier accounts and is used to
look up information in an external Party service.

ProductId ProductId identifies a product, i.e. something which can be sold
to a customer or bought from a supplier.

PartyNr It is unique identifier of party.

ProductNr It is unique identifier of product
 TaxRegNr Tax registration number of involving parties.

Table 6.12 Description of AR/AP Data Types

Accounts are also core entities of an ARAP. We define a set of different accounts
to be used for different purposes. We use enumeration class for this purpose. The
AccountType enumeration defines the different account types to be allowed in the
ARAP Facility.

 72

Figure 6.20 Enumeration data type

The main accounts used in AR/AP are illustrated in diagram 6.21, where the
ArapAccount type is used to represent all of the account types except
CUSTOMER_ACCOUNT, SUPPLIER_ACCOUNT and
PRODUCT_ACCOUNT. A party is related to the ArapParyAccount through the
party_Id attribute.

The ArapPartyAccount type is a logical subclass of ArapAccount, used to
represent accounts that relate to a party, SUPPLIER_ACCOUNT and
CUSTOMER_ACCOUNT.

Figure 6.21 AR/AP Accounts

The ArapProductAccount type is a logical subclass of ArapAccount, used to
represent products in the ledger, hence covering the PRODUCT_ACCOUNT
account type. A product is related to the ArapProductAccount through the
product_id attribute.

 73

7 Platform specific Modeling

This chapter contains explanation of two mappings or transformations, first is
PIM to PSM and second is PSM to Code. PIM to PSM mapping is 1xPIM = n x
PSM. It means that we derive many PSMs from the same PIM. I have made
different platform specific models from the same platform independent models. I
have transformed only some part of PIM into PSM for simplicity and they are
shown in this chapter, other parts of AR/AP can be similarly transformed. The
focus is on the methodology or process involved in PIM to PSM transformation. I
have used two working tools for transformation purpose i.e. OptimalJ and
Rational Software Modeler.

7.1 PIM to PSM Mapping

In PIM to PSM mapping I have used diagrams 6.16 and 6.21. The Platform
Specific Models generated are EJB, WEB (presentation) and Web Services. PIM
to PSM mapping varies from tool to tool; some tools with integrated
transformation rule-sets might generate more specialized code than others. If one
uses MOF, QVT or ATL for model to model transformation then one can get
more control on transformation rules. It is clear that two different tools might
produce different PSM mappings even for the same platform. It is thus not
sufficient to standardize only the PIM; also the resulting PSMs with
code/interfaces need to be standardized.

7.1.1 EJB PSM

Diagram 7.1 shows different components generated from interfaces NewAccount,
PostToArap and RetreiveAccount and AR/AP accounts classes mentioned above.
Let us make a EJB platform specific model from diagrams 6.16 and 6.21 shown in
PIM model, this PSM for EJB is generated by OptimalJ. OptimalJ generates all
components needed by EJB from given domain or PIM model. The components
generated are EJBSessionComponent, EJBEntityComponent and
EJBBusinessLogicConstraintHandlerComponent.

 74

Figure 7.1 EJB Model from OpmtimalJ

OpmtimalJ puts some find methods and serving attributes to components
generated for all classes. It provides the opportunity to add the business method
before generating codes.

7.1.2 WEB PSM
It is java or EJB based presentation of web model generated by OptimalJ from
domain model (PIM). Figure 7.2 illustrates the WebComponents with different
WebFlow methods.

 75

Figure 7.2 WEB (presentation) PSM from OptimalJ

The diagram 7.3 shows the detail of all components and attribute for Web PSM. It
shows the WebComponents with web action, web pages, web serving attribute
and web data types. The web data types are converted from PIM data types.

 76

Figure 7.3 All components of WEB (presentation) PSM

7.1.3 Web services PSM

The platform specific model for web services is generated with the help of two
tools i.e. OptimalJ and Rational Software Modeler. The diagram 7.4 shows the
Web service model generated with help of OptimalJ where each
EJBSessionComponent has a WebServiceComponent, it shows the components
for the interface NewAccount. It is not a PIM to PSM mapping but it is generated
from EJB model, it means that it is a PSM to PMS mapping, OptimalJ does not
support direct PIM to PSM mapping for the Web Services.

 77

Figure 7.4 Web Services PSM from OptimalJ

Web service platform specific model generated from Rational Software Modeler
with the help of ATL transformation is given below. In ATL we can transform
model to model, package to package, interface to interface and operation to
operation etc. We take a UML model as input and transform it into UML model
some output in model to model transformation, similarly other transformations are
made.

rule Model2Model {
 from srcMdl : UML2!Model
 to trgMdl : WSUML2!Model (
 name <- 'PlatformModel',
 ownedMember <- srcMdl.ownedMember
)
}

Figure 7.5 Model to Model transformation with ATL

If we apply this ATL transformation to interfaces shown in figure 6.16, the Web
Service Platform will look like the diagram 7.6. Each interface gets an
implementation class with similar methods. There are no major differences
between two Web Services PSM, both tools has their own notation, OptimalJ has
web service component for each interface and RSM has implementation class for
each interface.

 78

Figure 7.6 Web Service PSM from RSM

7.2 Mapping PSM to Code

When we have a PSM, code generation of interfaces is not a large task. Mostly all
working tools which support PIM and PSM generate code from the PSM model. I
have generated java codes for EJB, Web Presentation and Web Services.

7.2.1 EJB Code
The java codes are generated for EJB from the OptimalJ. As mentioned earlier
OptimalJ generates some tool specific Java information, the diagram given below
shows the Java codes for different classes in PSM. Codes for EJB remote and
home interfaces are also generated.

 79

Figure 7.7 Java codes for EJB.

If we see the code for interface NewAccount, it will be en extension to
EJBObject, The code generated by OptimalJ for a Session Bean Remote Interface
are shown in figure 7.8.

 80

Figure 7.8 Java code for interface NewAccount

The Code generated from Rational Software Modeller with help of ATL
transformation for same interface is very simple and easy to understand. The
difference of auto mapping and manual mapping for generation of code is
enormous.

package org.sintef.no;
import java.util.Collection;
import java.io.Serializable;

/**
 * Generated class NewAccount
 * @author Bahadar Khan
 */
public interface NewAccount {
 /*
 * Operations
 */
 public void creatAccount ();
 public void createPartyAccount ();
 public void createProductAccount ();

} // End of interface NewAccount

package arap2.application.business.logic;
import java.rmi.*;
import javax.ejb.*;
import java.util.Collection;
import java.util.Map;
import com.compuware.alturadev.ejb.*;
import com.compuware.alturadev.application.*;
import arap2.application.business.common.*;
import arap2.application.business.common.*;

/**
* Session Bean Remote Interface
*/
public interface NewAccount extends EJBObject {

 public arap2.application.business.common.AccountId creatAccount(ArapAccountKey account_info)
 throws com.compuware.alturadev.application.AlturaPreConditionException,
com.compuware.alturadev.application.AlturaPostConditionException, RemoteException;
 public arap2.application.business.common.AccountId creatPartyAccount(ArapAccountKey
account_info)
 throws com.compuware.alturadev.application.AlturaPreConditionException,
com.compuware.alturadev.application.AlturaPostConditionException, RemoteException;
 public arap2.application.business.common.AccountId creatProductAccount(ArapAccountKey
account_info)
 throws com.compuware.alturadev.application.AlturaPreConditionException,
com.compuware.alturadev.application.AlturaPostConditionException, RemoteException;
}

Figure 7.9 Code generated with ATL transformation RSM.

 81

7.2.2 Web Code

The web codes are similar to EJB code. They are also java codes for web
interfaces and classes given in PSM for Web. The figure 8.8 shows the code for
some classes in Web PSM.

Figure 7.10 Java code for Web PSM

7.2.3 Web Service code
The process of code generation is more or less trivial after the PIM to PSM. I have
generated codes with help of both work tools. The code generated by OptimalJ are
mostly java codes or in other words generated from EJB. The Rational Software
Modeler does not generate code automatically, but we can generate the code with
help of ATL and MOF transformation.

I have used the ATL transformation for the generation of Web Service codes. An
example of transformation of interface to code is given below, we transform UML
package into interface package and for each interface the massages, data types,
port types and binding services are transformed.

uml.Package::interfacePackages () {
 if (self.getStereotype() = business_service_stereotype){
 self.ownedMember->forEach(i:uml.Interface) {
 i.wsdlMessages()
 i.wsdlPortType()
 i.wsdlBindings()
 i.wsdlService()

 }

 82

The codes generated in XML format for three methods in interface NewAccount
are given below.

<wsdl:message name="creatAccount">
 </wsdl:message>

 <wsdl:message name="createPartyAccount">
 </wsdl:message>

 <wsdl:message name="createProductAccount">
 </wsdl:message>

7.3 Summary

The experiment in this chapter has shown that there are many ways of getting
from a PIM model to different PSM models and corresponding code/interfaces.

Different transformation tools need first to be able to understand the UML-SSS
models, and then to have a rule set to transform this to a PSM or directly to
code/interfaces. Since these rules can be different for different tools, even for the
same PSM, it will be necessary to standardize not only the PIM, but in addition
also the corresponding PSMs for chosen platforms.

 83

8 Analysis and Evaluation

In this chapter UML-SSS will be analyzed and evaluated comparatively with the
existing domain standard specification languages IDL and UML-UMM. The
second part of thesis i.e. Finance AR/AP will be evaluated according to
requirements presented in section 3.2.

8.1 Evaluation of UML-SSS

UML-SSS is a UML based domain standard specification language and will thus
have several aspects where it is similar to UML-UMM. The evaluation uses the
requirements presented in section 3.1 as a framework.

Requirement UML-SSS

R1 Formal Language

+/-

R2 Specification of CIM and PIM and PSM models +
R2a Structure +
R2b Behaviour (Process/Services) +
R2c Constraints +/-
R3 Ease of use – graphical notation. +
R4 Platform independent data types.

+

R5 Computer processability. +
R6 Non functional aspects like performance, QoS,

error handling, security issues, usability,
reliability, availability, adaptability,
supportability.

+/-

R7 IT standard and continuous development. +
R8 Support from existing working tools. +/-
R9 Methodology and process description. +

Table 8.1 Evaluation of UML-SSS

The evaluation of UML-SSS is summarized in table 8.1. UML-SSS introduced a
structured way of modeling domain using a set of models, where the MDA
approach helps in keeping the PIM models consistent. It also helps to understand
the several viewpoints of domain with different model. It means that the

 84

requirement R2 is fully met. Requirement R2c is not fully met because of
limitations of UML in constraint. UML 2.0 has a support for constraints within
models, but we can still get problems with tools and they are not fully
implemented.

Requirements R3, R4 and R5 are fully met. UML is becoming de facto standard
in modeling and is not difficult to use. Many working tool has support for the
graphical notations provided by UML.

Requirement R6 is partially met. We mentioned some of the non functional
requirements in Business Model under Scoping Statement as risk analysis but
implementation viewpoint of this requirement is not mentioned in PIM.

Requirement R7 and R9 are fully met, but R8 only partially met. We have various
tools which supports MDA techniques and transformation from PIM to PSM. But
it is difficult to define and find support for transformation from CIM to PIM.
Existing tools will have pre-existing constraints to what a PIM model should look
like, and they might have chosen different transformation rules and philosophies
for the transformations to PSM and code/interfaces.

We can make PIM to PSM transformation our selves with the help of QVT or
ATL and MOF. Similarly we can make transformation from model to model at
any level with help of MOF. It seems that the best approach for standardization
purposes is to also standardize the corresponding PSMs with their associated
code/interfaces that have been generated. Also the transformation rules that have
been used should be described. Ideally it should be enough to standardize the PIM
and the transformation rules, but in practice there are so many details involved,
that we recommend also to standardize the corresponding PSM code/interfaces.

8.2 Evaluation of Example, UML-SSS applied to Finance

AR/AP ref. Requirements

The evaluation of AR/AP example is based on the requirements stated in chapter
6 and the UML method for Standards Service Specifications is applied to these
requirements for Accounts Receivable and Accounts Payable. It is not a complete
specification of AR/AP but en example to test implementation of domain standard
specification language. Table 8.2 shows the summary of requirements and their
implementation with UML-SSS.

The requirement Req.1 met in full. The example is full implementation of MDA
technique with Business Model (CIM) and Platform Independent Model and
Platform Specific Model. Architecture Model illustrated in subsection 6.2 is PIM
for AR/AP. PSM is explained in chapter 7 and has EJB, Web and Web Services
platforms models.

Req.2 met in full. I have not explained and specified each of the operations for
each of interfaces comprising the complete AR/AP facility, including
preconditions, post conditions, and exception conditions. But I have mentioned

 85

only three interfaces to explain the methodology; similarly other interfaces needed
in AR/AP could be explained.

Req.3 met also in full. Similar to Req.2 some interfaces are mentioned in example
and other could be specified at implementation level.

Req.4 Classic Double Entry Accounting (CDEA) as the basic semantics of
representing transactions is met in full.

Req. 5 met in full. The AR/AP requires separate accounts for the customer and
supplier roles of each party; information about debts and payments are recorded
onto these separate customer and supplier accounts.

AR/AP
Requirement

UML-SSS
example

Req.1 MDA specification +
Req.2 Interfaces and behavior +
Req.3 Views of balances +
Req.4 Classic Double Entry Accounting (CDEA) +
Req.5 Party roles +
Req.6 Group-by Queries +/-
Req.7 Non functional aspect like security +/-
Req.8 Relationship to existing OMG

specification
+/-

Table 8.2 Evaluation of Finance AR/AP example

Req. 6 partially met. The RetreivelGLBalance interface does not contains all
operations that support retrieval of aggregated information along the required
dimensions.

Req.7 and Req.8 met in partially. We stated the nonfunctional aspect like security
in risk analyses but guide lines or solutions to avoid these problems is not given in
respective sections. Req.8 was optional. I have used GL and AR/AP facilities of
OMG in this example but not others standards mentioned in this requirement.

 86

9 Conclusion and further work

In the introductory section I showed that current software projects tend to be very
big and complicated and that we need a new approach to software development to
deal with this complexity. Many people believe that modeling is useful to raise the
abstraction level and to overcome the complexity of software systems. In
particular for domain standards, where the same standard interfaces might be
realised in different ways on different underlying platforms. The higher
abstraction level will here help us to isolate the platform independent aspects of a
standard, from the platform specific aspects. The MDA is the new step in the
evolution of the software development and initiative to develop a standard
software development methodology where models play the central role.

The MDA defines an approach to system specifications that separates the
specification of the system functionality from the specification of the platform
specific implementation. This is done by specifying standards to model the system
in a reusable way. This allows two main applications:

• A system can be defined platform independently and then can be realized
on multiple platforms through auxiliary mapping standards.

• Different applications can be integrated by explicitly relating their models,
even if they do not run on the same platform type.

The MDA is a good candidate for domain standard specifications language. It
focuses on platform independent models to enhance the portability and
interoperability. We can get a very good result by applying the MDA technique to
COMET and UML UMM for domain standard specifications.

9.1 Requirement

This thesis presents two sets of requirements i.e. one for Domain Standard
Specification Language and other for applying it to Finance AR/AP.

Domain Standard Specification Language requirements focus on formal
modeling language with CIM, PIM and PSM where it emphasizes on structure,
behaviour and constraints. This further include requirement like platform
independent data types and computer processability. The other requirement covers
the notation, non functional aspects, working tools, methodology and non stop
development of It standards.

Finance AR/AP requirements introduce additional requirements for accounts
receivable and account payable. The focus of these requirements is on
interoperability of AR/AP with other systems or components like general ledger,

 87

bank and eCommerce. Other requirements for this section are classic double entry
accounting, non functional relationship to existing OMG solution (optional) and
internal queries.

9.2 Evaluation of Existing Standard Specification Languages

I investigated some IDL, XML and UML as domain standard specification
languages with practical examples. The examples are taken from finance point of
view and it covers the both part of thesis.

IDL Interface Definition Language is a platform specific language. It is not
possible to make models in IDL for a specific domain. It strongly supports the
platform specific development in CORBA environment. IDL is used to specify
standard for OMG General Ledger Facility and AR/AP. It has strong support for
interoperability, behaviour and computer processability.

XML Extensible Markup Language is widely used for exchange of data and
model to model transformation. I chose the XBRL General Ledger to analyse the
benefits and shortcoming of it. We could not make graphical models with XML,
but we can use it for their transformation.

UML Unified Modeling Language is evaluated with UN/CEFACT) Modeling
Methodology and it is best for modelling platform independent models. I have
used UML for standard service specification.

9.3 UML-SSS

UML-SSS is presented as domain standard specification language in this thesis. It
is implemented as UML profile with UMM and COMET methodology. Mostly all
models are taken from COMET and implemented with MDA technique. But it
suggests the start of software development from CIM not directly from PIM as
most MDA articles advocate. The evaluation of UML-SSS is given in table 8.1.

Data Types - Platform independent data types are taken from existing
international standards like Core Components and UN/CEFACT UMM. A small
set of basic data types like String, Integer and Boolean are used directly and
others are derived from these as classes with stereotypes.

9.4 UML-SSS application to Finance AR/AP

UML-SSS is applied to specify standards for account receivable and account
payable. The evaluation of is work is summarized in table 8.2. It does not cover
all aspects of AR/AP but there are only important parts of AR/AP which are
mentioned here. The main purpose of this example was to judge the UML-SSS
practically. It shows that UML-SSS is easy to apply not only to Finance but to
other domains like Health, Geographic and etc.

 88

9.5 Future Work

UML-SSS does not fulfill the requirements fully. Several aspects can be the base
for future enhancements.

• Constraints can be applied at the platform independent model level and
implemented in a tool with help of some plug-ins.

• Nonfunctional aspect can be evaluated and implemented at the platform
independent model level, - for example CORAS security profile can be
used for this purpose.

• Standard transformation rules from the PIM level to various PSMs for
different platforms can be defined using QVT and MOF.

Similarly AR/AP example has several aspects which need enhancements in
future.

• UML-SSS should be applied to specify completely the AR/AP standard
specification as it is on the agenda of OMG Finance Task Force.

• Interfaces required for req.6 can be made and explained according to
methodology of UML-SSS.

• Nonfunctional aspect like security can be improved after the improvement
of UML-SSS in this field.

 89

Terminology

ANSI
The American National Standards Institute (ANSI) promotes the use of U.S.
standards internationally, advocates U.S. policy and technical positions in
international and regional standards organizations, and encourages the adoption of
international standards as national standards where they meet the needs of the user
community.

Balance sheet
Balance Sheet is an itemized statement that lists the total assets and the total
liabilities of a given business to portray its net worth at a given moment of time.
The amounts shown on a balance sheet are generally the historic cost of items and
not their current values.

BCM
Business-Centric Methodology (BCM) is developed by OASIS a specification
which will provide business managers with a set of clearly defined methods with
which to acquire agile and interoperable e-business information systems within
communities of interests.

BPEL
Business Centric Methodology (BCM) methods are a product of the OASIS
Business Centric Methodology Technical Committee. For more information see
[15]

COMET
COmponent and Model based development METhodology (COMET) is a
methodology for constructing software systems by using components. COMET
methodology was developed in COMBINE project.

CORBA/IDL
The Common Object Request Broker Architecture (CORBA) and Interface
Definition Language of OMG.
Credit
A credit is one of the two values in a double-entry accounting system entry. At
least one component of every accounting transaction (journal entry) is a credit
amount. For every credit there is an equal and offsetting debit. Credits increase
liabilities and equity and decrease assets. For this reason, you will see credits
entered on the right-hand side (the liability and equity side of the accounting
equation) of a two-column journal or ledger.

 90

CORAS
The EU-funded CORAS project (IST-2000-25031) developed a tool-supported
methodology for model-based risk analysis of security-critical systems.

Current Liability

Current Liabilities are liabilities to be paid within one year of the balance sheet
date.

Debit
A debit is one of two values in an accounting entry. For every debit there is an
equal and offsetting credit. At least one component of every accounting
transaction (journal entry) is a debit amount. Debits increase assets and decrease
liabilities and equity. For this reason, you will see debits entered on the left-hand
side (the asset side of the accounting equation) of a two-column journal or ledger.

 Domain
Domain is what a piece of software is about. At one level of detail it may be
banking transactions or, at another level, it may be user interface controls. As we
separate the implementation from the specification, the domain becomes the
central focus of the specification. Product development is a effort to identify and
separate the many domains involved in solving a problem, describe the domains
in models and languages, and integrate them into a product

EDIFACT
EDIFACT stands for Electronic Data Interchange for Administration, Commerce
and Transport. Along with ANSI X12, EDIFACT was one of the first information
standards created for e-business transactions.

EJB
EJB (Enterprise Java Beans) The J2EE middle tier infrastructure designed to
support business components.

eProcurement
eProcurement is the term to describe the use of electronic methods in every stage
of the purchasing process from identification of requirement through to payment,
and potentially to contract management i.e. for transactional processes. Tools
include marketplaces using techniques such as eCatalogues and punch-out.
ERP
ERP stands for Enterprise Resource Planning and is the software to support entire
business processes. ERP systems shift the focus from functions to processes. ERP
Software Solutions typically consists of modules such as Marketing and Sales,
Finance, Accounting, Field Service, Production, Inventory Control, Procurement,
Distribution and Human Resources. ERP applications are the nerve center for
many information systems and business processes. Changes to ERP systems have
far-reaching implications throughout the enterprise and up and down the supply
chain.
General Ledger
General Ledger is the record of all account entries.

 91

IASB
The International Accounting Standards Board (IASB) Foundation is the parent
entity of the International Accounting Standards Board, an independent
accounting standard-setter based in London, UK.

ISO
International Organization for Standardization (ISO) is a network of the national
standards institutes of 150 countries, on the basis of one member per country, with
a Central Secretariat in Geneva, Switzerland, that coordinates the system.
Journal
A journal is a book or page where accounting entries are made. Journals are
sometimes referred to as books of original entry. The chronological, day-to-day
transactions of a business are recorded in sales, cash receipts, and cash
disbursement journals. A general journal is used to enter period end adjusting and
closing entries and other special transactions not entered in the other journals.

MDA
MDA (Model Driven Architecture) An approach to IT system specification that
separates the specification of functionality from the specification of the
implementation of that functionality on a specific technology platform.

MOF
The Meta-Object Facility (MOF) is an abstract language and a framework for
specifying, constructing, and managing technology neutral metamodels. It is
OMG standard

OASIS
Organization for the Advancement of Structured Information Standards (OASIS)
is a not-for-profit, international consortium that drives the development,
convergence, and adoption of e-business standards.

OMG
Object Management Group (OMG) was established in 1989 and is the world's
largest software consortium with an international membership of vendors,
developers, and end users. Its mission is to help computer users solve enterprise
integration problems by supplying open, vendor-neutral portability,
interoperability and reusability specifications based on Model Driven
Architecture. OMG has established numerous widely used standards such as
OMG CORBA, UML, MOF and General Ledger (GL) to name a few significant
ones. GL is related to my work; let us know what OMG GL is.

Posting
To post is to summarize all journal entries and transfer them to the general ledger
accounts. This is done at the end of an accounting period.

 92

Process
A business process defines how an organization achieves its purpose, and is
designed to add value. It is composed of atomic steps at the lowest level, which
are related to each other by workflow rules. A process is assigned to an
organization role to enable workflow and security management.” [13]

QVT
Query/View/Transformation (QVT) OMG standard.

UML
UML (Unified Modeling Language) an OMG standard language for specifying
the structure and behaviour of systems. The standard defines an abstract syntax
and a graphical concrete syntax.

UMM
UN/CEFACT Modeling Methodology (UMM). United Nations Centre for Trade
Facilitation and Electronic Business (UN/CEFACT) has developed the UMM

UN/CEFACT
United Nation Center for Trade Facilitation and Electronic Business is the
international standard for electronic data interchange

WSDL
Web Services Description Language (WSDL) is an XML format for describing
network services as a set of endpoints operating on messages containing either
document-oriented or procedure-oriented information

XBRL
eXtensible Business Reporting Language (XBRL) is a member of the family of
languages based on XML, which is a standard for the electronic exchange of data
between businesses and on the internet.

XML
XML (Extensible Markup Language) An industry standard that enables the
definition, transmission, validation, and interpretation of data between
applications and between organizations.

 93

References:

[1] Revised Submission in response to OMG’s Finance DTF RFP for an

AR/AP Facility. OMG DTC Document finance/02-03-01, from
http://www.omg.org

[2] OMG “Unified Modelling Language Specification”, Version 1.4,
September 2001, available from www.omg.org.

[3] Bill Meadows, Lisa Seaburg, Universal Business Language 1.0

http://docs.oasis-open.org/ubl/cd-UBL-1.0/, published 15 September 2004.

[4] Anneke Kleppe, Jos Warmer, Wim Bast: MDA Explained, The model
Driven Architecture: Practice and Promise, 2003. Addison-Wesley. ISBN:
0-321-19442 X.

[5] Geir . Ottersen UMLB2B: Model-based development of a B2B Internet
interaction System April 2003 University of Oslo.

[6] OMG, Model Driven Architecture (MDA). 2001, from www.omg.org.

[7] (2005) Compuware website:
http://www.compuware.com/products/optimalj/

[8] (2005) MDA Journals from website of Business Process Trends
http://www.bptrends.com/

[9] Arne-Jørgen Berre, Brian Elvesæter, Jan Øyvind Aagedal, Jon Oldevik,
Arnor Solberg, Bjørn Nordmoen; Component and Model-based
development Methodology Adapted from COMET I and COMBINE

http://www.uio.no/studier/emner/matnat/ifi/INF5120/v04/undervisningsma
teriale/COMET_Method_v2-4.pdf., 05 April 2004.

[10] David S. Frankel. Model Driven Architecture. Wiley Publishing, 2003.

[11] (2003) Whitepapers from Website of ebXML; http://www.ebXML.org

[12] ebXML Business Process Specification Schema, version 1,01, May 2001.

Available on web side; http://www.ebxml.org/specs/ebBPSS.pdf

[13] Chris Marshall, Enterprise Modeling with UML, Addison Wesley 1999.

[14] UN/CEFACT Modeling Methodology (UMM) User Guide

CEFACT/TMG/N093 (V20030922).

 94

http://www.omg.org/
http://docs.oasis-open.org/ubl/cd-UBL-1.0/
www.omg.org
http://www.compuware.com/products/optimalj/
http://www.bptrends.com/publicationfiles/
http://www.uio.no/studier/emner/matnat/ifi/INF5120/v04/undervisningsmateriale/COMET_Method_v2-4.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5120/v04/undervisningsmateriale/COMET_Method_v2-4.pdf
http://www.ebxml.org/
http://www.ebxml.org/specs/ebBPSS.pdf

[15] Business Centric Methodology (BCM) Creating practical tools for
business integration. http://www.oasis-
open.org/committees/download.php/5931/BCM%20Executive%20Brochur
e.pdf April 2005.

[16] Luther Hampton, David Vun Kannon: Extensible Business Reporting
Language (XBRL) Specification http://www.xbrl.org December 2003.

[17] (2005) Todd F. Boyle, General Ledgerism (s t u f f t h a t c o u n t s -- s e
m a n t i c s o f g e n e r a l l e d g e r s) http://legerism.net

[18] Dr. Arne-Jørgen Berre, ISO/TC 211 WG1 – WI 3 Conceptual Schema
Language, 1996-12-15.

[19] Carol Costa, C. Wesley Addison; Alpha Teach Yourself Accounting, Alpha
2001.

[20] Peter Eeles, Kelli Housten, Wojtek Kozaczynski; Building J2EE
Application with the Rational Unified Process, Addison- Wesley 2002.

[21] Sergei Savenko, Combined PIM-PSM, Master thesis, 19th April 2004.
[22] (2005) Website Modellering med objekter, INF 5120 UIO;

http://www.uio.no/studier/emner/matnat/ifi/INF5120/

[23] (2004) Website VentureLine at;
http://www.ventureline.com/glossary.asp

[24] (2005) Article on eProcurment from website;
http://www.ogc.gov.uk/embedded_object.asp?docid=1002131

[25] (2005) Website of IDABC(Interoperable Delivery of European
eGovernment Services to public Administrations, Businesses and Citizens);
http://europa.eu.int/idabc/

[26] OMG General Ledger Facility ISO RM-ODP Computational Viewpoint

Revision 4.1 December 21st, 1998 (OMG DTC Document finance/99-03-
05)

[27] (2001) Website, XBRL for General Ledger (XBRL GL);
http://www.xbrl.org

[28] (2005) Website Compiere; http://www.compiere.com/

 95

http://www.oasis-open.org/committees/download.php/5931/BCM%20Executive%20Brochure.pdf
http://www.oasis-open.org/committees/download.php/5931/BCM%20Executive%20Brochure.pdf
http://www.oasis-open.org/committees/download.php/5931/BCM%20Executive%20Brochure.pdf
http://www.xbrl.org/
http://legerism.net/
http://www.uio.no/studier/emner/matnat/ifi/INF5120/
http://www.ventureline.com/glossary.asp
http://www.ogc.gov.uk/embedded_object.asp?docid=1002131
http://europa.eu.int/idabc/
http://www.xbrl.org/
http://www.compiere.com/

	1
	Preface
	Contents
	 List of Figures
	List of Tables
	1 Introduction
	1.1 Domain Standard Specification Language
	1.2 Domain Standard Example – Finance AR/AP
	2 Background and Problem Statement
	2.1 Domain Standard Specification Language
	2.2 Problem Statement for AR/AP
	2.3 The Maintenance and Documentation Problem
	2.4 Hypothesis

	3 Requirements
	3.1 Requirements for Domain Standards Specification Language
	3.2 Requirements for AR/AP service – A finance example

	4 Evaluation of existing Standard specification languages
	4.1 CORBA IDL (General Ledger Facilities and AR/AP)
	4.2 XBRL XML (W3C XML) General Ledger Schema
	4.3 Electronic Business using extensible Markup Language (ebXML)
	4.4 OASIS
	4.5 UN/CEFACT UMM
	4.6 Evaluation of existing language candidates

	5 UML-SSS: “UML method for Standards Service Specifications”
	5.1 Modeling Language and Notations
	5.2 Model Overview in UML-SSS
	5.3 Methodology and Process
	5.4 Applying the MDA framework
	5.5 Working tool

	6 UML-SSS Application to Finance AR/AP
	6.1 Computation Independent (Business) Model (CIM)
	6.2 Architecture Model (PIM)

	7 Platform specific Modeling
	7.1 PIM to PSM Mapping
	7.2 Mapping PSM to Code
	7.3 Summary

	8 Analysis and Evaluation
	8.1 Evaluation of UML-SSS
	8.2 Evaluation of Example, UML-SSS applied to Finance AR/AP ref. Requirements

	9 Conclusion and further work
	9.1 Requirement
	9.2 Evaluation of Existing Standard Specification Languages
	9.3 UML-SSS
	9.4 UML-SSS application to Finance AR/AP
	9.5 Future Work

	Terminology
	ANSI
	Balance sheet
	BCM
	BPEL
	COMET
	CORBA/IDL
	Credit
	CORAS
	Current Liability
	Debit
	 Domain
	EDIFACT
	EJB
	eProcurement
	ERP
	General Ledger
	IASB
	ISO
	Journal
	MDA
	MOF
	OASIS
	OMG
	Posting
	Process
	QVT
	UML
	UMM
	UN/CEFACT
	WSDL
	XBRL
	XML
	

	References:

