
UNIVERSITY OF OSLO
Department of Informatics

Separating the QoS
Concern in QuA
using Aspect
Oriented
Programming

Cand Scient thesis

Tore Engvig

23rd October 2005

Contents

1 Introduction 6
1.1 QoS and Middleware . 6
1.2 Separation of Concerns . 7
1.3 Problem Statement . 7
1.4 Research Method . 7
1.5 Results . 8
1.6 Structure of this Document . 9

2 Background 10
2.1 Introduction . 10
2.2 Quality of Service . 11
2.3 Middleware and Components . 12
2.4 Reflection and Middleware . 14

2.4.1 Behavioral Reflection . 16
2.4.2 Structural Reflection . 16
2.4.3 Architectural Reflection and Reflective Middleware 16

2.5 Aspect-Oriented Programming . 17
2.5.1 Separation of Concerns . 17
2.5.2 Aspects . 18
2.5.3 Origins of AOP . 19

2.6 The QuA Project . 22
2.6.1 The QuA Component Model . 23
2.6.2 Service Planning . 24

2.7 Related Work . 24
2.7.1 COMQUAD . 25
2.7.2 Quality Objects . 26
2.7.3 DynamicTAO . 27
2.7.4 OpenCOM and the Lancaster Experience 28
2.7.5 Enterprise JavaBeans . 30
2.7.6 IoC frameworks: The Spring Framework 31
2.7.7 Other Middleware Approaches 32
2.7.8 Separation of Concerns using AOP 33

3

CONTENTS

3 Tools and Techniques 34
3.1 The QuA Java Prototype . 34

3.1.1 Resources and QoS . 36
3.1.2 Service Planning . 37
3.1.3 Creating a QoS Aware Component 37
3.1.4 Composing QoS Aware Services 38
3.1.5 Actors and Roles in QuA . 39

3.2 AOP Frameworks . 40
3.2.1 An AOP Example . 40
3.2.2 Comparing AspectJ and AspectWerkz 46

4 Analysis 48
4.1 Overview of the Problem . 48

4.1.1 Resources and Monitoring . 48
4.1.2 Configuration and Reconfiguration 49
4.1.3 Cross-cutting Concerns . 50
4.1.4 Cases for Further Analysis . 50

4.2 Simple Case: Computing the Value of Pi 51
4.2.1 Static QoS: QoS Aware Pi Components 52
4.2.2 Monitoring and Resources . 53
4.2.3 Dynamic Behaviour: Adding a Cache 57
4.2.4 Aspect Deployment . 58
4.2.5 Summary . 58

4.3 Complex Case: A Distributed Audio Player 59
4.3.1 Audio Quality and Codecs . 60
4.3.2 Real-Time Transport Protocol 62
4.3.3 Monitoring QoS . 63
4.3.4 Resource Management . 64
4.3.5 Adaptation . 66
4.3.6 Summary . 70

4.4 Experiments . 71
4.4.1 Criteria for Evaluating Results 71

5 Experiments 82
5.1 Simple Compositions: Calculating Pi . 82

5.1.1 Separating Static QoS . 82
5.1.2 Resource Management . 88
5.1.3 Summary . 89

5.2 Complex Compositions: A Distributed Streaming Audio Player 89
5.2.1 Implementing an Audio Service 90
5.2.2 Creating a QoS Aware Player Application 94
5.2.3 QoS Monitoring . 96
5.2.4 Adaptation . 97
5.2.5 Resource Management . 105
5.2.6 Testing the Adaptation Mechanism 105
5.2.7 Testing with Remote Capsules 107
5.2.8 Summary . 108

4

CONTENTS

6 Evaluation 109
6.1 Evaluating the Experiments . 109

6.1.1 Modularization and Reuse . 110
6.2 Aspect Components . 114
6.3 Results . 115

References 117

5

Chapter 1

Introduction

This thesis is a study in the field of quality of service (QoS) aware component-based
middleware and separation of concerns. QoS enabled middleware tries to preserve the
safe-deployment property of components, but QoS is a cross-cutting concern and thus
hard tomanage by themiddleware alone. Aspect oriented programming (AOP) is a new
technique formodularizing cross-cutting concerns, and this thesis is a study in howAOP
can be applied to QoS enabled middleware in order to separate concerns.

1.1 QoS andMiddleware

Component-based middleware has been used with success for many years now. Com-
ponent-based middleware enables safe-deployment and reuse of components in a well
tested and known environment. Component-based middleware provides a runtime en-
vironment for components, but as the middleware itself consists of components, it can
be tuned and configured to suit the applications’ needs.

QoS properties such as timeliness and accuracy is poorly supported in existing com-
ponent architectures. QoS aware applications usually share resources and they need to
adapt to changes in the available resources to enforce their QoS constraints. This usually
means that the QoS concern need to be considered in almost every part of the system,
and the component implementations need to contain deployment specific knowledge.

Platform managed QoS means that the middleware must be able to reason about
how end-to-end QoS depends on the quality of component services and thus adapt the
component services to achieve the wanted QoS as resources vary.

Research in this area propose many techniques for making the middleware adapt
to changes in its environment (McKinley et al., 2004). Reflection is central in many of
those approaches. Reflective middleware is able to reason about itself, and can reason
about and alter its own behaviour and structure during runtime. The idea is that the
middleware should be able to reconfigure itself and the software that is deployed on it to
handle changes in its execution environment.

6

1.2 Separation of Concerns

1.2 Separation of Concerns

As theQoS concernneeds to be considered inmost parts of the system, it is a cross-cutting
concern. Cross-cutting concerns are concerns that spanmultiple objects or components.

Cross-cutting concerns need to be separated and modularized to enable the com-
ponents to work in different configurations without having to rewrite the code. If the
code for handling such a concern is included in a component, it can make the compo-
nent tied to a specific configuration. This code will typically be scattered all over the
component implementation and tangled with other code in the component. Modulariz-
ing it will make it more robust for change, and separating it totally from the component
implementation will save the component programmers from having to implement it.

Aspect oriented programming is a newmethod for modularizing cross-cutting con-
cerns. By using AOP, concerns can be modularized in an aspect and later weaved into
the code.

1.3 Problem Statement

To enforce QoS properties such as timeliness and accuracy in component services, we
need to adapt to changes in the available resources. This adaptation involves cross-
cutting concerns such as: Resource management, monitoring and reconfiguration of
the services.

The QuA project at Simula Research Laboratory aims at providing a component-
model and platform for QoS sensitive components.

Aspect oriented programming is supposed to help separating cross-cutting concerns.
This thesis investigates how aspect oriented programming can be used to help separating
the QoS concern in order to create an architecture for platform managed QoS.

The goal of this thesis is to see how those concerns can be separated, and whether
the use of AOP contributes to modularizing those concerns.

The thesis is limited to investigating separation of concerns. The goal is neither to
create a state-of-the art monitoring framework, nor is it to create a state-of-the art re-
source management or dynamic reconfiguration framework. Thus, details about dis-
tributed resource management, monitoring protocols and service planning are beyond
the scope for this thesis.

1.4 Research Method

The hypothesis in this thesis is that the QoS concern can be separated with AOP in
the QuA platform. The term “QoS” is a broad term and covers many QoS dimensions.
Different applications need QoS in different ways. Thus, validating such a hypothesis for
the general case is a formidable, andmaybe even impossible, task. Instead, the hypothesis
can be strengthened by investigating cases that cover relevant parts of the hypothesis.

Thus, an experimental approachwith case analysis is chosen asmethod. By analysing
concrete cases, the scope is narrowed and it is easier to achieve concrete results that can

7

1 Introduction

be validated.
The cases should contribute to answering:

• How to separate the QoS concern in a static composition, i.e., how to separate the
concern of choosing the “best” components when forming a service.

• How to achieve dynamic adaptation, i.e., how to change or reconfigure a running
service. This includes how to dynamically adapt a service composed of more than
one component.

• How to separate the interaction with resource managers and monitors.

QoS in theQuAproject is limited to accuracy and timeliness. Thus, cases concerning
accuracy and timeliness are selected.

Twoprototypes are implemented. The first prototype separates staticQoS fromcom-
ponent implementations. The second prototype looks at monitoring and adaptation of
a stream based audio service.

The resulting prototypes are then evaluated in terms of modularity and reusability
in order to determine the degree of separation of concerns achieved. At the current time
there exists no goodmetrics formeasuring the degree of separation of concerns achieved
by using AOP – or for measuring anything useful at all using AOP. The problem of how
to evaluate the prototypes are discussed in section 4.4.1 based on the current metrics
used in software engineering and other experiments involving AOP.

1.5 Results

Results of the analysis and the experiments conducted in this thesis show that:

• Architectural reflection can be enabled with the use of AOP. The experiments im-
plement a simple meta-model for components and services which can be used for
architectural reflection.

• Adaptation of components and complete services is implemented with aspects.
Both compositional and parameter adaptation are implemented. Architectural re-
flection is used to adapte complete services, and for transferring bindings between
components.

• Monitoring of some QoS dimensions are separated using AOP.

• Resource management is separated with the use of aspects.

• Static QoS is separated from component implementations using AOP.

The use of AOP to separate these concerns provided a modular implementation of
the concerns. Most of the aspects used for separating the concerns are orthogonal to the
components they act upon, and should be reusable for other services and components.

8

1.6 Structure of this Document

1.6 Structure of this Document

This thesis is structured as follows:

• Chapter 2 gives a background on reflective middleware, separation of concerns
and related work.

• Chapter 3 describes details of theQuA Java prototype used in the experiments and
a description of the most relevant AOP tools to use.

• Chapter 4 provides an in-depth analysis of the problem and describes how to con-
duct and evaluate experiments.

• Chapter 5 describes how the experiments are implemented.

• Chapter 6 evaluates the experiments, concludes and suggests potential further
work.

9

Chapter 2

Background

2.1 Introduction

Many properties of a system can be termedQuality of Service (QoS). E.g., security, avail-
ability and a host of other -ilities. These different -ilities are usually called QoS dimen-
sions. This thesis focuses on timeliness and accuracy.

Key to QoS is that resources are limited. In order to fulfill the requirements in one
QoS dimension, we might have to sacrifice another QoS dimension. I.e., we have to
prioritize. An example is a streaming audio service such as internet radio, an audio
conference or IP-telephony. Continuous sound and low latency is important in such
services. If the network bandwith is limited, we might have to reduce the sample rate
or with other means reduce the amount of data sent over the wire. This will reduce the
quality of the sound, but satisfy the timeliness constraint.

There is a lot of work involved in creating such a service. You need to create audio
encoders, audio decoders and code for handling network transport of your audio data.
If you create all this code once, you might want to use it in more than one system – and
maybe in different configurations of the system. You probably want to reuse the code.
Reuse does not only save you a lot of work, it also makes maintenance easier as you only
have to fix bugs in the original code.

Making software components from your audio streaming code is a good approach to
achieve this. Components are reusable units usually packaged in a binary format. Com-
ponents specify which interfaces they provide, which interfaces they require, and they
also make explicit any other possible context dependencies. I.e., if you create compo-
nents from your audio encoder and decoder, you can use those components to compose
your audio service.

If you have new versions of your components containing bug-fixes, or maybe even
a completely new audio encoding algorithm, you only have to replace the original com-
ponents. As the new component has to satisfy the old component’s specification (i.e., it
has to provide the same interfaces), the new component will fit in your service without
a need to change any of the other components or code.

You have to deploy your components to something. I.e., they need a run-time en-
vironment that provides a component model – an understanding of what a component
is and how to make it available to your program. This is called a component platform.

10

2.2 Quality of Service

Component platforms are often middleware. Middleware acts as glue between applica-
tions and has traditionally been concerned with distribution, i.e., the network code in
your audio streaming application.

If you program your audio streaming service using low-level network calls, you will
write a lot of code that someone else already has written. If you in addition would like
failover support or a lookup service for locating audio sources in your application, there
is a considerable amount of code to write. Traditionally this has been handled by mid-
dleware.

By using component-basedmiddleware, all that network code could be components
provided by the middleware. Component-based middleware also allows you to switch
the components in themiddleware itself, making it possible to fine-tune themiddleware
to suit different configurations.

Your audio service does probably not run on dedicated computers using dedicated
leased-lines. This means that resources such as network bandwidth and CPU power
might change while your service runs. To fulfill the QoS constraints of your audio ser-
vice, it has to adapt to changes in available resources. This may imply changing the
sample rate or switching to a less CPU intensive audio encoding algorithm.

Adapting to changes could be handled by the code in your components. This will
require that they run on amiddleware platform that does not hide toomany details from
the components, as knowledge of those details might be necessary to determine when
and how to adapt to changes. Another serious drawback of letting your components
handle the adaptation is that they might need knowledge about the whole component
composition. This will make your components less reusable and hence less suitable for
other configurations.

This adaptation could be handled by the middleware. This kind of middleware is
called adaptive middleware. One approach for making middleware adaptive is to use
reflection, and create reflective middleware. Reflective middleware is able to reason about
itself and the services that are deployed on it. Ideally, this makes the middleware capable
of detecting that it has to adapt, and then reconfigure or recompose the audio service to
fulfill its QoS constraints.

Adaptation requires knowledge of both when and how to adapt. Code for handling
this must be included in most of the middleware code. There is also the possiblity that
your components need dedicated code to handle this. Aspect Oriented Programming
(AOP) is a technique for separating this code into modules, and at a later stage weave it
back in again.

The rest of this chapter elaborates on the topics presented here, and provides an
overview of the most relevant research in the field.

2.2 Quality of Service

There aremany definitions and interpretations ofwhatQuality of Service (QoS) is. Aage-
dal (2001) gives an overview of some of the different interpretations of QoS. In this
work, the understanding of QoS is based on the definitions from ISO (ISO CD15935;
ISO 13236) and OMG’s UML profile for QoS (ptc/2004-09-01).

QoS is about the performance of the system. QoS is also about quantification and

11

2 Background

prioritization of QoS characteristics in order to meet the total quality requirements for a
service.

Some terms and definitions need to be clarified:

QoS characteristic A quantifiable aspect of QoS, which is defined independently of the
means by which it is represented or controlled. Latency, throughput, capacity and
scalability are examples of QoS characteristics.

QoS dimension Dimensions for the quantification of QoS characteristics. QoS charac-
teristics can be quantified in different ways. A QoS dimension is one such way.
E.g., the latency of a system function can be quantified as the end-to-end delay of
the function, the mean time of all executions or the variance in time delay. The
term QoS dimension is often used instead of QoS characteristic.

QoS requirement QoS information that expresses a part of, or all of, a requirement to
manage one or more QoS characteristics, e.g., a maximum value, a target, or a
threshold. When conveyed between entities, a QoS requirement is expressed in
terms of QoS parameters.

QoS monitoring The use of QoS measures to estimate the values of a set of QoS char-
acteristics actually achieved for some system’s activity.

QoS characteristics can be grouped into QoS categories. Performance and depend-
ability are examples of QoS categories that include many characteristics.

This thesis is part of the QuA project, and the QuA project focus on QoS in terms
of timeliness and accuracy. Timeliness is related to how the system is able to meet the
constraints on request/response delays. Some characteristics related to timeliness are:

Latency/delay The time it takes to send a message from A to B. E.g., a geostationary
satellite orbits at about 36.000 km above earth. When using satellite communica-
tion a packet would have to travel 72.000 km, thus introducing a delay of about
0,24 seconds.

Jitter Variability in transfer delay.

A characteristic related to accuracy is error probability.

2.3 Middleware and Components

Middleware is software that connects applications. Middleware is neither dedicated to
the operation of a specific system, nor the functionality of a specific application – mid-
dleware serves as glue between applications.

Schmidt (2002) decomposes middleware into the four layers in table 2.1:

• Host-infrastructure middleware resides on top of the operating system and pro-
vides a high-level API that abstracts away the heterogenity of hardware devices,
operating systems, and network protocols.

12

2.3 Middleware and Components

Table 2.1 Four layers of middleware.

Applications

Domain-specific middleware services

Commonmiddleware services

Distribution middleware services

Host infrastructure middleware services

Operating system and protocols

Hardware devices

• Distribution middleware defines higher-level distributed programming models
whose reusable APIs and mechanisms automate and extend the native operating
system’s network programming capabilities encapsulated by host-infrastructure
middleware. CORBA, DCOM, and Java RMI all fit in this layer.

• Commonmiddleware services augment distributionmiddleware by defining high-
er-level domain-independent APIs that allow application developers to focus on
programming application logic instead of having to write the “plumbing” code
needed to develop distributed applications. This include fault tolerance, security,
persistence, and transactions.

Message-oriented middleware (MOM) – such as IBM MQ Series, Microsoft MQ
services and message brokers – falls into this category. So does most of the mid-
dleware discussed in the related works section later in this chapter.

• Domain-specific middleware services are tailored to match a particular class of
applications, such as avionics mission computing, online financial trading and
distributed process control. Unlike the previous threemiddleware layers, which all
provide broadly reusable “horizontal” mechanisms and services, domain-specific
middleware target vertical markets.

Domain-specific middleware are the least mature of the middleware layers, partly
due to the historical lack of distributionmiddleware andmiddleware service stan-
dards needed for a stable base on which to create domain-specific middleware.

In short, middleware is a broad term that includes almost anything but the applica-
tion itself and the operating system. Middleware has gained popularity because it pro-
vides functionality that many applications need, but is hard or expensive to create. E.g.,
many applications need security, distribution and transactions, but implementing a scal-
able and fault tolerant system for distributed transactions is expensive.

By using middleware for such operations, reuse of the middleware software is achi-
eved, which makes the software cheaper and less error-prone. The application can focus
on handling the application’s concerns while the middleware takes care of concerns such
as transactions and remoting.

Component-based middleware provides a run-time environment for components in
the middle tier. Components are “units of composition with contractually specified inter-
faces and explicit context dependencies only” (Szyperski et al., 2002). Examples of compo-

13

2 Background

nents are Enterprise Java Beans, Microsoft COM Components or CORBA CCM com-
ponents.

As stated in the definition, components are units of composition. That means that
components can be composed to form an application, another (composite) component
or a service. Context dependencies are specified by stating the required interfaces and the
acceptable execution platform(s). With explicit context dependencies and contractually
specified interfaces, it is easy to create several implementations of the same component.
Different implementations might suit different needs, but they can still be deployed the
same way, and in the same environment, as the other implementations of the same com-
ponent.

The characteristic properties of a component are (ibid.):

• It is a unit of independent deployment.

• It is a unit of third-party composition.

• It has no (externally) visible state.

All this makes components reusable assets. This makes it possible to buy pre-fab-
ricated components and combine them with your own components in a multitude of
configurations – or compositions. The same component can be reused in many systems.

Component instances can be plugged into a component framework. Component
frameworks support components confirming to certain standards and govern the inter-
action of components plugged into the framework. Component frameworks establish
the environmental conditions for the component instances, and regulates their interac-
tion.

Component frameworks can be components themselves, and they can be organized
hierarchically, allowing component frameworks to be plugged into higher level compo-
nent frameworks. Szyperski et al. (2002) uses EJB containers and COM+ contexts as
examples of tier one components frameworks, work flow and integration servers as tier
two, and federated flow control models at the interorganizational level as examples of
tier three component frameworks.

The middleware that provides the run-time environment for components are often
called the component platform.

Component-based middleware does not only provide a run-time environment for
components. The middleware itself consists of components that can be changed and
configured. This means that themiddleware can be tuned to suit the applications’ needs.
OpenCOM, which is discussed in the related works sections, is a good example of such
middleware.

2.4 Reflection andMiddleware

Reflection is the ability for a system to reason about itself. This is achieved by creating a
meta-representation of the system. The system and themeta-representation are causally
connected such that changes in the meta-representation are reflected in the system and
vice versa.

14

2.4 Reflection and Middleware

A major contribution in the research on reflection was given in Brian Smith’s PhD
thesis (Smith, 1982, 1984). Smith recognized that the base- and meta-level had to be
causally connected1. His research resulted in 3-Lisp – a fully reflective Lisp implemen-
tation.

3-Lisp introduced the concept of reflective towers, which is a fundamental part of
most reflective programming languages. Reflective towers are a solution to the prob-
lem that occurs when a program modifies the data structures used to run the program
itself. Reflective towers stacks interpreters such that there is a distinction between the
interpreter running the program, and the interpreter running the reflective code. The
reflective code might itself contain more reflective code, which in turn runs in another
interpreter – thus creating a stack of interpreters.

Reflection in object oriented programming languages was studied by Pattie Maes
(Maes, 1987) when she implemented reflection in the KRS language as a part of her PhD
thesis. The resulting language was called 3-KRS and contributed with clarifying and
defining what reflection and reflective architecture is.

In 3-KRS there is a one-to-one relationship between objects in the language and
meta-objects. Further, 3-KRS provides a complete and consistent self-representation
where every entity in the system is an object, and thus has a meta-object. This self-re-
presentation can be modified at run-time.

Another important work on reflective object systems is the CLOS MOP (Kiczales
et al., 1991). This is a metaobject protocol for CLOS (the Common Lisp Object System).
Kiczales et al. define a MOP as:

Metaobject protocols are interfaces to the language that give users the ability
to incrementallymodify the language’s behaviour and implementation, as well
as the ability to write programs within the language.

Some terminology regarding reflection needs to be clarified:

Reification is the act of going from the base-representation to the meta-representa-
tion (Friedman and Wand, 1984).

Using Smith’s reflective towers, reification is the same as moving up one level in
the stack of interpreters.

Reflection although the whole concept of having a causally connected base- and meta-
level is referred to as reflection (Maes, 1987), the term reflection is also used as
meaning the inverse of reification. I.e., going from the meta-representation to the
base-representation.

Using Smith’s reflection towers, reflection is the same as moving down one level.
I.e., the current base-level becomes the meta-level.

Introspection Reflection can be split into introspection and intercession (Demers and
Malenfant, 1995). Introspection is the observation of state and structure.

Intercession is the alteration of behavior and structure. I.e., altering themeta-represen-
tation such that the modifications is reflected in the base-level.

1Smith did not only recognize the importance of a causal connection, he actually made quite a point of
it: “Without such a connection, the account would be useless – as disconnected as the words of a hapless drunk
who carries on about the evils of inebriation, without realising that his story applies to himself ” (Smith, 1984).

15

2 Background

2.4.1 Behavioral Reflection

It is customary to distinguish between structural and behavioral reflection. Behavioral
reflection is about reflection on the behavior of the system. In a tutorial on behavioral
reflection given at the Reflection’96 conference (Malenfant et al., 1996), behavioral re-
flection is defined as:

The ability of the language to provide a complete reification of its own seman-
tics and implementation (processor) as well as a complete reification of the
data and implementation of the run-time system.

We can distinguish between dynamic and static behavioral reflection. Static behav-
ioral reflection occurs at compile-time, while dynamic behavioral reflection can occur
at run-time.

We can also distinguish between discrete and continuous behavioral reflection. Dis-
crete behavioral reflection is when the reflective computation is initiated at a discrete
point by calling a reflective procedure. Continuous behavioral reflection is when the
reflective computations have a continuous effect on the base level computation.

Implementing full support for behavioral reflection in a programming language is
far from trivial. E.g., Java has no support for behavioral reflection, the only means to
dynamically alter behavior in standard Java is to use dynamic proxies.

There has been several projects working with adding behavioral reflection to Java.
Kava (Welch and Stroud, 2001) is a system that lets you intercept and possibly alter all
object access (i.e., method call, field read/write, etc). This is done by modifying the
Java byte code at class load-time in order to insert hooks that call the interceptor object.
MetaXa (Golm andKleinöder, 1998) use another approach, andmodifies the Java virtual
machine in order to add meta-objects.

A powerful tool for behavioral reflection in Java is Javassist (Chiba and Nishizawa,
2003). Javassist lets you modify all aspects of a Java class (add/remove/alter methods,
fields, inheritance hierarchies, etc). Adding code to a method using Javassist is a simple
task that does not require knowledge of Java bytecode. Javassist allows you to add strings
containing Java code that will be compiled at run-time.

Javassist has been used in AOP frameworks such as AspectWerkz and JBoss AOP.

2.4.2 Structural Reflection

Structural reflection is about reflection on the structure of a system (Chiba, 2000). In a
programming language this means introspection and intercession of the structure of a
program, i.e., reflecting on class definitions, data types, etc.

In the Java language this is partly supported by the reflectionAPI, but it only supports
introspection. Kava, mentioned in the previous section, has some support for structural
reflection in Java. Javassist, also mentioned in the previous section, has full support for
structural reflection.

2.4.3 Architectural Reflection and Reflective Middleware

The use of reflection is not limited to programming languages. Reflection is about sys-
tems that reason about themselves. Thus, the terms structural and behavioral reflection

16

2.5 Aspect-Oriented Programming

are useful for other aspects of a system.
Architectural reflection (Cazzola et al., 2001) is the computation performed by a

software system about its own software architecture. Applying reflection on the software
architecture level may help creating more flexible and dynamic applications.

This has been exploited to a great extent in reflective middleware (Kon et al., 2002).
Middleware has traditionally followed the black box principle (Kiczales, 1996), but this
can hide details that often is needed by the programs running on the middleware2.

Reflective middleware opens up the implementation and lets the applications access
and modify meta-models in the middleware in a controlled manner without breaking
encapsulation.

Middleware may have many meta-models (Costa et al., 2000). Examples are the
meta-models of OpenCOM (Coulson et al., 2002):

• MetaInterception provides a meta-model for the execution model of components.

• MetaArchitecture provides a meta-model of the composition of components.

• MetaInterface provides a meta-model of the component types.

Reflectivemiddleware is described inmore detail in the relatedwork section (section
2.7 on page 24).

2.5 Aspect-Oriented Programming

AOP is a new method for modularizing cross-cutting concerns. When you design a
system, you decompose your system into something. Depending on the level you are
designing, you can decompose into components, sub-systems, modules, classes, objects,
etc.

The goal of this decomposition is usually to separate concerns. However, not all con-
cerns can be decomposed to the structures mentioned above – some concerns are cross-
cutting. They span multiple other concerns. AOP is a means for modularizing those
concerns and weave them into the system at a later point of time using some kind of
aspect-weaver.

2.5.1 Separation of Concerns

A concern is “those parts of software that are relevant to a particular concept, goal, or
purpose” (Ossher and Tarr, 2001). The IEEE recommended practice for architectural
descriptions (IEEE 1471) defines a concern as:

Those interests which pertains to the system’s development, its operation or any
other aspects that are critical or otherwise important to one ormore stakehold-
ers.

2CORBA’s use of location transparancy hides the fact that e.g., TCP/IP is used for communication

17

2 Background

Examples of concerns are security, reliability, safety, QoS, etc. Concerns are the pri-
mary criteria for decomposing software into smaller, more managable and comprehen-
sible parts.

The idea of separating concerns and hiding their complexity by abstractions is not
new. Dijkstra (1968) argued for separate layers of functionality in operating systems
in the late 60’s. Parnas (Parnas et al., 1971; Parnas, 1972) described modules as “re-
sponsibility assignments” in the 70’s, and argued for information hiding as a criteria for
decomposing the system into modules.

Saltzer et al. (1984) argued that functions placed at low levels of a system may be
redundant or of little valuewhen compared to the cost of providing themat that low level.
Those functions should instead be implemented in the applications. Examples include
bit error recovery, security using encryption, duplicate message suppression, recovery
from system crashes and delivery acknowledgment.

This are all examples of how to separate concerns by decomposing the system into
smaller units that handles a specific concern. Separation of concerns has been an impor-
tant part of software development for a long time. E.g., most of the patterns in the GoF
book (Gamma et al., 1995) tries to separate concerns, role modeling (Reenskaug et al.,
1996) strives to achieve separation of concerns, and pattern constructs such as adaptive
object models (Yoder and Johnson, 2002) also tries to spearate concerns.

However, none of themethodsmentioned above handles cross-cutting concerns very
well. Cross-cutting concerns spans through other concerns resulting in code scattered
around multiple classes and tangled with other code in those classes.

Typical examples of such concerns are: logging, transaction management and re-
moting. Even if you have separated your business objects and transaction management
objects, the business objects needs to call the transaction management objects in order
to begin and end transactions.

2.5.2 Aspects

Aspects are the construct used for capturing the cross-cutting concerns. A clear defini-
tion of what an aspect is, does not exist. There has been many attempts at separation of
cross-cutting concerns, and most of them are some sort of “aspect-oriented program-
ming” (AOP) – without having a notion of an “aspect”.

Today, AOP is more or less synonymous with the AspectJ (Kiczales et al., 2001)
model for aspects. In AspectJ, an aspect is a first-class construct that contains the sepa-
rated concern and the description of how to weave it into the code.

Common for all the aspect frameworks are the elements they use to separate cross-
cutting concerns. Those elements are (Elrad et al., 2001):

1. A join point model describing the hooks where enhancements may be added.

2. A means of identifying join points.

3. A means of specifying behavior at join points.

4. Encapsulated units combining join point specifications and behavior enhance-
ments.

18

2.5 Aspect-Oriented Programming

5. A method of attachment of units to a program.

Figure 2.1 Cross-cutting concerns are separated at the code level and weaved in at
byte-code level.

(a) Tangled code (b) Untangled code (c) Tangled runtime

Aspectsmodularizes cross-cutting concerns at the code level and are weaved into the
system at runtime3. Figure 2.1 illustrates this. The solid lines represent code that han-
dles a concern, and the dotted lines represent code that handles cross-cutting concerns.
Figure 2.1(a) shows how cross-cutting concerns are handled with tangled code scattered
around the code-base. Figure 2.1(b) shows all concerns separated at the code-level and
finally, figure 2.1(c) shows the running system where the aspect weaver has weaved in
the cross-cutting concerns.

Some code samples to further illustrate this is given in section 3.2.

2.5.3 Origins of AOP

Most of the research that led to aspect oriented programming was done during the early
90s. Some of this research is presented here to give an historical background to the sub-
ject. While all of these approaches may be called “aspect oriented” in the sense that they
all support separation of cross-cutting concerns in some way, only the AspectJ approach
is associated with the term AOP today.

2.5.3.1 Composition Filters

Composition filters (Aksit et al., 1992) was the first framework that could be considered
aspect oriented. Composition Filters was developed at the University of Twente as a part
of the Sina language.

Composition filters are specified as functions thatmanipulatemessages received and
sent by objects, i.e., they work as interceptors for messages between objects. These filters
are specified independent of a specific programming language. Cross-cutting concerns
are captured in the filters.

Filters can be composed, and by using superimposition (Bergmans and Aksit, 2001),
filters can be imposed on one or more objects.

There exists implementations of composition filters for Sina, Java and .Net4.

3Aspects can be weaved at compile-time, load-time or run-time. Most aspect weavers work at compile-
time or load-time.

4See the composition filters Wiki for more information about the implementations: http://janus.cs.
utwente.nl:8000/twiki/bin/view/Composer/WebHome

19

http://janus.cs.utwente.nl:8000/twiki/bin/view/Composer/WebHome
http://janus.cs.utwente.nl:8000/twiki/bin/view/Composer/WebHome

2 Background

2.5.3.2 Adaptive Programming and the Law of Demeter

Adaptive programming (Lieberherr, 1996) is a technique developed by the Demeter
group at the Northeastern University.

Adaptive programming is highly influenced by the Law of Demeter (LoD). LoD is
a style rule for designing object-oriented systems stating that you should “Only talk to
your immediate friends”. Or more general:

Each unit should have only limited knowledge about other units: only units
“closely” related to the current unit.

Here, a “unit” is a method, and “closely related” means methods in the same class as the
unit, or methods of argument classes or part classes. This is a specialization of the low
coupling principle.

Operations in object-oriented programs often involves a set of cooperating classes.
One can either localize this operation in one class, or split the operation over the set of
associated classes.

The problem with the former option is that too much information about the struc-
ture of the classes (is-a andhas-a relationships) needs to be tangled into each suchmethod.
This makes it difficult to adapt to changes in the class structure, and it violates the Law
of Demeter. The latter option scatters the operation across multiple classes, making evo-
lution difficult.

Adaptive programming uses traversal strategies and the visitor pattern to help en-
forcing LoD. A traversal strategy defines how to traverse a graph of has-a relationships.
E.g., a very simple has-a relationship is a Company that has Employees. The traversal
strategy defines how to traverse this graph, and behaviour may be added at the nodes
by using a visitor pattern. This style of programming is “structure-shy”, i.e., it separates
structure from behaviour.

Adaptive programs are transformed from traversal strategy descriptions into regular
object oriented programs using the Demeter tools. E.g., Demeter/J or DJ for Java and
Demeter/C++ for C++.

LoDhas later been extended to LoDC: the LawofDemeter forConcerns (Lieberherr,
2004). LoDC restricts what your friends are, and states that:

Talk only to your friends who contribute to your concerns or that share your
concerns.

Adaptive programming has been taken one step further with the JAsCo AOP fra-
mework (Vanderperren et al., 2005). JAsCo is an AOP framework created at the Vrije
University tailored for component-based development. Adaptive programming are sup-
ported in JAsCo through the use of adaptive visitors and traversal connectors.

2.5.3.3 Subject Oriented Programming and Hyper/J

Subject Oriented Programming (Harrison andOssher, 1993) is amethod for decompos-
ing concerns developed at IBMWatson Research Center. In subject oriented program-
ming (SOP) a concern is captured in a subject. A subject is composed of classes and other
subjects. A subject has a distinct view of a class, and that class may be shared with other
subjects that might have other views of it.

20

2.5 Aspect-Oriented Programming

An activated subject instantiates the classes, and those instances can also be shared
with other subjects. I.e., different subjects can see the same object as having different
properties and behavior.

The ideas for SOP has been further extended in Hyper/J (Ossher and Tarr, 2000;
Tarr et al., 1999). Hyper/J is a tool for weaving hyperslices into hypermodules to form a
hyperspace.

A hyperslice captures a concern, and is a set of conventional modules. A hyperslice
is based on the old method of program slicing (Weiser, 1981) where a slice is a subset
of a program’s behaviour reduced to a minimal form that still produces that behaviour.
Just as with subjects in SOP, hyperslices might overlap.

A hypermodule contains a set of hyperslices, which is composed using composition
rules. Hyper/J is a tool for Java that weaves the hyperslices into hypermodules using the
composition rules.

Some of the ideas from SOP and hyperspaces are used to create the Concern Ma-
nipulation Environment (CME). CME (Harrison et al., 2004) is a plugin to the Eclipse
IDE5 that helps you identify, extract and compose concerns.

2.5.3.4 AOP and AspectJ

The term “Aspect Oriented Programming” was coined by Gregor Kiczales and his team
at Parc Xerox in the mid-90s. AOP and AspectJ (Kiczales et al., 1997, 2001) is inspired
by the work with meta-object protocols and the CLOS MOP (Kiczales et al., 1991) and
the ideas of open implementations (Kiczales, 1996; Maeda et al., 1997).

In AOP, aspects capture the cross-cutting concerns. AOP follows the elements used
for separation of cross-cutting concerns listed in section 2.5.2 quite closely.

An aspect is a separate unit that contains the join point identifications and the be-
haviour to attach to them. Join point specifications contains regular expressions that
matches classes, methods or attributes. Join points can also be combined using boolean
logic. Behaviour at those join points can be altered, and the code that is attached is called
advice6.

AspectJ also allows to structurally change classes by using intertype declarations or
changing the inheritance hierachy. This is close to structural and behavioral reflection.
Discussing if it is reflection is not really interesting, as most AspectJ-like tools uses struc-
tural and behavioral reflection to implement AOP. E.g., AspectWerkz uses Javassist and
byte-code modification tools to implement AOP.

Aspects are later weaved into the code using an aspect weaver such as AspectJ. A
more detailed description of AspectJ with code samples is given in section 3.2. The se-
mantics for describing aspects defined in AspectJ has become quite popular, and has

5See http://www.eclipse.org/cme/ for more updated information about CME.
6A similar method of adding behavior at arbitrary points in the code was discussed a long time ago in

quite a different context. In 1984, the April edition of Communications of ACM contained an April fools
article (Clark, 1984) that describes the ComeFrom statement as a linguistic approach to solving the goto
controversy of the 70s. ComeFrom is the inverse of GoTo. In AOP terms the code after the ComeFrom
statement is an advice, and the label or line number you come from is the join point. This novel feature has
been implemented in the esoteric programming language Intercal, and according to rumors on the Portland
Pattern Repository’s Wiki (http://c2.com/cgi/wiki?ComeFrom), this feature has been used as a joke among
assembler programmers in the late 60s and early 70s.

21

http://www.eclipse.org/cme/
http://c2.com/cgi/wiki?ComeFrom

2 Background

spawned many related projects7.

2.5.3.5 Other Approaches

There exists many other approaches to achieve separation of concerns. Meta program-
ming and reflective techniques has already been described, and is also covered in the
section that describes related works.

Interceptors (Narasimhan et al., 1999) is a pattern that allows services to be added
transparently to a framework and triggered automatically when certain events occur.
Interceptors are similar to composition filters, only less sophisticated, as they cannot
be composed or weaved in any way. The concept of intercepting the program flow is
fundamental to many of the aspect oriented techniques, and variations of this is used in
many different systems. E.g., mode hooks in the emacs text editor, servlet filters in the
J2EE servlet specification and they are also part of the CORBA specification (orbos-02-
06-57).

MDA (Frankel, 2003) expresses concerns in UML models. The UML model de-
scribes all the concerns in the system, e.g., by using OCL constraints, stereotypes or
action languages. This model can then be run in a UML virtual machine or through a
code generator that generates running code for the model. QoS concerns and MDA are
still in an early research phase.

Generative programming (Czarnecki and Eisenecke, 2000) is amethod that uses code
generation to generate code from descriptions such as domain specific languages.

There are no distinct boundaries between these methods. E.g., generative program-
ming can generate aspect oriented source code. It can also interpret the descriptions
during run-time instead of generating the code, and if the description it uses for code-
generation is a UML model, it is getting close to MDA. COMQUAD and QuO is good
examples of how all this mix together. COMQUAD and QuO is described in the related
works section (section 2.7 on page 24).

It is also worthmentioning the resemblance betweenAOP and active databases (Dit-
trich et al., 1995). Much of the research on AOP and active databases happened at the
same time (the mid 90s), and when comparing the event-condition-action model of ac-
tive databases with the join point model of AOP, one finds many similarities8. These
similarities are explored by Cilia et al. (2003) who suggests a convergence between AOP
and active databases to form a new kind of distributed service-oriented systems.

2.6 The QuA Project

TheQuAproject at Simula Research Laboratory is investigating how a component archi-
tecture can preserve the safe deployment property for QoS sensitive applications (Staehli
et al., 2004). QuA focuses on the timeliness and accuracy QoS properties.

QuA defines a component platform that is able to plan and execute QoS sensitive
services. The QuA architecture defines only the minimal services needed to discover

7See http://aosd.net/technology/ for an exhaustive list of AOP frameworks.
8According to Parnas (1996) this is a good thing, as “The wheel is reinvented so often because it is a very

good idea; I’ve learned to worry more about the soundness of ideas that were invented only once”.

22

http://aosd.net/technology/

2.6 The QuA Project

and execute such plans. All other services, including remote protocols and specialized
service planners, may be provided as plugin components.

QuA is component based middleware. It defines a small core on which components
can be deployed on. The QuA middleware itself consists of components that can be
changed and replaced to suit a specific configuration.

Figure 2.2 A conceptual view of the QuA architecturea.

physical resource level

QuAQuA

programming language level

capsules

repository

composite specifications / types

service
planner

protocol
binding
type

capsule core implementation

capsule service implementation components

application components

service

QuA platform "pluggable" object level

initial
object

instantiation

a)Figure 2.2 is adopted from (Staehli and Eliassen, 2002).

QuA also aims to be adaptive middleware, i.e., the QuA platform will be able to
detect changes in the system’s environment, and adapt services running on the platform
to those changes.

Figure 2.2 shows an early conceptual view of the QuA architecture. Components are
instantiated from a repository to become part of a service running in the QuA platform.
The QuA platform supports execution of, and communication between, QuA objects,
and may span multiple distributed capsules. A capsule is similar to what is called a con-
tainer in other middleware architectures, and provides an object representing the QuA
platform to support platform managed service instantiation and binding.

2.6.1 The QuA Component Model

QuA defines a component model for the platform, and the most important terms in this
model are:

Component platform is a virtual machine for manufacturing, composing, and execut-
ing objects from software components.

Software component is the runtime objects manufactured from blueprints. It is inter-
preted by a component platform to manufacture objects.

23

2 Background

Blueprint is a persistent and immutable value encoding how to implement a compo-
nent.

Binding is a mechanism enabling object communication.

Blueprints are sometimes called “component templates” in other componentmodels,
and software components – or only components – are often called component instances.
In this document, the terms defined by QuAwill be used. I.e., a component is an instan-
tiated blueprint.

QuA blueprints are discovered and instantiated through capsules. Capsules have ac-
cess to repositories containing the blueprints. Blueprints is looked up based on a QuA-
Name, which is the logical repository name described with a URI like syntax.

2.6.2 Service Planning

QuAdefines theQoS semantics (Staehli andEliassen, 2004) needed to provideQoSman-
agement support in the platform. Important concepts from the QoS semantics are the
notion of utility functions and error models. A utility function is a function describing
how “good” a set of QoS parameters are for a user.

An ideal output trace is generated when a service executes completely and correctly
on an infinite fast platform. An error is the devitation between the actual output trace
and the ideal output trace. An error model is a vector of error functions capturing this
difference. An error predictor function is a function that can predict this error for a
component.

Central in the QuA architecture is the concept of plans and planners. A service plan-
ner plans a service based on a service specification and a quality specification. The ser-
vice specification describes the service in terms of the component types (actually QuA-
Names) involved. The quality specification contains an error model and a utility function
that describes how “good” a set of QoS parameters is. The service planner then tries to
create a service that maximize the utility.

Formore details on the QuA platform, see section 3.1, which describes the QuA Java
prototype used in this thesis.

2.7 RelatedWork

There has been a lot of research on the topic of middleware and separation of concerns.
This section presents some of this work with an emphasis on component-based middle-
ware and QoS. Most of this is research work from academia, but an example of state-
of-the art commercial middleware (Enterprise Java beans) and open-source middleware
(the Spring framework) is also presented.

There is also a section on related work in the field of AOP showing that AOP actually
does help separating cross-cutting concerns in real world case-studies.

24

2.7 Related Work

2.7.1 COMQUAD

The COMQUADproject (Göbel et al., 2004b,a) works with the issues involved with sup-
porting non-functional properties in component-based systems.

COMQUAD has a component model and a container that separates the non-func-
tional concerns from the component implementations. This is achieved by making the
container responsible for instantiation of component specifications based on a client’s
non-functional requirements.

The COMQUAD component model is based on Szyperski’s definition of a compo-
nent (Szyperski et al., 2002) with a few additions: The concept of Home Interfaces are
borrowed from Enterprise JavaBeans (EJB), and the concepts of facets and receptacles
are borrowed from the CORBAComponentModel (CCM). Another addition is stream-
ing interfaces.

Figure 2.3 COMQUAD Component specifications, implementations and NFP
Profilesa.

Component Specification A

Component Implementation A2Component Implementation A1

provides

uses

resources

provides

uses

resources

provides

uses

resources

provides

uses

resources

provides

uses

resources

Functional Part Functional Part

Profile A1.1 Profile A2.2Profile A2.1Profile A1.3Profile A1.2

a)Figure 2.3 is adopted from (Göbel et al., 2004b).

COMQUAD distinguishes between active and passive components. Active compo-
nents are components that require a thread of their own, such as an audio streaming ser-
vice. Passive components are plain request-response components running in the same
thread as the caller.

A component consists of a specification, a set of non-functional profiles and a set of
component implementations (see figure 2.3). The non-functional profiles are specified
usingCQML+ (Röttger andZschaler, 2003). CQML+ is an extension toCQML (Aagedal,
2001) that includes support for modelling resource demands.

The component specification in figure 2.3 contains the functional specification. In
QuA, this resembles the QuA type. Component implementation A1 and A2 is the same
as QuA blueprints, and the different profiles are different QoS configurations.

A component based application in COMQUAD is represented by an assembly of
component specifications. Assemblies are specified with assembly descriptors. An as-
sembly descriptor contains many other descriptors.

Most notably it contains a component network template. A component network tem-
plate is a description of how the different components are connected. E.g., the com-
position of components that together form a video player, is described in a component
network template.

The COMQUAD container is reponsible for instantiating the component network
template, thus forming a component network. This instantiation is based onQoS require-
ments and available resources.

The container is split in a real-time part, and a non real-time part. The real-time part

25

2 Background

is written in C++ and use the DROPS real-time operating system for resource reserva-
tion. The non real-time part is written in Java and is based on the JBoss application
server. This part handles all operations that does not have real-time requirements, such
as deployment and negotiation of component contracts.

The current version of COMQUAD is not able to adapt the component network at
runtime, but adherence to component contracts are enforced by a contract manager that
intercepts all calls between components.

2.7.2 Quality Objects

QuO (Loyall et al., 1998; Duzan et al., 2004) is a framework for including QoS in dis-
tributed object applications. QuO supports the specification of QoS contracts between
client and service providers, runtime monitoring of contracts and adaptation to chang-
ing system conditions.

Figure 2.4 Overview of a remote method invocation in a QuO applicationb.

Client

Contract

Delegate

SysCond

SysCond

SysCond

Specialized ORB

Object

Contract

Delegate

SysCond

SysCond

SysCond

Specialized ORB

Logical Method Call

Network

b)Figure 2.4 is adopted from (Loyall et al., 1998).

Contracts are specified in a Quality Description Language (QDL). QDL consists of:

Contract Description Language (CDL) CDLdescribes theQoS contract between a cli-
ent and an object. This includes QoS that the client desires from the object, the
QoS that the object expects to provide, regions of possible levels of QoS, system
conditions that need to be monitored, and behavior to invoke when client desires,
object expectations or actual QoS conditions change.

Structure Description Language (SDL) SDL describes the internal structure of remote
objects’ implementations, such as implementation alternatives and the adaptive
behavior of object delegates.

Resource Description Language (RDL) RDL describes the resources available in the
system and their status.

26

2.7 Related Work

Aspect Specification Language (ASL) ASLdescribes adaptive behaviour of objects and
delegates.

Figure 2.4 shows a remote method invocation in a QuO application. The system
condition objects (SysCond) interface between the contract and resources, mechanisms,
objects and ORBs in the system. These are used to measure and control QoS.

A CDL contract consists of regions of QoS. When QoS parameters change, a transi-
tion to another regionmight occur. Those transitions, andwhich client callbackmethods
that should be called, are specified in the CDL contract.

Adaptive behaviour of objects and delegates are specified in an Aspect Specification
Language (ASL). ASL consists of pointcut definitions and code to execute at those point-
cuts.

Contracts, sysconds, callbacks and adaptive behaviour can be packaged in a quos-
ket (Schantz et al., 2002). Quoskets expose an interface and can be instantiated. Quos-
kets are units of encapsulation and can be reused as a component in applications.

2.7.3 DynamicTAO

DynamicTAO (Kon et al., 2000) is a CORBA compliant reflective ORB that supports
dynamic reconfiguration. DynamicTAO is based on TAO, which is a flexible ORB that
uses the strategy pattern (Gamma et al., 1995) to support static configuration of imple-
mentation strategies.

DynamicTAO adds support for dynamic configuration and reconfiguration by add-
ing interfaces for transferring components across the distributed system, loading and
unloading modules into the ORB runtime and inspecting and modifying the ORB con-
figuration state.

Reification is achieved through the use of component configurators. The component
configurators know the dependencies between certain components and system compo-
nents. Each instance of the ORB contains a customized component configurator called
TAOConfigurator that contains hooks where you can attach implementations of strate-
gies.

Example: A DynamicTAO component can be the TAO ORB itself. This component
has strategies for dispatching, connection, concurrency, etc. Each of those strategiesmay
have different implementations that can be dynamically changed by a DynamicConfigu-
rator.

The DynamicConfigurator is a CORBA object that has methods for loading, un-
loading, configuring and “hooking” implementations. I.e., change strategy implemen-
tations at run-time. Changing strategy implementations at run-time can cause consis-
tency problems as the running implementations might be in a state where they cannot
be stopped, or they need to pass the state to the new implementation. Passing of state to
new strategy implementations uses the memento pattern (Gamma et al., 1995).

DynamicTAO also contains a monitoring service. This service is also a component
that can be loaded and attached during run-time. The monitoring service uses request
interceptors to monitor method calls, and to store statistics about the calls to a storage
server.

DynamicTAO does not have any mechanism for doing the actual adaptation, it only
provides a framework for creating such a mechanism. Creators of suchs mechanisms

27

2 Background

may query the storage server for statistics to determine when to adapt, and use the Dy-
namicConfigurator to perform the actual adaptation.

2.7.4 OpenCOM and the Lancaster Experience

The University of Lancaster has a been working with reflective middleware for many
years. Blair et al. (2004) give a brief description of their experience and results. The rest
of this section will go a little deeper and describe the parts of their research that is of
particular relevance to this thesis.

2.7.4.1 ADAPT

TheADAPT project (Fitzpatrick and Blair, 1998) is one of the early experiments with re-
flectivemiddleware at Lancaster. ADAPT is a distributedmiddleware based on CORBA.
ADAPT introduced the concept of open bindings. Open bindings provide a meta-inter-
face that gives access to an object graph representing the underlying end-to-end com-
munications path. This component graph is reflective, i.e., you can inspect and modify
it at runtime. The reflective capability is used for dynamic reconfiguration and adap-
tation to achieve QoS. Monitoring resources to determine when to adapt is done with
an interceptor-like event mechanism. In addition to the open bindings and reflective
capabilities, it extends CORBA with streaming interfaces.

2.7.4.2 OpenCOM and OpenORB 2

ADAPTwas succeded by theOpenORBproject, which againwas succeded by theOpen-
COM and OpenORB 2 projects.

OpenCOM (Coulson et al., 2002; Clarke et al., 2001) is a reflective component plat-
form based on a subset ofMicrosoft COM. Key concepts in OpenCOM are components,
component frameworks and reflection.

Figure 2.5 OpenCOM component frameworks.

OpenCOM component framework

Internal component graph

IMetaInterface
ILifeCycle

IConnections

ICFMetaArchitecture

IAccept

IMetaArchitecture

IReceptacles

IMetaInterception

Some service interface

Fundamental concepts of the OpenCOM component model are interfaces, recepta-

28

2.7 Related Work

cles and connections. Connections are bindings between interfaces and receptacles.
OpenCOM’s reflective capabilities allows you to introspect and change the binding

of components, thus altering the component graph. This is used for dynamic reconfig-
uration and adaptation.

Composite components are realized with component frameworks. A component fra-
mework is a collection of rules and contracts that govern the interaction of a set of com-
ponents. A component framework is a component itself. It contains an internal structure
of components that implements the service functionality provided by the component
framework. Component frameworks can be nested, thus creating a hierarchical compo-
sition.

Figure 2.5 shows a component framework in OpenCOM. The meta interfaces and
connections interfaces allows for introspection and structural reflection. To ensure in-
tegrity when altering the component graph, the IAccept interface is used. This interface
can veto changes in the configuration. Monitoring code can be injected as interceptors
to determine when to adapt.

OpenCOM provides three reflective meta-models:

Interface meta-model supports dynamic discovery and invocation of the set of inter-
faces defined on a component.

Architecture meta-model enables discovery and adaptation of an underlying compo-
nent framework.

Interception meta-model supports dynamic interception ofmethod calls on interfaces.

Figure 2.6 Open ORB architecture.

Middleware top CF

Binding CF

Protocol CF
Multimedia

Streaming CF

Buffer mgmt. CF
Transport
mgmt. CF

Thread
mgmt. CF

OpenORB 2 (Blair et al., 2001) takes the research done in the OpenORB project fur-
ther. OpenORB was implemented as a prototype in the Python programming language.
OpenORB 2 is implemented in C++ with OpenCOM.

Figure 2.6 shows the architecture inOpenORB 2. OpenORB 2 has a layered architec-
ture where each layer has a set of component frameworks. The three layers are: binding,
communication and resource layer.

Each component framework in a layer is only allowed to access interfaces provided
by components in the same or in a lower layer. The top level OpenORB component

29

2 Background

framework is responsible for managing lifecycle and dependecies between component
frameworks.

As OpenORB 2 is implemented with OpenCOM, it supports dynamic reconfigura-
tion. However, dynamic reconfiguration of established bindings is not directly supported
through the binding framework. This is a responsibility of the individual binding types.

ReMMoC (Grace et al., 2003) is a later project at Lancaster that utilizes OpenORB 2
component frameworks and OpenCOM. ReMMoC is a reflective middleware platform
that adapts its binding and discovery protocol to allow interoperation with heteroge-
neous services. ReMMoC is aimed atmobile computing, thus it has only two component
frameworks to reduce the size of the implementation. Those component frameworks
are: binding framework and service discovery framework. Both these frameworks can
be dynamically reconfigured.

2.7.5 Enterprise JavaBeans

EJB (EJB 2.1) is a component architecture that supports separation of some extra-func-
tional concerns. Those concerns include security, clustering and failover, remoting9 and
declarative transaction demarcation.

To achieve this, the EJB specification defines a rigid contract that component imple-
mentors must fulfill. Class- and method names are semantically important, you are not
allowed to use static variables or use synchronization primitives etc.

EJB has three kinds of components:

Session Beans usually acts as façades to a system. In a service oriented architeture they
will usually expose the service interface. Session beans can be stateless or stateful.

Entity Beans represents persistent entities. Entity beans’ persistence can either be con-
tainer managed (CMP) or bean managed (BMP).

Message Driven Beans are asynchronous beans that listen to a Java Message Service
queue or topic. JMS is the J2EE specification for message queues.

Sun has published a catalog of blueprints10 containing guidelines and patterns for
how to use EJB in enterprise applications.

To create an EJB component, you first have to define the interface it provides. This
interface is the most important part of the contract that specifies the component. This
interface is specified in the components remote or local interface. You have to specify
both a remote and local interface if you support both local and remote invocation.

You also have to create a home interface. The home interface defines create-methods
for instantiating a component. The home interface is also separated in a remote and local
interface.

Finally, you must implement the component itself. This is called the bean class and
contains implementation of the create methods defined in the home interface and the

9Remoting is only a partially separated concern. When you access an EJB component you must either
access its local or remote interface. This shortcoming is possible to overcome, but you have to implement it
yourself.

10See http://java.sun.com/blueprints/enterprise/index.html

30

http://java.sun.com/blueprints/enterprise/index.html

2.7 Related Work

business methods defined in the remote interface. It must also implement some lifecycle
management methods (activation, passivation and removal).

The contract between those classes are informal. I.e., you have to follow naming
conventions to make it work. A createFoo()method defined in a component’s home in-
terface must have a corresponding ejbCreateFoo() method in the bean class. There are
also no formal contracts between the local- and remote interface and the bean imple-
mentation class. Adherence to the contract are discovered during runtime and results
in exceptions if a client calls a method declared in a remote or local interface that is not
implemented in the bean implementation class.

Concerns such as security and transaction demarcation are defined in a deployment
descriptor, and the EJB framework is responsible for realizing those concerns. To realize
this, the EJB framework intercepts the incoming method calls to the components and
handles security checks and transaction demarcation in the interceptors.

2.7.5.1 JBoss AOP

JBoss11 is an open source implementation of a J2EE container.
JBoss has taken the separation of concerns one step further than the standard J2EE

containers. They have defined an AOP framework with reusable aspects that handles
the concerns normally taken care of by a J2EE container. Thus, they make it possible
to separate those concerns without having to create EJB components. The framework
may be used without the rest of the JBoss J2EE implementation and can be downloaded
separately.

The JBossAOP framework comes bundledwith some reusable aspects. This includes
aspects for transaction demarcation, remoting, clustered remoting and caching.

2.7.6 IoC frameworks: The Spring Framework

The J2EE specification and especially the EJB specification has been criticized for be-
ing too heavy-weight. There are popping up open-source component frameworks that
are trying to make it easier and more lightweight to create enterprise applications. The
Spring Framework12 is one such framework.

The Spring Framework is based on the Inversion of Control pattern, or Dependency
Injection (DIP) as it is called now. DIP is also called “The Hollywood Principle” – don’t
call us, we call you.

The DIP pattern is detailed on Martin Fowlers homepage13. The idea behind DIP
is that you use design by interface. When objects collaborate, the collaborators are in-
terfaces. Determination of which concrete interface implementation to use is handled
by the framework. The object that needs collaborators thus have mutator metods (e.g.,
setCollaborator(ICollaborator coll) for the collaborators, or collaborators as part of the
constructor. The framework is also responsible for instantiating objects. The composi-
tion of collaborating objects can either be declared programatically, or in a configuration
file outside the code.

11http://www.jboss.org/
12http://www.springframework.org/
13http://martinfowler.com/articles/injection.html

31

http://www.jboss.org/
http://www.springframework.org/
http://martinfowler.com/articles/injection.html

2 Background

Spring provides a simple AOP framework. This is mainly ameans of inserting hooks
into the composition. However, Spring is designed to be used with other AOP frame-
works such as AspectWerkz and AspectJ. It has well defined points and flows for your
pointcuts.

Even though the AOP framework is simple, it still enables Spring to separate some
cross-cutting concerns. This includes remoting and declarative transactions. Neither the
component implementation nor the user of the component need to know if it is a local
Java object, remote SOAP service or EJB session bean. This is set up in the configuration
file.

Spring has some commonalities with the Fractal component model (described be-
low). A Spring component type is defined in its interface, and the required interfaces
are specified as setmethods on the interface. Which component implementation to use,
and the bindings between components, are specified in a configuration file similar to
Fractal’s Architecture Description Language.

2.7.7 Other Middleware Approaches

The Fractal project (Bruneton et al., 2002a) has a component model that supports com-
posite components through a recursivemodel (a component can have other components
as content) and sharing of components. A Fractal component has a controller part and
a content part. The controller part contains interceptors and controllers and supports
structural reflection. The content part contains component implementation or other
components.

The Fractal core contains binding, content and life-cycle controllers. Configuration
is done programatically with the binding controller, or declaratively with the Architec-
tureDescription Language, which is expressed in XML.Dynamic reconfiguration is sup-
ported through the use of reflection and life-cycle management.

The DREAM component architecture (Leclercq et al., 2004) is part of the Sardes
project at INRIA and is based on the Fractal component model. DREAM focuses on
asynchronousmiddleware and resourcemanagement. Asynchronousmessages are pub-
lished through a component’s output interface and received in an input interface. Mes-
sages pass through message managers. This makes it possible to control the amount of
messages sent to an input interface based on the available resources.

OpenCorba (Ledoux, 1999) is a reflective CORBA ORB written in NeoClasstalk.
NeoClasstalk is a Smalltalk implementation with explicit metaclasses. OpenCorba uses
this to provide explicit metaclasses for parts of the broker. This reification expose some
of the details of the broker that otherwise would be hidden for the users. Explicit meta-
classes are also used to add dynamic adaptability in the invocation mechanism.

Other work in the field include the Arctic Beans project at the University of Tromsø
(Andersen et al., 2001), which focuses on separating transactions and security concerns
in middleware, and the FAMOUS (Hallsteinsen et al., 2005) project at SINTEF, which
focuses on adaptive middleware for mobile devices.

32

2.7 Related Work

2.7.8 Separation of Concerns using AOP

There has been a lot of research on howAOP can help separating cross-cutting concerns.
E.g., Nordberg (2001) shows how to reduce coupling in the visitor and observer patterns
with aspects. Hannemann andKiczales (2002) takes this a step further, and goes through
all the GoF (Gamma et al., 1995) patterns. Their study shows that 17 of the 23 patterns
improve in terms of modularity when they are rewritten to use aspects. This experiment
has later been repeated and verified in a quantitative study using other metrics (Garcia
et al., 2005).

There has been few larger case-studies showing that AOP actually does help with
separation of cross-cutting concerns in real world projects. I.e., projects that involve
more than a few lines of code or theoretical analysis only. Some of the studies that have
applied AOP in larger case-studies are presented here.

Coady and Kiczales (2003) used AspectC to separate concerns in the BSD operating
system. Four concerns were separated:

• Page daemon wakeup.

• Prefetching for mapped files.

• Disk quota.

• Device blocking.

Their study shows that by using AspectC they achieved localized changeability, explicit
configurability, reduced redundancy and subsequent modular extensibility with a min-
imum loss of performance.

Papapetrou and Papadopoulos (2004) did a case-study where they created two ver-
sions of a component-based web-crawling system. One using conventional object ori-
ented techniques, and one using aspect oriented techniques. Their study showed that the
aspect oriented version was developed faster and had more modular code. More modu-
lar code promoted reuse of the original components, made the code less error-prone and
easier to debug. It also made configuration of the system easier by making it possible to
enable or disable extra-functional concerns.

Zhang and Jacobsen (2003) did a case studywhere they applied aspect oriented refac-
toring to CORBA. They created an aspect mining tool to analyze source code for scat-
tered code. Themining results were used to refactor the ORBacus CORBA implementa-
tion using AspectJ. Their study shows that the refactored implementation had reduced
coupling and improvedmodularity. Based on this work, they have developed some prin-
ciples for horizontal decomposition which are applied to middleware (Zhang and Jacob-
sen, 2004).

Colyer and Clement (2004) have applied AOP in large-scale environments. They
applied aspect oriented techniques to analyze the IBM Websphere Application Server.
By using AspectJ and the aspect oriented tool support in the Eclipse IDE, they were able
to identify and completely separate the EJB concern fromWebsphere.

33

Chapter 3

Tools and Techniques

This chapter provides an overview of the most important tools used in this thesis. An
overview of the QuA Java prototype and some of the most important concepts in the
QuA architecture are presented together with a description of how to use them. There
is also an overview of the two most mature AOP frameworks together with some simple
code examples to give a better understanding of how AOP works.

3.1 The QuA Java Prototype

The QuA Java prototype used in this work is implemented by ØyvindMathesonWerge-
land as a part of his master’s thesis (Wergeland, 2005). This section contains a brief
overview ofWergeland’s prototype implementation and how it can be used. See (Werge-
land, 2005) for details about the implementation1.

The goal in Wergeland’s thesis is to investigate service planning in QuA. This means
that most of the parts of QuA that are not strictly necessary for service planning are
implemented on an ad-hoc basis.

Figure 3.12 shows a UML static structure diagram of the QuA Java prototype. The
main entrance to the system is theQuA object3. TheQuA object contains staticmethods
for initializing the JavaCapsule, instantiating blueprints, creating service compositions,
etc.

The intention is that all services run in a separate ServiceContext, but the current
implementation run all the services in the same service context.

The ServiceContext knows which planners to use. Planners are specified with Java
interfaces, and what implementation to use is determined by a configuration file.

CompositionPlanner is responsible for creating services, i.e. composing components
based on a service specification and a quality specification to form a service.

1The QuA architecture has changed after Wergeland’s implementation. See the QuA architecture de-
scription at the QuA documentation pages (http://www.simula.no:8888/QuA/55) for a description of the
current architecture. There also exists an updated Java prototype that reflects the architecture updates.
However, it is Wergeland’s implementation that is used in this work.

2Figure 3.1 is adopted from (Wergeland, 2005).
3In more recent versions of QuA this is called the QuAMOP.

34

http://www.simula.no:8888/QuA/55

3.1 The QuA Java Prototype

Figure 3.1 The QuA Java prototype.

«interface»

ResourceManager

JavaCapsuleQuA

Repository

VolatileRepository PersistentRepository

ServiceContext

QuAName

-resourceManager

0..1

-repositoryName1

1

-persistentRepository

*

-volatileRepository

1

1

-capsule

1

-capsule1

-defaultContext1

«interface»

RepositoryDiscoveryService

-repositoryDiscoveryServic*

«interface»

BlueprintBroker

«interface»

CompositionPlanner

«interface»

BindingPlanner

«interface»

BlueprintPlanner

-compositionPlanner 0..1 -blueprintPlanner 1

BasicServicePlannerBasicBlueprintBroker BasicRepositoryDiscoveryService

-blueprintBroker

0..*

BindingPlanner is responsible for resolving QuANames (e.g., resolving remote blue-
prints) and creating bindings.

BlueprintPlanner is responsible for finding the best blueprint for a given quality speci-
fication. The name ImplementationPlanner is also used for this planner in different
versions of the QuA prototype.

Blueprints are contained in repositories where they can be discovered by the repos-
itory discovery service. Repositories are usually zip files (the persistent repository) or
cached inmemory (the volatile repository), but it is also possible to load blueprints from
remote repositories using QuA Remote Access Protocol (QRAP).

Blueprints are identified by aQuAName. QuANames identify all platform objects in
the distributed object namespace and have an URI like syntax:

QuAName ::= repositoryPath[“/”shortName[“:”version“.”fixlevel]]

The QuAName “/qua/types/QoSAware:1.0” identifies the QoSAware platform object
in the /qua/types repository, which maps to the Java interface qua.types.QoSAware. The
/qua/types repository is reserved for types.

When blueprints are instantiated as components, they are instantiated in separate
classloaders. This is to avoid possible name clashes.

35

3 Tools and Techniques

3.1.1 Resources and QoS

The model for QoS and resources are based on CQML (Aagedal, 2001). Creating a re-
source model for QuA is the topic for a separate master’s thesis (Abrahamsen, 2005). A
simplified resource model and manager based on an early version of Abrahamsens mas-
ter’s thesis is used in the prototype. Abrahamsens final work on resource models differs
significantly from the version used here.

A resource is usually a physical resource that can be shared. Resources are described
in models. There are different resource models for the different resources that need to
be described (e.g., a PC resource model, LAN- or PDA resource models). A resource
model contains a set of resource types. Examples of resource types are bandwidth and
CPU power.

Resource types belong to a domain. Examples of domains are real and natural num-
bers. Resource types can be constrained by a resource constraint, which is a value for the
resource type.

Figure 3.2 Resource and QoS model.

+name : string

QoSModel
+name : string

+domain : Domain

QoSDimension

+value

QoSConstraint
QoSStatement

*

1

* 1..*

*

1

1..**

+name : string

ResourceModel
+name : string

+domain : Domain

ResourceType

ResourceStatement
+value

ResourceConstraint

1..**

1

*
1..**

*

1

The value must be in

the correct Domain

Finally, a resource statement is a collection of resource constraints for a given resource
model. QoS aware components return resource statements when they are asked for the
resources they need to deliver a certain QoS.

Examples of resource constraints are: CPU = 20% and memory = 2kB. A resource
statement can contain both those resource constraints.

QoS are modeled the same way as resources. A QoSmodel containsQoS dimensions
(the QoS equivalent of a resource type) that can be constrained by a QoS constraint.
A QoS statement is a collection of QoS constraints for a given QoS model. Examples of
QoS dimensions for a QoSmodel for sound are sample rate or simply “CD-quality”, “FM
stereo quality”, etc. Examples of QoS constraints for sound are: Sample rate = 44.100 kHz
and number of channels = 2. A QoS statement can contain both those QoS constraints.

Figure 3.2 shows a UML model of the Resource- and QoS models. The figure is
adopted from (Wergeland, 2005).

The resource manager in the prototype contains the bare minimum needed to per-
form service planning. I.e., it knows how much resources that are available, and re-
sources can be reserved or released. Reserved resources are local to the running service
(on the local host). There is no interaction with the operating system or use of reserva-

36

3.1 The QuA Java Prototype

tion protocols such as RSVP.

3.1.2 Service Planning

A service is a component composition that does something, or more formally:

“A service is a subset of output messages and causally related inputs to some
composition of objects.” (Staehli and Eliassen, 2004).

E.g., an audio streaming service consists of a composition of components that rep-
resents an audio source, an audio sink, and some components in between to encode,
decode and stream the audio data.

The QuA service planner tries to form the best such composition based on a service
specification and a quality specification. The service planner of Wergeland (2005) is
based on Q-RAM (Rajkumar et al., 1997), which is a model for QoS-based resource
allocation.

The service specification contains a set of types described as QuANames, and a spec-
ification of the bindings between the types. Blueprints contains implementations of the
types, which are later instantiated as components.

The quality specification contains the QoS boundaries (maximum and minimum
values), and a utility function. The utility function takes a QoSStatement as input, and
returns a normalized number between 0 and 1 denoting how “good” the givenQoSState-
ment is. QoS statements are a collection of QoS constraints based on CQML (Aagedal,
2001). The QuA architecture also includes error models and error predictors. This is
not implemented in this prototype.

When aQoS aware service planner is asked to compose a service, it tries tomaximize
the utility within the QoS boundary given the resources available.

A service planner consists of many components, e.g., a composition planner, a bind-
ing planner and an implementation planner. The task of finding components that max-
imize the utility is a responsibility of the implementation planner.

The QuA core requires a basic set of components to always be available. E.g., a basic
set of components to compose services must be present. Thus, a basic service planner
withoutQoS aware capabilities are present as a default service planner. Wergeland’s QuA
prototype contains a QoS aware generic implementation planner. This implementation
planner can replace the default basic implementation planner at run-time, which will
make the service planner QoS aware.

3.1.3 Creating a QoS Aware Component

To give a better understanding of how this works, a simple walkthrough on how to create
and use a QoS aware component is presented.

The simplest component to create is aHelloWorld component. First we have to create
the type for the component. This is done by creating a Java interface, e.g., qua.types.Hel-
loWorld containing only one method: String sayHello().

Then we must create a blueprint that contains an implementation of the type. First,
we must create a Java class that implements the HelloWorld interface, e.g., qua.hello.Hel-
loWorld.

37

3 Tools and Techniques

If the blueprint should be part of anyQoS aware service planning, it has to implement
the QoSAware type. This means adding a method that takes a QoSStatement as input,
and returns a ResourceStatement describing the resources necessary to satisfy the QoS
constraints in the QoS statement.

When this is done, the Java class implementing HelloWorld and QoSAware must be
packaged as a blueprint. First, all the classes involved in the component are packaged in
a jar file that contains a description of what the main-class is, then the jar file is packaged
as a blueprint.

Blueprints contain additional meta-information:

Shortname is a short name for the blueprint that can be used as a reference for it, e.g.,
“HelloWorld”.

Version describes the version number of the blueprint, e.g., “1.0”.

Platform describes which platform this blueprint can be instantiated on, e.g., “Java”.

Implements is a list of QuA types this blueprint implements, e.g., “/qua/types/Hel-
loWorld, /qua/types/QoSAware”. Note that in the Java prototype, QuA names
maps to Java interface names.

We can create more blueprints for the HelloWorld type, e.g., FastHelloWorld and
ResourceIntensiveHelloWorld, with different implementations of the QoSAware type.

After the blueprint is placed in a repository where QuA can find it (usually a zipfile),
we can start using it.

3.1.4 Composing QoS Aware Services

To compose a QoS aware service, wemust create a service specification. An example of a
service is a composition of two components where one component produces something
that the other component consumes. Assume that theQuAName “/qua/types/Producer”
denotes the type for the producer component, and that the QuAName “/qua/types/-
Consumer” denotes the type for the consumer component. Further, assume that the
Producer type has a method, setConsumer().

The following code will create a service specification for the service:

ServiceSpec spec = new ServiceSpec();
spec.addInstanceOf(QuA.name("/qua/types/Producer"), "producer");
spec.addInstanceOf(QuA.name("/qua/types/Consumer"), "consumer");

spec.addBinding("producer", "setConsumer", "consumer");

The service specification requires two components; one component implementing
the type “/qua/types/Producer”, and one component implementing the type “/qua/type-
s/Consumer”. The producer component is given the role name “producer”, and the con-
sumer component is given the role name “consumer”.

The binding between the components is specified based on role names. The “pro-
ducer” role has a collaborator playing “consumer” role, and the “setConsumer” method
must be called on the producer (with the consumer as parameter) in order to bind the
components.

38

3.1 The QuA Java Prototype

In order to create a QoS Aware service, we also need a quality specification. A quality
specification denotes the QoS requirements of the user of the service and consists of an
implementation of the QualitySpec interface. This interface has three methods:

maxQoS This is a QoS statement returning the maximum QoS required by the user of
the service. An example of maxQoS is “delay=20ms”. If it is possible to achieve
better delay, it is of no importance to the user of the service.

minQoS This is a QoS statement returning the minimum QoS required by the user of
the service. An example ofminQoS is “delay=100ms”. If it is not possible to achieve
a delay less than 100ms, the service is of no use to the user of the service.

utility This method takes a QoS statement as input, and returns a number between 0
and 1 describing how “good” the QoS statement is for the user of the service. A
return value of 1 denotes the best QoS – i.e., maximum QoS is reached – and a
return value of 0 denotes minimum QoS.

To compose the service, the compose method in the QuA service context is used.
The service context delegates this call to the planners configured for the context. Figure
3.1 on page 34 shows a UML static structure diagram of the QuA prototype. This figure
shows that the service planner consists of a composition planner, a binding planner and
a blueprint planner.

The service planner will compose a service thatmaximizeQoS for the given service
specification. This means that it will select implementations for the producer and con-
sumer components that maximize the utility function in the quality specification. The
resources required by the components will not exceed the available resources in the sys-
tem. Further, the service planner will instantiate the component blueprints, and bind
the according to the bindings described in the service specification.

3.1.5 Actors and Roles in QuA

The platform independent model (PIM) for QuA contains use cases for tasks related to
QuA4. Those use cases contain actors that are responsible for the different tasks. The
following actors are described in the PIM:

Component Developer This is a person that develops component blueprints. Examples
of such component blueprints are audio encoders and decoders.

Platform Developer This is a person that develops components for the QuA platform.
An example of such a component is a new specialized service planner.

Application Developer This is a person that develops applications that use QuA.

Platform Deployer This is a person that deploys applications on QuA. This person is
responsible for configuring the QuA middleware to suit the applications’ needs,
and for deploying the application on QuA.

QuA Client This is any software that uses QuA, e.g., an application that uses QuA com-
ponents.

4The PIM is available from the QuA documentation pages: http://home.simula.no:8888/QuA/55

39

http://home.simula.no:8888/QuA/55

3 Tools and Techniques

Service User This is the person that uses applications, or services, deployed on QuA.

The actors describe the different roles a person can play. The same person can both
be a component developer and a platform developer.

In addition to the roles described above, it is desirable to separate QoS Expert as
a distinct role. It should be possible for a component developer to develop component
blueprints without having to also be a QoS expert. The QoS expert provides imple-
mentations of the QoSAware interface used for describing the mapping between QoS
requirements and resource demands for component blueprints, and implementations of
the QualitySpec used when composing QoS aware services.

The role of QoS expert resembles the qoskateer role desribed in QuO (Schantz et al.,
2002).

3.2 AOP Frameworks

After AspectJ started to gain momentum, there has been released many AOP frame-
works. Many of them are special purpose frameworks for research or for use in other
frameworks, some are only proof-of-concept implementations5. Two of themostmature
general purpose AOP frameworks are AspectJ (Kiczales et al., 2001) and AspectWerkz
(Bonér, 2004).

This section will give a brief presentation of those two frameworks and point out the
most important features that separates them6.

3.2.1 An AOP Example

To discuss the two frameworks, a simple example will be used. The example is of no
particular relevance to this thesis, but it is amuch used example and is part of theAspectJ
documentation. It has also been used in many papers and magazine articles.

Figure 3.3 A simple figure editor.

Display

+makePoint()

+makeLine()

Figure

+moveBy(in dx : int, in dy : int)

FigureElement

+getX() : int

+getY() : int

+setX(in x : int)

+setY(in y : int)

+moveBy(in dx : int, in dy : int)

Point

+getP1() : Point

+getP2() : Point

+setP1(in p1 : Point)

+setP2(in p2 : Point)

+moveBy(in dx : int, in dy : int)

Line

2

1 *

5See http://www.aosd.net/technology/ for a comprehensive overview of AOP frameworks.
6For more up-to-date information, see the AspectJ homepage (http://www.eclipse.org/aspectj/) or the

AspectWerkz homepage (http://aspectwerkz.codehaus.org/).

40

http://www.aosd.net/technology/
http://www.eclipse.org/aspectj/
http://aspectwerkz.codehaus.org/

3.2 AOP Frameworks

Figure 3.3 shows a UML diagram of a simple figure editor. A Figure consists of Fig-
ureElements that can be either Points or Lines.

Consider the concern of detectingwhen the display needs to be updated. The display
needs to be updated if a point or line moves, i.e., if a set or moveBy operation is called
on a Point or Line object. This is a cross-cutting concern as it spans multiple objects.

Assuming that theDisplay object has a staticmethod, needsUpdating(), a straightfor-
ward implementation of this concern would be to addDisplay.needsUpdating() to all the
mutator methods in Line and Point. This means that the implementation of the concern
would be scattered, i.e. spread over multiple objects – and it would be tangled with the
other code in the mutator methods.

AOP tries to modularize the cross-cutting concern, and the next two sections looks
at how this can be done with AspectJ and AspectWerkz.

3.2.1.1 Example Implementation with AspectJ

In AspectJ, aspects are first-class entities. An aspect is declared in much the same way
as a class, and it has to be compiled with a specialized compiler.

Common for all aspect frameworks is the elements they use to separate cross-cutting
concerns. Those elements are (Elrad et al., 2001):

1. A join point model describing the hooks where enhancements may be added.

2. A means of identifying join points.

3. A means of specifying behaviour at join points.

4. Encapsulated units combining join point specifications and behavior enhance-
ments.

5. A method of attachment of units to a program.

Example 3.2.1 shows how this is utilized in AspectJ. Line 1 declares the aspect in
much the sameway as youwould declare a class. This is the encapsulated unit combining
join point specifications and behaviour enhancements.

Example 3.2.1 An aspect for updating the display.

1 aspect DisplayUpdate {
2 pointcut moved(): call (void Point . setX(int)) ||
3 call (void Point . setY(int)) ||
4 call (void Line . setP1(Point)) ||
5 call (void Line . setP2(Point));
6

7 after (): moved() {
8 Display .needsUpdating();
9 }
10 }

Line 2 declares a named pointcut, which provides ameans for identifying join points.
The join points here are whenever a call to Point.setX or a call to one of the othermutator

41

3 Tools and Techniques

methods is issued. Pointcuts can be combined using boolean logic: and (&&), or (||) and
not (!).

Line 7 adds an advice at the join points. Advice is a means of specifying behaviour at
join points. This particular advice will run after any join point identified by the moved
pointcut.

There are three kinds of advice: before, around and after. Before is executed before
the pointcut, after is executed after the pointcut. Before and after advice can both be ex-
pressedwith an around advice. An around advice runs instead of the code at the pointcut.
This allows you to alter the behaviour at the join point.

When using around advice, a special method called proceed is available. Proceed
does exactly that: it proceeds the execution to the pointcut, and its return value is the
same at the return value in the pointcut. Proceed takes the same parameters as themeth-
ods defined in the pointcut, thus allowing you to alter the values of the parameters – or
you can choose not to proceed at all. The following is an example of using an around
advice to do boundary checking on points:

void around(Point p, int x): call (void Point . setX(int)) && args(x)
&& target(p) {

if (Display . checkXBoundary(x)) {
proceed(p, x);

} else {
proceed(p, Display .getValidXBoundary(x));

}
}

The example only checks the x value of the Point (the code would be similar for the
y value). The idea is that if the x value is within the display’s x boundary, then proceed
as usual. If it is not inside the boundary, proceed with a value that is.

The AspectJ join point model is quite powerful. You can match when a method is
called using a call pointcut designator or when the actual method is executed by using
an execution pointcut designator7.

You can also use dynamic pointcut designators that match based to the control flow
of the program using cflow and cflowbelow, or you can match by argument types, field
access, exception throwing, object construction, etc. See the AspectJ documentation at
http://www.eclipse.org/aspectj/ for further documentation.

The pointcut designators use type or method patterns. E.g., the call pointcut des-
ignator on line 2 in example 3.2.1 uses the method pattern: “void Point.setX(int)”. The
patterns can contain wildcards to make matching easier. E.g., the pattern “call (public
* *. set *(..))” matches any public method whose name starts with set. It is also possible
to expose the arguments to the methods:

pointcut publicMutator(String str): call (public * *. set *(String)) &&
args(str);

Makes it possible to access the str argument in an advice. Some of these features are
used in example 3.2.2.

7The difference of a call and execution pointcut designator might not seem important at first, but there
are some significant differences. E.g., if you want to trap all calls to System.out.println() you cannot use an
execution designator as that would mean that the java.lang.System class would have to be altered by the
aspect weaver – which is not allowed. There are other important differences, but it is beyond the scope of

42

http://www.eclipse.org/aspectj/

3.2 AOP Frameworks

Example 3.2.2 Improved aspect for updating the display.

1 aspect DisplayUpdate {
2 pointcut movedBy(): call (void FigureElement+.moveBy(int,int));
3 pointcut changedElement(): (call (* Point . set *(..)) ||
4 call (* Line . set *(..)) &&
5 !cflow(movedBy());
6 pointcut moved(): movedBy() || changedElement();
7

8 after (): moved() {
9 Display .needsUpdating();
10 }
11 }

Example 3.2.1 does not catch all the cases when the display needs updating. If the
moveby() operation is implementedwithout using the public setmethods, a call tomove-
By would go unnoticed by the DisplayUpdate aspect.

This is fixed in example 3.2.2. Line 2 declares themovedBy() pointcut and this point-
cut affects all implementations of the FigureElement.moveBy(int, int) method, i.e., the
Point.moveBy(int, int) and Line.moveBy(int, int) methods. This is achieved by using
the “+” wildcard notation on FigureElement. The “+” wildcard affects all subtypes of
FigureElement.

Line 3 is a rewritten version of the moved() pointcut in example 3.2.1. Instead of
declaring the full signature of all methods, wildcards are used. A cflow pointcut designa-
tor is added to prevent duplicate trigging of the advice. Duplicate trigging of the advice
can happen if the Point.moveBy()method is implemented by calling the Point.setX() and
Point.setY()methods. If this was the case, the advice would be triggered three times: one
time for the moveBy() method, and one each for the setX() and setY() methods.

The cflow designator simply states that calls to mutator methods in Point or Line
should be part of the pointcut if the control flow is within the moveBy operation8.

Other Important Features

An important feature in AspectJ are the concept of inter-type declarations. Inter-type
declarations allows you to declare fields and methods for arbitrary types in an aspect.
E.g., the DisplayUpdate aspect could declare that the Line class should have a method
called “getLength()” and also provide the implementation of the method.

Inter-type declarations also allows you to change the inheritance hierarchy of classes.
The DisplayUpdate aspect could declare that the Point class should be a subclass of
java.awt.Component. It also allows you to introduce interfaces, and the interface im-
plementation, to classes. An aspect could declare that the Point class should implement
the java.lang.Comparable interface and also provide an implementation of the required
compareTo(Object) method.

this chapter to discuss them.
8Note that this is the case for the Line.setPoint methods too. A call to Line.setPoint1() might result

in Point.setX() and Point.setY() being called – cflow designators for this case is omitted for brevity. If we
assume that the Display.needsUpdating() operation is idempotent, none of the cflow designators is needed.

43

3 Tools and Techniques

The possibility of adding interfaces to classes makes it possible to use mixin-based
inheritance9. Mixins (Bracha and Cook, 1990) is an old technique that is used for com-
position of classes.

In programming languages that support multiple inheritance, such as CLOS and
C++, you can declare an abstract class, “MyBigServiceClass”, as a subtype of many small
classes – e.g., “SubServiceA”, “SubServiceB” and “SubServiceC”. By creating concrete
implementations of the small classes, you can compose a concrete implementation of
“MyBigServiceClass” simply by extending the concrete implementations. See (Szyperski
et al., 2002, pp. 113–115) or (Bracha and Cook, 1990) for examples.

Introducing interfaces with aspects can be seen as a way of adding multiple inheri-
tance to Java.

Another important feature is precedence declaration10. You can declare that aspect
A has precedence over aspect B. This is useful in cases where the order of advice exe-
cution is important. E.g., if an encryption aspect should be combined with a password
validation aspect, the order of aspect execution is important.

AspectJ Weaving

There are three stages where an aspect can be weaved:

1. Compile-time.

2. Class load-time.

3. Run-time.

AspectJ supports compile-time and load-time11 weaving. AspectJ requires the use
of a specialized compiler that supports the aspect language constructs.

When using compile-time weaving it is enough to compile your aspects and Java
source (including possible jar files that might change due to weaving) using the aspect
compiler. The aspect compiler will then change the byte-code in existing and new classes
to weave in the aspect code. To run the weaved code you do not need any special tools,
you only need to provide a small runtime library.

Load-time weaving works much the same, but the Java system class-loader must be
replaced with a weaving classloader. The AspectJ weaver must also be included at run-
time. Load-time weaving makes it possible to weave unmodified byte-code when it is
loaded by the class-loader. This can be useful for component containers that need to
weave in cross-cutting concerns as the components are deployed.

3.2.1.2 Example Implementation with AspectWerkz

AspectWerkz is similar to AspectJ in many ways. The semantics for specifying pointcuts
and advice are much the same. However, there are some important differences. As-
pectWerkz does not define a language that needs a specific compiler for adding aspects.
Aspects can be specified using plain Java classes with pointcut and advice specified either
using XML or annotations.

9In some aspect languages this is called introduction, and in other languages it is calledmixin.
10This feature was introduced in AspectJ 1.1, which was released in June 2003.
11Load-time weaving was introduced in AspectJ 1.2, which was released in May 2004.

44

3.2 AOP Frameworks

Example 3.2.3 AspectWerkz XML definition for the DisplayUpdate aspect.

1 <pointcut name="movedBy"
2 type="method"
3 pattern="void FigureElement+.moveBy(int,int) " />
4

5 <pointcut name="changedElement"
6 type="method"
7 pattern="(* Point . set *(..) OR * Line . set *(..)) AND
8 ! cflow(movedBy)"/>
9

10 <pointcut name="moved"
11 type="method"
12 pattern="movedBy OR changedElement"/>
13

14 <advice type="after " name="updateDisplay"
15 class="DisplayUpdate"
16 bind−to="moved"
17 deployment−model="perJVM"/>

// The corresponding Java code
public class DisplayUpdate {
public Object updateDisplay() {

Display .needsUpdating();
}

}

Example 3.2.3 shows the XML declaration and Java code for the DisplayUpdate as-
pect.

The class attribute in the advice declaration (line 15) in example 3.2.3 points to
the DisplayUpdate class, and the name attribute (line 14) points to the updateDisplay
method. As can be seen, the pointcut model are much the same as in AspectJ.

AspectWerkz can also use Java annotations to declare pointcuts and advice. Exam-
ple 3.2.4 shows the DisplayUpdate aspect using Java 5 annotations. If annotations are
used, an XML deployment descriptor must be provided. The deployment descriptor
states which classes are aspects.

To use annotations, you must use Java 5. It is possible to use annotations as com-
ments in Java 1.4 and below, but then the code must be post-compiled using an annota-
tion compiler.

AspectWerkz Weaving

AspectWerkz supports all kinds of weaving. It supports compile-time, load-time and
run-time weaving12. AspectWerkz’ primary way of weaving has always been load-time
weavingwith compile-timeweaving as an option if you have no control of the Java virtual
machine startup process.

There are many ways to use load-time weaving in AspectWerkz. Common for all

12Run-timeweaving has been supported sinceMarch 2004 andhas been a supported part ofAspectWerkz
since version 2.0RC1, which was released in November 2004.

45

3 Tools and Techniques

Example 3.2.4 Using annotations to declare pointcuts and advice.

@Aspect("perJVM")
public class DisplayUpdate {
@Expression(" call void FigureElement+.moveBy(int,int) ")
Pointcut movedBy;

@Expression(" (* Point . set *(..) || * Line . set *(..)) &&
!cflow(movedBy)");

Pointcut changedElement;

@Expression("movedBy || changedElement")
Pointcut moved;

@After("moved")
public Object updateDisplay() {

Display .needsUpdating();
}

}

<!−− The corresponding XML deployment descriptor −−>
<aspectwerkz>

<system id="tests">
<aspect class="DisplayUpdate"/>

</system>
</aspectwerkz>

of them is that they use a customized weaving classloader. Load-time weaving is very
flexible in AspectWerkz. If a class has already been weaved (i.e., the Java byte-code has
been modified), it is possible to switch the advice or mixin implementation during run-
time.

AspectWerkz’ support for run-time weaving allows you to declare new aspects and
weave them during run-time. AspectWerkz has the capability to introspect classes and
identify aspects during run-time, it also allows you to deploy and undeploy aspects dur-
ing run-time.

AspectWerkz uses Java HotSwap for run-time weaving, and HotSwap has some lim-
itations. HotSwap does not allow you to do any changes that would imply changes to
the class’ meta-class. I.e., changing the class signature or adding fields or methods. This
implies that you cannot add mixins with HotSwap as this would imply changes to the
class signature.

3.2.2 Comparing AspectJ and AspectWerkz

AspectJ and AspectWerkz are similar in many ways. The most important differences are
that AspectJ has a richer set of pointcut designators, better support for inter-type dec-
larations and that it needs a special compiler, while AspectWerkz uses XML or annota-
tions to specify pointcuts and has strong support for dynamic aspects by using run-time
weaving.

46

3.2 AOP Frameworks

To sum it up, the strengths of AspectJ are:

• Rich set of pointcut designators.

• Mature project.

• Good tool-support.

And the strengths of AspectWerkz are:

• Good support for dynamic aspect through the use of run-time weaving.

• No need for a specialized compiler.

It was recently announced13 that AspectWerkz and AspectJ shall join forces and that
the next version of AspectJ (AspectJ 5) will contain some of the unique features of As-
pectWerkz. Hopefully this will result in an AOP system with AspectWerkz’ simplicity
and support for dynamic aspects combined with the strengths of AspectJ.

13See the announcement at http://www.theserverside.com/news/thread.tss?thread_id=31244

47

http://www.theserverside.com/news/thread.tss?thread_id=31244

Chapter 4

Analysis

4.1 Overview of the Problem

The problem with QoS is that resources are scarce and shared. If we always had enough
resources, there would not be any need for taking special action in order to achieve the
desired QoS.

As resources are scarce, we have to prioritize. E.g., in an audio streaming service
we might have to sacrifice stereo sound to get the desired sample size. As resources are
shared, the resource availability might change while the service is running. This implies
that we have to adapt to the changes in resource availability to get the desired QoS.

The following issues are important when creating a QoS aware service:

Monitoring To know when to adapt, the resources and achieved QoS must be moni-
tored.

Resource management In order to plan a service, we must know and keep track of the
available resources.

Configuration An initial configuration of the service must be created. This includes
selecting and configuring the components that are part of the service.

Reconfiguration If the resources change at runtime, the service must be reconfigured
to fit the currently available resources.

Some of these issues have a cross-cutting nature. The rest of this section will elabo-
rate on these topics and present cases for further analysis.

4.1.1 Resources andMonitoring

Lack of resources are the key issue with QoS. To handle resources computationally, they
must be represented in some sort of resource model, and the availability and allocation
of resources must be handled by some sort of resource manager.

There are many ways to manage resources. One approach is to reserve resources in
some way, e.g., by using reservation protocols such as RSVP (RFC 2205). This is the

48

4.1 Overview of the Problem

approach used by COMQUAD (Göbel et al., 2004b). QuO (Schantz et al., 2002) also
supports this approach. When using resource reservation, you must ensure that you do
not use more resources than you have reserved.

Another approach is to not reserve resources at all, but instead to know how much
resources you need and howmuch resources that are available at all times – and then deal
with the changes in the available resources. If you are not running a real-time operating
system that allows you to reserve resources (e.g., CPU power) or are not using a network
where RSVP is available – this is the most viable approach. For more information about
resource management, see Abrahamsen (2005).

Monitoring is important in both approaches. Either you must monitor resource us-
age to ensure that it does not exceed the reserved resources, or you must monitor the
available resources and achieved QoS so you can take action when the resource avail-
ablity, and thus the achived QoS, changes.

4.1.2 Configuration and Reconfiguration

A service must have an initial configuration. This initial configuration is created by the
QuA service planner. The service planner ofWergeland (2005) is based onQ-RAM (Ra-
jkumar et al., 1997), which is a model for QoS-based resource allocation. The service
planner will compose a service of one or more components that maximize the service
utility – i.e., it will create the “best” composition of components. This initial composition
is also the initial configuration of the service.

When the resource availability change during the lifetime of the service, the service
must be reconfigured to fit QoS requirements within the available resources. The service
needs to adapt to the change in available resources.

In general, there are two approaches to adaptation (McKinley et al., 2004):

Parameter adaptation change program variables that alter the service’s behaviour. E.g.,
some audio codecs support adjustable frame rate and compression level. Chang-
ing this will change the need for network bandwidth.

Compositional adaptation change algorithms or the structure of the component com-
position. E.g., switching to a different audio codec will alter the component com-
position.

Parameter adaptation only lets you tune parameters. If you want to change strategies
or algorithms, compositional adaptation must be used.

For a running service, compositional adaptationmight require that you transfer state
from the old service to the new adapted service. In the audio example described in the
introduction to chapter 2 (page 10), you want a smooth transition between the old and
new codec. A smooth transition means that the sound does not pause or repeat itself
during the adaptation.

Compositional adaptation also has to be consistent. If you change the audio encoder
at the server side, you might have to change the audio decoder at the client side accord-
ingly.

To decide what parameters to tune or which components to adapt, the service plan-
ner may be used. However, the QuA service planner is not designed to replan a running
service, but to plan a new service.

49

4 Analysis

4.1.3 Cross-cutting Concerns

Monitoring, resource management and reconfiguration are all cross-cutting concerns.
Those concerns cut through each other, but they also cut through the components and
the affected services.

A commonmethod for separating concerns from the components and into the plat-
form, is to reify method calls. Method calls between component boundaries are reified
and inspected by the platform the components run on. The separated concerns are han-
dled by acting in someway based on the reified calls. This can be handled by the platform
itself, or by programs that registers as listeners on such method calls.

Most of the frameworks described in chapter 2.7 (page 24) use this approach. Open-
COM, COMQUAD and QuO all introduce a layer of indirection where they can handle
concerns. To reify amethod call, a meta-model for the executionmodel must be created.
Creating a meta-model that provides enough information and capabilities to handle a
big set of concerns – even concerns that was not imagined at the time of designing the
meta-model – is a big and difficult task.

Example: CORBA reifies method calls as an IIOP stream with some meta data at-
tached. Interceptors can inspect this reified call, but has limited abilities to alter the
method call. Because reifying method calls as IIOP streams affects performance, this
can in some cases be skipped when calling local CORBA objects. A method call must
be reified if it should be handled by an interceptor, thus determining whether a method
call should be reified or not is not trivial, and adds complexity to the ORB.

Java provides a limited reflectionAPI, i.e., introspection only. AOP provides ameans
for intercepting method calls at arbitrary points of execution, and for altering behaviour
at those points. With Java’s introspection capabilities andAOP’s intercepting capabilities,
the requirements for a meta-model for the execution model is relaxed. There should be
no need for the platform to provide method reification and intercepting capabilities by
itself. If the platform specifies a well defined flow for method calls, and points where one
can add pointcuts that AOP can add advice to, this should be sufficient to handle most
of the concerns normally handled by reifying method calls.

The goal of this thesis is neither to create a state-of-the art monitoring framework,
nor is it to create a state-of-the art resource management or dynamic reconfiguration
framework. The goal is to see how those concerns can be separated, and whether the use
of AOP contributes to modularizing those concerns. Separating those concerns allows
the various roles in QuA to focus on their tasks. The component developer can focus
on developing components, the application developer focus on developing applications,
the QoS expert add the QoS specifications and the deployer installs the components and
configures the middleware to suit the application’s needs.

4.1.4 Cases for Further Analysis

The hypothesis in this thesis is that the QoS concern can be separated with AOP in
the QuA platform. The term “QoS” is a broad term and covers many QoS dimensions.
Different applications need QoS in different ways. Thus, validating such a hypothesis for
the general case is a formidable, andmaybe even impossible, task. Instead, the hypothesis
can be strengthened by investigating cases that cover relevant parts of the hypothesis.

Thus, an experimental approachwith case analysis is chosen asmethod. By analysing

50

4.2 Simple Case: Computing the Value of Pi

concrete cases, the scope is narrowed and it is easier to achieve concrete results that can
be validated.

The cases should contribute to answering:

• How to separate the QoS concern in a static composition, i.e., how to separate the
concern of choosing the “best” components when forming a service.

• How to achieve dynamic adaptation. I.e., how to change or reconfigure a running
service. This includes how to dynamically adapt a service composed of more than
one component.

• How to separate the interaction with resource managers and monitors.

QoS in theQuAproject is limited to accuracy and timeliness. Thus, cases concerning
accuracy and timeliness are selected.

Interaction with resource managers and monitors are relevant for both static and
dynamic QoS. In other respects, static and dynamic QoS propose different challenges.
Thus, two cases are selected for analysis: One simple casewith only one local component,
and one complex case with a distributed composition of many components.

The simple case focuses on static QoS, and the complex case focuses on dynamic
QoS and reconfiguration of an entire composition of components.

The QuA Java prototype of Wergeland (2005) is used as a basis for the case analysis.

4.2 Simple Case: Computing the Value of Pi

Choosing components for computing the value of π has been discussed as an example of
service planning in internal QuA project meetings. This is a simple example for service
planning as the service composition consists of only one local component.

There exists many algorithms for computing the value of π. Bailey et al. (1997) de-
scribe some of those algorithms. The different algorithms have different characteristics.
Algorithm A might compute π faster than algorithm B to a precision of 20 digits, but
algorithm B might compute π faster than algorithm A to a precision of 10000 digits.

It is unlikely that anyone actually need the value of π to a substantial amount of digits.
According to Bailey et al. (1997) a value of π to a precision of 40 digits would be more
than enough to compute the circumference of theMilkyWay galaxy to an error less than
the size of a proton. Nevertheless, it is a simple and suitable case for analysis.

There are two topics to analyse in this case:

1. Static QoS – this means that we have components that compute the value of π, and
want to make them QoS aware – i.e., suitable for service planning.

2. Interaction with resource managers and monitors.

In the next sections, these topics will be further analysed.

51

4 Analysis

4.2.1 Static QoS: QoS Aware Pi Components

Static QoS is directly supported in QuA. In this case, the user would need to specify a
service specification containing the type of the π component and the required QoS. The
QuA service planner will then find the best component that fulfills the QoS require-
ments1.

The service planner needs to know the resources required by a component to opti-
mize QoS. In the QuA Java prototype this implies that a component has to implement
the QoSAware interface and declare support for the QoSAware type.

So, all a component has to do to support static QoS, is to implement the QoSAware
type. This could be separated from the component implementation. Separating it from
the component implementation makes it easier to experiment with different settings for
the resource requirements without having to recompile and deploy the component blue-
print.

This might not have big advantages in a production environment. The resource re-
quirements for a component blueprint are usually tightly coupled to its implementation
– so if the resource requirements change, it is very likely that the implementation also
has changed.

There are some cases when resource requirements change independently of the im-
plementation: If the implementation run in an environment that it has not been tested
on, resource requirements might change. A new Java VM or CPU that has better perfor-
mance for mathematics is an example of such an environment.

Separating the QoSAware interface is an advantage when developing and testing
components. In such occasions, it might come in handy to be able to change the resource
requirements without having to recompile and deploy the component blueprint. In the
QuA architecture, the QoSAware interface contains more than a mapping between QoS
requirements and resource requirements. It also contains error predictors. If we improve
the implementation of the error predictor, it ought to be possible to deploy the new im-
plementation without having to create a new component blueprint. Error predictors are
not implemented in the QuA prototype used in this analysis.

Separating the QoSAware interface from the component blueprint implementation
makes it easier for a QoS expert to handle tasks related to the QoS concern, while the
component developer can focus on implementing component blueprints. In many cases,
a QoS expert can create an implementation of the QoSAware interface without having
to examine the source code of the component blueprint. Instead, measuring the compo-
nent’s resource demands with different quality configurations might suffice.

The QoS concern is not necessarily part of the “compute the value of π” concern,
so separating those concerns can be advantageous for the sake of modularity. The Qo-
SAware interface is usually implemented with hard-coded values in the QuA Java pro-
totype. By separating the interface, it should be possible to switch to using external de-
scriptor files such as the CQML+ XML descriptors used in COMQUAD2, without re-
compiling or redeploying the blueprints.

There are many ways to handle this. AOP is not needed to model resource demands
outside the blueprint. However, the QuA Java prototype assumes that the component

1See chapter 3.1.3 on page 37 for an example of creating QoS aware components with the QuA Java
prototype.

2See section 2.7.1 on page 25 for a brief description of CQML+ and COMQUAD.

52

4.2 Simple Case: Computing the Value of Pi

knows the resource demands through access to the QoSAware interface. Separating the
QoSAware interface from the component would demand big changes to the prototype.

A less intrusive solution can be created with AOP. The QoSAware interface can be
added to the component with an introduction. Introductions, or mixins, are supported
by most AOP frameworks. The component blueprint also needs to provide some meta-
information to the QuA core. This meta-information could be added by an advice in the
QuA core’s loading of blueprints.

A drawback withWergeland’s QuA implementation is that the service planner must
instantiate the component blueprints to access the QoSAware type. This implies that
all the blueprints that implement a type that is part of a service will be instantiated in
the service planning process. Separating the QoSAware interface from the blueprint
implementation with AOP as described above, will not remove this drawback.

4.2.2 Monitoring and Resources

Even in a simple case with static QoS only, resources must be managed in some way.
Themost important resource needed formost mathematical operations, such as cal-

culating π, is CPU power. Resources like memory or disk space are relevant for some
special computations. Different characteristics of the CPU, or the Java virtual machine,
might also be relevant. However, in this analysis the resource demands are simplified,
and CPU power is the only resource considered.

Themost relevantQoS dimensions to specify for planning the service is precision and
delay. In this case, precision is the number of digits required, and delay is the timeframe
allowed for computation. The components must then specify how much CPU power
they need to satisfy the requirements.

4.2.2.1 Resource Management

Resource management can be as simple as a resource manager that keeps tracks of re-
sources – i.e., it knows what resources are available at all times.

Resource management can also mean that resources are explicitly reserved and re-
leased. To do this properly for CPU, special schedulers are needed. Standard Java does
not have such schedulers, but there exists a specification for real-time Java3 that adds
such capabilities. Real-time Java is not considered here.

How resources are managed is a concern that should be separated. Neither the ser-
vice planner nor the components should need to know how resources are managed. Re-
source management should be separated from the QuA platform components, the ap-
plication and the components used by the application.

In the simplest case of resource management, the concern is already well separated
in the QuA Java prototype. The components need to know how much resources they
require to fulfill a given QoS requirement – they do not need explicit knowledge about
the resource manager. The service planner is the only part of the system that needs to
know about the resource manager. However, it only needs to ask the resource manager
how much resources are available.

If the resource manager explicitly reserve and allocate resources, it would be a little

3See https://rtsj.dev.java.net/ for more information about real-time Java.

53

https://rtsj.dev.java.net/

4 Analysis

more complicated. Then, the service planner will have to reserve resources for services it
plans, and the resources will also have to be released. The resource reservation concern
can be separated. This will make the service planner independent of how the resource
manager manages resources.

If resources are not properly released, resources may leak. This is analogous to the
problem with memory leaks, experienced in systems that have explicit memory man-
agement. The C and C++ languages are examples where this might occur.

There are various strategies to prevent memory leaks in those programming lan-
gauges. The simplest solution is to use a garbage collector. A garbage collector releases
memory automatically when it no longer can be accessed. The concern of releasing re-
served memory can be handled orthogonally to the binary program executables. E.g.,
the Boehm-Demers-Weiser conservative garbage collector4 for C and C++ utilizes in-
tercepting techniques similar to those used by Narasimhan et al. (1999) to override the
malloc and free system calls. In modern languages, such as Java and C], garbage collec-
tion is part of the runtime system for the language.

The garbage collection analogy suggests that resource management could be sepa-
rated from the application logic and from the blueprint implementations. Bymaking the
QuA platform components (e.g., the different planners used by the QuA core) respon-
sible for handling resource management, both the application developer and the compo-
nent developer would be relived the task on managing resources. Instead, the platform
developer would have to implement resource management as part of the platform com-
ponents. Making the platform components responsible for managing resources will tie
the platform components to a specific resourcemanager. The platform developer should
also be relieved the task ofmanaging resources, and the platform components should not
be tied to a specific resource manager.

Resource reservation is a concern that is easy to separate in the QuA Java prototype
ofWergeland (2005). The service planner knows howmuch resources a planned service
needs. Adding an aspect that extends the service planner to also reserve resources is
trivial, as shown in example 4.2.1.

Example 4.2.1 shows how an after advice can reserve the resources required by each
component instantiated as a part of the service planning process.

When reserving resources, we also have to release resources. TheQuA Java prototype
does not have any life-cyclemanagement. If a service is created, there are nomethods for
stopping or terminating the service. Thus, there are no natural places to release resources
reserved by a service.

If resources are reserved, the resources used by components would have to be moni-
tored to make sure that they do not exceed the reserved amount. For the π components,
this requires monitoring of the CPU used by the component. This is not possible with
standard Java and is not considered here.

Resource Management and Transactions

When the service planner is planning a service, it asks the resourcemanager for the avail-
able resources and compares them with the resources required by the different compo-
nent blueprints.

4See http://www.hpl.hp.com/personal/Hans_Boehm/gc/ for more information about the Boehm-
Demers-Weiser conservative garbage collector.

54

http://www.hpl.hp.com/personal/Hans_Boehm/gc/

4.2 Simple Case: Computing the Value of Pi

Example 4.2.1 An aspect for reserving resources.

aspect ReserveResources {
pointcut serviceIsPlanned (ServiceContext ctx ,

ServiceSpec serviceSpec ,
QualitySpec qualitySpec):

call (ServiceContext CompositionPlanner+.compose(ServiceContext,
ServiceSpec,
QualitySpec) &&

args(ctx , serviceSpec , qualitySpec);

after (ServiceContext ctx , ServiceSpec serviceSpec ,
QualitySpec qualitySpec) returning:
serviceIsPlanned (ctx , serviceSpec , qualitySpec) {

ResourceManager mgr = ctx.getResourceManager();
// Pseudo−code
foreach (component in serviceSpec) {

mgr.reserveResources (((QoSAware)component).getConfiguredResources());
}

}
}

The resource information is used to compose a service. After the service is com-
posed, an aspect, or the service planner itself, can reserve those resources. If another
thread is using the resource manager there may not be enough resources left after the
planning process is finished, and we must plan the service once more. E.g., the aspect
in example 4.2.1 does not account for the situation that the resource manager might not
have enough resources left.

Thus, access to the resource manager should be transactional. From the point where
the service planner starts to plan a service, to the point where it has finished planning,
it should have exclusive access to the resource manager.

Adding synchronization primitives to achieve this is not complicated. AOP has a
long tradition for resolving synchronization issues. This goes back to early work with
Compositon Filters and the Sina language (Aksit et al., 1992).

Example 4.2.2 shows how such an aspect could be implemented. It starts by serial-
izing access to all methods on all objects that implements the ResourceManager inter-
face. This is done by adding a lock using the Java synchronized primitive on the resource
manager object. Then, transactional access for the service planning process is ensured
by aquiring the same lock during service planning.

This aspect could also be enhanced to support handling of error conditions in the
planning process. E.g., if the service planner throws an exception, the aspect could re-
store the state of the resource manager to the state it had before the planning process
began.

To summarize, resource management is not a cross-cutting concern in QuA unless
resources are reserved. When resources are reserved, the concern is tangled with the
service planner. This can be untangled and separated with the use of AOP, making the
service planner and resource manager independent of each other.

Transactional resource reservation is not considered in the QuA platform, but can

55

4 Analysis

Example 4.2.2 Transactional resource reservation.

aspect TransactionalResourceReservation {
pointcut resourceMgrAccess(ResourceManager mgr):

call (* ResourceManager +.(..)) &&
target(mgr);

/* Synchronize all access to the resource manager */
Object around(ResourceManager mgr): resourceMgrAccess(mgr) {

synchronized(mgr) {
return proceed();

}
}

/* Lock all other access to the resource manager
* pointcut serviceIsPlanned is defined in the previous example */
Object around (ServiceContext ctx , ServiceSpec serviceSpec ,

QualitySpec qualitySpec):
serviceIsPlanned (ctx , serviceSpec , qualitySpec) {

ResourceManager mgr = ctx.getResourceManager();
synchronized(mgr) {

return proceed();
}

}
}

be handled by an aspect.

4.2.2.2 Monitoring

There are two aspects of monitoring: Resource usage and achieved QoS. Monitoring re-
source usage is part of resource management. Monitoring achieved QoS is a separate
task.

Computing the value ofπ is a discrete operation. Thismeans thatmonitoring achiev-
ed QoS while the component is computing π is non-trivial.

The relevant QoS dimensions in this case are delay and precision. If delay is 10 sec-
onds, the only way to monitor this would be to check if the component is finished with
computing π 10 seconds after it started. If the components should be monitored contin-
uously, they would have to be able to report progress and estimates on how much time
they need to complete.

Monitoring precision is practically impossible. E.g., if precision is 10 decimals, a
QoS monitor can inspect the returned result. If the result is 3,14159265 – the monitor
must have knowledge of the correct answer to conclude that the returned precision is off
by 2 digits. It can inspect the result to determine if precision is too high, but detecting
that the QoS is too good is of little value.

In this case, monitoring is of little value. What actions should be taken based on the
results of QoS monitoring? In continuous services, such as a streaming audio service,
the results can be used to determine if the service needs to adapt. In a discrete service,
the results is only useful to determine whether the service finished within its QoS con-

56

4.2 Simple Case: Computing the Value of Pi

straints.
Even if it in this case is close to useless, monitoring delay can be done with AOP. An

aspect can intercept the component method for computing the value of π, measure the
time used, and report whether it was within its QoS constraints to a QoS monitor.

A more sophisticated aspect could start a thread when the component was invoked,
and report violation of the QoS constraints if the component is not finished before it
should. E.g., if the constraint on delay is 10 seconds, the aspect could report to a QoS
monitor if the component is not finished computing the value of π after 10 seconds.

Even thoughmonitoringQoS is of little value in this case, the example ofmonitoring
delay suggests that AOP can be used to separate this concern.

4.2.3 Dynamic Behaviour: Adding a Cache

Dynamic QoS is not within the scope of this case. As seen in the previous section on
monitoring, it would also be a poor case for dynamic QoS as computing the value of π
is a discrete operation.

However, there is one kind of dynamic behaviour that is relevant for this case. If
the value of π is computed to a given precision once, it is no need to use any additional
resources to compute it once more. Thus, the computed value should be cached.

Where should the cache be implemented? If each of the blueprints implemented it,
the value of π would be cached for each invocation on the same component. If the value
of π is needed in another service, possibly used by the same application, a new blueprint
would be instantiated – with no knowledge of the cached value.

If caching is implemented in the blueprints, the cache would not influence subse-
quent service planning and thus be of little value. Also, if caching is implemented as
part of the blueprint, every blueprint will have to implement it.

Caching could be implemented as a part of the application, but that would lead to
scattered code with more complexity.

A cache is a typical cross-cutting concern. It is neither natural to handle it in the
application, nor in the blueprints. Caching is a cross-cutting concern that should be
separated.

Caching the value of π cuts through more concerns than those implemented by the
blueprints and the application. In a QoS aware environment, caching also affects re-
sources and service planning.

If resources are reserved, the resources reserved by a π service must be released if
the outcome is cached. If a new service that needs a component for calculation of π is
needed, the cache should be considered in service planning.

Implementing a cache for π components in the QuA Java prototype without the use
of AOP is not trivial. Code for handling it will have to be added to the blueprints and
the service planner – in addition to implementing the cache itself. One would also have
to make sure that the cache implementation for π components does not interfere with
other components.

Adding a special cache for π components to the service planner is not desirable. If
a cache should be added at all, it must be a general cache that can be used for caching
more than the value of π.

With the use of AOP, adding a cache is simple. The cache does not need to be gen-

57

4 Analysis

eral, it can be a special cache whose only purpose is to cache the value of π to a certain
precision. Implementing a special cache is a much simpler task than implementing a
general cache.

An aspect implementing a cache would have to:

• Intercept invocations to π components to get the value it should cache.

• Release resources allocated with the resource manager if resource allocation is
used.

• Make sure that the service planner knows that a cached value of π exists – i.e.,
that a “component” can provide the value of π up to a certain precision for free.
This can be achieved by advertising a component blueprint that interacts with the
cache.

This assumes that caching π is “free” regarding resources. If π is needed with great
enough precision, say a billion digits, the cache itself would need resources such asmem-
ory or disk space.

4.2.4 Aspect Deployment

One of the goals of the QuA project is to enable safe deployment of QoS-sensitive appli-
cations. Assuming that QuA guarantees safe deployment of components, how can this
property be guaranteed with aspects?

Also, how should the aspects be deployed? QuA package a component blueprint as
a binary file. Can aspects also be packaged as binary entities, e.g., as a quosket (Schantz
et al., 2002) as seen in QuO?

Aspect components is a topic for ongoing research. E.g, the JAsCo (Vanderperren
et al., 2005) AOP framework supports aspect components. Aspects and components are
also a research topic at the Northeastern University (Lieberherr, 2004).

Although an interesting and important topic, aspect deployment is beyond the scope
for this thesis.

4.2.5 Summary

The analysis suggests that aspect oriented programming ismost useful for resourceman-
agement in this case with static QoS and components for calculating the value of π:

Static QoS AOP might be used to add QoS awareness to components that are not QoS
aware – i.e., it might be used to separate the QoS aware implementation details
from the component blueprints.

In the QuA Java prototype used in this thesis (Wergeland, 2005), AOP is a non-
intrusive way to achieve this separation. However, there exists other QuA imple-
mentations where this separation is achieved without the use of AOP.

Resource Management Resource management is only a cross-cutting concern when
resource allocation is used. In this case, it can be separated with the use of AOP.
AOP can also be used to add transactional behaviour to the resource manager.

58

4.3 Complex Case: A Distributed Audio Player

Monitoring As computing the value of π is a discrete operation, monitoring QoS is of
little value in this case. The analysis suggests that AOP can be used to separate
monitoring of the delay QoS dimension, but it is not clear what use there is for
this information. One possible use is to make historical information avaliable in
later service planning.

In addition, caching π is a natural candidate for aspects. Caching is a typical cross-
cutting concern that has been part of AOP tutorials and subject to discussion in Internet
forums. In environments that use resource reservation and service planning, the cross-
cutting nature of caching increases.

4.3 Complex Case: A Distributed Audio Player

The casewith components for calculating the value of π is a simple case as it only involves
one local component. A more complex case is a distributed audio player.

An audio conference has been discussed as a case in internal QuA meetings. An
audio conference can be simplified to a distributed real-time audio stream. If QuA can
handle that, it should also be able to handle an audio conference system.

Figure 4.1 A component composition for an audio service.

SpeakerDecoderMicrophone Encoder RTDataBinding

AudioSource

AudioSink

DataSource

DataSink

DataSource

DataSink

AudioSource

AudioSink

Figure 4.1 shows a component composition for an audio service. At the left is an
audio source, in this case this is a microphone. The audio source is connected to an
encoder component. The encoder provides an audio sink interface that the audio source
can connect to.

An audio encoder encodes raw audio data into another data format. Raw audio data
usually takes a lot of space, if the audio is transferred over a network this implies that
it will consume much bandwidth. An audio encoder compresses audio data, usually by
reducing quality. MP3 and OGG Vorbis are examples of audio codecs for music, while
GSM, G.723 and G.729 are examples of audio codecs for speech.

The encoder is connected to an audio decoder through a binding component. The
decoder decodes the encoded data into raw audio data. The decoder is connected to a
speaker component through its audio sink interface.

The RTDataBinding component in figure 4.1 is a composite component. Figure 4.2
shows a decomposition of the component. This binding consists of a real time data
source that sends packets using UDP to a real time data sink. A buffer is added to the
composition to absorb bursts of data and smooth out jitter. This binding is an example
of a streaming binding.

The binding is themain reason for introducingQoS awareness to the audio service. If
the binding is remote, the network resource is limited. With limited bandwidth, we have

59

4 Analysis

Figure 4.2 A stream binding for packet data.
RTDataBinding

RTDataSource RTDataSink RTDataBufferDataSink
DataSource

DataSink

UDPSocket

UDPSocket

DataSource

DataSink

DataSource

to compress the audio data using a codec – i.e., audio encoder and decoder. The audio
encoding and decoding process reduce audio quality, and also consume CPU resources.

In addition, resources might change during runtime. Network bandwidth can de-
crease or increase in a shared network. CPU availability can also change. All this requires
that we might have to reconfigure the audio service while it is running.

4.3.1 Audio Quality and Codecs

When sound is digitally sampled, the quality is determined by the sample rate and sample
size (Tanenbaum, 2003).

Sample rate is the number of samples pr second. The Nyquist sampling theorem
states that the sampling rate must be greater than twice the signal bandwidth. In most
cases, the signal bandwidth is the same as the highest frequency.

Sample size is the size of the sample in bits. Typical values for sample size are 8 or
16 bits. The sample size determines the quantization errors. A sample size of 16 bits
allow 65536 different values for the sample. The error introduced by the finite number
of values is called the quantization error.

The human ear can hear frequencies between 20 Hz and 20.000 Hz. This means
that sound must be sampled with a sample rate of more than 40.000 Hz according to the
Nyquist theorem. This is roughly the same as the sample rate of audio CDs. Audio CDs
use a sample rate of 44.100 samples/sec and a sample size of 16 bits.

Thus, transferring uncompressed audio CDs over a network requires a bandwidth
of 44.100×16 bits/sec. Actually, it requires twice the bandwidth. Audio CDs are usually
in stereo; stereo requires two channels. Thus, the required bandwidth is 2×44.100×16,
which equals about 1.4Mbps.

When sound is encoded, it is packetized into a frame. A frame contains a number of
samples for all the channels.

4.3.1.1 Codecs

All digital sound is coded in some way. In section 4.3 (p. 59) the term “raw audio data”
was used. Raw audio data is an imprecise term. What is meant by raw audio data is
usually pulse code modulation (PCM) encoded audio. PCM is a method for encoding
information on a carrier signal and is used to create digital representation of an ana-
log sound signal. Other modulation techniques are: frequency modulation, amplitude
modulation and wavelet modulation.

PCM is the modulation technique used to create digital representation of analog

60

4.3 Complex Case: A Distributed Audio Player

sound signals. When the term “unencoded sound” is used, it usually means PCM.
PCM sound samples use a lot of space. E.g., in the previous section the bandwidth

for transferring sound from an audio CD was calculated to 1.4Mbps. This implies that
the storage needed for 1 hour of music is 630MB.

To reduce the need for storage space or bandwidth, music and sound are usually fur-
ther encoded. A codec is a set of algorithms to encode and decode sound. Popular codecs
for music are MP3 and OGG Vorbis. Those codecs are able to reduce the bandwidth re-
quirement from 1.4Mbps to about 192kbps. To achieve this, the codecs are lossy. This
means that the sound sample that is encoded, and then decoded, using an MP3 codec,
is not the same as the initial sample. The encoding process loose some of the precision
in the original sample and thus reduces the quality.

MP3 and OGGVorbis are CPU intensive algorithms designed to encodemusic. Hu-
man speech tends to be in the 600 Hz – 6000 Hz range (Tanenbaum, 2003). Thus, a
sample rate of 12000 is enough. There exists special codecs designed to encode human
speech. Those codecs are good at reproducing speech, but give poor results when repro-
ducing music. ITU-T has standardized a set of codecs for speech. Some of those codecs
are used for digital phones and audio conferencing systems.

One of the simplest codecs are G.711. It compresses a 12 or 16 bit PCM sample to 8
bit using a logarithmic algorithm. Two versions exits: a-law (used in Europe) or µ-law
(used in USA and Japan). G.711 uses a sample rate of 8000 Hz. Thus it requires a bitrate
of 64kbps. G.711 samples are packetized into frames of 240 bytes. Thus, a frame contains
30 milliseconds of sound.

Another efficient speech codec is the GSM codec used in mobile phones. GSM also
uses a sample rate of 8000 Hz. GSM encodes 160 samples with a sample size of 13 bits
to 264 bits – or 33 octets. Thus, a frame of GSM encoded sound contains 160 sam-
ples encoded as 33 octets. This implies that a frame of GSM sound contains 160

8000 =

20milliseconds of sound and requires a bandwidth of 13200bps.
As a frame of G.711 encoded sound contains 30 milliseconds of sound and a GSM

frame contains 20 milliseconds of sound, it implies that the minimum latency for those
codecs are 30 and 20 milliseconds.

ITU-T has also defined more complex speech codecs that has lower latency and bet-
ter sample rate. Some of the complex codecs support features that reduce the bandwidth
requirements:

VBR Variable bitrate allows a codec to change its bitrate dynamically to adapt to the
complexity of the audio being encoded. This feature is also present in theMP3 and
OGG Vorbis music codecs. VBR has the advantage that you can encode speech
with the same quality as using constant bitrate, but with lower bandwidth require-
ments. The drawback is that you do not know the bandwidth requirements.

ABR Average bitrate solves the problem with VBR. ABR adjusts VBR quality to meet
a constant bitrate requirement. The drawback is that you do not have constant
quality.

VAD Voice activity detection detects silence or background noise. Silent periods can
be encoded very compact. Advanced codecs also has support for “comfort noise
generation” to reproduce the background noice in the silent periods.

61

4 Analysis

Features such as VBR and ABR can reduce the need for bandwidth, but they require
more CPU power.

4.3.1.2 Audio Quality

Sample rate and sample size is important to determine audio quality. When a speech
codec is used, sample rate and sample size is not the primary factors for quality. The
codec itself and the configuration of the codec is more important.

The telecommunication industry needs quantitativemeasures for audio quality. Thus,
the ITU has specified how to quantify the subjective audio experience for speech (ITU-T
P.800). This specification introduces mean opinion score (MOS) as a means for quanti-
fying the quality. MOS evaluates audio quality on a scale from 1 to 5, where 1 is bad and
5 is excellent.

4.3.2 Real-Time Transport Protocol

For transport of real-time data, RTP (RFC 3550) is a common choice. RTP provides
services for time reconstruction, loss detection, content identification, etc. RTP works
in conjunction with a control protocol, RTCP, whichmonitors QoS and provides session
control.

RTP is designed to work with datagrams, i.e., it is designed to work with unreliable
protocols that can loose packets. An RTP packet contains a fixed header and a payload.
When streaming real-time audio, the payload will typically be an audio packet from a
codec, e.g., a frame with GSM data.

The most important RTP header fields relevant for this case are: the payload type
(i.e., which codec is used), sequence number and timestamp. By including payload type
in each packet, RTP makes it possible to smoothly change codec during run-time. Se-
quence numbers makes it easier to detect packet loss or packets that arrive out of order.
The timestamp denotes the sampling instance of the first octet in the payload and can
be used to calculate jitter.

In real-time applications, such as audio conferences or VoIP, latency is a very im-
portant QoS dimension. Monitoring latency is not trivial, as it requires synchronized
clocks. The timestamp in an RTP packet starts with a random number that increases
monotonically and can not be used for latency calculations.

RTCP provides a means for QoS monitoring and congestion control. This includes
monitoring of latency and bandwidth. In an RTP session, the participants periodically
send RTCP packets to each other. These packets include network time protocol (NTP)
timestamps, delay and other information that can be used to calculate latency and other
QoS dimensions.

Both RTP and RTCP is designed to be extensible. RTP allows additional codec in-
formation to be sent in a packet using different RTP profiles, and RTCP allows applica-
tion specific packets to be sent. Although RTP encourage the use of RSVP (RFC 2205)
to reserve bandwidth, the application specific packets in RTCP, together with the NTP
timestamp and latency information, may be used to calculate bandwidth.

62

4.3 Complex Case: A Distributed Audio Player

4.3.3 Monitoring QoS

Formonitoring achievedQoS, themost relevantQoSdimensions are latency, jitter,MOS,
packet loss, sample size and sample rate. Monitoring subjective quality dimensions, such
as MOS, usually requires feedback from the user that listens to the sound. However, un-
der optimal conditions, a given audio codec will have a theoretical MOS value. E.g.,
GSM encoded audio has a theoretical MOS value of 3.5 (Dai, 2000).

Assuming that we have the component composition shown in figure 4.1 and fig-
ure 4.2 on page 59, the above mentioned quality dimensions can be monitored as fol-
lows:

Latency This is the delay from sound enters themicrophone to it is played in the speaker.
Latency is not trivial to monitor in a distributed environment, as it requires syn-
chronized clocks. RTCP, or a similar protocol, is needed to monitor latency. An
aspect can intercept the planning of the audio service, and start an RTCP service
in both the server and client QuA capsules. This would require that the aspect
recognize the planned service as an audio service, and would be an aspect specific
for audio services.

The information needed by anRTCP service is the header fields from the transport
protocol. An aspect can intercept the RTDataBinding component and send the
received packets to the RTCP service. If a protocol similar to RTP is used, we
also need the timestamp for when the Encoder component received the first octet
in a frame. An aspect could wrap the Encoder component, set a timestamp, and
include this timestamp in the transport protocol.

The latency calculated by RTCP is the latency from the sound enters the micro-
phone to it reaches the receiving RTDataSink component. To calculate the expe-
rienced latency, we also have to add the time spent in the buffer, and the time used
to decode the audio packet. This can be achieved by adding aspects to the RT-
DataBuffer and the Decoder components. Those aspects would have to measure
the time an audio packet has spent in the respective components.

Jitter This is the variance in latency. The network jitter can be monitored by intercept-
ing insertions of data packets in the RTDataBuffer component, which is part of
the RTDataBinding. Experienced jitter in the audio playback can be monitored
by intercepting the data flow from the Decoder component to the Speaker com-
ponent.

Packet loss This is part of the monitoring of the binding. This requires that the data
packets contain a sequence number as seen in protocols such as RTP (RFC 3550).
Packet loss can be monitored by intercepting packet receival in the RTDataSink
component, and then check if the newly arrived packet has a sequence number
that is one greater than the sequence number of the last arrived packet.

Packets migh arrive out of order. The buffer can reorder the packets before they
are sent to the decoder. If we include packets that arrive too late as lost packets,
monitoring packet loss by intercepting the flow from the buffer to the decoder will
give a more correct measure.

63

4 Analysis

Sample rate If the transport protocol contains information about sample rate and sam-
ple size, this can be monitored by intercepting the binding, e.g., the RTDataSink
or the RTDataBuffer components. If not, the only place this can be monitored
with certainty, is after the decoding process. Thus, we can monitor sample rate
and sample size by intercepting the flow from the decoder to the speaker.

Sample rate and sample size can also bemonitored on the server side of the binding
by intercepting the flow from the microphone to the encoder. However, monitor-
ing this on the server side is of little interest.

MOS To calculate theoretical values for MOS, we need to know which codec is used.
Asking the Decoder component which codec it uses might seem as a sensible ap-
proach. However, the codec used might change during runtime. In RTP (RFC
3550), each packet contains a description of the codec used. Thus, monitoring
which codec is used can be monitored by intercepting the flow from the buffer to
the decoder.

Most of the quality dimensions above can bemonitored by intercepting the program
flow at one point in one component for each quality dimension. This is suitable for
aspects, as we can add advice at those points. The exception is latency. Monitoring
latency requires interception of the program flow at multiple points and the initiation
of an RTCP like service. Investigating the details of RTCP is beyond the scope of this
thesis.

It is possible to monitor these quality dimensions without the use of AOP in QuA,
but not with a clear separation of concerns. Some of the quality dimensions could be
monitored by the binding, but this would tangle the monitoring concern with the bind-
ing concern.

We could also use connector components (Aksit and Choukair, 2003) – a kind of
“glue” components that are placed between the other components. Those components
can receive data, inspect the data, and pass it on to the next component. For example,
the behaviour added in an aspect’s advice could be added by a connector component.
As all the components that are part of a service are specified in a service specification,
this would require the connector components to be part of the service specification, and
thus tangle the monitoring concern with the service description.

It might be possible to achieve a clear separation of concerns without AOP if QuA
had full support for reflection. E.g., the meta-models of OpenCOM5 could be used to
achieve this. The QuA Java prototype does not support reflection, and the point of using
AOP is that we can achieve this without having to create a reflection framework.

4.3.4 Resource Management

Resource management in this case is in many ways similar to resource management
in the simple case discussed in section 4.2.2.1 on page 53. The aspects for separating
resource reservation also applies in this case, i.e., resource reservation and transactional
access to the resource manager can be separated using AOP.

5See section 2.7.4 on page 28 for a description of OpenCOM.

64

4.3 Complex Case: A Distributed Audio Player

There is one important difference between the cases; in this case, the service spans
over two capsules in a distributed system. The binding that connects the two capsules
uses a shared network resource. This indicates that the two capsules should use a shared
resource manager in a common distributed address space. Alternatively, hierarchical
resource managers might be used. Ecklund et al. (2002) propose hierarchical QoS man-
agers to manage resources in distributed services.

The issue of distributed resource management is beyond the scope for this thesis.
To simplify the analysis, we will regard the service as one service with two sub-services
where each sub-service has separate resource management.

There are two resources to monitor in this service: CPU and bandwidth. The audio
codecs consume CPU power, and the binding consumes bandwidth.

4.3.4.1 Monitoring CPU Usage

Monitoring CPU usage was discussed in the analysis of the previous case (section 4.2.2.1
on page 53). The same limitations are valid here; standard Java does not have capabilities
for proper reservation and monitoring of CPU usage.

Instead of monitoring how much CPU power is used, maybe we can monitor if the
current CPU power is sufficient. If an audio encoder manages to encode x seconds of
audio in less than x seconds, we have enoughCPUpower. The same goes for the decoder,
if it manages to decode x seconds of audio in less than x seconds, we have enough CPU
power.

If an encoder or decoder use more than x seconds to encode or decode x seconds of
sound, they use too much time and the sound will not be smooth. I.e., the sound will
contain breaks between each packet of audio data. This indicates that the codec does not
have enough CPU resources available.

If lack of CPU power is detected, we can adapt to a less CPU intensive audio codec. If
the lack of CPU power is temporary, and we have adapted to a less CPU intensive audio
codec to handle the situation, we have nomethod for detecting that we later regain CPU
power and thus can adapt back to the original codec.

Detecting whether the codecs use too much time in the encoding or decoding pro-
cess can be implemented as an aspect. By adding an around advice to the encoder’s
encode method and the decoder’s decode method, we can measure the time used and
compare it with the duration of the audio data sent to the codec.

This can be implemented directly in the component blueprints, but would tangle
the resource monitoring concern with the blueprint implementations and tie the imple-
mentation to a specific resource manager. Implementing this with AOPwill separate the
CPU monitoring concern.

There is a problem with this approach. Detecting that a codec component do not
have enough CPU resources might be caused by another component using too much
CPU. If this is the case, it is the other component that violates the resource constraints,
not the codec. Thus, this approach is unreliable and imprecise.

4.3.4.2 Monitoring Bandwidth

Bandwidth can be monitored using RTCP the same way as monitoring latency, as de-
scribed in section 4.3.3.

65

4 Analysis

RTCP packets are sent periodically. The NTP timestamp, latency calculations and
size of the packet can be used to calculate bandwidth. The RTP specification (RFC 3550)
recommends that a maximum of 5% of the reserved bandwith should be used for RTCP
packets. This ensures that we do not interfere too much with the bandwidth used by the
audio service.

4.3.5 Adaptation

To adapt the audio service means to reconfigure the service while it is running in order
to fulfill the QoS requirements as resource availability changes. There are at least three
issues related to this:

When to adapt? QoS monitoring might detect that the service do not fulfill the QoS
requirements. To maximize QoS we also need to detect when we have gained
resources and can adapt to a more resource intensive composition.

Where should adaptation occur? I.e., where should the adaptive behavior be inserted?

How to adapt? This regards both what the new composition should look like (e.g.,
which parameters should change andwhich components should be replaced), and
how to perform the actual adaptation.

The main objectives for this thesis is where to adapt and how to perform the actual
adaptation.

4.3.5.1 Where andWhen to Adapt

Regardingwhere to adapt the service, we can add a layer of indirection between the appli-
cation and each of the components in the service. Adding a layer of indirection in order
to adapt components is a common approach (McKinley et al., 2004). Other frameworks
adds this layer of indirection by reifying method calls using some sort of interceptor
technology. The reified method call can then be evaluated and possibly redirected to
another component if necessary.

This layer of indirection can also be added using AOP. All components in the service
can be wrapped in an aspect that:

1. Check if the component needs to be adapted.

2. Performs the adaptation, either by reconfiguring the existing component (param-
eter adaptation) or by replacing the component (compositional adaptation).

Example 4.3.1 shows an example of how such an aspect may be implemented. The
example relies on an adaptation manager that knows if adaptation should occur, and
how to adapt a component.

This approach postpones the adaptation until a method on the component is exe-
cuted, i.e., the adaptationmanager is passive. This approach resembles the delegates used
in QuO (Schantz et al., 2002). A QuO delegate acts as a local proxy for an object and
adds locally adaptive behavior.

66

4.3 Complex Case: A Distributed Audio Player

Example 4.3.1 An aspect for adapting a component.

aspect AdaptComponent {
AdaptationManager adaptationManager;
Object targetComponent = null;
// Pointcut that matches execution of any QoS aware component
pointcut componentInvocation: execution (* qua.types .QoSAware +(..));

Object around(Object currentTarget): componentInvocation &&
this (currentTarget) {

if (targetComponent == null)
targetComponent = currentTarget;

if (adaptationManager.needsAdaptation(targetComponent)) {
// Adaptation manager will either return a new component,
// or the same component with reconfigured parameters
targetComponent = adaptationManager.adaptComponent(targetComponent);

}
// Execute the method on the component
return proceed(targetComponent);

}
}

Adapting a component can be costly in terms of CPU cycles. Thus, an active adap-
tation manager that can adapt a service when the service is idle might be preferred in
some occasions.

Example 4.3.2 shows how thismight be implemented. In this example the adaptation
manager adapts components actively. The aspect only acts as a level on indirection, or
proxy, for the component. In a streaming audio service there will be no idle time. Thus,
only the former approach is considered here.

Example 4.3.2 Another aspect for adapting a component.

aspect AdaptComponent {
AdaptationManager adaptationManager;
// Pointcut that matches execution of any QoS aware component
pointcut componentInvocation: execution (* qua.types .QoSAware +(..));

Object around(Object currentTarget): componentInvocation &&
this (currentTarget) {

// Ask the adaptation manager for the component to use
// and execute the method on the component
return proceed(adaptationManager.getComponent(currentTarget));

}
}

It is beyond the scope of this thesis to give a full analysis of when to adapt. In ex-
ample 4.3.1 adaptation occurs when the adaptation manager has decided that it should
occur.

67

4 Analysis

The simplest scheme for deciding when to adapt is to ask the component howmuch
resources it needs when a method is invoked on the component, and then compare this
with the available resources in the resource manager. If there are too few resources avail-
able, we must adapt the component.

This simple scheme does not catch the situation wheremore resources become avail-
able. If we first adapt the service to use poor but tolerable audio quality due to a decrease
of bandwidth, we can adapt the component to use better audio quality as bandwidth
increase. The simple scheme does not detect this situation.

Poladian et al. (2004) have created a model for dynamic configuration of resource-
aware services. Their approach to service planning is very close to the Q-RAM (Rajku-
mar et al., 1997) model used in the QuA prototype ofWergeland (2005). In their model,
adaptation occurs when the observed utility of the service is lower than the utility from
the best computed service configuration.

Strategic management (Berset, 2004) can also be used to determine when to adapt.
Strategic management impose a coordinator of adaptive behavior and requires an ac-
tive adaptation manager. If services are allowed to autonomously decide when to adapt,
we risk that all services in a system adapts at the same time when resource availability
changes. If all services adapt, the resource availability will change again, and the services
might also adapt again. This can cause an unstable oscillating system. Strategic man-
agement tries to prevent this by coordinating adaptive behavior. Strategic management
is also discussed by Ecklund et al. (2002), who propose hierarchical QoS managers for
distributed systems.

4.3.5.2 How to Adapt

Example 4.3.1 showed an example of where to adapt. That example is also a simple ex-
ample of how one might adapt a component. The aspect in the example asks an adapta-
tion manager whether adaptation should occur. If it should adapt, it asks the adaptation
manager for a new component that replaces the original.

An adaptation manager would need to know which component the original com-
ponent should be replaced with, or if parameter adaptation is sufficient; how should the
component be reconfigured. The ideal solution would be to ask the service planner to
replan the service, but the service planner does not support reconfiguration.

To solve this without reconfiguration support in the service planner, we can ask the
service planner to instantiate a component with the same type as the component wewant
to adapt. To make it possible for the service planner to find a component that maximize
QoS, we would have to temporarily free the resources reserved by the original compo-
nent. This is because the service planner finds a component based on what resources are
available.

If we use this approach, we would always use compositional adaptation. If the same
component blueprint is used before and after adaptation, it is a different component
even if the only difference is the configuration. Compositional adaptation can be more
costly than parameter adaptation. This is because we have to instantiate a component
blueprint, and also transfer state and bindings from the original component to the new
component.

An alternative approach is to not replace the component if the new component uses
the same component blueprint as the original, e.g., if both components represents the

68

4.3 Complex Case: A Distributed Audio Player

same codec. It might be cheaper, in terms of time and CPU usage, to reconfigure the
original component with the configuration used in the new component. For this to be
possible, the component must support reconfiguration – e.g., by implementing a type
dedicated to reconfiguration. An implementation of a type dedicated to reconfiguration
could be introduced with an aspect.

Both the approaches described above, require that we known which component that
needs to adapt. The only way to detect that a component needs to adapt, is if it uses too
much resources. If the service does not fulfill its QoS constraints, we do not knowwhich
component needs adaptation. Thus, we must adapt the whole service.

To adapt the whole service, we can use the approach for compositional and param-
eter adaptation described above. We can ask the service planner to plan a new service
using the original service specification. We can then iterate through the components in
the service, and adapt each component in the running service to match the component
in the new service. This approach requires that the new and old service are isomorph –
i.e., that the new service uses the same service specification and do not need to add or
remove components to the specification.

Example: The original service uses a G.711 codec. The QoSmonitor detects that the
service do not fulfill its latency constraint. We then ask the service planner for a new
service, this service uses a GSM codec. By comparing the two services, we detect that
the codec in the original service must be adapted to use GSM components.

State Transfer and Compositional Adaptation

When compositional adaptation is used, all state and bindings from the original com-
ponent must be transferred to the new component.

To transfer state between components, the memento pattern (Gamma et al., 1995)
can be used. This is used by dynamicTAO (Kon et al., 2000) to transfer state between
ORB strategies. However, this requires that the components are aware of the memento
pattern.

The RTDataBuffer component is the only component in the audio service with a
state that should be transferred in case of compositional adaptation. For all the other
components, only the bindings need to be transferred.

To transfer bindings from one component to another, we need to know which bind-
ings the original component has, and also which other components are bound to the
component. All the bindings in a service is added to a ServiceSpec before the service is
planned by the service planner.

In the current implementation of the QuA Java prototype, those binding specifica-
tions are not kept after the service is planned. To make the bindings available for an
adaptation manger, this will require a change to the QuA implementation.

Another approach is to add some simple reflection capabilities to the component,
with introspection support only. We can collect the binding specifications with an as-
pect as the service is planned. The service specification used to compose a service con-
tains a description of the bindings and composition of the service Those bindings can
be made available by introducing an interface implementation to the components using
AOP. E.g., add an interface, QuAService, with a method, getServiceSpec(), to all compo-
nent blueprints using the AOP mixin, or introduction, mechanism.

69

4 Analysis

Ensuring a Valid Composition

If we adapt a component in a service, wemust ensure that the service has a valid compo-
sition after adaptation has occured. In theory, this should be enforced by the type system;
a component that implements a type can be replaced by another component implement-
ing the same type. However, there may be other dependencies between components.

The encoder and decoder components in the audio service is an example of such a
dependency. If we replace a GSM encoder component with a G.729 encoder component,
the composition is still valid according to the service specification – but if we do not
replace the GSM decoder component with a G.729 decoder component, the service will
be invalid.

Blair et al. (2001) discuss a similar case in the context of OpenORB 2. They use
architectural constraints to ensure integrity. The type system is one level of constraint,
and an explicit encoding is proposed for other architectural constraints.

If explicit architectural constraints are not supported, the dependency between the
encoder and decoder can be regarded as a special case of component dependencies, re-
quiring a special solution.

As described in the section on monitoring (section 4.3.3), the transport protocol
contains a description of which codec is used in each packet transfered. The client side
must monitor the binding and adapt the decoder component if the codec changes.

There might be other dependencies between components. E.g., the codec compo-
nents might require some pre- or post-processing components. If the codec changes,
but the pre- or post-processing component do not change, the service may be invalid.
To capture such dependencies, composite components should be used. E.g. an audio
decoder component that requires pre- or post-processing components should create a
new composite component consisting of the encoder and the pre- or post-processing
component.

If composite components were used for this, we would adapt the composite as any
other component, and the dependency would be solved automatically. Composite com-
ponents are not supported in the QuA Java prototype.

While composite components can be used for solving dependencies between adja-
cent components in the service composition, they can not be used for solving the de-
pendency between the encoder and the decoder. A special solution using aspects that
monitor a change of codec was proposed for solving this dependency above. A general
solution requires that all such dependencies are explicitly expressed in some way. Archi-
tectural style (Garlan et al., 2004) is one way expressing such dependencies. Explicitly
stating all dependencies is also in line with Szyperski’s component definition (Szyperski
et al., 2002), which states that components should have “explicit context dependencies
only”.

4.3.6 Summary

The analysis suggests that aspect oriented programming can prove valuable for separat-
ing the QoS concern in distributed audio services.

QoSMonitoring Most of the quality dimensions that are relevant formonitoring in this
case should be simple to handlewithAOP. The exception is latency, which requires

70

4.4 Experiments

a RTCP like service and more complex aspects.

Resource Management AOP seems useful for separating the resource monitoring con-
cern. The CPU resource are not trivial tomonitor using standard Java 1.4 whether
AOP is used or not. Monitoring bandwidth requires the same RTCP like service
as monitoring of latency.

Adaptation AOP seems useful for adaptation of components. AOP can be used to in-
tercept invocations on components. The invocation can be redirected to other
components, or the existing component can be reconfigured. If parameter adap-
tation is used, the components that should adapt must support reconfiguration. If
compositional adaptation is used, the componentsmust be able to transfer state. A
reflective model can be used to transfer bindings when compositional adaptation
is used, and AOP might be used to create this reflective model.

Key to all these topics is the need for an extra layer of indirection. AOP is particularly
suited for adding such a layer.

4.4 Experiments

To validate the conclusion of the analysis, an experimental approach using prototyping
is chosen as method. The analysis suggests that the QoS concern to a high degree can be
separated using AOP with the QuA Java prototype of Wergeland (2005). This should be
validated, and prototyping is an efficient way of doing that.

The analysis uses two cases. A simple case with static QoS, and a complex case with
a streaming distributed audio service. To validate the analysis, the following should be
implemented:

Simple Case Two or more components that calculate the value of π. Making the com-
ponents QoS aware should be separated as aspects. Resource reservation should
also be separated as an aspect.

Complex Case A streaming audio service with support for at least two different codecs.
Monitoring of some of the QoS dimensions described in section 4.3.3 should be
separated with aspects. Implementing a control protocol like RTCP is beyond the
scope of this thesis, this implies that monitoring of latency and bandwidth will
not be included. Also, the method for monitoring CPU usage is imprecise and
unreliable and will not be implemented.

The most important issue is to handle parameter and compositional adaptation.

A successful implementation will strengthen the hypothesis that AOP can be used
to separate the QoS concern in QuA.

4.4.1 Criteria for Evaluating Results

There must be some criteria for evaluating whether the prototypes are successful. E.g.,
how well does it separate the concerns? It is often claimed that use of AOP produce

71

4 Analysis

more modular code. If so, how well is the cross-cutting concerns modularized, and can
this modularization of cross-cutting concerns be reused for other components in other
services?

The rest of this chapter will discuss criteria for evaluating the prototypes.

4.4.1.1 Reuse

Software reuse has been one of theHolyGrails of software engineering for decades. Stan-
dish (1984) refers to visions of software reuse back in the 60’s. Work to promote reuse
has continued ever since and is one of the main reasons to introduce components and
component-based software engineering (Szyperski et al., 2002).

When it comes to reuse, history has showed us that “the proof of the pudding is in
the eating”. There has been many attempts at creating architectures or frameworks that
enable or promote reuse. However, software is not reused until it actually is reused. The
world is full of reusable components or frameworks that never has been reused. Thus,
trying to prove that AOP leads to better reuse is a dubious task.

No matter if the software is reused or not, there are some properties of components
that makes them more suitable for reuse. Evaluating how the use of AOP affects those
properties should be part of evaluation of the prototypes.

Shades of Gray: Black Boxes and Encapsulation

There are many kinds of reuse. Szyperski et al. (2002) discuss some of them:

Blackbox reuse Reusing the component solely on the basis of its interfaces and their
contractual specification.

Glassbox reuse Allows for inspection of the implementation of the component, but not
to modify it.

Whitebox reuse Same as glassbox reuse, but also allow for modification of the imple-
mentation.

Graybox reuse Part of the component’s implementation is opened for inspection and
modification via inheritance.

All those shades of gray indicates the level of encapsulation. A black box has the ad-
vantage that you can easily switch the implementation of the component without having
to modify the rest of your program. If the program depends on the internals of a com-
ponent, switching component implementation can be problematic. If we cannot switch
component implementation, evolvability of the component (e.g., providing new versions
with bug fixes or better algorithms) is harder. It will also be harder for a QoS-aware ap-
plication to replace components as resource availability change.

Black boxes are not always the best solution. Black boxes abstract away the imple-
mentation details, but sometimes the user of the black box knows best what implemen-
tation strategy to follow. Kiczales (1996) discuss this problem, and argues for an open
implementation that allows the user of the component some degree of control over its
implementation. AOP and reflective middleware are both technologies that utilize this
idea.

72

4.4 Experiments

Black, white or gray boxes – regarding the prototypes we can conclude that the less
the aspects need to know about a component’s implementation, the better. I.e., if the
aspects only need to know about the component specification, both the component and
the aspects themself are more likely to be reusable.

Aspects and Fragile Base Classes

Encapsulation is regarded as a key property of object-oriented programming. Removing
this encapsulation can lead to problems. Even if an object is properly encapsulated and
only exposes a controlled set of methods, they might be modified by the use of inheri-
tance as is the case with graybox reuse.

Inheritance can be a subtle way of breaking the encapsulation. This is know as the
“fragile base class problem” (Szyperski et al., 2002). The fragile base class problem has
two interpretations, the semantic and the syntactic fragile base class problem:

Semantic Subclassesmight become invalid when the semantics of the base class change.

Syntactic Compiled classes are not always binary compatible with new binary releases
of superclasses.

The syntactic fragile base class problem is not related to breaking of encapsulation.
The syntactic fragile base class problem is about binary compatibility as the base class
evolve. This problem is easiest to spot for programming languages such as C++ where
the function pointer tables of a class changes as the class changes. This breaks binary
compatibility, and the subclasses needs to be recompiled to work. It is also relevant for
other object-oriented languages, such as Java. If the new base class introduces a private
method that is already declared in a sub-class, the applicationwill break, and recompiling
the program will not help as overriding private methods is not allowed.

AOP and the syntactic fragile base class problem are only remotely related. The
problem can arise in situations where static weaving is used. If a new version of the base
class is provided, onemight have to re-weave all the aspects in the system. There are also
some cases when using introductions ormixins can lead to the syntactic fragile base class
problem for aspects.

The semantic fragile base class problem occurs when the semantics of the base class
changes. In such situations, subclasses might become invalid. This problem occurs be-
cause the subclass has broken the superclass’ encapsulation with the use of inheritance.
Szyperski et al. (2002) have a thorough discussion of this problem.

The fragile base class problem makes reuse and evolution of software problematic,
and is one of the reasons for introducing components.

Even with the introduction of components, the fragile base class problem can occur
due to the use of aspects. Components usually expose an interface. To change or extend
this interface in any way, ordinary subclassing is not enough. You have to make a new
component. Aspects can change and alter this interface in the same way as subclasses in
object-oriented programming, thus making the components fragile.

Examples:

TheNorwegian equivalent of a social security number is called a birth num-
ber. This is composed of 6 digits denoting the birthdate, and 5 digits that

73

4 Analysis

are a person number. 02027212312 is the birth number for a person born
on 2. February 1972 with person number 12312.

Consider an interface for a Person component with the following methods:
String getBirthNumber() and Date getBirthDate().

We could add an aspect for security that limits access to the birth number
by creating an advice for the getBirthNumber()method. In a new version of
the component the implementation of getBirthDate() might have changed
to deduce the birth date from the birth number. If not carefully written, the
aspect would then add security to the getBirthDate() method, which could
break the application.

We could also consider an aspect for validating the birth date of a person,
i.e., tomake sure that the getBirthDate()method and the getBirthNumber()
method is consistent regarding the birth date. We can create an advice for
the getBirthDate() method that ensures that the birth date is the same as
the date you can deduce from the birth number, and do the same for the
getBirthNumber() method. If a new version of the component either use
getBirthDate() to create a birth number, or use getBirthNumber() to return
a birth date – then the aspect would lead to infinite recursion6.

Finally, if the Person component did not have a getBirthDate() method to
begin with, we could introduce it with an aspect. By using AOP we could
introduce a new interface, BornPerson, on all classes that implement the
Person interface. The BornPerson interface contains onemethod, getBirth-
Date(), which deduce the date from the birth number. If a new version of
the component has a getBirthDate() method, the behaviour would be un-
defined and the application would break. This is an example of the syntactic
fragile base class problem.

As aspects can extend the behaviour of components, they can also introduce the
fragile base class problem to components. In an architecture such as QuA, where the
platform decides which blueprint to instantiate by using service planning, this problem
is important to be aware of. This means that a new component implementation is used
quite often.

For the prototypes, this implies that aspects should try to rely on the contractual
specification of the component only. They should also assume nothing about not con-
tractually specified parts of the semantics of the implementations.

It is easy to quantify how much the aspects adheres to the contractual specification
of components. Howmuch the aspects assume about the semantics that are not contrac-
tually specified, is not, and has to be part of a qualitative analysis.

6One can argue that using a !cflowbelow(Person) pointcut designator in these examples would remove
the problem as this would prevent the advice from triggering when for example the getBirthDate() method
is called from within the component. However, this would remove the functionality added by aspects for
an unknown amount of methods in the component. Such behaviour is not always wanted.

74

4.4 Experiments

4.4.1.2 Orthogonal Aspects

Orthogonality is regarded as an advantageous property for software, and a property that
promotes reuse. An intuitive understanding of orthogonal aspects would be that they
are independent of other aspects or classes.

What exactly does independent or orthogonal mean, what should the aspects be
orthogonal to? Other aspects, components, or maybe concerns?

Bergmans and Aksit (2001) interpret orthogonality as aspects that are orthogonal to
other aspects. In their Composition Filters approach this means that filter specifications
do not refer to the specification of other filters. This, alongwith the enhancedmodularity
achieved by Composition Filters, should lead to better reusability and adaptability of
concerns.

Szyperski et al. (2002, p. 428) shares this understanding of orthogonality to some
degree. Szyperski claims that “No two aspects, as we know and understand them today,
are truly orthogonal to each other”. Szyperski uses encryption as an example of this. If
one aspect encrypts messages, and another aspect traces method calls, the ordering of
aspects is important as encrypted messages would lead to garbled log messages. Thus,
the aspects are not independent and hence not orthogonal.

Claiming that no aspects are orthogonal on the basis of one observed example is a
bold statement. Any concern that alters data (e.g., encryption or compression) need to
be executed in a specific order. Thus, Szyperski’s example is not a case that is special for
aspects, it is general for concerns. Claiming that no two concerns are truly orthogonal
is at best questionable.

Colyer et al. (2004) has another approach to orthogonality. Their aim is to find prin-
ciples that help to create flexible, configurable aspect-oriented systems that scale to larger
systems and larger concern implementations.

Colyer et al. understands orthogonal aspects as aspects whose inclusion is optional.
This optional inclusion is related to substitutability where orthogonality requires that
the behaviour of the program is unchanged if the aspect is removed or substituted with
another aspect. This understanding is based on the discussion of subtypes and substi-
tutability in object-oriented programming by Liskov (1987). Her definition of a subtype
is known as the Liskov substitution principle:

If for each object O1 of type S there is an object O2 of type T such that for
all programs P defined in terms of T , the behavior of P is unchanged when
O1 is substituted for O2 then S is a subtype of T .

Colyer et al. (2004) define a principle of orthogonal aspects as a corollary to Liskov’s
substitution principle:

Let A(T) represent the behavior of [the type] T in the presence of aspect A.
If for each object O1 of type A(T), there is an object O2 of type T such that
for all programs P defined in terms of T , the behaviour of P is unchanged
when O1 is substituted for O2 and
If for each object O1 of type T , there is an object O2 of type A(T) such that
for all programsP defined in terms ofA(T), the behaviour ofP is unchanged
when O1 is substituted for O2,
then A is an orthogonal aspect with respect to T .

75

4 Analysis

This principle states that:

1. The behaviour of all programs P defined in terms of the type T should be un-
changed when the aspectA is present in the system, i.e., it is safe to add the aspect
A to the system from the perspective of T .

2. The behaviour of all programs P defined in terms of A(T) should be unchanged
when the aspect A is not present in the system, i.e., it is safe to remove the aspect
from the perspective of T .

The aspect A is restricted to introducing behavioural changes outside the specifica-
tion of T . For the prototypes, this means that the audio stream should be able to stream
audio and the components for calculating the value of π should be able to do this with
or without the presence of the aspects.

This principle of orthogonality can in some cases be too strict. Thus, Colyer et al.
introduce the principle of weakly orthogonal aspects:

Let A(T) represent the behaviour of [the type] T in the presence of aspect
A.

If for each object O1 of type A(T), there is an object O2 of type T such that
for all programs P defined in terms of T , the behaviour of P is unchanged
when O1 is substituted for O2,

then aspect A is a weakly-orthogonal aspect with respect to T .

Weakly orthogonal aspects allow other types in the same concern asA to depend on
the behaviour of A(T).

The principles of orthogonality provides good design guidelines for the prototypes,
but they do not provide amethod for quantitativemeasures of the orthogonality of a pro-
gram. However, the principles of orthogonality provides valuable input to a qualitative
evaluation of the prototypes.

4.4.1.3 Software Metrics

To determine if AOP reduces complexity, provides a better separation of concerns, or in
other ways improve the quality of the code, qualitative measures are preferred. Evaluat-
ing the prototypes with qualitative methods should give exact feedback on the quality.
Software metrics is a means of achieving qualitative measures.

Software metrics are a well know tool for evaluating a design or a software imple-
mentation. There is no general agreement of what “good design is”, but there exists some
design metrics that have evolved over time and that are generally regarded as sound.

Sommerville (1995) suggests the following metrics for evaluating a design:

Cohesion How closely are the parts of a component related?

Coupling How independent is a component?

Understandability How easy is it to understand the function of a component?

Adaptability How easy is it to change a component?

76

4.4 Experiments

The principle of high cohesion and low couplingwas proposed by researchers at IBM
in the early 70’s (Fenton and Pfleeger, 1997) and is a well known principle of good design.

Understandability and adaptability cannot be measured directly, but they are related
to the complexity of a component. Sommerville suggests cyclomatic complexity as amea-
sure for complexity. Cyclomatic complexity is a measure of the number of independent
paths in a program:

CC(G) = #edges − #nodes + 1

Where CC(G) is the cyclomatic complexity for a program flow graph. For programs
without goto statements, this is equal to the number of conditions in the program.

Other metrics for complexity utilizes fan-in/fan-out structural measures. Fan-in is a
measure of howmany other components that call the component, and fan-out measures
the number of other components called by the component.

Complexity metrics can also be used for measuring coupling. High fan-in values for
a component might indicate high coupling, and high fan-out values might indicate that
the complexity of the calling component is high.

Cohesion is not that simple to measure, as it requires an understanding of the com-
ponent’s purpose. Fenton andPfleeger (1997) suggests the “lack of cohesionmetric” (LC-
OM) for object-oriented programs. This measures how closely the local methods are
related to local instance variables in a class.

Fenton and Pfleeger warns against using complexity metrics uncritically. There is
a great appeal in generating a single number that express the complexity of a program.
They argue that such a measure often will address conflicting goals, thus ending up as
useless in practice. They also gives examples showing that some of the properties that a
complexity metric must satisfy are contradictory.

Metrics such as coupling, fan-in/fan-out and cyclomatic complexity can be com-
puted by tools. There exists numerous plugins for the Eclipse IDE that compute such
values.

Metrics used by Others

Although coupling, cohesion and complexity are relevant for aspect oriented programs,
the methods for measuring it is not that simple.

Consider a tracing aspect that pointcut everymethod call in the system. The weaved
code for this aspect would give a very high fan-in value, thus indicating high complexity.
The whole point with AOP is that this complexity is separated in a module by its own,
thus measuring the weaved code is pointless. However, aspects might be coupled with
other components in the system, so how can this be measured?

Kiczales et al. (1997) do not use complexity or coupling for measuring the success of
applying aspects to a program. Instead, lines of code is used:

reduction in code bloat due to tangling =
tangled code size − component program size

sum of aspect program sizes

Lines of code can give some indications of the complexity of a program, or how “bloated”
it is. However, it is not a very good measure7. Lines of code is a measure of program

7Looking at the winner contributions to the last years “Obfuscated Perl Contest” gives a brief indication
on why lines of code is not always a good measure for software complexity.

77

4 Analysis

size. Fenton and Pfleeger (1997) suggest that lines of code is not the optimal measure
of program size for object-oriented programs. Instead, counting the number of classes,
methods and class interactions is a better metric.

The approach used by Kiczales et al. (1997) requires that you have two implementa-
tions that you can compare. One implemented without aspects, and one that use AOP.
To create an additional implementation of aQoS-aware adaptive audio streaming service
without AOP is a huge task that is beyond the scope of this thesis.

Papapetrou and Papadopoulos (2004) conducted a case study to measure the use-
fulness and usability of AOP. They implemented two versions of a web crawling system.
One with AOP and one without. To evalute their study, they used metrics such as learn-
ing curve, stability and time used to create the implementations. They also used lines of
code and comparison of code tangling as metrics.

To measure code tangling, they measured how many places code was added to add
a concern. E.g., adding logging resulted in adding code 73 places without AOP, and only
one place by using AOP.

A similar approach is followed in the study by Coady and Kiczales (2003). Their
study evaluated the use of AOP in the BSD operating system. They measured howmany
places code for handling concerns such as page daemon wakeup and disk quota exists,
then they measured how they could reduce this number by using AOP.

Zhang and Jacobsen (2003) use classical software metrics such as cyclomatic com-
plexity, lines of code, number of methods pr class and coupling. In addition, they use
scattering as a metric. Scattering is measured the same way as code tangling in the stud-
ies mentioned above.

Their measure of cyclomatic complexity ignores the complexity in their aspects. To
gather values for cyclomatic complexity they have used the JavaNCSS8 tool. This tool
measures cyclomatic complexity simply by counting the number of if, for, while, case
and catch statements in the Java code.

The study of Zhang and Jacobsen (2003) looks at how aspect oriented refactoring
can improve CORBA implementations. They refactored the ORBacus ORB by using
AspectJ to see if they could reduce complexity and increase modularity in the ORB.
However, their structural metrics only take the Java code in account, the aspect code
and the coupling between aspects and Java code is not measured.

An aspect oriented refactoring might create more modular, or less scattered, code. It
might also reduce the complexity in the Java code, but if you do not take the complexity
imposed by the aspects in account, you do not really know if the total system complexity
has changed.

NewMetrics for AOP

Theproblemswith using classical softwaremetrics for aspect oriented programs suggests
that we need new metrics for AOP. This is also suggested by Coady and Kiczales (2003)
who states that the area of AOP and metrics needs further research.

AOP is not the only field that suffers from this. This problem is evident in all sys-
tems that extracts handling of concerns out of the code. COMQUAD, QuO, EJB and
Spring are all examples of systems that modularize concerns in external configuration
files, deployment descriptors or domain specific languages. Classical software metrics

8http://kclee.com/clemens/java/javancss/

78

http://kclee.com/clemens/java/javancss/

4.4 Experiments

ignores the coupling between the code and the external files, and also the complexity
within those external files. Complexity does not necessarily vanish if you move it from
code to external configuration files.

Table 4.1Metrics used by Garcia et al. (2005).

Attributes Metrics Definitions

Separation of
Concerns

Concern Diffusion over
Components (CDC)

Counts the number of classes and
aspects whose main purpose is to
contribute to the implementation of
a concern and the number of other
classes and aspects that access them.

Concern Diffusion over
Operations (CDO)

Counts the number of methods and
advices whose main purpose is to
contribute to the implementation of
a concern and the number of other
methods and advices that access
them.

Concern Diffusions over
LOC (CDLOC)

Counts the number of transition
points for each concern through the
lines of code. Transition points are
points in the code where there is a
“concern switch”.

Coupling
Coupling Between
Components (CBC)

Counts the number of other classes
and aspects to which a class or an as-
pect is coupled.

Depth Inheritance Tree
(DIT)

Counts how far down in the inheri-
tance hierarchy a class or aspect is de-
clared.

Cohesion
Lack of Cohesion in
Operations (LCOO)

Measures the lack of cohesion of a
class or an aspect in terms of the
amount of method and advice pairs
that do not access the same instance
variable.

Size
Lines of Code (LOC) Counts the lines of code.
Number of Attributes
(NOA)

Counts the number of attributes of
each class or aspect.

Weighted Operations per
Component (WOC)

Counts the number of methods and
advices of each class or aspect and the
number of its parameters.

Garcia et al. (2005) have tried to refine the classical metrics to make them more
suitable for AOP. Table 4.1 shows their refined metrics.

Thosemetrics were used to replicate the study of Hannemann andKiczales (2002) in
order to get a quantitative assessment of AOP implementations of the 23 GoF patterns.

Their metrics are an improvement over the earlier metrics presented here. Their
metrics for coupling, cohesion and size takes the aspect oriented nature in account.

79

4 Analysis

However, the metric for coupling would give very high values for some typical use of
AOP. E.g., a tracing aspect would be coupled with every other class in the system.

The metrics for separation of concerns is a good start at developing such metrics.
As they are new metrics, there does not exist much empirical data to evaluate whether
a value for one of the metrics is good or bad. At present time they are mostly suited
to compare how separation of concerns improves with different implementations of the
same problem.

Lopes and Bajracharya (2005) takes a different approach when evaluating modu-
larity in aspect oriented design. They use the design structure matrix (DSM)9 and net
options value (NOV) from the theory of modular design in their analysis of modularity.
DSM is used as a modeling tool, and NOV provide a model for quantitative measures.

DSM captures more of the complexity than classical software metrics as DSM takes
the dependencies of all parts of the system in account, i.e., dependencies between code,
external libraries, design rules, configuration and deployment descriptors, etc.

DSM and NOV are promising tools for evaluating design decisions and evolution.
E.g., for comparing a design without aspects with a design that uses aspects. NOV anal-
ysis calculates the “value” of the system based on a number of parameters. These pa-
rameters are based on assumptions and lack formal or empirical verification. Standard
techniques to estimate parameters for NOV and richer models for NOV for software are
issues of further research (Lopes and Bajracharya, 2005).

Thus, DSM and NOV are not suitable for evaluating the prototypes in this thesis.
Getting a NOV value of 42 would not say anythingmeaningful about the systemwithout
having another NOV value to compare it with.

4.4.1.4 Summary

The goal of the experiments is to see if it is possible to separate some of the most rel-
evant concerns for QoS by using AOP. Separating concerns at the code level only is an
achievement, but if this separation introduce coupling and complexity that is not directly
reflected in the code, it will be a drawback.

A problem with the experiments is that there are no existing data to compare with,
i.e., there does not exist a QoS-aware application for QuA that adapts to changes in the
available resources that do not use AOP.

The lack of data to compare with makes it problematic to use quantitative methods
for measuring the success of the experiment. E.g., the metrics for code tangling and
some of the metrics used by Garcia et al. (2005) is interesting but of no use if there is no
reference implementation available for comparison.

It exists recommended numbers for the classical software metrics. E.g., SEI CMU
gives recommendations for cyclomatic complexity10. Classical software metrics are of
little use for AOP. Thus, new metrics are being developed. Those metrics are still very
new, and it does not exist enough empirical data to give recommended threshold values
for those metrics.

The metrics and tools available for quantitative analysis that exists today are not
sufficient. Instead, a qualitative anlysis of the prototypes should be used.

9See http://dsmweb.org/ for more information about DSM.
10See http://www.sei.cmu.edu/str/descriptions/cyclomatic.html

80

http://dsmweb.org/
http://www.sei.cmu.edu/str/descriptions/cyclomatic.html

4.4 Experiments

The prototypes should be evaluated based on:

Encapsulation This is related to how much the aspects need to know about the com-
ponents, i.e., the components’ shade of gray. The darker shade, the better.

Modularity How well are the concerns separated, are the aspects likely to introduce
fragile base class problems, and are the modules orthogonal?

Reusability This is related to encapsulation and modularity. It is also related to how
much the aspects need to known about the components and the service they run
in – e.g., do they assume a specific service composition?

Thus, the main success criteria for the prototypes are whether they manage to sepa-
rate QoS concerns, and the degree of reusability.

81

Chapter 5

Experiments

This chapter describes the experiments performed in order to get empirical data that can
be used to validate the analysis in the previous chapter. The experiments consist of pro-
totype implementations. Two prototypes are implemented. One prototype investigates
static QoS in simple compositions, and the other investigates dynamic QoS in complex
compositions.

5.1 Simple Compositions: Calculating Pi

This experiment looks at simple compositions, i.e., compositions containing only one
component. The main goal of the experiment is to separate the QoS concern from the
component implementation when the service planner chooses which blueprint to in-
stantiate.

See the analysis in section 4.2 on page 51 for a rationale for the experiment. The
analysis also suggests that resource reservation and transactional access to the resource
manager can be separated using aspects.

5.1.1 Separating Static QoS

Static QoS is directly supported in QuA. To support QoS, blueprints must provide the
QoSAware type. In the Java implementation, this means implementing the QoSAware
interface and adding the QoSAware type to the blueprint’s descriptor.

The QoSAware interface contains one method that takes a QoSStatement as input,
and produce a ResourceStatement as output as shown in listing 5.1.1.

Listing 5.1.1 The QoSAware Java interface.

public interface QoSAware {
public ResourceStatement requiredResources(QoSStatement qosStatement)

throws QuAException;
}

82

5.1 Simple Compositions: Calculating Pi

This is used by the QuA service planner to choose which blueprint to instantiate in
a composition1.

5.1.1.1 Components for Calculation of Pi

As an example, three components to calculate the value of π is created. The first com-
ponent uses the Chudnovsky method with binary splitting (Haible and Papanikolaou,
1998), the second method uses the Borwein 4th-order convergent algorithm (Bailey
et al., 1997), and the third method uses Machin’s algorithm. These methods are cho-
sen because they have different characteristics.

The Chudnovsky method:

1
π

= 12
∞∑

n=0

(−1)n(6n)!(13591409 + 545140134n)

(3n)!(n!)3 6403203n+3/2

The Chudnovsky method adds about 14 digits of accuracy for each iteration.
The Borwein method:

y0 =
√
2 − 1, α0 = 6 − 4

√
2

yn+1 =
1 − (1 − y4

n)
1
4

1 + (1 − y4
n)

1
4

αn+1 =

[
(1 + yn+1)

4αn

]
− 22n+3yn+1(1 + yn+1 + y2

n+1)

then
1

αn
→ π as n→∞

The Borwein method approximately increases the number of correct digits by a fac-
tor of four for each iteration.

The Machin method:

π

4
= 4 tan−1(

1
5
) − tan−1(

1
239

)

Then using a power series for tan−1 to compute π.

Component Implementations

To calculate the value of π with high precision, high precision math is needed. Apfloat2
is used as a high precision math library. The Chudnovsky algorithm is already imple-
mented in the Apfloat library as an example of library usage. Changing the example
code to become a QuA component is trivial, and the implementation of the Machin and
Borwein algorithms is straight-forward.

The implementations are shown in figure 5.1. The components are packaged in three
separate archives, or to be more precise: They are 3 separate blueprints that are bundled
together in one persistent repository.

1The QoSAware interface is changed to handle 1-m relations between QoS statements and resource
statements. This is described in section 5.2.1.2 on page 91.

2The Apfloat package is available from http://www.apfloat.org/.

83

http://www.apfloat.org/

5 Experiments

Figure 5.1 Classdiagram showing π components.

MacinPI

<<Interface>>

Pi

compute(precision: int) : BigDecimal

BorweinPI ChudnovskyPI

Implementation Performance

In order to add QoS awareness to the components, we need to know how they perform
and what resources they require. Figure 5.2 shows the performance of the different com-
ponent implementations up to a precision of 100.000. The tests are run on a 1.3Ghz
Duron processor using Java 1.4.2 on Windows 2000. Figure 5.3 shows the same data,
but only for precision up to 10.000.

Figure 5.2 Performance for π algorithms.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

M
ill

is
ec

on
ds

Precision

Borwein
Chudnovsky

Machin

It is a little disappointing to see the performance numbers. They show that theChud-
novsky component is always fastest and that the Machin component is faster than the
Borwein component up to a precision of ca. 5700 decimals.

The algorithms chosen have very different characteristics, and the hope was that
one algorithm would not always be best. If the Chudnovsky component had been a little
slower, the performance line would cross the steps in the Borwein performance line a
number of times.

84

5.1 Simple Compositions: Calculating Pi

Figure 5.3 Performance for π algorithms for smaller precision.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000

M
ill

is
ec

on
ds

Precision

Borwein
Chudnovsky

Machin

Implementation Resource Usage

A QoS aware QuA component must know how much resources it requires to fulfill a
quality specification. The main resource used by the π components is CPU. Mathemat-
ical operations, such as computing the value of π, use all the CPU power they can get.
This can be confirmed by watching the windows task manager while the components
are running. The task manager shows 100% CPU usage.

Thus, quantifying the requirement for CPUusage for these components is not trivial.
Investigating how to quantify CPU usage properly in this case is beyond the scope for
the experiment. Thus, bogus values are chosen for each component.

The Apfloat library used for high-precisionmath uses the file systemwhen the num-
bers get very big. Thus, there might be some differences in usage of the disk resource.
Disk as a resource is ignored in this experiment.

5.1.1.2 Making the Components QoS Aware

To make the components QoS aware, the QoSAware interface must be implemented,
i.e., a mapping between the wanted QoS and the resources required to provide that QoS
must be created. In this case, a fixed bogus value are used to denote the CPU resource
requirement no matter which QoS is required. These requirements are implemented in
separate classes that extend theQoSAware interface. The implementations are not a part
of the component blueprints. To make the component blueprints QoS aware, we must:

• Add theQoSAware type to the list of types provided by the component blueprints,
i.e., add it to the meta-information for the blueprint.

• Make the component main-class implement the QoSAware interface.

85

5 Experiments

Adding the QoSAware Type to the Blueprint

The types provided by a blueprint are described in the blueprint metafile. Adding the
type to the metafile would be simple, but doing that without actually providing the type
would create an invalid blueprint.

To cleanly separate the QoSAware type, the ideal solution is to let the blueprint only
contain the implementation of the Pi type. Thus, providing the QoSAware type during
blueprint load time is sufficient.

QuA blueprints are loaded into a capsule with a dedicated classloader invoked from
the QuA core. The idea is to intercept the blueprint loading process, and then alter the
blueprint meta-information.

This is achieved with an around advice in AspectWerkz. The advice looks like this
in the aspect description file:

<advice−def name="MakeQoSAwareAdvice"
class="qua.aspects .MakeQoSAware"
deployment−model="perJVM">

<!−− comma separated list of short names for components
that should implement QoSAware−−>

<param name="shortNames" value="MachinPi,BorweinPi,ChudnovskyPi"/>
</advice−def>

This advice is later bound to a pointcut in an aspect:

<pointcut−def name="ConstructComponent"
type="method"
pattern="void
qua.core .componentmanager.ComponentBlueprint.
initComponent (..) " />

<bind−advice pointcut="ConstructComponent">
<advice−ref name="MakeQoSAwareAdvice"/>

</bind−advice>

Each QuA blueprint has a shortname defined in the meta-information for the blue-
print. The advice definition takes a list of shortnames as parameters. The advice imple-
mentation is executed each time the initComponent method of ComponentBlueprint is
called. Then it checks if the shortname matches one of the given shortnames it should
make QoS aware. If it matches, the QoSAware type is added to the blueprint meta-
information.

Thus, this is a reusable aspect. Adding the QoSAware type to a blueprint is a matter
of adding the shortname to the advice parameter.

Adding the QoSAware Interface Implementation

The next step is to add an implementation of the QoSAware interface to the blueprint’s
main class. This is done by using an introduction:

<!−− Themixin implementation for a QoSAwareMachinPI−−>
<introduction−def name="QoSAwareMachinPI"

interface ="qua.types.QoSAware"
implementation="qua.math.aspects.MachinQoSAware"
deployment−model="perJVM"/>

86

5.1 Simple Compositions: Calculating Pi

The introduction definition is later bound to the main class in an aspect:

<!−− Add the QoSAware interface to the MachinPI component−−>
<bind−introduction class="qua.math.MachinPI">

<introduction−ref name="QoSAwareMachinPI"/>
</bind−introduction>

What is meant by binding introductions and advice in an aspect, is to wrap them all
in an aspect tag in the aspect definition file:

<aspect name="MakeQoSAware">
<!−− Advice binding −−>
<!−− Introduction binding −−>

</aspect>

When a test program is started with these aspects enabled, QoS aware versions of
the π components become available.

Making the Client-side QoS Aware

Separating QoS awareness in the component blueprints is not enough to separate the
QoS concern from an application. To enable QoS, the users of the components need to
create a quality specification. This is done by implementing the QualitySpec interface
in the QuA platform and provide that implementation when composing services. The
QualitySpec contains the utility function, which describes the QoS boundaries and the
utility of a given QoS statement.

We may want to separate this quality specification from the application code, or we
may want to enable QoS awareness in an existing application with no notion of QoS. It
is already showed how the components can be made QoS aware with the use of AOP,
but in order to make use of this QoS awareness, the application must provide a quality
specification when the service is composed.

To compose a service, one of the compose() methods in the QuA core is used. In-
tercepting access to the compose methods in order to provide a quality specification is a
straight-forward task.

The problem is to map an external quality specification to a given service. A QuA
service, or service specification, has no external visible identity. This means that it is not
possible to map an external quality specification to a service created in the application.

If we know that the application creates only one service, it is no problem. If this is
the case, we can add an external quality specification to any service composed in QuA.
However, this is a knowledge we seldom have, and that we can not rely on. Utilizing such
knowledge would break the encapsulation in the application and make it fragile.

Alternative Implementation

The implementation described above, used AspectWerkz version 0.8.1. An attempt to
reuse the implementation was made in the audio experiment described in section 5.2.
At this time, AspectWerkz version 2.0 was released, with significant differences and im-
provements. The aspects were ported to AspectWerkz 2.0, but significant bugs were
found in the AspectWerkz implementation. Those bugs made it impossible to use As-
pectWerkz as an AOP framework in the experiment.

87

5 Experiments

After themerger ofAspectWerkz andAspectJ, AspectWerkz is no longermaintained,
which implies that the bugs will not be fixed. Thus, the aspects was ported to use an early
access release of AspectJ 5.

This implementation is different from the AspectWerkz implementation. The aspect
that adds QoSAware to the blueprint description uses the same principles, but a mixin
is no longer used to add the QoSAware implementation to the component main-class.
Instead, the ASM (Bruneton et al., 2002b)3 byte-code manipulation tool was used to
introduce the QoSAware interface to the component main-class.

This is possible because QuA uses its own classloader. An aspect intercepts the load-
ing of the component-main class and uses the ASM tool to alter the byte-code before it
is loaded. This modification adds “implements qua.types.QoSAware” to the signature of
the class. It also adds all the methods defined in the interface, and delegates the method
implementations to a another class. Which class to delegate to is configurable.

The configuration is read from the QuA core, i.e., the properties used to instantiate
a QuA capsule is also used to determine which components should be made QoSAware,
and what class implements the QoSAware interface.

Example:

QoSAware/BorweinPi=qua.qos.QoSAwareBorweinPI

Means that the component with short-name BorweinPI should be made QoSAware,
and that the class qua.qos.QoSAwareBorweinPI contains the implementation of the Qo-
SAware interface. An advantage with using byte-code modification in the classloader
instead of the AOP mixin mechanism to introduce the QoSAware interface, is that we
can add other aspects to QoSAware components. I.e., we can use QoSAware as a point-
cut.

5.1.2 Resource Management

The analysis (section 4.2.2.1 on page 53) suggested that resource reservation can be sep-
arated with aspects, and that access to the resource manager can be made transactional.

Implementing transactional access to the resource manager was straight-forward,
and is similar to the code used as example in the analysis. Separating resource reservation
is also similar to the code used as example in the analysis, but some problems occured.

The example code in the analysis assumes that the instantiated components are avail-
able after a service is planned. Those components are then examined for their resource
requirements, and the resources are reserved. The problem is that the component in-
stances are not available after service planning.

Access to the component instances is fundamental. Not only for resource reserva-
tion, but also for adaptation. It is impossible to adapt a service if you do not know which
objects are part of the service.

Thus, the service planner implementation is changed to save the instantiated compo-
nents in the service context. Each service is supposed to run in its own service context.
Thus, this is a natural place to store the instantiated components. However, this is an
ad-hoc change to the QuA prototype, and a more though through solution should be
incorporated in the QuA architecture.

3See http://asm.objectweb.org/ for more recent information about ASM.

88

http://asm.objectweb.org/

5.2 Complex Compositions: A Distributed Streaming Audio Player

With the component instances available, separation of resource reservation is im-
plemented as suggested in the analysis.

5.1.3 Summary

The experiments shows that QoS awareness can be separated from the component im-
plementations, and that resource reservation can be separated as an aspect.

Separating QoS awareness from the component implementations requires some de-
tailed knowledge about the QuA core, but no information about the component imple-
mentations. This implies that the aspects can be reused for any component, provided
that the necessary parts of the QuA core does not change.

For the various roles in QuA, this implies that the component developer can focus
on implementing components – e.g., π components – and that a QoS expert can add
QoS capabilities to the component (i.e., an implementation of the QoSAware interface)
without having to change the component implementation.

Separating resource reservation and transactional access to the resource manager
requires no knowledge about the intrinsics of the QuA core – only knowledge of the
contractual specification of the resource manager and the service planner. An ad-hoc
solution had to be created in order to get access to the component instances used in a
service. This indicates a flaw in the QuA architecture more than a need for special im-
plementation knowledge. Thus, the aspects for resource reservation should be reusable
with any service planner or resource manager that follows the contractual specification
for service planners or resource managers.

For the various roles in QuA, this implies that resource management is of no con-
cern for neither the platform developer (i.e., the developer who implements the service
planner), the component developer nor the application developer. The role responsible
for enabling the aspects is the deployer. The deployer is responsible for configuring the
middleware to suit the application’s needs. Thus, he must enable the aspects needed
for resource management and static QoS. The aspects are enabled by adding some pa-
rameters to the java VM that runs the QuA capsule. Adding those parameters are the
responsibility of the deployer.

The use of π as an example was useful in the analysis. The use of π led to a dis-
cussion of monitoring of discrete services and showed problems with monitoring and
adaptation in such services. The use of π was not useful in the prototype implementa-
tions. Instead, simple components that returns “Hello World” with different QoS and
resource requirements would have been sufficient.

5.2 ComplexCompositions: ADistributed StreamingAudio Player

This experiement looks at more complex compositions, i.e., distributed compositions
containingmany components. The experiment implements an application for streaming
audio data in real-time using UDP. The main goal of the experiment is to see whether
the composition can be adapted during run-time. Both parameter- and compositional
adaptation is investigated. The experiment also looks at some simple QoS monitoring.

See the analysis in section 4.3 on page 59 for the rationale for the experiment.

89

5 Experiments

5.2.1 Implementing an Audio Service

The initial audio service used as a basis for the experiment with aspects, was imple-
mented in cooperation with Øyvind Matheson Wergeland. Wergeland needed a proof-
of-concept implementation for his master’s thesis on the QuA Java prototype (Werge-
land, 2005), and I needed it to experiment with aspects.

The audio service tries to resemble the service discussed in the analysis; an audio
source streams audio to an audio encoder, which sends data to an audio decoder by using
anUDP binding, which streams audio to a speaker. In the analysis, a microphone is used
as audio source. Using amicrophone as audio source is cumbersome to experiment with.
Instead, this prototype uses a wave file as audio source. A delay is created in the audio
file provider to simulate real-time production of audio data.

To implement the components, the Java Sound API is used. Additional functionality
for converting sample rate, sample size, etc uses Tritonus4, an alternative Java SoundAPI
implementation. The initial implementation of the audio service was not QoS aware.
The initial implementation was created with the sole purpose of implementing an audio
service with the QuA Java prototype. Support for monitoring or adaptation was not a
concern in the initial implementation – the code had to be refactored later to add support
for those concerns.

5.2.1.1 Audio Codecs

To encode audio, audio codecs for speech were chosen. There are not many freely avail-
able Java implementations for speech codecs. E.g., codec implementations for G.723 or
G.729 are only available commercially.

We found two freely available codecs: GSM and Speex. The GSM codec is available
as a part of the Tritonus distribution, and Speex is available from http://www.speex.org/.
In addition, Tritonus supports a-law and µ-law encoding. Thismakes it possible to create
a G.711 codec implementation. Only GSM and Speex are used in the prototype.

Figure 5.4 The service composition for streaming GSM.

QuA Capsule BQuA Capsule A

SpeakerGSMDecoderAudioFileReader GSMEncoder

AudioSource

AudioSink RTDataSource RTDataSink

AudioSource

AudioSink

AudioConverter

AudioSink

AudioSource

RTDataSource RTDataSink RTDataBuffer

RTDataSink

UDPSource

UDPSink

RTDataSource

RTDataSink

RTDataSource

The GSM codec imposes some restrictions to the audio stream it receives; it only
accepts 16 bit PCM signed mono little endian data with a sample rate of 8kHz. In order
tomake sure that it receives acceptable data, a converter component is created and placed

4See http://tritonus.org/ for more information about Tritonus.

90

http://www.speex.org/
http://tritonus.org/

5.2 Complex Compositions: A Distributed Streaming Audio Player

in front of the GSM encoder in the service composition. The resulting composition can
be seen in figure 5.4.

The figure is similar to figure 4.1 in the analysis chapter (section 4.3 on page 59). The
figure shows that the service composition spans two QuA capsules using UDP to send
real-time data between them. The QuA capsules can run on different hosts.

Figure 5.5 shows the most important interfaces provided and required by the com-
ponents in the service. Note that the AudioInputStream used in the AudioSink interface
is part of the Java Sound API.

Figure 5.5 UML class diagram showing the most important interfaces.

+setAudioSink(in audioSink : AudioSink)

«interface»
AudioSource

+setAudioInputStream(in ais : AudioInputStream)

«interface»
AudioSink

+getSeqNo() : int
+getEncoding() : int
+getChannels() : int
+getSampleRate() : float
+getFrameRate() : float
+getFrameSize() : int
+getNumberOfFrames() : int
+getData() : byte[]
+getOffset() : int
+getLength() : int
+getTimestamp() : long

«interface»
RTPacket

+setRTDataSink(in sink : RTDataSink)

«interface»
RTDataSource

+getImplementedCodec() : int

«interface»
AudioEncoder

+receive(in packet : RTPacket)

«interface»
RTDataSink

+getImplementedCodec() : int

«interface»
AudioDecoder

The GSM codec only supports one configuration: 8 bit sample size, 8kHz sample
rate and one channel only. The Speex codec supports multiple configurations; 8, 16 and
32 kHz sample rate and one or two channels, i.e., mono or stereo sound. In addition,
it supports features such as variable bit rate (VBR), average bit rate (ABR), and voice
activity detection (VAD)5.

A service using the Speex codec is similar to the service using GSM. Speex also needs
a converter component. If the Speex encoder should use 32kHz sample rate and two
channels, the audio input has to use the same configuration.

5.2.1.2 Extending the QoSAware Type

The features of the Speex codec adds some possibilities to a Speex component; one com-
ponent can support different configurations. This requires changes to the QoSAware
type. The QoSAware type is able to answer how much resources is required to support
a QoS statement. With multiple component configurations available, a QoS statement
might map to multiple resource requirements – one requirement for each component
configuration that fulfills the QoS statement. Support for multiple configurations of

5Those features are described in the analysis chapter, section 4.3.1.1 on page 60

91

5 Experiments

components can also be seen in middleware such as COMQUAD (Göbel et al., 2004b)6.
In COMQUAD, a component can have multiple profiles, which correspond to multiple
configurations.

Figure 5.6 The enhanced QoSAware type.

+requiredResources(in qosStatement : QoSStatement) : Collection<ResourceStatement>
+configure(in qosStatement : QoSStatement, in resourceStatement : ResourceStatement)
+getConfiguredResources() : ResourceStatement
+getConfiguredQoS() : QoSStatement

QoSAware

Figure 5.6 shows the enhanced QoSAware type. The requiredResources method is
changed from returning a ResourceStatement to returning a collection of resource state-
ments.

Withmultiple configurations possible, the componentmust be configured to use one
of them. Thus, a configure method is added to the type. Other parts of the systemmight
want to know the configuration of the component, thus, the getConfiguredResources and
getConfiguredQoS methods are included. E.g., the aspect for resource reservation uses
the getConfiguredResourcesmethod in order to decide which resources to reserve.

5.2.1.3 Component Implementations

This section describes the component implementations. Most of the details are left out,
but some important details and concepts needed to understand how the service works
are described.

Audio Components and the Java Sound API

The AudioInputStream object is essential in the Java sound API. An AudioInputStream
is used as input to converters, encoders and the speaker (actually a mixer). To create an
AudioInputStream, you either need a file containing audio data, another AudioInput-
Stream, or a generic InputStream together with a description of the audio format in the
stream.

In the audio service, packets with byte arrays are used to send audio samples between
many of the components. To make an array of bytes readable from an InputStream, the
PipedInputStream and PipedOutputStream objects provided by the java.io package can
be used. The only alternative is to implement an InputStream taking byte arrays as input
yourself.

APipedOutputStream is connected to a PipedInputStream. Connected piped streams
allows you to write a byte array to the output stream, and read the bytes from the input
stream. Reading from the input stream and writing to the output stream has to occur in
separate threads. If this happens in the same thread, the thread will be blocked. Thus,
all components that takes a byte array of sound samples as input in order to convert or
encode the sound samples, will need to create separate threads.

The audio encoders, i.e., the Speex and GSM encoders, read audio samples from
an AudioInputStream and provides a new AudioInputStream containing the encoded

6See section 2.7.1 on page 25 for a description of COMQUAD.

92

5.2 Complex Compositions: A Distributed Streaming Audio Player

samples. The encoders need audio input with the same format they use as output. E.g.,
CD samples use a sample rate of 44.1kHz and two channels, but GSM uses a sample rate
of 8kHz and one channel. Thus, the GSM encoder needs an audio streamwith 8kHz and
one channel as input. The Speex encoder can use different configurations, e.g., 8kHz,
16kHZ or 32kHz sample rate and one or two channels – but it needs audio samples with
a corresponding format to encode the samples.

To convert the samples to the format required by the encoders, the converters from
the Tritonus distribution is used. Those converters can not convert from 44.1kHz stereo
to 8kHz mono in one step, but requires separate steps for sample rate, number of chan-
nels, and other characteristics of the audio format. Thus, a separate component that
identifies the necessary steps is created for converting audio samples.

There may be some cases where an audio converter is needed after decoding. After
decoding, the audio format is the same format as used in the codec, e.g., 8kHz mono
for GSM. Not all sound cards are capable of playing that format. In those situations,
an audio converter is needed between the decoder and the speaker. All soundcards the
prototype has been tested on are capable of playing all the output formats used by the
codecs. Thus, no converter is added after the decoder.

The Real-Time Binding

The audio samples are sent over the network using UDP. A protocol inspired by RTP is
used to packetize the samples. Figure 5.5 on page 91 shows the interface for theRTPacket.
The packets sent over the network contains most of the fields described in that interface
(some of the fields can be derived from others and are not sent over the wire).

The RTDataSource component responsible for sending the packets using UDP, re-
ceives single frames of audio from the encoders. E.g., the GSM encoder sends single
frames, each containing 33 bytes. If each frame is sent immediatly by the RTDataSource
component, we would waste a lot of bandwidth. The IP and UDP protocols add 28 bytes
of overhead to each packet sent, 48 bytes if IPv6 is used. In addition, the packets created
by the RTDataSource component adds 16 bytes of overhead. Thus, each packet sent adds
44 bytes of overhead, or 64 bytes of overhead if IPv6 is used. This does not count the
overhead added by the lower layers, e.g., Ethernet or ATM.

Adding an overhead of 44 bytes to send 33 bytes of GSM data will use nearly 60%
of the bandwidth for protocol overhead. Thus, the RTDataSource component is able to
delay the received audio frames and send packets containing multiple frames over the
network. The component can be configuredwith themaximumpacket size and the delay
to use. The maximum packet size should not be greater than the MTU of the network
connection to prevent packet fragmentation. The delay is added to prevent starvation.
E.g., if the last audio frame is received before the maximum packet size is reached, the
packet will never be sent if a maximum delay is not used. When the maximum delay is
reached, the packet is sent even if the packet has not reached its maximum size.

The AudioFileReader component used in the prototype tries to simulate a real-time
audio source by adding a delay after each packet it sends. Without this delay, the packets
would be sent very fast over the network, and thus filling up the buffer on the receiving
side.

The buffer on the receiving side is also part of the real-time binding. The buffer
smooths out bursts of data, and is able to use the sequence number in the packets to

93

5 Experiments

reorder them if they are received out of order. The buffer can also be configured with
a maximum size and delay. A separate thread reads packets from the buffer, and sends
them to the decoder in a timely fashion, i.e., the data is pushed from the buffer, and not
pulled from the decoder.

5.2.2 Creating a QoS Aware Player Application

To experiment with the audio service, a test application with a graphical user interface
is needed. A GUI is needed to display output from QoS monitoring, and to change
parameters for the service during run-time.

Figure 5.7 A screenshot of the test application.

AudioFileReader is using RTDataSink as target
Application log

Composition ready for execution
Starting to play..
Initialize composition
Connecting to //kain.tengvig.net/capsule2
Discover remote capsule...
Init volatile repository and get default service context
Constructing QuA controller...

Status log

500Decode latency 3000Buffer size

1392Max payload 120Packet interval

Speex 32kHz stereoCodec

Property selection

5MOS 32000.0Samplerate

0:34Time played 2188290Samples played

1094145Frames played 32000.0Frame rate

Sound

0Packet loss 18.0Jitter 2

14.0Jitter 1 51Latency 1

500Buffer latency

11%Buffer used

402558Bytes transferred

308RTPackets

Network and RT Binding

qrap://kain.tengvig.net/capsule2QuA URL:

HelpFile

Figure 5.7 shows a screenshot of the audio player test application. The QuA URL
at the top points to the remote capsule – the capsule acting as audio source (shown as
“QuA Capsule A” in figure 5.4 on page 90). The path to the audio file acting as audio
source is placed in a configuration file.

The left side of the GUI contains output from various monitors, and the right side
contains properties that can be set for the service. Those properties can be changed
during run-time.

There is no generic monitor component created for the QuA prototype. The test ap-
plication uses its own ad-hoc monitor. This is a singleton object that monitoring aspects
can report to. A thread reads the state of the monitor every 200ms in order to update
the GUI.

5.2.2.1 Creating QoS Aware Components

To make the components in the composition QoS aware, the method used in the al-
ternative implementation for the π components are reused (see section 5.1.1.2 on page
87). The implementation of the QoSAware interface is implemented separate from the

94

5.2 Complex Compositions: A Distributed Streaming Audio Player

component implementations and is weaved in by an aspect.
There is no need to have accurate implementations of the QoSAware interface in

this experiment, i.e, the components do not need to report accurate measures of their
resource demands. The only reason for making the components QoS aware is to ex-
periment with them. The following mapping between QoS requirements and resource
demands are implemented7:

AudioFileReader This component needs memory. This is hard-coded to use 5kB of
memory no matter the QoS requirements.

GSMEncoder This component always needs 2kBmemory, 7%CPUand13.2kbps band-
width. If the component is not able to fulfill its QoS requirements (e.g., a high
value for MOS or sample rate is specified), it requires an impossible amount of
resources to prevent being selected.

GSMDecoder This component always needs 2kBmemory and 5%CPU.The samepred-
icate as used above for the encoder determines whether the component is able to
fulfill the QoS requirements.

SpeexEncoder This component always uses 3.5kB memory and 25% CPU. Bandwidth
is calculated based on MOS and number of channels.

SpeexDecoder This component always uses 3kB memory and 10% CPU.

RTPBindingSender This component always uses 1% CPU. Memory and bandwith us-
age is a function of delay. The sender component adds 48 bytes of overhead to
each packet sent. A decrease in delay requires sending of more packets, which
requires more bandwith.

RTPBindingReceiver This component always requires 2% CPU no matter the QoS re-
quirements.

RTDataBuffer This component requires memory as a function of delay and jitter, i.e.,
the size of the buffer depends on the delay it introduces.

This mapping is neither accurate nor complete. E.g., many of the components re-
quire separate threads. This is not stated as a resource requirement. However, this is
sufficient to select and configure components based on QoS requirements and available
resources.

The generic implementation planner – i.e., the implementation planner used for
planning QoS aware services – does not support remote repositories8. This implies that
experiments requiring QoS aware services can not be distributed on different capsules.
However, it should be possible to experiment with monitoring and adaptation of dis-
tributed services without requiring a QoS aware service.

7The components described here do not match the component composition in figure 5.4. Instead, the
component composition shown in figure 5.8 on page 97 is used. The rationale for changing the service is
described in section 5.2.4 on page 97

8See section 3.1.2 on page 37 for a description of service planning with the QuA Java prototype and for
the distinction between the generic and the basic implementation planner.

95

5 Experiments

5.2.3 QoS Monitoring

The analysis suggested that separatingmonitoring ofQoS as aspects is a straight-forward
task (section 4.3.3 on page 63). Monitoring of most of the QoS dimensions discussed in
the analysis are implemented in the following aspects:

DecoderMonitor This aspect intercepts the receivemethod in all AudioDecoder com-
ponents. It inspects the RTPackets received in order to determine packet loss,MOS
and sample rate.

RTMonitor This aspect intercepts the buffer component. It intercepts the receivemeth-
od in order to monitor latency and jitter. The jitter monitored here is the jitter
until the packet reaches the buffer, it is not the experienced jitter for the user of
the service. Thus, the smoothing of jitter performed by the buffer is not reflected
here. This measure of jitter is shown as “Jitter 1” in figure 5.7.

The latency monitored here is the latency from the first audio sample was read
by the AudioFileReader component until it reaches the buffer. I.e., latency added
by the audio encoder (a GSM packet contains 20ms of sound), the grouping of
audio frames in the RTDataSource component, and latency in the network. This
is shown as “Latency 1” in figure 5.7.

Jitter is calculated as described in the RTP (RFC 3550) specification. This aspect
also monitors the number of bytes received.

RTBufferMonitor This aspect intercepts the buffer component in order to monitor the
latency in the buffer. This is based on how long time a packet spends in the buffer
until it is sent to an RTDataSink. This aspect also monitors the jitter based on
when the packets leave the buffer – i.e., the smoothing of jitter in the buffer is
accounted for. This measure of jitter is shown as “Jitter 2” in figure 5.7.

LineListener This aspect intercepts all calls to the Java sound APIs SourceDataLine ob-
ject, i.e., writing of data to the speaker. The aspects monitors sample size, sam-
ple rate, and other characteristics of the audio format. This is a highly inefficient
aspect, as a separate method call is used for every audio frame. For GSM, this
method is called 50 times pr second.

All the relevant information for monitoring QoS is monitored in the aspects de-
scribed above. This aspect is mainly used for debugging. It is described here be-
cause it is responsible for the remaining fields shown in the test application.

All the aspects operate on the component specifications, i.e., the Java interfaces the
components must implement. This implies that the aspects are not special for a given
component implementation, but is valid for all components that implement the required
types. All monitoring aspects report to the QoS monitor in the test application, no
generic monitor component is created.

Only the latency from the first sample is sent to the encoder until it reaches the de-
coder is monitored. The time spent in the decoding process is not monitored. This
latency is measured in the prototype implementation, and is found to be neglible.

96

5.2 Complex Compositions: A Distributed Streaming Audio Player

5.2.4 Adaptation

The analysis (section 4.3.5 on page 66) has a simple idea for adaptation: Use aspects to
add a layer of indirection and redirect calls to adapted components in this layer. There
are some requirements on the service to make it adaptable:

1. The original service and the adapted service must be isomorph – i.e., the same
service specification can be used for both services.

2. All dependencies between components must be stated in the service specification.

The second requirement is not satisfied in the audio service shown in figure 5.4 (page
90). The encoder components require a converter component to receive audio data with
correct sample rate. The analysis suggests solving such dependencies by creating com-
posite components, i.e., a composite encoder component containing both the converter
component and the encoder component.

Another requirement, not mentioned in the analysis, is that all the components and
bindings in the service must be QoS aware. This is not the case for the service in fig-
ure 5.4. The AudioInputStream class from the Java sound API is used as a binding be-
tweenmany components (allAudioSource/AudioSink bindings useAudioInputStream as
a binding).

Themethod for adapting components suggested in the analysis, adapts a component
when a method is called on the component. If AudioInputStream is used as a binding,
no methods are called on the receiving end (e.g., an encoder) – data is written to the
stream by the sender, and read from the stream by the receiver. This makes it impossi-
ble to adapt the receiver with the method suggested in the analysis. With a QoS aware
AudioInputStream, we could adapt the binding in order to adapt the receiver, but the
AudioInputStream is not QoS aware.

Figure 5.8 The improved audio service.

QuA Capsule BQuA Capsule A

SpeakerAudioDecoder

AudioFileReader AudioEncoder

RTDataSource

RTDataSource

RTDataSink

RTDataSource

RTDataSink

RTDataSink

RTPBinding
Sender

RTPBinding
Receiver RTDataBuffer

RTDataSink

UDPSource

UDPSink

RTDataSource

RTDataSink

RTDataSource

Figure 5.8 shows an improved audio service. The dependency between the converter
component and the encoder components is removed. The QuA Java prototype does not
support composite components, instead, the converter is made a part of the encoder
components.

The use ofAudioInputStreamas a binding between components is removed. Instead,
all components use the RTDataSink/RTDataSource binding.

97

5 Experiments

5.2.4.1 Architectural Reflection

To adapt a component, or a service, as suggested in the analysis, the adaptation mecha-
nism needs knowledge about the service composition. We need to know the following:

• The service specification. This includes the binding specification and the quality
specification.

• Which components are part of the service, i.e., which component blueprint in-
stances are used.

• Which service context are used. The service context provides access to the re-
sourcemanager and to the planners needed to instantiate QoS aware components.

All this information is available when a service is planned, but it is not kept any-
where after service planning is finished. Aspects can collect this information and make
it available to the adaptation mechanism. The analysis (section 4.3.5.2 on page 68) sug-
gests using the AOP mixin mechanism to add a reflective interface to QuA components
that provides access to this information.

There is one problem with using the mixin approach; QuA components does not
have a place where one could add a pointcut. From an AOP perspective, a QuA compo-
nent looks like any other Java object.

The CORBA binding for Java usesmarker interfaces to solve a similar problem. IDL
generated interfaces implements an empty interface, IDLEntity, whose only purpose is
to inform the CORBA marshaller that a corresponding helper class exists.

If QuA components had to implement an interface, we could create pointcuts on that
interface. Forcing components to implement an interface is not an unusual approach.
E.g., Fractal (Bruneton et al., 2002a) components must implement the ComponentIden-
tity interface.

To avoid forcing components to implement an interface, we could use the Java dy-
namic proxy mechanism. QuA components are instantiated by theQuAComponent fac-
tory object. This object could add dynamic proxies to all the instantiated components.
There are a few limitations to dynamic proxies. Dynamic proxies do not alter the behav-
ior of the object under consideration, they only add a proxy to the object. As dynamic
proxies are created during run-time, they can not be used as a basis for a pointcut.

To avoid forcing the components to implement an interface, and to avoid the prob-
lems with dynamic proxies, the same mechanism as used in the alternative QoS aware
implementation for the π components is used9. This implementation used byte-code
manipulation to add the QoSAware interface to selected components. The same mech-
anism can also be used to add an arbitrary interface to any QuA component. When the
interface is added in the byte-code before the class is loaded by a classloader, it can be
used as a pointcut by an AOP framework that supports load-time weaving.

The byte-code modification mechanism is used to add an interface, ReifiableQuA-
Component, to the main-class of all QuA components. This interface supports one met-
hod, reify(), which returns a meta-component for the QuA component.

9The alternative QoS aware implementation for the π components are described in section 5.1.1.2 on
page 87.

98

5.2 Complex Compositions: A Distributed Streaming Audio Player

Figure 5.9 UML Class diagram showing the meta-model for components.

SomeComponent
+reify() : QuAMetaComponent

«interface»
ReifiableQuAComponent

+getShortName() : string
+getVersion() : string
+getImplementedTypes() : QuAName[]
+getRequiredTypes() : QuAName[]

QuAComponent

+getQuAComponent() : QuAComponent
+getMetaService() : QuAMetaService
+getInstanceQuAName() : QuAName

«interface»
QuAMetaComponent

+getServiceSpec() : ServiceSpec
+getQualitySpec() : QualitySpec
+getServiceContext() : ServiceContext
+getComposedService() : Map<String, QuAName>

«interface»
QuAMetaService+getResourceManager() : ResourceManager

+getBindingPlanner() : BindingPlanner
+getCompositionPlanner() : CompositionPlanner
+instantiate() : QuAName
+resolve() : QuAName
+bind()

ServiceContext

ServiceSpec

QualitySpec

Figure 5.9 shows a UML class diagram describing the meta-model provided by the
reify method. The figure shows an arbitrary component, SomeComponent, whose byte-
code has been modified to include an implementation of the ReifiableQuAComponent
interface. This interface provides the reify method, which gives access to the QuAMeta-
Component.

The QuAMetaComponent provides access to the QuAComponent10 object. This ob-
ject provides meta-information about a component. E.g., its short-name, version, requ-
ired-types, etc. The diagram in figure 5.9 shows only the most important methods of the
QuAComponent.

If the component is part of a service, the QuAMetaComponent also provides ac-
cess to meta-information about the service. This meta-information includes informa-
tion about the component instances used in the service.

The ReifiableQuAComponent interface is added by using byte-code manipulation
and the meta-model is populated with aspects. The QuAComponent is added to the
meta-model when the component is instantiated, and the QuAMetaService is added to
the meta-model when the service planned. The instanceQuAName in QuAMetaCom-
ponent is added when the component is added to a repository.

Some extra precautionmust be takenwhen the service includes remote components.
In the audio service, there are remote components (e.g., the encoder). The aspect that
populates the meta-service checks all the components that are part of the composition.
If a component is remote, it will instantiate a helper component, QuAQRAPReflection,
in the remote capsule. The aspect then sends all the information necessary to popu-
late the QuAMetaService object for the remote component to the QuAQRAPReflection
component. The only exception is the QualitySpec, which is an interface implemented
by the user of the service. The QuAQRAPReflection component will then populate the

10TheQuAComponent objectwas calledComponentBlueprint in early versions of theQuA Java prototype.
This name is used in the section describing the π components. In the prototype version used here, it is
called QuAComponent, and in the newest version of the QuA Java prototype, the name has changed back
to ComponentBlueprint.

99

5 Experiments

QuAMetaService object for the remote component. Thus, all the components in the
composition will have meta-information attached.

This meta-model adds limited support for architectural reflection to QuA. It is lim-
ited because it only supports introspection. I.e., it only allows reading of themeta-model,
not modification of it. The meta-model is added with aspects. I.e., the byte-code ma-
nipulation mechanism is added with aspects, and the population of the meta-model is
added with aspects. This implies that support for architectural reflection is configurable.
If architectural reflection is needed, the aspects can be added at startup. If architectural
reflection is not needed, there is no need to add the aspects.

5.2.4.2 The Adaptation Aspect

An adaptation aspect intercepts all QoS aware components. The analysis has suggestions
on how such an aspectmight look like (figure 4.3.1 and figure 4.3.2 on page 67). The sug-
gestions in the analysis uses AspectWerkz features with AspectJ syntax. The ability for
an around advice to proceed to a different target is an AspectWerkz feature. To imple-
ment this with AspectJ, we have to use the Java reflection API to invoke a method on a
different object.

The implemented adaptation aspect is based on the suggestion in the analysis.

Figure 5.10 Pseudo-code for the adaptation aspect.

aspect AdaptationAspect {
pointcut accessQoSAware: execution(public * qua.types .QoSAware +.*(..)) &&

!cflowbelow(within(AdaptationAspect))

Object around(): accessQoSAware {
ReifiableQuAComponent targetComponent = (ReifiableQuAComponent)jp.getTarget();
QuAName instanceName = targetComponent.reify().getInstanceQuAName();
ServiceContext ctx = targetComponent.reify (). getServiceContext ();
AdaptationManager am = ctx.getAdaptationManager();

Object newTarget = am.getNewTarget(instanceName);
if (newTarget != null) {
// Proceed to the adapted component
return proceedToNewTargetUsingReflection(newTarget);

} else {
// No adapted component exists , proceed to original target
return proceed();

}
}

}

Figure 5.10 shows pseudo-code for the adaptation aspect. All public methods on ob-
jects that implement the QoSAware interface are intercepted. The adaptationmanager is
asked for a replacement object for the target component, i.e., a new adapted component.
If an adapted component exists, execution proceeds to that component. If not, execution
proceeds normally.

100

5.2 Complex Compositions: A Distributed Streaming Audio Player

5.2.4.3 The Adaptation Manager

The adaptation aspect uses an adaptation manager to determine which component sho-
uld execute a request. TheQuA Java prototype is changed to include an adaptationman-
ager component. This component is loaded when a capsule is initialized and is available
from the service context.

Figure 5.11 The adaptation manager interface.

+getNewTarget(in oldTarget : QuAName) : object
+setNewTarget(in originalTargetInstance : object, in newTargetInstance : object)
+adaptComponent(in componentInstance : object)
+adaptService(in componentInstance : object)

«interface»
AdaptationManager

Figure 5.11 shows the interface for the adaptation manager:

getNewTarget This method is used by the adaptation aspect. The oldTargetInstance
parameter refers the component under consideration. The return value is a new
component that replaces the original, or null, if no replacement exists.

setNewTarget This method adapts a component. The originalTargetInstance adapts
to newTargetInstance. This method supports both compositional and parameter
adaptation.

adaptComponent This method uses the service planner to find a new component. Ar-
chitectural reflection is used to get the quality specification of the original com-
ponent. This specification is used when requesting a new component.

adaptService This method adapts a complete service. The parameter is a component in
the service. Architectural reflection is used get access to the service specification
for the service.

Compositional and Parameter Adaptation

Most of the work is performed in the setNewTarget method. This method will:

1. Determine whether compositional or parameter adaptation should be used.

2. Transfer bindings from the original to the new component if compositional adap-
tation is used.

3. Update the reflection of the service.

4. Stop the original component and start the new component.

If the old and new component refers to the same blueprint, e.g., both refers to a
SpeexEncoder component, parameter adaptation can be used. A requirement for using
parameter adaptation is that the component implements the Reconfigurable interface.
This interface contains one method:

void reconfigure (QoSStatement qs, ResourceStatement rs);

101

5 Experiments

The parameters are the same as in the configure method in the QoSAware inter-
face. When parameter adaptation is used, the old component is reconfigured to use the
QoSStatement and ResourceStatement in the new component.

If parameter adaptation can not be used, compositional adaptation is used. This will
replace the original component with a new component. When a component is compo-
sitionally adapted, each call to getNewTarget, with the old component as parameter, will
return the new component.

The new component must inherit the bindings from the original component. E.g.,
if the adapted component is an encoder, it must use the same RTDataSink as the origi-
nal component. All the bindings are available in the reified service, i.e., the QuAMeta-
Component andQuAMetaService. The meta service is inspected for bindings, and those
bindings are transferred to the new component.

Many of the components in the service start their own threads. This means that they
must be started and stopped when adaptation occurs. This situation is not handled in
the analysis, and shows a weakness in the analysis.

Tomake the adaptationmanager able to start and stop components, a new interface is
introduced: ActiveComponent. This interface contains two methods: startComponent()
and stopComponent(). If a component implements this interface, the adaptation man-
ager will stop the old component and start the new component. The notion of active
components can also be found in COMQUAD (Göbel et al., 2004b)11.

When a component is adapted, the reflection of the service it is part of must also be
updated. The QuAMetaService objects contains a map from role name to QuA name.
Role name is the role name in the service specification, e.g., “encoder”. The adaptation
manager updates the meta-service to use the new component.

Optimizing Compositional Adaptation

Adapting a component adds an extra layer of indirection. If a component is adapted
more than once, we get multiple layers of indirection. This can be optimized in the
adaptation manager.

E.g., assume that the original audio service uses a GSMEncoder component. This
component adapts to a SpeexEncoder, and then back to a GSMEncoder. When the re-
ceive method on the original GSMEncoder is called, the adaptation aspect will ask the
adaptation manager for a new component. The adaptation manager returns the Speex-
Encoder, and the adaptation manager proceeds execution to the SpeexEncoder.

The adaptation aspect will intercept the invocation of the SpeexEncoder, and ask the
adaptation manager for a new component. The adaptation manager returns a GSMEn-
coder, and the aspects proceeds execution to the GSMEncoder.

Figure 5.12(a) shows a UML sequence diagram describing this situation. The se-
quence diagram is simplified for brevity, the adaptation manager and the adaptation
aspect is not shown.

The adaptationmanager optimizes the situation in figure 5.12(a). When the setNew-
Targetmethod is called with the Speex encoder as the original component and the GSM
encoder as the new component, the adaptation manager recongnizes the Speex encoder
as a new target for the original GSM encoder. Thus, the new GSM encoder is not only

11See section 2.7.1 on page 25 for a description of COMQUAD.

102

5.2 Complex Compositions: A Distributed Streaming Audio Player

Figure 5.12 Simplified UML sequence diagrams for adapted components.

AudioFileReader GSMEncoder SpeexEncoder GSMEncoder RTPBindingSender

receive

findNewTarget

receive()

findNewTarget()

receive()

receive()

(a) Unoptimized adaptation.

AudioFileReader GSMEncoder GSMEncoder RTPBindingSender

receive

findNewTarget

receive

receive

(b) Optimized adaptation.

AudioFileReader GSMEncoder RTPBindingSender

receive

receive

(c) Adaptation with altered bind-
ings.

a replacement component for the Speex encoder, but also a replacement component for
the original GSM encoder.

The situation in figure 5.12(b) can be further optimized. The binding specification in
the meta-service is used to find all components having bindings to the adapted compo-
nent. In the audio service, the AudioFileReader is the only component having a binding
to the encoder. The adaptation manager uses the meta service to change the bindings in
the AudioFileReader component to use the new encoder component.

Not all components support change of bindings during run-time. The adaptation
manager requires that a component must implement the ReconfigurableBindingsmarker
interface in order to change bindings during run-time. TheAudioFileReader component
implements this interface. Figure 5.12(c) shows the result of this optimization.

Transferring State

When compositional adaptation is used on components that need to transfer state, the
memento pattern (Gamma et al., 1995) is used. This is the case for the RTDataBuffer
component.

The adaptation manager checks whether the new and the original component im-
plements the MementoOriginator interface. If they do, a memento is transferred from
the original component to the new component.

103

5 Experiments

Adapting a Complete Service

The adaptServicemethod in the adaptationmanager adapts a complete service. The only
parameter to the method is an object that is part of the service. The adaptation manager
uses architectural reflection on this object in order to retrieve the service specification
and the quality specification for the service.

This is used to compose a new service using the original quality specification. The
adaptation manager iterates through all components in the new service and adapts the
corresponding component in the original service. The setNewTarget method is used for
this. This implies that parameter adaptation is used when possible and that composi-
tional adaptation is used when parameter adaptation can not be used.

The adaptServicemethod can only be used in the sameQuA capsule that created the
original service. This is because the quality specification is not accessible in remote cap-
sules. Amore sophisticated implementation of the adaptationmanager could idententify
the capsule that created the original service, and delegate adaptation to the adaptation
manager in that capsule.

Adapting the Decoder Components

The encoder component and the decoder component must support the same codec. If
the encoder changes fromusingGSM to using Speex, the decodermust also change from
using GSM to using Speex. There is no way to state this dependency in the QuA Java
prototype. If the encoder change, we can not state that the decoder also has to change.

This situation is described in the analysis, section 4.3.5.2 on page 70. The analysis
suggests making a dedicated aspect for handling the situation.

An aspect is added to intercept calls to the AudioDecoder.receive() method. All de-
coders receive audio packets with that method. The aspect then inspects the received
RTPacket. This packet contains information about the codec used. The codec in the
packet is compared with the codec implemented by the decoder. If they use different
codecs, the decoder must adapt. The method getImplementedCodec was added to the
AudioDecoder interface in order to make it more convenient for the aspect to detect
which codec the decoder component implements.

The aspect uses the QoS aware service planner to find a new decoder component
supporting the codec in the packet. To make it possible for the service planner to find
a component that implements a given codec, a quality dimension for codec is added to
the quality model for audio. I.e., a QoS constraint that determines which codec to use
can be included in the service planning process.

The aspects that adapts the decoder is dependent on the adaptation aspect described
in section 5.2.4.2. The decoder aspect must have precedence over the adaptation aspect.
If a packet containing Speex encoded data is sent to a GSM decoder, the decoder aspect
must run first in order to set a new target for the GSM decoder. If the adaptation aspect
runs first, the new decoder component will not be used until the next packet with audio
data arrives. Thus, we will loose one audio packet as the GSM decoder will discard
packets containing other codecs.

104

5.2 Complex Compositions: A Distributed Streaming Audio Player

5.2.5 Resource Management

The aspects for resource reservation created in the π component experiment (see section
5.1.2 on page 88) are reused in the audio service. The resource reservation aspects re-
quire a QoS aware service. This is because the aspects read the components’ configured
resource requirements from the getConfiguredResources()method in the QoSAware in-
terface, and this configuration is set by the QoS aware generic implementation planner.

The aspect is extended to also separate resource management from the adaptation
manager. There are two methods in the adaptation manager that instantiates new com-
ponents: adaptComponent and adaptService. Bothmethods need to release resources for
the original component before instantiating a new component. If resources are not re-
leased first, there might not be enough resources left to instantiate the new component.
The resource reservation aspects are extended to handle the resource management re-
quired by those methods.

As theQoS aware generic implementation planner does not support remote capsules,
the resource reservation aspects are only tested on a version of the audio service that do
not use remote capsules, i.e., both the audio source and the audio sink run in the same
capsule. This local service still uses UDP for transferring audio packets.

If the generic implementation planner supported remote capsules, we could not
reuse the resource reservation aspects without modification. In a distributed service,
the resource reservation aspects would only reserve resources in the local capsule. To
make them work for distributed services, the same technique as used for architectural
reflection could be used; make the resource reservation aspects instantiate a helper com-
ponent in the remote capsule and use this component to reserve the remote resources.

This approach is not implemented as it is difficult to test it without support for remote
capsules in the generic implementation planner. However, the same concept is tested
with the architectural reflection aspects and should also work in this case.

5.2.6 Testing the Adaptation Mechanism

The audio player test application described in section 5.2.2 on page 94 is used for testing
the adaptation mechanism.

5.2.6.1 Testing with a Local Capsule

As the QoS aware service planner in the QuA prototype does not support remote repos-
itories, the main part of the testing is done with a local QuA capsule. Using a local
QuA capsule implies that the encoder and the decoder reside in the same QuA capsule.
However, UDP is still used for sending audio packets between the RTPBindingSender
component and the RTPBindingReceiver component.

Adapting the Decoders

The first test checks whether adaptation of the decoders work. To test this, a service
using a Speex encoder and a GSM decoder is created. The components are configured
to output debug statements. By examining the debug log we can see that the decoder is
adapted. This is also confirmed by listening to the audio stream – if it did not work, we
would not hear a sound.

105

5 Experiments

By looking at the debug log, it is also confirmed that the aspects for architectural
reflection and resource reservation works.

Adapting the Encoders

The audio player test application contains a drop-down list where a codec and codec
configuration can be selected (e.g, Speex 32kHz stereo). The application is changed to
let this also be selectable during run-time.

If a new codec is selected during run-time, the encoder will change. The QoS aware
service planner is used to find a new encoder component that implements the selected
codec. The QoS statement used to find the component also contains the selected sample
rate and number of channels.

The component is then adapted by using the setNewTargetmethod in the adaptation
manager.

The following can be observed:

• Adaptation is smooth – i.e., the sound in continuous andno artifacts can be heared.

• Parameter adaptation is used if only the configuration is changed and not the
codec. I.e., if the original configuration was Speex 32kHz stereo and the new con-
figuration is Speex 16kHz mono, parameter adaptation is used to reconfigure the
Speex encoder component.

• Adaptation of the decoder component still work.

This test also tests the optimizations for compositional adaptation described on page
102. If we change fromGSM to Speex and then back to GSM again, the debug log shows
that the adaptation aspect uses the last GSM encoder as a replacement for the original
GSM encoder. It does not replace the original GSM encoder with the Speex encoder, and
then replace the Speex encoder with the GSM encoder.

By adding the ReconfigurableBindings interface to the AudioFileReader component,
the adaptation is further optimized. In this case, the debug log shows that the adapta-
tion aspect do not proceed to a new component as the bindings in the AudioFileReader
component are updated to use the newly adapted component directly.

The original encoder implementations tried to close the data sink they were using
when they were stopped. The RTPBindingSender component is the data sink for the
encoder components. If this component is closed, it will stop working. This had to
change in order to get adaptation to work.

Adapting the Buffer

To test transferring of state, the RTDataBuffer component is used. The component is
changed to implement theMementoOriginator interface, thusmaking it capable of trans-
ferring state. To make sure that the component is adapted, two identical component
blueprints are created. The only difference is the implementation of the QoSAware type;
one buffer only accepts the Speex codec, and the other only accepts the GSM codec.

The audio player test application is changed to also adapt the buffer componentwhen
it adapts encoder component. The debug log shows that the buffer is compositionally
adapted and that state is transferred.

106

5.2 Complex Compositions: A Distributed Streaming Audio Player

If the buffer is adapted many times, we can observe occasional packet loss. This is
detected by the monitoring aspects and can also be heard. One packet is lost in about
one out of eight adaptations of the buffer.

This happens because the original buffer is stopped before transferring state to the
new component and starting the new component. If a packet is received after the buffer
is stopped and before the new component is started, it will be lost.

Adapting a Complete Service

Adaptation of a complete service is also testedwith the audio player application. The first
test for this was a complete failure. The debug log showed that all components adapted
successfully, but no sound could be heard.

The adaptation approach taken here is quite agressive. It assumes that a component
by default is compositionally adaptable if it isQoS aware. To enable parameter adaptation
for a component, extra effort is needed – i.e., it does not support it by default.

Some components are clearly not suited for compositional adaptation. E.g., the Au-
dioFileReader component is not suited for compositional adaptation. The UDP binding
and the speaker components are neither suited for compositional adaptation.

After changing those components to enable parameter adaptation, adapting the com-
plete service worked.

The speaker component might never be suitable for compositional adaptation as
used in this thesis. The speaker component uses the Java sound API for playing sound
samples. This API buffers the samples sent to it. If you send samples faster than they
can be played, they are buffered. This buffer is unreachable outside of the API. Thus, it
is not possible to transfer the state from the speaker component.

To successfully adapt the speaker component compositionally, wewould have towait
until the internal buffer in the Java SoundAPI is emptied before stopping the component
and replacing it with a new component. This is not possible with the adaptation scheme
used in this thesis.

To handle this, the adaptation scheme must be extended to let the component per-
formadaptational behaviour. Such adaptation schemes can be seen inQuO (Duzan et al.,
2004)12 and in (Almeida et al., 2001).

5.2.7 Testing with Remote Capsules

Testing with remote capsules is limited as the QoS aware service planner does not sup-
port remote components. To test this, the audio player is configured to use the basic
service planner – i.e., the default service planner with no QoS support. Only remote
reflection and adaptation of the encoder component is tested with remote capsules.

Whether to use remote or local capsules are a configurable option to the audio player
test application. When a local capsule is used, the QuA URL is ignored. When a remote
capsule is used, the remote capsule is looked up based on the QuA URL, and the service
is composed without a QoS aware service planner.

Testing component adaptation with a remote capsule requires changes to the adap-
tation test code used in the previous tests. Instead of just using the service planner to

12See section 2.7.2 on page 26 for a description of QuO.

107

5 Experiments

find a new component for a given quality specification, a specific component must be
instantiated in the remote capsule.

Only the encoder components are adapted in this test. To adapt the encoder, the test
application creates a new encoder component in the remote capsule. Then, it resolves
the adaptation manager in the remote capsule and calls the setNewTarget method using
the QuA remote access protocol.

The debug log confirms that the component adapts. It also confirms that the reflec-
tion aspect is able to transfer the reflection of the service to the new capsule. Adaptation
of the encoder can also be confirmed by listening to the service, and by watching the
decoder component being adapted by the decoder adaptation aspect.

5.2.8 Summary

This experiment shows that AOP can be used for monitoring QoS, architectural reflec-
tion, resource management and for adaptation of a service.

An audio player application was created in order to test the aspects in the exper-
iment. This application contains a simplified QoS monitor. Aspects were created for
monitoring some QoS dimensions, and they report to the QoS monitor in the audio
player application.

Aspects were used to create a meta-model of components and services. This meta-
model provides architectural reflection capabilities to QuA. The architectural reflection
capabilities were used to adapt components and services. Both compositional adaptation
and parameter adaptation were enabled with AOP. The aspects are capable of adapting
a single component or a complete service.

Enforcing a consistent service is not guaranteed by the adaptationmechanism alone.
To ensure that the decoder component matches the encoder component, a separate as-
pect was created. This aspect adapts the decoder component to fit the codec used by the
encoder component.

The adaptation mechanism uses an optimistic approach. It assumes that all QoS
aware components are adaptable. The experiment has showed that this is not always the
case. It has also showed an example of a component that can not be adapted with the
adaptation mechanism used.

The aspects used for monitoring, architectural reflection and adaptation, only use
information from the contractual specifications of components, i.e., they use black box
encapsulation. The audio service is able to stream audio without enabling the aspects.
The aspects are only needed if monitoring or adaptation should be enabled. Enabling
this, and enabling the aspects, is a matter of configuring the application.

The resource reservation aspects used in the previous experiment on π components
were reused in this experiment and extended to also separate resourcemanagement from
the adaptation manager.

All the code produced in the experiments are available from the QuA Subversion
repository:

https://svn.simula.no:40081/svn/nd/code/QuA/branches/private/toreen/trunk.

108

https://svn.simula.no:40081/svn/nd/code/QuA/branches/private/toreen/trunk

Chapter 6

Evaluation

The chapter contains an evaluation of the experiments. The experiments are evaluated
based on the criteria set forth in the analysis chapter. A conclusion is presented together
with a summary of the results of the thesis. In the experiments, aspects are enabled by
adding some parameters to the Java VM when starting a QuA capsule. The topic of
aspect deployment and aspect components are proposed as subject for further work.

6.1 Evaluating the Experiments

The analysis (section 4.4.1.4 on page 80) suggests that the experiments should be evalu-
ated based on whether they manage to separate concerns and on the degree of encapsu-
lation, modularity and reusability.

The experiments validate the conclusion of the analysis to some degree:

• The experiment with π components showed that we could separate static QoS
from the component implementations. The method for achieving this was reused
in the experiment on audio streaming.

• The resource management concern can be separated from the component imple-
mentations and from the application using the components. By using AOP for
resource reservation, neither the component implementations nor the audio test
application needs to contain code for resource management.

• QoS monitoring can benefit from AOP. Some of the QoS dimensions relevant for
audio streaming are monitored by aspects.

• The analysis suggests that architectural reflection should be used for transferring
bindings during adaptation. The experiments show how architectural reflection
can be added to QuA with AOP.

• The adaptation manager and adaptation aspects in the experiments show how to
adapt components and whole services, both by using compositional and parame-
ter adaptation.

109

6 Evaluation

The experiments show that some concerns can be separated using AOP. Resource
management and adaptation are completely separated concerns. Resource monitoring
is not tested in the experiment, but monitoring of some QoS dimensions is separated
with AOP.

However, some components had to change their implementations in order to make
adaptation work; one component also had to extend its interface (i.e., its contractual
specification) in order to make adaptation work.

The experiments showed some weaknesses in the analysis as the analysis did not
handle the concept of active components. Active components run in their own thread
and need some simple life-cyclemethods in order to be adapted, i.e., theymust be started
and stopped.

Also, the mechanism for adaptation described in the analysis is too optimistic. The
methoddescribed in the analysis assumes that everyQoS aware component can be adapt-
ed. This is not the case. A better approach would be to explicitly mark the components
that are adaptable, e.g., by adding a marker interface.

The experiments showed an example of a component that can not be composition-
ally adapted with the mechanism described in the analysis. The speaker component
needs additional behavior in order to synchronize its internal bufferwhen compositional
adaptation is used. This indicates that the adaptation mechanism should be extended to
let the components under consideration take part in the adaptation process.

The experiments on static QoS was implemented using the AspectWerkz AOP fra-
mework, and the experiments on audio streams was implemented using an early access
release of AspectJ 5. Common for the experiments is that load-time weaving is used. To
enable the aspects, the Java VM running the QuA capsule must be started with some ex-
tra parameters, and with the compiled aspects in its classpath. This implies that it is the
deployer’s responsibility to enable aspects. The deployer is responsible for configuring
the middleware to suit the application’s needs.

6.1.1 Modularization and Reuse

To have a proper separation of concerns, we must have a proper modularization of the
separated concerns. The analysis1 suggests using the degree of encapsulation and or-
thogonality to evaluate this. A high degree of encapsulation and orthogonality is also
assumed to promote reuse.

Four concerns were separated: Static QoS, QoS monitoring, resource management
and adaptation.

6.1.1.1 Static QoS

Static QoS is part of the QuA QoS aware service planning process. Separation of static
QoSmeans that the implementation of theQoSAware type is separated from the compo-
nent implementation. The QoSAware type is required for QoS aware service planning,
and provides a mapping between QoS requirements and resource demands.

Separation of the static QoS concern takes a black box approach to the components

1See the analysis section 4.4.1.1 on page 72 and section 4.4.1.2 on page 75 for a discusssion of reuse and
orthogonality.

110

6.1 Evaluating the Experiments

it acts upon. I.e., it assumes nothing about the implementation of the components it acts
upon. However, it do utilize knowledge about the intrinsics of the QuA core. Knowl-
edge about the QuA core’s loading process for component blueprints is used to change
the meta-information about component blueprints and to instrument the Java class im-
plementing the component.

Even though the aspect for separating the QoSAware type considers components
as black boxes, the actual implementation of the QoSAware type can not consider the
component as a black box. E.g., to provide a mapping between QoS requirements and
resource demands for an audio encoder component one would need to measure the re-
source demands for the component. It is also likely that inspection of the component
implementation – i.e., a whitebox approach – is needed to create such a mapping.

Following the understanding of orthogonal aspects by Colyer et al. (2004), the aspect
for separating static QoS is orthogonal to the components. It is safe to both add and
remove the aspect to the component.

The orthogonality of the aspect, and the black box approach to encapsulation, indi-
cates that this is a reusable aspect. However, the dependencies on the intrinsics of the
QuA core makes it volatile to changes in the QuA core.

6.1.1.2 QoS Monitoring

Monitoring of some QoS dimensions are separated as aspects. Packet loss, sample rate,
theoreticalMOS, latency and jitter aremonitored with aspects. Three aspects are created
in order to monitor this, each aspect monitors different QoS dimensions.

All the aspects operate only on the contractual specification of the components, i.e.,
they consider the components as black boxes. They are also orthogonal to the compo-
nents, as they can both be safely added and removed.

However, some of the aspects do make assumptions about the composition of the
components. If the buffer is removed from the client side of the composition, jitter and
latency will not be monitored.

Making assumptions about the component composition is reasonable when the as-
pects monitors QoS for a service. Thus, the orthogonality and the black box approach
to components indicates that the monitoring aspects are reusable for similar services.

6.1.1.3 Resource Management

All reservation and releasing of resources are separated as an aspect. The aspect inter-
cepts components defined as a part of the QuA core – i.e., the implementation planner
and the adaptation manager – in order to reserve and release resources.

The resource management aspect is orthogonal to the QuA core components it in-
tercepts. Neither the adaptationmanager nor the implementation planner alter their be-
havior if the resource management aspect is activated. The aspect only operates on the
contractual specification of the components, i.e., the components are considered black
boxes. This implies that the behaviour of the aspect should not change for different com-
ponent implementations.

The aspect for resource management only handles resources in local capsules. For
distributed services, a helper component, like the helper component used for distributed
architectural reflection, would be needed.

111

6 Evaluation

6.1.1.4 Adaptation

In order to separate adaptation, an aspect that provides architectural reflection for QuA
components and services was created. Both compositional and parameter adaptation
are supported.

The aspect for creating architectural reflection utilize the same knowledge about the
intrinsics of the QuA core as the aspect for separating static QoS. I.e., knowledge about
the QuA core’s loading process for component blueprints is used to instrument the Java
class implementing the component in order to attach an implementation of a reflection
class.

Also, knowledge about the QuA control flow is used to populate the meta-model.
Meta information about the service a component is part of are gathered when the ser-
vice is composed. The QuA name for the instantiated component is gathered when the
component is placed in the volatile repository.

Such knowledge about the QuA core makes it volatile to changes in the core, but as
stated in the analysis (section 4.1.3 on page 50), a well defined program flow is required
to handle such concerns.

The aspect for creating architectural reflection makes use of a helper component.
This helper component is used if the service is distributed on multiple QuA capsules.
The helper component is used to populate the meta-model for components and services
in the remote capsules.

The aspect regards components and services as black boxes. It is orthogonal to the
components, but not to the QuA core.

Adaptation Manager

For adaptation, an adaptation manager component is created. This component is con-
sidered a pluggable part of the QuA core. The adaptation manager relies on architec-
tural reflection to perform adaptation. Following the understanding of orthogonal as-
pects by Colyer et al. (2004), the adaptation manager is weakly orthogonal to the aspect
for architectural reflection if architectural reflection is considered part of the adaptation
concern. The adaptation manager updates the meta-information in the reflection of a
service when components in the service are adapted.

An adaptation aspect is also needed tomake adaptation work. This aspect intercepts
calls to components, and checks with the adaptation manager whether the call should
be delegated to another component. In some situations, this aspect is not needed. If
a component is declared to have reconfigurable bindings, the adaptation manager will
reconfigure its bindings to use the new component directly. In those cases, the adaptation
aspect is not needed.

The optimistic approach for adaptation in this thesis – i.e., assuming that all QoS
aware components by default are compositionally adaptable – is not orthogonal to the
components that should be adapted. Some components are not compositionally adapt-
able and will malfunction if they are adapted.

Changing the adaptation mechanism to require adaptation support from compo-
nents before adapting them is a trivial change. Doing so would make the adaptation
mechanism orthogonal to the components.

Thus, one might say that the adaptation mechanism is orthogonal to components

112

6.1 Evaluating the Experiments

prepared for adaptation, but that the adaptation concern is not orthogonal to arbitrary
components. I.e., the adaptation concern can not be separated for arbitrary components
or services, it requires adaptation support in the adapted components. This confirms the
observation by Almeida et al. (2001).

Ensuring Composition Integrity

A newly adapted component, or service, is valid according to the service specification.
The service specification is the only means for the adaptation manager to create a valid
service. Not all constraints to ensure a valid service are kept in the service specification.
The relationship between the encoder component and the decoder component is im-
possible to express in the service specification. This relationship should ensure that the
decoder is able to decode the packets generated by the encoder, i.e., that they use the
same codec.

To express this dependency in a general way, additional architectural constraints
(Blair et al., 2001) is needed when specifying the service. Architectural style (Garlan
et al., 2004) is one way describing such constraints.

Instead, a separate aspect is created to ensure that the encoder and decoder use the
same codec. This aspect is not part of the general adaptationmechanism, but is regarded
as a special purpose aspect for the decoder components. This aspectsmonitors the pack-
ets sent to a decoder component and adapts the component if the codec supported by
the decoder do not match the codec used in the packet.

The aspect only operates on the contractual specification for decoder components. It
is also orthogonal to the decoder component, i.e., the decoder do not need the aspect to
run, but an adaptable service needs the aspect to ensure a valid component composition.
Thus, the aspect should be reusable for any decoder component.

The aspect depends on the adaptation manager in order to adapt the decoder com-
ponent. As the adaptation manager is regarded as a part of the QuA core, this is not
regarded as an unwanted coupling or dependency. However, the aspect must have prece-
dence over the adaptation aspect to prevent loosing the first packet received when the
decoder is adapted. This is an unwanted coupling to the adaptation aspect.

6.1.1.5 Summary

The aspects used to separate concerns are mostly orthogonal to the services and the
components in the services. Most of the aspects also regard the components as black
boxes, i.e., they operate on the components’ contractual specifications and do not make
assumptions about their internal behavior.

The adaptation mechanism is not orthogonal to components and services when us-
ing the approach described in the analysis. That approach assumes that all QoS aware
components are compositionally adaptable, which is not the case. However, only small
changes to the adaptation mechanism are required to change this behavior.

The implementation of some of the components in the audio service had to change in
order to get the adaptation mechanism to work. This implies that the components could
not be reused as black boxes when adaptation was enabled. If the adaptationmechanism
is changed to require the components to explicitly state whether they support adaptation,
the components could probably be reused as black boxes and the adaptationmechanism

113

6 Evaluation

would be orthogonal to the service. The orthogonality of the aspects indicates that they
are reusable.

For the various roles in QuA, the separation of concerns into aspects implies that the
component developer can focus on implementing components – e.g., π components or
audio codecs – and that a QoS expert can add QoS capabilities to the components (i.e.,
an implementation of theQoSAware interface) without having to change the component
implementations. The QoS expert also has to enable QoS in the application (i.e., provide
a quality speicification for services). The application developer can focus on developing
applications usingQuA components, and the deployer is responsible for enabling aspects
by configuring the middleware to suit the application’s needs.

The aspects used for separating resource management relieves not only application
developers and component developers from the task of handling resources, platform de-
velopers are also relieved from this task. The aspect for resource management handles
releasing of, and reservation of, resources for both the adaptation manager and the ser-
vice planner.

There are no empirical data showing whether we have achieved a more modular
implementation with reduced complexity. There is no other implementation to compare
with. There are also no quantitative measures for the modularity and complexity in the
implementation. However, quantitative measures are not needed to show that the code
for handling concerns are modular. The orthogonal properties of the implementations
also indicate that the different concerns are well separated in a modular fashion. It is
reasonable to assume that an alternative implementation not using AOP would have
problems reaching the same degree of modularity. Thus, it is also reasonable to assume
that an alternative implementation not using AOP would be contain more complexity.

6.2 Aspect Components

There are some loose ends in this thesis. Loose ends which it is beyond the scope of
the thesis to investigate, but which nevertheless is interesting topics for research. Most
interesting are the topics of aspect deployment and aspect components.

The aspects in the thesis are packaged in standard Java jar files. The jar file contains
the compiled aspects and ameta-file declaring some of the classes in the jar file as aspects.
When a QuA capsule is started, some extra parameters are added to enable load-time
weavingwithAspectJ.When the jar file containing the aspects are added to the classpath,
the aspects will be detected by the AspectJ run-time, which will weave in the aspects.

It should be possible to package aspects as components. E.g., the QuA component
blueprint loader could interact with the AspectJ weaver in order to “deploy” the aspects.
If an aspect framework supporting run-time weaving (e.g., AspectWerkz) is used, the
newly deployed aspect could also affect already loaded components.

Packaging aspects as components wouldmake themmore fit for a component-based
middleware platform. It would make it possible for aspects to explicitly state their de-
pendencies. It would also make it possible to discover and load aspects from remote
component repositories.

One could also imagine packaging a set of aspect components together with an or-
dinary component. Thus, packaging a complete concern. E.g., the adaptation manager

114

6.3 Results

component, adaptation aspect and the architectural reflection aspect could be packaged
as an “adaptation concern”.

How to package and deploy aspects is an interesting topic for further research.

6.3 Results

TheQuA project is investigating how a component architecture can preserve the safe de-
ployment property for QoS sensitive applications. For components deployed on such a
platform to be reusable, environment dependent implementation decisionsmust be sep-
arated from the implementation. To achieve this, we need platform-managed QoS. This
implies that the middleware platformmust be able to adapt components and services to
suit their QoS requirements as resource availability changes.

This thesis shows how concerns such as adaptation and QoSmonitoring can be sep-
arated from the component implementations using aspect oriented programming. AOP
is used to enable architectural reflection for components and services deployed on a Java
prototype of the QuA platform. This is used by an adaptation mechanism, consisting of
aspects and components, to dynamically adapt a running service. Both parameter and
compositional adaptation are supported.

Experiments conducted in this thesis also shows how monitoring of some QoS di-
mensions can be separated from the application code using AOP. It is also showed how
resource management can be separated from both the component implementations and
from the QuA core components. Finally, it is showed how static QoS can be separated
from the component implementations.

Using AOP to separate these concerns has resulted in a modular separation of con-
cerns. This modularity allows for enabling and disabling of different concerns as a de-
ployment option to the middleware. E.g., adaptation is only enabled if it is needed. This
suits the idea of component-based middleware where the middleware itself is composed
of different components in order to suit the needs of an application.

AOP seems to modularize cross-cutting concerns well in this thesis. Thus, it seems
like a promising technique to enable platform managed QoS within QuA. Although no
quantitative measures for the complexity in the experiments exists, it is reasonable to as-
sume that the techniques used in the experiments reduce complexity compared to other
approaches.

The experiments showed that the adaptation mechanism suggested in the analysis is
too optimistic for some cases, and that there are some cases where the suggested mech-
anism can not be used to compositionally adapt a component. A suggestion on how to
improve the mechanism is described, and it would be interesting to see this mechanism
implemented and tested in other cases. Also, it would be interesting to see the topic of as-
pect components elaborated in future experiments. Creating components out of aspects
might provide some of the same benefits as creating components out of objects.

115

6 Evaluation

116

References

Aagedal, Jan Øyvind. Quality of Service Support in Development of Distributed Systems.
PhD thesis, University of Oslo, 2001.

Abrahamsen, Espen. Mapping of QoS-enriched models to a generic resource model.
Master’s thesis, University of Oslo, 2005.

Aksit, Mehmet, L. Bergmans, and S. Vural. An Object-Oriented language-database in-
tegration model: The composition-filters approach. In Proceedings of ECOOP’02,
number 615 in LNCS, pages 372–395, Utrecht, The Netherlands, June 1992. Springer-
Verlag.

Aksit, Mehmet and Z. Choukair. Dynamic, adaptive and reconfigurable systems
overview and prospective vision. In Proceedings of the 23rd International Conference
on Distributed Computing Systems Workshops(ICDCSW’03, pages 84–89. IEEE, May
2003.

Almeida, João Paulo A., M. Wegdam, L. F. Pires, and M. van Sinderen. An approach to
dynamic reconfiguration of distributed systems based on object-middleware. In Pro-
ceedings of the 19th Brazilian Symposium on Computer Networks (SBRC 2001), 2001.

Andersen, Anders, G. Blair, V. Goebel, R. Karlsen, T. Stabell-Kulø, and W. Yu. Arctic
beans: Configurable and re-configurable enterprise component architectures. IEEE
DS Online, 2(7), Nov. 2001.

Bailey, D. H., J. M. Borwein, P. B. Borwein, and S. Plouffe. The quest for pi. Math.
Intelligencer, 19(1):50–57, 1997. ISSN 0343-6993.

Bergmans, Lodewijk andM.Aksit. Composing crosscutting concerns using composition
filters. Communications of the ACM, 44(10):51–57, 2001. ISSN 0001-0782.

Berset, Geir. Strategic management to support quality of service. Master’s thesis, Uni-
versity of Oslo, 2004.

Blair, Gordon S., G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran-
Limon, T. Fitzpatrick, L. Johnston, R. Moreira, N. Parlavantzas, and K. Saikoski. The
design and implementation ofOpenORB2. IEEEDSOnline, Special Issue onReflective
Middleware, 2(6), 2001.

117

References

Blair, Gordon S., G. Coulson, and P. Grace. Research directions in reflectivemiddleware:
the Lancaster experience. In Proceedings of the 3rd workshop on Adaptive and reflective
middleware, pages 262–267. ACM Press, 2004. ISBN 1-58113-949-7.

Bonér, Jonas. What are the key issues for commercial AOP use: how does AspectWerkz
address them? In Proceedings of the 3rd international conference on Aspect-oriented
software development (AOSD’04), pages 5–6. ACM Press, 2004. ISBN 1-58113-842-3.

Bracha, Gilad and W. Cook. Mixin-based inheritance. In Meyrowitz, Norman, editor,
OOPSLA - ECOOP’90 Proceedings, number 1241 in ACM SIGPLAN, pages 303–311.
Addison-Wesley, June 1990. ISBN 0-0201-52430-4.

Bruneton, Eric, T. Coupaye, and J.-B. Stefani. Recursive and dynamic software compo-
sition with sharing. In Proceedings of the 7th International workshop on Component-
Oriented Programming (WCOP’02) at ECOOP’02, 2002a.

Bruneton, Eric, R. Lenglet, and T. Coupaye. ASM: a code manipulation tool to im-
plement adaptable systems. In Systèmes à composants adaptables et extensibles, Oct.
2002b.

Cazzola, Walter, A. Savigni, A. Sosio, and F. Tisato. Architectural reflection. Realising
software architectures via reflective activities. In Emmerich, Wolfgang and S. Tai,
editors, Proceedings of EDO 2000, number 1999 in LNCS, pages 102–115. Springer-
Verlag, Nov. 2001.

Chiba, Shigeru and M. Nishizawa. An easy-to-use toolkit for efficient java bytecode
translators. In Proceedings of the 2nd Int’l Conf. on Generative Programming and Com-
ponent Engineering (GPCE ’03), number 2830 in LNCS, pages 364–376. Springer-
Verlag, 2003.

Chiba, Shigeru. Load-time structural reflection in Java. In Proceedings of ECOOP 2000,
number 1850 in LNCS, pages 313–336. Springer-Verlag, 2000.

Cilia, Mariano, M. Haupt, M. Mezini, and A. Buchmann. The convergence of AOP
and active databases: Towards reactive middleware. In Proceedings of the 2nd interna-
tional conference on generative programming and component engineering, pages 169–
188. Springer-Verlag New York, Inc., 2003. ISBN 3-540-20102-5.

Clarke, Michael, G. Blair, G. Coulson, and N. Parlavantzas. An efficient component
model for the construction of adaptive middleware. In Proceedings of Middleware’01,
IFIP/ACM International Conference on Distributed Systems Platforms, number 2218
in LNCS. Springer-Verlag, Nov. 2001.

Clark, Lawrence. A linguistic contribution to goto-less programming. Commun. ACM,
27(4):349–350, 1984. ISSN 0001-0782.

Coady, Yvonne andG.Kiczales. Back to the future: a retroactive study of aspect evolution
in operating system code. In Proceedings of the 2nd international conference on Aspect-
oriented software development, pages 50–59. ACM Press, 2003. ISBN 1-58113-660-9.

118

References

Colyer, Adrian and A. Clement. Large-scale AOSD for middleware. In Proceedings of
the 3rd international conference on Aspect-Oriented Software Development (AOSD’04),
pages 56–65. ACM Press, 2004. ISBN 1-58113-842-3.

Colyer, Adrian, A. Rashid, and G. Blair. On the separation of concerns in program
families. Technical Report COMP-001-2004, Lancaster University, 2004.

Costa, Fabio M., H. A. Duran, N. Parlavantzas, K. B. Saikoski, G. S. Blair, and G. Coul-
son. The role of reflective middleware in supporting the engineering of dynamic ap-
plications. In Proceedings of the 1st OOPSLA Workshop on Reflection and Software
Engineering, pages 79–98. Springer-Verlag, 2000. ISBN 3-540-67761-5.

Coulson, Geoff, G. S. Blair, M. Clarke, and N. Parlavantzas. The design of a config-
urable and reconfigurable middleware platform. Distributed Computing, 15(2):109–
126, April 2002. ISSN 1432-0452.

Czarnecki, Krzysztof and U.W. Eisenecke. Generative Programming: Methods, Tools and
Applications. Addison-Wesley, 2000. ISBN 0-201-30977-7.

Dai, Renshou. A technical white paper on Sage’s PSQM test, Aug. 7 2000. URL http:
//www.sageinst.com/downloads/925/psqmwp8_00.pdf Last accessed: Jul. 31 2005.

Demers, F. N. and J. Malenfant. Reflection in logic, functional and object-oriented pro-
gramming: a short comparative study. In Workshop on Reflection and Meta-Level
Architectures and their Applications in AI, IJCAI’95, pages 29–38, 1995.

Dijkstra, Edsger W. The structure of the “THE”-multiprogramming system. Communi-
cations of the ACM, 11(5):341–346, 1968. ISSN 0001-0782.

Dittrich, Klaus R., S. Gatziu, and A. Geppert. The active database management system
manifesto: A rulebase of ADBMS features. In Sellis, T., editor, Proceedings of the 2nd

International Workshop on Rules in Database Systems, volume 985 of LNCS, pages 3–
20, Athens, Greece, 1995. Springer.

Duzan, Gary, J. Loyall, R. Schantz, R. Shapiro, and J. Zinky. Building adaptive distributed
applications withmiddleware and aspects. In Proceedings of the 3rd International Con-
ference on Aspect-Oriented Software Development (AOSD’04), pages 66–73, Lancaster,
UK, Mar. 2004. ACM Press. ISBN 1-58113-842-3.

Ecklund, Denise J., V. Goebel, T. Plagemann, and E. F. Ecklund. Dynamic end-to-end
QoS management middleware for distributed multimedia systems. Multimedia Sys-
tems, 8(5):431–442, Dec 2002.

EJB 2.1. Enterprise JavaBeans™Specification 2.1, November 2003. Sun Microsystems.

Elrad, Tzilla, M. Aksit, G. Kiczales, K. Lieberherr, and H. Ossher. Discussing aspects of
AOP. Communications of the ACM, 44(10):33–38, 2001. ISSN 0001-0782.

Fenton,Norman E. and S. L. Pfleeger. SoftwareMetrics: A Rigorous&Practical Approach.
International Thomson Computer Press, 2nd edition, 1997. ISBN 1-85032-275-9.

119

http://www.sageinst.com/downloads/925/psqmwp8_00.pdf
http://www.sageinst.com/downloads/925/psqmwp8_00.pdf

References

Fitzpatrick, Tom and G. Blair. A software architecture for adaptive distributed multime-
dia applications. IEEE Proceedings – Software, 145(5):163–171, Oct. 1998.

Frankel, David S. Model Driven Architecture™: Applying MDA to Enterprise Computing.
Wiley Publishing, 2003. ISBN 0-401-31920-1.

Friedman, Daniel P. and M. Wand. Reification: Reflection without metaphysics. In
Proceedings of the 1984 ACM Symposium on LISP and functional programming, pages
348–355. ACM Press, 1984. ISBN 0-89791-142-3.

Gamma, Erich, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, 1995. ISBN 0-201-63361-2.

Garcia, Alessandro, U. Kulesza, C. Sant’Anna, C. Lucena, E. Figueiredo, and A. von Staa.
Modularizing design patterns with aspects: a quantitative study. In Proceedings of
the 4th International Conference on Aspect-Oriented Software Development (AOSD’05),
pages 3–14. ACM Press, 2005. ISBN 1-59593-043-4.

Garlan, David, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. IEEE Computer, 37
(10):46–54, Oct. 2004.

Göbel, Steffen, C. Pohl, R. Aigner, M. P. S. Röttger, and S. Zschaler. The COMQUAD
component container architecture. In Fourth Working IEEE/IFIP Conference on Soft-
ware Architecture (WICSA 2004), pages 315–318, Oslo, Norway, Jun. 2004a. IEEE.

Göbel, Steffen, C. Pohl, S. Röttger, and S. Zschaler. The COMQUAD component model
– enabling dynamic selection of implementations by weaving non-functional aspects.
In Proceedings of the 3rd International Conference on Aspect-Oriented Software Devel-
opment (AOSD’04), pages 74–82, Lancaster, UK, Mar. 2004b. ACM Press. ISBN 1-
58113-842-3.

Golm, Michael and J. Kleinöder. MetaXa and the future of reflection. In Proceedings of
OOPSLAWorkshop on Reflective Programming in C++ and Java, Oct. 1998.

Grace, Paul, G. S. Blair, and S. Samuel. ReMMoC: A reflective middleware to support
mobile client interoperability. In Proceedings of the International Symposium on Dis-
tributed Objects and Applications (DOA’03), number 2888 in LNCS. Springer-Verlag,
2003.

Haible, Bruno and T. Papanikolaou. Fast multiprecision evaluation of series of rational
numbers. Lecture Notes in Computer Science, 1423:338–350, 1998. ISSN 0302-9743.

Hallsteinsen, Svein, J. Floch, and E. Stav. A middleware centric approach to building
self-adapting systems. In 4th International Workshop on Software Engineering and
Middleware (SEM’04), volume 3437 of LNCS, pages 107–122. Springer, Mar. 2005.

Hannemann, Jan and G. Kiczales. Design pattern implementation in Java and AspectJ.
In Proceedings of OOPSLA 2002, pages 161–173. ACM Press, 2002. ISBN 1-58113-
471-1.

120

References

Harrison, William, H. Ossher, S. M. S. Jr., and P. Tarr. Concern modeling in the concern
manipulation environment. Research Report RC2334, IBM, IBM Thomas J. Watson
Research Center, Yorktown Heights, NY, Sep. 2004.

Harrison, William and H. Ossher. Subject-oriented programming: a critique of pure
objects. In Proceedings of the 8th annual conference on Object-oriented programming
systems, languages, and applications (OOPSLA’93), pages 411–428. ACM Press, 1993.
ISBN 0-89791-587-9.

IEEE 1471. IEEE recommended practice for architectural description of software-
intensive systems, 2000.

ISO 13236. Information technology – Quality of Service: Framework, Oct. 2003. ISO
document ISO/IEC JTC1/SC6 13236:1998.

ISO CD15935. CD 15935 information technology: Open Distributed Processing – ref-
erence model – Quality of Service, Oct. 1998. ISO document ISO/IEC JTC1/SC7
N1996.

ITU-T P.800. Methods for subjective determination of transmission quality, 1996. ITU-
T Recommendation Series P.800: Telephone transmission quality.

Kiczales, Gregor, J. des Rivières, and D. G. Bobrow. The Art of the Metaobject Protocol.
MIT Press, 1991. ISBN 0-262-11158-6.

Kiczales, Gregor, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, andW. Griswold. Getting
started with ASPECTJ. Communications of the ACM, 44(10):59–65, 2001. ISSN 0001-
0782.

Kiczales, Gregor, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In Aksit, Mehmet and S. Matsuoka, editors,
ECOOP’97 - Object-Oriented Programming, number 1241 in LNCS, pages 220–242.
Springer-Verlag, June 1997. ISBN 3-540-63089-9.

Kiczales, Gregor. Beyond the black box: Open implementation. IEEE Software, 13(1):
8,10–11, January 1996.

Kon, Fabio, F. Costa, G. Blair, and R. H. Campbell. The case for reflective middleware.
Commun. ACM, 45(6):33–38, 2002. ISSN 0001-0782.

Kon, Fabio, M. Román, P. Liu, J. Mao, T. Yamane, L. C. Magalhães, and R. H. Campbell.
Monitoring, Security, and Dynamic Configuration with the dynamicTAO Reflective
ORB. In Proceedings of the IFIP/ACM International Conference on Distributed Systems
Platforms andOpenDistributed Processing (Middleware’2000), number 1795 in LNCS,
pages 121–143, New York, April 2000. Springer-Verlag.

Leclercq, Matthieu, V. Quéma, and J.-B. Stefani. DREAM: A component framework for
the construction of resource-aware, reconfigurable MOMs. In Proceedings of the 3rd

workshop on Adaptive and Reflective Middleware, pages 250–255. ACM Press, 2004.
ISBN 1-58113-949-7.

121

References

Ledoux, Thomas. OpenCorba: A reflective open broker. In Proceedings of the 2nd intl.
conference on Meta-Level Architectures and Reflection (Reflection’99), number 1616 in
LNCS, pages 197–214. Springer-Verlag, Jul. 1999.

Lieberherr, Karl J. Adaptive Object-Oriented Software: The Demeter Method with Propa-
gation Patterns. PWS Publishing Company, Boston, 1996. ISBN 0-534-94602-X.

Lieberherr, Karl J. Controlling the complexity of software designs. In ICSE ’04: Proceed-
ings of the 26th International Conference on Software Engineering, pages 2–11. IEEE
Computer Society, 2004. ISBN 0-7695-2163-0.

Liskov, Barbara. Keynote address - data abstraction and hierarchy. In OOPSLA ’87:
Addendum to the proceedings on Object-oriented programming systems, languages and
applications (Addendum), pages 17–34, New York, NY, USA, 1987. ACM Press. ISBN
0-89791-266-7.

Lopes, Cristina Videira and S. K. Bajracharya. An analysis of modularity in aspect ori-
ented design. In Proceedings of the 4th International Conference on Aspect-Oriented
Software Development (AOSD’05), pages 15–26. ACM Press, 2005. ISBN 1-59593-
043-4.

Loyall, Joseph, R. E. Schantz, J. A. Zinky, and D. E. Bakken. Specifying and Measur-
ing Quality of Service in Distributed Object Systems. In Proceedings of the first In-
ternational Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
1998), pages 43–52, 1998.

Maeda, Chris, A. Lee, G. Murphy, and G. Kiczales. Open implementation analysis and
design. In Proceedings of the 1997 symposium on Software reusability, pages 44–52.
ACM Press, 1997. ISBN 0-89791-945-9.

Maes, Pattie. Concepts and experiments in computational reflection. In Conference pro-
ceedings on Object-oriented programming systems, languages and applications (OOP-
SLA’87), pages 147–155. ACM Press, 1987. ISBN 0-89791-247-0.

Malenfant, J., M. Jacques, and F. N. Demers. A tutorial on behavioral reflection and its
implementation. In Proceedings of Reflection’96, Apr. 1996.

McKinley, Philip K., M. Sadjadi, E. P. Kasten, and B. H. C. Cheng. Composing adaptive
software. IEEE Computer, 37(7):56–64, Jul. 2004.

Narasimhan, Priya, L. E. Moser, and P. M. Melliar-Smith. Using interceptors to enhance
CORBA. IEEE Computer, 32(7):62–68, Jul. 1999.

Nordberg, Martin E. Aspect-oriented dependency inversion. In Proceedings of OOPSLA
2001Workshop on Advanced Separation of Concerns in Object-Oriented Systems. ACM
Press, 2001.

orbos-02-06-57. CORBA/IIOP Specification 3.0.2, 2002. OMG document orbos-02-06-
57, Ch. 21 Portable Interceptors.

122

References

Ossher, Harold and P. Tarr. Hyper/J: Multi-dimensional separation of concerns for Java.
In Proceedings of the 22nd international conference on Software engineering, pages 734–
737. ACM Press, 2000. ISBN 1-58113-206-9.

Ossher, Harold and P. Tarr. Using multidimensional separation of concerns to (re)shape
evolving software. Commun. ACM, 44(10):43–50, 2001. ISSN 0001-0782.

Papapetrou, Odysseas and G. A. Papadopoulos. Aspect oriented programming for a
component-based real life application: a case study. In Proceedings of the 2004 ACM
symposium onApplied computing, pages 1554–1558. ACMPress, 2004. ISBN 1-58113-
812-1.

Parnas, D. L., P. C. Clements, and D. M. Weiss. Information distribution aspects of
design methodology. In Proceedings of IFIP Congress 71, volume 1, pages 339–344.
North-Holland Publishing Co, Amsterdam, Netherlands, 1971. ISBN 0-7204-2063-6.

Parnas, D. L. On the criteria to be used in decomposing systems into modules. Commu-
nications of the ACM, 15(12):1053–1058, 1972. ISSN 0001-0782.

Parnas, D. L. Why software jewels are rare. Computer, 29(2):57–60, 1996. ISSN 0018-
9162.

Poladian, Vahe, J. P. Sousa, D. Garlan, andM. Shaw. Dynamic configuration of resource-
aware services. In ICSE ’04: Proceedings of the 26th International Conference on Soft-
ware Engineering, pages 604–613. IEEE Computer Society, May 2004.

ptc/2004-09-01. UML™profile for modelling Quality of Service and fault tolerance char-
acteristics and mechanisms, 2004. OMG document ptc/2004-09-01 final adopted
specification.

Rajkumar, Ragunathan, C. Lee, J. Lehoczky, and D. Siewiorek. A resource allocation
model for QoS management. In Proceedings of the 18th IEEE Real-Time Systems Sym-
posium, pages 298–307, Dec 1997.

Reenskaug, Trygve, P.Wold, andO. A. Lehne. The OOram Software EngineeringMethod.
Prentice Hall, 1996. ISBN 0-13-452930-8.

RFC 2205. Resource reservation protocol (RSVP) – version 1 functional specification,
Sep. 1997. IETF.

RFC 3550. RTP: A transport protocol for real-time applications, Jul. 2003. IETF.

Röttger, Simone and S. Zschaler. CQML+: Enhancements to CQML. In Proceedings of
the QoS in CBSE03 workshop, 2003.

Saltzer, J. H., D. P. Reed, and D. D. Clark. End-to-end arguments in system design. ACM
Transactions on Computer Systems (TOCS), 2(4):277–288, 1984. ISSN 0734-2071.

Schantz, Richard, J. Loyall, M. Atighetchi, and P. Pal. Packaging quality of service con-
trol behaviors for reuse. In Proceedings of the fifth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing (ISORC 2002), pages 375–385,
2002.

123

References

Schmidt, Douglas C. Middleware for real-time and embedded systems. Commun. ACM,
45(6):43–48, 2002. ISSN 0001-0782.

Smith, Brian Cantwell. Procedural Reflection in Programming Languages. PhD thesis,
MIT, 1982.

Smith, Brian Cantwell. Reflection and semantics in lisp. In Proceedings of the 11th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages 23–35.
ACM Press, Jan. 1984. ISBN 0-89791-125-3.

Sommerville, Ian. Software Engineering. Addison Wesley, 5th edition, 1995. ISBN 0-
201-42765-6.

Staehli, Richard, F. Eliassen, and S. Amundsen. Designing adaptive middleware for
reuse. InMiddleware 2004 Companion, 3rd Workshop on Reflective and Adaptive Mid-
dleware, 2004.

Staehli, Richard and F. Eliassen. QuA: A QoS-aware component architecture. Technical
Report Simula 2002-12, Simula Research Laboratory, 2002.

Staehli, Richard and F. Eliassen. Compositional quality of service semantics. In
SAVCBS’04, Workshop at ACM SIGSOFT 2004/FSE-12, Oct.31–Nov.1 2004.

Standish, Thomas A. An essay on software reuse. IEEE Transactions on Software Engi-
neering, SE-10(5):494–497, Sept. 1984.

Szyperski, Clemens, S. Gruntz, and S. Murer. Component Software: Beyond Object-
Oriented Programming. Addison Wesley, 2nd edition, 2002. ISBN 0-201-74572-0.

Tanenbaum, Andrew S. Computer Networks. Prentice-Hall, 4th edition, 2003. ISBN
0-13-066102-3.

Tarr, Peri, H. Ossher, W. Harrison, and J. Stanley M. Sutton. N degrees of separation:
multi-dimensional separation of concerns. In Proceedings of the 21st International
Conference on Software Engineering, pages 107–119. IEEE Computer Society Press,
1999. ISBN 1-58113-074-0.

Vanderperren, Wim, D. Suvée, B. Verheecke, M. A. Cibrán, and V. Jonckers. Adaptive
programming in JAsCo. In Proceedings of the 4th International Conference on Aspect-
Oriented Software Development (AOSD’05), pages 75–86. ACM Press, 2005. ISBN
1-59593-043-4.

Weiser, Mark. Program slicing. In Proceedings of the 5th international conference on
Software engineering, pages 439–449. IEEE Press, 1981. ISBN 0-89791-146-6.

Welch, Ian and R. J. Stroud. Kava - using byte-code rewriting to add behavioral reflec-
tion to Java. In Proceedings of COOTS 2001, USENIX Conference on Object-Oriented
Technologies and Systems, pages 119–130, Feb. 2001.

Wergeland, Øyvind Matheson. Service planning in a QoS-aware component architec-
ture. Master’s thesis, University of Oslo, 2005. Work in progress.

124

References

Yoder, Joseph W. and R. E. Johnson. The Adaptive Object-Model architectural style. In
Proceedings of WICSA3, pages 3–27. Kluwer B.V., 2002. ISBN 1-4020-7176-0.

Zhang, Charles and H.-A. Jacobsen. Refactoring middleware with aspects. IEEE Trans-
actions on Parallel and Distributed Systems, 14(11):1058–1073, Nov. 2003.

Zhang, Charles and H.-A. Jacobsen. Resolving feature convolution in middleware
systems. In Proceedings of the 19th annual ACM SIGPLAN Conference on Object-
oriented programming, systems, languages, and applications (OOPSLA’04), pages 188–
205. ACM Press, 2004. ISBN 1-58113-831-9.

125

	Front page
	Contents
	Introduction
	QoS and Middleware
	Separation of Concerns
	Problem Statement
	Research Method
	Results
	Structure of this Document

	Background
	Introduction
	Quality of Service
	Middleware and Components
	Reflection and Middleware
	Behavioral Reflection
	Structural Reflection
	Architectural Reflection and Reflective Middleware

	Aspect-Oriented Programming
	Separation of Concerns
	Aspects
	Origins of AOP

	The QuA Project
	The QuA Component Model
	Service Planning

	Related Work
	COMQUAD
	Quality Objects
	DynamicTAO
	OpenCOM and the Lancaster Experience
	Enterprise JavaBeans
	IoC frameworks: The Spring Framework
	Other Middleware Approaches
	Separation of Concerns using AOP

	Tools and Techniques
	The QuA Java Prototype
	Resources and QoS
	Service Planning
	Creating a QoS Aware Component
	Composing QoS Aware Services
	Actors and Roles in QuA

	AOP Frameworks
	An AOP Example
	Comparing AspectJ and AspectWerkz

	Analysis
	Overview of the Problem
	Resources and Monitoring
	Configuration and Reconfiguration
	Cross-cutting Concerns
	Cases for Further Analysis

	Simple Case: Computing the Value of Pi
	Static QoS: QoS Aware Pi Components
	Monitoring and Resources
	Dynamic Behaviour: Adding a Cache
	Aspect Deployment
	Summary

	Complex Case: A Distributed Audio Player
	Audio Quality and Codecs
	Real-Time Transport Protocol
	Monitoring QoS
	Resource Management
	Adaptation
	Summary

	Experiments
	Criteria for Evaluating Results

	Experiments
	Simple Compositions: Calculating Pi
	Separating Static QoS
	Resource Management
	Summary

	Complex Compositions: A Distributed Streaming Audio Player
	Implementing an Audio Service
	Creating a QoS Aware Player Application
	QoS Monitoring
	Adaptation
	Resource Management
	Testing the Adaptation Mechanism
	Testing with Remote Capsules
	Summary

	Evaluation
	Evaluating the Experiments
	Modularization and Reuse

	Aspect Components
	Results

	References

