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Abstract 
 
In this thesis, we reexamine the long discussion on which model is suitable 
for studying Internet traffic: Poisson or Long-tailed Internet traffic. 
 
Poisson model, adapted from  telephone network, has been used since the 
beginning of World Wide Web, while long-tailed distribution gradually 
takes over with believable evidence.  
 
Instead of using Superposition of Point Processes to explain why traffic that 
is not Poisson tends towards Poisson traffic as the load increases, as it is 
recently claimed in [3], we try to approach this result by another simpler 
way. 
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1. Introduction   
 
“Poisson or not Poisson, that is the question”. 
 
For nearly a quarter of a century, researchers have been looking for a 
stochastic process which could be used as an accurate and simple model for 
network traffic. Numerous professional literatures have written on traffic 
patterns in the Internet. 
 
Since the 1970s, inherited from the voice telephone networks, the simple 
Poisson models are used. 
 
Poisson models  have also remained valid for modeling purposes for 
technology for at least fifty years. They are mathematically attractive, often 
amenable to elegant analysis, leading to closed-form expressions. 
 
In nineties, a new wave of reports began to question the valid of Poisson 
models. Detailed studies of Internet network traffic show that the packet 
arrival process is not Poisson, even though the session arrival process is 
Poisson. Wide area traffic is much burstier than Poisson models predict [1], 
[2].  
 
Queueing behaviour can be much more variable than predicted by a Poisson 
model and Internet traffic is rather Long-tailed distribution than Poisson. 
 
Recently, in the beginning of this century, a new research [3] makes the 
discussion more interesting again : Internet traffic is really not Poisson, but 
tends towards Poisson and independent as the load increases. 
 
In this thesis, we consider Poisson Internet traffic versus Long-tailed Internet 
traffic and try to find out how Poisson distribution arise as a limiting process 
by the convolution of several arrival processes.   
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2. Background 
 
One of the most important concepts in probability is the idea of a 
probablility distribution.  
 
There are discrete distribution and continuous distribution. 
 
Poisson and binomial distribution are discrete, while continuous distribution 
consists of :  Normal, Exponential, Power, or Cauchy distribution …  
 
Example : 
 
The binomial distribution is applicable whenever a series of trials is made, 
each trial has only two possible outcomes, either success with probability p 
or failure with probability (1-p). The number of successes which is observed 
may be any integer between 0 and n.  
 
The probability of getting q successes out of n :  
 
f HqL = n  Cq pq H1 − pLn−q H q = 0, 1, 2. .. nL  
 
Where  

n Cq = Iq
nM = n!

Hn− qL! q!  
 
n!     is the factorial of n, with n is an integer. 
 
We shall use this as a basic for our proof later in Chapter §5.4 
 

2.1 Poisson distribution 
 
”Life is good for only two things, 
  discovering mathematics and teaching mathematics” 
                                                 Simeon Denis Poisson           
 
In statistical and probability theory, the Poisson distribution is a discrete 
probability distribution discovered by Simeon Denis Poisson (1781 - 1840), 
an eminent French mathematician and physicist, an academic administrator.  
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One of Poisson’s many interests was the application of probability to the 
law, and a limit theorem for the binomial distribution was published in 1837 
in his ‘ Recherches sur la Probabilité de Judgements’. Although initially 
viewed as a little more than a welcome approximation for hard-to-compute 
binomial probabilities, this particular result was destined for bigger things : 
it was the analytical seed out of which grew what is now one of the most 
important of all probability models, the Poisson distribution [6]. 
 
The Poisson distribution is used to model the a number of discrete events  
(for example : called arrivals) occurring during  a time interval of given 
length. 
 
The probability that there are exactly x arrivals ( x = 0,1,2,3…) 
 
p Hx, λL =

e−λ λx

x!  
 
Where : 
e       is the base of the natural logarithm e = 2.71828… 
x!     is the factorial of x, with x is an integer. 
λ       is the shape parameter, a positive real number, which  
        indicate the average number of arrivals that occur during the given  
        interval. 
 
These probabilities are non-negative and sum to one. 
 
With the help of Gamma function , defined by : 
x! = Γ(x+1) 
 
The above Poisson discrete (x : integer) can be written under continuous 
distribution as follows : 
 
p Hx, λL =

e−λ λx

Γ Hx+ 1L , foralle x
 

 
The formula for the Poisson cumulative probability function is : 

 

F Hx, lL = „
i=0

x
e-l li

i !
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A fundamental property of the Poisson distribution is that the variance of the 
distribution equals the mean. The standard deviation is equal to the square 
root of the mean. 
 
The Poisson distribution has two main applications : firstly for describing 
the number of arrivals which occur in a certain time interval, and secondly 
as a useful approximation to the binomial distribution when the binomial 
parameter p is small [7]. 
 
The sum of two independent Poisson is still Poisson distributed : 
If N and M are two independent random variables, both following a Poisson 
distribution with parameters λ and  µ, respectively, then N + M follows a 
Poisson distribution with parameter λ+ µ [18]. 
 

2.2 The Poisson process    
 
The Poisson process is a model for series of events occurring from time to 
time at random. 
 
In order to understand the Poisson process, we shall first find out what 
counting process mean. 
 
A counting process is a function Nt that counts the total number of 
occurrence of certain ‘events’ up to time t. By ‘up to time t’ we mean 
‘before and at time t’, i.e., if an event occurs at time t, it is counted 
immediately. Graphical describing of this function is called a sample path of 
that counting process. 
 
Definition : 
 
A counting process is a continuous time discrete valued process (Nt) such 
that : 

• N0 = 0 
• (Nt) is continuous from the right and has limits from the left with 

probability one. 
• At each point of discontinuity, the sample path  jumps up exactly by 

size one. 
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Define Tn := Sn – Sn-1  , n = 1,2,… by the inter-arrival time between the  
 (n-1)th  arrival time and the nth arrival time.  
 
Definition of Poisson process in terms of inter-arrival time: 
 
A counting  process (Nt) that counts events with i.i.d. (independent identical 
distributed) exponential inter-arrival times with λ is called a Poisson process 
with rate λ . 
 
Nt follows a Poisson distribution with mean λt. that is  

P HN HtL = kL =
HλtLk

k !
 e−λt for k = 0, 1, 2..

 
 
For  any t ≥ 0, s > 0 

• Nt+s - Nt   follows the same distribution as Ns. 
• Nt+s - Nt   is independent of Nt. 
 

In other words, for a Poisson process it does not matter when we start the 
counting, what matters is merely how long we count. This is the memoryless 
property of exponential distributions. 
 
The Poisson process has independent increment property (and is therefore a 
Markov process) which means any two increments involving disjoint (non- 
overlapping) intervals are independent : 
 
If  s1  <  t1 < s2  <  t2  then the two increments  N(t1) - N(s1) and N(t2) - N(s2) 
are independent. 
 
The Poisson process is  regenerative, that is each deterministic time and at 
each arrival time, the process “starts over” independently from the past. 
 
One can also split a Poisson process into m independent Poisson processes 
[18]. 
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2.3 Long-tailed distribution 
According to [2], a distribution is long-tail if : 
 
P@X > xD ~ x−α , as x → ∞, 0 ≤ α

 
This means that regardless of the distribution for small values of the random 
variable, if the asymptotic shape of the distribution is hyperbolic, it is long-
tailed. For a long-tail distribution, the tails declines to zero very slowly.  
The simple long-tailed distributions are Cauchy distribution, Pareto 
distribution… 
 
If α ≤ 2 , then the long-tailed distribution has infinite variance. 
 
If α ≤ 1 , then the long-tailed distribution has infinite mean. 
 
A cumulative distribution function, F(x), is said to have a long tail if there 
exist positive constant β  that  
 
1 - F HxL ~ cx-b as x Æ •  
 
c is a positive finite constant that does not depend on x 
β is the tail index in the interval (0,2) 
 
This property is, for example, satisfied by the well-known family of “Pareto 
distributions”, originally introduced for modeling the distribution of income 
within a population. 
 
The characteristic of long-tailed distributions is that the log-log plot of the 
tail of a long-tailed distribution is approximately linear over many orders of 
magnitude (on contrast that of an exponential distribution is linear) [8]. 
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3. Review of Related Research 
 

“Teletraffic theory” refers to all mathematical modeling, statistical 
interference, queueing and performance  in voice telephon network.  
Later it was extended to data networks as Internet too, and Internet 
engineering: the design, management, control, and operations of the global 
Internet, would become part of teletraffic theory. 
 
The call arrivals at links in the voice telephone network are presumed 
Poisson process, which means that the call arrivals are mutually independent 
and the call interarrival times are all exponentially distributed with one and 
the same parameter λ [4]. 
 
Voice traffic has the property that it is relatively homogeneous and 
predictable, and from a signaling perspective, spans long time scales. 
Consequently, voice networks have been engineered in a circuit-switching 
fashion. 
 
In traditional statistical theory, arrival events are always assumed to follow 
the pattern of a Poisson arrival process, that is, as a stream of random, 
independent arrivals. This assumption is made because it is simple and has a 
special analytical properties [16]. 
 
But the advent of faxes in the 1980s and the drastic explosion of the Web 
make great changes in teletraffic modeling. The key change is that telephone 
calls used for fax transmission and Internet access have statistical 
characteristics dramatically different from a typical voice call. They tend to 
be significantly longer and much more variable in their duration than a voice 
call, and their numbers have recentlty increased dramatically, especially in 
terms of Internet. 
 
In contrast to voice traffic, data traffic is much more variable, with 
individual connections ranging  from extremely short to extremely long and 
from extremely low-rate to extremely high-rate. It does not come at a steady 
rate, but instead in starts and fits with lulls in between. We call this 
characteristic “bursty”; that is, if one event arrives, several tend to arrive in a 
cluster. These properties have led to a design for data networks in which 
each individual data ‘packet’ or datagram transmitted over the network is 
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forwarded through the network independently of previous packets that may 
have been transmitted by the same connection. 
 
And the Internet engineering community has come to consider teletraffic 
theory as irrelevant and detrimental to the development of the Internet. 
 
Detailed studies of Internet network traffic show that the packet arrival 
process is not Poisson in general. That is, the inter-arrival times between 
packets are not exponentially distributed, nor are they independent. The 
queueing behaviour can be much more variable than predicted by a Poisson 
model. 
 
Internet network traffic analysis studies later show that the arrival times of 
data packets within a stream have a long-tailed distribution, often modeled 
as a Pareto distribution  in the asymptotic limit [1],[2]. 
 
Is there any meaning in this discovering? 
 
It is an important consideration to designers of routers and switching 
hardware. It implies that a fundamental change in the nature of network 
traffic has taken place. A partial explanation of this behaviour is that packet 
arrival times consist not only of Poisson random processes for session 
arrivals but also of internal correlations within a session. Thus, it is 
important to distinguish between measurements of packet traffic and 
measurements of numbers of sockets or TCP sessions. The long tailed 
distribution exhibited by Pareto tails is often indicative of clustered 
behaviour. If one event arrives, several tend to arrive in a cluster or a burst 
[16]. 
 
This non-Poisson structure is believed to be due in part to the protocols used 
for data transmission. 
 
Although the packet arrival process is not Poisson, there is strong evidence 
that the session arrival process is Poisson. That is, human Internet users 
seem to operate independently at random when initiating access to certain 
Internet resources. Remote-login with TELNET connection, file transfer 
with FTP, for example, can be well-modeled with a Poisson process, with 
fixed hourly rates [1]. 
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Recent researches [3],[5] further conclude that, yes, the arrival process is 
really not Poisson, but it tends toward Poisson as the load increases.  
 
Extensive empirical and theoretical studies of packet traffic demonstrate that 
the number of active connections has a dramatic effect on traffic 
characteristics. The packet traffic on a link can be modeled as a marked 
point process. The arrival times of the process are the arrival times of the 
packets on the link. The marks of the process are the packet sizes. 
As the load increases, the laws of superposition of marked point processes 
push the arrivals toward Poisson.  
 
(Point process theory and the superposition of Point Processes are advanced 
statistical themes we try to have a bird’s eye view in Chapter 5. At the end of 
this chapter, §5.4, we also try to approach this idea in another simpler way).  
 
Once the connection load is sufficiently large, the network begins pushing 
back on the attraction to Poisson by causing queueing on the link-input 
router. But if the link speed is high enough, the traffic can get quite close to 
Poisson before the push-back begins in force [3]. 
 
Article [8] concluded that even though there is some evidence that bursts 
sizes for  ftp and HTTP file transfers are long-tailed, but file sizes, transfer 
times, and interarrival times are not sufficiently long-tailed. 
 
Detailed researches do not stop at long-tail Internet traffic but go further, 
focusing on the tail behaviour, but the debate on the nature of the tail is of 
little practical interest or consequence, and there is never sufficient data to 
support any analytical form summarizing the tail behavior and therefore any 
summary could be misleading and dangerous [11] 
 
On the other hand, it is also believed that long-tail distributions are poor 
models for average waiting time, queue length and their variance, etc…[12] 
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4. The Power Law 
 
Researchers focused their efforts on detecting power laws, and sure enough, 
power laws were discovered for web files sizes, web site connectivities, and 
the router connection degrees [11]. 
 
Why are people focusing on power law? 
 
In the past few decades scientists have recognized that on occasion nature 
generates quantities that follow a power distribution instead of Poisson.  
 
Power law distribution does not have a peak, and its histogram is 
continuously decreasing curve, implying that many small events coexist with 
a few large events.  
 
There is an important qualitative difference between a power law and a 
Poisson curve when it comes to the tail of the distribution. Poisson curves 
have an exponentially decaying tail, which is much faster decrease than that 
displayed by a power law. A power law decays far more slowly, allowing for 
‘rare events’. 
 
Power law is characterized by a unique exponent. In networks, power law 
describes the degree distribution; the exponent is often called  the degree 
exponent. Measurements indicates that the distribution of incoming links on 
Webpages followed a power law with a unique and well-defined degree 
exponent close to two [19].  
 
This implies that the number of Webpages with exactly k incoming links, 
denoted by N(k), follows : 
 
N HkL ~ k−γ

  
 
Where γ  ~ 2 is the degree exponent. 
With outgoing links, the degree exponent γ is slightly larger : 2,5. 
 
In 1999, an analysis of the Internet topology by Faloutsos et.al [23] 
suggested that the distribution of node degrees of the Internet decays as a 
power law with  γ= 2,22. 
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5. Method   

5.1 Point Process Theory  
Point Process Theory is a branch of Applied Mathematics that has been 
developed only in the last three decades and deals with events that occur at 
isolated points in time or space. 
 
A Point Process is a model for describing the random numbers of 
occurrences of a certain event in time intervals or of the numbers of points in 
regions of a space. It is pictured best as a collection of random points. 
 
Some of examples are times at which items enter or leave a certain place 
such as data packets entering a computer, telephone calls arriving to a 
switching center, times of births, police emergencies or earthquakes, etc 
[22]. 
 
A useful mathematical characterization of a point process is in terms of the 
inter-arrival [t, t + ∆t). 
Alternatively, a point process can be characterized in terms of the associated 
counting process NX(t), formally defined as the number of arrivals in the 
interval [0,t]. 
 
Because of the simplicity of  the Poisson process, it traditionally plays a 
central role in point process studies. 
 

5.2 Renewal theory  
Poisson processes are members of a broader class of point processes known 
as renewal processes. 
 
An ordinary renewal process is a point process in which the interarrivals are 
independent, and identically distributed according to some common 
probability density function [17]. 
 
A counting process  { Nt , t ≥ 0} is a renewal process if for each n, the inter-
arrival time Xn [the time between the  (n-1)th  and the nth arrivals] and { Xn ,  
n ≥ 1} are independent with the same distribution. 
 
The time of the nth arrival is    
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Sn = ‚
i=1

n

Xi , n≥ 1 ,

 
 
with S0 = 0 
 
We can write  N(t) = max {n : Sn ≤ t} 
 
A Point process N on R+  with points at T1 <  T2 < …, is a renewal process if 
the interpoint distances  Tn - Tn-1 , n= 1, 2, … are independent and identically 
distributed. 
 
A renewal process is regenerative, that is, at each arrival time, it starts over 
independently from the past. However, a renewal process does not 
necessarily hold the independent increment property, actually. It often fails 
to be Markov. It is because that the distribution usually is not memoryless. 
 
Renewal processes are used to represent times of system failures, demands 
for services or information, emergencies, setups on a machines, etc. They are 
also used to model times at which complex systems ‘regenerate’. 
 

5.3 Limit theorem for Superpositions of Poissson and 
other distributions. 
 
A Point Process is pictured best as a collection of random points; the 
superposition of two point processes is then obtained by taking the union of 
the points of both. 
 
The simplest and best known result is that the superposition of two 
independent Poisson processes is again a Poisson process. That is,  the class 
of Poisson processes is invariant under the superposition of its independent 
members. 
 
In the case of modeling exogenous arrival processes consisting of many 
component processes, one may invoke the convergence of the superposition 
to the Poisson process. As the number of independent and relatively sparse 
component processes tends to infinity, the superposition asymptotically 
behaves like a Poisson process [18]. 
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Precise proofs of the above conclusions are clearly written in [15]. 
 
An essential intuitive explaining is that, in a limit, the number of processes 
being superposed increases while each individual component contributes 
less and less so as to keep the intensity of the superposition process constant. 
This way, no component can contribute more than one point to the 
superpostition in any finite interval [0,t].  
 
Suppose, there are nt  points in the interval [0,t]; then each belongs to a 
different component process; the positions of these nt points are independent 
of each other by the independence of the components; and each position has 
the uniform distribution over [0,t] by the stationarity of the component it 
belongs to. The number nt must be so that  nt /t is the intensity of the 
superposition as t→ ∞. This is precisely the description of the Poisson 
process.  
 

5.4 Poisson distribution as a limit 
The prominence of Poisson processes stems from the fact that they arise as 
limits of sums or superposition of uniformly sparce point process. They also 
arise as  limits of processes of rare events [22]. 
 
An actual point process can often be viewed as a superposition of points 
from many source or as a process of very rare events, and so a Poisson 
model may be appropriate. 
 
Another important property of a Poisson process is that it is Markovian. If N 
is a stationary Poisson process on R+  , then {Nt : t ∈ R+} has independent 
increments and hence is a Markov process. In general, a Poisson process on 
any space is a Markov random field. Poisson processes are also building 
blocks for a variety of other stochastic processes as well as point processes. 
 
Below we try to understand how Poisson distribution can arise as a limiting 
process by the convolution of several arrival processes. 
 
Consider an observational process in which either an event is registered or 
not  i.e. we make a stream of observations  i= 1, 2, 3, …, n,  whose outcome 
is either true or false (such a variable is called a Bernouilli variable). 
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After n observations, suppose there are q “true” or positive observations. 
The distribution of probabilities of obtaining q positives in n observations is 
 
f HqL = n  Cq pq H1 − pLn−q

                                              (1) 
 
Where  p : probability of obtaining a positive result on each independent 
observation. 
 
By definition : 

n Cq = Iq
nM =

n!

Hn− qL! q!

 
Now consider this binomial distribution in the limit of small p and large n. 
A binomial distribution has mean value   λ =  np  =  <q>. 
 
We interprete (1) as :  
Prob Hq = kL = n  Ck pk H1 - pLn-k

=
n!

Hn − kL! k!
. pk H1 − pLn−k H2L

≤
nk

k!
. pk

 H1 − pLn−k
 

 
Because we knew from  theory : 

     
n Cr ≤

nk

k!  
     
Suppose we assume that np = λ = constant, but n → ∞ , p → 0 
 
Prob Hq = kL ≤

nk

k!
. pk H1 − pLn−k →

HnpLk

k!
 H1 − pLn−k →

λk

k!
 e−λ

 
Thus :  
 
 

lim Prob Hq = kL →
λk

k!
 e−λ

                                                                   (3) 
n→∞ 
p→0 
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This is exactly the Poisson distribution previous defined in chapter §2.1.  
 
We can verify that: 

„
k=0

∞

 
λk

k!
 e−λ = 1

 
 
Since :   

eλ = „
k=0

∞ λk

k!
 

(series expansion for exponential function) 
 
Thus, based purely on a model of rare events measured over long times, or 
many samples, we expect that the probabilities are approximate the Poisson 
limit, or converge to Poisson distribution. 
 
Prob(q=k)  ≤  Poisson (q=k)                                                          (4) 
 
On purely general grounds we expect a true/false process, a counting process 
to have a Poisson limit for n→∞. 
 
How big does n have to be? 
 
In research [13], the authors note that there are asymptotes like power laws 
in discrete processes that tend to Poisson. 
They suggest that one needs n = 1010   to see Poisson behaviour. 
 
What does the distribution look like for finite n? 
 
We try to plot the function (2) above for various n value, using Mathematica, 
for example : 
 
Prob@n_, k_D@p_D:=

n!

Hn− kL! k!
 pk H1− pLn−k;

 
 
Plot[Evaluate[Table[Prob[10,i][p],{i,1,4}]],{p,0,1}, PlotRange →All] 
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- n= 10 with k=1, k=2, k=3, k=4 following this order from left to right : 
 

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

 
 
     Using the above command with different parameters, we have : 
- n= 10 with k=6, k=7, k=8, k=9 following this order from left to right : 
 

0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

 
 

- n= 50 with k=10:  (the maximum value now reduces to 0.14 while the 
maximum value when n =10 above is 0.39) 

 

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.12

0.14
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- n= 100 with k=30: 
 

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

 
 
- n= 500 with k=200: 
 

0.2 0.4 0.6 0.8 1

0.005

0.01

0.015

0.02

0.025

0.03

0.035

 
 
- n= 1000 with k=200: 
 

0.2 0.4 0.6 0.8 1

0.005

0.01

0.015

0.02

0.025

0.03

 
 
Comparing the graphs above, we see that the peaks are lowered down 
while the distances between the two zero points shortened. 
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n= 5000 with k=1000: 
 

0.2 0.4 0.6 0.8 1

0.002

0.004

0.006

0.008

0.01

0.012

0.014

 
 
 
- n= 10000 with k=2000: 
 

0.2 0.4 0.6 0.8 1

0.002

0.004

0.006

0.008

0.01

 
 
The following figure show equation (2) for different n, from n=100 
(outmost) to n=1000 (innermost) with the same value k/n=0.2 in the same 
graph : 
 

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1
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Our remark is that the greater n is, the lower is the peak and the faster 
decreases  the tail of the graph to zero. Those are also the signs of Poisson 
distribution we discussed  in Chapter 4. 
 
We try to find out how many observations are made before coming to the 
conclusion among the researches we have read. For example : 
 
- 72000 observations of the number of Telnet originator packets arriving,  
1.7 million arriving packets and then 2.4 million arriving packets, and in 
another experiment, there are 1.3 million packets, and another : 85000 
packets [1]. 
 
- Under the research [2], 24 data sets are used to analysis the Ethernet traffic 
measurements, some of which come to nearly 28 million packets arrivals.  
 
- The result in [5]  is an emprical study based only on 3026 packets traces. 
 
- In [8], the researcher uses a data sets of 4410851 interarrival times in  
455992 connections, and then 739005 connections. 
 

- The authors of [11] generated and running through the server about 500000 
arrivals. 
 

The above numbers show that the observations are far below 1010   (to see 
Poisson behaviour). This explains why their conclusions are another 
distribution rather than tend to Poisson. 
 

Why it is so difficult to study the Internet traffic with a general model? 
 
One of the reasons making the Internet exceedingly hard to characterize is  
that Internet changes in drastic ways over time, as an immense moving 
target.  
 
Another problem is the heterogeneity of the Internet in topology, in link 
properties, and in protocols:  Internet topology is also constantly changing in 
different entities, dynamic routing can make routes through network which 
are asymmetric change on short time scales, and the widely used TCP 
protocol has undergone major evolutionary changes in different 
implementations [20]. 
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The Internet’s technical and administrative diversity, sustained growth over 
time, and immense variations over time present a tremendous difficulties for 
attempts to simulate the Internet with a goal of obtaining “general” results. 

6. Conclusion 
 
We have reviewed the Internet traffic with two main models : Poisson versus 
Long-Tailed. The simple Poisson model does not capture all the statistical 
properties of packet traffic, but can describe the session arrival process, 
aggregating Web traffic.  
 
The switch from Poisson to Long-Tailed thinking in Internet traffic research 
has had a major impact on our understanding of actual Internet traffic.  
 
The recent research on Internet traffic tending toward Poisson, as the load 
increases, can be theoretically proved only, because it is difficult to 
accomplish the experiment with 1010 observations to verify this point of 
view.  
 
In our opinion, looking for a stochastic process which could be used as an 
accurate and simple general model for Internet traffic seems like a vain 
effort because of the explosive growth of Internet over time, with immense 
variations. 
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