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Abstract
In the language {0, 1, ◦,�}, where 0 and 1 are constant symbols, ◦ is a binary function
symbol and � is a binary relation symbol, we formulate two theories,WD and D, that
are mutually interpretable with the theory of arithmetic R and Robinson arithmetic
Q, respectively. The intended model ofWD and D is the free semigroup generated by
{0, 1} under string concatenation extended with the prefix relation. The theories WD
and D are purely universally axiomatised, in contrast to Q which has the Π2-axiom
∀x [ x = 0 ∨ ∃y [ x = Sy ] ].

Keywords Theory of concatenation · First-order arithmetic · Interpretability

Mathematics Subject Classification 03B25 · 03B30 · 03F25 · 03F30 · 03F40

1 Introduction

This paper follows the line of work that focuses on determining whether there is
a weakest theory that is essentially undecidable. We formulate two natural essen-
tially undecidable theories in the language of concatenation that are purely universally
axiomatised.

A countable first-order theory is called essentially undecidable if any consistent
extension, in the same language, is undecidable (there is no algorithm for deciding
whether an arbitrary sentence is a theorem). A countable first-order theory is called
essentially incomplete if any recursively axiomatizable consistent extension is incom-
plete. It is known that a theory is essentially undecidable if and only if it is essentially
incomplete. Indeed, if a theory is not essentially undecidable, then by definition it
has a consistent decidable extension which can be extended to a decidable complete
consistent theory (see Chapter 1 of Tarski et al. [18]). On the other hand, if a theory is
not essentially incomplete, then by definition it has a complete consistent recursively
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axiomatizable extension which clearly is decidable. Two theories that are known to be
essentially undecidable are Robinson arithmetic Q and the related theory R. Rosser‘s
generalization of Gödel‘s first incompleteness theorem is usually taken as the state-
ment that Q is essentially undecidable.

The Axioms of R The Axioms of Q

R1 n + m = n + m Q1 ∀xy [ x �= y → Sx �= Sy ]
R2 n × m = n × m Q2 ∀x [ Sx �= 0 ]
R3 n �= m if n �= m Q3 ∀x [ x = 0 ∨ ∃y [ x = Sy ] ]
R4 ∀x [ x ≤ n → ∨

k≤n x = k ] Q4 ∀x [ x + 0 = x ]
R5 ∀x [ x ≤ n ∨ n ≤ x ] Q5 ∀xy [ x + Sy = S(x + y) ]

Q6 ∀x [ x × 0 = 0 ]
Q7 ∀xy [ x × Sy = (x × y)+ x ]

Themain objective of this paper is to show that two theories,WD andD, aremutually
interpretable with R and Q, respectively. The axioms of WD and D are given below
using juxtaposition instead of the binary function symbol of the formal language. Later
we regard D as the theory without the axiom D5. We do this because the two versions
of D are mutually interpretable. The theoriesWD and D are theories in the language of
concatenation extendedwith a binary relation symbol. That is, the language {0, 1, ◦,�}
where 0 and 1 are constant symbols, ◦ is a binary function symbol and � is a binary
relation symbol. The intended structure D is the free semigroup with two generators
extended with the prefix relation which we denote �D. As in number theory, each
element α in the universe is associated with a canonical term α. The inclusion of a
binary relation in the languages makes it easier to define Σ1-formulas and to give a
purely universal Σ1-complete axiomatization of D. We observe that any theory that
proves all trueΣ1-sentences is an extension ofWD. Indeed, instances ofWD1 andWD2
are true Σ1-sentences, and each instance of WD3 follows from the true Σ1-sentences
∀x � α [ ∨

γ�Dα x = γ ] and ∧
γ�Dα γ � α. The theory WD is thus the weakest

Σ1-complete axiomatization ofD (modulo closure under logical implication) and the
theory D is a natural finitely axiomatizable extension ofWD. A variant of D where we
have an identity element was introduced in Kristiansen and Murwanashyaka [9] as a
Σ1-complete axiomatization of the structureD extended with the empty string. In [9,
10], we identify a number of decidable and undecidable fragments of D and related
structures.

The Axioms of WD The Axioms of D

WD1 α β = αβ D1 ∀xyz [ (xy)z = x(yz) ]
WD2 α �= β if α �= β D2 ∀xy [ x �= y → ( x0 �= y0 ∧ x1 �= y1 ) ]
WD3 ∀x [ x � α ↔ ∨

γ�Dα x = γ ] D3 ∀xy [ x0 �= y1 ]
D4 ∀x [ x � 0 ↔ x = 0 ]
D5 ∀x [ x � 1↔ x = 1 ]
D6 ∀xy [ x � y0 ↔ ( x = y0 ∨ x � y ) ]
D7 ∀xy [ x � y1↔ ( x = y1 ∨ x � y ) ]
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The theory of concatenation TC was introduced by Grzegorczyk in [4] where he
also showed that it is undecidable. The language of TC consists only of the two con-
stant symbols 0 and 1 and the binary function symbol ◦. The intended model of
TC is a free semigroup with at least two generators. That is, a structure of the form
(Γ +, a1, . . . , an,� ) where Γ = {a1, . . . , an} is a finite alphabet with at least two
symbols, Γ + is the set of all finite non-empty strings over Γ and � is the binary
operator that concatenates elements of Γ +. Grzegorczyk‘s motivation for introducing
the theory TC was that, as computation involves manipulation of text, the notion of
computation can be formulated on the basis of discernibility of text without reference
to natural numbers. Then, undecidability of first-order logic and essential undecid-
ability can be explained using a theory of strings thereby avoiding complicated coding
of syntax based on natural numbers. In [5], Grzegorczyk and Zdanowski showed that
TC is essentially undecidable. This was further improved in Ganea [3], Visser [19]
and Švejdar [16] where it was shown that TC is mutually interpretable with Robinson
arithmetic. In Higuchi and Horihata [6], it was shown that TC is minimal essentially
undecidable. That is, removing any one of the axioms of TC gives a theory that is not
essentially undecidable. We will refer to TC as TC−ε and we will let TC refer to the
theory where we have an identity element. The two theories are known to be mutually
interpretable (see Grzegorczyk and Zdanowski [5] and Visser [19]). In the article [6],
it was also shown that a weak theory of concatenation WTC−ε is minimal essentially
undecidable and mutually interpretable with R. That WTC−ε is minimal essentially
undecidable means that removal of any one of the axiom schemas of WTC−ε gives a
theory that is not essentially undecidable.

The Axioms of TC−ε

TC−ε
1 ∀xyz [ x(yz) = (xy)z ]

TC−ε
2 ∀xyzw [ ( xy = zw → (

( x = z ∧ y = w)∨
∃u [ ( z = xu ∧ uw = y ) ∨ ( x = zu ∧ uy = w ) ] ) ]

TC−ε
3 ∀xy [ xy �= 0 ]

TC−ε
4 ∀xy [ xy �= 1 ]

TC−ε
5 0 �= 1

The Axioms of WTC−ε

WTC−ε
1 ∀xyz [ ( x(yz) �s α ∨ (xy)z �s α ) → x(yz) = (xy)z ]

WTC−ε
2 ∀xyzw [ ( xy = zw ∧ xy �s α ) → (

( x = z ∧ y = w)∨
∃u [ ( z = xu ∧ uw = y ) ∨ ( x = zu ∧ uy = w ) ] ) ]

WTC−ε
3 ∀xy [ xy �= 0 ]

WTC−ε
4 ∀xy [ xy �= 1 ]

WTC−ε
5 0 �= 1

We use x �s y as shorthand for

y = x ∨ ∃uv [ y = ux ∨ y = xv ∨ y = (ux)v ∨ y = u(xv) ] .
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Fig. 1 S → T means S is
interpretable in T but S does not
interpret T . S ↔ T means S and
T are mutually interpretable

The diagram in Fig. 1 summarizes the relationships between R, Q,WD, D,WTC−ε

and TC−ε.
Kristiansen andMurwanashyaka [11] have also introduced two essentially undecid-

able theories,WT and T, that are purely universally axiomatised. WhileWD and D are
theories of concatenation,WT and T are theories of terms. The intended model ofWT
and T is the extended term algebra given by the language LT = {⊥, 〈·, ·〉,�} where
⊥ is a constant symbol, 〈·, ·〉 is a binary function symbol and � is a binary relation
symbol. The universe is the set of all variable-freeLT-terms and 〈·, ·〉 is interpreted as
the function that maps a pair (s, t) to the term 〈s, t〉. Every variable-free term is thus
realized as itself. The relation symbol � is interpreted as the subterm relation. The
theory WT has a compact axiomatization that consists only of analogues of WD2 and
WD3. An analogue ofWD1 is not necessary since it holds by pure logic. The theory T
has two axioms

T1 ≡ ∀xy [ 〈x, y〉 �=⊥ ] and T2 ≡ ∀xyzw [ 〈x, y〉 = 〈z, w〉 → ( x = z ∧ y = w )]

that describe 〈·, ·〉; and two axioms

T3 ≡ ∀x [ x �⊥↔ x =⊥ ] and

T4 ≡ ∀xyz [ x � 〈y, z〉 ↔ ( x = 〈y, z〉 ∨ x � y ∨ x � z ) ]

that describe�. Kristiansen andMurwanashyaka give interpretations of R andQ inWT
and T, respectively. A result of Visser [20] ensures thatWT is interpretable in R since it
is locally finitely satisfiable. They conjecture that T and Q are mutually interpretable.

2 Preliminaries

In this section, we clarify a number of notions that we only glossed over in the previous
section. We also introduce a number of intermediate theories that will be useful in
showing that WD and R are mutually interpretable and that D and Q are mutually
interpretable.

We consider the structures

D− = ({0, 1}+, 0, 1,� ) and D = ({0, 1}+, 0, 1,� ,�D)

where {0, 1}+ is the set of all finite non-empty strings over the alphabet {0, 1}, the
binary operator� concatenates elements of {0, 1}+ and�D denotes the prefix relation,
i.e., x �D y if and only if y = x or there exists z ∈ {0, 1}+ such that y = x�z.
The structure D− is thus the free semigroup with two generators. We call elements
of {0, 1}+ bit strings. The structures D− and D are first-order structures over the
languages L −

BT = {0, 1, ◦} and LBT = {0, 1, ◦,�}, respectively.
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In first-order number theory, each natural number n is associated with a numeral n.
Each non-empty bit string α ∈ {0, 1}+ is associated by recursion with a unique L −

BT-
term α, called a biteral, as follows: 0 ≡ 0, 1 ≡ 1, α0 ≡ (α ◦ 0) and α1 ≡ (α ◦ 1). The
biterals are important if we, for example, want to show that certain sets are definable
since we then need to talk about elements of {0, 1}+ in the formal theory.

In the language LBT, we can define the Σ1-formulas as follows: atomic formulas
and their negations are Σ1-formulas. If α and β are Σ1-formulas, then α ∧ β, α ∨ β

and ∃x α are Σ1-formulas. Furthermore, if the variable x does not occur in the term
t , then ∃x [ x � t ∧ α ] and ∀x [ x � t → α ] are also Σ1-formulas. We use ∃x � t α

and ∀x � t α as abbreviations for ∃x [ x � t ∧α ] and ∀x [ x � t → α ], respectively.
To defineΣ1-formulas over the languageL −

BT, we first need to define a binary relation
in order to have bounded quantifiers. Two natural choices are

– x �i y ≡ y = x ∨ ∃z [ y = xz ]
– x �s y ≡ y = x ∨ ∃uv [ y = ux ∨ y = xv ∨ y = (ux)v ∨ y = u(xv) ].

Over the structure D−, the defined relation �i is realized as the prefix relation while
�s is realized as the substring relation. Given a bit string α, the set of those bit strings
that are substrings of α is denoted 〈...α〉 and consists of those bit strings β such that
β = α or there exist bit strings u and v such that α = uβ or α = βv or α = uβv. We
choose to work with �s since the intended interpretation of � is the prefix relation.
We observe that the number of substrings of a string α is quadratic in the length of
α, whereas the number of prefixes of α is linear in the length of α. This means that
the choice between �i and �s could make a difference in the context of very weak
theories.

Having introduced Σ1-formulas, it is natural to try to find Σ1-complete axiom-
atizations of the structures D− and D. That is, to find theories that prove all true
Σ1-sentences (sentences are formulas without free variables) and that are such that
the non-logical axioms are true over the intended structure. A natural first step is to
introduce the theories WBT and WD defined below. It is not difficult to see that these
two theories are Σ1-complete. The theories WBT and WD are not finitely axiomati-
zable but they are the weakest possible Σ1-complete axiomatizations of D− and D,
respectively, modulo closure under logical implication. Once we have WBT and WD,
the theories BTQ and D + ∀x [ x � 1 ↔ x = 1 ] defined below are natural finitely
axiomatizable extensions (T is an extension of S if the language of S is a subset of the
language of T and every theorem of S is a theorem of T ). The reason for not having
∀x [ x � 1 ↔ x = 1 ] as an axiom of D is that it is not necessary for essential
undecidability (we could, of course, very well have worked with the theory where we
have ∀x [ x � 1 ↔ x = 1 ] instead of ∀x [ x � 0 ↔ x = 0 ]). Although the
theories WBT, BTQ, WD and D are Σ1-complete, it is not at all obvious that they are
essentially undecidable. When proving that R is essentially undecidable, the axiom
schema R5 ≡ ∀x [ x ≤ n ∨ n ≤ x ] is essential. It is however not straightforward
to define a binary relation that provably satisfies the analogue of R5. The method of
relative interpretability then becomes important for establishing that these theories are
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Fig. 2 S → T means S is
interpretable in T but S does not
interpret T . S ↔ T means S and
T are mutually interpretable.
S ��� T means S is interpretable
in T but it is unknown whether S
interprets T

essentially undecidable.

The Axioms of WBT The Axioms of WD

WBT1 α β = αβ WD1 α β = αβ

WBT2 α �= β if α �= β WD2 α �= β if α �= β

WBT3 ∀x [ x �s α → ∨
γ∈〈...α〉 x = γ ] WD3 ∀x [ x � α ↔ ∨

γ�Dα x = γ ]

The Axioms of BTQ

BTQ1 ∀xyz [ (xy)z = x(yz) ]
BTQ2 ∀xy [ x �= y → ( x0 �= y0 ∧ x1 �= y1 ) ]
BTQ3 ∀xy [ x0 �= y1 ]
BTQ4 ∀x [ x = 0 ∨ x = 1 ∨ ∃y [ x = y0 ∨ x = y1 ] ]

The Axioms of D
D1 ∀xyz [ (xy)z = x(yz) ]
D2 ∀xy [ x �= y → ( x0 �= y0 ∧ x1 �= y1 ) ]
D3 ∀xy [ x0 �= y1 ]
D4 ∀x [ x � 0 ↔ x = 0 ]
D5 ∀xy [ x � y0 ↔ ( x = y0 ∨ x � y ) ]
D6 ∀xy [ x � y1↔ ( x = y1 ∨ x � y ) ]
The Axioms of BT The Axioms of C

BTQ1, BTQ2, BTQ3, WBT3 D1, D2, D3, WD3

The overall relationship among the various theories introduced so far is summarized
in Fig. 2. The constants 0 and 1 are atoms in BTQ. This means that BTQ � ∀xy [ xy �=
0 ] ∧ ∀xy [ xy �= 1 ] (see Lemma 8 in Ganea [3] for a proof). This observation is used
in the proof of Theorem 7 where we show that D is interpretable in BTQ.

We recall the method of relative interpretability introduced by Tarski [18] for show-
ing that first-order theories are essentially undecidable. LetL1 andL2 be computable
first-order languages. A relative translation τ from L1 to L2 is a computable map
given by:

1. An L2-formula δ(x) with exactly one free variable. The formula δ(x) is called a
domain.

2. For eachn-ary relation symbol R ofL1, anL2-formulaψR(x1, ..., xn)with exactly
n free variables. The equality symbol = is treated as a binary relation symbol.
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3. For each n-ary function symbol f of L1, an L2-formula ψ f (x1, ..., xn, y) with
exactly n + 1 free variables.

4. For each constant symbol c of L1, an L2-formula ψc(y) with exactly one free
variable.

We extend τ to a translation of atomic L1-formulas by mapping a L1-term t to a
L2-formula (t)τ,w with a free variable w that denotes the value of t :

5. For each n-ary relation symbol R of L1

(
R(t1, . . . , tn)

)τ ≡ ∃v1 . . . vn

⎡

⎣
n∧

i=1
δ(vi ) ∧

n∧

j=1
(t j )

τ,v j ∧ ψR(v1, . . . , vn)

⎤

⎦

where v1, . . . , vn are distinct variable symbols that do not occur in t1, . . . , tn and

(a) for each variable symbol x of L1, (x)τ,w ≡ w = x
(b) for each constant symbol c of L1, (c)τ,w ≡ ψc(w)

(c) for each n-ary function symbol f of L1

(
f (t1, . . . , tn)

)τ,w ≡ ∃w1 . . . wn

⎡

⎣
n∧

i=1
δ(wi ) ∧

n∧

j=1
(t j )

τ,w j ∧ ψ f (w1, . . . , wn, w)

⎤

⎦

where w1, . . . , wn are distinct variable symbols that do not occur in∧n
j=1(t j )τ,w .

We extend τ to a translation of allL1-formulas as follows:

6. (¬φ)τ ≡ ¬φτ

7. (φ � ψ)τ ≡ φτ � ψτ for � ∈ {∧,∨,→,↔}
8. (∃x φ)τ ≡ ∃x [ δ(x) ∧ φτ ]
9. (∀x φ)τ ≡ ∀x [ δ(x) → φτ ] .
Let S be an L1-theory and let T be an L2-theory. We say that S is (relatively) inter-
pretable in T if there exists a relative translation τ such that

– T � ∃x δ(x)
– For each function symbol f of L1

T �
n∧

i=1
δ(xi ) → ∃!y [ δ(y) ∧ ψ f (x1, ..., xn, y) ] .

– For each constant symbol c of L1

T � ∃!y [δ(y) ∧ ψc(y)] .

– T proves φτ for each non-logical axiom φ of S. If equality is not translated as
equality, then T must prove the translation of each equality axiom.
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If S is relatively interpretable in T and T is relatively interpretable in S, we say that
S and T are mutually interpretable.

The following proposition summarizes important properties of relative inter-
pretability (see Tarski et al. [18] for the details).

Proposition 1 Let S, T and U be computably enumerable first-order theories.

1. If S is interpretable in T and T is consistent, then S is consistent.
2. If S is interpretable in T and T is interpretable in U, then S is interpretable in U.
3. If S is interpretable in T and S is essentially undecidable, then T is essentially

undecidable.

3 Intermediate theories

We show in our Master’s thesis [12] that WBT and WTC−ε are equivalent, i.e., they
prove the same formulas. We do not include a proof of this result, but the interested
reader may find the fairly straightforward proof in [12] . We also show in [12] that
BTQ and TC−ε are mutually interpretable. Although this result is not trivial, we omit
a proof since there is another way of seeing that BTQ is mutually interpretable with
Q. The theory BTQ is a fragment of the theory F, introduced first by Alfred Tarski at
the end of Chapter 3 of [18]. The theory BTQ also resembles the theory Qbin in Visser
[19]. One can view Qbin as the analogue of BTQ where we have an identity element
and associativity has been weakened to ∀xy [ (xy)0 = x(y0)∧ (xy)1 = x(y1) ]. The
theory F differs from BTQ in that the axiom BTQ2 is replaced with the axioms

F2 ≡ ∀xyz [ zx = zy → x = y ] and F3 ≡ ∀xyz [ xz = yz → x = y ] .

In Ganea [3], it is shown that F−F2 is mutually interpretable with Q. Clearly, BTQ
is interpretable in F−F2. The other way, we can interpret F−F2 in BTQ by simply
relativizing quantification to the domain

J = {z : ∀xy [ xz = yz → x = y ]} .

It follows from BTQ2 that 0, 1 ∈ J . We now show that J is closed under ◦. Suppose
z, w ∈ J . We need to show that zw ∈ J . We have

x(zw) = y(zw) ⇒ (xz)w = (yz)w (by BTQ1 )

⇒ xz = yz (since w ∈ J )

⇒ x = y (since z ∈ J ) .

Hence, zw ∈ J . Thus, J satisfies the domain condition. Clearly, the axioms of F−F2
hold on J . We show that the axiom BTQ4 holds on J . Suppose x ∈ J . By BTQ4, if
x �= 0 ∧ x �= 1, then there exists y such that x = y0 ∨ x = y1. We have
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uy = vy ⇒ (uy)0 = (vy)0 ∧ (uy)1 = (vy)1
⇒ u(y0) = v(y0) ∧ u(y1) = v(y1) (by BTQ1 )

⇒ ux = vx
⇒ u = v (since x ∈ J ) .

Hence, x ∈ J implies y ∈ J . Thus, BTQ4 holds on J . It is not difficult to verify that
the other axioms also hold on J . We can thus state the following theorem which will
be used implicitly to show that D and Q are mutually interpretable.

Theorem 1 BTQ and Q are mutually interpretable.

The theories BT and C are examples of theories that lie strictly between R and Q
w.r.t. relative interpretability. It follows from ∀xy [ x �= y → ( x0 �= y0∧x1 �= y1 ) ]
and ∀xy [ x0 �= y1 ] that anymodel of BT or C is infinite. If BT (C) were interpretable in
WBT (WD), it would be interpretable in a finite sub-theory. Since any finite sub-theory
of WBT or WD clearly has a finite model, we cannot interpret BT (C) in WBT (WD).
We now show that BTQ is not interpretable in BT. Similar reasoning shows that D is
not interpretable in C. We let BT4 denote WBT3 and for 1 ≤ i ≤ 3 we let BTi denote
BTQi .

Theorem 2 BTQ is not interpretable in BT.

Proof Suppose τ is an interpretation of BTQ in BT. Then, there is a finite subset Σ of
the axioms of BT such that

Σ �
4∧

j=1
(BTQ j )

τ .

To see that τ cannot exist, it suffices to show that the theory given byΣ is interpretable
inBT−BT4, which is not essentially undecidable byminimality of BTQ (see Lemma11).

To see that Σ is interpretable in BT−BT4, it suffices to show that for each natural
number n ≥ 1, the theory BT≤n is interpretable in BT. The theory BT≤n is like BT
except that the axiom schema

BT4 ≡ ∀x [ x �s α →
∨

γ∈〈...α〉
x = γ ] .

is limited to those α such that the length of α, denoted |α|, is bounded by n. To do
this, we define by recursion a sequence of domains

I1 ⊇ I2 ⊇ I3 ⊇ ......

such thatwe obtain an interpretation ofBT≤n in BT by simply relativizing quantification
to In . So, we proceed to construct these domains. We will omit parentheses most of
the time since we have the axiom

BT1 ≡ ∀xyz [ (xy)z = x(yz) ]
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in BT−BT4.
Construction of I1:

We let

A1 = {y : ∀x [ xy0 �= 0 ∧ xy1 �= 1 ] }.

Suppose x00 = 0 ∨ x01 = 1. Then, 11x00 = 110 ∨ 11x01 = 111. By BT2, we then
have 11x0 = 11, contradicting BT3. Hence, 0 ∈ A1. By similar reasoning, we have
1 ∈ A1. We now show that A1 is closed under ◦. Suppose y, y′ ∈ A1. By BT1, we
have

x(yy′)0 = (xy)y′0 and x(yy′)1 = (xy)y′1 .

Hence, x(yy′)0 = 0 ∨ x(yy′)1 = 1 contradicts y′ ∈ A1. Thus, yy′ ∈ A1. Hence, A1
is closed under ◦.

We let

B1 = {x ∈ A1 : x0 �= 0 ∧ x1 �= 1 }.

Suppose 00 = 0 ∨ 01 = 1. Then, 1100 = 110 ∨ 1101 = 111. By BT2, we then have
110 = 11, contradicting BT3. Thus, 0 ∈ B1. By similar reasoning, we have 1 ∈ B1.
We now show that B1 is closed under ◦. Suppose y, y′ ∈ B1. We observe that

yy′0 = 0 ∨ yy′1 = 1

contradicts y′ ∈ A1. Hence, yy′ ∈ B1. Thus, B1 is closed under ◦.
We let

I1 = {y ∈ B1 : ∀x ∈ B1 [ xy �= 0 ∧ xy �= 1 ] } .

We clearly cannot have x1 = 0 ∨ x0 = 1 since 1x1 = 10 ∨ 1x0 = 11 would follow,
contradicting BT3. It follows from the definition of B1 that we have

∀x ∈ B1 [ x0 �= 0 ∧ x1 �= 1 ] .

Hence, 0, 1 ∈ I1. We now show that I1 is closed under ◦. Suppose y, y′ ∈ I1, x ∈ B1
and x(yy′) = 0 ∨ x(yy′) = 1. Since y ∈ I1 ⊆ B1 and B1 is closed under ◦, we have
xy ∈ B1. By BT1, we have have (xy)y′ = 0 ∨ (xy)y′ = 1, contradicting y′ ∈ I1.
Hence, yy′ ∈ I1. Thus, I1 is closed under ◦. This means that I1 satisfies the domain
conditions.

We interpret BT≤1 in BT−BT4 by simply relativizing quantification to I1. Since BT1,
BT2 and BT3 are universal sentences that are theorems of BT−BT4, they hold in I1. It
remains to show that BT−BT4 proves the translation of

(1) ∀x [ x �s 0 → x = 0 ]
(2) ∀x [ x �s 1→ x = 1 ] .
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We only show (1). The case (2) is handled similarly. So, suppose x ∈ I1 and the
translationof x �s 0holds.We thenhaveoneof the following cases for some z, w ∈ I1:

(i) 0 = x
(ii) 0 = zx
(iii) 0 = xw
(iv) 0 = (zx)w
(v) 0 = z(xw).

We notice that (ii)-(v) contradict the definition of I1. We thus see that the translation
of (1) is a theorem of BT−BT4. Similarly, the translation of (2) is a theorem of BT−BT4.
Construction of In+1:

Let Γn denote the set of all nonempty biterals of length at most n. Let �In
s denote

the realization of �s in In , i.e.

x �In
s y ≡ y = x ∨ ∃uv ∈ In [ y = ux ∨ y = xv ∨ y = uxv ] .

We assume In has been constructed and satisfies

∧

α∈Γn

∀x ∈ In [ x �In
s α →

∨

γ∈〈...α〉
x = γ ] .

We let

In+1 = {y ∈ In :
∧

α∈Γn

(
∀x ∈ In [ xy = α0 →

∨

γ,δ∈〈...α0〉
( x = γ ∧ y = δ ) ]

∧∀x ∈ In [ xy = α1→
∨

γ,δ∈〈...α1〉
( x = γ ∧ y = δ ) ]

)
} .

By BT3, we cannot have x1 = α0 ∨ x0 = α1. By BT2, we have

x0 = α0 ⇒ x = α

and

x1 = α1 ⇒ x = α .

Hence, 0, 1 ∈ In+1. We now show that In+1 is closed under ◦. Suppose y0, y1 ∈ In+1.
Let x ∈ In . We observe that xy0 ∈ In since x, y0 ∈ In and In is closed under ◦. By
BT1, we have x(y0y1) = (xy0)y1. Then

x(y0y1) = α0 ⇒ ∨
γ,δ∈〈...α0〉( xy0 = γ ∧ y1 = δ ) ( y1 ∈ In+1 and xy0 ∈ In )

⇒ ∨
ζ,η,δ∈〈...α0〉( x = ζ ∧ y0 = η ∧ y1 = δ ) ( x, y0 ∈ In and γ ∈ Γn )

and

x(y0y1) = α1 ⇒ ∨
γ,δ∈〈...α1〉( xy0 = γ ∧ y1 = δ ) ( y1 ∈ In+1 and xy0 ∈ In )

⇒ ∨
ζ,η,δ∈〈...α1〉( x = ζ ∧ y0 = η ∧ y1 = δ ) ( x, y0 ∈ In and γ ∈ Γn ) .
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It is not difficult to see that BT−BT4 proves each instance of the axiom schemas

WBT1 α β = αβ

WBT2 α �= β if α �= β.

This implies

x(y0y1) = α0 ⇒
∨

β,ζ∈〈...α0〉
( x = ζ ∧ y0y1 = β )

and

x(y0y1) = α1 ⇒
∨

β,ζ∈〈...α1〉
( x = ζ ∧ y0y1 = β ) .

Hence, y0y1 ∈ In+1. Thus, In+1 is closed under ◦. This proves that In+1 satisfies the
domain conditions. It is clear that we get an interpretation of BT≤n+1 in BT−BT4 by
simply relativizing quantification to In+1. ��

By a similar argument, we see that D is not interpretable in C.

Theorem 3 D is not interpretable in C.

The theories C and BT are strictly between R and Q w.r.t. interpretability. A natural
question is whether they are mutually interpretable. It is not difficult to see that our
interpretation of WD in WBT given at the end of Sect. 4 is also an interpretation of C
in BT. It is not clear however whether BT is interpretable in C.

Open Problem 1 Is BT interpretable in C?

4 The theoryWD

We now show that the theory WD is mutually interpretable with R. We give an inter-
pretation of R in WD. To show that WD is interpretable in R we invoke the result of
Visser [20]: a recursively enumerable theory is interpretable in R if and only if it is
locally finitely satisfiable (each finite sub-theory has a finite model). We also show
how to interpret WD in WBT , from which follows that WD is interpretable in R since
WBT and WTC−ε are equivalent, and WTC−ε and R are mutually interpretable (see
Fig. 2). The theoryWD is purely universally axiomatised, in contrast toWTC−ε which
has Π2-axioms.

Definition 1 The first-order theoryWD contains the following non-logical axioms: for
each α, β ∈ {0, 1}+

WD1 α β = αβ

WD2 α �= β if α �= β

WD3 ∀x [ x � α ↔ ∨
γ�Dα x = γ ] .
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We start by showing that a theory of arithmetic we call R− is interpretable in WD.
The theory R− has been shown to be mutually interpretable with R (see Jones and
Shepherdson [8]).

Definition 2 The first-order theory R− contains the following non-logical axioms: for
each n,m ∈ N

R−1 n × m = nm
R−2 n �= m if n �= m
R−3 ∀x [ x ≤ n ↔ ∨

k≤n x = k ] .

The most difficult step in interpreting R− in WD is translating ×. We start by
proving two lemmas which show how we intend to translate×. In the structureD, we
can associate each natural number k with the bit string 1k0. For n �= 0 and m > 1, we
can then translate

n × m = nm

by saying that the sequence

(
1n, 1n+n, 1n+n+n, . . . , 1nm

)

exists. The formulas given in Lemmas 1 and 2 try to capture this way of viewing
multiplication. But we have to be careful since we are reasoning in a weak theory.
For example, we lack full associativity. For readability, we dispense with parentheses
whenever possible and expect terms to be read from right to left. That is, xyz should
be regarded as shorthand for (xy)z. Although we do not have full associativity, by
WD1, we have WD � (αβ)γ = α(βγ ) for all α, β, γ ∈ {0, 1}+. Then, by WD3, we
have

WD � ∀x � α ∀y � β ∀z � γ [ (xy)z = x(yz) ] .

The bounded quantifiers in Lemmas 1 and 2 are there to make full use of the axiom
scheme WD3.

Lemma 1 Let n �= 0 and m ≥ 2. Then, WD proves

(1) 1nm � 1nm and 1n, 1m and 1nm are the unique elements such that

(a) 1n � 1n0 ∧ 1n0 = 1n0
(b) 1m � 1m0 ∧ 1m0 = 1m0
(c) 1nm � 1nm0 ∧ 1nm0 = 1nm0.

Furthermore, let

w ≡ 0001n01001n+n011001n+n+n011100 . . . 001nm01m00 .

Then, w provably (in WD) satisfies:
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(2) ∃u � w [ u001nm01m00 � w ]
(3) it holds that (∀w′ � w)(∀y′ � 1m)(∀z′ � 1nm) �0(w

′, y′, z′) where

�0(w
′, y′, z′) ≡ ( y′ �= 1 ∧ w′00z′0y′00 � w ) →

(∃w′′ � w)(∃y′′ � y′)(∃z′′ � 1nm)
[

z′ = z′′1n ∧ y′ = y′′1 ∧ w′′00z′′0y′′00 � w ∧ �0(y
′′, z′′)

]

and

�0(y
′′, z′′) ≡ y′′ = 1→ z′′ = 1n .

Proof Since we have the axiom schema WD1, we can skip parentheses in w. Clause
(1) holds due to the axiom schemasWD3 andWD2. We verify clause (a). By the right-
left implication of WD3, we have 1n � 1n0. By how biterals are defined, we have
1n0 = 1n0. For uniqueness, suppose

x � 1n0 ∧ x0 = 1n0 .

ByWD3, we have

x � 1n0 →
∨

γ�D1n0

x = γ .

Then, by WD2, in order for x0 = 1n0 to hold we must have x = 1n . By similar
reasoning, one verifies clauses (b) and (c).

Clause (2) holds due to the axiom schema WD1 and the right-left implication of
WD3. Let

u = 0001n01001n+n011001n+n+n011100 . . . 001n(m−1)01m−1 .

By the right-left implication of WD3, we have u � w. ByWD1, we have

u001nm01m00 = w .

Then, by the right-left implication of WD3, we have

u001nm01m00 � w .

To see that clause (3) holds, suppose

w′ � w ∧ z′ � 1nm ∧ y′ � 1m ∧ y′ �= 1 ∧ w′00z′0y′00 � w (∗)

holds. By the axiom schemasWD3 andWD2, the third and fourth conjunct of (*) imply
y′ = 1k+1 where 2 ≤ k+1 ≤ m. Given w′ � w ∧ z′ � 1nm , the axiom schemaWD3
gives us a set Γ of pairs (a, b) where a � w and b � 1nm such that (w′, z′) ∈ Γ . For
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each pair (a, b) ∈ Γ , we use WD1 to compute a00b0y′00 and then use the left-right
implication ofWD3 andWD2 to determine whether a00b0y′00 � w. We are then led
to the conclusion

– w′ = 0001n01001n+n011001n+n+n011100 . . . 001nk01k

– z′ = 1n(k+1).
ByWD1 and the right-left implication of WD3, we have

(I) w′ = 0001n01001n+n011001n+n+n011100 . . . 001nk01k � w

(II) z′ = 1n(k+1) = 1nk 1n

(III) y′ = 1k+1 = 1k 1.

We can then let

w′′ = 0001n01001n+n011001n+n+n011100 . . . 001n(k−1)01k−1

and z′′ = 1nk ∧ y′′ = 1k . If k = 1, we let w′′ = 0. If 1k = 1, then by WD2 we must
have k = 1. We thus see that clause (3) holds. ��
Lemma 2 Let

φM (X ,Y , Z) ≡ (
( X = 0 ∨ Y = 0 ) ∧ Z = 0

) ∨ (
Y = 10 ∧ Z = X

)

∨
(
X �= 0 ∧ Y �= 0 ∧ Y �= 10 ∧ ∃x � X ∃y � Y ∃z � Z ∃w

[
X = x0 ∧ Y = y0 ∧ Z = z0 ∧ z � z

∧∃u � w [ u00z0y00 � w ]
∧(∀w′ � w)(∀y′ � y)(∀z′ � z) �(w′, y′, z′, x, w)

] )

where

�(w′, y′, z′, x, w) ≡ (y′ �= 1 ∧ w′00z′0y′00 � w)

→ (∃w′′ � w)(∃y′′ � y′)(∃z′′ � z)
[
z′ = z′′x ∧ y′ = y′′1 ∧ w′′00z′′0y′′00 � w ∧ �(y′′, z′′, x)

]

and

�(y′′, z′′, x) ≡ y′′ = 1→ z′′ = x .

Then, for each natural number n and m, we have

WD � ∀Z [ φM (1n0, 1m0, Z) ↔ Z = 1nm0 ] .

Proof We start by showing that

WD � ∀Z [ Z = 1nm0 → φM (1n0, 1m0, Z) ] . (∗∗)
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– If n = 0 or m = 0, then the first disjunct in the definition of φM (X ,Y , Z) holds.
– If m = 1, then the second disjunct in the definition of φM (X ,Y , Z) holds.
– If n �= 0 and m ≥ 2, then byWD1 and WD2 we have

1n0 = 1n0 �= 0 ∧ 1m0 = 1m0 �= 0 ∧ 1m0 �= 10 .

Then, by Lemma 1, the third disjunct in the definition of φM (X ,Y , Z) holds since
we can choose

w = 0001n01001n+n01100 . . . 001nm01m00 .

Thus, (**) holds.
We now prove that

WD � ∀Z [ φM (1n0, 1m0, Z) → Z = 1nm0 ] . (∗ ∗ ∗)

So, suppose φM (1n0, 1m0, Z) holds. If n = 0 or m ≤ 1, then it follows from the
definition of φM (1n0, 1m0, Z) that Z = 1nm0. We therefore assume that n �= 0 and
m > 1. Then, there exist x � 1n0, y1 � 1m0 and z1 � Z such that

1n0 = x0 ∧ 1m0 = y10 ∧ Z = z10 ∧ z1 � z1 .

ByWD3 and WD2, we have

x = 1n ∧ y1 = 1m .

Furthermore, by the definition of φM (1n0, 1m0, Z), there exist w and w1 � w such
that

w100z10y100 � w .

By WD1, it suffices to show that z1 = 1nm to conclude that Z = 1nm0. By the axiom
schema WD2, we have 1m �= 1 since m > 1. By the axiom schema WD3, we have
1m � 1m . Then,�(w1, y1, z1, x, w) in the definition of φM (1n0, 1m0, Z) implies that
there exist w2 � w, y2 � y1 and z2 � z1 such that

z1 = z21n ∧ y1 = y21 ∧ w200z20y200 � w .

By the axiom schemas WD3 and WD2, we must have

y2 = 1m−1 .

Ifm−1 = 1, then �(y2, z2, x) in the definition of φM (1n0, 1m0, Z) implies z2 = 1n .
ByWD1, this implies

z1 = z21n = 1n 1n = 1n+n = 1nm
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since m = 2. If m − 1 �= 1, we use �(w2, y2, z2, x, w) to conclude that there exist

w3 � w, y3 � y2 and z3 � z1

such that

z2 = z31n ∧ y2 = y31 ∧ w300z30y300 � w .

By the axiom schemas WD3 and WD2, we must have

y3 = 1m−2 .

If m − 2 = 1, then by Φ(y3, z3, x) we have z3 = 1n . ByWD1, this implies

z1 = z21n = ( z31n )1n = 1n 1n 1n = 1n+n+n = 1nm

since m = 3. If m − 2 �= 1, we use �(w3, y3, z3, x, w) to repeat this procedure. We
notice that after a finite number of steps, we have that there existwm � w, ym � ym−1
and zm � z1 such that

zm−1 = zm1n ∧ ym−1 = 1m−(m−2) ∧ ym−1 = ym1 ∧ wm00zm0ym00 � w .

By the axiom schemas WD3 and WD2, we must have

ym = 1 .

The condition �(ym, zm, x) in �(wm−1, ym−1, zm−1, x, w) then implies

zm = 1n .

By backtracking, we observe that

z1 = 1n 1n . . . 1n

where 1n occurs m times. It then follows from the axiom schemaWD1 that z1 = 1nm .
Thus, by WD1, we have Z = 1nm0. Hence, (***) holds. ��
Theorem 4 R− is interpretable in WD.

Proof We choose the domain δ(x) ≡ x = x . We translate, 0, S, × and ≤ as follows:

φ0(x) ≡ x = 0

φS(x, y) ≡ y = 1x

φ×(x, y, z) ≡ ( ∃!w [ φM (x, y, w) ] ∧ φM (x, y, z) )∨
( ¬∃!w [ φM (x, y, w) ] ∧ z = 0 )
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φ≤(x, y) ≡ x = 0 ∨ ∃z ∃w � y [ x = z0 ∧ y = w0 ∧ z � w ] .

The formula φM is defined in Lemma 2. By the axiom schema WD1, our translation
of S implies that we translate each numeral n as the biteral 1n0. By the axiom schema
WD2, the translation of each instance of the axiom schema R−2 is a theorem of WD.

We now show that the translation of each instance of the axiom schema R−1 is a
theorem of WD. By Lemma 2, for each natural number n and m, we have

WD � ∃!w [ φM (1n0, 1m0, w ] ∧ φM (1n0, 1m0, 1nm0) .

Hence

WD � φ×(1n0, 1m0, 1nm0) .

Thus, the translation of each instance of the axiom schema R−1 is a theorem of WD.We
observe thatWD can havemodels where not all elements in the universe are realization
of terms of the form 1k0. Hence, the condition

¬∃!w [ φM (x, y, w) ] ∧ z = 0

in the definition of φ×(x, y, z) ensures that × is translated as a total function.
We now show that the translation of each instance of the axiom schema R−3 is a

theorem of WD. We have

φ≤(x, 1n0) ⇔ x = 0 ∨ ∃z ∃w � 1n0 [ x = z0 ∧ 1n0 = w0 ∧ z � w ]
⇔ x = 0 ∨ ∃z [ x = z0 ∧ z � 1n ] (by WD3,WD2)

⇔ x = 0 ∨∨
γ�D1n x = γ 0 (by WD3)

⇔ x = 0 ∨∨
γ�D1n x = γ 0 .

The last equivalence is due to how biterals are defined. We thus see that the translation
of each instance of the axiom schema R−3 is a theorem of WD. ��
Theorem 5 WD and R are mutually interpretable.

Proof We have shown that R− is interpretable in WD. Since R− and R are mutually
interpretable, R is interpretable in WD. To see that WD is interpretable in R, we first
observe thatWD is locally finitely satisfiable, i.e., any finite subset of the axioms has a
finite model. In [20], Albert Visser shows that a recursively enumerable theory is inter-
pretable in R if and only if it is locally finitely satisfiable. Hence, WD is interpretable
in R. Thus, WD and R are mutually interpretable. ��

Wecould have shown thatWD is interpretable in R by showing that it is interpretable
inWTC−ε, which we know is mutually interpretable with R. Since we in our Master‘s
thesis [12] show that WBT and WTC−ε are equivalent, it suffices to show how to
interpret WD in WBT. We choose the domain δ(x) ≡ x = x . We translate 0, 1, ◦ and
� as follows:
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φ0(x) ≡ x = 0

φ1(x) ≡ x = 1

φ◦(x, y, z) ≡ z = xy

φ�(x, y) ≡ y = x ∨ ∃z [ y = xz ] .

Clearly, the translation of each instance of the axiom schemas WD1 and WD2 is
a theorem of WBT. We now show that the translation of each instance of the axiom
schema WD3 is a theorem of WBT. We have

φ�(x, α) ⇔ α = x ∨ ∃z [ α = xz ]
⇔ α = x ∨ ∃z [ x �s α ∧ z �s α ∧ α = xz ] (by def. of �s )

⇔ α = x∨∨
β,γ∈〈...α〉( x = β ∧ z = γ ∧ β γ = α ) (WBT3)

⇔ ∨
β�Dα x = β (WBT1, WBT2) .

We thus see that the translation of each instance of the axiom schemaWD3 is a theorem
of WBT. Hence, WD is interpretable inWBT.

5 The theory D

We now show that the theory D is mutually interpretable with Q. In contrast to Q
and TC−ε, which have Π2-axioms, the theory D is purely universally axiomatised.
When interpreting one theory into another, handling existential quantifiers can become
cumbersome. This is clearly illustrated in the proof of Theorem 6. Therefore, having
a theory with purely universal axiomatization and that is mutually interpretable with
Q could be advantageous in some circumstances.

Definition 3 The first-order theory D is defined by the following non-logical axioms:

D1 ∀xyz [ (xy)z = x(yz) ]
D2 ∀xy [ x �= y → ( x0 �= y0 ∧ x1 �= y1 ) ]
D3 ∀xy [ x0 �= y1 ]
D4 ∀x [ x � 0 ↔ x = 0 ]
D5 ∀xy [ x � y0 ↔ ( x = y0 ∨ x � y ) ]
D6 ∀xy [ x � y1↔ ( x = y1 ∨ x � y ) ] .

For D to be an extension of WD, we need the axiom ∀x [ x � 1 ↔ x = 1 ]. The
theory D extended with this axiom is what we call D at page3. The next lemma shows
why we have decided to not include this axiom. We could very well have replaced
D4 by ∀x [ x � 1 ↔ x = 1 ]. The proof of the next lemma also illustrates some of
the advantages of not having to worry about existential quantifiers when defining a
domain.

Lemma 3 D+ ∀x [ x � 1↔ x = 1 ] is interpretable in D.
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Proof We translate 0, 1, ◦ and � as

φ0(x) ≡ x = 0100

φ1(x) ≡ x = 0110

φ�(x, y) ≡ x � y

φ◦(x, y, z) ≡ xy = z .

We choose the domain

I = {x : x = 0100 ∨ x = 0110 ∨ ∃y [ x = y0100 ∨ x = y0110 ]} .

Clearly, I contains 0100, 0110 and is closed under ◦. We use D1 when showing that
I is closed under ◦. We now proceed to show that the translation of each non-logical
axiom of D+ ∀x [ x � 1↔ x = 1 ] is a theorem of D.

By D1 and the definition of φ◦(x, y, z), the translation of D1 is a theorem of D. The
translation of D2 is a theorem of D since by D2 we have

x0100 = y0100 ∨ x0110 = y0110 ⇒ x = y .

The translation of D3 is also a theorem of D since by D2 we have

x0100 = y0110 ⇒ x010 = y011

and x010 = y011 contradicts D3.
We now show that the translation of D4 is a theorem of D. We have

x � 0100 ⇔ x = 0100 ∨ x = 010 ∨ x � 01 (by D5 )

⇔ x = 0100 ∨ x = 010 ∨ x = 01 ∨ x � 0 (by D6 )

⇔ x = 0100 ∨ x = 010 ∨ x = 01 ∨ x = 0 (by D4 ) .

We need to show that we cannot have

x = 010 ∨ x = 01 ∨ x = 0 .

Since x ∈ I , by the definition I , we have that x = z0100∨ x = z0110 where z could
possibly be empty (x = zu with z empty means x = u since we do not have an empty
string in D). We have

z0100 = 010 ∨ z0100 = 01 ∨ z0100 = 0

⇓
z0100 = 010 ∨ z0100 = 01 ∨ 11z0100 = 110

⇓ ( by D2 )

z010 = 01 ∨ z0100 = 01 ∨ 11z010 = 11
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contradicting D3. We also have

z0110 = 010 ∨ z0110 = 01 ∨ z0110 = 0

⇓
0z0110 = 0010 ∨ z0110 = 01 ∨ 00z0110 = 000

⇓ ( by D2 )

0z01 = 00 ∨ z0100 = 01 ∨ 00z011 = 00

contradicting D3. Hence, x � 0100 if and only if x = 0100. Thus, the translation of
D4 is a theorem of D. By similar reasoning, the translation of ∀x [ x � 1 ↔ x = 1 ]
is a theorem of D.

We now show that the translation of D5 is a theorem of D. By D5, we have

x � y0100 ⇔ x = y0100 ∨ x = y010 ∨ x � y01 .

By D6, we have

x � y0100 ⇔ x = y0100 ∨ x = y010 ∨ x = y01 ∨ x � y0 .

By D5, we have

x � y0100 ⇔ x = y0100 ∨ x = y010 ∨ x = y01 ∨ x = y0 ∨ x � y .

We need to show that we cannot have

x = y010 ∨ x = y01 ∨ x = y0 .

Since x, y ∈ I , by the definition I , we have

x = z0100 ∨ x = z0110 and y = w0100 ∨ y = w0110

where z and w could possibly be empty. Reasoning as in the preceding paragraph
shows that x = y010 ∨ x = y01 ∨ x = y0 leads to a contradiction. Hence,

x � y0100 ⇔ x = y0100 ∨ x � y .

Thus, the translation of D5 is a theorem of D. By similar reasoning, the translation of
D6 is a theorem of D.

Since D proves the translation of each axiom of D + ∀x [ x � 1 ↔ x = 1 ], it
follows that D+ ∀x [ x � 1↔ x = 1 ] is interpretable in D. ��

We now proceed to show that Q and D are mutually interpretable. We do this
indirectly by showing that D is mutually interpretable with the theory BTQ which we
have seen is mutually interpretable with Q.

Theorem 6 BTQ is interpretable in D.
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Proof By Lemma 3, it suffices to show that BTQ is interpretable in D+ D′4 where

D′4 ≡ ∀x [ x � 1↔ x = 1 ] .

We also observe that D proves the axioms BTQ1, BTQ2 and BTQ3 (the axioms are
identical with D1, D2, D3). So, to translate BTQ in D+D′4, we simply define a domain
K such that the axiom

BTQ4 ≡ ∀x [ x = 0 ∨ x = 1 ∨ ∃y [ x = y0 ∨ x = y1 ] ]

holds restricted to K . Before defining K , we define auxiliary classes A ⊇ B ⊇ C ⊇
I ⊇ J ⊇ K . We need to ensure that there is y ∈ K such that x = y0 or x = y1 if
x ∈ K and x �= 0, 1. We do this by relying on �. The idea is to first let I be such that
if x ∈ I and x �= 0, 1; then we can find y � x such that x = y0 or x = y1. It will not
necessarily be the case that y ∈ I . What we then do is to restrict I so that we have a
subclass K that is downward closed under�, that is, x ∈ K and y � x implies y ∈ K .
Since K is a subclass of I , this immediately ensures that BTQ4 holds in K . We realize
that in order for I to be closed under ◦, it is useful if for all x0, x1 ∈ I , we have that
x0 � x0x1 and that y � x1 implies x0y � x0x1. We therefore let I be a subclass of a
class C with this property.

We let

A = {y : ∀x [ xy � xy ]} .

By D5 and D6, we have D � ∀x [ x0 � x0 ∧ x1 � x1 ]. Hence, 0, 1 ∈ A. We now
show that A is closed under ◦. Suppose y0, y1 ∈ A. Since y1 ∈ A, we have

∀x [ (xy0)y1 � (xy0)y1 ] .

By D1, we then have ∀x [ x(y0y1) � x(y0y1) ]. Hence, y0y1 ∈ A. Thus, A is closed
under ◦.

We let

B = {x ∈ A : x � x} .

By D4 and D′4, we have D � 0 � 0 ∧ 1 � 1. Hence, 0, 1 ∈ B. We now show that B
is closed under ◦. Suppose x0, x1 ∈ B. Since x1 ∈ B ⊆ A, we have x0x1 � x0x1.
Hence, x0x1 ∈ B. Thus, B is closed under ◦.

We let

C = {z ∈ B : ∀xy [ x � yz ↔ ( x � y ∨ ∃u � z [ x = yu ] ) ] } .

By D5 and D4, we have

x � y0 ⇔ x = y0 ∨ x � y

⇔ x � y ∨ ∃u � 0 [ x = yu ] .
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Similarly, by D6 and D′4, we have

x � y1 ⇔ x = y1 ∨ x � y

⇔ x � y ∨ ∃u � 1 [ x = yu ] .

Hence, 0, 1 ∈ C . Next we show that C is closed under ◦. Suppose z0, z1 ∈ C . Then

x � y(z0z1) ⇔ x � (yz0)z1 (D1)

⇔ x � yz0 ∨ ∃u1 � z1 [ x = (yz0)u1 ] (z1 ∈ C)

⇔ x � y ∨ ∃u0 � z0 [ x = yu0 ]∨
∃u1 � z1 [ x = (yz0)u1 ] (z0 ∈ C)

⇔ x � y ∨ ∃u0 � z0 [ x = yu0 ]∨
∃u1 � z1 [ x = y(z0u1) ] (D1)

⇔ x � y ∨ ∃u � z0z1 [ x = yu ] (z1 ∈ C) .

We justify the last equivalence as follows:

(⇒) Suppose u0 � z0 ∧ x = yu0. Since z1 ∈ C and u0 � z0, the right-left
implication in the definition of C tells us that u0 � z0z1. We can thus let
u = u0. Suppose now u1 � z1 ∧ x = y(z0u1). Since u1 � z1 and z1 ∈ C , the
right-left implication in the definition of C tells us that z0u1 � z0z1. We can
thus let u = z0u1.

(⇐) Suppose u � z0z1 ∧ x = yu. Since z1 ∈ C , by the left-right implication in the
definition of C , we have that u � z0 or there exists u′ � z1 such that u = z0u′.
If u � z0, then u0 � z0 ∧ x = yu0 by setting u0 = u. If u′ � z1 ∧ u = z0u′,
then u1 � z1 ∧ x = y(z0u1) by setting u1 = u′.

Hence, z0z1 ∈ C . Thus, C is closed under ◦.
We let

I = {x ∈ C : x = 0 ∨ x = 1 ∨ ∃y � x [ x = y0 ∨ x = y1 ] } .

By definition of I , we have 0, 1 ∈ I . We now show that I is closed under ◦. Suppose
x0, x1 ∈ I . Since x1 ∈ I , we have one of the following cases:

(1) x1 = 0 ∨ x1 = 1
(2) x1 = y10 ∨ x1 = y11 for some y1 � x1.

We first consider (1). Since x0 ∈ C ⊆ B, we have x0 � x0. Since x1 ∈ C , this implies
x0 � x0x1. Hence, ∃y � x0x1 [ x0x1 = y0 ∨ x0x1 = y1 ]. We now consider (2). We
have ∃y1 � x1 [ x0x1 = (x0y1)0 ∨ x0x1 = (x0y1)1 ]. Since x1 ∈ C , this implies

∃y � x0x1 [ x0x1 = y0 ∨ x0x1 = y1 ] .

We thus see that both cases imply x0x1 ∈ I . Hence, I is closed under ◦.
We let

J = {v ∈ I : ∀x � v [ x ∈ I ] } .
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By D4 and D′4, we have D � ∀x � 0 [ x = 0 ] ∧ ∀x � 1 [ x = 1 ]. Hence, 0, 1 ∈ J .
We now show that J is closed under ◦. Suppose, v0, v1 ∈ J and x � v0v1. Since
v1 ∈ C , we have one of the following:

(a) x � v0
(b) x = v0y for some y � v1.

In case of (a), we have x ∈ I since v0 ∈ J . In case of (b), we have y ∈ I since
v1 ∈ J . We also have v0 ∈ I since v0 ∈ J ⊆ I . Since I is closed under ◦, we then
have x = v0y ∈ I . We thus see that both cases imply v0v1 ∈ J . Hence, J is closed
under ◦.

We let

K = {v ∈ J : ∀w � v ∀xy [ x � y ∧ y � w → x � w ] } .

By D4, we have

x � y ∧ y � w ∧ w � 0 ⇒ x = y = w = 0 � 0 .

Hence, 0 ∈ K . By D′4, we have

x � y ∧ y � w ∧ w � 1 ⇒ x = y = w = 1 � 1 .

Hence, 1 ∈ K .
We now show that K is closed under ◦. Suppose v0, v1 ∈ K and

w � v0v1 ∧ x � y ∧ y � w .

We need to show that x � w. From w � v0v1 and v1 ∈ K ⊆ C , we have one of the
following:

(I) w � v0
(II) w = v0u for some u � v1.

In case of (I), since v0 ∈ K , we have

w � v0 ∧ x � y ∧ y � w ⇒ x � w .

In case of (II), we observe that y � w = v0u and u � v1. Furthermore, since v1 ∈ J ,
we have that u � v1 implies u ∈ I ⊆ C . Then, y � w = v0u and u ∈ C implies that
we have one of the following:

(IIa) y � v0
(IIb) y = v0u′ for some u′ � u.

In case of (IIa), since v0 ∈ K ⊆ B, we have

v0 � v0 ∧ x � y ∧ y � v0 ⇒ x � v0
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since v0 ∈ K . Then, since u ∈ C , we have

x � v0 ⇒ x � v0u = w .

In case of (IIb), we observe that v1 � v1 since v1 ∈ K ⊆ B. Then, v1 ∈ K implies

v1 � v1 ∧ u′ � u ∧ u � v1 ⇒ u′ � v1 .

Since v1 ∈ K ⊆ J , we have that u′ � v1 implies u′ ∈ I ⊆ C . Then, x � y = v0u′
and u′ ∈ C implies that we have one of the following:

(IIbi) x � v0
(IIbii) x = v0u′′ for some u′′ � u′.

In case of (IIbi), since u � v1 and v1 ∈ K ⊆ J implies u ∈ I ⊆ C , we have

x � v0 ⇒ x � v0u = w .

In case of (IIbii), we first observe that

u � v1 ∧ u′′ � u′ ∧ u′ � u ⇒ u′′ � u

since v1 ∈ K . Then, since u ∈ C , we have

x = v0u
′′ ∧ u′′ � u ⇒ x � v0u = w .

We thus see that

x � y ∧ y � w ∧ w � v0v1 ⇒ x � w .

Hence, v0v1 ∈ K . Thus, K is closed under ◦.
We now show that the class K has the following important property:

∀v ∈ K ∀w [ w � v → w ∈ K ] . (∗)

Indeed, suppose v ∈ K and w � v. We need to show that w ∈ K . By definition of K ,
we need to prove

z � w ∧ x � y ∧ y � z ⇒ x � z .

Since v ∈ K ⊆ B, we have v � v. Then,

v ∈ K ∧ v � v ∧ z � w ∧ w � v ⇒ z � v .

This in turn implies

v ∈ K ∧ z � v ∧ x � y ∧ y � z ⇒ x � z .
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Hence, w ∈ K . Thus, (*) holds.
We are now ready to give an interpretation of BTQ in D. We choose the domain K .

We translate 0, 1 and ◦ as

φ0(x) ≡ x = 0

φ1(x) ≡ x = 1

φ◦(x, y, z) ≡ z = xy .

It is clear that the translations of BTQ1, BTQ2 and BTQ3 are theorems of D. We now
show that the translation of BTQ4 is a theorem of D. Let x ∈ K . Since K ⊆ I , we
have

x = 0 ∨ x = 1 ∨ ∃y � x [ x = y0 ∨ x = y1 ] .

If the third disjunct is the case, then we have y ∈ K by (*). Thus, the translation of
BTQ4 is a theorem of D. Hence, BTQ is interpretable in D. ��
Theorem 7 D is interpretable in BTQ.

Proof We choose the domain J (x) ≡ x = x . We translate 0, 1, ◦ and and � as
follows:

φ0(x) ≡ x = 0

φ1(x) ≡ x = 1

φ◦(x, y, z) ≡ z = xy

φ�(x, y) ≡ y = x ∨ ∃z [ y = xz ] .

It is clear that the translation of D1, D2 and D3 are theorems of BTQ. We now show
that the translation of

D4 ≡ ∀x [ x � 0 ↔ x = 0 ]

is a theorem of BTQ. So, suppose 0 = x ∨ ∃z [ 0 = xz ]. It is not difficult to see that
we cannot have ∃z [ 0 = xz ]. Hence, the translation of D4 is a theorem of BTQ.

We now show that the translation of

D5 ≡ ∀xy [ x � y0 ↔ ( x = y0 ∨ x � y ) ]

is a theorem of BTQ. We need to show that

y0 = x ∨ ∃z [ y0 = xz ] ⇔ y0 = x ∨ y = x ∨ ∃u [ y = xu ] .

It suffices to show that

∃z [ y0 = xz ] ⇔ y = x ∨ ∃u [ y = xu ] . (∗)
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The right-left implication of (*) is trivial. The left-right implication holds since

y0 = xz ⇒ ( y0 = x0 ∧ z = 0 )∨
∃z′ [ y0 = x(z′0) ∧ z = z′0 ] (by BTQ4, BTQ3 )

⇒ ( y0 = x0 ∧ z = 0 )∨
∃z′ [ y0 = (xz′)0 ∧ z = z′0 ] (by BTQ1 )

⇒ ( y = x ∧ z = 0 )∨
∃z′ [ y = xz′ ∧ z = z′0 ] (by BTQ2 )

⇒ y = x ∨ ∃u [ y = xu ] .

Thus, the translation of D5 is a theorem of BTQ.
By similar reasoning, the translation of D6 is a theorem of BTQ.
Thus, D is interpretable in BTQ. ��

6 Minimality results

This section is devoted to show that the axiomatizations of WD, WBT and BTQ are
minimal essentially undecidable, which is to say that removing any one of the axioms
(axiom schemas) gives a theory that is not essentially undecidable. We are not able to
show that our axiomatization ofD isminimal essentially undecidable, butwe reduce the
problem to showing that D−D5 and D−D6 are not essentially undecidable. However,
as D has a finite axiomatization, we can make it minimal essentially undecidable by
replacing some of the axioms with their conjunction.

We nowproceed to show that WBT−WBT1, WD−WD1 and D−D1 are not essentially
undecidable by interpreting them in S2S. S2S is a monadic second order theory whose
language is {e, 0, 1, S0, S1}, where e, 0 and 1 are constant symbols and S0 and S1 are
unary function symbols. The axioms of S2S are the true sentences in the standard
second-order structure where the universe is {0, 1}∗. The symbol e is interpreted as
the empty string, 0 is interpreted as 0 and 1 is interpreted as 1. The function symbol
S0 is interpreted as the function that takes a bit string and concatenates it with the
bit 0, and the function symbol S1 is interpreted as the function that takes a bit string
and concatenates it with the bit 1. We have quantifiers that range over {0, 1}∗, and we
have quantifiers that range over subsets of {0, 1}∗. It was proved in Rabin [13] that
S2S is decidable. Our interpretation of WBT−WBT1 in S2S does not use the monadic
second order part, and this makes the induced algorithm more efficient. It is known
that extending S2S with the prefix relation does not change the expressive power of
S2S (see Börger et al. [1] p. 317). We also show this when we interpret WD−WD1
and D −D1 in S2S.

We recall that biterals are associated to the left. So, ((0 ◦ 0) ◦ 0) is a biteral while
(0 ◦ (0 ◦ 0)) is not. Although we have so far not needed to take this into account, it
now becomes important.

Lemma 4 WBT −WBT1 and WD−WD1 are not essentially undecidable.
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Proof We interpret the two theories in S2S as follows: We choose the domain δ(x) ≡
x = x . We map 0 and 1 to

φ0(x) ≡ x = 0

φ1(x) ≡ x = 1 .

So, 0 and 1 are realized as 0 and 1, respectively. We map ◦ to

φ◦(x, y, z) ≡
(

( x = e ∨ ( y �= 0 ∧ y �= 1 ) ) ∧ z = e
)
∨

[
x �= e ∧

(
( y = 0 ∧ z = S0x ) ∨

( y = 1 ∧ z = S1x )
) ]

.

This means that ◦ is realized as the function

(x, y) �→

⎧
⎪⎨

⎪⎩

ε if x = ε or y /∈ {0, 1}
x0 if x �= ε and y = 0

x1 if x �= ε and y = 1 .

Recalling that biterals are associated to the left, it is clear that the translation of
each instance ofWBT2 andWD2 is a theorem of S2S. We now show that the translation
of each instance of

WBT3 ≡ ∀x [ x �s α →
∨

γ∈〈...α〉
x = γ ]

is a theorem of S2S. We recall that

x �s y ≡ y = x ∨ ∃uv [ y = ux ∨ y = xv ∨ y = (ux)v ∨ y = u(xv) ] .

Let α �= ε. Suppose β is a substring of α w.r.t. φ◦(x, y, z). We show that β �= ε and
that β is a substring of α in the actual sense. We have one of the following cases:

– α = β

– There exists u such that φ◦(u, β, α). Then, α = uβ, β ∈ {0, 1} and u �= ε.
– There exists v such that φ◦(β, v, α). Then, α = βv, β �= ε and v ∈ {0, 1}.
– There exist u, v andw such that φ◦(u, β,w)∧φ◦(w, v, α). Then, α = uβv, u �= ε

and β, v ∈ {0, 1}.
– There exist u, v and w such that φ◦(β, v,w) ∧ φ◦(u, w, α). This is not possible
since φ◦(u, w, α) implies w ∈ {0, 1}while we cannot have v such that φ◦(β, v, 0)
or φ◦(β, v, 1).

We thus see that β is a substring of α in the actual sense.
We map � to

φ�(x, y) ≡ ∃Y
[
e /∈ Y ∧ x ∈ Y ∧ y ∈ Y ∧ S0y /∈ Y ∧ S1y /∈ Y ∧
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∀z [ (
z �= e ∧ ( S0z ∈ Y ∨ S1z ∈ Y )

) → z ∈ Y ] ∧
∀w [ S0w ∈ Y → S1w /∈ Y ]

]
.

This formula forces� to be realized as the prefix relation on {0, 1}+. Indeed, suppose
α, β ∈ {0, 1}+ and α is related to β as defined by φ�(x, y). The first line in φ�(x, y)
tells us that there exists Y ⊆ {0, 1}+ such that

α, β ∈ Y and β0, β1 /∈ Y .

The second line in φ�(x, y) tells us that if γ ∈ Y , then all the non-empty prefixes of
γ are also in Y . Let

{0, 1}  α0 ≺ α1 ≺ . . . ≺ αk = α and {0, 1}  β0 ≺ β1 ≺ . . . ≺ βm = β

denote all the prefixes of α and β. The notation γ ≺ δ then means that γ is the
longest proper prefix of δ. We show by induction that for each 0 ≤ j ≤ k, there exists
0 ≤ i ≤ m such that α j = βi , which implies that α is a prefix of β. The third line in
φ�(x, y) tells us that exactly one of 0 and 1 belongs to Y since we get for free that
∀w [ S1w ∈ Y → S0w /∈ Y ]. Hence, α0 = β0. Suppose now that for 0 ≤ j < k
there exists 0 ≤ i ≤ m such that α j = βi . We observe that we must have that i < m
since α j = βi = β and α j+1 ∈ Y would contradict β0, β1 /∈ Y . It remains to show
that α j+1 = βi+1. The third line in φ�(x, y) tells us that exactly one of α j0 and α j1
belongs to Y . Hence, α j+1 = βi+1. Thus, by induction, each prefix of α is a prefix of
β.

We thus see that this translation has the desired properties. This translation shows
us how to define decidable models of the theories in question. ��
Lemma 5 D− D1 is not essentially undecidable.

Proof We modify the translation in Lemma 4 as follows: We map ◦ to

φ◦(x, y, z) ≡
(

( y �= 0 ∨ y �= 1 ) ∧ z = x
)
∨ ( y = 0 ∧ z = S0x ) ∨ ( y = 1

∧ z = S1x ) .

This means that ◦ is realized as the function

(x, y) �→

⎧
⎪⎨

⎪⎩

x if y /∈ {0, 1}
x0 if y = 0

x1 if y = 1 .

We need this modification to ensure that the axiom D3 ≡ ∀xy [ x0 �= y1 ] holds. ��
We observe that the simple translation of ◦ we give in the preceding lemma does

not work in the case of Lemma 4 since the axiom scheme WBT3 then fails. Indeed,
for any non-empty bit string α and any bit string β �= 0, 1, we have φ◦(α, β, α). This
means that all substring different from 0 and 1 are substrings of α w.r.t. φ◦(x, y, z).
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Lemma 6 BTQ −BTQ1 is not essentially undecidable.

Proof Let Σ denote the set of all sentences in first order logic with equality and the
language {0, 1,+,×,≤} true in the structure (R, 0, 1,+,×,≤). It was shown by
Tarski [17] that Σ is decidable. We show that BTQ −BTQ1 is interpretable in Σ .

We now define a relative interpretation of BTQ −BTQ1 in Σ . We relativize quan-
tification to λ(x) :≡ x = x and use the following translation of symbols

0 �→ ψ0(x) :≡ x = 0

1 �→ ψ1(x) :≡ x = 1

◦ �→ ψ◦(x, y, z)

where ψ◦(x, y, z) is a formula which defines in (R, 0, 1,+,×,≤) the function h =
h3 ◦ h2 ◦ h1 : R2 → R where

h1(r , u) =

⎧
⎪⎪⎨

⎪⎪⎩

−2+ 2r
1+√1+4r2 if u = 0

2r
1+√1+4r2 if u = 1

0 otherwise

h2(r) =
{

1+r
2 if r ∈ (−3,−1) ∪ (−1, 1)

0 otherwise

h3(r) =

⎧
⎪⎨

⎪⎩

1
r − 1 if r ∈ (0, 1)
1
r + 1 if r ∈ (−1, 0)
0 otherwise .

We first observe that the map R→ (−1, 1) defined by

r �→ 2r

1+√
1+ 4r2

is a bijection. The sections h(−, 0) and h(−, 1) are injective and have images (−∞, 0)
and (0,∞). This is because we have the following sequences of bijections:

R
∼−−−−→

h1(−,0)
(−3,−1) ∼−→

h2
(−1, 0) ∼−→

h3
(−∞, 0)

R
∼−−−−→

h1(−,1)
(−1, 1) ∼−→

h2
(0, 1)

∼−→
h3

(0,∞) .

The fact that h(−, 0) and h(−, 1) are injective and have disjoint images implies that
the translation of

BTQ2 ≡ ∀xy [ x �= y → ( x0 �= y0 ∧ x1 �= y1 ) ]
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and

BTQ3 ≡ ∀xy [ x0 �= y1 ]

are theorems of Σ . The translation of

BTQ4 ≡ ∀x [ x = 0 ∨ x = 1 ∨ ∃y [ x = y0 ∨ x = y1 ] ]

is also a theorem of Σ since we have defined ψ0(x) ≡ x = 0 and since the union of
the images of h(−, 0) and h(−, 1) is

(−∞, 0) ∪ (0,∞) = R \ {0} .

The translation shows how to define a decidable model of BTQ−BTQ1. ��
One of the referees has observed that we get a simpler proof of the preceding lemma

by considering the translation given in Lemma 4 and restricting the domain to the set
of all non-empty strings. We can thus for example translate ◦ as follows

(x, y) �→

⎧
⎪⎨

⎪⎩

x0 if y = 0

x1 if y = 1

0 otherwise.

Lemma 7 WBT−WBT2 and WD−WD2 are not essentially undecidable.

Proof We obtain a one element model A of WBT −WBT2 and WD−WD2 as follows:

– the universe is {0}
– 0A = 0, 1A = 0
– 0 ◦A 0 = 0
– �A= {(0, 0)}.

Since ◦A is associative, WBT1 and WD1 hold in A. We observe that A satisfies

∀x [ x �s α → x = α ] and ∀x [ x � α ↔
∨

β�Dα

x = β ]

since there is only one element in the universe. Thus, WBT3 and WD3 hold in A. ��
Lemma 8 BTQ−BTQ2 is not essentially undecidable.

Proof We obtain a two element model A of BTQ−BTQ2 as follows:

– the universe is {0, 1}
– 0A = 0, 1A = 1
– ∀x, y ∈ {0, 1}( x ◦A y = y ).
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The operator ◦A is clearly associative. The axiom ∀xy [ x0 �= y1 ] holds since

x ◦A 0 = 0 �= 1 = y ◦A 1 .

The axiom ∀x [ x = 0 ∨ x = 1 ∨ ∃y [ x = y0 ∨ x = y1 ] ] holds since the universe
is {0A, 1A}. ��

The following proof of the next Lemma was suggested by one of the referees . We
show that D−D2 is not essentially undecidable by interpreting it in Presburger Arith-
metic. Presburger Arithmetic refers to all sentences in first-order logic with equality
and the language {0, 1,+,<} true in the structure (N, 0, 1,+,<). It is shown that
Presburger Arithmetic is decidable in Chapter 3.4 of Smoryński [15]. The idea is to
consider the free monoid generated by 0 and 1 modulo the equations 00 = 0 and
11 = 1. The universe of this structure then consists of strings of the form (01)n ,
1(01)n , (01)n0, 1(01)n0, with n being a natural number. Since we do not have the
empty string, we have n > 0 when the string is of the form (01)n . The concatenation
operator on this set is described as follows

x�y =
{
xy if x = ua, y = bv, a �= b and a, b ∈ {0, 1}
uav if x = ua, y = av and a ∈ {0, 1} .

Observe that u and v denote the empty string in the cases x, y ∈ {0, 1}. It is clear that
axiom D3 ≡ ∀xy [ x0 �= x1 ] holds in this model. It also follows easily from the
definition of � that (x�y)�z = x�(y�z) when y has length at least two. To see that �

is indeed associative, we observe that given distinct a, b ∈ {0, 1}, we have

(x�a)�z =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xaz if x = ub, z = bv

xav if x = ub, z = av

uaz if x = ua, z = bv

uav if x = ua, z = av

= x�(a�z) .

Thus, axiom D1 ≡ ∀xyz [ (xy)z = x(yz) ] holds.
We interpret � as the prefix relation, i.e., x � y if and only if x = y or there exists

z such that y = x�z. Axiom D4 ≡ ∀x [ x � 0 ↔ x = 0 ] holds since x�z = 0
implies x = z = 0. Axiom D5 ≡ ∀xy [ x � y0 ↔ (x = y0 ∨ x � y ] holds by the
following reasoning:

– Suppose x � y�0 and y�0 = x�z for some z. If y has 0 as a suffix, then y = x�z,
which implies x � y. Assume now y has 1 as a suffix. We have that z = 0 or
z = u10 where u is possibly empty. We first assume z = 0. If x has 0 as a suffix,
then y�0 = x . If y and x both have 1 as suffices, then y = x , which in turn implies
x � y. Suppose now z = u10. Then y = x�u1, which in turn implies x � y.

– Suppose x = y�0 ∨ y = x ∨ ∃z [ y = x�z ]. Then, by associativity of �, we
have x = y�0 ∨ y�0 = x�0 ∨ ∃z [ y�0 = x�(z�0) ]. Hence x � y�0.
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By similar reasoning, axiom D6 ≡ ∀xy [ x � y1↔ (x = y1 ∨ x � y ] holds.
Now, to interpret D−D2 in Presburger Arithmetic, we associate strings with natural

numbers as follows

(01)n �→ 4n, 1(01)n �→ 4n + 1, (01)n0 �→ 4n + 2, 1(01)n0 �→ 4n + 3 .

It is then not difficult to see that � is definable in Presburger Arithmetic. This in turn
implies that the prefix relation is definable. We thus have the following result.

Lemma 9 D−D2 is not essentially undecidable.

Lemma 10 BTQ−BTQ3 and D−D3 are not essentially undecidable.

Proof Since Presburger Arithmetic is decidable, we obtain a decidable model of
BTQ−BTQ3 and D−D3 as follows:

– the universe is the set of natural numbers N
– 0A = 0, 1A = 0
– ∀x, y ∈ N

(
x ◦A y = x + y

)

– x �A y ⇔ x = y.

It is not difficult to see that axioms of BTQ−BTQ3 hold. Axiom

D4 ≡ ∀x [ x � 0 ↔ x = 0 ]

holds since x �A 0A if and only if x = 0A. The axioms

D5 ≡ ∀xy [ x � y0 ↔ ( x = y0 ∨ x � y ) ] and

D6 ≡ ∀xy [ x � y1↔ ( x = y1 ∨ x � y ) ]

hold since x �A x and y ◦A 1A = y = y ◦A 0A. ��
Lemma 11 WD−WD3, WBT −WBT3, BTQ−BTQ4 and D−D4 are not essentially
undecidable.

Proof We start by showing that BTQ−BTQ4 has a decidable model. We consider the
set M2(R≥0) of 2 × 2 matrices with coefficients in R≥0 and which are such that the
first entry is strictly positive. So, the elements of M2(R≥0) are of the form

(
x ∈ R>0 y ∈ R≥0
z ∈ R≥0 w ∈ R≥0

)

.

We consider the binary operation of matrix multiplication, denoted×. It is not difficult
to verify that M2(R≥0) is closed under matrix multiplication. We can consider this
structure as a first-order structure for the language {c0, c1,×} where c0 and c1 are
constant symbols for the matrices

(
1 0
1 1

)

and

(
1 1
0 1

)
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respectively. Let Th(M2(R≥0)) denote the set of sentences true in this structure. We
show that BTQ−BTQ4 is interpretable in Th(M2(R≥0)) and that Th(M2(R≥0)) is
decidable. Since relative interpretability preserves the property of being essentially
undecidable, this means that BTQ−BTQ4 is not essentially undecidable.

We interpret BTQ−BTQ4 in Th(M2(R≥0)) as follows:

– We choose the domain δ(x) ≡ x = x .
– We map 0 to φ0(x) = x = c0.
– We map 1 to φ1(x) ≡ x = c1.
– We map ◦ to φ◦(x, y, z) ≡ x × y = z.

Since matrix multiplication is associative, the translation of

BTQ1 ≡ ∀xyz [ (xy)z = x(yz) ]

is a theorem of Th(M2(R≥0)). To see that the translation of

BTQ2 ≡ ∀xy [ x �= y → ( x0 �= y0 ∧ x1 �= y1 ) ]

is a theorem of Th(M2(R≥0)), we observe that
(
x y
z w

)

×
(
1 0
1 1

)

=
(
a b
c d

)

×
(
1 0
1 1

)

⇒
(
x + y y
z + w w

)

=
(
a + b b
c + d d

)

⇒ x = a ∧ y = b ∧ z = c ∧ w = d

and
(
x y
z w

)

×
(
1 1
0 1

)

=
(
a b
c d

)

×
(
1 1
0 1

)

⇒
(
x x + y
z z + w

)

=
(
a a + b
c c + d

)

⇒ x = a ∧ y = b ∧ z = c ∧ w = d .

To see that translation of

BTQ3 ≡ ∀xy [ x0 �= y1 ]

is a theorem of Th(M2(R≥0)), we observe that
(
x y
z w

)

×
(
1 0
1 1

)

=
(
a b
c d

)

×
(
1 1
0 1

)

⇒
(
x + y y
z + w w

)

=
(
a a + b
c c + d

)

⇒ x + y = a ∧ y = a + b

⇒ x + a + b = a

⇒ x + b = 0

⇒ x = 0 .
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But we cannot have x = 0 by how the set M2(R≥0) is defined. We then see that the
translation of BTQ3 is a theorem of Th(M2(R≥0))

To see that Th(M2(R≥0)) is decidable, we use Tarski‘s result that the set Th(R)

of sentences which are true in the ordered field of real numbers (R, 0, 1,+,×,≤) is
decidable (see Tarski [17]). To see that this is the case, we associate each sentence φ

in the language of Th(M2(R≥0)) with a sentence φ∗ in the language of Th(R) such
that

φ ∈ Th(M2(R≥0)) ⇔ φ∗ ∈ Th(R).

We start by associating c0 and c1 with

(
1 0
1 1

)

and

(
1 1
0 1

)

respectively, and by associating each variable x with

(
x1 x2
x3 x4

)

.

We recall that matrix multiplication is defined by

(
x y
z w

)

×
(
a b
c d

)

=
(
xa + yc xb + yd
za + wc zb + wd

)

.

By following this definition, we associate each term s in the language of Th(M2(R≥0))
with a matrix

(
ps,1 ps,2
ps,3 ps,4

)

where each ps,i is a term in the language of Th(R). So, for example, the term x × y
is associated with the matrix

(
x1y1 + x2y3 x1y2 + x2y4
x3y1 + x4y3 x3y2 + x4y4

)

.

Next we define φ∗ by recursion on the structure of φ as follows:

(1) If φ ≡ s = t , then

φ∗ ≡
∧

x∈S∪T ,1≤i≤4
xi ≥ 0 ∧

∧

y∈S∪T
y1 �= 0 ∧

4∧

i=1
ps,i = pt,i

where S and T denotes the set of variables occurring in s and t , respectively.
(2) If φ ≡ ¬α, then φ∗ ≡ ¬α∗
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(3) If φ ≡ α ∨ β, then φ∗ ≡ α∗ ∨ β∗
(4) If φ ≡ α ∧ β, then φ∗ ≡ α∗ ∧ β∗
(5) If φ ≡ ∃xα, then φ∗ ≡ ∃x1x2x3x4α∗
(6) If φ ≡ ∀xα, then φ∗ ≡ ∀x1x2x3x4α∗.
The first big conjunct in clause (1) reflects the fact that matrices in M2(R≥0) have
entries inR≥0. The second big conjunct in (1) reflects the fact thatmatrices inM2(R≥0)
are such that the first entry is inR>0. The last big conjunct in (1) states that the matrix
associatedwith s equals thematrix associatedwith t . It is obvious thatφ is a theorem of
Th(M2(R≥0)) if and only if φ∗ is a theorem Th(R). Thus, Th(M2(R≥0)) is decidable.

It is not difficult to see that the model of BTQ−BTQ4 we have defined is also a
model of WD−WD3 and WBT−WBT3. We extend it to a decidable model of D −D4
by interpreting � as M2(R≥0)×M2(R≥0). ��

Our proof of decidability of Th(M2(R≥0)) is actually a 4-dimensional interpretation
ofTh(M2(R≥0)) inTh(R). Thismeans that each object in the language ofTh(M2(R≥0))
is associated with a quadruple of objects in the language of Th(R). For more on this
more general notion of interpretability, see Visser [20].

We can now state the main theorem of this section.

Theorem 8 WD, WBT and BTQ are minimal essentially undecidable.

The only thing that is lacking to show that D is minimal essentially undecidable is
to show that D−D5 and D−D6 are not essentially undecidable. A negative solution of
the following problem would thus show that D is minimal essentially undecidable.

Open Problem 2 Show that neither D −D5 nor D −D6 is essentially undecidable.

We have not put much focus on the theories BT and C. The proofs of Lemma 5 and
Lemma 11 show that C − C1, C − C4 and BT − BT4 are not essentially undecidable.
Beyond that, the minimality of BT and C is an open problem.

Open Problem 3 Are BT and C minimal essentially undecidable?

In this section,we investigatedwhether our axiomsets areminimalw.r.t set inclusion
and the property of being essentially undecidable. A different notion ofminimality that
we have been implicitly investigating isminimality w.r.t. interpretability.We have seen
that WD is interpretable in all the essentially undecidable theories we have studied.
It is however not minimal in the interpretability pre-order. In [7], Jeřábek shows that
there is an essentially undecidable theory that is interpretable in R but that does not
interpret R. The theory Jeřábek gives is such that all partially recursive functions are
representable. In Section 3 of [2],YongCheng uses results in [7] to givemany examples
of essentially undecidable theories that are interpretable in R but that do not interpret
R. One of the referees observed that the existence of theories strictly below R w.r.t.
interpretability also follows from the work of Shoenfield [14].

Although there aremanyessentially undecidable theories belowRw.r.t interpretabil-
ity, to the best of our knowledge, it is not known whether there exists a minimal
computably enumerable essentially undecidable theory, w.r.t. interpretability. For a
more detailed discussion of this problem, we refer the reader to Yong Cheng [2]. It
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Fig. 3 S → T means S is
interpretable in T but S does not
interpret T . S ↔ T means S and
T are mutually interpretable.
S ��� T means S is
interpretable in T but it is
unknown whether S interprets T

follows from the idea behind the proof of Theorem 4.7 of [2] that the interpretabil-
ity degrees of computably enumerable essentially undecidable theories have infima.
Hence, if there exists a minimal essentially undecidable theory, then that theory is also
the minimum essentially undecidable theory.

7 Summary

We have formulated essentially undecidable theoriesWD ⊂ C ⊂ D andWBT ⊂ BT ⊂
BTQ (see Fig. 3). The theories WD, WBT and R are mutually interpretable while the
theoriesD, BTQ andQ aremutually interpretable. The theoriesWD,WBT and BTQ have
minimal essentially undecidable axiomatizations, but it not clear whether the same is
true of D. Both WD and D are purely universally axiomatised.
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