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Abstract
These are lecture notes from the conference Arithmetic Topology at the Pacific Institute of Mathemat-

ical Sciences on applications of Morel’s A1-degree to questions in enumerative geometry. Additionally,
we give a new dynamic interpretation of the A1-Milnor number inspired by the first named author’s
enrichment of dynamic intersection numbers.

1 Introduction

A1-homotopy theory provides a powerful framework to apply tools from algebraic topology to schemes. In
these notes, we discuss Morel’s A1-degree, giving the analog of the Brouwer degree in classical topology, and
applications to enumerative geometry. Instead of the integers, the A1-degree takes values in bilinear forms,
or more precisely, in the Grothendieck-Witt ring GW(k) of a field k, defined to be the group completion
of isomorphism classes of symmetric, non-degenerate bilinear k-forms. This can result in an enumeration
of algebro-geometric objects valued in GW(k), giving an A1-enumerative geometry over non-algebraically
closed fields. One recovers classical counts over C using the rank homomorphism GW(k) → Z, but GW(k)
can contain more information. This information can record arithmetic-geometric properties of the objects
being enumerated over field extensions of k.

In more detail, we start with the classical Brouwer degree. We introduce enough A1-homotopy theory
to describe Morel’s degree and use the Eisenbud-Khimshiashvili-Levine signature formula to give context
for the degree and a formula for the local A1-degree. The latter is from joint work of Jesse Kass and the
second-named author. A point of view on the classical Euler number is as a sum of local degrees. This in
turn gives a point of view on an A1-Euler number [16] and enrichments of enumerative results. We give some
due to Tom Bachmann, Jesse Kass, Hannah Larson, Marc Levine, Stephen McKean, Padma Srinivasan,
Isabel Vogt, Matthias Wendt, and the authors. in Section 7. We describe joint work of Kass and the second
named author on A1-Milnor numbers in Section 6.

Inspired by the first named author’s enriched theory of dynamic intersection, we then give a new inter-
pretation of the A1-Milnor number. See Section 6.3, Theorems 6.11 and 6.15.

Finally, we discuss joint work in progress of Kass, Levine, Jake Solomon and the second named author
on the degree of a map of smooth schemes (as opposed to of a map between A1-spheres) and counts rational
curves plane curves of degree d through 3d− 1 points.

2 Motivation from classical homotopy theory

2.1 The Brouwer degree

Let Sn = {(x0, . . . , xn) ∈ Rn+1 :
∑n

i=0 xi = 1} be the n-sphere. Since Sn is orientable, its top homology
group Hn(S

n) is isomorphic to Z. Hence, a map f : Sn → Sn induces a homomorphism f∗ : Z → Z. For
a choice of generator α of Hn(S

n) ∼= Z (which is equivalent to choosing an orientation of Sn), it follows
that f∗(α) = dα. The integer d is called the Brouwer degree of f . Two homotopic maps f, g : Sn → Sn

have the same Brouwer degree and it turns out that the Brouwer degree establishes an isomorphism between
homotopy classes of pointed maps Sn → Sn and the integers

deg : [Sn, Sn]
∼=−→ Z.
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Remark 2.1. Note that Sn is homotopy equivalent to Pn(R)/Pn−1(R). Later in the A1-homotopy version
of the Brouwer degree, Sn will be replaced by the ’quotient’ of schemes Pn/Pn−1.

2.2 The Brouwer degree as a sum of local degrees

Assume p ∈ Sn such that f−1(p) = {q1, . . . , qm}. Then the Brouwer degree deg f can be expressed as a
sum of local degrees as follows: Let V be a small ball around p and U a small ball around q ∈ {q1, . . . , qm}
such that f−1(p) ∩ V = {q}. The quotient spaces U/(U \ {q}) ≃ U/(U \ ∂U) and V/(V \ {p}) ≃ V/∂V are
homotopy equivalent to Sn. Let

f̄ : Sn ≃ U/(U \ {q}) → V/(V \ {p}) ≃ Sn

be the map of spheres induced by f under orientation preserving homotopy equivalences Sn ≃ U/(U \ {q})
and V/(V \ {p}) ≃ Sn. We define the local degree degq f of f at q to be the Brouwer degree of f̄

degq f := deg f̄ .

If p is a regular value, then f is a local homeomorphism and f̄ is a homeomorphism. It follows that
degq f ∈ {±1}. More precisely, degq f is +1 when f̄ is orientation preserving and −1 when f̄ is orientation
reversing. Consequently, it is often easier to compute deg f as a sum of local degrees, especially because we
have the following formula for the local degree from differential topology.

2.2.1 A formula from differential topology

Let x1, . . . , xn be oriented coordinates near q and y1, . . . , yn be oriented coordinates near p. In these coor-
dinates, f is given by f = (f1, . . . , fn) : Rn → Rn. Define the jacobian element at q by Jf(q) := det( ∂fi

∂xj
).

Then

degq(f) =

{
+1 if Jf(q) > 0

−1 if Jf(q) < 0.
(1)

Later, we will define the local A1-degree which will record Jf up to multiplication by squares, that
is, the image of Jf in k×/(k×)2 for an arbitrary field k. Note that for k = R this agrees with (1) since
R×/(R×)2 ∼= {±1}. To be more precise, we first discuss the Grothendieck–Witt ring.

3 The Grothendieck-Witt ring of k

3.1 Symmetric bilinear forms

Let R be a commutative ring and P a finitely generated projective R-module. A symmetric bilinear form
on P over R is a bilinear map

b : P × P → R

such that b(u, v) = b(v, u) for all u, v ∈ P . Let P ∗ := HomR(P,R). The form b is non-degenerate if for all
u ∈ P the map P → P ∗, u 7→ b(−, u) is an isomorphism.

Two symmetric bilinear forms b1 : P1 ×P1 → R and b2 : P2 ×P2 → R are isometric if there is a R-linear
isomorphism ϕ : P1 → P2 such that b2(ϕ(u), ϕ(v)) = b1(u, v) for all u, v ∈ P1. This is an equivalence relation.

The direct sum of two (non-degenerate) symmetric bilinear forms b1 : P1×P1 → R and b2 : P2×P2 → R
is the (non-degenerate) symmetric bilinear form

b1 ⊕ b2 : P1 ⊕ P2 → R, ((x1, x2), (y1, y2)) 7→ b1(x1, y1) + b2(x2, y2).

The tensor product of b1 and b2 is the (non-degenerate) symmetric bilinear form

b1 ⊗ b2 : P1 ⊗ P2 → R, ((x1 ⊗ x2), (y1 ⊗ y2)) 7→ b1(x1, y1)b2(x2, y2).

The set of isometry classes of finite rank non-degenerate symmetric bilinear together with the direct sum
⊕ and the tensor product ⊗ forms a semi-ring.
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3.1.1 Over a field k

If R = k is a field, then P = V is a finite dimensional vector space over k. We call n = dimk V the rank of
the symmetric bilinear form b. For a chosen basis v1, . . . , vn of V the associated Gram matrix with entries
b(vi, vj) of b is symmetric. Any symmetric bilinear form can be diagonalized meaning that there exists a
basis v1, . . . , vn of V such that the Gram matrix b(vi, vj) is diagonal. Furthermore, a symmetric bilinear
form over k is non-degenerate if and only if the determinant of the Gram matrix is non-zero.

Remark 3.1. For x ∈ V , q : V → k defined by q(x) = b(x, x) is a quadratic form. Conversely, if char k ̸= 2
a quadratic form q : V → k gives rise to the symmetric bilinear for b(x, y) = 1

2 (q(x+ y)− q(x)− q(y)).

3.2 Group completion

Let M be a commutative monoid. The Grothendieck group K(M) of M is the abelian group defined by the
following universal property: There is a monoid homomorphism i : M → K(M) such that for any monoid
morphism m : M → A to an abelian group A there exists a unique group homomorphism p : K(M) → A
such that m = p ◦ i.

M A

K(M)

i

m

∃!p

Example 3.2. The Grothendieck group of the natural numbers N0 is the integers Z

K(N0) = Z.

There are several explicit constructions of the Grothendieck group (see for example [50]).

3.3 GW(R)

Let R be a commutative ring.

Definition 3.3. The Grothendieck-Witt ring GW(R) of R is the group completion, i.e. the Grothendieck
group, of the semi-ring of isometry classes of non-degenerate symmetric bilinear forms over R.

3.3.1 Over a field k

Since over a field k any symmetric bilinear form can be diagonalized, we can describe GW(k) in terms of
explicit generators and relations. Let ⟨a⟩ represent the 1-dimensional non-degenerate symmetric bilinear
form k× k → k defined by (x, y) 7→ axy for a ∈ k× a unit in k. Then GW(k) is generated by ⟨a⟩ for a ∈ k×

subject to the following relations

1. ⟨a⟩ = ⟨ab2⟩ for a, b ∈ k×

2. ⟨a⟩⟨b⟩ = ⟨ab⟩ for a, b ∈ k×

3. ⟨a⟩+ ⟨b⟩ = ⟨a+ b⟩+ ⟨ab(a+ b)⟩ for a, b ∈ k× and a+ b ̸= 0

4. ⟨−a⟩+ ⟨a⟩ = ⟨−1⟩+ ⟨1⟩ for a ∈ k×.

Remark 3.4. 1.-3. imply 4.
However, to simplify computations, we add the fourth relation and call ⟨1⟩+ ⟨−1⟩ the hyperbolic form.
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3.3.2 Examples

Example 3.5. For an algebraically closed field like the complex numbers C, it follows from the first relation
that any element of the Grothendieck-Witt ring is equal to the sum of ⟨1⟩′s. Hence, the rank establishes an
isomorphism GW(C) ∼= Z.

Example 3.6. GW(R) ∼= Z× Z

Proof. Let V be an n-dimensional R-vector space and b : V × V → R a non-degenerate symmetric bilinear
form. By Silvester’s theorem there is a basis {v1, . . . , vn} of V such that the Gram Matrix (b(vi, vj))i,j is of
the form 

1
. . .

1
−1

. . .
−1

 .

Let the signature sgn(b) of b be equal to number of 1’s minus the number of −1’s. Then GW(R) ∼= {(r, s) ∈
Z× Z : r + s ≡ 0mod 2} ∼= Z× Z where r is the rank and s the signature of the bilinear form.

Example 3.7. GW(Fq) ∼= Z× F×
q /(F×

q )
2 where the isomorphism is given by the rank and discriminant (=

determinant of the Gram matrix).

Example 3.8. Let k be a field. Then GW(k[t]) ∼= GW(k) by Harder’s Theorem (see [23, Theorem 3.13,
Chapter VII] for char k ̸= 2 and [17, Lemma 30] for char k = 2)

Example 3.9. Let again k be a field, and for simplicity assume that the characteristic of k is not 2. Then
by Springer’s Theorem [22, Theorem 1.4, Chapter VI]

GW(k)⊕GW(k)

Z(⟨1⟩+ ⟨−1⟩,−(⟨1⟩+ ⟨−1⟩))
∼=−→ GW(k((t))), (⟨u⟩, ⟨v⟩) 7→ ⟨u⟩+ ⟨tv⟩

is an isomorphism.

Example 3.10. As in the previous example, let k be a field of characteristic not 2. Then the extension
k ⊂ k[[t]] defines an isomorphism GW(k[[t]]) ∼= GW(k). In more detail, GW(k[[t]]) is the kernel of the second
residue homomorphism GW(k((t))) → GW(k) associated to the ideal (t) [37, Theorem C].

Example 3.11. Let k be a field of characteristic not 2. The kernel I of the rank map rk : GW(k) → Z is
called the fundamental ideal. The Milnor conjectures [33] state that

In/In+1 ∼= KM
n (k)⊗ Z/2 ∼= Hn

ét(k;Z/2)

and was proven by Orlov–Vishik–Voevodsky [39] and Voevodsky [48], [49], respectively. One can interpret
such isomorphisms as giving invariants of bilinear forms (in In) valued in Milnor K-theory or étale coho-
mology. The first of these invariants are the rank, discriminant, Hasse-Witt and Arason invariants. For
fields of finite étale cohomological dimension, this gives a finite list of invariants capable of showing two
sums/differences of generators are the same or distinguishing between them.

3.3.3 A transfer map

Let k ⊂ L a separable field extension. The transfer of a non-degenerate symmetric bilinear form b : V×V → L
is the form over k

V × V
b−→ L

TrL/k−−−−→ k

where TrL/k denotes the field trace, equal to the sum of the Galois conjugates. This yields a homomorphism

TrL/k : GW(L) → GW(k).

For example, TrL/k⟨1⟩ is the usual class of the trace form of the field extension from number theory.
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4 A1-homotopy theory and degree

Instead of remembering only the sign of Jf(q) in (1), it is an idea of Lannes and Morel to remember the
class ⟨Jf(q)⟩ in GW(k), that is Jf(q) up to squares, and get a count in the Grothendieck-Witt ring GW(k)
instead of the integers Z.

4.1 The degree of an endomorphism of P1

As a first case, consider endomorphisms of the projective line P1. Let f : P1
k → P1

k, p ∈ P1(k) and
f−1(p) = {q1, . . . , qm}. Suppose Jf(qi) = f ′(qi) ̸= 0 for all i = 1, . . . ,m and define

deg f :=

m∑
i=1

⟨Jf(qi)⟩ ∈ GW(k).

This does not depend on p.

Exercise 4.1. 1. degA
1

(P1
k → P1

k, z 7→ az) = ⟨a⟩ ∈ GW(k)

2. degA
1

(P1
k → P1

k, z 7→ z2) = ⟨1⟩+ ⟨−1⟩ ∈ GW(k)

Remark 4.2. Naively one can define an A1-homotopy between two morphisms f : X → Y and g : X → Y
as a morphism X × A1 → Y which equals to f (respectively g) when restricted to 0 ∈ A1 (respectively
1 ∈ A1). Functions are said to be in the same naive pointed homotopy class if they are equivalent under the
equivalence relation generated by naive A1-homotopy.

In [8] C. Cazanave finds a monoid structure on the set of naive pointed homotopy classes of morphisms
P1 → P1 (where P1 is pointed at infinity) and shows that the group completion of this monoid equals the
A1-homotopy classes of pointed maps from P1 to P1 in the sense of Morel-Voevodsky which we define in the
next subsection 4.2. He furthermore provides an explicit formula for the degree of f : P1 → P1: the degree
deg f is given by a certain Bézout form [8, Definition 3.4], yielding another explicit and computationally
tractable method to compute deg f.

We can do this in higher dimensions as well. Just as in classical topology, Pn/Pn−1 is a ‘sphere’ in
A1-homotopy theory. Morel’s A1-degree homomorphism

degA
1

: [Pn/Pn−1,Pn/Pn−1]A1 → GW(k) (2)

assigns an element of GW(k) to each A1-homotopy class of a morphisms Pn/Pn−1 → Pn/Pn−1 [35]. In order
to understand this degree (2), we first have to make sense of Pn/Pn−1. Morel and Voevodsky’s A1-homotopy
theory allows this and much more.

4.2 The homotopy category ho(Spck)

We give a brief sketch of A1-homotopy theory [36] here. Further exposition can be found in [2] [25] [52], for
example.

Pn/Pn−1 should be the colimit of the diagram

Pn−1 Pn

∗.

However, the category of (smooth) schemes over k in not closed under taking colimits and we need to enlarge
it.
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Let Smk be the category of smooth (separated of finite type) schemes over a field k. We embed Smk

fully faithfully into the category of simplicial presheaves sPre(Smk), i.e., functors Smop
k → sSet, via the

Yoneda embedding
Smk → sPre(Smk), X 7→ HomSmk

(−, X).

The category sPre(Smk) has finite limits and colimits and the quotient Pn/Pn−1 is an object in this category.
Note that the category sSet of simplicial sets also embedds into sPre(Smk) via the constant embedding

sSet → sPre(Smk), T 7→ ((−) 7→ T ).

The category sPre(Smk) can be given the structure of a simplicial model category [14] or can be viewed
as an ∞-category [29]. Here, we will think of both as structures which encode homotopy theories, and
blur the (important and interesting) differences between them. In both viewpoints, there is a notion of
weak equivalence and there is a well-defined homotopy category, which is the category where all the weak
equivalences are inverted. In either setting, one can use Bousfield localization (see [14]) to impose additional
weak equivalences or equivalently invert more morphisms in the homotopy category.

In a certain technical sense, sPre(Smk) is obtained by freely adding colimits. However, colimits corre-
sponding to gluing “open covers” already existed in Smk. We wanted these, but destroyed them in passing
to sPre(Smk). To rectify the situation, one uses Bousfield localization to impose the condition that a map
from an open cover of X to X is a weak equivalence.

The “open covers” we mean in this context are those associated to the Nisnevich Grothendieck topology.
(See e.g. [9] for more information on Grothendieck topologies). The Nisnevich topology is finer than the
Zariski topology but coarser than the étale topology and carries useful properties of both of them. It is the
Grothendieck topology on Smk generated by elementary distinguished squares, that is Cartesian squares in
Smk

V Y

U X

p

i

such that i is an open immersion, p is étale and p−1(X \ U)red → (X \ U)red is an isomorphism. Associated
to an open cover of a smooth scheme X, we have a simplicial presheaf corresponding to its Čech nerve. Let
LNis denote the Bousfield localization requiring all such maps to be weak equivalences. LNis can be thought
of as a functor

LNis : sPre(Smk) → Shk

whose target Shk is a homotopy theory of sheaves.
In A1-homotopy theory, one wants A1 to play the role of the unit inverval [0, 1] in classical topology.

So we force A1 to be contractible, meaning it is weakly equivalent to the point. In order for the product
structure to have desirable properties, we moreover force X × A1 → X to be a weak equivalence for all
smooth schemes X, and let LA1 : Shk → Spck denote the resulting Bousfield localization. We call the
resulting homotopy theory Spck spaces over k. The total process can be summarized:

Smk → sPre(Smk)
LNis−−−→ Shk

LA1−−→ Spck

Let [−,−]A1 denote the maps in the homotopy category ho(Spck) of Spck.
Having sketched A1-homotopy theory, the codomain of Morel’s degree map has been defined, and we

state:

Theorem 4.3. (Morel) The degree map degA
1

: [Pn/Pn−1,Pn/Pn−1]A1 → GW(k) is an isomorphism for
n ≥ 2 [35].
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Moreover, Morel’s degree extends the topological degree in the sense that the following diagram is com-
mutative:

[Sn, Sn]

deg

��

[Pn
k/P

n−1
k ,Pn

k/P
n−1
k ]A1

R-points
oo

deg

��

C-points // [S2n, S2n]

deg

��
Z GW(k)

signature
oo

rank
// Z

for any subfield k of R.

4.3 Purity

Let V → X be a vector bundle and i : X ↪→ V the zero section. The Thom space of V is defined as follows

Th(V ) := V/(V \ i(X)).

In the A1-homotopy category ho(Spck) the Thom space Th(V ) is isomorphic to P(V ⊕ O)/P(V ) where
O → X is the trivial rank 1 bundle [36, Proposition III.2.17].

Theorem 4.4 (Homotopy purity). Let Z ↪→ X be a closed immersion in Smk and NZX → Z its normal
bundle. Then

X/(X \ Z) ∼= Th(NZX)

is a canonical isomorphism in ho(Spck) [36, Theorem III.2.23].

5 The local A1-degree

In Section 2.2, we discussed the local topological Brouwer degree. There is an analogous local A1-degree.
We came across it already in Section 4.1 to give the degree of an endomorphism of P1, without introducing
it in its own right. We do this now.

Suppose f is a morphism f : An → An and x in An(k) is such that x is isolated in f−1(f(x)), i.e., there is
a Zariski open set U ⊂ An with x ∈ U such that f−1(f(x))∩U = {x}. Then by the homotopy purity theorem
4.4 it follows that U/(U \ {x}) is canonically isomorphic to the Thom space Th(NxAn) which is canonically
isomorphic to P(NxAn⊕O)/P(NxAn) in the A1-homotopy category ho(Spck). The choice of basis for NxAn

determines an isomorphism P(NxAn⊕O)/P(NxAn) ≃ Pn
k/P

n−1
k in ho(Spck), and the canonical trivialization

of the tangent bundle of affine space An gives a preferred choice.

The local A1-degree degA
1

x f of f at x is defined to be the degree of

Pn
k/P

n−1
k

∼= Th(NxAn) ∼= U/(U \ {x}) f̄−→ An/(An \ {f(x)}) ∼= Pn
k/P

n−1
k .

As before let Jf := det ∂fi
∂xj

be the jacobian element.

Example 5.1. Let x ∈ An be a zero of f . If x is k-rational and Jf(x) ̸= 0 in k, then degA
1

x f = ⟨Jf(x)⟩ ∈
GW(k) [17].

Example 5.2. Let x ∈ An be a zero of f . Assume x is defined over a separable field extension k(x)/k and
Jf(x) ̸= 0 in k(x), then there is an extension of the definition of local degree and it can be computed to be

degA
1

x f = Trk(x)/k⟨Jf(x)⟩ ∈ GW(k) [17, Proposition 15].
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5.1 The Eisenbud-Levine/Khimshiashvili signature formula

When x ∈ An
k is a non-simple isolated zero of f : An

k → An
k , i.e., Jf(x) = 0, we can compute degA

1

x f
as the Eisenbud-Levine/Khimshiashvili form, short EKL-form. This form is named after the Eisenbud-
Levine/Khimshiashvili signature formula: For k = R Eisenbud-Levine and Khimshiashvili, independently,
defined a non-degenerate symmetric bilinear form, the EKL-form over R whose signature is equal to the local

topological Brouwer degree [11] [20]. This form is defined on the vector space R[x1,...,xn]x
(f1,...,fn)

. For k = C, the
dimension of this vector space was shown to be the local topological Brouwer degree degx f by Palamodov
in [40, Corollary 4].

The EKL-form is defined in purely algebraic terms, and can thus be defined over any field k. Eisenbud
raised the question if there was an interpretation of the EKL-form over an arbitrary field [10, p. 163-4 some
remaining questions (3)]. The answer is yes: In [17] Kass and the second named author show that the class of
the EKL-form in GW(k) is equal to the local A1-degree when k = k(x) and Brazelton, Burklund, McKean,
Montoro and Opie extend this result to separable field extensions k(x)/k [7].

Theorem 5.3. We have
degA

1

x f = ωEKL

in GW(k).

We recall the definition of the EKL-form from [17]. When x ∈ An
k is an isolated zero of f : An

k → An
k , the

local algebra Of−1(0),x is a finite dimensional k-vector space.

Definition 5.4. Assume char k does not divide the rank of Of−1(0),x. Then the EKL-form is given by

ωEKL : Of−1(0),x ×Of−1(0),x → k, (a, b) 7→ η(ab)

where η : Of−1(0),x → k is any k-linear map with η(Jf) = dimk Of−1(0),x where Jf = ∂fi
∂xj

is the jacobian

element.

The EKL-form is well-defined, i.e., it does not depend on the choice of η and is non-degenerate [17,
Lemma 6].

Remark 5.5. The EKL-form can also be defined when char k divides the rank of Of−1(0),x in terms of the
‘distinguished socle element’ E [17, §1].

To define E, one needs ‘Nisnevich coordinates’ which always exist over a field [17, §1] and [16, Definition
17].

Example 5.6. Let f : R → R be defined by f(z) = z2. Then Jf = 2z and (1, 2z) is a basis for Of−1(0),0 =
R[z](z)
(z2) . Choose η such that η(1) = 0 and η(2z) = 2. Then ωEKL is the rank two form defined by the matrix[

0 2
2 0

]
that is the hyperbolic form ⟨1⟩ + ⟨−1⟩ ∈ GW(R). The signature of ωEKL(f) is 0 which agrees with the
intuition: For 0 ̸= a ∈ R, the preimage f−1(a) is either empty (when a < 0) or consists of 2 points (when
a > 0). Locally around one of these points, f is orientation preserving, and f is orientation reversing around
the other point, contributing a +1 and -1, respectively, to the degree of f .

6 A1-Milnor numbers

6.1 Milnor numbers over C
The Milnor number is an integer multiplicity associated to an isolated critical point of a polynomial (or more
generally a holomorphic) map f : Cn → C.1 Such critical points x correspond to isolated singularities of the

1A critical point of f is a point where the partials ∂if vanish and a critical point is said to be isolated if there is an open
neighborhood around that point not containing other critical points.
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complex hypersurfaces {f = f(x)}.2 There are numerous definitions of the Milnor number, which of course
are all equal, creating lovely pictures of what this number means. See for example [38]. We give two here,
and then describe joint work of Jesse Kass and the second named author enriching the equality between
them [17, §6].

When X is the hypersurface X = {f = 0} ⊂ Cn, the singular locus is the closed subscheme determined
by f = 0 and grad f = 0. Suppose x ∈ X is an isolated critical point of f . Since grad f has an isolated zero
at x, we may take the local Brouwer degree degx grad f . The Milnor number µx(X) is this local (topological)
degree

µx(X) = degx grad f.

Another point of view on the Milnor number is as follows. A point x on a complex hypersurface X is
called a node if the completed local ring ÔX,x is isomorphic to

C[[x1, . . . , xn]]x
x2
1 + . . . x2

n + higher order terms

Equivalently, the determinant of the Hessian does not vanish at nodes. Nodes are the simplest singularity,
and generically, a singularity will bifurcate into nodes. Milnor shows that the number of these nodes is the
Milnor number [32, p.113].

Example 6.1. The cusp is defined by the equation f = x2
2 − x3

1 = 0 in C2. It has one isolated singularity
at 0 with Milnor number equal to

deg0((x1, x2) 7→ (−3x2
1, 2x2)) = deg0(x1 7→ −3x2

1) deg0(x2 7→ 2x2) = 2 ∗ 1 = 2.

Consider instead the perturbation
ft = x2

2 − x3
1 − tx1

and the one-parameter family of hypersurfaces

ft(x1, x2) = u (3)

over A1
u = SpecC[u]. The hypersurface (3) has a singularity if and only if the cubic equation x2

1 + tx1 + u
has a double root. This happens if and only if the discriminant −4t3 − 27u2 is 0. When t = 0, we see that
we have one singular point, which is the cusp we started with. When we fix a particular t with t ̸= 0, then
we have 2 singular points, both of which are nodes. As t moves away from 0, the cusp bifurcates into these
2 nodes, verifying Milnor’s equality in this case. See the figure below.

x2
2 = x3

1 + u

(x1, x2, u)

u

x2
2 = x3

1 + tx1 + u

(x1, x2, u)

u

2A hypersurface of affine (respectively projective) space is the zero locus of a (respectively homogenous) polynomial, and a
point x on a scheme X is said to be an isolated singularity if there is a Zariski open neighborhood U of x such that the only
singular point of U is x.
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6.2 A1-Milnor numbers

In [17, §6] Kass and the second named author define an enriched version of theMilnor number of hypersurface
singularities, and then use the EKL-form to compute it. See also [41] for computations of A1-Milnor numbers
using Macaulay2. The definition applies to isolated zeros x of grad f , where f is the equation determining
the hypersurface. When X is the hypersurface X = {f = 0} ⊂ Pn

k over a field k, the singular locus is the
intersection of X and the closed subscheme determined by Z = {grad f = 0} ⊆ Pn

k , and the assumption that

x is an isolated zero allows us to take the local A1-degree degA
1

x (grad f). Furthermore, the local ring

OZ,x
∼= k[x0, . . . , xn]x/(∂0f, . . . , ∂nf)

is a finite dimensional k-algebra with a distinguished presentation, giving an EKL-form computing degA
1

x (grad f).

Definition 6.2. Let {f = 0} = X ⊂ An be a hypersurface with an isolated singularity at a point x. We set

µA1

x (f) := degA
1

x (grad f).
Over C, the generic singularity has completed local ring C[[x1, . . . , xn]]/(x

2
1 + . . . + x2

n), and we called
such singularities nodes. Over non-algebraically closed fields, nodes carry interesting arithmetic information.
For example, over R, there are three types of nodes in the plane: the split node, defined by x2

1 = x2
2, the

non-split node, given by x2
1 = −x2

2, and a complex conjugate pair of nodes.

split node
x2
1 = x2

2

non-split node
x2
1 = −x2

2

node over C
x2
2 = x3

1 + ax1 + t
t = − 2

3a
√
−a

3

To study nodes, we assume
char k ̸= 2,

and define a node to be a point on a finite-type k-scheme X such that for all the points x̃ of the base change
Xk of X to the algebraic closure of k, the completed local ring ÔXk,x̃

is isomorphic to

k[[x1, . . . , xn]]/(x
2
1 + x2

2 + . . .+ x2
n + higher order terms)

See [1, Exposé XV] for more information.

Example 6.3. The A1-Milnor number of a node records information about its field of definition and tangent
directions.

Consider first the node x = (0, 0) of the plane curve given by f(x1, x2) = a1x
2
1 + a2x

2
2 = 0. Then

µA1

x (f) = degA
1

0 (2a1x1, 2a2x2) = ⟨a1a2⟩. The element a1a2 in k∗/(k∗)2 has a geometric interpretation:

the field of definition of the two lines x1 =
√

−a2

a1
x2 and x1 = −

√
−a2

a1
x2 making up the tangent cone

is k(
√
−a1a2). A node is called split if these two lines are defined over k and non-split otherwise. More

generally, given a rational point x which is a node of a plane curve {f = 0} ⊂ P2
k, let D in k∗/(k∗)2 such

that the lines of the tangent cone to f at p are defined over k(
√
D). Then µA1

x (f) = ⟨−D⟩.
The field of definition of any node is separable [1, Exposé XV, Théoreme 1.2.6], so given a node x on a

plane curve {f = 0} ⊂ P2
k we can reduce to the case of a rational node using Example 5.2. Namely, we have

a tower of field extensions k ⊆ k(x) ⊆ k(x)[
√
D] where D in k(x)∗/(k(x)∗)2 is chosen so that k(x)[

√
D] is

the field of definition of the lines in the tangent cone. Then

µA1

x (f) = Trk(x)/k⟨−D⟩.
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In higher dimensions, we have for f(x0, . . . , xn) = a1x
2
1 + a2x

2
2 + . . . + anx

2
n + higher order terms and

x = [1, 0, . . . , 0] that the A1-Milnor number is given by

µA1

x (f) = ⟨2n
n∏

i=1

ai⟩,

and this gives the general case as we may similarly assume the node is at a rational point using µA1

x (f) =

Trk(x)/k µ
A1

x (f ⊗ k(x)).

Definition 6.4. For a node x on a hypersurface {f = 0} in affine or projective space, the type of x is defined
to be

type(x) := µA1

x (f ⊗ k(x)).

We also write type(x, f) = type(x) to emphasize the dependence on f when the dimension n of the
ambient affine or projective space is odd. When n is even, type(x) is an invariant of the singularity, meaning
it only depends on the completed local ring of X = {f = 0} and x, and notably not on the choice of f itself
[17, Lemma 39]. When n is odd, the type of f will scale by ⟨a⟩ when f is replaced by af .

Note that for a plane curve {f = 0}, the type of a node records the field of definition of the two tangent
directions at the node (i.e. the two lines making up the tangent cone), and more generally, the type records
information about the tangent cone to {f = 0} at x.

In general the A1-Milnor number of f is an invariant of f and the singularity x. Kass and the second
named author show that the sum the A1-Milnor numbers of the singularities of {f = 0} is equal to a weighted
count of nodes of hypersurfaces in a perturbed family. This is written for the case where n is even, but that
is to be able to apply [17, Lemma 39]. It is not necessary for the proof: recording the information of f , an
analogous result holds.

More precisely, it is shown that for general (a1, . . . , an) ∈ An(k) the family

f(x1, . . . , xn) + a1x1 + · · ·+ anxn = t

over the affine t-line has only nodal singularities [17, Lemma 43] and∑
x singularity of {f=0}

µA1

x (f)

is equal to the sum ∑
x node of {f(x)+ax=t}

Trk(x)/k type(x)

of Trk(x)/k type(x), where x runs over the nodes of hypersurfaces in the t-family f(x1, . . . , xn)+ a1x1+ · · ·+
anxn − t) for fixed generic (a1, . . . , an) in kn.

Theorem 6.5. [17, Corollary 45] Let f ∈ k[x1, . . . , xn] be such that grad f is finite and separable. Then for
(a1, . . . , an) ∈ An

k (k) a general k-point, the family

An
k → A1

k

x 7→ f(x)− a1x− . . .− anxn (4)

has only nodal fibers. Suppose that the residue field of every zero of grad(f) is separable over k. Then we
have an equality ∑

x singularity of {f=0}

µA1

x (f) =
∑

x node of (4)

Trk(x)/k type(x, f).
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Proof. The proof of [17, Corollary 45] in [17] gives a statement with the additional hypotheses that n is even
and that every zero of grad(f) either has residue field k or is in the étale locus of grad f . The first hypothesis
is removed by including the information of f into type(x, f). The second hypothesis was present to ensure
with the technology available at the time that the A1-local degree agrees with a bilinear form constructed
in [43, Satz 3.3], which will be described here in Section 6.3. It is weakened to the hypothesis that the zeros
of grad(f) have residue field which is separable over k by [7, Theorem 1.3], [17, main theorem] and [16,
Proposition 32].

Example 6.6 (Cusp continued). In Example 6.1, we looked at the classical Milnor number of the cusp
defined by f = x2

2 −x3
1, and its bifurcation into nodes. We now enrich this example using Theorem 6.5. The

A1-Milnor number of the cusp is

µA1

(f) = degA
1

0 grad f = degA
1

0 (3x2
1, 2x2) = ⟨1⟩+ ⟨−1⟩ ∈ GW(k).

(To see this, one can express degA
1

0 (3x2
1, 2x2) as the product

degA
1

0 (3x2
1, 2x2) = degA

1

0 (3x2
1) deg

A1

0 (2x2) = ⟨3⟩degA
1

0 (x2
1)⟨2⟩,

and the A1-degree degA
1

0 (x2
1) was computed to be ⟨1⟩+ ⟨−1⟩ in Example 5.6.) As in Example 6.1, the cusp

bifurcates into 2 nodes. These nodes are either a pair of conjugate nodes defined over a separable degree 2
extension of k, or 2 rational nodes. For each of these nodes, the lines in the tangent cone have some fields
of definition. Theorem 6.5 gives restrictions on what field extensions and tangent directions are possible, or
in other words, Theorem 6.5 gives restrictions on the types of these nodes. For example, suppose the field
k is the finite field F5 with 5 elements. Then ⟨1⟩ + ⟨−1⟩ has trivial discriminant. So it is not possible for
any choice of perturbation for the cusp to bifurcate into 2 rational nodes with one split and one non-split.
Similarly, it is not possible for the cusp to bifurcate into a pair of conjugate nodes over the unique degree 2
extension which are split, because TrF52/F5

⟨−1⟩ has nontrivial discriminant.
However, if instead k = F7, then the cusp can not bifurcate into 2 split rational nodes, or 2 non-split

rational nodes. The cusp over F7 can also not bifurcate into pair of conjugate nodes over the unique degree
2 extension which are split, because TrF72/F7

⟨−1⟩ has trivial discriminant.

We want to give a different dynamic interpretation of the A1-Milnor number using the dynamic local
degree used in [42] to compute the local contributions of the 2875 distinguished lines on the Fermat quintic

threefold. We also remove the sum on the left hand side, replacing it with an equation for µA1

x (f) as a sum
of the nodes the x bifurcates into. In practice, this happens with [17, Corollary 45] as well, for example in
the cases where x is the only singularity of {f = 0} or when the other singularities are nodes which remain
nodes and make the same contribution to each side. However, it is more aesthetically pleasing to identify the
nodes that the singularity bifurcates into and then have an equality between traces of types of these nodes
and the A1-Milnor number of the singularity. This is what we do in Theorems 6.11 and 6.15.

6.3 A dynamic interpretation of the A1-Milnor number

Let p be a singular point of the hypersurface X0 = {f = 0} ↪→ An
k , where f is in k[x1, . . . , xn] and k is a

field. (We could also take X0 ↪→ Pn
k and f homogenous in k[x0, . . . , xn].) Assume that grad f has an isolated

zero at p, allowing the A1-Milnor number µA1

(f, p) of f at p to be defined, as discussed above. We use S.
Pauli’s enrichment of dynamic intersection numbers to allow non-linear deformations of f in Theorem 6.5,
and replace the sum by the A1-Milnor number itself: We show that under a generic deformation of f over
k, the singularity p bifurcates into nodes, and letting Nodes denote the set of these nodes, we have that the
A1-Milnor number at p is the sum

µA1

(f, p) =
∑

x∈Nodes(p)

Trk(x)/k type(x).

12



As above, type(x) is the type of Definition 6.4, and records information about the tangent cone at p.
For g ∈ k[x1, . . . , xn][[t]], consider ft = f + tg in k[x1, . . . , xn][[t]], defining a deformation

X = {f + tg = u} ↪→ An
k[u][[t]]

of X. Let Y = {grad(f + tg) = 0} ↪→ An
k[[t]], where grad denotes the n-tuple of partial derivatives with

respect to the variables xi for i = 1, . . . , n.
We will let a 0-subscript denote the special fiber of a scheme over Spec k[[t]], e.g., Y0 = Spec k×Spec k[[t]]Y .

Then Y0 corresponds to the singularities of the family of varieties {f = u} parametrized by Spec k[u] and
the generic fiber

Ygeneric = Spec k((t))×Spec k[[t]] Y

of Y corresponds to the singularities of the family of varieties {f + tg = u} parametrized by Spec k((t))[u].
By [47, Lemma 10.152.3. (12) Tag 04GE], Y = Y f

∐
Y ≥1, where Y f → Spec k[[t]] is finite and Y ≥1 has

all components of its special fiber of dimension ≥ 1, i.e. Y ≥1
0 is a union of positive dimensional k-varieties.

Let Y p be the union of the irreducible components of Y containing p. Since grad f has an isolated 0 at p, the
ring OY0,p is a finite k-module, and it follows that Y p is a closed subscheme of Y f . Thus Y p → Spec k[[t]] is
finite.

Lemma 6.7. p is the only point of Y p
0 , and Γ(OY p) is a local ring.

Proof. Consider the pullback diagram

Y p
generic

��

η′
// Y p

��

Y p
0

s′
oo

��
Spec k((t))

η // Spec k[[t]] Spec k[[t]]/⟨t⟩
s

oo

A point x of Y p
generic has a field of definition L := k(x) which is a finite extension of k((t)), and therefore

a complete valued field. The integral closure R of k[[t]] in L is the ring of integers of L and is finite over
k[[t]] by [6, Proposition 6.4.1/2, Chapter 6, p. 250]. Applying the valuative criteria of properness, we have
a unique diagonal arrow in the commutative diagram

SpecL //

��

Y p

��
SpecR //

99

Spec k[[t]]

which is moreover a finite map because R is finite over k[[t]] and Y p → Spec k[[t]] is separated. The image
of SpecR in Y p is therefore a closed 1-dimensional subscheme of Y p, whence a component. Therefore it
contains p. However SpecR has a unique point in the special fiber [6, Theorem 3.2.4/2 Chapter 3 p. 139].
It follows that p is the only point of Y p

0 . It follows from this that Γ(OY p) is a local ring.

The points of Y p are the singular point p and the singularities p bifurcates into. The latter are the
singularities in the Spec k((t))[u]-family {f + tg = u} and are in one to one correspondence with points of
Y p
generic.
Let fi and gi denote the partial derivatives fi := ∂xif and gi := ∂xig, respectively. Since Y p is an open

subset of Y ∼= k[x1,...,xn][[t]]
(f1+tg1,...,fn+tgn)

, there is a multiplicatively closed subset S ⊂ k[x1, . . . , xn][[t]] such that

Y p ∼=
S−1(k[x1, . . . , xn][[t]])

(f1 + tg1, . . . , fn + tgn)
.

Let m ⊂ k[x1, . . . , xn][[t]] denote the maximal ideal containing t corresponding to the point p. Since grad f
has an isolated 0 at p, the ring OY0,p is a finite k-module, and grad f determines a regular sequence in the
local ring k[x1, . . . , xn]mp

, where mp = m ∩ k[x1, . . . , xn] denotes the prime ideal corresponding to p.
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Proposition 6.8. Y p → Spec k[[t]] is finite, and flat. Furthermore,

f1 + tg1, . . . , fn + tgn

is a regular sequence in the localization S−1(k[x1, . . . , xn][[t]])m

Proof. We have already seen that Y p is finite over Spec k[[t]]. Since

S−1(k[x1, . . . , xn][[t]])

is regular of dimension n + 1, it is Cohen-Macaulay. Moreover the quotient S−1(k[x1, . . . , xn][[t]])/(f1 +
tg1, . . . , fn + tgn, t) ∼= OY 0,p is a finite, local ring of dimension 0 by the assumption that p is an isolated zero
of grad f . It follows from [47, Lemma 10.103.2 TAG 00N7] that f1+ tg1, . . . , fn+ tgn, t is a regular sequence
in S−1(k[x1, . . . , xn][[t]])m and the quotient

S−1(k[x1, . . . , xn][[t]])m/(f1 + tg1, . . . , fn + tgn)

is Cohen-Macaulay of dimension 1. Since Γ(OYp) is a local ring, we may remove the previous localization at
m giving the statement that S−1(k[x1, . . . , xn][[t]])/(f1 + tg1, . . . , fn + tgn) is Cohen-Macaulay of dimension
1. It follows from [30, Theorem 23.1 p. 179] that Y p → Spec k[[t]] is also flat, proving the proposition.

Since OY p is flat over k[[t]] it is a locally free, and even free k[[t]]-module. The presentation OY p ∼=
S−1(k[x1,...,xn][[t]])
(f1+tg1,...,fn+tgn)

moreover determines a k[[t]]-bilinear form over OY p in the following manner.

The regular sequence f1 + tg1, . . . , fn + tgn determines a distinguished isomorphism

χ(∆) : Homk[[t]](OY p , k[[t]])
∼=→ OY p

following work of Scheja and Storch [43], giving a version of the Eisenbud–Levine/Khimshiashvili form which
works in families. Namely, we can choose aij in k[x1, . . . , xn][[t]]⊗k[[t]] k[x1, . . . , xn][[t]] such that

(fi + tgi)⊗ 1− 1⊗ (fi + tgi) =
∑
j

aij(xj ⊗ 1− 1⊗ xj).

Let ∆ denote the image of det(aij) in OY p ⊗OY p . It is shown [43, Satz 3.1] that det(aij) is independent of
the choice of aij . Let

χ : OY p ⊗OY p → Homk[[t]](Homk[[t]](OY p , k[[t]]),OY p)

denote the map
b⊗ c 7→ (ϕ 7→ ϕ(b)c)

Scheja and Storch show [43, Satz 3.3] that χ(∆) is an isomorphism.
Let ev1 : Homk[[t]](OY p , k[[t]]) → k[[t]] denote the evaluation at 1 ∈ OY p , sending η in Homk[[t]](OY p , k[[t]])

to η(1). ev1 corresponds to the trace [13, p.7 (b)3 Ideal theorem]. Thus by Grothendieck–Serre duality [13,
p 7 b) c) Ideal theorem], the composition

OY p ×OY p → OY p
χ(∆)−1

→ Homk[[t]](OY p , k[[t]])
ev1→ k[[t]] (5)

of multiplication with χ(∆)−1 and ev1 is non degenerate.

Definition 6.9. Let µA1

p (f + tg) be the element of GW(k[[t]]) corresponding to the pairing (5).

We have maps GW(k[[t]]) → GW(k) and GW(k[[t]]) → GW(k((t))) associated to the ring maps k[[t]] → k

and k[[t]] → k((t)). By construction, the image of µA1

p (f + tg) in GW(k) is µA1

p (f) and the image in

GW(k((t))) is the sum over the points of the generic fiber x ∈ Y p
generic of µA1

x (f + tg − u(x)). Since u(x)

does not effect the pairing on k((t))[x1, . . . , xn]/(f1 + tg1, . . . , fn + tgn), it is natural to let µA1

x (f + tg) =

µA1

x (f + tg − u(x)).
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Example 6.10. [Cusp continued] Recall that for the cusp equation f = x2
2 − x3

1 the A1-Milnor number

µA1

0 (f) is equal to the hyperbolic form ⟨1⟩ + ⟨−1⟩ ∈ GW(k). So we expect the singularity of the cusp to
bifurcate into two nodes such that the sum of the types of these nodes is the hyperbolic form.

Let g = 3x1 + 2x2 + 2x3
1 − tx3

1. Then f + tg has partial derivatives

∂x1
(f + tg) = −3x2

1 + 3t+ 6tx2
1 − 3t2x2

1

and
∂x2

(f + tg) = 2x2 + 2t.

Setting both partial derivatives equal to zero, we get that f+tg has two critical points, namely

x1 =

√
t

1− t
, x2 = −t

and

x1 = −
√
t

1− t
, x2 = −t

both defined over k((t1/2)). The sum of the A1-Milnor numbers at these nodes is

Trk((t1/2))/k((t))(µ
A1

(
√

t
1−t ,−t)

(grad(f + tg))) = Trk((t1/2))/k((t))(⟨12
√
t(1− t)⟩)

= ⟨1⟩+ ⟨−1⟩ ∈ GW(k((t))).

We have that the A1-Milnor number at p is the sum of the A1-Milnor numbers of the singularities p
bifurcates into.

Theorem 6.11. Let k be a field and let X = {f = 0} determine a hypersurface in An
k . Let p be a singularity

of X which is an isolated zero of grad f .3 Then for any g in k[x1, . . . , xn][[t]], the A1-Milnor number µA1

p (f)
of f at p equals the sum of the A1-Milnor numbers of the singularities of the deformation {f + tg = u} that
p bifurcates into:

µA1

p (f) =
∑

x∈Y p
generic

µA1

x (f + tg).

Here, GW(k) is viewed as a subring of GW(k((t))) via the canonical injection. In particular, the right hand
side is necessarily in GW(k).

Remark 6.12. Recall that Y p was defined above to be the union of the components of Y = {grad(f + tg) =
0} ↪→ An

k[[t]] containing p, and Y p
generic denotes its generic fiber. Its points are the singularities of the u-family

of deformations {f + tg = u} that p bifurcates into.

Proof. We showed above that µA1

p (f) is the image under GW(k[[t]]) → GW(k) of a well-defined µA1

p (f+tg) in
GW(k[[t]]). The map GW(k[[t]]) → GW(k) is an isomorphism with inverse given by the map corresponding

to the inclusion of rings k ⊂ k[[t]]. The sum
∑

x∈Y p
generic

µA1

x (f + tg) is the image of µA1

p (f + tg) under

GW(k[[t]]) → GW(k((t))), whence it equals µA1

p (f) as claimed.

We now specialize Theorem 6.11 to the case where p bifurcates into nodes, where it becomes the statement
that the A1-Milnor number of p is the sum of the types of these nodes, enriching the result described at the
beginning of Section 6.1.

The condition that p bifurcates into nodes is equivalent to the statement that the Hessian (determinant)
of f + tg is non-zero at all the singularities p bifurcates into. Since the Hessian determinant is the Jacobian
element of grad(f + tg), this is equivalent to the statement that Y p

generic → Spec k((t)) is étale.
We give some criteria for this to happen.

3The condition that p is an isolated zero of grad f is implied by p being an isolated singularity of X if the characteristic of
k is 0.
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Proposition 6.13. For h in k[x1, . . . , xn][[t]] such that grad(f + th) : An
k((t)) → An

k((t)) is a finite, separable

map, there exist infinitely many (a1, . . . , an) with ai in k[[t]] for i = 1, . . . , n such that Y p
generic → Spec k((t))

is étale for g = h−
∑n

i=1 aixi.

The assumption that grad(f + th) is separable means that the associated extension of function fields is
a separable extension and in particular, this is automatic in characteristic 0.

Proof. Since grad(f + th) : An
k((t)) → An

k((t)) is a separable map, it is generically étale. Thus there is a

non-empty open subset of points at which grad(f + th) is étale. The image of the complement is closed
because grad(f + th) is finite. Thus there is a non-empty open subset U ⊆ An

k((t)) such that grad(f + th) is

étale on points of grad(f + th)−1(U).
We claim that U contains infinitely many points of the form (ta1, . . . , tan) with ai in k[[t]]. The comple-

ment of U is a proper closed subset of An
k((t)). It is therefore contained in the zero locus of some polynomial

P . Fixing n− 1 of the variables to be values of the form tai with ai in k[[t]] such that the resulting polyno-
mial in the last variable is not the zero polynomial (which is possible by induction) results in finitely many
excluded values for the last variable.

For any point (ta1, . . . , tan) with ai in k[[t]], we claim the deformation g = h−
∑n

i=1 aixi has the desired
property. For points of An

k((t)) where grad(f + tg) = 0, we have that grad(f + th) = (ta1, . . . tan). By choice

of the ai, we have that the Jacobian determinant of grad(f + th) is non-zero. This Jacobian determinant
is also called the Hessian (determinant) of f + th, which equals the Hessian of f + tg. Thus the Hessian
of (f + tg) is non-zero at the zero locus of grad(f + tg) = 0 in An

k((t)). Thus Ygeneric → Spec k((t)) and in

particular Y p
generic → Spec k((t)) is étale.

We wish to make a precise statement of the form that for a generic deformation g, the singularity p
bifurcates into nodes. One option is the following Proposition 6.14. The hypothesis on the behavior of f at
infinity should be irrelevant under an appropriate reformulation, but we keep it here for present lack of a
better option.

Proposition 6.14. Let d be the degree of f in k[x1, . . . , xn], and let F in k[x0, . . . , xn] denote the degree
d homogenization of f . Suppose that ∂xiF = 0 for i > 0 has no solutions in {x0 = 0} ↪→ Pn

k and that
grad f : An

k → An
k is finite and separable. Then a generic polynomial g ∈ k[x1, . . . , xn][[t]] of degree < d has

the property that Y p
generic → Spec k((t)) is étale for the deformation f + tg.

Proof. The space of polynomials g ∈ k[x1, . . . , xn][[t]] of degree < d is an affine space AN
k[[t]] for some N .

Let G denote the degree d homogenization of g. The homogenization F + tG of f + tg has no solutions to
∂xi

(F + tG) = 0 at points of {x0 = 0} since for x0 = 0, we have ∂xi
(F + tG) = ∂xi

F for i > 0 because the
degree of g is less than d. For notational simplicity, let grad(F + tG) = (∂x1

(F + tG), . . . , ∂xn
(F + tG)), so

we have that {x0 = 0, grad(F + tG) = 0} is empty.
Consider the projection π1 : AN

k[[t]] × Pn
k[[t]] → AN

k[[t]]. Let X ↪→ AN
k[[t]] × Pn

k[[t]] be the closed subscheme

determined by X = {(g, x) : grad(F + tG)(x) = 0}. Let Hess(F + tG) = det(∂
2(F+tG)
∂xi

∂xj
)ni,j=1 denote the

Hessian (determinant), and let Y ↪→ AN
k[[t]] × Pn

k[[t]] be the closed subscheme determined by Y = {(g, x) :

Hess(F + tG)(x) = 0}.
Since π1 is proper, π1(X ∩ Y ) is a closed subset of AN

k[[t]] and it suffices to show that this closed subset

is not the entirety of AN
k[[t]]. This follows by Proposition 6.13 applied in the case that h = 0 is the zero

polynomial.

When Y p
generic → Spec k((t)) is étale, its (finitely many) points correspond to nodes on hypersurfaces

{f + tg = u} ↪→ An
k((t)). These nodes extend to integral points with special fiber p (see the proof of Lemma

6.7), and all the singularities in the family of hypersurfaces {f+tg = u} ↪→ An
k((t)) specializing to p correspond

to points of Y p
generic. In other words, the singularity p bifurcates into a set of nodes, and these nodes are the

points of Y p
generic. We now denote the set of points of Y p

generic by Nodes(p).
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When k is characteristic 0, we can find equations for these nodes, as well as their extensions to integral
points containing p in the special fiber in the following manner. The assumption on the characteristic implies
that the algebraic closure of of k((t)) is ∪k⊆L,nL((t

1/n)) [44, IV Section 2 Proposition 8].4 A point of Y p
generic

at which Y p
generic → Spec k((t)) is étale therefore determines a commutative diagram

SpecL((t1/n)) //

��

Y p

��
SpecL[[t1/n]] //

77

Spec k[[t]]

.

By the valuative criteria of properness, we have the dotted arrow, whence

x : SpecL[[t1/n]] → Y p.

Therefore our point corresponds to a n-tuple of power series in t1/n with coefficients in L. See Example 6.10
for equations in k((t1/2)) for the two nodes degenerating to the cusp.

Theorem 6.15. Let k be a field and let X = {f = 0} determine a hypersurface in An
k . Let p be a singularity

of X which is an isolated zero of grad f . Then for any g in k[x1, . . . , xn][[t]] such that Y p
generic → Spec k((t))

is étale, the A1-Milnor number µA1

p (f) of f at p equals the sum of the transfers of the types of the nodes that
p bifurcates into:

µA1

p (f) =
∑

Nodes p

Trk(x)/k((t)) type(x).

Here, GW(k) is viewed as a subring of GW(k((t))) via the canonical injection. In particular, the right hand
side is necessarily in GW(k).

Remark 6.16. Recall that Y p was defined above to be the union of the components Y = {grad(f + tg) =
0} ↪→ An

k[[t]] containing p, and Y p
generic denotes its generic fiber. Its points are the singularities of the u-

family of deformations {f + tg = u} that p bifurcates into, and the assumption that Y p
generic → Spec k((t))

be étale is equivalent to the statement that these singularities are all nodes. See Propositions 6.13 and 6.14
for conditions under which this occurs.

Proof. All the points of Y p
generic are nodes because Y p

generic → Spec k((t)) is étale. By Theorem 6.11, it thus

suffices to show that Trk(x)/k((t)) type(x) = µA1

x (f+tg). This follows by the separability of the field extension
k((t)) ⊆ k(x) [1, Exposé XV, Théoreme 1.2.6] and Example 5.2.

7 Enriched counts using Euler numbers

7.1 Enriched Euler number

A vector bundle V on a smooth k-scheme X is said to be relatively oriented by the data of a line bundle L
on X and an isomorphism L⊗2 ∼= Hom(detTX,detV ).

Kass and the second named author define an enriched Euler number of a relatively oriented vector bundle
of rank r on a smooth, proper r-dimensional scheme. This Euler number is an element of GW(k) and equals
the sum of local A1-degrees at the isolated zeros of a general section [16]. It can be shown [4] to equal a
pushfoward in oriented Chow groups of the Euler class of Barge and Morel [5] [12]. This was also studied by
M. Levine in [26] where particular attention is given to the GW(k)-valued Euler characteristic which is the
Euler number of the tangent bundle.

4The reference proves the claim for k algebraically closed. The stated result follows by showing that the coefficients of an
algebraic power series lie in a finite extension of k. Moreover, by [18] [19] a perfect extension of a tamely ramified extension of
k((t)) lies in ∪k⊆L,nL((t

1/n)), even without the assumption on the characteristic.
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7.1.1 Lines on a smooth cubic surface

As an application Kass and the second named author get an enriched count of lines on a cubic surface as
the Euler number of the vector bundle Sym3 S∗ → Gr(2, 4).

Let X ⊂ P3
k be a smooth cubic surface. It is a classical result that Xk̄ contains 27 lines.

Definition 7.1. Let l be a line on X defined over k(l). Then the Gauss map sending p ∈ l to its tangent
space TpX in X is a degree 2 map

l ∼= P1 → P1 = lines in P3 containing l

and the non-trivial element of its Galois group is an involution of the line l. The fixed points of this involution
are defined over k(l)[

√
D] for some D ∈ k(l)×/(k(l)×)2. Define the type of l to be

Type(l) = ⟨D⟩ ∈ GW(k(l)).

Theorem 7.2 (Kass-Wickelgren). Assume char k ̸= 2 and X a smooth cubic surface. Then∑
l line on X

Trk(l)/k Type(l) = 15⟨1⟩+ 12⟨−1⟩ ∈ GW(k).

7.1.2 More enriched Euler numbers

The enriched Euler number has been used to obtain several more enrichted counts: In [42] the first named
author defines the type of a line on a quintic threefold and uses a dynamic intersection approach to compute
an enriched count of lines on a quintic threefold. We saw a similar dynamic approach when we discussed
enriched Milnor numbers.

The Euler numbers corresponding to counts of lines on generic hypersurfaces of degree 2n−1 in Pn+1 was
computed in [28]. The Euler numbers corresponding to counts of d-planes on generic complete intersections
was computed in [4].

Wendt developes a Schubert calculus and computes Euler numbers in [51]. In [46] Srinivasan and the
second named author give an enriched count of lines meeting 4 general lines in P3.

Larson and Vogt count the bitangents to a smooth plane quartic curve [24]. The relevant vector bundle is
not relatively orientable. They introduce notion of relative orientability relative to a divisor and show that
the count of bitangents to a smooth plane quartic curve relative to a ’fixed line at infinity’ is 16⟨1⟩+12⟨−1⟩.

McKean proves an enriched version of Bézout’s theorem in [31].
The first named author computes several enriched Euler numbers in [41] using Macaulay2.

8 A1-degree of maps of smooth schemes

The content of the following sections is ongoing work by Jesse Kass, Marc Levine, Jake Solomon and the
second named author.

8.1 Motivation from Algebraic Topology

Let f : X → Y be a map of compact, oriented n-manifolds without boundary with Y connected. Algebraic
topology defines the degree of f ([34, Chapter 5]) to be f∗[X] = deg f · [Y ]. This degree can again be
expressed as the sum of local degrees

deg f =
∑

q∈f−1(p)

degq f

where degq f is defined in the same way as before (1), that is, for oriented coordinates x1, . . . , xn of X, the
map f is locally given by f = (f1, . . . , fn) : Rn → Rn and

degq(f) =

{
+1 if Jf(q) > 0

−1 if Jf(q) < 0
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for Jf = det ∂fi
∂xj

.

8.2 A1-degree

We want to construct a GW(k)-valued degree for a map f : X → Y of smooth, proper k-schemes as a sum
of local degrees

degA
1

f :=
∑

q∈f−1(p)

degA
1

q f.

In order to do this we need to answer the following questions.

1. What is degA
1

q f?

2. What orientation data do we need?

3. When do we have finite fibers?

4. Is degA
1

f independent of p?

Here is one answer to the third question: If the differential Tf : TX → TY is invertible at some point, we
can arrange to have finite fibers away from a codimension 2 subscheme of Y . We will be able to content
ourselves with throwing away codimension 2 subsets of Y because GW extends to an unramified sheaf [37]
[35], meaning a section of GW over the complement of a codimension 2 subset extends to a section over Y .

Assume that p is a k-point and q ∈ f−1(p). When k(q) is separable over k, we can assume that k = k(q)
(otherwise we base change to k(q) and take the trace, see Example 5.2). We want to define the local degree

degA
1

q f as before, that is as the A1-degree of

Pn
k/P

n−1
k ≃ TqX/(TqX − {0}) ≃ U/(U − {q})

f̄−→ Y/(Y − {p}) ≃ TpY/(TpY − {0}) ≃ Pn
k/P

n−1
k .

(6)

To make this well-defined, we need orientation data to fix the isomorphisms in (6).
Let Tf : TX → TY be the induced map on tangent bundles which is an element of Hom(TX, f∗TY )(X).

Hence, its determinant Jf := detTf is an element of Jf ∈ Hom(detTX,det f∗TY )(X). To define ⟨Jf(q)⟩ ∈
GW(k(q)), we only need Jf(q) to be well-defined up to a square, that is, we need Jf(q) to be well-defined
in k(q)×/(k(q)×)2. So if we can identify Jf as a section of a square of a line bundle, we are good.

Definition 8.1. The map f : X → Y is relatively oriented by the data of a line bundle L on X and an
isomorphism L⊗2 ∼= Hom(detTX, f∗ detTY ).

Remark 8.2. For f relatively oriented, we have Jf ∈ L⊗2
q , so Jf(q) ∈ k(q)×/(k(q)×)2 and Jfq ∈

O×
X,q/(O

×
X,q)

2. Thus if Jf(q) ̸= 0, then

degA
1

q f = Trk(q)/k⟨Jf(q)⟩ ∈ GW(k).

Definition 8.3. Bases of TpY and TqX are compatible if the corresponding element of the fiber Hom(detTX, f∗ detTY )(q)
is a square l(q)⊗ l(q) for some l ∈ Lq.

Requiring compatible bases makes the degree of (6) well-defined: Two different choices of compatible
bases of TqX and TpY correspond to two elements l and l′ of Lq such that the corresponding elements of
the fiber Hom(detTX, f∗ detTY )(q) equal to l(q) ⊗ l(q) and l′(q) ⊗ l′(q), respectively, and thus differ by

a square, i.e., are equal in k(q)×/(k(q)×)2. So we have a definition for degA
1

q f (this answers question 1)
given a relative orientation of f (this answers question 2). In fact, we may even content ourselves with a
relative orientation of the restriction of f to the inverse image of the complement of a closed subset of Y of
codimension at least 2.

It remains to see when the degree of a map is independent of the choice of p (question 4).
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Example 8.4. The degree of a map is not necessarily independent of p. Let C be the elliptic curve
C = C/Z[i]. Then C has two components of real points, given by the points of C with imaginary component

0 and with imaginary component 1/2. The map C
×2−−→ C has different degrees over the different real

components.

However, whenever two points can be connected by an A1, the local degree at those points are equal
because of Harder’s theorem.

Theorem 8.5 (Harder’s theorem). Families of bilinear forms over A1 are stably constant (see [23, Theorem
3.13, Chapter VII] and [17, Lemma 30]).

We recall the definition of A1-chain connectedness from [3].

Definition 8.6. A k-scheme Y is A1-chain connected if for any finitely generated separable field extension
L/k and any two L-points x, y ∈ Y (L) there are x = x0, x1 . . . , xn−1, xn = y ∈ Y (L) and γi : A1

L → Y with
γi(0) = xi−1 and γi(1) = xi for i = 1, . . . , n.

In other words, a k-scheme is A1-chain connected if any two L-points can be connected by chain of maps
from A1

L.

Theorem 8.7. Let f : X → Y be a proper map of smooth d-dimensional k-schemes, such that Tf is
invertible at some point. Assume further that f is relatively orientable after removing a codimension 2
subset of Y and that Y is A1-chain connected with a k-point y. Then∑

x∈f−1(y)

degA
1

x f ∈ GW(k)

is independent of a generically chosen point y.

Definition 8.8. With the assumption in Theorem 8.7 we define the degree of f : X → Y to be equal to

degA
1

f :=
∑

x∈f−1(y)

degA
1

x f.

f is generically finite and étale by assumption. It follows that Jf(generic pt) ̸= 0, and

Corollary 8.9. degA
1

f = Trk(X)/k(Y )⟨Jf(generic pt)⟩.

Note that priori, Trk(X)/k(Y )⟨Jf(generic pt)⟩ is in GW(k(Y )). It is a consequence of the theory that it
in fact is the image of a well-defined element of GW(k).

Example 8.10. Let C = {(z, y) : y2 = p(z)} be an elliptic curve and let π : C → P1 be defined by (z, y) 7→ z.
The curve C is oriented by TC∗ ≃ O with dz

2y corresponds to 1 and (TP1)∗ ≃ O(−1)⊗2 where dz is a square.

Since π∗(dz) = 2y dz
2y we have that Jf(generic point of C) = 2y and thus

degA
1

π = Trk(C)/k(z)⟨2y⟩

which is equal to the form given by the matrix[
Trk(C)/k(z)(2y) Trk(C)/k(z)(2)
Trk(C)/k(z)(2) Trk(C)/k(z)(2/y)

]
=

[
0 4
4 0

]
which is the hyperbolic form ⟨1⟩+ ⟨−1⟩.

20



Table 1: Counting rational curves

d 3d− 1 Nd = number of rational curves

1 2 1
2 5 1
3 8 12
4 11 620
5 14 87,304
. . . . . . . . .

9 Counting rational curves

It is an ancient observation that there is one line passing through two points in the plane. Similarly, given
5 points, there is one conic passing through them. These generalize to the question: how many degree d
rational plane curves are there passing through a generic choice of 3d − 1 points? Over an algebraically
closed field, a degree d rational curve means a map

u : P1 → P2,

t 7→ [u0(t), u1(t), u2(t)]

where the ui are polynomials of degree d, and more generally the domain of u can be a genus 0 curve. Over
the complex numbers, the number of such curves passing through 3d − 1 points does not depend on the
generic choice of the points themselves. For some low values of d, the answers Nd are listed in Table 1 [21,
p.1]. For d = 3, Nd was known to Steiner in 1848. For d = 4, Zeuthen computed Nd in 1873, but it was not
until the 1980’s that N5 was computed. Then around 1994, Kontsevich computed a recursive formula for all
Nd with a breakthrough connection to string theory.

If we wish to count real degree d rational curves passing through 3d − 1 points, we should assume that
the set of points is permuted by complex conjugation. Even then, the number of such curves can depend on
the chosen points. For example, there can be 8,10, or 12 real degree 3 rational curves through 8 real points.
Welschinger recovers “invariance of number” by counting each curve with a +1 or −1 instead of counting all
curves as adding +1 to the total count.

The Welschinger sign is given as follows. A smooth degree d plane curve has genus
(
d−1
2

)
, and it follows

that a degree d rational curve has
(
d−1
2

)
nodes in its image. Assign the mass 1 to the non-split node, −1

to the split node, and ignore the complex conjugate pairs of nodes. See the figure in Section 6.2. Define
the mass m(u) to be the sum of the masses of the nodes in the image curve. Then the rational curve u is
counted with sign (−1)m(u).

Theorem 9.1. (Welschinger) Fix positive integers d, n1 and n2 such that n1 + 2n2 = 3d − 1. For any
generic choice of n1 real and n2 complex conjugate pairs of points in P2(C), the sum

Wd,n2
=

∑
u degree d

real rational curve
through the points

∏
p node of u

(−1)m(p)

is independent of the choice of points.

For small values of d and n2, the values Wd,n2
are given in Table 2, which is from [15].

Jake Solomon’s thesis computes all of the Wd,n2
recursively [45] as the degree of a certain map.

We want to do this over an arbitrary field k. For example, what about counting rational curves over
k = Fp, Qp, or Q?
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Table 2: Counting real rational curves with Welschinger signs

d n2 Wd,n2
= signed count of real rational curves

1 n2 1
2 n2 1
3 n2 8− 2n2

4 0 240
4 1 144
4 2 80
4 3 40
4 4 16
4 5 0
. . . . . . . . .

Definition 9.2. A genus g, n-marked stable map to P2 consists of the data (u : C → P2, p1, . . . , pn) where
C is a genus g curve, p1, . . . , pn ∈ C are smooth closed points of C and u is a morphism with only finitely
many automorphisms. Denote by

MP2,n(0, d) := {(u : C → P2, p1, . . . , pn) : C rational, degree d curve,

u stable and pi ∈ C smooth points}

the Kontsevich moduli space, that is the moduli space of genus 0, degree d, n-marked stable maps into P2.

Consider the evaluation map

ev : MP2,n(0, d) → (P2)n, u 7→ [u(p1), . . . , u(pn)].

Its fiber over a k-point is precisely those rational curves through the k-points p1, . . . , pn. So if we are capable
of defining the degree of ev we will obtain a weighted count in GW(k) which does not depend on the choice
of points, as long as they are chosen generically. We want to allow points to move in Galois conjugate orbits
as in Welschinger’s theorem. Fix a Galois action on the points by σ : Gal(k̄/k) → Σn. This is equivalent to
choosing the residue fields of the points. For example, over Q for d ≥ 4, we could choose a conjugate pair of
points over Q(

√
2), six points in a single orbit defined over the splitting field of x3− 7 and the rest Q points.

Given σ, the set of these residue fields is given by

{kstab o
: o orbit of σ}. (7)

Here, k̄stab o is the field fixed by the stabilizer stab o.
Given this data, we can twist M0,n, (P2)n and the evaluation map so that points with these residue fields

correspond to a rational point of the twist of (P2)n. In a little more detail, σ determines an action on (P2
k
)n

by permutation which combines with the standard Galois action to form a twisted action g(p1, . . . , pn) =
(gpσ−1(1), . . . , gpσ−1(n)). Taking the invariants of this twisted action defines a k-scheme (P2)nσ, which can be
described as a restriction of scalars

(P2)nσ
∼=

∏
o orbit of σ

Resk
stab o

k P2.

One can also twist M0,n(P2, d) and the evaluation map, resulting in a twisted evaluation map evσ :
M0,n(P2, d)σ → (P2)nσ. A collection p1, . . . , pn of Galois conjugate orbits with residue fields compatible with
σ (i.e. whose residue fields are (7)) is a rational point of (P2)nσ. The fiber of evσ over such a point consists
of the rational curves passing through the pi.

With considerable work, it can be shown that evσ satisfies the hypothesis of Theorem 8.7 after removing

a codimension 2 subset of (P2)nσ and its preimage. It follows that there is a well-defined degree degA
1

ev ∈
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GW(k). By construction, this degree degA
1

ev ∈ GW(k) is a sum over rational curves passing through the
rational points (p1, . . . , pn).

Let Nd,σ := degA
1

evσ giving the enriched rational curve count. A natural question to ask at this point
is:

Question 9.3. What are the local degrees degA
1

u evσ at a rational curve u?

The answer has a geometric interpretation. The set of nodes of u(C) are defined over k(u). (An indi-
vidual node could have a larger field of definition, but then it would come in a Galois orbit.) The tangent
directions at these nodes (i.e. the lines of the tangent cones) determine a field extension k(u) ⊆ L(u).
The discriminant disc(L(u)/k(u)) ∈ k(u)∗/(k(u)∗)2 of the extension k(u) ⊆ L(u) is the discriminant of the
transfer TrL(u)/k(u)⟨1⟩, or in other words the determinant of a Gram matrix corresponding to this form. We
have

degA
1

u evσ = Trk(u)/k disc(L(u)/k(u)).

We can match this up with Welschinger’s theorem by interpreting∏
p∈Nodes(u)

type(p)⟨−1⟩

as an element of GW(k(u)). While this is an abuse of notation, as type(p) may lie in a larger field, after
taking the product with the types of the Galois conjugates, we arrive at the norm and an element of
GW(k(u)). Comparing the definition of the type with the discriminant, we wee that disc(L(u)/k(u)) =∏

p∈Nodes(u) type(p)⟨−1⟩, with our particular definition of the type. To make this prettier, define the mass

m(p) of a node p by
m(p) = type(p)⟨−1⟩.

Combining the above, we obtain the following generalization of Welschinger’s theorem:

Theorem 9.4. (Kass–Levine–Solomon–W.) Let k be a field of characteristic not 2 or 3. Let d ≥ 1, and fix
the data of the field extensions in a Galois stable set of 3d − 1 points over the algebraic closure. We use a
permutation representation σ : Gal(k̄/k) → Σn for this. Then for any generic points p1, . . . , p3d−1 of P2(k)
permuted by σ, we have the equality in GW(k)

Nσ,d =
∑

u degree d
rational curve
through p1,...pn

Trk(u)/k
∏

p node of u

m(p)

Remark 9.5. Note that Nσ,d only depends on the field extension types of the points pi. When the degrees
of all these field extensions is ≤ 3, M. Levine showed this in [27, Example 3.9].

We end with some small examples.

Example 9.6. If d = 1, 2 we get Nd,σ = ⟨1⟩ for all σ.
Example 9.7. Let d = 3, and suppose the field extension types of points permuted by σ are all separable
over k. Using M. Levine’s count of 1-nodal curves in a pencil [26, Corollary 12.4], one can compute

Nd,σ = 2(⟨1⟩+ ⟨−1⟩) + Trk(σ)/k⟨1⟩

where Trk(σ)/k is the sum of the trace forms ∑
x∈orbit(σ)

Trk̄stab x/k⟨1⟩.

Equivalently, if D = (p1, . . . , pn) is a divisor on C over k permuted as in σ, such that all pi are distinct and
defined over separable field extensions, then D defines a finite étale algebra over k and

Trk(σ)/k⟨1⟩ = trace form of D.

Remark 9.8. Nd,σ is not just ⟨1⟩′s and ⟨−1⟩′s, and depends on σ.
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Table 3: GW(k)-enriched counts of rational curves

d σ Nd,σ = count of rational curves

1 all σ ⟨1⟩
2 all σ ⟨1⟩
3 σ corresponding to separable k ⊆ k(pi) 2(⟨1⟩+ ⟨−1⟩) + Trk(σ)/k⟨1⟩
. . . . . . . . .

Ackknowledgements

Kirsten Wickelgren was partially supported by NSF CAREER grant DMS-2001890. Sabrina Pauli gratefully
acknowledges support by the RCN Frontier Research Group Project no. 250399 “Motivic Hopf Equations.”
We also wish to thank Joe Rabinoff.

References
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