
DISCOVERING DATA LINEAGE IN DATA WAREHOUSE:

METHODS AND TECHNIQUES FOR TRACING THE

ORIGINS OF DATA IN DATA-WAREHOUSE

By

Roselie B. Webjornsen

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

AT

UNIVERSITY OF OSLO

OSLO, NORWAY

AUGUST 2005

c
 Copyright by Roselie B. Webjornsen , 2005

UNIVERSITY OF OSLO

Date: August 2005

Author: Roselie B. Webjornsen

Supervisors: Naci Akkok and Judith Gregory

Title: Discovering Data Lineage in Data Warehouse:

Methods and techniques for Tracing the origins of

data in data-warehouse

Department: Informatics

Degree: M.Sc.

Signature of Author

iii

Table of Contents

Table of Contents iv

List of Tables vii

List of Figures viii

Abstract x

Acknowledgements xi

1 Introduction 1

1.1 Architecture of Data Warehousing System 2

1.1.1 Data Acquisition, Integration and Maintenance 3

1.1.2 Reporting and Analysis . 4

1.2 Data Lineage . 5

1.2.1 Data Lineage Tracing . 6

1.2.2 Data Lineage Bene�ts and Application 6

1.3 Research Problem and Contribution to Knowledge 7

1.3.1 Data Lineage Problem . 7

1.3.2 Academic Research . 8

1.3.3 Industry Implementation . 9

1.3.4 Data Lineage Solution . 10

1.4 Related Works . 11

1.5 Thesis Scope and Delimitation . 13

1.6 Thesis Outline . 14

2 Existing Lineage Tracing Mechanisms 15

2.1 Sample Case . 16

2.2 Data Lineage Granularity Level . 19

iv

2.2.1 Schema-level approach . 20

2.2.2 Instance-level approach . 25

2.3 Recording the Data Lineage . 35

2.3.1 Identifying Lineage information 35

2.3.2 Storing Lineage information 38

2.4 Reporting the Data Lineage . 42

2.4.1 Metadata Query . 43

2.4.2 View Tracing Query . 44

2.4.3 Tracing Procedure . 47

2.4.4 Inverse functions . 47

3 Industry Implementations 48

3.1 Standardization E�orts . 49

3.1.1 Organization of Standard Metamodel 50

3.1.2 Metamodels for Data Lineage Support 53

3.2 Industry Solutions . 57

3.2.1 Industry's view of Data Lineage 58

3.2.2 ETL and Metadata Services 58

3.2.3 Data Lineage Reporting . 79

4 Characterizing Data Lineage 86

4.1 Aspects of Data Lineage Problem . 86

4.1.1 Source Systems . 87

4.1.2 Sources of data . 88

4.1.3 Data Transformation . 90

4.1.4 Performance . 92

4.1.5 Maintenance . 93

4.2 Composition of Data Lineage . 94

4.2.1 Data Lineage Containers . 95

4.2.2 Metadata for Lineage Tracing 96

4.3 Data lineage Information . 98

4.3.1 Mapping Information . 99

4.3.2 Lineage Data Values . 100

5 Data Lineage Solution 103

5.1 Data Lineage Tracing Mechanism . 103

5.1.1 Map . 104

5.1.2 Reconstruct . 105

5.1.3 Step-by-step . 106

v

5.2 Conceptual Framework for Lineage System 107

5.2.1 Lineage Physical Storage . 107

5.2.2 Lineage functions . 111

5.3 Design . 117

5.3.1 Lineage Components . 117

5.3.2 Design considerations . 119

5.3.3 Design Components . 120

5.4 Implementation . 122

5.4.1 Recording . 123

5.4.2 Reporting . 123

6 Conclusion and Future Work 127

Bibliography 129

vi

List of Tables

2.1 Summary of Cui's Transformation Properties - source from [7] page 160 31

2.2 Transformation Summary for AbsenceStatistics Warehouse 32

vii

List of Figures

1.1 Basic data warehousing architecture - adapted from [7], page 2 . . . 2

2.1 Source and Target Tables . 16

2.2 Source Tables Content . 17

2.3 Transformation Steps - adapted from Cui [7] 18

2.4 Transformation Graph - adapted from Cui [7] 19

2.5 Target Content . 19

2.6 Multi-dimensional Schema . 22

2.7 Mapping Scenario - adapted from [52] 23

2.8 Meta Data Storage Schema - Source from [52] page 9 24

2.9 Lineage for View V2 . 28

2.10 Transformation Instance - source from [7] 29

2.11 Transformation Classes - source from [7] 29

2.12 Metadata Storage Implementation from m1 mapping - adapted from

[52] . 41

3.1 The Metadata Standard Metamodel - source from [40] 50

3.2 Sample Transformation Package - source from [40] 55

3.3 Transformation Classes and Associations - source from [40] 57

3.4 SAP BW MetaData Repository - source from [28] 60

3.5 SAP BW Metadata Objects in context - source from [28] 61

3.6 SAP BW ETL Services architecture - source from [28] 63

3.7 Oracle Warehouse Builder Basic Architecture - source from [42] . . . 66

viii

3.8 OWB Mapping Editor - source from [34] 67

3.9 DTS Architecture Overview- source from [15] 69

3.10 DTS Package illustration - source from [37] 70

3.11 Microsoft Metadata Services interfaces - source from [37] 72

3.12 Typical TBW Load Architecture - source from [49] 74

3.13 LineageModel within Models of Teradata MDS - source from [46] . . 75

3.14 Ascential Data Stage Designer - source from [39] 77

3.15 SAP BW Example of Data Load Data
ow Report 81

3.16 An example of OBW Lineage Report - - source from [34] 82

3.17 Teradata Additional Lineage Summary - source from [49] 83

3.18 Data Lineage Menu - source [39] . 84

3.19 Data Lineage Path - source [39] . 85

5.1 Summary of Data Lineage Tracing Mechanism 104

5.2 Lineage System Conceptual Framework Component 108

5.3 Data lineage within the warehouse environment 118

5.4 Designing Data lineage . 121

5.5 Lineage Data
ow . 124

ix

Abstract

A data warehouse enables enterprise-wide analysis and reporting functionality that

is usually used to support decision-making. Data warehousing system integrates

data from di�erent data sources. Typically, the data are extracted from di�erent

data sources, then transformed several times and integrated before they are �nally

stored in the central repository. The extraction and transformation processes vary

widely - both in theory and between solution providers. Some are generic, others

are tailored to users' transformation and reporting requirements through hand-coded

solutions. Most research related to data integration is focused on this area, i.e., on

the transformation of data. Since data in a data warehouse undergo various complex

transformation processes, often at many di�erent levels and in many stages, it is

very important to be able to ensure the quality of the data that the data warehouse

contains. The objective of this thesis is to study and compare existing approaches

(methods and techniques) for tracing data lineage, and to propose a data lineage

solution speci�c to a business enterprise data warehouse.

x

Acknowledgements

First and foremost, I thank God for blessing me with family, friends and people who

helped me make this thesis a realization.

I thank my family for their love and support; my parents for teaching me the value

of hardwork, my brothers for believing in me, my sons for understanding my busy

schedule and most especially my dear husband, Henry, who sacri�ced his desires and

convenience so that I could write and complete this thesis.

My heartfelt thanks to my supervisors; Naci Akkok who unsel�shly shared his

knowledge and insights with depth and humor and Judith Gregory for helping and

guiding me and teaching me how to write a thesis. If it wasn't for both of you, I

would not have come this far.

I thank my leaders and managers, especially Morten Morch who believes in me,

motivates me and causes me to perceive things in their proper perspective.

I thank my colleagues and friends, Ragnar, Cathy, Armida, Aurea and many

others who have inspired me in many di�erent ways.

xi

Chapter 1

Introduction

A data warehouse enables enterprise-wide analysis and reporting functionality that

is usually used to support decision-making. Data warehousing system integrates

data from di�erent data sources. Typically, the data are extracted from di�erent

data sources, then transformed several times and integrated before they are �nally

stored in the central repository. The extraction and transformation processes vary

widely - both in theory and between solution providers. Some are generic, others

are tailored to users' transformation and reporting requirements through hand-coded

solutions. Most research related to data integration is focused on this area, i.e., on

the transformation of data. Since data in a data warehouse undergo various complex

transformation processes, often at many di�erent levels and in many stages, it is

very important to be able to ensure the quality of the data that the data warehouse

contains. The objective of this thesis is to study and compare existing approaches

(methods and techniques) for tracing data lineage, and to propose a data lineage

solution speci�c to a business enterprise data warehouse.

1

2

Figure 1.1: Basic data warehousing architecture - adapted from [7], page 2

1.1 Architecture of Data Warehousing System

Data warehousing is the process of extracting, cleaning, transforming, and loading

data into a data warehouse for reporting and analysis [6]. Figure 1.1 (improvised dia-

gram from Cui's thesis [7]), illustrates a basic architecture of data warehousing system

consisting of two major components, namely; the Data Acquisition, Integration and

Maintenance, and the Reporting and Analysis. The data Acquisition Integration and

Maintenance component encompasses complex and numerous processes which mainly

involve data extraction, cleaning, transformation and loading processes. The data in

the data warehouse act as the central point of data integration (data are gathered

and integrated from di�erent sources) as well as the point of distribution (data are

delivered to consumers of information for reporting, analysis and data mining) [26].

3

1.1.1 Data Acquisition, Integration and Maintenance

Data acquisition and integration is an important process in data warehousing. The

data in the data warehouse passes through cleansing and integration processes before

it enters the data warehouse [27]. Melding data from heterogenous and disparate

sources is a major challenge (e.g. given the di�erences in naming, domain de�nitions,

identi�cation numbers, and the like) [18]. Data integration processes are indeed

complex and prone to error. Since data in a data warehouse is often integrated from

a variety of sources and transformed by complex processes, the original source is often

obscured.

Data Transformation

Data Acquisition and Integration is generally part of Extraction Transformation and

Loading, ETL. ETL is generally referred to as Data Transformation and is a well

known process cycle inherent in warehousing environment [13]. The typical end result

of an ETL process in a warehousing environment are data stored in multidimensional

schema. The ETL typically contains Transformation programs which perform data

cleansing, integration, and summarization tasks over the source data before loading

them into the warehouse [7]. In this thesis, we evaluated existing data transformation

solutions and studied their approaches to data lineage. The result of the evaluation

forms part of the basis of the proposed data lineage solution.

Maintenance

Maintaining the objects, processes and data is a major administrative task in data

warehousing systems. Data lineage reporting plays a very important role in data

4

warehouse maintenance tasks. Being able to view the origins of data is very im-

portant from design to implementation. A common warehouse administrative task

for example is changing, updating or just plain analyzing a speci�c transformation

task (e.g. analysis of sources and targets mapping). Another common example for

administrative task is analysing the data quality uploaded to the warehouse. This

thesis, presents the di�erent approaches of data lineage maintenance implemented in

existing solutions. These existing data lineage solutions are considered to form part

of our proposed data lineage solution.

1.1.2 Reporting and Analysis

Providing integrated access to multiple, distributed, heterogenous databases and

other information sources has become one of the leading issues in database research

and industry [54]. The main objective of the data warehouse is to provide "integrated"

enterprise-wide reporting and analysis. A data warehouse does not just facilitate data-

intensive and frequent ad hoc queries [18], it is also used for further data exploration

and data mining. In a business enterprise context, a typical example of a data mining

application is enabling statistical analysis (on integrated and mined data) of the past

behavior and actions of the enterprise in order to understand where the organization

has been, determine its current situation, and predict or change what will happen in

the future [26].

The mission of a data warehouse is to provide information to most e�ectively

support decision-making [6, 28, 18]. One of the important factors to achieve this

mission is to ensure data quality. Having the ability to navigate and "drill-down"

reports to certain levels of detail supports e�cient data analysis, but being able to

5

"drill-through" to data origin provides for a deeper level of understanding of the

data in question. A question may be raised about the origin of data for validation

or for legal purposes. This thesis considers Reporting and Analysis which answers

questions related to data origin and data transformation history, the data lineage.

Illustrations of existing lineage tracing mechanisms are presented in this thesis and

the same mechanisms are considered to form part of our proposed data lineage system

components.

1.2 Data Lineage

Discovering the origin of a speci�c warehouse data element is known as the data lin-

eage problem [12]. Basically data lineage is the answer to the question, "where did

this data come from?" [17]. The answer to this question is often not straightforward

because the data in question can be either a derivation from a complex view1 or a

result of complex transformation [7]. Transformed data usually pass through di�er-

ent stages and at some point of each stage, they may undergo calculation based on

complex procedural code. The "where" question does not just refer to the sources of

data, but it also describes how the data was derived or transformed from its source

[3, 55, 16]. In general, the data lineage of a datum consists of its source and its

entire processing history [56]. Knowledge about the data sources and subsequent

processing history of a piece of data is fundamental to assess the data quality and

reliability [23]. For some applications, data lineage traceability is imperative (e.g.

for data warehouses that produce o�cial reports where legal dispute over data is a

possibility).

1Often several layers of simple to complex views.

6

1.2.1 Data Lineage Tracing

The ability to visualize data in a reverse order, following its transformation step

by step, is called lineage data process [12]. Di�erent approaches in lineage tracing

are proposed in di�erent studies [52, 25, 4, 2, 19, 56, 7, 9, 11, 13, 55]. Each of

these approaches are evaluated to form part of the basis for the data lineage solution

proposed in this thesis.

1.2.2 Data Lineage Bene�ts and Application

Supporting lineage tracing in data warehousing environments brings several bene�ts

and applications. Some of these bene�ts are enumerated below:

� In-depth data analysis - Being able to trace back to the origins of data is

useful and sometimes even necessary for in-depth data analysis. To some appli-

cation where data produced in the data warehouse is used for legal purposes,

one important requirement would be data traceability.

� Investigation of anomalies - Sometimes data in data warehouse may seem

anomalous. The analyst may pose a question, "where did this data come from?"

and may require an explanation of how it is derived. In the absence of data

lineage, it would be di�cult and costly if not impossible to answer this question.

� Debugging - Data Lineage can be used to investigate the source data pro-

grams that produced anomalous data [56]. Having the possibility to report on

the source-to-target mappings and seeing the transformation description (i.e.

derivation process, operators) is an important aspect for data warehouse main-

tenance.

7

� Impact Analysis - Di�erent forces or in
uences may impose changes to trans-

formation processes or maybe even to data warehouse schemas. Businesses

evolve and internal and external requirement may change over time. The impact

of these changes to the data warehouse can be analyzed prior to implementa-

tion in the existence of data lineage. Impact Analysis determines which tables,

columns and processes are a�ected by changes. In addition, lineage information

allows the user to trace the impact of faulty source data or buggy programs on

derived sets.

� Facilitating data mining and data discovery - Knowing about the sources

of data can enhance data mining and data discovery processes. It also improves

con�dence on data used for data mining.

� Correct Data in the Operational System - Data Lineage can trace back

to cleansed data and can be used as a feedback loop to correct data back in the

operational system.

1.3 Research Problem and Contribution to Knowl-

edge

This section discusses the data lineage problem and the overview of our approach in

solving the problem.

1.3.1 Data Lineage Problem

In a real data warehouse implementation, data are not only derived by �xed sets

of operators or algebraic properties. Most often data are transformed by a complex

programming procedure. In practice, these mean sometimes as many as 60 or more

8

transformations [7]. Transformation can often be so complex that implementing data

lineage tracing is considerably di�cult and open-ended [8, 7]. In addition, some of the

transformation logic is customized and hand-coded and may not adhere to any de�ned

formal transformation. As the data traverse through di�erent transformations, the

traces to the data origin become obscure (e.g. the format is changed) and somewhere

in between the complexity of transformation process, an anomaly may occur. With-

out data lineage traces, discovering this anomaly would be di�cult if not impossible.

These and many other aspects in data lineage make implementing a formal approach

to lineage tracing a big challenge. This challenge stirs the interest of the research com-

munity resulting in a number of studies presenting formal calculation (i.e. algorithms

and standard procedures) for tracing data lineage [7, 56, 55, 21, 2, 25, 4, 19, 8, 11, 10].

Existing solutions in the industry provide lineage solutions at higher granularity level

[34, 14, 53, 44, 39, 24, 17, 38, 28, 49], but lack the e�ectiveness of the �nest level

of lineage granularity that academe presents. In addition, most business enterprise

data warehouse implementation blueprints do not include a clear strategy for tracing

data lineage [51]. This thesis combines and distills the di�erent data lineage existing

solutions both from university research and industry and formulates a conceptual

framework for a data lineage system.

1.3.2 Academic Research

In academic research, di�erent approaches in lineage tracing are introduced, from

coarse-grained [4, 2, 25] to �ne-grained [56, 45, 7] data lineage. Most existing works

on data lineage in the academe focus on providing algorithms and procedures to

trace back data from sources. Although, this thesis does not go into detail on algo-

rithms and procedures, we provide illustrations on the existing tracing mechanisms

9

introduced in di�erent data lineage studies. The purpose of these illustrations is to

present some details of pertinent concepts behind the data lineage solution introduced

in this thesis. Data lineage problem is a challenge that needs more than just lineage

tracing mechanisms; it requires strategic initiatives [51]. This thesis provides a higher

level of data lineage solution by introducing a conceptual framework for data lineage

systems components.

1.3.3 Industry Implementation

This thesis presents di�erent data lineage solutions implemented by some prominent

players in industry. The intention is to provide an overview of existing features that

we combine to our data lineage solution - a solution which attempts to cover the

di�erent aspects of the data lineage problem at a strategic level. The prominent

solution providers2 of data integration which we included in our evaluation show data

lineage features. However, to the best of my knowledge, these lineage features do not

o�er the �nest level of granularity, which the academic works introduce. For example,

the industry solutions provide data lineage reporting functionality that reports only

against the metadata [34, 14, 53, 44, 39, 24, 17, 38, 28, 49]. These features can provide

reporting about sources and targets (i.e. sources-to-target mapping) and may allow

"drill-down" to transformation descriptions. However having the ability to "drill-

through", or to trace back the data lineage in step-wise fashion, o�ers an avenue of

improvement. This is one of the important considerations in data lineage solution

introduced in this thesis, although this thesis does not detail data lineage reporting

2Data integration solution providers included in this thesis are SAP Business Information Ware-
house, Oracle, Teradata, Microsoft and Ascential Software.

10

mechanisms. Metadata3 plays an important role in data lineage solutions. For this

reason we also evaluated the metamodel4 standardization e�orts provided by OMG5,

the Common Warehouse MetaModel (CWM)6 [40]. CWM provides constructs that

support data lineage solutions. This thesis considered the metamodel constructs as

a basis for the part of the data lineage solution covering transformation metadata

design.

1.3.4 Data Lineage Solution

The data lineage problem is seen in di�erent angles and perspective in the academe

and industry. Di�erent data lineage approaches show partial solutions addressing

some aspects of the data lineage problem. Most of the academic works consider the

data lineage on a data value granularity level, while the industry focuses more on

schema mappings. In industry, the schema mapping report is considered as a data

lineage report, but in the academe, the data lineage report not only produce schema,

schema elements and transformation descriptions, it also produces lineage data values

themselves. The academe details formal approaches for data lineage computation

(algorithms and procedures), while the industry provides features and tools that

support data lineage. Academic research may seem to provide better solutions in

terms of data lineage solution concepts; however industry provides tangible solutions

as evidenced by real data warehouse implementations. In this thesis, we combine and

3Metadata is generally known as the data about the data. A typical example is the system
catalog in relational DBMS. The system catalog describes data de�nition (i.e. it describes the tables
and columns that contain your data.) Some tools can manipulate system catalog as you would
manipulate any other data. Examples of manipulating metadata include viewing data lineage or
table information. In this case, metadata are treated as ordinary data.

4Metadata model
5Object Management Group.
6Metamodel Standard speci�cation mainly focusing on interchanging metadata.

11

distill di�erent approaches to data lineage problem. First, we describe data lineage by

presenting the di�erent aspects of the data lineage problem and classifying di�erent

types of data lineage information. This thesis presents a higher level but holistic

data lineage solution by providing a conceptual framework for data lineage systems

components relevant to business enterprise contexts. This work can be used as a

reference or a basis for designing and integrating data lineage solution to the business

enterprise data warehouse.

1.4 Related Works

The data lineage problem attracts interest in the research community. In this section,

we present the di�erent works related to data lineage. Most of these works generally

provide data lineage tracing approach which help constructs the solution proposed in

this thesis.

Fan and Poulovassilis [21], introduced lineage tracing approach based on schema

transformation pathways. In this work, they show how individual transformation

steps is used to trace the derivation of the integrated data in a step-wise fashion.

However their work focuses on a Hypergraph Data Model, (HDM) which is designed

to suit automed integration system [20, 22], this thesis focuses more on Relational

Data Models.

Other earlier works o�ered coarse-grained or schema-level lineage tracing. The

approaches propose lineage tracing based on annotations or attributions [25, 4, 2]. [25,

2] use data derivation information which is stored in metadata. Faloutsos, Jagadish

and Sidiropoulos in [19] also use metadata in addition to condensed information (e.g.

summary data) to trace data lineage. Statistical calculation is performed against

12

the metadata and condensed information to reconstruct the estimated value of data

origin.

The approach proposed by Woodru� and Stonebraker does not use metadata.

Rather than relying on metadata, their approach computes lineage using a limited

amount of information about the processing operators and about the base data [56].

[56] introduced lineage tracing based on weak inversion. Weak inversion does not

perfectly invert the data, it uses weak inversion and veri�cation to provide a number

of guarantees about the lineage it generates. The weak inversion and veri�cation

functions are to be registered by the user to the DBMS. When tracing a data lineage,

an inversion planner determines which weak inversion and veri�cation function to

invoke, constructs a plan and then executes the plan by calling the corresponding

sequence of functions within the DBMS.

All of the data lineage approaches above do not guarantee accurate and exact

tuple or tuples of the origin, but these approaches are potentially feasible in certain

situations and can be practical solutions to some business enterprise-speci�c require-

ments.

Cui and Widom o�er lineage tracing algorithms for relational views with aggre-

gation [12]. These algorithms provide a means for users to select a data warehouse

view tuple and "drill-through" to examine the exact source tuple or tuples that pro-

duced the view. Lineage tracing involves other aspects also, such as performance and

maintenance. In [10], Cui and Widom provide a way of optimizing lineage tracing

by introducing auxiliary views. Auxiliary views are parts of data lineage which are

physically stored in the data warehouse. Cui and Widom, in [8] further introduced

13

algorithms based on general transformation properties7. For each transformation

property, an equivalent tracing procedure is used to enable lineage tracing. Cui's and

Widom's works gained signi�cant contribution in data lineage problem and are cited

in many data lineage related works.

Bose does not introduce a data lineage tracing mechanism but rather presents a

framework for composing and managing data lineage speci�c to scienti�c data [3].

This thesis provides lineage solution for business enterprise data warehouse by char-

acterizing data lineage and providing framework for data lineage system components.

1.5 Thesis Scope and Delimitation

This thesis evaluates and describes di�erent lineage tracing mechanisms in theory as

well as the existing implementations in the industry. Existing theories which form

part of the data lineage solution presented in this thesis are illustrated. Additionally,

existing data lineage implementations in the industry are presented. Based on the

evaluations, (i.e. both in theory and industry), a data lineage solution which is speci�c

to business enterprise context, is introduced. This thesis attempts to provide a holistic

view of the di�erent aspects of the data lineage problem and aims to introduce a

solution which covers these di�erent aspects. However this thesis does not go into

detail on algorithms and procedures, although illustrations on some algorithms and

procedures extracted from di�erent academic research are provided.

7Transformation property tells the type of transformation applied to the data.

14

1.6 Thesis Outline

The thesis is organized as follows. Chapter 2 elaborates di�erent tracing mechanism

based on di�erent data lineage related studies. Chapter 3 discusses the Standard

metamodel speci�cation which provides metamodel constructs that support data lin-

eage. Additionally, the overview of data lineage implementation for each solution

providers included in the evaluation in the industry is presented. Base on the evalu-

ations, Chapter 4 characterizes data lineage by describing the di�erent aspects of the

data lineage problem and classifying the di�erent types of data lineage. Chapter 5

proposes a data lineage solution covering the aspects of the data lineage problem dis-

cussed in chapter 4. In Chapter 5 we introduce the conceptual framework for lineage

system components and discuss data lineage design and implementation. In our dis-

cussion we emphasize that lineage system Components must be seamlessly integrable

with the data warehousing system. Finally, Chapter 6 discusses the conclusion and

the possible future works related to the proposed solution.

Chapter 2

Existing Lineage Tracing

Mechanisms

This chapter presents di�erent tracing mechanisms which are gathered from previous

works related to data lineage. Section 2.1 provides a sample case which shall be used

as reference for illustrating the di�erent data lineage approach. Section 2.2 discusses

the basic lineage granularity levels as commonly described in academic works related

to data lineage. In addition, section 2.2 also illustrates examples for each granularity

level. Section 2.3 highlights di�erent approaches in storing data lineage physically

and section 2.4 presents the di�erent ways for physically retrieving the data lineage

for reporting purposes.

The lineage tracing mechanisms presented in this chapter are mostly based on the

previous works of [25, 4, 2, 19, 56, 12, 10, 8, 52]. The main intention of this chapter

is to describe and highlight the di�erent concepts of existing tracing mechanisms.

However this only focuses on the overview of each approaches and does not detail

formal calculations (i.e. algorithms and procedures) presented in the referred previous

works. Each or a combination of each tracing mechanisms may be applicable to certain

enterprise data warehouse tracing requirements. Therefore, knowing the overview of

15

16

Figure 2.1: Source and Target Tables

these approaches is useful to determine which speci�c solution is applicable to which

problem in a data warehouse environment. For details on algorithms and procedure,

refer to [25, 4, 2, 19, 56, 12, 10, 8, 52].

2.1 Sample Case

This section is prepared for illustration purposes. This illustration shall be used in

di�erent tracing mechanisms presented in this chapter.

Source Data. Warehouse data AbsenceStatistics are produced based on three

source tables: Employee, WorkShedule and Attendance. See to �gure 2.1 which

presents the source tables and target tables. Employee table is mostly self-explanatory.

WorkSchedule table stores the number of hours that the employees are supposed to

be working each month. The Attendance Table is also self-explanatory except for the

AttendanceType which indicates if hours are entered as ordinary working hours, sick

leaves or overtime. Figure 2.2 shows the content of the source tables.

17

Figure 2.2: Source Tables Content

18

Figure 2.3: Transformation Steps - adapted from Cui [7]

Warehouse Data. Suppose that the Head of Health and Safety Environment,

(HSE) Division would like to analyze healthy working environment for each depart-

ment. Sickness Absence may not always be directly related to healthy working envi-

ronment but may also, for example, indicate employees' work satisfaction. Therefore

this warehouse view may also serve the department head to analyze the absences

of his or her employees. To materialize a view in the data warehouse that has this

information, the transformation steps shown in �gure 2.3 are implemented.

Target Views represented by Vi where i is the sequence number of Views in

each transformation steps, are views that store transformed data which may function

as an intermediate view for further transformation or the ultimate data target. The

transformation steps traversed by the warehouse data result in the intermediate views

V1,V2,V3,V4 , refer to �gure 2.3. To simplify the transformation illustration, we use

the transformation graph shown in �gure 2.4, similar to Cui's illustration in [7].

19

Figure 2.4: Transformation Graph - adapted from Cui [7]

Figure 2.5: Target Content

The data shown in �gure 2.5 are loaded to the warehouse after a series of trans-

formation. Refer to �gures 2.3 and 2.4.

2.2 Data Lineage Granularity Level

Lineage granularity pertains to the level of details of the data lineage when tracing

back to its origin. Di�erent data lineage related works in the academe describe data

lineage granularity in two main categories; Schema level and Instance level. The

�rst refers to the origin of data in terms of data structures (e.g. column to column

mapping), the latter refers to the original values themselves from which the data are

20

derived. In this section, we look in to the di�erent academic works and describe each

of their data lineage tracing approaches. Section 2.2.1. presents the Schema level way

of tracing the data lineage and section 2.2.2. presents the Instance level approach.

2.2.1 Schema-level approach

Schema-level or coarse-grained tracing approach refer to the origin of data not in terms

of data values but in terms of schema elements and transformations from which they

are derived. Schema-level approaches utilize metadata repository to store lineage

information (e.g. transformation or derivation set) involving a warehouse data item

[2, 52]. [2, 52] introduce a possibility to tag each warehouse instance with identi�er of

the derivation set that produced it. The identi�er stored in the warehouse instance

and the derivation set stored in the Meta data repository are then used for query

computation during lineage reporting.

In [2], the equivalent of a derivation set is named a package. Each package is

a work
ow that de�nes a transformation. To enable lineage traceability, a package

identi�er is stored in a warehouse item. When a user asks about the data lineage of

a warehouse item, the package identi�er is used to view the package transformation

description, (e.g. the sources and targets of the transformations and the computation

applied to the data in transformation process).

Applying the method of [2, 52] in our example, we then assume that the transfor-

mation information such as transformation steps, intermediate view de�nitions etc.,

are already stored in Meta data repository . Referring to our sample case in section

2.1, the transformation Steps T1 to T5 and View De�nitions V1 to V5 are assumed

to be already stored in the Meta data repository.

21

Schema Level Tracing Scenarios

The transformation process shown in �gure 2.2 and �gure 2.3 can be seen as the trans-

formation package as described in [2]. Additionally to complete the Target Schema,

according to [2], we add the PId attribute which stands for Package identi�er. The

resulting table would then be AbsenceStatistics (Department, CalMonth, PAb-

sence, PId). To simplify our example, we refer only to the warehouse target as a one

dimensional schema (typically, data in the data warehouse for OLAP are loaded in

a Multidimensional Schema). Assuming that our data target is a multidimensional

schema, when we add package identi�er, PId, we are actually adding a dimension to

the schema. We name it package dimension for illustration purposes. Dimensions are

simply tables linked to the main table which is known in data warehouse as the fact

table. The package dimension that we add may contains pertinent information about

the data, for example package descriptions among others. Figure 2.6 illustrates an

example of the Multidimensional Schema that has a package identi�er, PId. Package

dimension is similar to the idea of audit dimension mentioned in [6]. Although the

intention of audit dimension in [6] is to indicate data quality, it does capture impor-

tant ETL processing and contains a description of the �xes and changes that have

been applied to a speci�c row in a fact table. In addition, it may also contain more

attributes that may describe the data lineage.

Reporting data lineage using the package dimension may initially use the data

in the Package dimension if the user would only require lineage overview (e.g. data

source, timestamps). From here, the user may trace back the transformations and

queries regarding the source (including intermediate views) to target mappings. In

22

Figure 2.6: Multi-dimensional Schema

each transformation step, the user may also view information that describes the trans-

formation step (e.g. calculation applied to the source or intermediate views resulting

to intermediate or target views).

A schema-level related work in [52] details on the mapping mechanisms utilizing

the Meta data repository. [52] introduced mappings in the form of foreachQs and

existQt . Qs and Qt stands for source and target queries respectively. These Queries

are used to describe the mappings. The source query describes what to retrieve from

the source and the target query describes how the retrieved data will be structured to

the destination schema. For each mapping, schema or schemas may be transformed in

terms of element name or element types and the data may be aggregated or calculated.

Figure 2.7 shows an example of this mapping to populate the target schema using

our sample case in section 2.1. Consider the mapping m1 in our example shown in

�gure 2.7. The source column Ahours of this example is transformed to AsumHours

in the target schema while the data value is aggregated to summarize the "SickLeave"

hours for each employee in each month.

In addition to this mapping mechanism, [52] introduced a Meta data storage

schema which includes seven tables shown in �gure 2.8. Mapping table is the main

23

Figure 2.7: Mapping Scenario - adapted from [52]

24

Figure 2.8: Meta Data Storage Schema - Source from [52] page 9

responsible table for linking the source-to-target schemas. A mapping table consists

of mid, forQ and conQ columns. The mid is the unique key identifying a mapping

instance. The two columns, forQ and conQ contain the source and target select

clause respectively. The source query entered in foreach describes what to retrieve

from the source and the target query entered in exists describes how the retrieved

data will be structured to conform to target schema.

In addition to the mapping table, the source-to-target schema elements are stored

in the Element relation which consists of element ID, name, type (e.g. string),

parent (i.e. the origin of the element) and db (i.e. the data source). Three tables

are used to contain the schema-to-target schema de�nitions: Query, Binding and

Condition. Each query has an indenti�cation which is stored in a Query table. The

Binding table stores the from clause and Condition table stores the where clause

of the source-to-target queries.

Looking back at our sample case in section 2.1., what if, for example, the employees

within the same department serve di�erent projects and each project has its own time-

sheet application database. This scenario extends our sample case because the data

source now originates from di�erent databases. Our mapping example in �gure 2.7

is extended to record the source databases of the source items.

25

Suppose the head of the department investigates the source of the speci�c tuple

in the data warehouse. The information stored in Meta data repository will make

it possible to query on schema elements and transformations which will show the

manager how the data are transformed and which source databases the values in the

warehouse came from.

2.2.2 Instance-level approach

Instance-level or �ne-grained tracing attempts to �nd the speci�c values in the base

tables that justify the appearance of data in a warehouse view. While schema-level

tracing refers to the origin of data in terms of schema elements and transformations

description, instance-level tracing refers to the data value itself. The following sub-

sections describe each di�erent method of tracing data lineage and provide examples.

The examples given are based on the works [19, 7, 55, 9, 11, 12, 8, 7].

Views and Transformations

Widom and Cui in their works [9, 11, 12, 8, 7] describe tracing mechanisms by which

the exact or nearly exact data lineage for a given warehouse data item can be pro-

duced. In their works, they provide algorithms for lineage tracing for data warehouse

views and lineage tracing for general data warehouse transformations. When a ware-

house materialized view is populated using standard relational operators, then it is

possible to trace the exact lineage tuples for a given warehouse item using the algo-

rithms Widom and Cui provided in [12, 9, 7]. However, in practice, a data warehouse

is often populated through a complex transformation process. In this case, Widom

and Cui introduced lineage tracing for general warehouse transformations. In their

26

works, they identi�ed eleven transformation properties which become the basis for

selecting a tracing procedure to be used in lineage tracing.

Lineage tracing for Views. This lineage tracing mechanism considers a rela-

tional scenario. The data warehouse in this scenario is populated through simple to

complex relational views which are speci�ed using select, project join, aggregation,

union, intersection and di�erence operators. [12, 9, 7] develop tracing algorithms for

this scenario. The tracing algorithms use tracing procedure that is automatically

created based on the view de�nition.

Computing the lineage of data warehouse view generally requires not only the

view de�nition but also the original data and sometimes even additional information.

In data warehousing implementation, this requirement is not an appealing solution

because data may come from di�erent sources. For example, data may come from

di�erent systems (e.g. legacy systems) or databases, or may reside in an inaccessi-

ble logical location (e.g. source data maybe archived) among many other practical

reasons.

[7, 12] introduced view lineage tracing without requiring the data source with

certain practical trade-o�s (e.g. loading against tracing performance). To achieve

this goal, [7, 10] proposed the idea of auxiliary views. These views reside within

the data warehouse environment and contains some part of lineage information (see

to section 2.3.2). In addition to this, [7, 10] introduced di�erent options to store

auxiliary views by providing algorithms for their implementation and maintenance.

To illustrate view lineage tracing introduced in [7, 12], we consider our sample

case in section 2.1. To simplify the illustration we consider only the transformation

T2 shown in �gure 2.3 and 2.4 which produce the View V2 . Figure 2.9 a) shows

27

the source data which produced the View V2 . If we apply the Tracing Query as

introduced in [7, 12] to compute the lineage of V2 tuple(D70, 172.5, 3.2005), then

we will get the result shown in �gure 2.9b. Refer to section 2.4.2 for the resulting

query based on algorithms in [7, 12].

Lineage tracing for general data warehouse transformations. In real data

warehouse implementations, data in the data warehouse are often populated through

a series of complex transformation. In this case, tracing the data lineage cannot be

just calculated using the standard relational operators. Additional logic needs to be

incorporated in order to produce the data lineage for a particular data warehouse

item. This problem is identi�ed in [7, 8]. [7, 8] introduced lineage tracing basing

on general transformation. The intention of this mechanism is to produce the exact

or nearly exact tuples that are responsible for the appearance of the warehouse item

produced by data warehouse general transformation1.

To be able to trace back to the exact origin of data requires knowledge on the

transformation path, the data traversed as well as the computation applied to the

data within each transformation. Producing a data lineage as accurate as possible,

requires knowledge of the transformation description. It may not be emphasized

in [2, 52], but their work clearly shows, that transformation information are used to

enable lineage tracing. To emphasize the notion that data lineage tracing is dependent

on Transformation description, a simple example is given, shown in �gure 2.10 (see

[7, 8]). This �gure shows a source table I that has tuples (a,-1), (a,2), and (b,0) and

Transformed data having the tuples (a,2),(b,0). In this example, the data in question

are the tuple (a,2). Consider two transformation scenarios 1 and 2 below:

1These are the common transformations that occurs in data warehouse environment.

28

Figure 2.9: Lineage for View V2

29

Figure 2.10: Transformation Instance - source from [7]

Figure 2.11: Transformation Classes - source from [7]

Scenario 1: Transformation that �lters out input with negative Y value

Scenario 2: Transformation that groups input data based on X values and computes

the sum of their Y values multiplied by 2

Tracing the data lineage for this data in question depends on how the data is

transformed. If data are transformed as described in Scenario 1, then the data lineage

for this transformation would only be the tuples (a,2) and (b,0). However, if the data

are transformed as described in Scenario 2, the data lineage would be the entire table,

because all tuples in the entire table participates in the transformation computation.

Transformation Properties. In reality data transformations often involve

30

more than just standard relational operators. Tracing the data lineage for such trans-

formations requires some known transformation structure or properties that can be

used to determine and trace the data lineage [8, 7]. [8, 7] develop lineage tracing

mechanisms using the transformation properties. First, they identi�ed transforma-

tion properties for general data warehouse transformations.

Transformation Classes. [7, 8] classi�es General Transformation into three

namely, the Dispatcher, Aggregator and Black-box, refer to �gure 2.11. These three

classes are based on how they map input data items to output items.

A Dispatcher produces zero or more output data items independently. Figure

2.11(a) illustrates a dispatcher, in which an input items I consisting of 1, 2 and

3 produces output items O consisting of 1, 2, 3, 4, 5 and 6 independent to each

other. An input item 2 produces nothing and an input items 1 and 3 produces more

outputs. A dispatcher can be identi�ed as �lter if each input item produces either

itself or nothing. The data lineage for any output through transformation with �lter

property is the same item as in the input.

AnAggregator transforms one or more input data items and produces one output

data item. Figure 2.11(b) illustrates an aggregator in which output data items 1 and

2 and 3 are transformed using one or more input data items. Output data items 1

and 3 are the transformed from multiple input items while output item 2 is a result

of single input item. A more e�cient tracing pocedure for aggregator is develop by

subclassifying it in to context-free aggregatorand key-preserving aggregator.

A Black-box illustrated in �gure 2.11c) uses all combination of data set to trans-

form one or more data sets, therefore tracing procedure for this type of transformation

simply returns the entire input.

31

Table 2.1: Summary of Cui's Transformation Properties - source from [7] page 160
Property Tracing Procedure
dispatcher TraceDS
�lter return O
aggregator TraceAG
context-free aggregator TraceCF
key-preserving aggregator TraceKP
black-box return I
forward key-map TraceFM
backward key-map TraceBM
backward total-map TraceTM
tracing procedure requiring input TP
tracing procedure not requiring input TP

Schema Mappings. Cui and Windom [8, 7] consider schema information to

improve lineage tracing but do not entirely depend on it as Velegrakis, Miller and

Mylopoulos [52] do. Schema mappings specify the link of input attributes to the

output attributes. [52] details this by introducing a Meta data storage schema that

contains this information. Our sample case shows schema mapping refer to �gure

2.3. This is further demonstrated in �gure 2.7. [8, 7] develop a lineage tracing pro-

cedure using schema mapping to improve the tracing procedure for dispatcher and

aggregator. However, [8, 7] procedure does not report on mappings as [52] does.

[8, 7] uses schema mappings to identify speci�c transformation properties based on

how the source tuples attribute values is mapped to the tuples of target attributes.

Three schema mapping properties are classi�ed, namely forward key map, back-

ward key-map and backward total-map (see [8, 7] for details). A lineage tracing

procedure is developed for each of these properties which allows tracing the lineage

values of the source, rather than to the lineage schema of the source.

32

Table 2.2: Transformation Summary for AbsenceStatistics Warehouse
Name Description
T1 Select on Attendance type
T2 Aggregate Employee and WorkSchedule
T3 Join and aggregate Employee and V1
T4 Union views V2 and V3
T5 calculate percentage of absence and add column PAbsence

A Transformation may exhibit more than one properties. Table 2.1 lists the

transformation properties. Some properties are better than the others. This means

that the tracing procedure formulated for better properties may give a more e�cient

tracing or may give a more accurate lineage result. In which case, [8, 7] determines the

best one to exploit for lineage tracing and show the hierarchy according to importance.

Lineage Tracing Procedure. Tracing procedure take speci�ed output items

and may take Input items as parameters to produce the data lineage. The tracing

procedures formulated in [8, 7] introduce a mechanism in which a data lineage is

traced by identifying which transformation property or properties have transformed

a speci�c data in the data warehouse. The lineage tracing procedure is composed for

transformation sequence and transformation graphs.

Widom [8] formulated a tracing procedure for each of the transformation proper-

ties. Consider �gure 2.4, the transformation graph in our sample case. Each trans-

formation step is represented as Ti where i refers to the sequence number of trans-

formation. If we consider the work of [8], each of the transformation in our sample

case T1 to T5 has a transformation property. The summary of transformations in

our sample case in section 2.1 is presented in table 2.2 based on the work of [8].

33

Consider the warehouse data in our sample case in �gure 2.5. Suppose the Head

of HSE Division would like to know who are the employees in a particular department

were having sick leaves for a speci�c month. Speci�cally the HSE Head may wish to

list the employees that produce the warehouse data tuple(D70, 3.2005, 43.5). Tracing

back the data lineage is like traversing the path in the transformation graph shown

in �gure 2.4 and reconstructing the views in the relations shown in �gure 2.3. In our

sample case, HSE head may "drill-through" V4 to V1 then �nally to the source. [7, 8]

proposed lineage tracing mechanism that allows the user to do exactly this. Lineage

tracing will traverse back the transformation path to produce the exact tuples of the

origin of the data in question.

Statistical Method

Faloutsos, Jagadish and Sidiropoulos in [19] introduce a statistical method to re-

construct as good as an estimate of the original base data. [19] describes a formal

approach to the recovery of information from a summary data in form of constraints

and utilizes the well-developed "inverse problem" theory.

We include this method not to detail a statistical calculation approach but to

recognize the relevance of this approach for practical application on data warehousing

environment. Ralph Kimball [32] describes a practical example for using statistical

method to answer the question about the the correctness of data loaded in a warehouse

. If there is a need to respond to queries that can be answered accurately only from

the base data, the views and transformation approach of lineage tracing of [8, 10, 7]

are applicable. This type of question requires to "drill-through" to the exact tuple

of the data origin. In some cases it may be too expensive if not impossible to trace

34

the exact or almost exact tuples of the origin of data. The reason may be that the

source data reside on an unreachable location (e.g. o�-line, archive etc.) However,

some data origin related questions can be answered quickly from the summarized

data. [19] proposed a mechanism to meet this requirement.

Inverse Method

Some transformation may be accompanied by a tracing procedure or inverse trans-

formation, which is the best case for lineage tracing according to Widom [8]. Because

it is the inverse of the transformation it could be assumed that it basically inverts

data perfectly. Intuitively, if inverse procedure or function inverts the data perfectly,

(assuming the data data is transformed in several layers and levels), then a certain

amount of lineage information should have been stored within the data warehouse. In

practice, inversion function is seldom available [8, 56]. ETL development is complex

and time consuming that preparing an inverse function for each transformation is

often not considered during the development.

Woodru� and Stonebraker [56] introduced a general framework for computing the

data lineage using weak inversion and veri�cation. This approach is to compute lin-

eage on-demand using a limited amount of information about the processing operators

and the base data. Weak inversion does not perfectly invert the data, it uses weak

inversion and veri�cation to provide a number of guarantees about the lineage it gen-

erates. The weak inversion and veri�cation functions is to be registered by the user to

the DBMS. When tracing a data lineage, an inversion planner determines which weak

inversion and veri�cation function to invoke, constructs a plan and then executes the

plan by calling the corresponding sequence of functions within the DBMS.

35

2.3 Recording the Data Lineage

How and where to record data lineage is essentially part of the lineage problem solu-

tion. If data lineage is to be traceable, then information about data lineage or part

of data lineage itself needs to be stored where lineage tracing process can reach it.

Intuitively, the problem of recording data lineage involves balancing trade-o�s (e.g.

performance). Recording data lineage or part of data lineage after every transfor-

mation is sure to penalize the loading process in data warehouse. Thus, deciding

whether to store data lineage or to reconstruct it on demand requires extreme cau-

tion. Di�erent lineage tracing mechanism views lineage recording di�erently. Cui

and Widom [7, 12, 10, 8] for example describe algorithms to determine which part of

data lineage information to store or store nothing at all. Woodru� and Stonebraker

[56] propose to register weak inversion function for each transformation and use it

to reconstruct data lineage. Faloutsos, Jagadish and Sidiropoulos [19] uses limited

knowledge about the data to reconstruct the data from their base origin. Whether

the option is to store or reconstruct data, all tracing mechanism still use some form of

information about the data lineage. This section discusses the di�erent approaches to

recording data lineage based on my analytical survey made on the existing research

[25, 4, 2, 19, 56, 12, 10, 8, 52].

2.3.1 Identifying Lineage information

Based on the survey of this study, there are di�erent types of lineage information nec-

essary to enable lineage tracing. Lineage information can be data about the source

systems, source and intermediate schemas, functions or procedures used for calcula-

tions, or source data values themselves. This section classi�es some of these types

36

and describe each type.

Schema Information

Any information describing the composition of the schema that participates on data

transformation. This information may be in the form of the following:

� View de�nition - Views that participates in transformation and may form

part of lineage tracing queries used [52, 7].

� Schema Name - Names of views, tables, or record or attributes. relation

[52, 56, 55].

� Schema Elements - Attributes or column names [52, 56, 55]

� Element or Attribute Types - the source element or attribute types and the

intermediate target element or attribute type [52, 56, 55].

It may also be pieces and parts of the schema de�nition such as: select clause,

from clause or where clause of the statement, refer to the work of [52] describe in

section 2.2.1. which describes how to map source-to-target using this information.

Functional and Execution Information

Any information pertaining to the tracing program, procedure or functions that will

be used in lineage tracing speci�c to a particular warehouse data. This may consist

of the name and the description of the program. This may also consist of information

that describes the transformation name and process and links to one procedural code

to another that comprise the lineage tracing instruction invoked during lineage query.

37

Woodroof and Stonebraker [56, 55] propose the idea of function registration co-

herent to its proposal to trace data lineage basing on weak inversion, refer to section

2.2.2. Several pieces of information about weak inversion and veri�cation function is

to be registered to trace data lineage using the weak inversion. During lineage tracing,

an inversion planner, (i.e. a program which generate an execution plan to trace the

data lineage), infers which functions are to be used for weak inversion veri�cation.

[56, 55] describe the information which is to be registered; the Inverting Function (i.e.

which perform the weak inversion or veri�cation) and the Function to be inverted. Cui

and Widom [8, 7] introduce a tracing procedure which is invoked during the lineage

tracing. The properties of the procedure which dictate which programming procedure

to execute during lineage tracing and the reference to the procedure itself are stored

within the data warehouse environment. Bernstein and Bergstraesser [2] introduce

the transformation package which works as a work
ow; starting from extraction up

to loading process. The identi�er that references this package is stored within the

data warehouse.

Lineage Intermediate Values

It is not usual but it may be necessary to store lineage intermediate values to enhance

lineage tracing performance. Storing these values in data warehouse is resource in-

tensive and requires serious consideration. The works of Cui and Widom [8, 7],

describe di�erent algorithms to store intermediate lineage values. During lineage

tracing, lineage intermediate values is accessed to produced a lineage view instead of

reconstructing from nothing. The presence of the lineage view in the data warehouse

for tracing, intuitively improves performance during lineage queries but penalizes the

38

data warehouse loading process. Additionally, data in the warehouse grows in vol-

umes of magnitude and storing data lineage alongside it poses a serious storage and

administration challenge.

Other Data Lineage Related Information

Other lineage related information is stored in a dimension table. [1, 2, 6] introduced

similar ideas about an audit dimension. The audit dimension is a table that contains

pertinent information about the row of the fact table. For example it may contain

the identi�er of derivations applied to the data before the data arrives to the fact

table, the source systems, the date and time it was loaded.

2.3.2 Storing Lineage information

In this section we look into the mechanisms for storing lineage information. We

pick one example for each of the two main lineage granularity levels for illustration.

Speci�cally we look on the work of [52] for storing schema information, and on the

works of [7, 10] for storing lineage intermediate data and the works of [55, 7, 8] for

storing function or procedural code.

Schema Information

Schema information is stored to support tracing the data origin or mapping target

data to its source. A good illustration for storing schema information is the ones

introduced by [52]. [52] presented Meta data storage schema which includes seven

tables, refer to �gure 2.8. In this section we present how these Meta data storage

schema are used.

Looking back to our sample case in section 2.1. Three source tables; Employee,

39

Attendance and WorkSchedule, produce the warehouse data AbsenceStatistics

through transformation steps T1 to T5. The transformation steps are shown in �gure

2.3. In section 2.2.1, we presented schema level approach of data lineage as introduced

in [52]. Section 2.2.1 presented transformation steps in the form of mappings. Figure

2.7 shows the mappings scenario using our sample case in section 2.1. To illustrate

how the Meta data storage schema is used, refer to �gure 2.7, particularly the m1

mapping. Mapping m1 involves the Attendance table expressed in foreach query

and the intermediate view V1 expressed in exist query. We assume that the source

database for Attendance table is sdb and V1 is stored in a transient database tdb.

The schema elements which are involved in mapping m1 is stored in the Meta data

storage as shown in �gure 2.12. Element table stores the schema name, its type

(e.g. string) its parent element, and the databases where it resides. Query maintains

the query identi�ers, in our example, q0 and q1 for the foreach and exist queries

respectively. The Binding table records the from clause of each query as a list of

bindings. In our example the information recorded are the binding identi�er a within

the query q0 , the schema element where it starts (entered as r1) and the schema

which it refers (entered as e3). The Condition table records the elements in the

where clause. In our example shown in �gure 2.12, the recorded information are the

query id q0, the binding id a and element id, e3 which participate in the expression

with operator being "=" to a constant value "Sickleave.". The column eid2 would

have been an element id if the value in bid2 is not a constant value. The Mapping

table is used to encode mappings. It records the mapping idm1 the query identi�ers

q0 and q1 for foreach and exist queries respectively. The expression in the select

clause is recorded in the Correspondence table. The binding id and the element

40

id for the foreach and exist queries are encoded in forbid, forEid, conBid and

conEid columns respectively.

Data Sources and Lineage Intermediate Values

Figure 2.3 in our sample case, illustrated transformation steps. Each transforma-

tion step produces an intermediate view before the �nal transformation step which

populates the data warehouse. The intermediate views2 in this transformation steps

may be created and populated dynamically during execution time, or may be stored

physically in a disk. Storing the intermediate views can be very expensive as the data

in the data warehouse is usually huge. There are di�erent options for storing lineage

data values in the data warehouse. The maintenance aspect of this option (storing

lineage data values) can also be complex and this topic does not escape the curiosity

of the research community [22, 20, 9, 10, 45, 12, 7, 5].

Cui [7] details on di�erent mechanisms of storing intermediate lineage values by

presenting di�erent algorithms of storing auxiliary information. The auxiliary view

which stores the intermediate lineage values is generated during view speci�cation.

When the data from source are loaded to the warehouse through data integrator, the

data integrator also populates the auxiliary view if view is tagged to be traceable.

Cui and Widom [7, 10] describe di�erent options to store the lineage auxiliary

views. First is Store Nothing option. This option, as its name implies, stores

nothing in the auxiliary view. This scheme retrieves all information from the data

source tables during lineage tracing. This saves storage and storage maintenance but

provides poor lineage tracing performance. Another option is Store Base Tables.

2Intermediate or Auxiliary views contain transformed data that will be used for further
transformation.

41

Figure 2.12: Metadata Storage Implementation from m1 mapping - adapted from
[52]

42

Within the data warehouse, create a copy of each source table that the view is de�ned.

View maintenance in this scheme is uncomplicated, but the base table can be large

and may contain data that are irrelevant to warehouse data, and thus are not usable

for lineage tracing. Another method is to create and implement Store Lineage

View. This scheme stores all lineage information for all tuples in the primary view.

This schema signi�cantly simpli�es the tracing query and potentially reduce the query

cost. But lineage views can be large and costly to maintain. Another option is Store

Split Lineage. This option split the lineage view and store a set of tables instead.

Split lineage tables contain no irrelevant source data, since every row in this table

contributes to some data warehouse row. Furthermore, the size of the split lineage

tables can be much smaller than lineage view. The rest of the options are Store

partial base table and Store Base Projection. These options store speci�c

portions of base tables only which reduces the size of Base Table method. See [7, 10]

for details about the di�erent options in storing the lineage auxiliary views.

2.4 Reporting the Data Lineage

In the previous section, we presented the data lineage granularity levels, we classify

di�erent types of data lineage basing on the di�erent data lineage related studies, and

we look on di�erent approaches in storing and preparing the data lineage information

for possible queries about the origin of data in the data warehouse. No matter how

brilliant the algorithms and procedures for storing data lineage and preparing it for

tracing, they amount to nothing if the user is unable to view and use the data lineage

itself. In this section, the process for tracing or drilling-through the data lineage is

presented. We look to speci�c approaches in the di�erent works on how the lineage

43

is constructed. The tangible part of all the mechanisms discussed above, is the data

lineage produced and made visible for the user who ask questions about the data

origin of a warehouse data item.

2.4.1 Metadata Query

In section Schema Information, under section 2.3.2, we illustrated an example on

how schema elements are stored basing on [52]. [52] proposes Meta data storage

implementation consisting of seven tables which stores schema information to allow

data lineage tracing. Furthermore, we also presented how the schema is stored by

using our sample case in section 2.1. (see to �gure 2.12).

Velegrakis, Miller and Mylopoulos [52] provide a formal basis for realizing schema

mapping which is a form of tracing data lineage. This formal basis builds on the

Meta data storage implementation where schema elements and transformations are

available for querying. To realize this mapping, [52] extend standard query language

with special operators to utilize the Meta data. This extended language is referred

to as MXQL which stands for meta-data extended query language. Schemas and

mappings are to be stored as described in section 2.3.2 and illustrated in �gure 2.12,

in order to be queried and returned in answer sets as regular data. MXQL queries

can be executed to exploit the Meta data storage schema while hiding the details of

the meta-data storage implementation. Tools for invoking the queries and presenting

information in the report can then be used to show the result of the queries to the

users.

44

2.4.2 View Tracing Query

A section Source and Lineage Intermediate Values under section 2.3.2, describes

the overview of di�erent approaches in storing the values of data lineage within the

data warehouse. The primary objective of this approach is to optimize "drill-through"

or step-wise query for the data lineage of the data warehouse items that are trans-

formed via SQL views or di�erent levels of views. Furthermore, this approach ensures

to return accurate lineage values when queried in step-wise fashion.

[7, 10] formulate tracing algorithms which enable tracing the origin of data for a

speci�c data warehouse item. A tracing query is built based on the target view

query. To illustrate an example, let us go back to our sample case in section 2.1

which presents a data warehouse view AbsenceStatistics, refer to �gure 2.5. Ab-

senceStatistics view is populated from data coming from the three source tables

which are transformed via �ve transformations (see �gures 2.2, 2.3 and 2.4). Prior to

the transformation process, each target view in the �ve transformations is assumed

to be already de�ned as part of the of the transformation description. Assuming that

the data in each of the intermediate views are permanently stored for lineage trace-

ability, then drilling-through to the data origin is possible using the tracing query

described in [7, 10]. To simplify our illustration, we utilize the example shown in

�gure 2.9. Figure 2.9a) presents the source tables and the intermediate target view

V2. Furthermore, this �gure also highlights the view item in question, row (D70,

172.5, 3.2005). Figure 2.9b) illustrates the data lineage for row (D70, 172.5, 3.2005).

The data lineage is derived using the tracing query created based on [7, 10]. The

tracing query is built using the view de�nition. View V1 de�nition is shown below.

45

CREATE VIEW AS V1,

SELECT e.Department,

sum(w.WSHours) as WSHours,

w.WSCalMonth

FROM Employee e

WorkSchedule w

WHERE e.EmpID = w.EmpID

To trace the data lineage of row (D70, 172.5, 3.2005), the tracing query splits

the Relations that are involved in the view de�nition, in this particular View. In our

view example the relations are the Employee and WorkSchedule. After the split,

a query is made against each relation basing on the view de�nition condition and the

row in question. Implementing the tracing query produces the exact data lineage for

the row in question as shown in �gure 2.9b). The tracing queries created for the row

in question (D70, 172.5, 3.2005) appears as follows:

46

Split 1

SELECT e.EmpID,

e.Name,

e.Gender

e.Department

e.Address

e.Birthday

FROM Employee e

WorkSchedule w

V2Tuple v2

WHERE e.EmpID = w.EmpID

w.WSCalmonth = v2.WSCalMonth

e.Department = v2.Department

The result of this query is the data lineage from Employee source table shown

in �gure 29b)

Split 2

SELECT w.EmpID,

w.WSHours

w.WSCalmnth

FROM Employee e

WorkSchedule w

V2Tuple v2

WHERE e.EmpID = w.EmpID

w.WSCalmonth = v2.WSCalMonth

e.Department = v2.Department

The result of this query is the data lineage from WorkSchedule source table

47

shown in �gure 29b)

2.4.3 Tracing Procedure

Tracing procedure based its calculation on the properties of the transformation which

transforms and produce the data warehouse items. Cui and Widom [8, 7] formulated

a tracing procedure for each of the transformation properties which allows the user

to trace and view the data lineage for a particular items in the data warehouse.

Subsection Lineage tracing for general data warehouse transformations under

section 2.2.2, describes the overview of the lineage tracing procedure.

2.4.4 Inverse functions

Subsection Inverse method under section 2.2.2, describes the overview of the in-

verse method in lineage tracing. Furthermore, section 2.3.2 discusses how the lineage

related information is stored in preparation for possible inquiry regarding the origin

of data in the data warehouse.

This method invokes the inversion and veri�cation functions when lineage re-

port is needed. An inversion planner determines which inversion and veri�cation

function to invoke for a given attribute.

Chapter 3

Industry Implementations

In this chapter, we explore how the data lineage problem is being addressed in data

integration industry, speci�cally in the arena of data warehousing technology. First,

we look into the e�orts put into standardization in connection with the data lineage

problem, then we evaluate existing solutions provided by industry.

Based on my informal survey, standardization e�orts related to data lineage are

directly connected to metadata model and transformation systems. Metadata is es-

sential in the process of data integration in a warehousing environment. The metadata

standard was conceptualized to provide a generic metadata model1. The model rep-

resents metadata independent of platform and ensure metadata semantic equivalence

among all the warehousing components. In the metadata standard speci�cation, we

delve into the metamodels that represent data transformation.

We also investigated speci�c prominent data integration solutions in the industry

such as Oracle, Microsoft, NCR, SAP BW and Ascential Software. Evidently, the

data lineage solutions o�ered by these providers are describe in their metadata and

1The term model is generally used to denote a description of something from the real world.
A metadata model or Metamodel is the physical database model that is used to store all of the
metadata [35]

48

49

transformation systems. This chapter provides the overview on how each of these

industry solutions addresses data lineage problem.

3.1 Standardization E�orts

The globalization and internationalization of organizations increase the requirement of

integrating disparate data to e�ectively provide meaningful information for decision-

making [36, 40]. Most organization have multiple data formats and locations in which

data are stored [33]. An important requirement to make this data useable across the

enterprise is to integrate it into one location and representation. Data warehousing

is a common enterprise solution for data integration [27, 18, 26, 6]. One of the most

essential aspects of data warehousing is metadata [40]. In this section we look in to

the existing metadata standard and how it supports data lineage.

OIM and CWM Overview. Two main metadata standardization works were

created, namely the Open Information Model, (OIM) and the Common Warehouse

Model (CWM). The �rst was from the metadata Coalition (MDC) and the latter

was created by Object Management Group (OMG). In the year 2000, MDC merged

with OMG [29, 41]. The two separate speci�cations, [36] and [40], are now owned by

OMG. OIM Data transformation model is speci�c to described relational-to-relational

transformations only and has dependencies on the Database Schema package while

CWM transformation package is more generalized and is not tied to any particular

schema [40]. However, OIM and CWM provide similar data lineage solution. Both

standards provide facilities whereby data lineage can be tracked across a series of

transformations. Because both provide similar data lineage solution, this thesis refer

to them as the Standard Metamodel for data transformation.

50

Figure 3.1: The Metadata Standard Metamodel - source from [40]

3.1.1 Organization of Standard Metamodel

Standard metadata Model has three main metadata modeling constructs; Classes2,

Associations3 and Packages4. The Standard metamodel is split up into sets of pack-

ages and sub-packages. But this work will only focus on Management and Analysis,

speci�cally the Transformation and the Warehouse Operation packages, refer

to �gure 3.1. However, since these packages have dependence on other packages not

within the scope of our study, we make mention of them in some areas of our discus-

sion. For this purpose, we list up all of the packages here below for easy reference,

for details refer to [40]:

2Classes are speci�cations of a set of objects that have common structural and behavioral features.
Classes can have Attributes and Operations. Attributes is a representation of metadata. Operations
are provided to support metamodel speci�c functions on the metadata.

3Associations are descriptions of relationships between classes. An association has two Associa-
tion Ends, which connect the association to two classes.

4Packages are collections of related Classes and Associations. A Package is a mechanism for
organizing the elements of a model or metamodel into groups.

51

� ObjectModel package - is a collection of packages that provide basic meta-

model constructs to other packages.

{ Core package. Contains classes and associations that form the core of

the object model, which are used by all other packages including other

ObjectModel packages.

{ Behavioral package. Contains classes and associations that describe the

behavior of objects and provide a foundation for describing the invocations

of de�ned behaviors.

{ Relationships package. Contains classes and associations that describe the

relationships between objects.

{ Instance package. Contains classes and associations that represents in-

stances of classi�ers.

� Foundation package - is a collection of metamodel packages that contain

model elements representing concepts and structures that are shared by other

packages. Foundation model elements are meant to provide a common founda-

tion which other packages can extend as necessary to meet their speci�c needs.

{ Business Information package. Contains classes and associations that rep-

resent business information about model elements.

{ Data Types package. Contains classes and associations that represent con-

structs that modelers can use to create the speci�c data types they need.

{ Expressions package. Contains classes and associations that represent ex-

pression trees.

52

{ Keys and Indexes package. Contains classes and associations that represent

keys and indexes.

{ Software Deployment package. Contains classes and associations that rep-

resent how software is deployed in a data warehouse.

{ Type Mapping package. Contains classes and associations that represent

mapping of data types between di�erent systems.

� Resource package

{ Relational package. Contains classes and associations that represent meta-

data of relational data resources.

{ Record package. Contains classes and associations that represent metadata

of record data resources.

{ Multidimensional package. Contains classes and associations that repre-

sent metadata of multidimensional data resources.

{ XML package. Contains classes and associations that represent metadata

of XML data resources.

� Analysis package

{ Transformation package. Contains classes and associations that represent

metadata of data transformation tools.

{ OLAP package. Contains classes and associations that represent metadata

of online analytical processing tools.

{ Data Mining package. Contains classes and associations that represent

metadata of data mining tools.

53

{ Information Visualization package. Contains classes and associations that

representing metadata of information visualization tools.

{ Business Nomenclature package. Contains classes and associations that

represent metadata on business taxonomy and glossary.

� Management package

{ Warehouse Process package. Contains classes and associations that repre-

sent metadata of warehouse processes.

{ Warehouse Operation package. Contains classes and associations that rep-

resent metadata of results of warehouse operations.

3.1.2 Metamodels for Data Lineage Support

The relevance of the Standard Metamodel in this work is that it provides a frame-

work for representing metadata about data sources, data targets and transformations

which allow encoding of data lineage information. The Warehouse Operation and

the Transformation, are the packages which together provide metadata model con-

structs enabling data lineage reportng in data warehouse. The Transformation

and Warehouse Operation packages are designed to allow navigation of metadata

correlated to schemata, which tells about the source-to-target mapping.

Transformation package

The Transformation package contains classes and associations which represent com-

mon transformation metadata used in a data warehouse. It is designed speci�cally

to:

54

� Relate a transformation with its data sources and targets. The relationship of

data source and targets can be in any granularity level and can be of any type.

The data source and target can also be persistent, (i.e. physically stored in

database), or transient, (i.e. exist only during transformation execution).

� Accommodate both "black box" and "white box" transformations. The black

box transformation here is similar to the black box as de�ned by Cui [7] in

�gure. 2.11 in section 2.2.2. In "Black box" transformations, the data sources

and targets are associated to each other but association of speci�c piece of data

source and target are not known. In the case of "white box" transformations,

the relationship of the speci�c piece of data sources and targets is known.

� Allow grouping of transformations into logical units. At the functional level, a

logical unit de�nes a single unit of work, within which all transformations must

be executed and completed together.

Transformation can be packaged into groups. These groups can represent the

transformations performed in a single program or in a logically related set of trans-

formations. Figure 3.2 shows a sample transformation package. Transformations can

be grouped into logical units. At the functional level, they are grouped into transfor-

mation tasks, each of which de�nes a set of transformations that must be executed

and completed together - a logical unit of work (e.g. TransformationTask A and

TransformationTask B in �gure 3.2).

Transformation task is modeled in the TransformationTask class. Trans-

formationTask class represents a set of Transformations that must be executed

together as a single task (logical unit). A TransformationTask may have an inverse

55

Figure 3.2: Sample Transformation Package - source from [40]

56

task. A transformation task that maps a source set A into a target set B can be re-

versed by the inverse transformation task that maps B into A. At the execution level,

transformation steps are used to coordinate the
ow of control between transforma-

tion tasks, with each transformation step executing a single transformation task. This

model potentially signi�es a lineage tracing possibility.

The transformation steps are modeled in TransformationSteps class. Trans-

formationSteps are used to coordinate the
ow of control between Transformation-

Tasks. The transformation steps are further grouped into transformation activities.

Within each transformation activity, the execution sequence of its transformation

steps are de�ned. Transformation activity data is modeled in TransformationAc-

tivity class.

Transformation Classes and Associations supporting Data Lineage. The

Standard Metamodel transformation package contains metamodel elements that sup-

port Transformation and data lineage. These classes and associations deal with

transformations and their sources, targets, constraints, and operations. The trans-

formation classes and associations that directly (i.e. encircled items in �gure3.3)

or indirectly supports the data lineage are shown in �gure 3.3. Within the trans-

formation package several groupings of classes and associations form related sets of

functionality.

57

Figure 3.3: Transformation Classes and Associations - source from [40]

Warehouse Operation

TheWarehouse Operation package contains classes which record the warehouse processes

daily operations. This package includes Transformation Executions and Measure-

ments which have classes that allow the lineage of data in a warehouse to be pre-

served. Transformation execution records when and how the warehouse data were

derived, and where they came from and the Measurement allows metrics to be stored

(e.g. actual, estimated, or planned values for the size of a table).

3.2 Industry Solutions

In this section, we evaluate prominent industry solutions and look into the solution

they o�er for data lineage problem. First, we consider industry's di�erent perspective

58

on the data lineage. Then we look into each solution package which addresses the data

lineage issues. Moreover, we describe the products components or tools which record

the data lineage and prepare the lineage information for reporting. The solution

providers included in this evaluation are the following; Oracle, Microsoft, NCR, SAP

BW and Ascential Software. In this section, we describe how each of these commercial

products addresses the problem of data lineage.

3.2.1 Industry's view of Data Lineage

Data warehouse industry uses the term lineage to describe the traceable origins of

data and ownership of something [31]. Data lineage is directly considered as part

of industry's e�ort in striving towards a measurable quality of data and closely link

it to audit [53, 1, 49]. SAP [1] considers building an audit dimension similar with

the idea describe by Kimaball [32]. Teradata [49] de�nes lineage as a collection of

details about data's journey from source to target and considers lineage as an audit

trail of the data warehouse ETL processes. Ascential Software [17] describes data

lineage as the answer to the question, "Where did this data come from?" and reports

on processes that create and update warehouse data.

3.2.2 ETL and Metadata Services

Data warehousing is a process consisting of several components. Two essential com-

ponents of Data warehouse are ETL and metadata. This thesis evaluates the ETL

and metadata Services5 components of the following products: Oracle, Microsoft,

NCR, SAP BW and Ascential Software. ETL process in itself is consist of a wide

and complex subprocess (e.g. data cleaning, conforming, loading) that are beyond

5Generally, a service is something that can be called and that provides a visual representation.

59

the scope of this thesis. However, it is in between the steps of these processes that

data lineage information is recorded and possibly prepared for data origin related

inquiries. Metadata is central to all data integration processes. E�ort to standardize

metadata model is a proof for its signi�cance. For the purpose of this research, we

only consider the metadata role in ETL processes and its relevance in lineage re-

porting. The processes for extracting, transforming and loading data are documented

in metadata repository. All of the products and tools evaluated in this thesis utilizes

the metadata repository to record the history of ETL processes, albeit data lineage

related information is encoded in di�erent manners and levels of lineage granularity.

SAP Business Warehouse

SAP Business Warehouse (BW) is the Data warehouse solution o�ered by SAP. SAP

BW architecture is consist of several layers of services which include Metadata and

ETL services among others.

SAP BW Metadata Services. SAP BW is completely based on metadata

managed by the metadata services. SAP metadata Services component provides

integrated metadata repository and metadata manager. The metadata repository is

where the data is stored and the metadata manager handles requests for retrieving,

adding, changing, or deleting metadata. Metadata objects are centrally controlled

by the Administrator Workbench, AWB. The AWB is a GUI that aids in utilizing

the administration services which allows for managing and maintaining the metadata

data repository (see �gure 3.4).

SAP BW Metadata stores information about data and processes. InfoObjects are

60

Figure 3.4: SAP BW MetaData Repository - source from [28]

61

Figure 3.5: SAP BW Metadata Objects in context - source from [28]

62

the core building blocks of SAP metadata which are commonly termed as Dimen-

sions and Facts in data warehouse domain. InfoObjects are the main SAP BW data

targets among others, although some dimensions may not be data target which func-

tions similar to the idea of degenerate dimension describe by Kimball [6]. Objects

for extracting, transforming and loading (source system, datasource, infosource, in-

fopackage, transfer and update rules) being part of metadata repository, can also be

navigated, managed and maintained within AWB among many other objects which

pertain to catalogs, queries and security. For details refer to [28].

SAP BW ETL. Besides extraction, transformation and loading of data, ETL

services layer also serves as staging area for intermediate data storage for quality

assurance purposes [28], refer to �gure 3.6. Staging engine is the core part of SAP ETL

service layer. Staging engine manages the staging process for all data received from

di�erent source systems. It is this engine that generates and executes transformation

programs and performs the transfer and update rules. As far as this research work has

gathered, there is no direct mention of data lineage found in SAP BW documents

referred in this study. However, based on the analyzes made on SAP ETL processes,

some data lineage related information are actually recorded and assembled (in higher

level of granularity) basically for the consumption of business warehouse systems

administrator. The DataSource manager in SAP ETL manages the de�nitions of

di�erent sources of data. DataSource manager supports the interfaces between SAP

BW and its sources. SAP has their own proprietary transaction systems producing

transaction data owned by di�erent application component. The interface between

SAP's BW to its own application components is tightly integrated via SAP BW

63

Figure 3.6: SAP BW ETL Services architecture - source from [28]

64

Service API. For these application components, data warehouse schemas and source-

to-target mappings are ready made, available for activation and enhancement. SAP

BW is also open for Flat File, XML and DB Connect interfaces and an Interface called

Staging BAPI which provides an open interface for exchanging metadata. Prominent

integration tools such as Ascential, ETI and Informatica have adopted this interface.

Oracle Warehouse Builder, OWB

OWB is a design tool for building oracle data warehouse. The OWB basic architecture

is comprise of two components, namely; the design and runtime, which handle the

design and runtime environment respectively. Refer to �gure 3.7. The objects in this

�gure is coded to distinguish between the components. Figure 3.7 shows the basic

OWB product Architecture. This thesis only focus on the aspects of OWB which has

relevance to data lineage. Referring to �gure 3.7, we basically focus on the design

schema(B), repository schema(2) and target schema(3) and the audit browser(D1,

D2). For details about OWB, refer to [34, 14, 44, 53, 43, 47]. Speci�cally, for details

about the OWB product Architecture �gure, refer to [42].

OWB provides graphical tool for designing ETL system at a logical level, i.e.

creating source-to-target mapping (refer to �gure 3.8). These mappings are fully

documented with metadata stored in Warehouse Builder design repository (3.8-B).

After the ETL system is designed at a logical level and the database information

logical design added, the complete design (ETL and database) needs to be moved

to the runtime environment (i.e. Database y in 3.8) for implementation. After the

con�guration is complete, code or script is generated automatically basing on the

logical design. The generated code is deployed ready for the real runtime "extraction,

65

transformation and loading activities" to populate the data warehouse. Warehouse

builder enables to perform lineage analysis on all ETL operations.

OWB Metadata. Metadata is created and managed and queried in the de-

sign environment. All activities in the design environment works against the design

metadata. These activities involve speci�cation of warehouse objects abstract repre-

sentations and business rules. Warehouse objects, which are speci�ed logically using

a graphical tool, may include database schemas, multi-dimensional schemas and ETL

processes.

The design metadata is stored in to the OWB repository at a granular level. For

example, the design of data and process elements in the source-to-target mappings is

stored in OWB metadata repository. When the design pertaining to ETL processes

and all data elements involved in the processes are translated into physical imple-

mentation, it can be used later for data lineage queries. Since metadata reporting

is provided, important information in the repository can be accessed in reporting

environment. OWB reporting allows browsing capabilities.

OWB ETL. The runtime environment, takes this design metadata and turns it

into physical database objects and process
ows. The logical design de�ned in design

environment is translated for physical implementation. For example, the data and

process elements of source-to-target mappings de�ned in the design environment, are

now translated in to real mappings in the form of physical tables and program code

which is generated during the translation. ETL processes are executed by packages

contained in the Target Schema (see �gure 3.7-3). The Target Schema represents

66

Figure 3.7: Oracle Warehouse Builder Basic Architecture - source from [42]

67

Figure 3.8: OWB Mapping Editor - source from [34]

68

the the actual warehouse data target, and contains the target data and data ob-

jects (e.g. cubes, dimensions, views, and mappings). The Target Schema stores the

implementation of the design, and is where the warehouse jobs run.

OWB is designed to allow extraction from heterogeneous platforms (e.g. �le, rela-

tional). OWB generates PL/SQL to handle the Oracle based transformations, which

provide operators to do SQL like activities. Additionally OWB also provides user de-

�ned transformation. Complex processes can be created in graphical representations

in the design environment and generate either row based or set based code. Row-

based code gives a high degree of control over what happens in the load as well as

extensive error handling capabilities. Row based code allow row level data lineage.

However row-based is typically slow, although OWB provides an alternate way to

improve ETL performance. But in most situations, set based processing will still be

faster.

Microsoft - Data Transformation Services

Data Transformation Services, DTS performs an essential role in Microsoft Data

Warehousing and Data Integration solution. It provides a set of tools for extract-

ing, transforming, and consolidating data from disparate sources and loading these

data to the de�ned destination. DTS Architecture is shown in �gure 3.9. In DTS

architecture, relational and non-relational data sources are pulled using data pump

and sent to destinations after required transformation. Complex transformation and

data validation logic can be implemented using scripting. These scripts can invoke

program codes to modify or validate the value of a column. Advanced developers

may create reusable transformation objects that provide data scrubbing capabilities.

69

Figure 3.9: DTS Architecture Overview- source from [15]

Custom tasks may also be created to launch external processes. The data pump opens

a rowset from the data source and pulls each row from the data source. The data

pump executes functions to copy, validate, or transform data from the data source

to the destination. Transformed values are returned to the data pump and sent to

the destination. This thesis considers only the parts of the DTS architecture that

describe the data lineage solution. For details, refer to [37, 33, 30, 38].

DTS ETL. DTS solution is created as package or packages. Each transformation

package contains an organized set of tasks which describes a complete ETL process

70

Figure 3.10: DTS Package illustration - source from [37]

(see �gure 3.10). The set of tasks is executed in a coordinated sequence as speci�ed

in the package. The relevance of DTS architecture in this thesis is that, it allows data

lineage recording and reporting. DTS records and documents the lineage of each

transformation in the repository. Depending on the speci�cation, data lineage may

be tracked at table row and column levels. This provides audit trail for the informa-

tion in the data warehouse. DTS package can be created using DTS Wizards, DTS

Designer, or DTS programming interfaces and can be executed using DTS graphical

interface or command line interface.

Microsoft Metadata Services. Microsoft, being the main contributor of OIM

71

has data lineage implementation based on the standard metamodel. To enable the

data lineage traceability, DTS package must be saved to Microsoft metadata Services.

Microsoft metadata Services is an object-oriented repository technology that can be

integrated with the enterprise information systems or with applications that process

metadata. In addition, metadata Services support browsing repository databases

through metadata Browser. Figure 3.11 shows an illustration of the interfaces between

Microsoft metadata services and other tools. The illustration shows the DTS packages

which are developed at Development time and implemented at run time. At run time,

browser tools, which work directly with repository contents, can be used to query

about the DTS package information stored in the metadata services. One important

information about DTS package is the lineage information.

NCR Teradata

Teradata is the data warehousing solution o�ered by NCR. Teradata data warehous-

ing solution consists of a number of utilities and tools required to build the data

warehouse. Teradata provides stand-alone extract and load utilities: FastLoad, Mul-

tiLoad, TPump and FastExport. Each of these tools has speci�c loading features

that are more applicable for speci�c loading cases. Fastload for example provides

high performance data loading from client �les in to empty tables. Another Teradata

tool that provides similar architecture to its stand-alone extract load utilities is the

Teradata Warehouse Builder, WB. This thesis is not going to detail on this tool, but

will only describe the overview of its data lineage solution. Teradata lineage solu-

tion is emphasized in Teradata metadata Services. To make data lineage information

available for inquiries, each source-to-target mappings details should be stored. Refer

72

Figure 3.11: Microsoft Metadata Services interfaces - source from [37]

73

to [50, 46, 49] for details.

Teradata ETL. The Teradata WB architecture provides a parallel extraction,

transformation, and loading (ETL) environment. It helps build and maintain the

warehouse using SQL-like scripting language that performs all aspects of ETL processes

using custom transformations. Figure 3.12 illustrates the typical load architecture us-

ing Teradata WB. The source environment is where the data sources reside. Data may

come from disparate sources, such as disk �les, queues, and database management

systems (DBMSs). Teradata WB resides in the load environment where transforma-

tion processes are performed. Teradata WB pulls data from the source environment,

transforms them, then pushes them into the target environment, which in this case

is the Teradata Database. In between the steps of ETL processes, lineage data are

stored in metadata repository to enable lineage traceability.

Teradata Metadata Services. Teradata metadata Services is a software that

creates a repository in the Teradata Warehouse in which metadata is stored.

Teradata provides extension Lineage Model for holding lineage data. Figure 3.13

shows Teradata LineageModel. LineageModel provides classes for documenting the

data's journey from source to target. All data receptacles are de�ned in the DataDe-

pot. Data receptacles are the intermediate, transient or transfer point of data during

their journey from source to target. Transform is the class that holds rules which are

applied to data sources in the Depot to produce targets in the Depot. Some exam-

ples of transform objects are steps in Teradata's load utilities (FastLoad,MultiLoad,

TPump or FastExport), speci�cations of modi�cations made to an extract, transform

and load (ETL), and CreateView statements. Mapping is a class that holds what are

often referred to as job streams or scripts. The relationships between these Lineage

74

Figure 3.12: Typical TBW Load Architecture - source from [49]

75

Figure 3.13: LineageModel within Models of Teradata MDS - source from [46]

classes are to have names that re
ect their purpose.

Ascential Software

Ascential Software is a solution provider that o�ers enterprise integration suite con-

sisting of components relevant to this research. The Ascential DataStage and MetaStage

components are ETL and metadata tools respectively. Ascential Datastage provides

access to a wide variety of disparate systems, enabling data extraction from di�erent

sources, transforms data and load it to the data targets. Ascential o�ers MetaStage

76

product which helps integrate data from DataStage ETL jobs and other data move-

ment processes. MetaStage is responsible for management of metadata, which is

categorized into four; Business, Technical, Operational, and Project metadata. The

Technical metadata repository stores data that de�ne source and target systems,

and their table and �elds structures and attributes, derivations and dependencies.

Typically the metadata that describes the transformation processes can provide data

for queries regarding the data lineage. Ascential software speci�cally considers stor-

ing lineage information in order to enable data lineage reporting. For details about

DataStage and MetaStage components of Ascential software, refer to [39, 17, 48, 51]

DataStage ETL. The DataStage ETL component is consist of four design and

administration modules, namely; Manager, Designer, Director, and Administrator.

The Manager module is the basic metadata management tool used to create and

organize metadata. Organizing metadata includes source and target data de�nitions

and ETL job components. DataStage designer is a graphical interface that can be used

to de�ne ETL jobs in the form of visual source-to-target mapping. DataStage support

complex data transformation and provides pre-de�ned functions, including boolean

logic, string manipulation, arithmetic function, and higher level functions such as

measurement conversions. The visual design of source-to-target mapping and the

transformations de�ned between source and target is translated in to physical model

and transformation programs which will perform the actual ETL process. Figure 3.14

is a screen shot of a DataStage designer that shows an example of a datagestage job

named examplejob1. This example job shows the data being extracted from three

di�erent sources; �le, oracle database, and from a ODBC connection. The extracted

data are then transformed and loaded in data targets. The �rst contains data that is

77

Figure 3.14: Ascential Data Stage Designer - source from [39]

aggregated prior to �nal loading while the second target stores the data immediately

after the �rst transformation. Creating DataStage jobs will produce process meta-

data. The process metadata will consist of the source-to-target mappings and the

transformation description which are useful for data lineage reporting. The ETL job

is scheduled and executed in the DataStage Director. The DataStage Administrator

supports housekeeping and security tasks. It is use for de�ning authorizations and

tuning.

MetaStage. MetaStage is a tool that captures, integrates and shares metadata.

78

It helps manage and administer data integration and coordinates data across the en-

tire enterprise. The most relevant aspect of MetaStage in this thesis is its feature

to handle metadata related to data movements, which is basically the information

about the path the data traversed from its source up to its target. MetaStage is

consist of software components which support data lineage. MetaStage Directory

component is capable of sourcing, sharing, storing, and reconciling a comprehensive

spectrum of metadata which is classi�ed into four; business, technical, operational

and project metadata. Technical and Operational metadata are the two metadata

categories which allow data lineage reporting. Technical metadata de�nes source

and target systems, and their table and �elds structures and attributes, derivations

and dependencies and ETL. Operational metadata are data about process execution

(e.g. process frequency, record counts, analysis, and statistics). MetaStage's process

MetaBroker gathers the operational metadata to answer questions about Data Lin-

eage. Information regarding data resources a�ected by, for example, a job run is

recorded. MetaStage may also import operational metadata from DataStage ETL

jobs, which mainly describes data lineage. This gives possibility to track data lineage

of the released DataStage jobs. Contents of the set of transforms, routines, and any

other non-job objects which were invoked by the run can be investigated as well.

You can then output a report that shows the steps a job goes through to generate

each column of an output table. Data lineage information can be inferred combin-

ing the operational metadata and process metadata which is produced by creating a

Datastage job. Before the DataStage job is run, the data model and the job design

metamodel have to be imported in MetaStage.

79

3.2.3 Data Lineage Reporting

The previous sections discussed the overview of industry product components that

directly or indirectly provide the solution for recording or physically storing the data

lineage. These components are generally referred to as ETL and metadata services.

We presented the overview of the process through which the data lineage information

were recorded, so they can be used later for lineage reporting. In this section we

consider to look at the tools the industry o�ers for data lineage reporting. The four

solution providers that we investigated show similar approach to data lineage support.

They provide a tool for creating the metadata and ETL logical design and translate

this design to a physical design. Translating the ETL logical design creates metadata

physical model which is constructed to support lineage reporting. Reporting data

lineage requires structural constructs that support lineage related queries.

SAP BW does not deliberately mention lineage reporting, although it is capable

of showing a data lineage report at a higher level of granularity. In SAP, BW Ad-

ministrator Workbench allows to browse through the
ow of data from their source

to their target. Figure 3.15 shows an example of Data Load Data
ow Report. This

report presents the objects involved in the ETL process, such as source system (in this

case, SAP's own system), the data source, persistent staging object, communication

structures, the transfer and update rules and �nally the data target. The transfer and

update rules basically contain the data transformation information which may simply

be a column to column mapping, or may include arithmetic formula or routines that

transform data via simple to complex calculation. Clicking on any of the objects in

the report will display some details. For example, data transformation information

can be viewed by double clicking on the transfer rules or update rules. Target Column

80

value assignment speci�cation such as column-to-column mapping and calculations

applied to data are shown in Update Rules. However the column-to-column map-

ping in Transfer Rule is based on a pre-created "structure" from the SAP's source

transaction system. The pre-calculated structure is maybe created involving complex

views combined with simple to complex programming code. This makes it di�cult

if not impossible to trace data up to the original tables and columns of the sources.

Albeit not straightforward, there are di�erent ways for validating the data in SAP

BW. Besides the report about the ETL process, SAP BW also provides a possibility

to do report to report jump. This enables the users to view source data presented as

a report from the source system. Although this information is not the data lineage

itself as described in [19, 56, 7, 12, 10, 8, 52], this information say something about

data origin. A report has to be created in the SAP source system. The report ID of

the source system should be encoded in SAP BW and associate it to the SAP BW

query. When a user navigates through SAP BW report (using the query with link

to the source system report) and wishes to invoke the report from the source system,

the user will be able to view the original data. This is with the assumption that the

right combination of the arguments are passed to the source system.

Oracle Warehouse. When de�ning the warehouse objects by either using the

OWB client graphical or user interface or scripting interface, Oracle captures the

metadata as part of the normal process. It includes the warehouse data models and

data models involving ETL processes. For example the models involved in Source-to-

Target mappings shown in �gure 3.8 are actually stored in the a metadata repository.

Oracle Warehouse provides reporting environment which allows developers and busi-

ness users to browse and investigate system elements. A very important component

81

Figure 3.15: SAP BW Example of Data Load Data
ow Report

82

Figure 3.16: An example of OBW Lineage Report - - source from [34]

of this reporting environment in relation to this thesis, is the feature that allows trac-

ing back where the data is originated. Oracle Lineage uses the design metadata for

lineage reporting. An example of Oracle lineage report is shown in �gure 3.16.

Microsoft DTS. Lineage takes on two distinctly di�erent forms in DTS; the

column level and the row level lineage. DTS implements column level lineage at

the time of transformation. The information is used for reporting using the metadata

services. The package execution is the second form of lineage in DTS. When a package

83

Figure 3.17: Teradata Additional Lineage Summary - source from [49]

executes, (assuming that lineage option is selected), DTS creates an identi�ers which

can be used for row level lineage tracing. Lineage reporting is basically queries made

against the metadata.

NCR Teradata. Similar to the �rst three data warehousing solution providers

(SAP, Oracle, and Microsoft), Teradata also uses the metadata for storing and calcu-

lating data lineage queries. In addition, Teradata provides classes in Metdata Models

which simplify the data lineage report navigation. Figure 3.17 shows the model for

data lineage summary classes; Summarysource and SummaryTarget.

Ascential Software. DataStage run process populates the metadata reposi-

tory. Pertinent information about the process run, (e.g. a�ected sources and targets,

derivations) are recorded in the metadata repository. Ascential MetaStage is used to

run data lineage queries. Figure 3.18 shows the way to run the data lineage queries

in the MetaStage Explorer. This illustration shows that the lineage query looks at

the CONSUMER dimension table and what happened to it during DataStage job

84

Figure 3.18: Data Lineage Menu - source [39]

runs. Figure 3.19 shows the data lineage path of the CONSUMER dimension. This

report presents lineage for a particular DataStage job run showing the data source

(consumer.txt), the transformations objects, (fromConsumerFile, ToConsumerTable)

and the target. Additionally, it also shows the number of rows inserted to the CON-

SUMER table. Each object on the data lineage can be inspected in detail to �nd

out more information about the particular object. For example the object toCon-

sumerTable can be opened to investigate the transformations that occurred to each

column.

85

Figure 3.19: Data Lineage Path - source [39]

Chapter 4

Characterizing Data Lineage

The problem of Data lineage Tracing in data warehouses is seen from di�erent perspec-

tives and in di�erent aspects by academic research and industry solution providers.

Each academic research included in this study reveals similarities and di�erences in

the way the researchers address the data lineage problem. The industry solutions

provide greater similar solutions which are mostly based on the Metamodel stan-

dards o�ered by OMG. From the research I gathered, both from the academe and

industry solutions, I noted the di�erences on how they characterize the data lineage.

Existing solutions ultimately produce di�erent types of data lineage information. In

this chapter, we characterize data lineage. In section 4.1, we present the di�erent

aspects of data lineage problems, then in section 4.2, we describe the composition of

data lineage. In section 4.3, we describe the types of data lineage information which

appears when tracing the data lineage of a warehouse data item.

4.1 Aspects of Data Lineage Problem

To recommend an alternative solution to the data lineage problem, we �rst describe

the di�erent aspects of data lineage problem that we consider in this study. We

86

87

combine the di�erent notions of the data lineage problems from di�erent related

works presented in the previous chapters. In this section, we describe the di�erent

aspects of data lineage problem. The intention is to concretize the scope of data

lineage problems, which this thesis attempts to solve.

4.1.1 Source Systems

The enterprise-wide data warehousing requirement may need to integrate speci�c

related data from di�erent sources to a single data target. For example, customer

data may be built from di�erent source databases on di�erent platforms (e.g. OS

DBMS) and its data structure may be di�erent (e.g. a customer �eld length may be

10 alphanumeric in one and 12 in the other).

Di�erent challenges are faced if we attempt to trace back data origin and "drill-

through" the source system itself. Besides the technicalities about establishing con-

nection from the data warehouse system to the source system, calculating lineage all

the way back to the source system can be di�cult if not impossible. Some of the key

problems are discussed below.

� Connectivity - Establishing connection to a source system must consider hard-

ware and software components. The problem may include consideration of phys-

ical network connections, con�gurations, and the programming required to code

the connection and selection of data from the source system.

� Availability - The source system may not be always available. It may be down

or disconnected or physically located where online connection is not possible.

Even if the data warehouse system is able to connect to the source system, the

data may already be archived and will not be available anymore during the time

88

of a data lineage query.

� Compatibility - There might be system incompatibility that may mean that

establishing connection to the source system directly is not possible. Even if it

is possible, establishing connections may not be an option as the cost is much

too high for its bene�ts.

The problem is not limited to the ones described above. In a real data warehouse

implementation, performance is an important consideration in querying. Drilling-

through the source system to �nd the data origin can be quite expensive in terms of

performance and resources.

4.1.2 Sources of data

It is common in an enterprise to have varying structures of the same data from

di�erent places and di�erent systems. The problem of determining source data, (i.e.

data from sources where the point of data extraction happens) needs to be explicitly

described. In this section, we emphasize the importance of explicitly de�ning the

source data and present the most common structures of source data in many data

warehousing implementations in business enterprise today.

System-of-Record

Identifying the originating source data is important in data lineage solution be-

cause it helps determine the point at which the lineage tracing ends. We de�ne

system-of-record as the originating source data as Kimball de�nes it [6]. We con-

sider the System-of-Record as the point of extraction of data populating the Data

warehouse. It is common in an enterprise to have varying versions of the same data.

89

For example customer Juan dela Cruz is recognized as Juan Cruz in one department

and J. dela Cruz in another. Typically, the individual varying version of the same data

is extracted, integrated or conformed by the data warehouse ETL process. In this

case, the real original data is the system-of-record. However, the System-of-Record

may not always resemble the real original data. Original data may have already

been altered, manipulated and cleansed and may be transformed within and across

heterogenous sources themselves. Some business enterprises establish procedures to

conform varying versions of the same data outside the data warehousing activity.

Source Data Structures

Data in the data warehouse often comes from heterogeneous disparate data sources.

Data sources may come from a range of old systems to modern systems. Some com-

mon examples of sources are the following:

� Flat Files - Flat �les are common data sources for data warehouse uploads.

Data from source system that cannot be reached by or directly connected to the

data warehouse extraction module are often prepared in
at �les for extraction.

The most common example for this, are the Mainframe sources. Many large

business enterprises use mainframes and are still using this technology up to this

time. Therefore, the
at �le data source is common in many data warehousing

business enterprise implementations.

� XML Data Source - An XML data source is a common emerging data source

for data warehouses today. Some existing solutions in the industry already have

functionality that allows extracting from XML data source.

90

� Relational(DB) Data Sources - Many large and medium enterprises use

relational databases for storing the day-to-day business transactions.

� Non-relational (DB) Data Sources - Some large and medium enterprises

use other DBMS platforms for storing and managing their daily transactions

(e.g. Object Relational, Object Oriented).

Data source information may include not only the name of source systems and data

sources such as those that are common today. It may include connection informa-

tion and pointers to connection routines. This information can be used to establish

connection to the source system. When a query is performed that requires "drill-

through" up to the source system, assuming that this type of solution is prepared in

the data warehouse, then the connection information can be used as a parameter to

the connection routines to automatically establish connection to the source systems.

To the best of my knowledge, there are no existing solutions o�ered in the in-

dustry yet that o�ers a real "drill-through" in data lineage giving the lineage values

themselves. I know, however, from the research I gathered that the WHIPS project

(WareHouse Information Prototype at Stanford) in Standford university, attempted

this type of solution. The solution is speci�c to relational databases only and the

data warehouse item in question is stored in a non multi-dimensional schema [7].

4.1.3 Data Transformation

Extraction Transformation and Loading is commonly referred to as data transforma-

tion and is an important part of data warehousing. Solving data lineage problem

requires knowledge of the data transformation logic from the point of extraction to

91

the point of loading the data to the warehouse. In between the process of data trans-

formation, data lineage information can be recorded and prepared for lineage queries.

The complexity of the transformation process contributes to the challenge in address-

ing the data lineage problem. The main data lineage information that is part of the

transformation are the answer to the questions:

� When were the data transformed? Derivation programs may change and

evolve as required by business or outside in
uences. The When basically re-

quires to answer the question about which version of the transformation pro-

grams was used to derived the data in question (in the data warehouse). It may

serve another purposes as well, for example if query is made about which data

are transformed when.

� How were the data transformed? Basically this should explain the cal-

culation applied to the data when they were derived. This may involved the

operators, the logical
ow, or data mapping. This information can be used

when a query regarding the data derivation is required. Or this can be used as

a reference, for basing the calculation of queries about the data lineage value

itself.

� What were the data that participate on the transformation? Data

derivation usually uses data reference for calculation (e.g. translation tables,

intermediate views). If data lineage values are required to answer a data ware-

house question, the data (combined with the derivation version and description)

can be used as a reference for calculating the data lineage queries.

92

4.1.4 Performance

Performance can not be overlooked when addressing the data lineage problem. Load-

ing data to the warehouse is one of the resource intensive processes of data warehous-

ing. The ETL data model and programs have to be designed in a way that makes

the entire process as optimal as possible. Incorporating data lineage to the ETL

and program design can make the design more challenging. Saving the data lineage

or part of it while populating the data warehouse is sure to penalize the loading

process. Therefore careful analysis and preparation is required to create an optimal

ETL process design, when the data lineage is to be a part of the ETL process. When

a signi�cant part of lineage information is saved, lineage query performance is greatly

enhanced.

Data Loading

Deciding whether to save the data lineage or not in the data warehouse environment

requires extreme caution because of its potential e�ect on resources and performance.

Moreover, if saving the data lineage is an imperative requirement, the main problem

that must be considered is at which point of the process we need to save the data

lineage. In data warehouse implementation, the data may be transformed a number

of times and saving data after each transformation can be highly impractical.

Lineage Reporting

Required data lineage report may not only be about source-to-target schema or may

not only be about the description of how the data are derived similar to the industry

solutions. There may sometimes be inquiries regarding the data values themselves. If

the original data values of the warehouse item are required, then lineage information

93

that is saved within the data warehouse environment can be used. It may be too

di�cult, expensive or even impossible to query data lineage from the source system

(refer to section 4.4.1). But when data are within the data warehouse environment,

it is not only possible to "drill-through" exact or almost exact data values of data

lineage, it can also improve lineage query performance (see discussion in chapter 3).

4.1.5 Maintenance

This section discusses maintenance considerations when incorporating data lineage

in the ETL process. Besides the data and execution model maintenance, data up-

date maintenance is an important aspect of data warehousing and incorporating data

lineage update increases data update challenges.

Data Transformation Design Maintenance

The Data Transformation Design may evolve and change with time as imposed by

business requirements or outside in
uences (e.g. market forces, legal requirements).

When data lineage is incorporated to the Data Transformation Design, maintenance

must be advertently considered. Maintenance involves not only allowing changes

to the data and execution design, but also involves handling the e�ects of these

changes. For example, if transformation calculation is required to be modi�ed, the

lineage tracing query should be able to pick up which version of transformation logic

is applied to the data in question. It is evident that changes to the transformation

design can directly or indirectly a�ect the data lineage computation logic.

94

Warehouse Updates Maintenance

In real data warehouse implementation, there are basically two types of data up-

loads. We can refer to them as Full upload and Incremental upload. Full upload,

refers to complete data uploads and incremental upload, refers to uploads that only

include new or modi�ed data from the source. Incremental data upload is common in

real data warehouse implementations. Many research works have been done for this

type of maintenance and industry solutions have already stabilize this requirement.

However, if we consider saving data lineage values within the data warehouse envi-

ronment, Incremental updates to auxiliary or intermediate lineage views presents a

real challenge.

Tools

Maintenance tools are essential for data warehousing systems. A data lineage related

maintenance tool also has to be incorporated if we consider data lineage solutions.

Many solutions in the industry already provide tools for data lineage related main-

tenance. Oracle provides Oracle Warehouse Builder, which allows the user to create

ETL physical data base models which include the data lineage. Acential software,

Microsoft and Teradata provides similar features. However as the data lineage so-

lution matures, the tools also need to be enhanced to be able to adapt to the data

lineage maintenance requirements.

4.2 Composition of Data Lineage

In this section, we describe the data that make up or create the data lineage in-

formation to be used for data lineage tracing. First, we describe the data lineage

95

information containers, then we discuss the metadata that are used and referred dur-

ing data lineage tracing.

4.2.1 Data Lineage Containers

Based on the study we conducted both in the academe and industry solutions, ware-

house data lineage information can basically be derived from Metadata Repository

and from Data Receptacles. Although, from the technical point of view, Metadata

Repositories and Data Receptacles overlap, this section presents them to separately

classify data lineage information in data lineage tracing point of view.

Metadata Repository

Metadata repository houses the data about all data elements and descriptions of how

these data elements work together. In chapter 3 section 3.1.2, we present the overview

of the Standard Metadata Model Speci�cation and how it addresses the data lineage

problem. Metadata indeed plays an indispensable role in data lineage tracing. At

some point of any data lineage calculation, access to metadata repository is necessary

(e.g. getting the source and target schema de�nition or accessing information about

the load processes). metadata is a wide and broad topic in data warehousing world

because its about everything except the data itself. This work only refers to metadata

that participates in data lineage tracing computation.

Data Receptacles

Data receptacles are data containers that store intermediate and persistent data dur-

ing Warehouse Transformation Process. During the data's journey from source to

target, it typically passes through a transfer point or a container where it is staged

96

and prepared for further transformation. In chapter 2, we presented a simple data

transformation by illustrating a transformation graph, refer to �gure 2.4. The inter-

mediate views in the transformation graph can be seen as data receptacles. Moreover,

in section 2.4.2, we illustrate how these views are used to trace the data lineage.

4.2.2 Metadata for Lineage Tracing

Basically, we can categorize the data lineage basing on it's container (i.e. metadata

repository and data receptacles). In section 2, we describe tracing procedure based

on lineage granularity levels as described by academic research; Schema Level and

Instance level. Schema level refers to tracing mechanisms which rely on metadata -

this produce source-to-target mapping reports, while instance level tracing refers to

lineage tracing mechanisms which produced the data lineage values itself. However

there are some overlaps when we categorize data lineage in this manner as data

receptacles themselves are part of metadata. Additionally some instance level tracing

described in chapter 2 actually uses some part of data lineage information from the

metadata to reconstruct the data lineage values.

In this section, we expands a little bit more on metadata and its important role

in data lineage tracing. Metadata encompassing the following are of interest to data

lineage tracing:

Technical MetaData

Technical De�nition of data is primarily the main participants in data lineage tracing

because it de�nes the container and structure of the data. This part includes the

de�nition of data receptacles, and the ultimate warehouse data targets.

97

� Data De�nitions - Include table names, column names data types (e.g. nu-

meric, character, date), domain (i.e. set of values allowed to be entered into a

column), relationships etc.

� Business Rules - Can include allowed values to default values which may be

embedded in data de�nitions or may be part of procedures, functions or routines

which transforms data.

ETL Metadata

In chapter 3, we brie
y presented the overview of the Transformation and Warehouse

Operataions Metadata from the Standard Metadata Speci�cation. Additionally, we

described the ETL and Metadata services provided by some software vendors or

industry solution providers. Some ETL tools exhibits ability to generate metadata

automatically from ETL logical design which is created using a Graphical Tool. Here,

we discussed di�erent categories of ETL-generated metadata similar to categories

described in [6, 35, 36, 40].

� ETL job metadata - ETL job 1 metadata determines the path of the data's

journey from source up to its �nal resting place in the warehouse (i.e. from

extraction to load and all the transformation in between). ETL job can provide

Source-to-target mapping information which is an important data lineage infor-

mation. Mapping gives the basic data lineage questions: "where the data comes

from?". ETL job is like the transformation package referred in the Standard

Metadata Speci�cation.

1An ETL job is a collection of transformations that performs the physical extraction, transfor-
mation and load routines. The metadata for a job is the source-to-target mapping.

98

� Transformation Metadata - Transformations are typically composed of cus-

tom functions, procedures, and routines which may involve simple to complex

data manipulation and calculation. This is a part of data's journey that is most

di�cult to document and be o�ered as part of metadata. Some ways to make

data lineage tracing possible using this metadata is to introduce custom inverse

functions, procedures and routines that may calculate the data origin for the

a speci�c transformation. This information is part of ETL metadata but can

be used as a reference for calculating the data lineage values in instance level

granularity.

� Process Execution Metadata - Information about the execution process and

about the actual load-process results. This metadata is like the warehouse op-

eration metadata described in Standard Metadata Model Speci�cation. The

information in this metadata can also be a source for upload history and mea-

surement values which can be used for other data lineage related reports (i.e.

used as a reference for calculating data lineage approximate values)

4.3 Data lineage Information

This section describes the di�erent classi�cation of data lineage information that can

be made available in the report to answer the questions about the origin of data in the

data warehouse. In section on 2.3.1, we identi�ed the di�erent lineage information as

presented from di�erent academic works. In this section, we combine and distill the

identi�ed data lineage information from academic works and and solutions o�ered in

the industry.

99

4.3.1 Mapping Information

The most common data lineage solution o�ered by the academe and the industry is

the schema mapping. Source-to-target lineage path reports are constructed from ETL

job metadata combined with the technical metadata described in previous section.

Example for this type of lineage reporting is o�ered by Oracle and Ascential Software

in previous chapter. This section discusses a data lineage classi�cation that pertains

to the objects which participate in source-to-target mapping.

Schema Information

Schema Information in data lineage report is basically data coming from the tech-

nical metadata described in previous section. The Transformation Package in the

Standard Metamodel speci�cation provides constructs that support source-to-target

mapping, refer to section 3.1. It provides speci�cation that introduced classes and

associations which deals with sources and targets. The sources and targets can be

any object sets and the elements of a data object are typically tables, columns, or

model elements that represent transient or persistent objects. Data objects sets can

be both sources and targets for di�erent transformation. In section 2.3.2, we also

presented a speci�c example that showed di�erent schema information being stored

in the metadata storage. This metadata storage implementation is further illustrated

in �gure 2.12. Section 2.3.1 describes the di�erent data lineage information in terms

of schemas and schema elements. Schema pertains to table or view names, table or

view de�nitions, or parts of the schema de�nition. Schema elements pertains to

the columns or attribute names and their types (e.g. string, integer etc.)

100

Execution
ow

Standard metamodel provides constructs that determines the
ow of the transfor-

mation execution. This information is tightly connected with the schema mapping.

While schema mapping determines the sources and targets, execution
ow determines

the sequence of transformation for a transformation package. The transformation
ow

metadata model is prepared to contain the Transformation tasks, Transformation

Steps, Transformation activity and other models related to transformation execution.

The transformation task may contain inverse task which become a reference for doing

inverse calculation to get the source value for a transformed item (i.e. intermedi-

ate data or the data in the warehouse data target). Most data transformations do

not only involve source-to-target mapping, but may also involve custom function,

procedures or routines which perform simple to complex calculation of data before

delivering them to next data transfer points. Some ETL software vendors provide

data lineage reports by allowing users to navigate through the sources and targets

and "drill-down" to look-up the functions, routines or procedures that are responsi-

ble for the data manipulation speci�c to an ETL job. In this respect, we consider

function, procedure and routines as data lineage information, although it does not

actually produce the data lineage but rather it produce information about the data

lineage.

4.3.2 Lineage Data Values

The �nest granularity level of data lineage is the lineage data values themselves. This

level of granularity is the most desirable, however the most expensive in terms of

resources and performance. In section 2.2.2, we presented an instance level lineage

101

tracing approaches extracted from di�erent academic research. Some mechanism of-

fered to re-construct the data lineage information, as needed, using minimum amount

of lineage data. Another approach is to store base data or parts of it within the data

warehouse environment, or store each transformed data in auxiliary views within the

data warehouse environment. All of the approaches attempts to provide data lineage

information, not in terms of mappings but in terms of data lineage values themselves

[22, 20, 9, 10, 45, 12, 7, 5].

Base data

Any data that basically is raw extracted from the ultimate source or origin from the

source system is considered the base data. This may be a table or tables, view or

views from the source system which is the point of extraction of our ETL process.

This base data can be complete, partial, or projection from the base tables, refer to

section 2.3.2. Algorithms for storing base data or parts of it within the data warehouse

is introduced in [7, 10]. Storing base data within the data warehouse is one option

to address lineage problem describe in section 4.1.1. about source systems and data

connectivity, availability and compatibility.

Intermediate Data

Intermediate data is data being staged for further transformation. In real data ware-

house implementation, transformation often happens in many stages. In each stage,

the data are stored (either temporarily or permanently) for further calculation until

they �nally reach the warehouse data target. Storing intermediate data after each

or series of transformation or after major transformation can also be an option that

102

addresses data lineage problem describe in section 4.1.1. When Base data and Inter-

mediate data are stored within the data warehouse environment, it can be possible to

visualize data in reverse order, following its transformation, step by step, up to the

point of extraction. A simple illustration of lineage tracing mechanism that allows

visualizing data in reverse order, in step-wise fashion, is shown in section 2.4.2.

Other data lineage related Data

Some data lineage solution rely on limited amount of data to reconstruct data lineage

information [19, 56]. [56] uses inverse function and some portion of base data and

metadata to calculate the approximate data lineage value. [19] described a solution

that reconstruct the original data from the summary data (e.g. warehouse data)

combined with limited amount of information. This mechanism uses statistical in-

formation about the data upload history and other pertinent information which are

recorded during data loads. Some solutions record information about the loading

process and store it as part of data target [2, 6, 1].

Chapter 5

Data Lineage Solution

In this chapter, we combine and distill the existing solutions both in the academe and

industry discussed in previous chapters.

In section 5.1, we summarize the tracing mechanisms which form part of our

data lineage system conceptual framework. In section 5.2, we discuss the conceptual

framework, comprising of Lineage Model and Lineage Functions. Finally we discuss

the Lineage Design and Implementation in sections 5.3 and 5.4

5.1 Data Lineage Tracing Mechanism

Based on the data we gathered from our research, we summarize the data lineage

tracing mechanisms into three main categories: Map, Reconstruct and Step-by-step

tracing mechanisms (see �gure 5.1). In this section, we discuss each tracing mecha-

nism category.

103

104

Figure 5.1: Summary of Data Lineage Tracing Mechanism

5.1.1 Map

The source-to-target mapping mechanism provides information about the path the

data traversed as they move from the point of origin until reaching the �nal desti-

nation in the data warehouse. The source-to-target tracing mechanism is a solution

already provided in the industry. Each of the software vendors evaluated in this work,

provides this tracing mechanism at di�erent granularity levels. To simplify the granu-

larity levels, we categorized them into three: Column-to-Column, Table-to-Table and

Object-to-Object. In a real data warehouse implementation, however, a single ETL

job may comprise di�erent combinations of these mappings.

� Column-to-Column mapping - This mapping mechanism provides informa-

tion about the source and destination column of the data. This mapping may

be straightforward, may use transformation standard routines, or may involve

hand-coded calculation.

� Table-to-table mapping - This mapping mechanism provides information

about source and destination tables or views. This mapping may be straight-

forward, may use transformation standard routines, or may involve hand-coded

105

calculation.

� Object-to-Object - An object may consist of a combination of di�erent struc-

tures or data stores (e.g. �le to view). This mapping may use transformation

standard routines or may involve hand-coded calculation.

We can categorize all of the mappings above and all the other source-to-target

mappings under Object-to-Object mapping which can be arbitrarily any type of

schema mapping.

5.1.2 Reconstruct

The Reconstruct tracing mechanism recreates a good estimate of the data origin

based on data stored within the data warehouse environment and inverse functions.

The items which can be needed for approximate data origin reconstruction are the

following:

� Metadata - The type of metadata that can be needed for data lineage recre-

ation are process execution metadata discussed in section 4.2.2.

� Data Lineage related information - This may or may not be required de-

pending on the data lineage calculation requirement. The data is to be created

during transformation or to be registered as look-up data which can be referred

during lineage tracing.

� Warehouse data item - The warehouse data item in question.

� Inverse function - A function that calculates the approximate value of data

origin.

106

5.1.3 Step-by-step

This tracing mechanism allows for tracing the data lineage in step-wise fashion follow-

ing the transformation, step by step. This type of tracing mechanism is still an active

research topic in the data integration arena in relation to many con
icting issues

which need to be resolved. In section 2, we presented an existing tracing mechanism

that o�ers this type of lineage tracing mechanism. Basically this mechanism requires

the following:

� Lineage Data Values - These can be the intermediate values or base values

described in section 4.3.2. or these can be data that are stored after major data

transformation.

� Tracing Query - Tracing query calculates the data lineage based on the trans-

formation query that produces the warehouse data item in question.

� Tracing Procedure - This tracing mechanism determines the tracing proce-

dure to be used based on the transformation property of the transformation

that produces the warehouse data item.

Step-wise fashion tracing mechanism may use a combination of the items men-

tioned above and may also use metadata. In a real data warehouse implementation, a

warehouse data item may undergo many transformations. Storing intermediate data

values after each transformation may be too expensive in terms of storage and loading

performance. An optimal and practical solution is still an area for improvement in

this type of tracing mechanism.

107

5.2 Conceptual Framework for Lineage System

Conceptual Framework helps organize, plan, manage and set things in context. In

this section, we present the components of the conceptual framework for a data lin-

eage system. The framework consists of two main components: Lineage Physical

Storage and the Lineage functions. Lineage Physical Storage comprises the Metadata

Repository and two categories of Data Receptacles and the lineage functions subcom-

ponents are Storing, Reporting (i.e. Query, Navigate) and Lineage Adminstration

and Maintenance components. Figure 5.2 shows the summary of our lineage system

conceptual framework component.

5.2.1 Lineage Physical Storage

The Lineage Physical Storage consists of two main categories; Metadata Repository

and Data Receptacles discussed in section 4.2.1. This section discusses the Lineage

models comprising of Metadata Data receptacle model.

Lineage MetaModel

Our data lineage solution considers the Standard Metamodel Speci�cation. The data

transformation and warehouse operations Standard Metamodel, which is backed up

by industry-leading database software vendors, provides a framework that addresses

the basic data lineage problem and can be extended to provide data lineage solution

that provides �ner level of granularity. Section 3.1.3 discusses the overview of Stan-

dard metamodels for Data Lineage support. For details of the data transformation

standard metamodel speci�cation, refer to [40].

The data transformation and warehouse operation Metamodel, models the trans-

formation process of the data from the time the data are extracted from the source

108

Figure 5.2: Lineage System Conceptual Framework Component

109

system up to the time they are loaded to the data targets. The standard metamodel

provides constructs to document the data lineage and accommodates "black box" and

"white box" transformation. In "black box" transformation, data sources and targets

are related through the transformation, but how the source is related to a speci�c

piece of a data target is not known. White box transformations, however, can show

how the data sources and targets are related to a transformation and exactly how a

speci�c piece of a data source is related to a speci�c piece of a data target through a

speci�c part of the transformation.

Transformations can be grouped into logical units as Functional and Execution

logical units. At the functional level, a logical unit de�nes a single unit of work, within

which all transformations must be executed and completed together. At the execution

level, logical units can be used to de�ne the execution grouping and sequencing.

An important consideration is that both parallel and sequential executions (or a

combination of both) can be accommodated.

Standard Metamodel speci�cation addresses the Lineage metamodel requirement

and is ready to be used and exploited. Complying with the Standard Metamodel

ensures greater possibility of compatibility with other platforms and products and

wider possibility of being implemented.

Another data lineage solution that we consider in this study is the one discussed

in sections 2.2.1 and 2.3.2. These sections provide a good illustration of the data

lineage solution that utilizes the metadata storage. Velegrakis, Miller and Mylopoulos

[52] provide a metadata storage schema and develop an extended query language

that allows metadata to be queried as a regular data. This enables to query about

transformations involving source-to-target mapping report.

110

Data Model

From the academic point of view, the granularity of data lineage information within

metadata repository is at course-grain level. Data Lineage information provided by

a metadata repository is about data source-to-target mapping and tansformation

description (i.e. lineage information discussed in sections 4.2.1, 4.2.2. and 4.2.3).

The data transformation standard metamodel can be extended by providing a way

to trace data lineage at �ner levels of granularity. That is, besides including the

the schema de�nitions of auxiliary data containers (i.e. intermediate data targets)

it can also include data lineage tracing mechanisms for each transformation activity.

Transformation involves data sources and targets. In a Transformation process, a

source may function as a target of a certain transformation and a data target may

function as a data source for yet another transformation. A Standard Metamodel

provides an option to make these data sources and targets persistent or transient.

Making the source and target objects persistent is a way to prepare for �ner levels

of data lineage tracing. Source and target objects which function as transfer points

during transformation are data receptacles. The data receptacles model models the

storage of lineage data values, not the mappings as it is with the transformation

metamodel. In this section, we discuss data receptacle the data model and the other

lineage-related data models.

Base and Intermediate Lineage data model. Base and Intermediate data

are described in chapter 4 section 4.2.4. Figure 5.2, shows the Base and Intermediate

storage as part of the components in our proposed lineage system. The Base and

Intermediate Lineage storage records base and intermediate data lineage values, which

will support tracing the data origin in as �ne a level of granularity as possible. Our

111

proposed solution considers the idea for storing auxiliary views introduced by Cui and

Widom in [7, 10]. A part in Section 2.3.2 discussed the overview of Storing auxiliary

views. For details, refer to [7, 10].

Other data lineage related data model. Models the other data lineage values

that can be needed for recreating data lineage. The storage for other data lineage

related information can be an independent storage which contains pertinent infor-

mation about the transformed data, or may be part of the warehouse data target.

Base and intermediate storage stores data lineage values itself while this data storage

records pertinent information related to data lineage.

5.2.2 Lineage functions

Figure 5.2 shows the Lineage function components in our Lineage System Conceptual

Framework. Lineage function components includes: Storing, Query, Navigation, and

Maintenance and Administration. In this section we discuss these di�erent compo-

nents.

Storing functions

The Storing function component in our proposed lineage system must be integrable

with the ETL functions. During the ETL design the lineage storing function must also

be de�ned with it. This is necessary because the Lineage Storing function is executed

during the ETL process (see �gure 5.5). Furthermore, if lineage navigation is enabled,

ETL design must include the tracing query or tracing procedures or combination of

both and therefore they should also be stored as part of the data transformation

de�nition.

Populating Metadata. Transformation metadata storage is prepared and is

112

populated when the ETL design speci�cation is translated into a physical implemen-

tation (recall OWB and Ascential Software tools in chapter 3). The types of lineage

information stored in the metadata repository are Sources of Data (e.g. Source sys-

tems, source data structures), mapping information (e.g. data sources and targets

and the transformation functional and Execution information, i.e. transformation

logical units, and sequence of execution), and the scripts and procedural code (or

pointers to scripts and procedural code). For details on di�erent classi�cation of data

lineage information, refer to chapter 4, sections 4.2.1 to 4.2.3. This information serves

two main purposes: for transformation processes and for lineage query and navigation

(recall �gures 2.7, 2.8 and 2.12). These �gures provide a good illustration for stor-

ing the mapping information or data transformation elements to metadata storage.

A storing function is used to store data transformation elements into the metadata

storage. The illustration in �gure 2.8 shows the metadata storage which is populated

by mapping m1 in �gure (2.7).

Populating Base and Intermediate Lineage Storage. Base and intermedi-

ate lineage storage are populated during data transformation. Section 4.2.4 describes

base and intermediate data values. The option to permanently store the intermediate

data values must be deliberately speci�ed during the design process. If the problem

we describe in 4.1.1 is an actual problem (e.g. that connecting to the source system

from data warehouse is not feasible), then we may decide to store the base data within

the data warehouse system. In this case, the option to store base and lineage data

within the warehouse environment needs to be deliberately speci�ed so that it can be

implemented in the actual ETL process.

Populating Other Lineage Related storage. This storage can be populated

113

automatically during the ETL process or it may be registered manually in the Ware-

housing Adminstration component.

Lineage Query

The intention of storing data lineage information is to make it available when lineage

question is asked. The Query component assists in creating or generating queries

imposed by the user. In our lineage system, we recommend that the Query component

must provide a feature that generates queries via a user friendly interface similar to

the solutions we presented in chapter 3.

Querying metadata. Most common existing data lineage solutions rely on

querying the metadata to provide data lineage report. The �ve industry solutions

we evaluated in chapter 3 already implemented a data lineage solution that queries

against a metadata repository. Most common reports they provide are about the

source-to-target mapping. Our proposed lineage system includes a metadata query

generator. Essentially, this component should comprise of routines that dynamically

prepare scripts for querying against the metadata based at the user's request.

Querying Base, Intermediate and other data lineage related storage .

A question may require lineage data values as an answer not only the source or target

information. The query generator for Base and Intermediate Lineage values should

provide the ability to dynamically generate a query that answer questions regarding

a source for transformed data. This component assists in generating queries imposed

on Base and intermediate data lineage during navigation.

On the other hand, a query may be imposed to provide an approximate value

about the source of the data. This query is typically imposed on the upload history

and measurement data.

114

Navigate

The Navigate component provides a feature that allows a user to browse (backward

or forward) through the lineage. The Navigate component combines tracing query

generator and tracing procedure, inverse function or routines to navigate through

data lineage reports.

Chapter 2 discussed the overview of data lineage tracing mechanisms. The con-

cepts being presented in chapter 2 can be referred to when deciding which type of

tracing mechanism is most applicable for a certain situation. The Navigate com-

ponent is di�erent from an ordinary query but it may invoke the functions of the

Query component. Browsing through the lineage requires a user friendly interface

that allows the user to go backward from the lineage or forward to the ancestor of

the lineage. The Navigate component may involve data from metadata storage and

combine it with lineage data storage.

Metadata Query. Metadata query provides a feature for tools to query against

metadata.

Tracing Query. The Tracing query introduced in [7, 10] is considered in

our lineage system although the algorithms need to be extended to handle multi-

dimensional schema. Section 2.4.2 discusses view tracing query and provides example

application for the tracing query introduced in [7, 10].

Tracing Procedure. We consider the tracing procedure introduced in [7, 10].

Using this tracing mechanism requires information about transformation properties

for each transformation applied to the data. This information needs to be registered

in the Adminstration function component. In section 2.2.2, concerning subsection

lineage tracing for general data warehouse transformation, we discussed the Tracing

115

procedure approach to data the lineage problem.

Inverse function. Our discussion in section 2.2.2 concerning subsection Inverse

method, describes an approach for lineage tracing functionality. We consider this

solution as an option for lineage tracing in our lineage system. The existing research

which are evaluated in this thesis can be exploited and translated into functions that

can be useful for enterprise data warehouse lineage requirement.

Administration and Maintenance

The Lineage Administration and maintenance component is essential to our lineage

system. This component is responsible for designing, modifying and updating lineage

models and functions. This component must consist of objects (programs routines

and interfaces) that can be plugged into ETL and Data Design Tools. Administration

and Maintenance components involving data lineage can include but are not limited

to the following functions:

� Automatic generation of lineage metamodel from ETL design - Com-

ponents (or functions) that perform automatic generation of lineage metamodel

and codes from ETL design. Generating metadata from ETL design is already

an existing solution o�ered in the industry (refer to the industry solutions we

evaluated and presented in chapter 3, e.g. Oracle). Components (or functions)

involving data lineage design must be plugged into the ETL designer. Each

transformation may produce intermediate lineage values which will be useful

for lineage tracing; therefore, it is during ETL design that data lineage design

is best integrated.

116

� Modifying models or transformation de�nition - Components (or func-

tions) that facilitate and control the editing and updating of lineage design.

When an ETL design is altered, it potentially a�ects data lineage design. There-

fore, the changes to lineage design must also be documented alongside the ETL

design changes. This is important because a speci�c version of transformation

needs to be tracked and known during lineage tracing.

� Speci�er for tracing query, tracing procedure, inverse function - Com-

ponents (or functions) that assist on registering the tracing query, tracing pro-

cedure or inverse functions to the data warehouse environment.

� Speci�er for Data Lineage Storage - Components (or functions) that assist

on specifying the Base, Intermediate and Data Lineage related Storage.

� Modifying programs for populating data lineage related storage - Com-

ponents (or functions) that assist on modifying the scripts, routines or proce-

dural codes that populate data lineage related storage within the data warehouse

environment.

Some of the enumerated functions for Administration and maintenance presented

above are already existing features in the industry solutions. Oracle, Microsoft and

Ascential software provide a tool that allows for designing ETL intuitively via a

graphical interface. We recommend similar features and extend this tool to include a

lineage storage speci�er that can be used for navigation. As it is now, at the time of

this writing, the solutions we evaluated o�ered lineage reporting against metadata in

terms of mapping diagram (refer to section 3.2.3). These reports are often used for

ETL maintenance and administration.

117

5.3 Design

Data lineage design consists of the physical data models and the programs that ma-

nipulate the data. The metadata model can be extended to include separate storage

model which include base, intermediate and other related data lineage values. Most

ETL tools in the industry already o�er solution in handling transformation metamodel

design. These tools may be extended to handle lineage design in some granularity

level not currently o�ered in the industry (i.e to extend for lineage navigation in terms

of data values not only schema mapping and transformation description).

5.3.1 Lineage Components

The components of the data lineage system must be integrable to the ETL design

and to data warehouse reporting system. For the components to be useful to existing

solutions, they must be seamlessly integrated with data warehouse systems. Figure

5.3 shows lineage data residing within the warehouse system environment. This �gure

illustrates a seamlessly integrated lineage system to the data warehouse system. The

lineage system components are shown in �gure 5.2. Physical storage and Lineage

functions become part of the warehouse systems and are established during the data

warehouse ETL design.

Physical Components

Column one in �gure 5.2, shows the Lineage physical component comprising Lineage

metadata, data receptacles and other data lineage related storage. These subcompo-

nents become part of the data warehouse environment (see �gure 5.3).

118

Figure 5.3: Data lineage within the warehouse environment

119

Procedural Components

Lineage functions are the procedural components in our data lineage system frame-

work. Lineage functions are comprised of three subcomponents: Recording, Reporting

and Administration and Maintenance components (refer to �gure 5.2). The Record-

ing component records the data lineage or data lineage related information within

the data warehouse. Reporting components produce the lineage information for the

data warehouse information recipients and the Administration and Maintenance is

the component which allows for data lineage solutions enhancement, modi�cation, as

well as handling day-to-day data lineage system maintenance.

5.3.2 Design considerations

In designing data lineage, the aspects of the data lineage problem must be given

careful consideration (recall section 4.1). Section 4.1 discussed the di�erent aspects

of data lineage problem that may a�ect decisions on data lineage design. Design re-

quirements are dictated by business and sometimes by legal requirements. Balancing

the contradicting and competing requirements are important consideration in lineage

design and the following are common areas:

� Granularity against Complexity - Tracing data lineage at the �nest granu-

larity level requires permanently storing and saving the data lineage within the

data warehouse environment and possibly being able to establish connection

to the source system to �nd the ultimate data origin. This requirement raises

consideration for detailed analysis on types of data sources, e.g., source system

and source data structure (refer to section 4.1.1). The complexity of creating a

path (a combination of base, intermediate or other data lineage related values)

120

and tracing procedures and functions can also be an important consideration

that should be balanced with the level of granularity the lineage system should

provide. Another very important consideration is the complexity of maintaining

lineage data values that are stored within the data warehouse environment (e.g.

handling incremental upload).

� Loading against Reporting - Tracing the data lineage of a speci�c warehouse

item value can be very expensive in terms of performance. One obvious solution

to the problem is to store base and intermediate lineage values within the data

warehouse. Storing data lineage values within the data warehouse environment

has to consider the best possible optimal design to minimize loading perfor-

mance. However, being able to �nd the optimal loading design does not ensure

being able to completely minimize the loading performance if lineage value is

to be stored within the data warehouse environment.

5.3.3 Design Components

The main data lineage design components include, ETL design, Speci�cation of Lin-

eage Physical Storage and Registration of the tracing queries, procedures or inverse

functions. Figure 5.4 illustrates the main data lineage design components. Although

designing the data lineage storage is oftentimes included in ETL design, we specify

Design ETL in a separate box to emphasize its main function.

Design ETL

A component that handles the data lineage design in ETL. Designing Lineage involves

storage and lineage functions. The design can be made part of the ETL tool standard

design but can allow manual and hand-coded design (i.e allows the user to create a

121

Figure 5.4: Designing Data lineage

122

customized design which can often be the case in real data warehouse implementation

). These tools provide an interface that allows for graphically specifying ETL and

automatically generating the transformation metadata and functions. Existing solu-

tions may be extended to generate lineage functions as well (lineage functions that

are described in di�erent part of this thesis).

Specify Base, Intermediate and other lineage related storage

A component that will handle the design and modi�cation of the base, lineage views

or tables. Design options to activate or deactivate data lineage are recommended as

part of our lineage solutions in the data warehouse. If navigation is activated to be

up to the �nest granularity level, it is necessary to specify the base or lineage views

or tables.

Register Tracing Query, procedure or inverse functions

Activating the data lineage traceability may require the designer to register a tracing

query, procedure or inverse function for certain transformation. This component

allows for registering the Tracing Query, procedure or inverse functions in the data

warehouse systems.

5.4 Implementation

Data lineage implementation begins from the point of data extraction from source sys-

tem, loading the data to the warehouse and Reporting. Lineage system components,

which participate in the implementation, handle two main roles: Recording and

Reporting the data lineage. Data lineage implementation is based on the di�erent

lineage components which are established during the design.

123

5.4.1 Recording

When the data warehouse ETL design is translated into a physical design the lin-

eage metadata will be automatically generated and populated and form part of the

metadata repository. The ETL design tool records the Transformation information

mapping to the metadata. Basically this information tells something about the data

lineage which includes the source-to-target schema and schema elements, the proce-

dure, inverse function or routines (or pointer to them) which will execute the trans-

formation and the sequence of transformation (refer to �gure 5.4). Recording to the

base, intermediate and other related data lineage information happens during actual

ETL job runs, although in some cases, other related data lineage information may

be registered and recorded independent of ETL job run. Figure 5.5 illustrates the

data lineage which is recorded during the Extraction, Transformation and Loading

process. The base and Lineage data may not be recorded if not deliberately speci�ed

during the design.

5.4.2 Reporting

We categorize the main purposes of data lineage reports: For Administration and

Maintenance and for Data Analysis and Validation. Our lineage solution includes

components that will handle lineage queries. Both of the lineage reports' purposes

may use query or navigate or combination of both.

Administration and Maintenance

Most existing solutions provide lineage reports in terms of schema and schema element

mappings. This kind of report is basically used for administration and maintenance

purposes. Some solutions are beginning to consider this information as a foundation

124

Figure 5.5: Lineage Data
ow

125

for more detailed lineage reporting. The schema mapping report can provide the user

with the answer to the basic question, where did the data come from?. The report may

enable the users to "drill-down" to know the derivation description and answer the

question, what are the calculations being applied to the data from one transformation

to the other?. But this information can oftentimes be too technical for the users and

therefore less helpful for them. However, for the systems administrator and other

technical persons, this can be an important information when source data analysis

is required. Some common daily Administration and Maintenance activities are to

check the load status and check the data quality.

Data Analysis and Validation

Data in the data warehouse undergoes several transformations that may obscure the

traces of the the origin of data. Reporting the data lineage at the lineage data values

level can be necessary and thus is an important part of a data warehouse solution.

Data lineage reporting may use the following approaches to reporting:

Step-wise fashion Lineage tracing. The sources of data or the system-of-

record described in section 4.1.2 are the ultimate or the last points of data lineage

tracing if tracing is allowed up to the source systems. This kind of tracing (going

back up to the source system) is potentially a rare choice for data lineage tracing

because of the problems we discussed in section 4.1.1, i.e., problems with source

system connectivity and compatibility, and source systems data availability. However,

in some cases, this may be feasible and a requirement to be able trace lineage up to

the source system may arise. There is a possibility that the source data already

consists of processed data within the heterogenous source system. But we describe

our system-of-record data as our ultimate data origin (refer to section 4.1.1). The

126

reason for this is because we can only integrate our lineage system in ETL and Data

warehouse reporting systems. Therefore data outside the ETL reach cannot be part

of our data lineage tracing, unless these data become part of the system-of-record.

Step-wise fashion lineage tracing aims to provide exact or almost exact data linage

values as the user navigates and analyzes the data origin by following the reverse order

of the transformation steps. Step-wise fashion may not always give exact data lineage

values (i.e. a tracing query or procedure may not invert a transformation perfectly),

but being able to analyze the lineage in this manner provides a deeper understanding

of the data origin. Step-wise fashion linage tracing may invoke tracing queries, or

procedures (refer to our discussion in chapter 2 section 2.2.2 and in this chapter

section 5.2.3).

Approximate Answers. Analyzing and validating the data origin may not

always require a step-wise data lineage tracing and may not require the exact data

lineage values. A good estimate or approximate data lineage values may be enough.

While step-wise navigation data lineage analysis provides a deeper understanding of

the data origin, approximate answer may be preferable in some data lineage analysis

requirement because it provides immediate answer to question about the data origin.

The component used in this reporting is the reconstruction of the origin using a

limited amount of information (refer to section 5.1.2 in this chapter). This may use

statistical information and may invoke inverse functions to calculate the approximate

answers (refer to our discussion in chapter 2 section 2.2.2 concerning statistical and

inverse method of lineage tracing).

Chapter 6

Conclusion and Future Work

Data lineage is a broad and complex problem surrounding data integration implemen-

tations. It is still complex even within the con�nement of the data warehouse envi-

ronment. Collecting di�erent approaches does not guarantee a complete data lineage

solution because the solution requirement varies widely both in technical (physical

and procedural design) and business enterprise implementation.

One common notion in the industry is that a data lineage is an answer to the

question, "Where did this data comes from". The question though is too simplistic

for an intricate answer. The academe has delved more deeply into this question,

attempting to provide answers that complete the "where how and why" questions

of data lineage in the data warehouse. However, the best solution introduced in

theory, may not be feasible for real data warehouse implementation. A number of

considerations are essential to implement a successful lineage solution. This work

attempts to present these considerations in relation to our proposed solution.

The conceptual framework for data lineage systems components described in this

thesis can provide a basis for further research. The focus may be more on how to

implement the existing theory and integrate it with the data warehouse solutions. A

127

128

coarse-grained or schema level approach is the most common approach implemented

in industry today, and this solution have already been successfully implemented by

some of the prominent solution providers in the industry. However, a �ne-grained

approach is still an area for improvement. Di�erent data lineage related studies

attempt to solve this problem by providing data lineage tracing algorithms.

Data lineage problem is a challenge that needs more than just lineage tracing

mechanisms; it requires initiative at a strategic level. While other solutions detail

on addressing speci�c problems, this thesis provides a holistic view of the di�erent

aspects of the data lineage problem and provides a framework that helps organize,

plan, manage and set the data lineage solution in context. First, we identify the

di�erent aspects of data lineage problem, classify the di�erent items that are needed

for data lineage solution and describe the main tracing mechanisms that form part

of our data lineage solution. Then we build a conceptual framework for data lineage

system which provide a basis for designing and implementing data lineage solution

and seamlessly integrating this solution to a data warehousing system.

Bibliography

[1] SAP AG, Data validation and error handling, www.sap.com (2004).

[2] P. Bernstein and T. Bergstraesser, Metadata support for data transformations

using microsoft repository, IEEE Data Engineering Bulletin (March 1999).

[3] R. Bose, A conceptual framework for composing and managing scienti�c data lin-

eage, 14th International Conference on Scienti�c and Statistical Database Man-

agement (SSDBM'02) (Edinburgh, Scotland), July 2002, pp. 15{19.

[4] S. Bressan, T. Lee, , and S. Madnick., Source attibution for querying against

semi-structured documents, Proceedings of the Workshop on Web Informa-

tion and Data Management (Washington, DC, United States), November 1998,

pp. 33{39.

[5] P. Buneman, S. Khanna, and W. Tan, On propagation of deletions and anno-

tations through views, Proceedings of the twenty-�rst ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems (Wisconsin, USA), June

2002, pp. 150{158.

[6] J. Caserta and R. Kimball, The data warehouse etl toolkit: Practical techniques

for extracting, cleaning, conforming, and delivering data, Wiley Publishing, Inc.,

USA, January 2003.

[7] Y. Cui, Lineage tracing in data warehouses, Ph.D. thesis, Stanford University,

USA, December 2001.

129

130

[8] Y. Cui and J. Widom, Lineage tracing for general data warehouse transforma-

tions, The International Journal on Very Large Data Bases 12 (2003), 41{58.

[9] , Practical lineage tracing in data warehouses, Proceedings of the 16th In-

ternational Conference on Data Engineering Page: 367 (Washington DC, USA),

February 2000, p. 367.

[10] , Storing auxiliary data for e�cient maintenance and lineage tracing of

complex views, 2nd International Workshop on Design and Management of Data

Warehouses (DMDW'00) (Stockholm, Sweden), June 2002.

[11] , Lineage tracing in a data warehousing system, Proceedings of the 16th

International Conference on Data Engineering (San Diego, California), March

2000, pp. 683{684.

[12] Y. Cui, J. Widom, and J. Wiener, Tracing the lineage of view data in warehousing

environment, ACM Transactions on Database Systems Volume 25 , Issue 2

(June 2000), 179{227.

[13] A. de and A. de Carvalho Moura, Metadata to support transformations and data

and metadata lineage in a warehousing environment, Data Warehousing and

Knowledge Discovery 3181 (September 2004), 249{258.

[14] M. de Wiel, Oracle warehouse builder 10g: How to implement your enterprise

metadata repository for business intelligence solutions, www.oracle.com (Novem-

ber 2003).

[15] G. Drapers, Programming microsoft sql server dts 2000 using .net,

msdn.microsoft.com (2002).

[16] P. Eagan and S. Ventura, Enhancing value of environmental data: Data lin-

eage reporting, Journal of Environmental Engineering Volume 119 , Issue 1

(February 1993), 5{16.

131

[17] W. Eckerson, Meta data management in the data warehouse environment,

www.ascentialsoftware.com (2002).

[18] R. Elmasri and S. Navathe, Fundamentals of database systems, Person Education

International, USA, 2003.

[19] C. Faloutsos, H. Jagadish, and N. Sidiropoulos, Recovering information from

summary data, Proceedings of the Twenty-Third International Conference on

Very Large Data Bases (Athens, Greece), August 1997, pp. 36{45.

[20] H. Fan, Incremental view maintenance and data lineage tracing in heterogeneous

database environments, Nineteenth British National Conference on Databases

(University of She�eld), July 2002.

[21] H. Fan and A. Poulovassilis, Tracing data lineage using schema transformation

pathways, Knowledge Transformation for the Semantic Web (July 2003), 6479.

[22] , Using automed metadata in data warehousing environments, Proceed-

ings of the 6th ACM international workshop on Data warehousing and OLAP

(Louisiana, USA), November 2003, pp. 86{93.

[23] R. Fileto, C. Medeiros, L. Liu, C. Pu, and E. Assad, Using domain ontologies

to help track data provenance, XVIII Simpsio Brasileiro de Banco de Dados -

Manaus (Brazil), 2003.

[24] P. Kamalapur G. Wadhwa, Customized metadata solution for a data warehouse

- a success story, www.wipro.com (2003).

[25] N. Hachem, K. Qiu, M. Gennert, and M. Ward, Managing derived data in the

gaea scienti�c dbms, Proceedings of the 19th International Conference on Very

Large Data Bases, August 1993, pp. 1{12.

132

[26] C. Imho�, N. Galemmo, and J.G. Geiger, Mastering data warehouse design:

Relational and dimensional techniques, Wiley Publishing, Inc., USA, August

2004.

[27] B. Inmon, Information management: World-class business intelligence,

www.dmreview.com (February 2005).

[28] W. Inmon, K. McDonald, A. Wilmsmeier, and D. Dixon, Mastering the sap

business information warehouse, Wiley Publishing, Inc., USA, 2002.

[29] IntelligentEAI, Omg and metadata coalition merge, www.intelligenteai.com/news

(December 2000).

[30] T. Johnson and M. Cha�n, Best practices for using dts for business intelligence

solutions, msdn.microsoft.com (June 2004).

[31] R. Kimball, Data quality indicators, www.intelligententerprise.com (April 2000).

[32] , Is your data correct? simple statistical techniques can help

you ensure that users have accurate information at their �ngertips,

www.intelligententerprise.com (December 2000).

[33] D. Larsen, Data transformation services (dts), msdn.microsoft.com (September

2000).

[34] J. Leung, Oracle data warehousing guided tour, www.oracle.com (2001).

[35] D. Marco, Building and managing the meta data repository, Wiley Publishing,

Inc., USA, August 2000.

[36] MDC, Meta data coalition, (mdc) open information model,

www.omg.org/docs/ad/99-04-06.pdf, April 1999.

133

[37] Microsoft, Microsoft sql server 7.0 data warehousing framework,

msdn.microsoft.com (1998).

[38] , Recording data lineage in dts, msdn.microsoft.com (2005).

[39] A. Neroda, C. Baragoin, and J. Ellis and, Db2 cube views: Getting started with

ascential metastage, www.ibm.com (September 2003).

[40] OMG, Common warehouse metamodel, (cwm) speci�cation,

www.omg.org/technology/cwm, March 2003.

[41] , Competing data warehousing standards to merge in the omg,

www.omg.org/news (September 2000).

[42] Oracle, Oracle warehouse builder installation and con�guration guide,

www.oracle.com (April 2004).

[43] , Oracle warehouse builder 10g, architectural white paper, www.oracle.com

(February 2004).

[44] , Oracle warehouse builder 10g reviewers guide, www.oracle.com (May

2004).

[45] S. Patnaik, M. Meier, B. Henderson, J. Hickman, and B. Panda, Improving

the performance of lineage tracing in data warehouse, Proceedings of the 1999

ACM symposium on Applied computing (Texas, United States), February 1999,

pp. 210{215.

[46] D. Riehle, Drawing a line: Lineage collects details along data's perfect path,

www.teradata.com (June 2004).

[47] M. Rittman, An introduction to oracle warehouse builder 10g, www.dbazine.com.

[48] Ascential Software, Metastage overview, Ascential Software Corporation (2003).

134

[49] Teradata, Teradata warehouse builder reference, www.teradataforum.com (April

2004).

[50] , Introduction to teradata warehouse, www.teradataforum.com (Novem-

ber 2003).

[51] G. Variar, The origin of data, www.intelligententerprise.com (February 2002).

[52] Y. Velegrakis, R. Miller, and J. Mylopoulos, Representing and querying data

transformations, Proceedings of the Twenty-�rst International Conference on

Data Engineering (Tokyo, Japan), April 2005.

[53] B. Westman and N . Rochnik, Oracle9i warehouse builder, integrated data quality,

www.oracle.com (July 2003).

[54] J. Widom, Research problems in data warehousing, Proceedings of the 4th in-

ternational conference on Information and knowledge management (Maryland,

United States), December 1995, pp. 25{30.

[55] A. Woodru�, Data lineage and information density in database visualization,

Ph.D. thesis, California State University, USA, Fall 1989.

[56] A. Woodru� and M. Stonebraker, Supporting �ne-grained data lineage in a data-

base visualization environment, Proceedings of the Thirteenth International Con-

ference on Data Engineering (Birmingham, UK), April 1997, pp. 91{102.

