
UNIVERSITY OF OSLO

Department of Informatics

Developing an
interactive web-
based learning
environment for
bioinformatics

Master thesis

Daniel Løkken

Rustad

27th July 2005

Preface

Preface

This thesis is part of the Master Degree in Informatics at the Department of
Informatics at the University of Oslo. The work with this thesis started in the
spring of 2004 and was completed during the summer of 2005. I would like to
thank my supervisors, Associate Professors Anja Bråthen Kristoffersen and
Ole Christian Lingjærde at the Bioinformatics group of the Department of
Informatics at the University of Oslo, for their patience, good advice, and
encouragement during this period. I would also like to thank Jorun B.
Holmberg, Associate Professor at the Department of Special Needs Education,
Faculty of Education, University of Oslo, for her helpful explanations of some
of the concepts and terms used in the field of pedagogics.

This thesis is intended for readers who are interested in the possibilities web-
technology offers for creating interactive web-based learning environments for
bioinformatics.

i

Preface

ii

Abstract

Abstract

This thesis explores some of the possibilities web-technology offers for
creating an interactive learning environment for bioinformatics on the web. A
set of implemented examples on how some of the basic algorithms in
bioinformatics can be visualised with web-technology is presented and
discussed. An implemented example on a web-based bioinformatics exercise
and a set of hypothetical web-based exercises are also presented and
discussed.

iii

Abstract

iv

Table of Contents
Preface..i

Abstract..iii

Chapter 1

Why an interactive web-based learning environment?1

1.1 Introduction.. 1
1.2 Visualisation of algorithms..2
1.3 Biological databases and other tools...3
1.4 Interactive exercises... 3
1.6 Challenges... 5
1.7 Document overview.. 5

Chapter 2

Background on biology and introduction to the Sourcer’s

Apprentice...7

2.1 Introduction.. 7
2.2 DNA, genes, and gene expression..8

2.2.1 DNA and genes... 8

2.2.2 Gene expression.. 9

2.3 Mutations.. 12
2.4 Microarrays.. 13
2.5 The Sourcer’s Apprentice..17

v

2.5.2 Empirical results for the Sourcer’s Apprentice......................... 19

Chapter 3

Pairwise global sequence alignment...21

3.1 Introduction.. 21
3.2 The Needleman-Wunsch alignment algorithm............................24

Chapter 4

Clustering of microarray data... 29

4.1 Introduction.. 29
4.2 Similarity between objects...30
4.2 Hierarchical clustering...31
4.3 K-means clustering...34

4.3.1 The batch variant... 34

4.3.2 The online variant..36

4.4 Self organizing maps.. 37

Chapter 5

The BioTeach system..39

5.1 Introduction.. 39
5.2 The portal..40
5.3 The Needleman-Wunsch visualisation... 41

5.3.1 The simple visualisation..43

5.3.2 The advanced visualisation... 44

5.3.3 Explanation of the visualisation.. 45

5.4 The Needleman-Wunsch exercise... 54
5.5 The clustering visualisation... 58

5.5.1 The hierarchical clustering visualisation................................... 62

5.5.3 The k-means visualisation... 71

5.5.5 The self organizing maps visualisation..................................... 75

vi

Chapter 6

Hypothetical exercise examples..78

6.1 Introduction.. 78
6.3 A Blast example.. 79
6.4 Database and portal exercises... 82

6.4.1 A hypothetical example ..84

Chapter 7

Summary and Conclusions... 89

References...93

Appendix A

Downloading, installing and

configuring the BioTeach-system...97

Appendix B

Technical Solution of the BioTeach-system...........................101

B.1 Applied technology.. 101

B.1.1 Java Applets..101

B.1.2 The JSP Model 2 architecture...102

B.1.3 The bio.jar library... 105

B.1.4 Graham’s Scan..107

B.2 Application organisation and program flow.............................108

vii

B.2.1 The portal..108

B.2.1.4 help.html.. 110

B.2.1.5 Bottom.html...110

B.2.1.6 Main.css... 110

B.2.2 The Alignment application... 111

B.2.3 The clustering application...122

viii

Chapter 1 Why an interactive web-based learning environment?

Chapter 1

Why an interactive web-based learning

environment?

1.1 Introduction

The idea of this project is to explore the possibilities and challenges of
creating an interactive web-based learning environment for bioinformatics
based on discussions of theoretical and implemented examples of what such
an environment could include.

The term interactive is used here to describe tools that allow experimentation
with and manipulation of concepts and principles. In other words, an
interactive web-based learning environment is an environment that allows the
users (e.g. students of bioinformatics) to experiment with and manipulate the
concepts and principles it discusses. The interactive web-based learning
environment discussed in this document is meant to be a supplement to, and
not a replacement of, the existing educational means in bioinformatics.

Web-technology offers a variety of possibilities for creating educational web-
applications, and it would be impossible to explore all possibilities in a single

1

Chapter 1 Why an interactive web-based learning environment?

project. It was therefore necessary to focus on a few approaches: visualisation
of algorithms and interactive exercises.

1.2 Visualisation of algorithms

Bioinformatics is concerned with the interpretation and analysis of biological
data, and a wide array of algorithms have been developed for this purpose.
These algorithms are often based on complex statistical and mathematical
models. The traditional way of representing such algorithms in textbooks, is to
present the reader with the mathematical or statistical formula accompanied by
descriptive text and figures written in a highly mathematical or statistical
language. These algorithms might be easier to understand if the traditional
descriptions were supplemented with step-by-step visualisations or walk-
throughs. Traditional textbooks are, however, limited to static presentation of
information, and such visualisations and walk-throughs would therefore
require an unreasonable amount of pages that probably would be uninspiring
to read.

An interactive web-based learning environment would be a more suitable
medium for visualisations and walk-throughs. Web-technology has reached a
stage where it is possible to create dynamic presentations of information based
on input from the user. It should therefore be possible to design web-based
learning experiences (i.e. web applications) that not only provide presentations
of how the algorithms work, but also allow the users to experiment with an
algorithm’s parameters to see how different parameters affect the results of the
algorithms.

There are too many basic algorithms in bioinformatics to give a thorough
discussion of how all of them could be visualised in an interactive web-based
learning environment. Of the available algorithms, the Needleman-Wunsch
alignment algorithm, and a selection of algorithms for clustering of microarray
data were chosen as candidates for discussion and visualisation. These were
chosen because sequence alignment and clustering of microarray data
represent two central, yet entirely different, fields in bioinformatics.

The visualisation examples included in this project are implemented in a
system called the BioTeach system. This system includes examples on how
the Needleman-Wunsch alignment algorithm and three central clustering
algorithms can be visualised in an interactive web-based learning

2

Chapter 1 Why an interactive web-based learning environment?

environment. The BioTeach system also includes an interactive Needleman-
Wunsch exercise example. The system is discussed in detail in chapter 5.

1.3 Biological databases and other tools

Biological databases are another important tool in bioinformatics. Researchers
use these databases to store their work and to share their work with other
researchers. There are different databases for different types of biological
information, and different databases may have different ways of presenting
information. It is therefore necessary to know which information can be found
in the different databases, and how to obtain that information. The
development of portals or gateways that allow multiple databases to be
searched simultaneously have simplified the information search, but it is still
necessary to know how to perform a database search, which of the searched
databases to access to find the information they need, and how to read the
information.

A web-based learning environment could be used to discuss the principles of
database searching, the portals, and the databases, but, as Wolfe (2001a, b)
argues, the web is not the best medium for long and exhaustive discussions.
Traditional textbooks would, for this reason, probably be better suited for a
detailed discussion of search principles, the databases, and the portals.

However, both the databases and the portals are web-based, and a web-based
learning environment can therefore provide direct access to the various
databases and portals. A web-based learning environment could, for this
reason, be a convenient medium for short and precise discussions that provide
direct access to the various databases and portals through links.

1.4 Interactive exercises

Exercises are an important part in the learning process because they allow
one’s understanding of a curricular subject to be tested and compared to the
goals of the curriculum (Anderson, 2001). Thus, exercises concerning
databases and portals are a natural part of an interactive web-based learning
environment for bioinformatics. The web provides direct access to the
databases and portals, and a web-based learning environment should therefore

3

Chapter 1 Why an interactive web-based learning environment?

be a convenient medium for exercises which are concerned with databases and
portals. Now, if these exercises were combined with the discussion mentioned
above, it would not be necessary to consult one or more traditional textbooks
to find the answers to the exercises.

Exercises in an interactive web-based learning environment offer
opportunities to create information presentations based on user input. In terms
of exercises, user input means answers, while information presentation refers
to comments. It should, in other words, be possible to use web-technology to
design web-based exercises that comment the answers that are given.

Traditional textbooks seldom provide any other comments to exercises than
the correct answers. The correct answers are better than no comments, but
providing the correct answers does not necessarily ensure that the subject an
exercise is concerned about is fully understood. Providing the correct answers
may not, for instance, be particularly helpful for students who are unable to
arrive at the correct answer to an exercise, and who, at the same time, are
unable to understand why the correct answer is correct. Such students are
forced to consult a third person, e.g. a fellow student or a lecturer, in order to
get help.

The fastest way for a student to get help is probably through fellow students,
but as they are students, they may not have understood the subject well enough
to provide a correct explanation, or they may disagree in their understanding
of the subject, both of which may further confuse an already confused student.
Lecturers, on the other hand, are often busy, and may therefore have little time
to consult students, even through email. Web-based exercises that provide
instant comments should therefore be a useful supplement for both students
and lecturers.

The Sourcer’s Apprentice system developed by Britt and Gabrys (2001) is an
example on how interactive exercises could be designed, and, although this
system is not concerned with bioinformatics, it represents one possible
approach to interactive exercises in bioinformatics. The Sourcer’s Apprentice
system is discussed further in chapter 2.

1.5 Other interesting features of web technology

Other interesting features with web-technology and web-applications are that
web-applications don’t require any installation on the part of the user apart
from a web-browser, which is usually preinstalled by the computer
manufacturer along with the operating system; and that web-applications can

4

Chapter 1 Why an interactive web-based learning environment?

be accessed from any computer anywhere as long as the computer is
connected to the web.

1.6 Challenges

There are, as with any other educational tool, challenges connected to use the
web for educational purpose.

One of the elements that has to be taken into consideration when deciding
whether or not to use the web for educational purposes is access to the web;
that is, students obviously have to have access to the web to be able to use a
web-based learning environment, and must therefore be supplied with
equipment (e.g. computers) that provides them access to the web.

Access to equipment is not, however, the only consideration that has to be
taken into account. Students obviously have to know how to use the
equipment and the web to be able to take advantage of a web-based learning
environment. Now, the web is a popular medium for distributing information
to the students, and most students should have some experience with the use
of both computers and the web. However, some students might feel
uncomfortable with the use of computers and the web, and may thus dislike
the notion of having to use the web as a learning environment. Such students
might feel more comfortable with a web-based learning environment if they
were presented with an environment that resembles a familiar environment.
Most students should be familiar with traditional textbooks and how they are
structured, and it might therefore be a good idea to design a web-based
learning environment to resemble a traditional textbook, both in appearance
and structure.

5

Chapter 1 Why an interactive web-based learning environment?

1.7 Document overview

The rest of this document is organised as follows:

- Chapter 2 discusses the biological background information that the
algorithms implemented by the BioTeach system is based on. The
chapter also includes a discussion of the Sourcer’s Apprentice system.
Chapter 3 contains an introduction to pairwise sequence alignment, a
discussion of the Needleman-Wunsch algorithm.

- Chapter 4 contains a short introduction to clustering of microarray
data, and a discussion of the three different clustering approaches
implemented and visualised by the BioTeach system: hierarchical
clustering, k-means clustering, and self organising maps.

- Chapter 5 presents the BioTeach system and discusses the design of
the algorithm visualisations and the exercise.

- Chapter 6 discusses hypothetical examples on how different interactive
exercises concerning the Blast algorithm, and biological databases and
portals can be designed.

- Chapter 7 contains a summary and conclusions.

- The appendices are concerned with the implementation of the
BioTeach system.

6

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

Chapter 2

Background on biology and

introduction to the Sourcer’s

Apprentice

2.1 Introduction

One of the objectives of this project is to discuss and provide examples on
how a selection of the algorithms used for interpretation and analysis of
biological data could be visualised in an interactive web-based learning
environment. Sections 2.2 through 2.4 are meant as an introduction to the
biological principles the selected algorithms are based on, and the data these
algorithms are designed to analyse.

Another objective of this project is to discuss how interactive exercises could
be designed in an interactive web-based learning environment. The Sourcer’s
Apprentice system represents one possible approach to exercise design, and is
discussed in section 2.5.

7

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

Sections 2.2 to 2.4 is largely based on Draghici (2003), Causton et al. (2003),
and Berrar et al. (2003), while section 2.5 is based on Britt and Gabrys
(2001).

2.2 DNA, genes, and gene expression

Most of the algorithms used in bioinformatics, the Needleman-Wunsch and
microarray data clustering algorithms included, are in some way concerned
with genes. Genes are segments of DNA that contain the instructions which
are needed to build and maintain organisms, either as mechanisms that
regulate cellular processes, or as recipes that allow a cell to produce a protein.

The remainder of this section provides a short description of DNA, and the
process of transforming a gene into a protein, or the gene expression process.
Readers who are familiar with these concepts can safely skip the rest of this
section.

2.2.1 DNA and genes

DNA contains the hereditary material (i.e. the genes) of an organism, and is
found in most of the cells that compose the organism. The DNA is organised
in large molecules composed of two strands of nucleotides that form a double
helix (fig. 2.1). Each of the nucleotides in each of the strands is composed of a
sugar residue, a phosphate residue, and one of four bases: adenine (A),
guanine (G), thymine (T), and cytosine (C). The sugar and phosphate residues
are identical in each nucleotide and form the backbone of the DNA strands,
while the bases vary from nucleotide to nucleotide. It is the order in which
these bases occur that determines how a gene functions (e.g. which protein it
produces), and it is common to refer to this order as a gene sequence.

The chemical nature of the bases is such that only adenine and thymine bond
with each other, and only guanine and cytosine bond with each other. Adenine
and thymine are therefore said to be each others complement, as are cytosine
and guanine. The two DNA strands that compose a DNA molecule are,
because of the bonding properties of the bases, base-by-base complements of
each other in order for the two strands to bond and form a DNA molecule.
This bonding process is called hybridisation, and is, as will be discussed in
section 2.4, utilised by the microarray technology. The DNA of an organism

8

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

can be divided into two groups: coding and non-coding regions. Non-coding
regions make up the majority of the DNA and have no known function.
Coding regions are segments of DNA that contain the genes. The coding
regions are distributed, seemingly at random, in the DNA separated by non-
coding regions.

Fig. 2.1: A schematic description of the structure of a DNA molecule excerpt The two
broad spiralling bands represent the sugar-phosphate backbone of the two DNA
strands. The horizontal bars represent the complementary bases that bind the two
strands together. (Illustration adapted from
http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookDNAMOLGEN.html)

2.2.2 Gene expression

The process of transforming a gene into a protein is called gene expression,
and a gene that is active in a cell (i.e. the cell produces the protein defined by
the gene) is said to be expressed. Although the cells contain the same DNA
and the same genes, different cell types differ in their pattern of gene
expression (i.e. all genes are not expressed in all cells, nor do all cells produce
the same amount of proteins). The gene expression levels of a cell may also
change with the state of a cell, or as a cell develops. A cell that, for example,
is diseased may produce different proteins or different amounts of proteins
than a normal, healthy, cell. Thus, gene expression levels can indicate both the
type of a cell and its state.

The two-step process of transforming a gene into a protein starts with the
transcription of the DNA segment that makes up the gene into a
complementary messenger RNA, or mRNA, molecule. RNA is very similar to

9

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

DNA except that RNA is a single stranded molecule, and that the thymine
base is replaced by a base called uracil (U). Uracil does, however, possess the
same hybridisation properties as thymine (i.e. it bonds with adenine, and vice
versa).

The second step of the gene expression process is called translation. This part
of the gene expression process translates the mRNA molecule into a protein.
Proteins are chains of amino acid molecules, and there are 20 different amino
acids that can be combined to form a protein. Amino acids are determined by
triplets, or codons, of mRNA bases, and the mRNA molecule is therefore
translated into a protein three bases at a time.

Once the gene expression process is completed (see fig. 2.2 for a schematic
description of the gene expression process), the chain of amino acids is folded
into a completed protein. The folding of the protein is partly determined by the
order in which the amino acids occur in the protein sequence, and errors in the
gene expression process that replaces, inserts or deletes amino acids in the
protein sequence may therefore cause the folding (i.e. the structure) of the

DNA sequence AGT GTT CTC TGT

|
Transcription

↓

mRNA sequence UCA CAA UAU ACA

|
Translation

↓

Protein sequence SVLC

Fig. 2.2: A schematic description of the gene expression process. The DNA-sequence
is transcribed into a complementary mRNA sequence, which in turn is translated,
three bases at a time, into a sequence of amino acids (i.e. a protein)

10

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

protein to change. Changes in the protein structure may in turn cause the
protein to malfunction. An error in the gene expression process does not,
however, have to affect the protein structure if the error does not change any
of the amino acids. For instance, an amino acid may be determined by more
than one codon, and an error that changes a codon into another codon that
determines the same amino acid will not have any effect on the protein. Thus,
different mRNA molecules may produce the same protein even though the
mRNA molecules are different. A codon, on the other hand, only translates
into one specific amino acid, and an mRNA molecule can therefore only be
translated into one specific protein. Thus, it is impossible to use a protein
sequence to determine the gene sequence that produced a protein.

For instance, the DNA sequence (DNA sequences can be used to determine a
protein sequence because of the complementary relationship between the
DNA and mRNA sequences)

TTT TGC

produces a protein sequence composed of the amino acids phenylalanine, F,
and cystein, C:

FC

Phenylalanine and cystein are, however, determined by two codons each:

Phenylalanine (F) Cystein (C)

TTT TGT

TTC TGC

Thus, the protein sequence FC can be the product of these four DNA
sequences:

TTT TGT

TTT TGC

TTC TGT

TTC TGC

11

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

The amount of protein produced by a gene is approximately the same as the
amount of mRNA molecules that are transcribed from the DNA sequence of
the gene. Since it is easier to measure the amount of mRNA transcripts present
in a cell than it is to measure the amount of proteins, the amount of mRNA
transcripts present in a cell is used to determine the gene expression levels of a
cell.

2.3 Mutations

Mutations refer to changes in the DNA that may be transferred to offspring,
and are a natural part in the development of genes and species.

There are different types of mutations, and a mutation may, or may not, affect
an organism depending on whether or not the mutation occurs in a coding
region, and the type of mutation. Some types of mutations can cause diseases
such as cancer, while other types are harmless.

Mutations that occur in coding regions of the DNA (i.e. regions that contains
genes) can severely affect an organism because they may change the gene
product (i.e. the protein the gene produces) or the function of the gene. Some
mutations may change the protein folding or the binding sites of a protein.
Changes in protein folding alter the structure of a protein and may cause the
protein to malfunction. Binding sites are locations in the protein where the
protein binds to other molecules (e.g. proteins), and mutations that change
these sites may cause a protein to malfunction. Malfunctioning proteins may
cause entire cells to malfunction (e.g. cancer), which in turn may have severe
effects on an organism. But again, some mutations may not affect the gene
product at all.

Substitutions, or point mutations, are simple mutations in which a base in the
DNA sequence is replaced by another. The effects a substitution may have on
a gene depends on where in the gene the substitution occurs, whether or not
the substitution changes the protein produced by the gene (i.e. replaces an
amino acid with another), and if so, how different the replacement amino acid
is from the original amino acid. Common types of substitutions are:

12

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

- Synonymous substitutions are mutations that replace a base with
another without changing the protein (e.g. TGT and TGC both encode
the amino acid cystein), and are thus harmless mutations.

- Substitutions that cause an amino acid to be replaced by another, or
missense mutations. A substitution of the last base of the codon TGT
with a G, for instance, would cause cystein to be replaced with the
amino acid tryptophan. Effects of missense mutations may be positive,
negative, or none depending on where in the gene it occurs and the
difference between the original and the replacement amino acid

- Substitutions that cause an amino acid to be replaced by a termination
signal (e.g. TGT → TGA), or nonsense mutations. A nonsense
mutation causes a protein terminate prematurely, and the effects are
almost always negative, as a part of the protein is removed.

Insertion and deletion are other mutations that can occur. Insertions cause one
or more additional bases to be inserted in a gene sequence, while a deletion
removes one or more bases from a gene sequence. This kind of mutations may
have more dramatic effects on gene products, and may cause diseases like
cancer.

2.4 Microarrays

Microarrays are used for various purposes in bioinformatics. A microarray is a
glass or polymer slide onto which single stranded DNA, i.e. gene sequences or
synthetic DNA, is attached at fixed locations. The DNA that is attached to the
microarray has to be single stranded because the microarray technology
utilises the hybridisation properties of DNA. The attached DNA is commonly
referred to as DNA probes, while the fixed locations are referred to as spots
(or features depending on the chosen technology).

A microarray may contain tens of thousands of spots, each of which can
consist of millions of identical DNA probes. The DNA probes may be
attached to the microarray in different ways depending on the technology that
is used. Some technologies print probes of synthetic DNA onto the microarray
(e.g. the Agilent technology), some use photolithographic techniques (e.g. the
Affymetrix technology) or electrodes (e.g. the CombiMatrix technology) to
attach synthetic DNA probes to the microarray, while other technologies

13

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

deposit small amounts of solutions that contain DNA, i.e. gene sequences or
synthetic DNA, onto the microarray (e.g. the cDNA microarray technology).

One of the applications of microarrays is in gene expression level
experiments, that is, experiments that, for example, examine which genes are
and are not expressed in a cell type (e.g. a skin cell, a liver cell, a muscle cell,
etc.), or which genes are and are not expressed in a cell type under different
conditions (e.g. different disease stages or developmental stages). The
information gene expression level experiments produce can, for instance,
contribute to the development of gene expression profiles (or signatures) for
diseased cells such as cancer cells. Gene expression profiles can, for example,
be a useful tool for identifying disease in patients and determining how the
disease should be treated.

There are different approaches to examine gene expression levels with
microarrays. The general approach is to extract mRNA from a tissue sample,
label the extract and hybridise the labelled extract with the DNA probes on the
microarray. The microarray is then placed in a scanner that detects the
amounts of mRNA extract that have hybridised with the probes of each spot,
and creates an image of the microarray (fig. 2.3).

The image is then processed and converted into a gene expression data matrix
that contain the numerical representation of the expression levels of the genes
represented by the spots on the microarray.

One approach is to use cDNA microarrays to measure the gene expression
levels in different samples (e.g. liver cells in different disease states) relative
to the gene expression levels of a reference sample (e.g. healthy liver cells).

The first step in such an experiment is to prepare the microarrays, one for each
sample not including the reference sample. The preparation process involves
selecting the DNA probes, i.e. the genes whose expressions are to be
measured, and depositing the DNA probes onto the microarrays.

The next step is to extract mRNA transcripts from the different samples, and
the reference sample. The mRNA extracts of the different samples are
commonly referred to as targets, while the mRNA extracted from the reference
sample is referred to as a reference. The targets are then labelled with a
fluorescent red dye, while the reference is labelled with a fluorescent green
dye. Each target is then mixed with reference in equal amounts into target-
reference mixtures, one mixture for each target. The target-reference mixtures
are washed over one microarray each to allow the mRNA of the mixtures to
hybridise with the probes of the microarrays.

14

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

Fig. 2.3: An image of a microarray after hybridisation. The red circles represent
genes that are over-represented in the target, the green circles represent genes that
are under-represented in the target, yellow circles represents genes that are equally
represented in the target and the reference, while black circles represent genes that
is not represented in the target or the reference. The colour intensities of the circles
represent the amount of mRNA-transcripts present in the target and/or the reference,
i.e. a high green intensity indicates that a high amount of the mRNA-transcript of a
gene is present in the reference, a high red intensity indicates that a high amount of
the mRNA-transcript of a gene is present in the target, while a high yellow intensity
indicates that a high amount of the mRNA-transcript of a gene is present in both the
target and the reference. (Illustration adapted from http://smf.stanford.edu/cgi-
bin/data/clickable.pl?fullID=16954GENEPIX16954)

15

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

The mixtures are allowed to hybridise with the probes of the microarrays for a
certain period of time before the excess mixture, i.e. the mRNA that has not
hybridised, is removed from the microarrays. The microarrays are then, one by
one, placed in a scanner that creates an image of each microarrays based on
the fluorescence of the spots of each microarray. The images depict the spots
of each microarrays as coloured or black circles (fig. 2.3). A black circle
means that no mRNA transcripts have hybridised with the probes of a spot,
indicating that the gene represented by the spot represents is unexpressed in
both the reference and the target. A green circle means that more mRNA
transcripts from the reference than from the target have hybridised with the
probes of a spot, indicating that the gene that the spot represents is
underexpressed (i.e. less active) in the target. A red circle is the opposite of a
green circle, meaning that more mRNA transcripts from the target than form
the reference has hybridised with the probes of the spot, and the gene is
therefore underexpressed in the reference. A yellow circle means that
approximately the same amount of mRNA transcripts from the reference and
the target has hybridised with the probes of the spot, indicating that the gene is
more or less equally expressed in the reference and the target.

The next step is to transform each image into a spot quantitation matrix where
the colour intensities of the spots in each image are translated into a numerical
quantity. This process translates underexpression in the target (green spots)
into negative values, underexpression in the reference (red spots) into positive
values, and equal expression (yellow spots) into values around 1.

The last step before the data generated by a microarray experiment can be
analysed is to convert the data of the spot quantitation matrices into a gene
expression data matrix. A gene expression data matrix is an n x m matrix in
which each column represents a sample (i.e. a target), while each row
represents a gene. The values in a row therefore represent the expression
levels of a particular gene in the different samples, while the values in a
column represent the expression levels of the different genes in a particular
sample. Hence, the rows of a gene expression data matrix are referred to as
gene expression profiles, while the columns are referred to as sample
expression profiles. The gene expression data matrix is the basis for all
analysis of gene expression. Figure 2.4 shows a gene expression data matrix in
combination with a heat map.

A heat map is a gene expression data matrix presentation form that presents
the values of the gene expression data matrix as coloured squares; red squares
for positive expression, green for negative expression, and black for equal
expression.

16

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

Note that none of the steps involved in a microarray experiment is trivial. The
description given above should therefore be regarded as a simplification.

Fig. 2.4: A combined gene expression data matrix and heat map that shows the gene
expression levels of 7 genes in two samples (x and y) as represented by the
BioTeach system. A green background indicates under-representation of a gene in
the target (i.e. negative expression level), a red background indicates over-
representation of a gene in the target (i.e. positive expression level), while a black
background indicates equal representation.

2.5 The Sourcer’s Apprentice

The Sourcer’s Apprentice (SA) developed by Britt & Gabrys (2001) is meant
to teach high school students the skill of sourcing and corroboration, two
literacy skills that are required to use multiple sources of information
correctly. The SA-system is a web-application in which the students are to
identify crucial source information about the document excerpts they are
presented with. Students are then to answer questions regarding this
information, and write essays in which they use the information they have
found.

First-time users of the Sourcer’s Apprentice receive instructions on how to use
the application through an interactive skills tutorial. This tutorial describes the
information that is important to identify when using multiple sources of
information, how this information can be found, how the information can be
used when writing papers, and how the information can be used to evaluate
the trustworthiness of the excerpts. The information is broken down into
components (e.g. the author, when the document was written, the publisher
etc.). Each component is discussed separately, and each discussion is followed

17

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

by two control questions that are meant to ensure that the students have
understood both how to find the information component and how to use it.

Students that have been through the tutorial can enter the practice environment
(fig. 6.1) in which they are to practice on finding the information components
discussed in the tutorial in a set of excerpts. The excerpts the students are to
read are represented by a shelf of books, and the students have to click on the
books to access the excerpts. Each book contains four scrollable pages; a table
of contents, a page about the author (contains name, credentials etc.), a page
about the document (contains publisher, when the document was written etc.),
and a page with the actual excerpt. Each book is also accompanied by a
structured note card that lists the information components the students are to
find and insert into the note card.

An information component is inserted into a note card by selecting the text-
phrase that contains the information and dropping the text into a bucket
corresponding to the information component. A correct answer is awarded
with points and the component is displayed in the note card. An incorrect
answer produces a hint. The hints become clearer each time an incorrect
answer is dropped into a bucket, and each hint received reduces the points the
correct answer is awarded with. After a certain number of incorrect attempts
the hints more or less become instructions for finding the correct text-phrase.
Thus, all students should eventually be able to fill in the note cards correctly.

The Sourcer’s Apprentice also offers help if any student should need a
reminder of what kind of information the different buckets accept. Clicking on
a bucket produces the same instructions that were used in the tutorial. Britt &
Gabrys regarded three of the information components, the author’s motive for
writing the text, the main point of the text, and comments, to be too awkward
to answer by the drag and drop technique. Instead of using the excerpts to fill
in the note cards, students have to construct an answer to the three mentioned
components from the respective help texts. These answers are not evaluated
by the application, but are graded by the teacher.

When the note cards are filled in, the students are required to write an essay
about the excerpts they have read supported by the note cards, which are
available during writing. After finishing the essay, the students have to answer
several questions that are meant to ensure that the students have acquired the
literacy skills interspersed with questions about the contents of the texts.
These questions are answered in the same way as the note cards are filled in,
that is, by dragging the correct answer from one of the books into an answer
bucket. The scoring system is also the same; if the answer is correct, the
students receive a number of points, if it is incorrect, the number of points is
decreased for each hint the student receives.

18

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

Fig. 6.1: The practice environment of the Sourcer’s Apprentice with the historical text
at the centre, the structured note cards at the bottom, and the buckets along each
side. The selected text has been dropped into the How Know bucket, and appears in
the How Know slot in the structured note card at the bottom.

2.5.2 Empirical results for the Sourcer’s Apprentice

Britt & Gabrys (2001) performed two studies of the effects of the use of the
Sourcer’s Apprentice. Both studies used a pretest-posttest methodology, and
both studies showed that students that had been exposed to the Sourcer’s
Apprentice showed better sourcing skills than students who had not been
exposed.

Given the good empirical results it could be useful to base web-based
exercises in bioinformatics on the principles and the features of this system.

19

Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

20

Chapter 3 Pairwise global sequence alignment

Chapter 3

Pairwise global sequence alignment

3.1 Introduction

Pairwise global sequence alignment (Durbin et al., 1998; Baxevanis, 2005)
is a technique that is used to examine whether or not genes are related, that
is, whether or not genes have evolved from the same gene through
different sets of mutations. This technique works on pairs of gene
sequences, and determines the relationship between a pair of sequences by
aligning (i.e. comparing) the two sequences residue by residue (e.g. amino
acid by amino acid). Related genes are interesting for various reasons, and
pairwise sequence alignment is therefore used for various purposes.

Related genes tend to function in the same, or at least in a similar, way.
Thus it is possible to use pairwise sequence alignment to gain insight into
the function of a gene with unknown functionality by examining the gene’s
relationship to genes with known functionality.

Another application of pairwise sequence alignment is in studies that
examine the evolution of species. Related genes have, as mentioned,
evolved from the same gene through different sets of mutations, and by
comparing related genes from different species (e.g. humans and gorillas),
it is possible to estimate the amount of time that has passed since the
species separated from their common ancestor and became separate
species.

21

Chapter 3 Pairwise global sequence alignment

Pairwise global sequence alignment can be used on pairs of DNA
sequences and pairs of RNA sequences, as well as on pairs of protein
sequences. The alignment visualisation of the BioTeach system is
implemented to align protein sequences, and protein sequences are
therefore used in the examples of this chapter.

A global alignment of two protein sequences S1 and S2, here
WGQMNSFS and AMNESFQS, might look something like this:

W G Q M N - S F - S
- A - M N E S F Q S

The letters in the alignment represent the amino acids of the sequences,
while the character ‘-‘ represents insertions or deletions that may have
occurred during the evolution of either of the genes. The ‘-‘ character is
commonly referred to as a gap, or as an indel symbol.

When and where to insert gaps in an alignment depends both on the
algorithm that is used to align the two sequences and the algorithm
parameters that are used. There are, however, certain rules that any global
alignment algorithm has to follow:

1) An amino acid in one sequence can be aligned with an amino acid
or a gap in the other sequence. A gap cannot be aligned with a gap.

2) The aligned sequences (each of which contain zero, one or more
gap symbols) should have equal length, so that the i-th residue of
one sequence is aligned with the i-th residue of the other sequence.

Inserting a gap in one sequence (e.g. column 3) means that an amino acid
has been deleted inserted in the other sequence, or that an amino acid has
been deleted from the sequence in which the gap is inserted. It is, however,
impossible to know which of the two alternatives has occurred. It is not
possible to know in which of the sequences a substitution (e.g. column 2)
has occurred either.The previous alignment example showed an alignment
of two sequences of equal length (i.e. with the same number of residues). It
is, however, possible to align two sequences of different lengths:

A C Q K M W F S
- - Q R - W - S

22

Chapter 3 Pairwise global sequence alignment

As this example shows, gaps are always inserted in such a manner that the
lengths of the sequences become identical in the alignment.

One of the problems with pairwise global sequence alignments is that gaps
make it possible to align two sequences in a number of ways. A global
alignment of a pair of sequences of two residues, for instance, has 13
possible alignments (see fig. 3.1), and the number of possible alignments
increases rapidly as the length of the sequences increases. The problem
with multiple possible alignments is simply to determine which of the
alignments are optimal, that is, to determine which of the alignments
represents the mutation sets that are most likely to have occurred naturally.

Another problem is to determine whether or not an global alignment of one
pair of sequences is more optimal than a global alignment of a different
pair of sequences. There are different ways of solving these two problems,
of which the Needleman-Wunsch alignment algorithm is one.

A R - -

- - N E

A - R -

- N - E

A - - R

- N E -

- - A R

N E - -

- A - R

N - E -

- A R -

N - - E

A R -

- N E

A R -

N - E

A - R

- N E

- A R

N E -

- A R

N - E

A - R

N E -

A R

N E

Fig. 3.1: The 13 possible alignments of the protein sequences AR and NE

23

Chapter 3 Pairwise global sequence alignment

3.2 The Needleman-Wunsch alignment algorithm

The Needleman-Wunsch alignment algorithm is one of the algorithms that
is used to find the optimal alignment of a pair of sequences, and is the
algorithm that is visualised by the BioTeach system. It belongs to a group
of algorithms called dynamic programming algorithms, and is used for
finding optimal global alignments; global meaning that the algorithm finds
the optimal alignment of complete sequences, not parts of them as is the
purpose of local alignment algorithms.

The Needleman-Wunsch algorithm finds the optimal alignment of a pair of
sequences by optimising a score function, that is, each possible alignment
is scored according to a score function, and the alignment that yields the
highest score is the optimal alignment of pair of sequence. If the score of
more than one of the possible alignments equals the highest score, there is
more than one optimal alignment of the pair of sequences.

The score of an alignment is computed by assigning each pair of aligned
residues and each residue-gap pair with a score term, and summing these
terms. The sum of these terms is then the score of an alignment. In order
for the score of an alignment to provide any information about the
optimality of the alignment, it is important that the assigned score terms
reflect how mutations occur in nature. Insertions and deletions of residues
are observed less frequently than substitutions and conservations of
residues. Alignments that include insertions and deletions, i.e. gaps, should
therefore yield a lower score than alignments that do not include gaps.
Introducing gaps into an alignment is therefore penalised by assigning
residue-gap pairs with a negative score term, a gap penalty. Some
substitutions are observed more frequently than others, and the score terms
of substitutions may therefore be both positive and negative. Conservations
of residues are observed more frequently than both insertions/deletions and
substitutions, and the score terms for conservations are always positive.
Some conservations are, however, observed more frequently than other,
and the score terms of conservations may therefore vary. Score terms that
corresponds to the observed frequencies of the different substitutions and
conservations have been computed, and are organised in substitution
matrices.

A substitution matrix (fig. 3.2) is a two-dimensional matrix in which each
row and each column contain the score terms for each of the possible
substitutions of a residue, and the score term for conservation of the
residue. A score term for a pair of aligned residues is given in the
intersection of the row that represents the first residue in the pair and the
column that represents the other residue in the pair.

24

Chapter 3 Pairwise global sequence alignment

It is, however, due to the numerous possible alignments of a pair of
sequences, inefficient to separately compute the score of each possible
alignment and then compare these scores to find the optimal alignment (or
alignments) of a pair of sequences. Instead, the Needleman-Wunsch
algorithm treats the optimal global alignment as a construction composed
from the optimal alignments of pairs of subsequences (i.e. shorter parts of
the sequences).

Fig. 3.2: The Blosum62 substitution matrix. Each value in a row represents the
score of aligning the amino acid at the head of the row with each of the other
amino acids. The score of aligning a pair of amino acids is found where the row of
the first amino acid and the column of the second amino acid (or vice versa)
intersect. B and Z are ambiguity codes and the values in those rows (or columns)
represent the score of aspargine or aspartic acid (B) or glutamine or glutamic acid
(Z) with the other amino acids. X represents any amino acid and a value in this
row (or column) represents aligning the amino acid at the head of a column with
any amino acid. The * represents the lowest possible score in a row or column.

With this approach it is possible to view the alignment of the sequences
WGQMNSFS and AMNESFQS given as an example in the previous
section

W G Q M N - S F - S
- A - M N E S F Q S

25

Chapter 3 Pairwise global sequence alignment

as being composed from the optimal alignment of the subsequence pair
WGQMNSF and AMNESFQ, which in turn is composed from the optimal
alignment of the subsequence pair WGQMNSF and AMNESF, which in
turn is composed from the optimal alignment of the subsequence pair
WGQMNS and AMNES, and so forth. Thus, the problem of finding the
optimal alignment is decomposed into finding the optimal subsequence
alignments that compose the optimal global alignment of a pair of
sequences. This problem is solved by constructing a score matrix, F (fig.
3.3), composed of the optimal scores of the optimal subsequence
alignments, and following the optimal path from the last cell of the score
matrix to the first cell.

Fig.3.3: The score matrix of the alignment of the sequences PWR and WQNS
using a gap penalty of -5 and the Blosum62 matrix as represented by the
BioTeach-system. Each cell represents the optimal alignment of the i (i.e. the
column number) first residues of the first sequence, here PWR, and the j first
sequences of the second sequence, here WQNS. The arrows represents the
pointers of the cells, and indicate through which of the neighbouring cells the path
to the first cell, cell F(0, 0), is.

A score matrix for the alignment of a sequence A of i residues and a
sequence B of j residues is represented as a matrix of (i +1) rows and (j +
1) columns excluding the header row and column. The residues of
sequence A is given in the cells of the header row preceded by an indel
symbol, while the residues of sequence B is given in the cells of the header
column, also preceded by an indel symbol. The columns of the score
matrix are numbered from 0 to i, while the rows are numbered from 0 to j.
Hence, a cell in a score matrix is referred to as F(i, j). The construction of
the score matrix starts with initialising the first cell of matrix, cell F(0, 0),
to zero. The scores of the remaining cells of the first row are then
computed with the expression

F(i, 0) = i * gap penalty

Each of these cells represents the alignment of the i first residues of
sequence A and a gap, as well as the score of each of these alignments.

26

Chapter 3 Pairwise global sequence alignment

A pointer to the preceding cell is also included in each of these cells to
indicate that the path from each cell to the first cell of the matrix is through
the preceding cell.

The next step is to compute the scores of the remaining cells of the first
column. The scores of these cells are computed with the expression

F(0, j) = j * gap penalty

Each of these cells represents the alignment of the j first residues of
sequence B and a gap, as well as the score of each of these alignments. A
pointer to the preceding cell is included in these cells for the same reason
as a pointer was included in each of the cells of the first row.

The scores of each of the remaining cells, F(i, j), are then determined, row
by row, by extending the alignments represented by the cells F(i-1, j), F(i-
1, j-1), and F(i, j-1) with

1) the alignment of the i-th residue of the sequence A and a gap

2) the alignment of the i-th residue of sequence A and the j-th residue
of sequence B

3) the alignment of the j-th residue of sequence B and a gap

respectively. The extension that yields the highest score according to the
score function is the optimal alignment of the i first residues of sequence A
and the j first residues of sequence B. A pointer to the cell that represents
the alignment that was extended is therefore added to cell F(i, j) to indicate
that the path from F(i, j) to F(0, 0) is through the cell that represents the
alignment that was extended. If the score of more than one extension
equals the highest score, there are more than one optimal alignment of
sequence A and B. A pointer to each of the cells that represents an
alignments that was extended therefore has to be added to cell F(i, j).

Because of the order in which the scores of the cells of the matrix are
computed, the scores of cells F(i-1, j), F(i-1, j-1), and F(i, j-1) have already
been computed. Thus, the score of each of the extensions can be computed
by

1) adding the gap penalty to the score of cell F(i-1, j)

2) adding the substitution matrix score term for aligning the i-th
residue of sequence A and the j-th residue of sequence B to the
score of cell F(i-1, j-1)

adding the gap penalty to the score of cell F(i, j-1)

27

Chapter 3 Pairwise global sequence alignment

The more formal representation of the calculation of the optimal score of a
cell is:









+−
+−−

+−
=

penaltygapjiF
jisjiF

penaltygapjiF
jiF

)1,(
),()1,1(

),1(
),(

where s(i, j) represents the substitution matrix score term for aligning the i-
th residue of sequence A with the j-th residue of sequence B.

The optimal alignment of a pair of sequences can be found once the score
matrix is completed. The optimal alignment is found by following the path
of pointers from the last cell of the score matrix, cell F(i, j), to the first
cell, cell F(0, 0). Note that the alignment is built in reverse. The directions
of the pointers determine how the sequences are aligned:

1) A pointer from F(i, j) up towards F(i, j-1) means aligning the j-th
residue of sequence B with a gap

2) A pointer from F(i, j) diagonally towards F(i-1, j-1) means aligning
the i-th residue of sequence A with the j-th residue of sequence B

3) A pointer from F(i, j) left towards F(i-1, j) means aligning the i-th
residue of sequence A with a gap

The last cell of the score matrix represents the optimal score of an
alignment, and it is this score that is used to determine whether or not an
alignment of one pair of sequences is more optimal than an alignment of a
different pair of sequences.

28

Chapter 4 Clustering of microarray data

Chapter 4

Clustering of microarray data

4.1 Introduction

Clustering (Draghici, 2003; Causton et al., 2003; Berrar et al., 2003) is one of
the most popular approaches to analyzing gene expression data. The purpose
of this approach is to group genes or samples with similar expression profiles
(see fig. 4.1), that is, to group genes with similar expression levels in the
different samples, or to group samples in which the different genes are
expressed similarly. This approach to microarray data analysis can, for
instance, be useful for identifying different types of behaviour, and for
reducing the dimensions of the data.

Clustering is a well-established field and a number of algorithms have been
developed. Which algorithm performs best depends on the dataset, and
complex algorithms are not necessarily better than simple algorithms. In
general there are two groups of clustering algorithms: hierarchical and flat.

Only the three algorithms implemented in the clustering application of the
BioTeach system will be discussed in this chapter.

29

Chapter 4 Clustering of microarray data

Fig. 4.1: A heat map in which the samples (i.e. the columns) have been grouped in
three distinct clusters, while the genes (i.e. the rows) have been grouped in 4 clusters.

4.2 Similarity between objects

The first step in a clustering process would be to define similarity between the
objects (i.e. genes or samples) that are to be clustered. By treating the gene
expression data matrix as a matrix of m samples (or columns) and n genes (or
rows), it is possible to treat a row (i.e. the expression levels of a gene in the m
samples) as an m-dimensional vector, and a column (i.e. the expression levels
of the n genes in a sample) as an n-dimensional vector.

As it is possible to calculate the distance between vectors of the same
dimension, it is possible to treat similarity between genes or samples as the
distance between their vectors. There are, however, different ways of
calculating the distance between vectors, and which distance measurement to
use depends on the purpose of the clustering.

The clustering application of the BioTeach system (chapter 5) uses Euclidean
distance as the similarity measurement. The Euclidean distance, dE, between
two n-dimensional vectors x = (x1, x2, …, xn) and y = (y1, y2, …, yn) is

30

Chapter 4 Clustering of microarray data

 ∑
=

−=
n

i
iiE yxd

1

2)(

This distance measurement corresponds to the distance between two points we
humans interpret as the length of a straight line between the two points. The
purpose of the clustering application of the BioTeach system is to demonstrate
the workings of different clustering algorithms by visualisation, and it would
be confusing if the data were clustered according to some distance measure
that does not correspond to the distances that are seen in the data on the
screen.

Another distance measurement is the Pearson correlation coefficient. The
Pearson correlation coefficient compares the components of two n-
dimensional vectors to determine whether or not the components vary in the
same way. Vectors whose components vary in the same, or similar, way
produces a high correlation coefficient and are said to be similar, while
vectors with components that do not vary in the same way produce a low
correlation coefficient and are said to be dissimilar.

Please refer to chapter 11.2 of Draghici (2003) for information on the different
distance measurements.

4.2 Hierarchical clustering

The hierarchical clustering algorithm that is implemented in the BioTeach
system is agglomerative. A hierarchical agglomerative clustering starts by
treating each entity (i.e. row/gene or column/sample) of the dataset as
separate, or singleton, clusters. The two most similar, i.e. the closest, clusters
are then grouped together, reducing the total number of clusters by one. This
process is then repeated until all entities are grouped in one large cluster.

The hierarchical clustering algorithm can be divided into the following steps
(Quackenbush, 2005):

1. Calculate the pairwise distance matrix for all of the singleton
clusters to be clustered, that is, to calculate and organise the
distances between the vectors representing the genes or
samples into a matrix.

31

Chapter 4 Clustering of microarray data

2. Search the distance matrix for the two most similar clusters
(i.e. the clusters with the least distance between them). This is
the true first stage in the clustering process. If several pairs
share the same similarity, a predefined rule is used to decide
between alternatives.

3. The two selected clusters are merged to produce a new cluster
that now contains two or more objects.

4. The distances are calculated between this new cluster and all
other clusters. There is no need to calculate all distances
because only those involving the new cluster have changed

5. Steps 2 through 4 are repeated until all objects are grouped in
one cluster.

In order to make this algorithm work, one has to know the distance between
all the clusters, which is rather easy when there only are singleton clusters.
When non-singleton clusters are grouped with other clusters, singleton or non-
singleton, the distance between all the entities in one cluster and all the
entities in the other cluster has to be known, and there are different ways to
define the least distance. The three approaches implemented by the BioTeach
system are single linkage, complete linkage, and average linkage (see figure
4.2).

Single linkage

Single linkage, or nearest neighbour linkage, group the two clusters with the
least minimum distance between two of their respective entities.

Complete linkage

Complete linkage, or furthest neighbour linkage, groups the two clusters with
least maximum distance between two of their respective entities.

Average linkage

Average linkage groups the two clusters with least average distance. Average
distance is here the average of the distances between all the entities in one
cluster and all the entities in the other cluster.

32

Chapter 4 Clustering of microarray data

Fig. 4.2: The three different least distance measurements implementet by the
BioTeach system. The connected objects represents the objects that define the least
distance between two clusters.

The result of the hierarchical clustering approach is represented as a
hierarchical tree or dendrogram in which the leaf nodes represent the entities
of the dataset. The clusters are found by drawing a horizontal line across the
dendrogram, and look at the subtrees below the line.

Figure 4.3 shows the dendrogram of a clustering of 13 genes using complete
linkage, in which the horizontal line defines three different clusters. The leaf
nodes in the dendrogram represent the entities of the dataset (in figure 4.3,
genes).

Fig. 4.3: A dendrogram as represented by the BioTeach system. It shows the
clustering of 13 genes using complete linkage. The horizontal line defines the
different clusters. Here it defines the three clusters A, B, and C: A = 6, 7, 4, 5; B = 13,
8, 12, 10, 9, 11; and C = 1, 2, 3. Different cluster definitions can be found by moving
the horizontal line up or down.

33

Chapter 4 Clustering of microarray data

It is also possible to implement the algorithm to represent similarity through
the length of the branches. This option is implemented in the BioTeach
clustering application, and the two most similar genes of figure 4.3 are gene 8
and gene 12.

4.3 K-means clustering

K-means clustering is one of the simplest and fastest algorithms, and is
therefore widely used. It is a non-hierarchical algorithm that starts by defining
k points as cluster centres, or centroids in the input space (i.e. the n-
dimensional space defined by the number of genes, or the m-dimensional
space defined by the number of samples).

The algorithm clusters the objects (e.g. genes/rows or samples/columns) of a
dataset by iterating over the objects, assigning each object to one of the
centroids, and moving each centroid towards the centre of a cluster. This
process is repeated until some termination criterion is reached. When this
criterion is reached, each centroid is located at a cluster centre, and the objects
that are assigned to a particular centroid form a cluster. Thus, the number of
centroids determines the number of possible clusters.

Hence, the number of centroids affects the results of the algorithm; a
clustering using five centroids would obviously produce different results than
a clustering using four centroids. The results are further affected by the initial
positions of the centroids; different initial positions may cause an object to be
assigned to a different centroid, and the algorithm may therefore yield a
different set of clusters. Thus, the number of centroids and their position has
to be chosen carefully. There are different ways of implementing this
algorithm. The BioTeach system implements two variants: the batch variant
and the online variant (The names are taken from Ripley, 1996).

4.3.1 The batch variant

The batch variant of the k-means algorithm can be divided into two steps:
object assignment and centroid relocation. The first step, object assignment,
starts once the centroids have been placed in the input space. In this step the
algorithm iterates over the objects in the dataset and assigns each object to the
closest centroid. The next step, centroid relocation, moves each centroid to the

34

Chapter 4 Clustering of microarray data

position in the input space that corresponds to the average position of the
vectors representing the objects assigned to each centroid.

As the centroids are moved, some of the objects may now be closer to
different centroids than the ones they initially were assigned to, requiring the
object assignment step to be repeated. As the assignments of the objects are
revaluated, some centroids may receive additional objects, while others may
have some objects removed. The average position of the vectors representing
the objects assigned to a centroid may thus shift, requiring the centroids to be
relocated again.

The cycle of object assignment and centroid relocation is repeated until the
clusters stabilise (i.e. the objects assigned to the centroids remain the same), or
until a predefined maximum number of cycles (e.g. 20.000 to 100.000) has
been reached.

The batch variant implemented in the BioTeach system uses the former
termination criterion.

Thus, the steps involved in a k-means batch clustering are:

1) iterate over the set of objects, and for each object in the set

a. find the closest centroid

b. assign the object to the closest centroid

2) iterate over the centroids, and for each centroid

a. calculate the average vector of the objects that are assigned to
the centroid

b. relocate the centroid at the position of the average vector of the
objects that are assigned to the centroid

3) repeat steps 1 and 2 until the centroids no longer have to be relocated,
or until the predefined number of cycles is reached.

35

Chapter 4 Clustering of microarray data

4.3.2 The online variant

This variant of the k-means algorithm uses the same approach as the batch
variant, that is, it can be divided into the same two steps as the batch variant.
The two variants do, however, differ in their execution of the two steps. While
the batch variant iterates over the objects of the whole dataset before the
centroids are relocated, the online variant moves a centroid at each step of the
iteration, that is, each object of the dataset pulls the nearest centroid a certain
distance towards itself. In the BioTeach system this distance is 1% of the
distance between the object and the centroid. This approach is similar to that
of Self Organizing Maps (which are discussed in the next section), and the
result is that the centroids appear to be gliding rather than jumping towards the
cluster centres of the dataset.

The online variant also uses a different termination criterion than the batch
variant. The centroids are only moved a slight distance each time, and the
objects assigned to a centroid could therefore appear to be stable for a while,
but, as the centroid moves towards the cluster centre, it could move in such a
way that it become the closest centroid to objects that are assigned to other
centroids. Thus, it is possible for a centroid to “steal” objects from other
centriods and change an object assignment that seemed to be stable. The
termination criterion used in the batch variant would, in such cases, cause the
algorithm to terminate prematurely. One way of ensuring convergence, and to
avoid premature termination, is to reduce the distance a centroid is moved
gradually over a number of iterations. The termination criterion implemented
in the BioTeach system will be discussed in the next chapter.

The steps involved in a k-means online clustering are thus:

1. iterate over the set of objects, and for each object

a. find the closes centroid

b. move the closest centroid a certain distance towards the object

2. repeat step 1 until termination criterion is reached.

36

Chapter 4 Clustering of microarray data

4.4 Self organizing maps

Self organizing maps, or self organizing feature maps (hence referred to as
SOM), is a neural network technique developed by Teuvo Kohonen that can
be used to cluster microarray data.

A SOM is a grid (e.g. a line, an array, a cube, a parallelepiped) of units that
represent the clusters. The units are organised in neighbourhoods, and the size
of the neighbourhoods depends on which grid is used to represent the SOM;
the units of a line grid, for instance, would, with the exception of the first and
the last unit, have two neighbouring units each, one behind and one in front.

Clustering a dataset with a SOM is achieved by stretching the grid to fit the
dataset. This is accomplished by iterating over the entities of the dataset, and
for each entity, move the nearest unit a certain distance towards the entity.
Because each unit is a part of a neighbourhood, the neighbours of a unit are
also moved. The neighbours are only moved a portion of the distance a unit is
moved, but the neighbours are moved in such a way that the distances between
a unit and its neighbours mirror the similarity between the cluster a unit
represents and the clusters the neighbours represent.

This process is repeated until some convergence criterion is reached. A
common way of ensuring convergence is to reduce the distance the units and
its neighbours are moved, and/or to reduce the size of the neighbourhoods
gradually until the units stops moving. When convergence is reached, the grid
that represents the SOM has been stretched to fit the dataset in such a way that
the organisation of the units represents the relationships which are found
between the objects in the dataset.

The steps involved in a clustering with a SOM are then:

1. iterate over the set of objects, and for each object

a. find the closest unit

b. move the closest unit a certain distance towards the object

c. move the neighbouring units a certain distance towards the
object

2. repeat step 1 until convergence is achieved

37

Chapter 4 Clustering of microarray data

38

Chapter 5 The BioTeach system

Chapter 5

The BioTeach system

5.1 Introduction

The purpose of developing the BioTeach system is to explore how the
Needleman-Wunsch alignment algorithm discussed in chapter 3.2, and the
clustering algorithms discussed in chapter 4 (i.e. hierarchical clustering, k-
means clustering, and self organising maps) can be visualised in a web-based
learning environment for bioinformatics. These algorithms were chosen
because they represent two central, yet entirely different, fields in
bioinformatics.

The BioTeach system is composed of a Java-based Needleman-Wunsch
alignment application, a Java-based clustering application, and a HTML-based
portal. The alignment application implements a visualisation of the
Needleman-Wunsch algorithm and a Needleman-Wunsch exercise, while the
clustering application implements a visualisation of the three clustering
algorithms.

This chapter does not discuss the details of the technical solution of the
BioTeach system. Readers who are interested in technical details about the
implementation, installation, and configuration of the system are advised to
refer to the appendices and the source code. The source code can be

39

Chapter 5 The BioTeach system

downloaded by selecting the download-link from the visualisation menu of the
system.

5.2 The portal

The idea with the portal (fig. 5.1) is, apart from providing a single access point
to the two applications, to create a uniform and easily navigable environment
for the applications.

The portal is composed of a visualisation menu that provides access to either
web applications, a help menu that provides explanations of the Needleman-
Wunsch and clustering algorithms, a header, and a footer. The layout of the
portal is such that these four elements constitute the four edges of a frame: the
header is the top edge, the footer the bottom edge, the visualisation menu the
left edge, and the help menu the right edge. The space within the frame is
reserved for the two web applications, that is, once either of the applications is
chosen from the visualisation menu, the chosen application opens within the
frame. Thus, the frame remains the same for both applications, creating a
uniform environment that at all times provides access to the visualisation
menu and the help menu.

The help menu is designed to open the explanations of the algorithms in a
separate browser window in order to allow an application to be run and an
explanation to be viewed simultaneously.

The portal and the web applications can be accessed at:

http://www.ifi.uio.no/bioinf/Projects/BioTeach

Selecting the alignment application from the visualisation menu opens the
main page of the alignment application. This page provides links to the
Needleman-Wunsch visualisation and the exercise. Selecting the clustering
application from the menu opens the introduction page of the clustering
visualisation. This page explains the components of the clustering
visualisation interface, and provides a link that starts the visualisation
application.

40

Chapter 5 The BioTeach system

Fig. 5.1: The BioTeach portal with the implemented visualisations to the left, and the
help menu to the right.

5.3 The Needleman-Wunsch visualisation

The Needleman-Wunsch visualisation is designed to teach how the
Needleman-Wunsch algorithm aligns protein sequences by visualising the
steps that are involved in protein sequence alignments. The key to
understanding the algorithm is to understand how the score matrix is
computed. The focus of the visualisation is therefore on demonstrating how a
score matrix is computed, and how the optimal alignment is found in the score
matrix.

The score matrix (fig. 5.2) of the Needleman-Wunsch visualisation is based on
the principles that were discussed in chapter 3. The amino acids that compose
the first protein sequence, sequence A, of an alignment are given, preceded by
an indel symbol, in the header row, while the amino acids that compose the
second protein sequence, sequence B, are given, also preceded by an indel
symbol, in the header column. The rows of the matrix are numbered from 0 to
i, while the columns are numbered from 0 to j. The cells of the matrix are
assigned with a set of coordinates on the form (i, j), where i refers to the
column and j the row in which the cell can be found. Each cell, except the
cells in the first row and column, represents the optimal alignment of the i first
amino acids of sequence A and the j first amino acids of sequence B, and
presents the optimal score of these optimal alignments. Each cell also includes
pointers that indicate through which of the neighbouring cells the path to the

41

Chapter 5 The BioTeach system

first cell continues. The cells in the first row represent aligning each of the i
first amino acids of sequence A with a gap, while the cells in the first column
represent aligning each of the j first amino acids of sequence B with a gap.
The matrix is referred to as F, and a cell is referred to as F(i, j) The upper left
cell is the first cell of the matrix, and is referred to as cell
F(0, 0).

The score matrix is supplemented with a computation table (fig. 5.2) that
presents the expressions and the calculations that are involved in the
computation of the score matrix. The computation table also indicates how the
directions of the pointers are determined. The idea with providing this
information is to show how the expressions are used during the computation
of a score matrix. The computation table also shows which cell is being
processed to make it possible to verify the calculations presented by the
computation table without having to count columns and rows.

The visualisation also provides a link (fig. 5.2) to the substitution matrix that
is used in an alignment. The purpose of providing this link is to allow the
calculations that include values from the substitution matrix to be verified.
The substitution matrix opens in a separate browser window in order to allow
the substitution matrix and the visualisation to be viewed simultaneously.

The visualisation is rounded off with a set of navigation buttons that controls
the progress of the visualisation. There is a next-button that displays the next
step in an alignment, a previous-button that displays the previous step in an
alignment, and a finish-button that completes an alignment and displays the
completed score matrix and the optimal alignments. There is also a button that
aborts a visualisation, and a button that allows a new alignment visualisation
to be configured.

The Needleman-Wunsch visualisation is implemented with two types of
visualisations: a simple visualisation and an advanced visualisation.

42

Chapter 5 The BioTeach system

Fig. 5.2: The visualisation interface with the score matrix, the computation table, the
link to the substitution matrix, and the buttons.

5.3.1 The simple visualisation

The simple visualisation is meant to be an introduction to the Needleman-
Wuncsh algorithm, and is intended for first-time users who have limited
experience with the algorithm. The simple visualisation demonstrates how the
Needleman-Wunsch algorithm aligns the sequence pair LWA and RSP, using
a gap penalty of -5 and the Blosum62 substitution matrix. This visualisation
begins with a page that describes the input parameters that are used in the
visualisation, and a button that starts the visualisation. Since this visualisation
demonstrates the alignment of a specific pair of sequences using a specific gap
penalty and substitution matrix, the button that allows a new alignment
visualisation to be configured is excluded from this visualisation.

43

Chapter 5 The BioTeach system

5.3.2 The advanced visualisation

The advanced visualisation allows the users to define the input parameter of
the alignment that shall be visualised, and is intended for users who have
some experience with the Needleman-Wunsch algorithm.

The idea with this visualisation is to provide an environment in which it is
possible to experiment with different input parameters, and learn how the
algorithm works by observing how different input parameters affect an
alignment. An advanced visualisation is configured by entering a valid pair of
sequences and a valid gap penalty into a form, and by selecting one of the six
implemented substitution matrices from a list in the form. The six
implemented substitution matrices are: Blosum80, Blosum62, Blosum45,
Pam250, Pam120, and Pam30.

The advanced visualisation begins with a page that contains a listing of the
valid amino acids, a recommendation regarding a sensible gap penalty
(negative or zero), the configuration form, and a button that starts the
visualisation (fig 5.3). Entering invalid sequences or an invalid gap penalty
and pressing the start-button produces an error message instead of starting the
visualisation of the alignment.

A valid sequence is composed of at least one, and maximum eight, of the
following amino acids:

A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V, B, Z, X.

The limit of eight amino acids was set because sequences of greater length
produce a score matrix that is too wide to fit within the frame of the portal,
and it would then be impossible to view the complete score matrix.

A valid gap penalty is any integer in the range

[-9.999.999, 99.999.999]

This range was chosen because gap penalties longer than eight digits, or seven
digits for negative numbers, produce scores that are too long to fit on a single
line in the score matrix, resulting in a score matrix that is difficult to read.

The fields of the configuration form are implemented such that it is impossible
to enter sequences or gap penalties that exceed the limit of eight amino acids
or eight digits.

44

Chapter 5 The BioTeach system

Fig 5.3: The configuration form of the advanced visualisation. The form configures
here a visualisation of the alignment of the sequences WGQMNSFS and
AMNESFQS using a gap penalty of -5 and the Blosum62 substitution matrix.

5.3.3 Explanation of the visualisation

All sequence alignments that are conducted with the Needleman-Wunsch
algorithm starts with the initialisation of cell F(0, 0), the first cell of the first
row, of the score matrix. The score of this cell is predefined to zero. Thus,
both the simple and the advanced visualisation starts with a score matrix in
which cell F(0, 0) has been initialised to zero (fig. 5.4).

Since the score of cell F(0, 0) is predefined, there are therefore no expressions
or calculations to display in the computation table.

The visualisation continues with the initialisation of the first row and column
once cell F(0, 0) has been initialised. The initialisation process includes
computing the scores of the cells of the first row and column, and setting the
direction of the pointers of the cells.

The initialisation process starts with the initialisation of the first row. Thus,
pressing the next-button after the initialisation of cell F(0, 0) produces a score
matrix in which the two first cells of the first row, cell F(0, 0) and cell F(1, 0),
have been initialised (fig. 5.5). Cell F(0, 0) precedes cell F(1, 0), and a pointer

45

Chapter 5 The BioTeach system

Fig 5.4: An example of the visualisation interface the users are presented with when
a visualisation is started. The score matrix at the top shows that the score of cell
F(0, 0), the first cell of the first row is zero. The computation table at the bottom
shows that the current step in the alignment is the initialisation of cell F(0, 0).

to cell F(0, 0) is therefore included in cell F(1, 0) to indicate that the path from
cell F(1, 0) to cell F(0, 0) is towards the left.

The accompanying computation table now shows that the current step in the
alignment is the initialisation of cell F(1, 0), and displays the expression and
the calculation with which the score of cell F(1, 0) were computed (fig. 5.5).

The expression that is used to compute the score of the cell F(1, 0) and the
other cells of the first row is

i * gap penalty

in which i denotes the column that the cell is located in. The computation
table also displays that the current step of the alignment is the initialisation of
F(1, 0).

The next step in the alignment is the initialisation of the second cell of the first
row, cell F(2, 0). Thus, pressing the next-button a second time produces a
score matrix in which cells F(0, 0), F(1, 0) and the third cell of the first row, F
(2, 0), have been initialised (fig. 5.6). The path from cell F(2, 0) to cell
F(0, 0) is through cell F(1, 0), and hence a pointer to cell F(1, 0) is added to
cell F(2, 0).

46

Chapter 5 The BioTeach system

Fig. 5.5: An example of the score matrix and the computation table the users are
presented with in the first step of the initialisation of the first row of the score matrix.
The pointer in the second cell in the first row, cell F(1, 0) of the score matrix indicates
that the path from cell F(1, 0) to cell F(0, 0) is to the left. The computation table
displays that the current step in the alignment is the initialisation of F(1, 0), the
expression that is used to compute the score, and the calculation of the score.

The accompanying computation table now shows that the current step of the
alignment is the initialisation of cell F(2, 0), and displays the calculation of the
score of cell F(2, 0) (fig. 5.6).

This pattern of presentation is repeated for each of the remaining cells of the
first row. That is, each time the next button is pressed, a score matrix is
presented in which the next un-initialised cell, cell F(x, 0), has been initialised
with a score and a pointer to the preceding cell. The accompanying
computation table shows that the current step of the alignment is the
initialisation of cell F(x, 0), and displays the calculation with which the score
of cell F(x, 0) was computed.

Once the initialisation of the first row is completed, the next step in the
initialisation process is the initialisation of the first column. Thus, pressing the
next-button after the initialisation of the first row is completed produces a
score matrix in which the cells of the first row, cells F(0, 0) to F(i, 0),

47

Chapter 5 The BioTeach system

Fig. 5.6: An example of the score matrix and computation table the users are
presented with at the second step in the initialisation of the first row of the score
matrix. The pointer in the third cell in the first row, cell F(2, 0), indicates that the path
from cell F(2, 0) to cell F(0, 0) is through cell F(1, 0). The computation table shows
that the current step in the alignment is the initialisation of cell F(2, 0), the expression
used to compute the score of cell F(2, 0), and the calculation of the score.

and the second cell of the first column, cell F(0, 1), have been initialised (fig.
5.7). Cell F(0, 0) precedes cell F(0, 1), and a pointer to cell F(0, 0) is therefore
added to cell F(0, 1) to indicate that the path from cell F(0, 1) to cell F(0, 0) is
upwards.

The score of cell F(0, 1) and the rest of the cells in the first column is
computed with the expression

j * gap penalty

where j denotes the row in which the cell is located. Thus, the computation
table (fig. 5.7) that accompanies the score matrix now displays this expression
and the calculation of this expression for cell F(0, 1).

The computation table also shows that the current step of the alignment is the
initialisation of cell F(0, 1).

The initialisation of the remaining un-initialised cells of the first column is
visualised in the same manner. That is, each time the next-button is pressed, a
score matrix is presented in which the next un-initialised cell, cell F(0, y), has
been initialised with a score and a pointer to the preceding cell.

48

Chapter 5 The BioTeach system

Fig 5.7: An example of a score matrix and computation table the users are presented
with in the first step of the initialisation of the first column of the score matrix. The
pointer of the cell in the first row and first column, cell F(0, 1), indicates that the path
from cell F(0, 1) to from cell F(0, 0) is upwards. The computation table shows that the
current step in the alignment is the initialisation of cell F(0, 1), the expression that is
used to compute the score of cell F(0, 1), and the calculation of the score.

The accompanying computation table shows that the current step of the
alignment is the initialisation of cell F(0, y), and displays the calculation with
which the score of cell F(0, y) was computed.

Once the initialisation process is completed, the next step is to compute the
scores and determine the directions of the pointers of the remaining cells,
starting with the second cell in the second row and column, cell F(1, 1). Thus,
pressing the next-button after the initialisation process is completed produces
a score matrix in which the scores and pointers of the cells of the first row, the
first column, and cell F(1, 1) have been determined (fig. 5.8).

The general expression that is used to compute the score of cell F(1, 1) and the
other remaining cells is








+−
+−−

+−
=

penaltygapjiF
jisjiF

penaltygapjiF
jiF

),1(
),()1,1(

)1,(
max),(

49

Chapter 5 The BioTeach system

Fig. 5.8: An example of a score matrix and computation table the users are
presented with when the initialisation of the first row and column is completed. The
pointer in the second cell of the second row, cell F(1, 1), indicates that the path from
cell F(1, 1) to cell F(0, 0) is up and to the left. The computation table shows that the
current step in the alignment is the computation of cell F(1, 1), that the expression s(i,
j) represent the score of aligning the first amino acid of the first and second
sequence, the expression that is used to compute the score of cell F(1, 1), the
calculations that are used to determine the score of cell F(1, 1), and which pointer
directions the calculations represent.

where i denotes the column in which the cell whose score is being computed is
located, and j the column. The term s(i, j) refers to the substitution matrix
score of aligning the i-th amino acid in sequence A with the j-th amino acid in
the sequence B.

The score of F(1, 1) and the other remaining cells is found, as the above
expression shows, by computing the three expressions to the right of the brace
(hence referred to as the sub-expressions) for F(1, 1) and each of the
remaining cells, and for each cell compare the sums the sub-expression yields
to find the highest sum. The highest sum is then the score of a cell.

The sub-expressions also represent the three rules an alignment has to obey:

1) the j-th amino acid of sequence B can aligned with a gap (represented
by the first sub-expression)

2) the i-th amino acid of sequence A can aligned with the j-th amino acid
of sequence B (represented by the second sub-expression)

50

Chapter 5 The BioTeach system

3) the i-th amino acid of sequence A can be aligned with a gap
(represented by the third sub-expression)

The sub-expression that yields the highest score therefore determines the
direction of the pointer of a cell, cell F(x, y). Thus:

1) if the first sub-expression yields the highest score, the optimal
alignment represented by cell F(x, y) is an extension of the optimal
alignment represented by cell F(x, y-1), and a pointer to cell F(x, y-1)
is added to cell F(x, y).

2) if the second sub-expression yields the highest score, the optimal
alignment represented by cell F(x, y) is an extension of the optimal
alignment represented by cell F(x-1, j-1), and a pointer to cell
F(x-1, y-1) is added to cell F(x, y).

3) if the third sub-expression yields the highest score, the optimal
alignment represented by cell F(x, y) is an extension of the optimal
alignment represented by cell F(x-1, y), and a pointer to cell F(x-1, y)
is added to cell F(x, y).

It is, however, possible for two, or all three, sub-expressions to yield the same
score, and there may therefore be up to three pointers in cell F(1, 1) and the
remaining cells. A cell with more than one pointer signifies that there is more
than one optimal alignment of sequence A and sequence B.

For F(1, 1) the sub-expressions are

1) F(1, 0) + gap penalty

2) F(0, 0) + s(1, 1)

3) F(0, 1) + gap penalty

Thus, the score of cell F(1, 1) is found by

1) adding the gap penalty to the score of cell F(1, 0), the cell above cell F
(1, 1)

2) adding the score of aligning the first amino acid of the first sequence
with the first amino acid of the second sequence to the score of cell F
(0, 0), the cell above and to the left of cell F(1, 1)

51

Chapter 5 The BioTeach system

3) adding the gap penalty to the score of cell F(0, 1), the cell to the left of
cell F(1, 1)

and then comparing these sums to determine which is highest. The pointer (or
pointers) is then added to cell F(1, 1) according to the rules described above.

The computation table that accompanies the score matrix now displays, apart
from that the current step is the computation of F(1, 1), which alignment the
term s(i, j) represents, the general expression that is used in the computation of
cell F(1, 1) and the remaining cells, the calculation of the sub-expressions, and
the pointer direction each of the sub-expressions represent (fig. 5.9). The
calculation (or calculations) that yields the highest sum is, along with the
pointer direction it represents, marked with red to make it easier to see the
connection between the sub-expression that yields the highest score and the
score and pointer (or pointers) that is found in cell F(1, 1).

Fig. 5.9: An example of a computation table the users are presented with once the
initialisation of the first row and column of the score matrix is completed. The
computation table shows the current step in the alignment (here the computation of
the score of cell F(1, 1)), which alignment the term s(i, j) represents (here the
alignment of the amino acids W and A), the expression that is used to compute the
score of a cell, the calculations that are made to compute the score, and the pointer
direction each of the calculations represent. The calculation(s) that yield the highest
score and the corresponding pointer direction(s) is marked with red to make it easier
for the users to connect the score and pointer direction of the cell with the
calculations.

The computation of the remaining cells are visualised in the same manner,
row by row, until the last cell, F(i, j), has been computed. Thus, pressing the
next-button after the computation of the score of cell F(1, 1) is completed
produces a score matrix in which the scores and pointers of the cells in the
first row, the first column, and cells F(1, 1) and F(2, 1) have been set.

52

Chapter 5 The BioTeach system

The accompanying computation table shows that the current step in the
alignment is the computation of cell F(2, 1), and displays the calculations of
the sub-expressions for cell F(2, 1), which of the calculations yield the highest
score, and which alignment the term s(i, j) represents.

Once the second row, i.e. cells F(1, 1) to F(i, 1), is completed, the
visualisation continues with the computation of the third row, cells F(1, 2) to
F(i, 2), followed by the computation of the fourth row, cells F(1, 3) to F(i, 3),
and so forth until the last row, cells F(1, j) to F(i, j), is completed. Each step is
accompanied by a computation table similar to that which accompanies the
computation of cell F(1, 1) and F(2, 1) updated to show the current step, the
calculations and so forth.

As the last row is completed, the next-button is replaced by a show-optimal-
alignments-button. Pressing this button presents the optimal alignment or set
of alignments for a pair of sequences. The optimal alignment is found by
following the path of pointers from the last cell, cell F(i, j) to the first cell, cell
F(0, 0), and if there is more than one path from the last cell to the first cell,
then there is more than one optimal alignment. The optimal alignment(s) are
supplemented with a score matrix in which the optimal path (or paths) has
been marked with red to make it easier to verify the optimal alignment(s)
(fig. 5.10).

 A visualisation of an alignment can, at any time, be completed by pressing the
finish-button. Pressing the finish-button produces the same score matrix as
was described in the above paragraph, and a listing of the optimal alignment
(or alignments).

A visualisation can also, at any time, be aborted by pressing the main page-
button, which returns the users to the main page of the alignment application.

53

Chapter 5 The BioTeach system

Fig 5.10: An example of a completed score matrix and the optimal alignments. The
optimal path through the score matrix is marked with red to make it easier for the
users to verify the optimal alignment(s).

5.4 The Needleman-Wunsch exercise

The Needleman-Wunsch exercise is meant as an example on how an exercise
can be implemented in a web-based learning environment, and as a
supplement to the Needleman-Wunsch visualisation. The visualisation only
demonstrates how the Needleman-Wunsch algorithm works, and, although the
visualisation allows the users to define the alignment that is visualised and to
control the progress of the visualisation, it does only allow the users to
participate in an alignment as observers. The purpose of the Needleman-
Wuncsh exercise is to provide a learning environment in which the users can
participate actively by defining an alignment and completing the score matrix
of the alignment.

Selecting the exercise from the main page of the alignment application opens a
page that is identical to the configuration page of the advanced visualisation.

54

Chapter 5 The BioTeach system

This page contains the same listing of the valid amino acids, the same
recommendation regarding the gap penalty, the same configuration form, and
a button that starts the exercise (fig 5.11). The limitations on the length of the
sequences and the gap penalty apply to this form for the same reason as they
were applied to the configuration form of the visualisation.

Fig 5.11: An example on a configuration form for the alignment exercise. Similar to
the configuration form of the alignment visualisation. This example will generate an
exercise in which the users are to complete the score matrix of the alignment of the
sequences KNSF and RAGD using a gap penalty of -5, and the Blosum62
substitution matrix.

Pressing the start button opens, given that the sequences and gap penalty are
valid, a page (fig. 5.12) that contains the empty score matrix of the alignment
defined by the parameters entered into the configuration form, a link to the
chosen substitution matrix, a submit button that checks if the scores and
direction entered into the score matrix are correct, a button that allows a new
exercise to be configured, and a button that exits the exercise and opens the
main page of the alignment application.

The cells of the score matrix each contain a text field, in which the correct
score is to be entered, and three check boxes. The check boxes are arranged to
correspond to the three possible directions the pointers of a cell can have (i.e.
left, upwards to the left, and up). A pointer is added to a cell by ticking off a
check box, and it is possible to add up to three pointers in each cell.

55

Chapter 5 The BioTeach system

It may be argued that having to choose between three check boxes in the first
cell of the first row, which has no real pointer option, or in the remaining cells
of the first row and the first column, which only have one real pointer option
each, may be annoying and/or confusing. Using one check box for the cells
that only have one real pointer option, and none in the first cell of the first
row, would be the obvious alternative to using three check boxes. This
alternative could, however, be equally annoying because being forced to select
an alternative when there is only one, mandatory, alternative would seem
meaningless.

Fig. 5.12: An example of an alignment exercise. This exercise requires the users to
complete the score matrix of the alignment of the sequences KNSF and RAGD.

Removing the checkboxes from the cells of the first row and column is
another option. This alternative could, however, be even more confusing than
using one or three check boxes because it does not correspond to how the
algorithm works. At worst, this alternative could give the impression that the
pointers of the first row and column are insignificant when a score matrix is
computed. Thus, the only alternatives are one or three check boxes.

56

Chapter 5 The BioTeach system

The reason for choosing three check boxes over one check box for these cells
is that three check boxes requires some understanding of the purpose of the
pointers before the correct pointer can be set without guessing. With one
check box it is possible to set the pointers of these cells without giving the
reason for why the pointers are set any thought. Pressing the submit-button
once the score matrix is completed produces, given that the submitted score
matrix is correct, a page that displays the correct score matrix and the optimal
alignment or alignments (fig. 5.13). The optimal path (or paths) through the
score matrix is marked with red to make it easier verify the optimal alignment
(or alignments).

Fig. 5.13: An example of a completed exercise. Once the users submit a correct
score matrix, they are presented with the completed score matrix in which the
pointers and the optimal path are included. The optimal alignment(s) is also
presented.

Submitting an incorrect score matrix produces an error message that explains
what is wrong and where the error is (fig. 5.14), e.g. “The score of cell F(2, 1)
is incorrect” or “The direction of cell F(4, 3) is incorrect”

Submitting an incomplete score matrix, i.e. a score matrix in which one or
more scores is missing, or an invalid score matrix, i.e. a score matrix that
contains a score that is not an integer, produces an error message that states
that an invalid score has been entered.

57

Chapter 5 The BioTeach system

Pressing the new test-button aborts an exercise and opens the exercise
configuration page, while pressing the main page-button aborts an exercise
and opens the main page of the alignment application.

Fig. 5.14: An example of the error messages the users receive id they submit an
incorrect score matrix.

5.5 The clustering visualisation

The clustering visualisation is designed to teach how the implemented
clustering algorithms cluster gene expression data by providing a graphical
presentation of how the different clustering algorithms cluster the genes (i.e.
the rows) of a user-defined gene expression data matrix.

The clustering application is started through the link in the introduction page
of the clustering application. The interface of the clustering application (fig.
5.15) is composed of a two-dimensional coordinate system, two data tables, a
menu, a canvas, and a set of buttons.

The coordinate system has two roles in the clustering visualisation. Firstly, it
is where the gene expression data matrix is defined. A row in the gene
expression data matrix is defined by placing the mouse pointer within the
coordinate system and pressing the left mouse button. Once the left mouse
button is pressed within the coordinate system, a numbered point is deposited
in the position of the mouse pointer. The deposited point represents a gene,
where the number denotes the number of the gene, and the coordinates of the

58

Chapter 5 The BioTeach system

point represents the gene expression levels of the gene in two samples: the x-
coordinate of the point represents the gene expression level of the gene in
sample x, while the y-coordinate represents the gene expression level of the
gene in sample y. Thus, the gene expression data matrix is defined by
depositing a set of points/genes in the coordinate system.

Secondly, the coordinate system is used to present how the algorithms cluster
a set of gene expression vectors. Exactly how the coordinate system is used to
present a clustering depends on which of the implemented clustering
algorithms are chosen to be visualised, and the usage of the coordinate system
will therefore be discussed in the sections that describe the visualisation of
each of the implemented clustering algorithms.

Fig. 5.15: The visualisation interface the users initially are presented with. The
coordinate system at the upper left, the canvas at the lower left with the menu in the
middle, the raw data table to the upper right, the clustered data table to the lower right
with the buttons in the middle.

59

Chapter 5 The BioTeach system

The two data tables represent the gene expression data matrix whose rows (i.e.
genes) the algorithms are to cluster. As the gene expression data matrix is
defined by the users, no gene expression data is available when the clustering
application is started. Both tables are therefore empty when the application is
started. The first table, named the raw data table, represents the gene
expression data matrix as it is before it is clustered, and a row is added to this
table each time a point is deposited in the coordinate system. The second
table, named the clustered data table, represents the gene expression data
matrix during and after the clustering process, and therefore remains empty
until a visualisation is started. The rows of each of these tables are composed
of three columns where the first column displays the number of the gene (i.e.
the number of the point in the coordinate system), the second column displays
the gene’s expression level in sample x (i.e. the x-coordinate of the point), and
the third column displays the gene’s expression level in sample y (i.e. the y-
coordinate of the point). A gene expression data matrix can be presented as a
heat map, in which the gene expression levels are represented as coloured
squares instead of by the numerical values. The intensity of the colours of
these squares corresponds to the expression levels of each gene in the different
samples where green intensity signifies negative expression, red intensity
positive expression, and no intensity (i.e. black) signifies zero expression. The
same colour scheme is used in the second and third column of the data tables
to emphasise that the deposited points represent gene expression data, and that
the data tables are gene expression data matrices, not merely tables of the
coordinates of the deposited points.

It is also possible to define the gene expression data matrix without depositing
the points manually. The clustering application is implemented with three
predefined sets of genes in which the genes are distributed in 2, 3, and 4
distinct clusters respectively (fig. 5.16). Each cluster is composed of 50 genes
each. Pressing the predefined examples-button activates the list from which
the examples can be chosen. Selecting an example from this list generates the
selected set of genes, and displays the genes both as points in the coordinate
system, and as rows in the raw data table (i.e. the gene expression data
matrix). The points in the coordinate system are unnumbered because the
points are distributed too densely for the numbers to be read.

Since gene expression data normally are n-dimensional, some may argue that a
two-dimensional representation of gene expression data might be a too
simplified representation to have any educational value. The reason for
choosing a two-dimensional representation is simply that the computer screen
is two-dimensional, and it is therefore difficult to represent data properly in
more than two dimensions. Besides, understanding how multi-dimensional

60

Chapter 5 The BioTeach system

gene expression data is clustered should not be problematic once clustering of
two-dimensional data is understood.

Some may also argue that plotting the gene expression data in a coordinate
system may be misleading since gene expression data normally are presented
as gene expression data matrices, not as plots. Thus, the correct way of
defining a gene expression data matrix would have been to provide an empty
gene expression data matrix, in which the gene expression data could have
been entered manually. Although this approach would be correct, it might
have caused the visualisation to be too cumbersome to be interesting to use.

Fig. 5.16: Three examples on the three possible predefined sets of genes. To the left
the set of genes is distributed in two clusters, in the middle the set is distributed in
tree clusters, and to the right the set is distributed in four clusters.

The clustering application requires at least three genes to be defined in the
gene expression data matrix before any visualisation can be started. The first
step of starting a clustering visualisation is to choose one of the implemented
clustering algorithms from the menu. The menu is composed of two lists, one
that contains the algorithms, and one that contains the variants of the
algorithms. The algorithm has to be chosen before the variant can be chosen.
The next step of starting a visualisation depends on the chosen algorithm. A
started visualisation can, at any time, be completed by pressing the finish-
button.

Because the defined set of genes remains unchanged until either additional
points are plotted in the coordinate system or the new-button is pressed, it is
possible to use a set of genes in multiple visualisations. Pressing the new-
button resets the clustering interface to the state it was in when the clustering
application was started.

61

Chapter 5 The BioTeach system

5.5.1 The hierarchical clustering visualisation

The hierarchical clustering visualisation demonstrates how the hierarchical
clustering algorithm clusters gene expression data. The key to understanding
how this algorithm clusters genes is to understand how the dendrogram (i.e.
the hierarchical tree) is constructed. Hence, the visualisation focuses on
demonstrating how the dendrogram is built. The algorithm that is
implemented in the BioTeach system is agglomerative, that is, it starts by
treating the set of genes as a set of clusters where each gene is a separate
cluster, a singleton cluster, and constructs the dendrogram by grouping two
and two clusters together into a larger cluster until all clusters are grouped
together in one large cluster. The first pair of clusters that are grouped together
in an agglomerative clustering is the pair of singleton clusters (i.e. the pair of
genes) that is most similar. The similarity measurement that is used by the
BioTeach system is, in all the implemented clustering algorithms, the
Euclidean distance between the clusters, that is, the length of a straight line
between two clusters. Thus, the Euclidean distance between all the singleton
clusters have to be calculated in order to find the pair of clusters that is most
similar.

The next step is to group the next pair of clusters that is most similar. The pair
of clusters that was grouped together in the first step is now treated as one
cluster composed of two singleton clusters, and the distances between the
clusters in the set of clusters therefore have to be recalculated.

The distance between a non-singleton cluster (i.e. a cluster composed of two
or more singleton clusters) and other clusters, singleton or non-singleton, can,
as discussed in chapter 4, be defined in different ways. The options that are
implemented by the BioTeach system are single linkage, complete linkage,
and average linkage. Single linkage defines the distance between a non-
singleton cluster and other clusters as the distance between the pair of
singleton clusters in the non-singleton cluster and the other cluster that is
nearest to each other. If the other cluster is a singleton cluster, the distance is
defined as the distance between the singleton cluster in the non-singleton
cluster that is nearest the other singleton cluster. Complete linkage defines the
distance as the distance between pair of singleton clusters in the non-singleton
cluster and the other cluster that is furthest apart. Average linkage defines the
distance as the average distance between all the singleton clusters in the non-
singleton cluster and the other cluster.

62

Chapter 5 The BioTeach system

The hierarchical clustering continues to group the most similar pair of clusters
until all clusters have been grouped together in one single cluster.

A hierarchical clustering is started by choosing hierarchical clustering and
linkage from the lists in the menu, and pressing either the automated
clustering-button, or the stepwise clustering-button. The automated clustering
starts a fully automated presentation of the hierarchical clustering algorithm,
while the stepwise clustering allows the progress of the visualisation to be
controlled by the users.

It is possible to choose whether or not the visualisation is to display the
singleton clusters that define the least distance in each step of the visualisation
by ticking off in the show-linkage box. A visualisation with this option
enabled starts each step in the clustering with the drawing of a blue line in the
coordinate system between the two singleton clusters that define the least
distance according to the chosen linkage (fig. 5.17). The blue line is
temporary, and is only displayed for one second before it is removed. Since
linkage is not used by any of the other implemented algorithm, the show-
linkage box is deactivated in the visualisations of other implemented
algorithms. The canvas is also only used by the hierarchical clustering
visualisation, so the canvas is removed from the visualisation interface if any
of the other algorithms is selected.

The automated and the stepwise visualisation start with the grouping of the
two singleton clusters that are closest to each other. This step is visualised
(fig. 5.18) by drawing a line between the pair of points in the coordinate
system that is closest to each other. The canvas is simultaneously updated to
show the grouped pair of clusters as a dendrogram with two leaf nodes, while
the remaining ungrouped clusters are presented as points in the canvas. The
clustered data table is also updated to display the genes in the order they are
grouped, that is, the ungrouped genes are displayed first, while the grouped
pair is found in the last two rows of the table.

In an automated clustering visualisation the next step in the clustering is
presented after a pause of one second, while in the stepwise clustering
visualisation the next step is presented after the next-button has been pressed.
The next step can be visualised in two different ways depending on whether
the next pair of clusters to be grouped is a pair of singleton clusters, or a
grouping of the non-singleton cluster from the previous step and a singleton
cluster. In the first case (fig. 5.19), a line is drawn in the coordinate system
between the two singleton clusters that are nearest each other. The canvas
displays, in this case, two separate dendrograms of two leaf nodes each, while
the order of the genes in the clustered data table is rearranged so that the
grouped pair of genes is found in the two last rows.

63

Chapter 5 The BioTeach system

(a)

(b)

(c)

Fig 5.17: The visualisation of (a) single linkage in which the two object closest to each
other define the least distance, (b) complete linkage in which the two objects furthest
apart define the least distance, and (c) average linkage in which the average distance
between all objects define the least distance.

64

Chapter 5 The BioTeach system

In the second case (fig. 5.20), a line is drawn between the singleton cluster and
each of the singleton clusters in the pair of clusters that was grouped in the
first step of the visualisation. Thus, the three singleton clusters are connected
to each other, and the lines forms a triangle that signifies that the three
singleton clusters belong to the same larger cluster. In this case, a branch is
added to the dendrogram that was drawn on the canvas in the first step so
thatthe tree becomes a tree composed of three leaf nodes. The genes of the
clustered data table are also rearranged so that the three grouped genes are
found in the three last rows of the table.

Fig 5.18: The visualisation of the first step of a hierarchical clustering. The coordinate
system shows that gene 4 and 5 are most similar, and are therefore clustered in the
dendrogram. The clustered data table has also been updated to list gene 4 and 5 in
the two last rows.

65

Chapter 5 The BioTeach system

The remaining steps in the clustering can be visualised in several different
ways depending on if the most similar pair of clusters are a pair of singleton
clusters, a non-singleton cluster and a singleton cluster, or a pair of non-
singleton clusters.

Fig. 5.19: The second step in the visualisation in which genes 4 and 5, and 1 and 2
have been clustered.

66

Chapter 5 The BioTeach system

Fig. 5.20: A second step in the visualisation where genes 1, 2, and 3 have been
clustered.

The steps that involve the grouping of two singleton clusters are visualised in
the same way as the first step (fig. 5.17), while the steps that involves
grouping a non-singleton cluster with a singleton cluster, or grouping a pair of
non-singleton clusters can be visualised in different ways.

A step that involves grouping a non-singleton cluster of two singleton clusters
with another singleton cluster is visualised in the same way as the second
possibility of the second step (fig. 5.20).

A step that involves grouping a non-singleton cluster composed of three
singleton clusters with another singleton cluster, or grouping two non-
singleton clusters composed of two singleton clusters each, is visualised by
treating the four singleton clusters as the four corners of a quadrangle, and by

67

Chapter 5 The BioTeach system

drawing the quadrangle in the coordinate system to signify that the four
singleton clusters belongs to the same larger cluster (fig. 5.21).

Fig. 5.21: The quadrangle. Signifies that the four genes/clusters belong to the same,
larger, cluster.

The dendrogram that the canvas now displays is, in the first case, a
dendrogram in which a fourth branch has been added to the tree of the non-
singleton cluster (fig. 5.22).

Fig. 5.22: A dendrogram in which gene 4 has been clustered with an earlier cluster of
genes 1, 2, and 3.

In the second case, the dendrogram that the canvas displays is composed of the
two dendrograms of the non-singleton clusters linked together (fig. 5.23).

A step that involves grouping a non-singleton cluster composed of four or
more singleton clusters with another singleton cluster, or grouping a pair of
non-singleton clusters that has five or more singleton clusters between them,
is visualised by drawing the convex hull of the set of singleton clusters that
composes the grouped pair of clusters. This is to signify that the singleton
clusters that compose the grouped pair of clusters belong to the same larger
cluster.

68

Chapter 5 The BioTeach system

Fig. 5.23: A dendrogram in which two clusters separate clusters of two genes, 3 and
4, and 1 and 2, have been clustered.

The first scenario produces a dendrogram that is similar to that of fig. 5.22,
only with 5 or more branches instead of 4. The second scenario produces a
dendrogram similar to that of fig. 2.23, except that the linked dendrograms in
this case have 5 or more branches between them instead of 4.

A completed visualisation of the hierarchical clustering algorithm (fig. 5.24)
presents a coordinate in which the convex hull of the complete set of genes is
drawn. This is to signify that the complete set of genes have been grouped
together in one large cluster. The accompanying dendrogram is presented as a
single tree in which each gene is a leaf node, while the clustered data table
presents the genes in the order that they are clustered.

69

Chapter 5 The BioTeach system

Fig. 5.24: A completed visualisation with the convex hull of the whole set of genes at
the top, the completed dendrogram at the bottom, and the genes in the clustered
order in the clustered data table at the lower right.

70

Chapter 5 The BioTeach system

5.5.3 The k-means visualisation

The k-means visualisation demonstrates how the batch variant and the online
variant of the k-means algorithm cluster a set of genes. The k-means algorithm
clusters a set of genes by placing n centroids in the set of genes, and
recalculating their position until they are located in the n cluster centres. Thus,
the number of centroids predefines how many clusters there are in a set of
genes. The number of centroids therefore has to be chosen with care. Normally
it is the users who define the number of the centroids, while it is the
implementation of the algorithm that determines their initial position.
However, as the initial positions of the centroids affect the results of the
algorithm, the number of clusters and their initial positions are user-defined in
the clustering application to allow for as much experimentation with the
algorithm parameters as possible.

When the algorithm is finished, that is, when all centroids have been
repositioned at the cluster centres, all genes that are assigned (i.e. nearest) to a
centroid belong to the same cluster. A k-means visualisation is started by
choosing the k-means algorithm and either the batch variant or the online
variant from the lists in the menu.

The first step in the k-means visualisation is to place the centroids in the
coordinate area. The centroids are placed in the same way as the genes are
plotted. However, in order to place centroids and not more genes, the place
centroids-button has to be pressed. Attempting place centroids in the
coordinate area without pressing this button, will only add more genes to the
gene set. Once the place centroids-button is pressed, an indefinite number of
centroids can be placed in the coordinate system. Each centroid is represented
in the coordinate system as a coloured point labelled C1, C2, C3, and so forth
(fig. 5.25). A k-means clustering visualisation can be started once at least two
centroids have been placed. As with the hierarchical clustering visualisation, it
is possible to choose between an automated visualisation and a stepwise
visualisation. The progress of the stepwise visualisation is controlled with the
next-button, while the automated visualisation presents each step in the
clustering after a delay of one second.

Independently of whether the automated visualisation or the stepwise
visualisation is chosen, the batch variant of the k-means visualisation starts by
iterating over the set of genes and assigning each gene to its nearest centroid.
The points that represent the genes are simultaneously coloured with the same

71

Chapter 5 The BioTeach system

colour as the nearest centroid to make it easier to discern which genes belongs
to which centroid.

Fig 5.25: The start of visualisation of a k-means clustering with four centroids.

The next step is to reposition the centroids. The goal is to place each centroid
in a position where the distance from the centroid to each of its assigned genes
is equal. This position is found by calculating the average of the positions of
the genes that are assigned to each centroid (fig. 5.26).

Fig 5.26: The second step of a k-means visualisation in which the centroids have
been relocated for the second time.

72

Chapter 5 The BioTeach system

Since the clusters have been repositioned it is necessary to control whether any
of the genes are nearer to a different centroid than the one they currently are
assigned to. The first step is therefore repeated to reassign each gene to its
closest centroid. The algorithm is considered to be finished if none of the
genes are reassigned. Otherwise, it is necessary to reposition the centroids
again; those centroids that loose genes or receive genes are no longer
positioned such that the distances from the centroids to their assigned genes
are equal. The positions of these centroids are therefore recalculated, and the
centroids repositioned.

The process of reassigning genes and repositioning the centroids is repeated
until no genes are reassigned, and, hence, no centroids have to be repositioned.
The clustered data table remains empty during this process.

Fig 5.27: A completed k-means visualisation. The centroids have been relocated at
the four cluster centres, and the clustered data table shows that genes 2, 3, 15, 16,
and 18 are clustered together around C1, the red centroid.

73

Chapter 5 The BioTeach system

Once the process is finished, the clustered data table is rearranged so that the
order corresponds to the order in which the genes are clustered. The first
column in each row is also coloured with the same colour as the centroid the
gene belongs to (fig. 5.27).

The online variant uses a different approach to position the centroids at the
cluster centres. Instead of assigning each gene to the nearest centroid and then
repositioning the centroids, the online variant iterates over the set of genes and
assigns one gene at a time to the nearest centroid. At the same time, each gene
moves the nearest centroid closer to itself. In the BioTeach implementation of
this k-means variant, each gene moves the nearest centroid 1% of the distance
between the gene and the centroid closer to itself. Thus, the centroids appear
to be gliding towards the cluster centres.

One of the challenges with the online variant of the k-means algorithm is to
find a good criterion for when the algorithm is finished. Using the termination
criterion of the batch variant would cause the algorithm to terminate
prematurely; the centroids only move a slight distance every time they are
moved, and the set of genes that is assigned to each centroid could therefore
be the same over a number of iterations. The termination criterion of the batch
variant could therefore regard the algorithm as finished as early as after the
first iteration. The termination criterion that is implemented in the online
variant of the k-means algorithm stops the visualisation when the set of genes
that is assigned to each centroid is unchanged

a) the centroids have moved less than 0.4 pixels in each of the five last
movements

b) the average distance of the last five movements is less than 0.2 pixels

These criterions prevent the algorithm from terminating too early when the
genes are distributed in well defined, but small, clusters. At the same time,
these criterions prevent the algorithm from terminating when the genes are
distributed in clusters that are large in circumference, or not well defined. In
the latter case, the visualisation has to be terminated manually by pressing the
finish-button.

The purpose of using these criterions is to illustrate that the online variant is
not as straightforward to use or implement as the batch variant, and that the
results of the online k-means variant may depend on how the termination
criterion is defined.

74

Chapter 5 The BioTeach system

5.5.5 The self organizing maps visualisation

The self organizing maps visualisation demonstrates how self organising maps
(SOM) cluster genes. SOMs cluster a set of genes by stretching a grid of units
(e.g. a line, an array, a cube, a parallelepiped) to fit the gene set. The grid is
fitted to the set of genes in such a way that the relationship between the units
corresponds to the relationships in the set of genes. Thus, the grid becomes a
map over the set of genes. To achieve this, the units of the grid is organised in
neighbourhoods, and when a unit is moved, the unit pulls the neighbouring
units with it.

The BioTeach implementation of SOMs allows the users to choose between a
line grid and an array grid. The line grid is composed of ⅓ as many units as
there are genes in the set of genes. Each unit in the line grid have a neighbour
in front and one behind, except the first, which only has one neighbour in
front, and the last, which only has one neighbour behind. The array grid is
initially composed of ⅓ as many units as there are genes in the gene set, but
the number is adjusted so that the array always is a full rectangle or square.

Each unit in the array grid, except the corner units and the units along the side
of the square or rectangle, has four neighbours, the unit above, below, to the
left, and to the right. The corner units only have two neighbours, the unit
below or above, and the unit to the left or to the right. The units along the
horizontal edges have three neighbours each: the unit above or below, and the
units to the left and the right. The units along the vertical edges also have three
neighbouring units each: the unit above and below, and the unit to the left or
to the right.

During the stretching process, each gene moves the closest unit 5% of the
distance between the gene and the unit, while the neighbours of a unit are
moved 2% of that distance.

A visualisation of how SOMs work is started by selecting SOM and either the
line option, or the grid option (i.e. the array grid) from the lists in the menu,
and then pressing the automated clustering-button, the stepwise clustering-
button, or the epochwise clustering button. The epochwise clustering presents
the visualisation in epochs, that is, a full iteration over the set of genes is
performed before any of the units are moved. In comparison, the stepwise
clustering moves a unit at each step in the iteration. It is not recommended to
select the stepwise clustering because the visualisation is implemented to do
3000 full iterations before it is finished (if there are 50 genes in the dataset, the

75

Chapter 5 The BioTeach system

next-button has to be pressed 50 x 3000 = 15000 times to complete the
visualisation.). Thus, the epochwise visualisation is the better alternative if the
users want to step through the visualisation.

The visualisation of both the line grid variant and the array grid variant starts
with the units of the grid distributed randomly around the origin of the
coordinate system (fig. 5.28).

Fig. 5.28: The beginning of a SOM visualisation in which the units of the array grid
has been distributed around the origin of the coordinate system.

The visualisation proceeds to iterate over the set of genes and stretch the grid
to gradually fit the set of genes (fig. 5.29).

Fig. 5.29: The array grid during the stretching process.

76

Chapter 5 The BioTeach system

After 3000 iterations over the set of genes, the visualisation is completed and
the grid has been fitted to the set of genes (fig. 5.30).

The SOMs work best on large datasets (e.g. thousands of genes), and since the
coordinate system of the BioTeach system is too small to accommodate such a
number of genes, it is difficult to provide an exact visualisation of how SOMs
are constructed. The best results are produced by a visualisation that uses the
predefined example with the genes distributed in four clusters. Although the
visualisation is not perfect, it should provide a presentation that is good
enough to enable the users to understand how a SOM is constructed.

Fig. 5.30: The array grid after the stretching process is completed.

77

Chapter 5 The BioTeach system

78

Chapter 6 Hypothetical exercise examples

Chapter 6

Hypothetical exercise examples

6.1 Introduction

Although web-technology offers possibilities for designing exercises that
comment the answers that are given, there are obvious limitations to such
exercises. Firstly, as it is difficult to design computer programs which are able
to assess the quality of answers that are based on creative thinking, such
exercises should have a definite answer. Exercises that require discussion and
creative thinking could, of course, be included in a web-based learning
environment, but the answers to such exercises should be forwarded to the
lecturer, or to his or hers assistants, for proper evaluation instead of being
evaluated by a computer program. Secondly, there should be a limited number
of possible incorrect answers to such exercises. The reason is more or less the
same as with exercises that has an indefinite answer; it is difficult to anticipate
all possible answers, and therefore difficult to provide appropriate comments.

One approach that meets these limitations is multiple choice exercises. The
Needleman-Wunsch exercise discussed in the previous chapter is another
possible approach, and a third possible approach is the Sourcer’s Apprentice
approach discussed in chapter 2.

79

Chapter 6 Hypothetical exercise examples

This chapter discusses how multiple choice exercises and the Sourcer’s
Apprentice approach could be used in a web-based learning environment for
bioinformatics.

6.3 A Blast example

The Blast algorithm (Higgs & Attwood, 2005) is a popular tool for searching
sequence databases (i.e. databases of gene sequences), and it is a tool that
students of bioinformatics are required to master. The algorithm uses a form
of pairwise sequence alignment to search a database for gene sequences that
are similar to a query sequence. An important part of mastering the Blast
search tool is to interpret the results the search produce.

A typical Blast result (fig. 6.2) lists the similar sequences sorted by similarity
in descending order. Each row in the list represents a gene sequence, and each
row is composed of four columns. The first column provide information about
the different database ids of a sequence (a gene sequence can be stored in
multiple databases) and the name of the gene sequence, the second column
provides a short description of the gene sequence, the third column displays
the score of aligning a sequence with the query sequence, and the fourth
displays the e-value of the alignment. The score and the e-value are used to
determine whether or not a sequence is similar to the query sequence. A high
score and a low e-value (e.g. e < 0.01) indicate that a sequence is similar to the
query sequence. An exercise that aims at teaching how to interpret Blast
results could be designed like the Sourcer’s apprentice (see fig. 6.3 for a
sketch).

80

Chapter 6 Hypothetical exercise examples

Fig. 6.2: The 15 best matches for a blast search for the protein sequence of the gene
CFTR_HUMAN in the Swiss-Prot database.

One way of designing a Blast exercise based on the Sourcer’s Apprentice
could be to replace the different historical texts with different Blast results in
which the column headers have been removed. The exercise could then be to
identify specific information about a selection of the sequences that are listed
in each Blast result. Each sequence in the selection should have a note card in
which the information are to be entered. The specific information to be
identified for each sequence could include

− the different database ids

− the name of the gene the sequence represent

− the score of aligning the sequence with the query sequence

− the e-value of the alignment

The exercise should be implemented with a drag and drop system similar to
the bucket system of the Sourcer’s Apprentice because it limits the possible
wrong answers, and, thus, makes it possible to provide comments if incorrect
information is attempted to be entered into the note cards (allowing
information to be typed into the note cards manually would allow information
that is impossible to comment to be entered into the note cards). If the
information suggested above was to be identified, there should be separate

81

Chapter 6 Hypothetical exercise examples

buckets for each of the possible database ids in the selection (a sequence can
be stored in different databases), for the name of the gene, the description of
the gene, the alignment score, and the e-value.

Fig. 6.3: A sketch of a Blast exercise based on the Sourcer’s Apprentice system.
The Blast results can be presented in the upper frame, while the structured notecards
for each set of results can be presented at the bottom. This example would require
that the gi-id and the sp-id for a selection of genes are found along with the name of
the genes, the score and the e-value.

The exercise should also require the scores and e-values of a selection of the
sequences to be discussed in order to ensure that the significance of the scores
and e-values has been understood. It would, as discussed above, be difficult to
design a computer program that could evaluate these discussions, and the
discussions should therefore be sent to the lecturer, his (or hers) assistants for
evaluation. These discussions could also, for instance, be included in a
mandatory exercise.

82

Chapter 6 Hypothetical exercise examples

An exercise like this should be accompanied by the information necessary to
understand the algorithm and the results. Otherwise it would be necessary to
consult textbooks or other web sites to understand how to complete an
exercise. The exercise should also be preceded by an introduction that
explains the features of the application as well as the purpose of the exercise.

6.4 Database and portal exercises

Mastery of web-based biological databases and portals are an essential part of
the bioinformatics curriculum. There are different databases for different types
of biological information, and there are different portals that provide access to
these databases. The different portals also have different ways of presenting
database entries (e.g. fig 6.4), and they provide access to a varying selection of
the available databases. Mastery of these tools requires knowledge about the
information the different databases provides, which portals to use to gain
access to them, and how to read the database entry presentations of the
different portals.

Mastery of the databases and the portals also requires knowledge about the
techniques that are used to find information in the databases, i.e. database
searching. The various portals provide search engines that allow the different
databases to be queried. Some portals also allow multiple databases to be
queried simultaneously. The different portals do, however, have different ways
of presenting the search results (e.g. fig 6.5). Thus, it is necessary to know
how to read these presentations in order to find the information that the
databases was queried for.

The Sourcer’s Apprentice approach could be used to design an exercise that
teaches the use of the different portals and databases, but it would require the
different features and presentation forms of the different databases and portals
to be integrated into a realistic interface. A less complicated approach would
be to exploit that the portals that provide access to the different databases are
web-based.

83

Chapter 6 Hypothetical exercise examples

(a)

(b)

Fig. 6.4: (a) a database entry of the nucleotide sequence database of Entrez. (b) a
database entry of the nucleotide sequence database of Expasy

84

Chapter 6 Hypothetical exercise examples

One way of creating such an application is through the use of multiple choice
exercises that ask questions requiring that specific pieces of information are
found in the databases. Hence, it would be necessary to use the portals and
databases to answer the questions correctly. One of the challenges with using
multiple choice exercises is to provide answer alternatives to the questions in
which the correct answer does not stand out. The correct answer should not,
however, be too difficult to discern from the incorrect answers in order to
avoid confusion and frustration. This could be achieved by including common
misconceptions or information that is found alongside the requested
information as incorrect alternatives. Thus, the alternatives of a multiple
choice exercise become tools for controlling that the usage of the portals and
the databases has been understood. This approach would also make it possible
to use comments on incorrect answers to explain common misconceptions and
provide guidance towards the correct answer.

6.4.1 A hypothetical example

The following section discusses a general exemplification of how a web-based
multiple choice exercise could be designed. A web-based multiple choice
exercise should be accompanied by the information that is necessary to find
the information the questions asks for. Otherwise it would, rather
inconveniently, be necessary to consult at least one textbook or third-party
web site to be able to find the requested information. This section therefore
also discusses the information that such exercises could be accompanied with
in a web-based learning environment.

Biological databases are highly specialised databases that researchers use to
store their results. Thus, users of such a learning environment should not be
expected to be familiar with these databases or the portals. A learning
environment meant to teach the usage of the databases and portals should
therefore start with an introduction to the databases and the portals.

One approach could be to start with an introduction to the database that
explains what kind of information they provide. As there are many different
databases, the databases should be presented separately, at least the most
important ones, to reduce the possibility of confusing the various databases
with each other. Each presentation could then be followed by a multiple
choice exercise similar to that described in the above section.

85

Chapter 6 Hypothetical exercise examples

(a)

(b)

Fig. 6.5: (a) the search results of a search for cystic fibrosis through Entrez. (b) the
search results of the same search through Expasy.

86

Chapter 6 Hypothetical exercise examples

Since the portals would not have been introduced at this point, direct links to
the database entries should therefore be provided instead of requiring that a
portal has to be used to find the correct database entry. The links should open
in a separate browser window to make it possible to view the database entry
and the exercise simultaneously.

An exercise regarding an entry in the nucleotide database (fig. 6.3a) of the
Entrez portal (2005a) could include questions regarding which species the
nucleotide sequence is found in, the id of the entry, the name of the sequence,
the length of the sequence, who the authors of the second reference to this
entry are, etc. The alternatives to the questions do not have to be taken from
the entry, but to be able to provide reasonable comments on incorrect answers,
they should. Comments like “the answer is wrong” are not particularly useful
(Wolfe, 2001b). An example on a question with such alternatives could be:

Question:
How long is the nucleotide sequence of
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=6302522
1?

Alt. 1: 63025221

Alt. 2: 2346

Alt. 3: 15854667

Alternative 2 is the correct answer, while the first alternative is the id of the
nucleotide in the database, and the third alternative is the id of the first
reference in the PubMed database (see fig. 6.3a). With these alternatives it
would be possible to present comments like “The alternative you chose was
wrong. 63025221 is the id of the nucleotide sequence in the database” or
“15854667 is the id of the first reference in the PubMed database”. Thus, it
should be possible to learn about the information the entry provides even if the
answers is incorrect.

The other databases Entrez provides access to could be presented in a similar
manner, followed by similar exercises.

The next step would then be to introduce the various portals, and how they
present database entries. Users should by now be somewhat familiar with the
information the different databases provide, and it should therefore not be
necessary to present more than a few choice entries. One approach could be to
present some of the entries that were used in the introduction to the databases.
Thus, the information in the entries would be familiar, and it should therefore

87

Chapter 6 Hypothetical exercise examples

be easier to become familiar with how the different portals present database
entries.

Another way of starting a learning environment that means to teach the usage
of databases and portals could be to begin with a presentation of the various
portals. Such an approach would make it possible to present entries from a
selection of the databases of one portal, followed by a presentation of entries
from a different selection of databases of another portal. As with the above
described approach, each presentation should be accompanied by a multiple
choice exercise. These exercises should also provide direct links to database
entries because the principles of database searching yet have to be introduced.
Thus, the same exercises as those described above could be used.

Independently of whether the first or the second approach should be used,
users should by now be familiar with both the information the different
databases provide, and the different presentation forms of the various portals.
The next step could then be to introduce the principles of database searching.

The search engines that the portals provide are similar to the search engines
that are used to search the web. The search engines of both biological portals
and the web require a search phrase to be provided. The difference between
the two types of search engines lies in the search phrases the search engines
accept. Search engines for the web allow any kind of search phrase to be
entered, including search phrases that contain logical operators such as AND,
OR, and NOT. The search phrases a search engine of a biological portal
allows may depend on the database that is to be searched. The Swiss-Prot
database (a protein knowledge base) at Expasy (2005a), for instance, does not
accept any of the logical operators. The operator AND can be included, but
since this operator is automatically included in the search phrase if it is
composed of more than two words separated by a space, there is no need to
include it. The AND operator is also added automatically by the search engine
at EBI (2005) when the protein database is searched. It does also allow the
users to include any of the other operators, but since the other operators are
removed from the search phrase before the search is performed, it is
meaningless to include them. The search engine of Entrez (2005b), on the
other hand, allows any of the logical operators to be included, but it is not
apparent whether or not they are used. Biological databases may therefore be
experienced as difficult to search, and a discussion regarding database
searching should therefore start with short presentations of how the different
databases are searched, accompanied by a set of exercises.

The exercises should start easy and gradually become more difficult, so that
all students are able to complete the exercises. One way of starting easy could

88

Chapter 6 Hypothetical exercise examples

be to include the search phrase in the question. The set of exercise regarding
the Swiss-Prot database at Expasy could start with an exercise similar to this:

Question:
One of the following proteins is connected to the disease cystic fibrosis in
humans. Which is it?

Alt. 1: CFTR_CAVPO

Alt. 2: CFTR_HUMAN

Alt. 3: S101A8_HUMAN

This exercise should be relatively easy to solve as it provides many hints to
the correct answer. First of all, the text provides a search phrase that yields
only two hits in the Swiss-Prot database: “cystic fibrosis human”. The two hits
are CFTR_HUMAN and S101A8_HUMAN. The Swiss-Prot database would
have been presented before this exercise could be encountered, and the Swiss-
Prot database should therefore be familiar. Hence, it should not be problematic
to find out that the correct answer is CFTR_HUMAN (Expasy, 2005b); the
protein S101A8_HUMAN is connected to chronic inflammations (Expasy,
2005c). Using the search phrase “cystic fibrosis” produces 12 entries from the
Swiss-Prot database, of which the CFTR_CAVPO protein is one. This is a
protein that is connected to chloride transportation in guinea pigs (Expasy,
2005c). It is also possible to use the answer alternatives as search phrases.

The exercises should gradually provide less and less hints, to force the users
to use their knowledge about the databases and database searching to select
the correct database to search and an efficient search phrase.

89

Chapter 6 Hypothetical exercise examples

90

Chapter 7 Summary and Conclusions

Chapter 7

Summary and Conclusions

This project is a part of the ongoing Flexible Learning (norw: Fleksibel
Læring) (2005) project at the University of Oslo, which aims at contributing to
the establishment of good learning environments for the students at the
University of Oslo by integrating ICT with education and teaching.

The purpose of the project described in this document has been to explore how
web-technology can be used to create an interactive web-based learning
environment for bioinformatics. Bioinformatics is a complex field of science
that combines mathematics, statistics, biology, and informatics; and to
develop a complete learning environment that covers all aspects of this field of
science in one project would have been impossible. This project has therefore
focused on developing examples on how some of the algorithms used in the
field of bioinformatics can be visualised in a web-based learning environment
(i.e. the BioTeach system), and on discussing how exercises can be designed
in such a learning environment.

Most of the work with this project has been concerned with the development
of the BioTeach system. There were three major challenges that had to be
dealt with in the development of this system. The first challenge was to
implement the algorithms that were to be visualised. The second, and most
difficult, challenge was to visualise these algorithms in a way that could
improve the understanding of the algorithms. The BioTeach system provides
two different approaches to meet this challenge. The visualisation of the
Needleman-Wunsch algorithm presents the exact calculations that are
involved in each step of an alignment of a pair of protein sequences. The

91

Chapter 7 Summary and Conclusions

visualisations of the microarray data clustering algorithms specifically
emphasize the steps most crucial to the understanding of the algorithms.

The third challenge was to create visualisation interfaces that appear uniform
on all computers. One of the problems with web applications is that different
web browsers may present the contents of a web application differently.
Another problem is that some computers may use screen resolutions that are
too low for the visualisations to fit completely into the browser window. Some
measures have been taken to reduce these problems (i.e. the limits on the
length of the sequences and the gap penalty limit in the Needleman-Wunsch
visualisation). The visualisations have been tested in three different browsers,
MS Internet Explorer, Mozilla, and Opera; and the visualisations appear
approximately uniform in these browsers.

The BioTeach system clearly shows that it is possible to create web-based
visualisations of algorithms. The interesting question is whether or not either
of the visualisations improves the understanding of the algorithms that are
visualised. There are, however, no empirical results to base such a prediction
on. There are two reasons for this. First, there was, unfortunately, not enough
time to conduct any studies of the effects of the visualisations. Second, if there
had been time to conduct any studies, it would have been difficult to produce
any reliable empirical results. The current implementation of the visualisations
provides little information about the biological and statistical foundation the
visualised algorithms are based on. It would therefore have been difficult for
anyone who is not familiar with the principles of pairwise sequence alignment
and clustering of microarray data to participate in a study of the effectiveness
of the visualisations. A suitable test population would therefore have been the
students that follow the introduction course to bioinformatics. There were less
than 10 students that completed this course. Although instructive, a statistical
study of the effectiveness of the visualisations based on such a small
population would not render any statistically significant conclusions.

It is difficult to predict the usefulness of the visualisations without the support
of empirical results. It should, however, be possible to use the Sourcer’s
Apprentice (SA) as a reference for a preliminary prediction of the usefulness
of the visualisations. SA starts with a tutorial that explains and tests the skills
that are necessary to use multiple sources of information effectively and
correctly. The tutorial is then followed by a practice environment in which the
skills are trained on sets of excerpts from authentic history texts. The
visualisations of the BioTeach system are designed to visualise, step-by-step,
how the implemented algorithms work on simplified, but authentic, datasets,
and could therefore be, in combination with the textual explanations of the
algorithms, viewed as tutorials to the algorithms. The visualisations do also

92

Chapter 7 Summary and Conclusions

allow the datasets that are visualised to be experimented with, and the
visualisations could therefore be viewed as virtual laboratory exercises similar
to the laboratory exercises that are used in chemistry and physics. It should
therefore, despite that the clustering visualisation is not supplemented by an
explicit exercise, be possible to say, as a preliminary prediction, that the
BioTeach system should be a useful tool for improving the understanding of
the algorithms that are visualised.

One way of confirming or disproving this prediction can be to conduct a pre-
test/post-test experiment in which the test population is divided into a control
group and a treatment group. The first step of such an experiment is to
administer a pre-test to that tests the population’s understanding of the
algorithms that are visualised by the BioTeach system. The pre-test could, for
instance, be a paper and pencil test that contains exercises that require a
sequence alignment with the Needleman-Wunsch algorithm, a hierarchical
clustering, and a k-means batch clustering to be conducted by hand. Clustering
datasets with the k-means online algorithm and SOMs are complicated and
time consuming to conduct by hand, and ordinary questions regarding these
algorithms should therefore be included instead of exercises that require such
clusterings to be conducted. The next step could then be to provide the control
group with detailed articles on the different algorithms, while the treatment
group is provided with access to the BioTeach system in addition to be
provided with the same detailed articles. The last step is to administer a post-
test similar (or identical) to the pre-test after the two groups have had time to
study the algorithms. The results of the pre- and post-tests for the two groups
can then be compared to see if the results for the treatment group are better
than those of the control group.

The BioTeach-system should, however, be tested more extensively to remove
any bugs before any studies are performed. The interfaces should also be
implemented with online-help such as tooltips before any studies are
preformed. A tooltip is a textbox that is displayed when the mouse-pointer is
placed over a component for a certain period of time. The clustering
application is implemented with tooltips that provide a short description of the
components of the interface, but these tooltips should be implemented with
more elaborate descriptions and help.

The BioTeach system is not a complete learning environment for
bioinformatics, and it could be developed further if it proves to be a useful
educational tool. The system could, for instance, be implemented with
clustering exercises that explicitly test the understanding of the implemented
clustering algorithms. A hierarchical clustering exercise, for instance, could
present a dataset accompanied by a dendrogram in which the numbers of the

93

Chapter 7 Summary and Conclusions

genes are replaced by text fields. The exercise would then be to enter the
number of the genes into the correct text fields. Another extension could be to
include descriptions of the mathematical and biological foundation upon
which the implemented algorithms are based to enable others than those who
are familiar with the implemented algorithms to use the system. The exercises
discussed in chapter 6 could also be interesting to implement

94

References

References

Anderson, M. D. (2001) Individual Characteristics and Web-Based Courses.
In Wolfe, C. R. (Ed.), Learning and Teaching on the World Wide Web,
Academic Press.

Baxevanis, A. D. (2005) Assessing Pairwise Sequence Similarity: BLAST and
FASTA. In Baxevanis, A. D. and Ouellette, B. F. F. (Eds.), Bioinformatics: A
Practical Guide to the Analysis of Genes and Proteins, Third Edition, John
Wiley & Sons.

Berrar, D. P., Dubitsky, W., Downes, C. S, and Granzow, M. (2003)
Introduction to microarray data analysis. In Berrar, D. P., Dubitsky, W., and
Granzow, M., (Eds.), A practical approach to microarray data analysis,
Kluwer Academic Publishers.

Britt, M. A. and Gabrys, G. L. (2001) Teaching Advanced Literacy Skills for
the World Wide Web. In Wolfe, C. R. (Ed.), Learning and Teaching on the
World Wide Web, Academic Press.

Callaway, D. R (2001) Inside servlets: server-side programming for the Java
platform 2nd edition, Addison Wesley.

Causton, H., Quackenbush, J., and Brazma, A. (2003) Microarray/gene
expressions data analysis, Blackwell Publishing.

Draghici, S. (2003) Data analysis tools for DNA microarrays, Chapman &
Hall/CRC.

95

References

Durbin, R., Eddy, S., Krogh, A., and Mitchison G. (1998) Biological sequence
analysis: probabilistic models of proteins and nucleic acids, Cambridge
University Press.

EBI (2005) European Bioinformatics Institute [online]. Available:
http://www.ebi.ac.uk, July 27, 2005.

Entrez (2005a) NCBI Sequence Viewer v2.0 [online]. Available:
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=6302522
1, July 27, 2005.

Entrez (2005b) Entrez cross-database search [online]. Available:
http://www.ncbi.nlm.nih.gov/Entrez, July 27, 2005.

Expasy (2005a) ExPASy Proteomics Server [online]. Available:
http://www.expasy.org, July 27, 2005.

Expasy (2005b) UniProtKB/Swiss-Prot entry P13569 [CFTR_HUMAN]
Cystic fibrosis transmembrane conductance regulator [online]. Available:
http://www.expasy.org/uniprot/P13569, July 27, 2005.

Expasy (2005c) UniProtKB/Swiss-Prot entry P05109 [S101A8_HUMAN]
Calgranulin A [online]. Available: http://www.expasy.org/uniprot/P05109,
July 27, 2005.

Expasy (2005d) UniProtKB/Swiss-Prot entry Q00552 [CFTR_CAVPO]
Cystic fibrosis transmembrane conductance regulator [Fragment] [online].
Available: http://www.expasy.org/uniprot/q00552, July 27, 2005.

Flexible Learning (2005) Fleksibel læring ved UiO [online]. Available:
http://www.fleksibel-laering.uio.no, July 27, 2005.

Higgs, P. G. and Attwood, T. K. (2005) Bioinformatics and molecular
evolution, Blackwell Publishing.

Lazlo, M. J. (1996) Computational geometry and computer graphics in C++,
Prentice Hall.

Lewis, J. And Loftus, W. (1998) Java Software Solutions: foundations of
program design, Addison Wesley.

NCBI (2005) Bioinformatics Factsheet [on-line]. Available:
http://www.ncbi.nlm.nih.gov/About/primer/bioinformatics.html, June 7, 2005.

96

References

Pevzner, P. A. (2000) Computational molecular biology: An algorithmic
approach, the MIT Press.

Quackenbush, J. (2005) Using DNA Microarrays to Assay Gene Expression.
In Baxevanis, A. D. and Ouellette, B. F. F. (Eds.), Bioinformatics: A Practical
Guide to the Analysis of Genes and Proteins, Third Edition, John Wiley &
Sons.

Ripley, B. D. (1996) Pattern recognition and neural networks, Cambridge
University Press.

Sandnes, F. E. (2002) Moderne applikasjonsutvikling med Java for web: tynne
klienter og fete tjenere, Tapir akademisk forlag.

Wolfe, C. R. (2001a) Learning and Teaching on the World Wide Web. In
Wolfe, C. R. (Ed.), Learning and Teaching on the World Wide Web,
Academic Press.

Wolfe, C. R. (2001b) Creating Informal Learning Environments on the World
Wide Web. In Wolfe, C. R. (Ed.), Learning and Teaching on the World Wide
Web, Academic Press.

97

References

98

Appendix A Downloading, installing andconfiguring the BioTeach-system

Appendix A

Downloading, installing and

configuring the BioTeach-system

This appendix is concerned with the installation and configuration of the
BioTeach-system. The appendix also provides instructions as to how and
where the source code of the system can be downloaded.

The BioTeach-system is installed and configured in the following steps:

1. Download the archives portal_and_clustering.zip and needle.war from
http://www.ifi.uio.no/bioinf/Prosjekter/BioTeach (this page can also be
accessed through the downloads-link in the visualisation menu of the
system.

2. Unpack the archive portal_and_clustering.zip on a web-server, or in a
directory that is accessible through the web. The portal and the
clustering applet should now be accessible through the web. If not,
check directory and file permissions.

3. deploy the needle.war-archive on a servlet-container such as Tomcat

4. enter the BioTeach-directory created when the archive
portal_and_clustering.zip was unpacked

99

Appendix A Downloading, installing andconfiguring the BioTeach-system

5. open the file menu.html in a text-editor

6. change the href-attribute of the link to the alignment-application to:
<path to servlet container>/needle

7. locate and enter the needle-directory on the servlet container (should
be created when the needle.war-archive is deployed)

8. open the file web.xml located in the WEB-INF-subdirectory in a text
editor

9. change the value of the init-parameter matrixpath to
<path_to_needle_directory_on_servlet_container>/matrices
There are two instances of this init-parameter, and both have to be
changed.

The alignment application has only been tested with the Tomcat servlet
container, and additional steps may therefore be needed in order to install the
alignment application on a different servlet container.

It is also possible to download the bio.jar library (see appendix B) from the
downloads-page. This library is embedded in the needle.war-archive, and it is
not necessary to download bio.jar to install the BioTeach-system. The library
is intended for visitors who might be interested in using the library in their
own projects.

The downloads-page also provides a link that downloads the source code. The
source code is packaged in a zip-archive that produces the following directory
tree when unpacked:

|-<alignment>
|-<demo>

|-<control>
|-<model>
|-<view>

|
|-<exercise>

|-<control>
|-<model>
|-<view>

|-<bio>
|-<clustering>

100

Appendix A Downloading, installing andconfiguring the BioTeach-system

The alignment-directory of the archive contains the source code for the
Needleman-Wunsch visualisation application and the Needleman-Wunsch
exercise; the demo- subdirectory contains the source code for the
visualisiation, while the exercise-subdirectory contains the source code for the
exercise. The visualisation application and the exercise application are
implemented according to the JSP Model 2-architecture (see appendix B), and
the subdirectories are therefore further divided into three subdirectories each.
The control-subdirectory contains the source code for the control layer of the
applications, the model-subdirectory contains the source code for the model-
layer, and the view-subdirectory contains the source code for the view-layer.

The bio-directory of the archive contains the source code for the bio.jar library
(see appendix B), and the clustering-directory contains the source code for the
clustering applet.

101

Appendix A Downloading, installing andconfiguring the BioTeach-system

102

Appendix B Technical Solution of the BioTeach-system

Appendix B

Technical Solution of the BioTeach-

system

This appendix serves as an introduction to the technology that is used in the
implementation of the BioTeach-system, and a description of the program
flow of the system.

B.1 Applied technology

There are various technologies that could be used to implement the BioTeach
system. This section provides a short introduction to the technology that is
used in the implementation of the BioTeach-system.

B.1.1 Java Applets

Java Applets (Lewis & Loftus, 1998) are Java applications that are designed to
be embedded and accessed through web-pages. Applets can be implemented
with the same functionality as standard java applications, and are well suited

103

Appendix B Technical Solution of the BioTeach-system

for designing web-applications that uses graphical interfaces or components to
interact with the users (e.g. the clustering application of the BioTeach-system).
An applet must extend either the JApplet-class or the Applet-class in order to
be run in a web-browser (or other environment designed to run applets).
Applets are embedded in web pages by including the tag

<APPLET code=”name_of_class_that_extends_JApplet.class”
codebase=”path_to_java_class_files” width=”x” height=”y”>

The code attribute in the tag is mandatory, and must contain the name of the
class that extends the JApplet (or Applet) class. The codebase attribute is only
necessary if the class-files that compose the applet are located in a different
directory than the web-page in which the applet-tag is included. The width and
height attributes sets the width and height of the applet.

B.1.2 The JSP Model 2 architecture

The JSP Model 2 architecture (Callaway, 2001) is another approach to web-
application design. The alignment application of the BioTeach system is
designed around this architecture. The JSP Model 2 architecture divides an
application into three layers: the control layer, the model layer, and the view
layer. The control layer handles all interaction with the users, the model layer
acts as an intermediary between the control layer and the data source, while
the view layer generates the presentations of the data. The purpose of dividing
an application into these layers is to separate business-logic (e.g. data
processing) from application-logic (e.g. request processing), and to separate
business and application logic from presentation logic (e.g. web pages).
Applications that implement this architecture are said to be server-side
applications because the application is executed on a server. Applets are said
to be client-side applications because they are executed on the computer that
opens the page in which the applet is embedded. Java-based server-side
applications require a container, or server, such as Tomcat to function.

The communication between the users and a server-side application is handled
by the http-protocol (Sandnes, 2002). The http-protocol is request/response
based, that is, the actions of the users create an http-request that is sent to the
web-server, and the server generates an http-response that is returned to the
users. The requests that are generated can be of different types. Opening a link
in a web page, for instance, generates a GET-request. The alignment
application uses the GET-request in links, and the POST-request in forms.

104

Appendix B Technical Solution of the BioTeach-system

In the JSP Model 2 architecture all requests are processed by the control layer.
The control layer of the alignment application of the BioTeach-system is
represented by an http-servlet. In short, an http-servlet is a class of Java-based
applications that are designed to receive and process http-requests, and
generate http-responses (please refer to Callaway, 2001, and Sandnes, 2002,
for a thorough discussion of servlets). An application that is to be used as an
http-servlet must contain a class that extends the class
javax.servlet.HttpServlet. The HttpServlet-class receives the http-requests as
objects, and handles the different requests with different methods. The GET-
request, for instance, triggers the doGet-method of an http-servlet, while a
POST-request triggers the doPost-method. An http-servlet must, however, be
given a logical name and mapped to an URL in order to be able to process any
form of http-requests. The Tomcat server uses an xml-file, web.xml, to
accomplish this. The following xml-code gives the ControlServlet-class of the
Needleman-Wunsch alignment visulisation a name and maps it to respond to a
certain set of URLs:

<servlet>
 <servlet-name>demoCtrl</servlet-name>

<servlet-class> demo.control.ControlServlet
</servlet-class>

 <init-param>
 <param-name>matrixpath</param-name>

 <param-value>
C:\Programfiler\Apache Software Foundation\
Tomcat 5.0\webapps\needle\matrices

</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>demoCtrl</servlet-name>
 <url-pattern>*.demo</url-pattern>
</servlet-mapping>

The servlet-name-tag at the top contains the name of the servlet (e.g.
demoCtrl), while the servlet-class-tag contains the servlet-class (e.g.
demo.control.ControlServlet) that is associated with the name. The servlet-
mapping-tag maps the servlet associated with the servlet-name to respond to
all requests for URLs with the postfix .demo (e.g. start.demo, end.demo, etc).

The web.xml file can also be used to define init-parameters for a servlet.
Servlets can easily access init-parameters given in the web.xml file through
the method getInitParameter, and init-parameters are an easy way of
configuring a servlet.

105

Appendix B Technical Solution of the BioTeach-system

The model-layer in the JSP Model 2 architecture is concerned with retrieving
and processing information from the data source (the bio.jar library in the
alignment application). The model-layer is composed of JavaBeans (Callaway,
2001; Sandnes 2002), which are Java-classes that retrieve information from
the data source, and format the retrieved information so the information can be
used by the view-layer. JavaBeans can be embedded in web pages, and the
information stored in a JavaBean can be accessed from a web page by
including certain directives in the web page. JavaBeans cannot, however, be
used to create complex presentations in which the length of the document is
unknown, or that require the data stored in the JavaBeans to be iterated over.

The score matrix of the Needleman-Wunsch alignment visualisation and the
exercise is defined by the users, and it is therefore impossible to know the
dimensions of the score matrix on beforehand. Thus, the presentation of the
Needleman-Wunsch visualisation and exercise cannot be created by
embedding JavaBeans in the web pages that contains these presentations.
JavaBeans are, however, still used in the model-layer to retrieve and format
information from the bio.jar library, but the retrieved and formatted
information is returned to the control-layer instead of being accessed directly
from the web pages of the view-layer.

The problem with creating the score matrix of the Needleman-Wunsch
algorithm is solved by using custom tags. Custom tags (Callaway, 2001;
Sandnes, 2002) are a powerful tool for creating dynamic web pages because
the tags can be designed to produce any kind of HTML-code. A custom tag is
essentially a Java-class that is given a logical name, which is used to execute
the contents of the Java-class in a web-page. The Java-class that implements a
custom tag is commonly referred to as a tag-handler class. A tag-handler class
has to extend either the javax.servlet.jsp.tagext.TagSupport-class or the
javax.servlet.jsp.tagext.BodyTagSupport-class. The custom tags that are
implemented in the alignment application do not have a body (i.e. there is no
HTML or other code between the opening tag and the closing tag), and the
tag-handler-classes therefore extends the former class. The custom tags of the
alignment application produces the HTML-code for the configuration form,
the visualisation interface, the exercise interface, and the correct score matrix
of the exercise. The tag-handler-classes for these tags and the web pages that
include these tags make up the view-layer of the alignment application.

The tag-handler classes are made available as custom tags by mapping the
classes to a logical name in a tag-library-descriptor, or tld-file. The tag-handler
class for the custom tag that produces the configuration form is mapped to a
logical name by including the following code in a tag-library-descriptor:

106

Appendix B Technical Solution of the BioTeach-system

<tag>
<name>NWForm</name>
<tag-class>demo.view.FormTag</tag-class>
<body-content>empty</body-content>
<attribute>
<name>action</name>
<required>true</required>

</attribute>
 </tag>

In this code segment maps the class demo.view.FormTag to the name
NWForm. The attribute-tag implies that the NWForm-tag accepts one
attribute, the action-attribute, and that the attribute is mandatory, otherwise the
tag will not work. The demo.view.FormTag-class must therefore implement a
method named setAction in order for the given attribute to be made available
in the tag-handler class. Other attributes can be implemented by adding
additional attribute tags, and by implementing methods in the tag-handler-
classes named setNameOfAttribute (e.g. setAge if the name of the attribute is
age).

Custom tags are included in a web-page by including the directive

<%@ taglib uri="path_to_tag_library_descriptor” prefix="pre-
fix_of_own_choice" %>

at the top of the web page. A custom tag without body or attributes is included
by including the following directive where the HTML-code generated by the
custom tag is to be inserted:

<prefix_of_own_choice:tag_name />

Web-pages that include embedded JavaBeans, custom tags, or any other form
of Java-technology (e.g. scriptlets) are commonly referred to as Java Server
Pages or JSP-documents.

B.1.3 The bio.jar library

The bio.jar library is the data source of the alignment application of the
BioTeach-system, and contains the Java-classes that implement the
Needleman-Wunsch alignment algorithm. This section discusses the general
steps that are involved when using the bio.jar library to conduct a global
pairwise sequence alignment, the data structures that are used to represent the
score matrix of an alignment, the optimal alignment (or alignments) of a pair

107

Appendix B Technical Solution of the BioTeach-system

of sequences, and the optimal path through a score matrix. How these data
structures are retrieved is also discussed. Readers are advised to consult the
source code for the exact implementation of the Needleman-Wunsch
alignment algorithm. Please refer to appendix A for instructions on
downloading the source code.

The classes that implement the Needleman-Wunsch alignment algorithm are:

− the Needleman-class

− the Element-class

− the SubstMatrix-class

The Needleman-class implements the algorithm, the Element-class represents
a cell in a score matrix, and the SubstMatrix-class represents a substitution
matrix.

A global pairwise sequence alignment starts by creating an instance of the
Needleman-class, and running the init-method of the Needleman-class. The
init-method creates an instance of the SubstMatrix-class, which the
Needleman-class uses to retrieve the scores of aligning a residue pair from the
substitution matrix that is used in the alignment. The init-method then runs the
setWeight-method of the Needleman-class, which computes the score matrix
of the alignment, and the align-method of the Needleman-class, which finds
the optimal alignment (or alignment) of the pair of sequences.

The score matrix of an alignment is represented by a two-dimensional
Element array of (n+1) columns and (m+1) rows, n being the length of the first
sequence and m being the length of the second sequence. Each Element-object
in the array represents a cell in the score matrix, and contains the score and the
pointers of a cell. The optimal path through a score matrix is represented by a
two-dimensional boolean array of (n+1) columns and (m+1) rows. Each
boolean value given in this array either states that the Element object given in
the corresponding row and column of the Element array is included in the
optimal path (i.e. the boolean value is true), or that the Element-object is not
included in the optimal path (i.e. the boolean value is false). The optimal
alignment (or alignments) of a pair of sequences is stored in a two-
dimensional String array of x columns and 2 rows. Each String-object in this
array represents a sequence, and each column represents an optimal alignment
of a sequence pair.

The score matrix is retrieved from the Needleman-class by calling the
getWeightMatrix-method, the optimal path is retrieved by calling the getPath-

108

Appendix B Technical Solution of the BioTeach-system

method, the optimal score of an alignment is retrieved by calling the getScore-
method, and the optimal alignment (or alignments) is retrieved by calling the
getAlignment-method.

B.1.4 Graham’s Scan

Graham’s scan (Lazlo, 1996) is a linear programming algorithm that is used to
find the convex hull of a set of points. This algorithm is implemented in the
CoordinateArea-class of the clustering algorithm to find the convex hull of
clustered points. The algorithm starts by selecting an extreme point, p0, e.g.
the point with the highest x-coordinate and the lowest y coordinate. The
remaining points are then sorted around p0. A hypothetical line is then drawn
between p0 and the next point in the sorted point collection, p1. The position
of the third point in the sorted point collection is then compared to the line
between p0 and p1. If p2 is to the left of the line, p2 may be in the convex hull,
and is stored. The hypothetical line between p0 and p1 is then replaced by a
hypothetical line between p1 and p2. If p2 is to the right of the line, p1 is not in
the convex hull. p1 is discarded while p2 is stored. The hypothetical line
between p0 and p1 is then replaced by a line between p0 and p2.

The next step is to compare the position of the fourth point, p3, to the
hypothetical line between the two previously stored points (i.e. p1 and p2, or p0

and p2) If p3 is to the left of the hypothetical line, p3 may be in the convex
hull, and is stored. The previous hypothetical line is then replaced by a
hypothetical line between the previously stored point and p3. If p3 is to the
right of the hypothetical line, the point stored in the previous step is not in the
convex hull, and is discarded. The position of p3 is then compared to the
hypothetical line between the two points that was stored prior to the previous
point. If p3 is to the left of this line, p3 may be in the convex hull, and is stored.
Otherwise, the last point to be stored prior to the point that was removed is not
in the convex hull, and is discarded. The algorithm continues the process of
finding the points that compose the convex hull of the set of point by

1. draw a hypothetical line between the two points that was last stored

2. retrieve the next point from the sorted set of points (hence referred to as the
current point)

109

Appendix B Technical Solution of the BioTeach-system

3. compare the position of the current point with the hypothetical line and

1. if the current point is to the left of the line: store the the current point
and go to step 1

2. if the current point is to the right: remove the point that was last stored,
and draw a hypothetical line between the point that now is the lastly
stored point and the point that was stored prior to the new lastly saved
point. Got step 3.

Repeat this cycle until the last point in the sorted set is reached.

B.2 Application organisation and program flow

This section describes the organisation of the portal and the applications of the
BioTeach system and the program flow of the applications, and is intended as
a supplement to the source code. Readers are advised to consult the source
code for the exact implementation of the system. Please refer to appendix A
for instructions on downloading the source code.

The BioTeach system is divided in three separate modules/applications:

− the portal

− the alignment application

− the clustering application

B.2.1 The portal

The portal is the top level presentation layer created to provide a uniform
interface to the two applications. The two applications are, as described in the
walkthrough, presented in the center frame without changing the menu or the
header, thus creating the desired uniform look. The portal is designed with
HTML-framesets, HTML-pages, and cascading style sheets. The directory tree
of the portal is organized in the following manner:

110

Appendix B Technical Solution of the BioTeach-system

 <path to portal>
|

 |-HTML-documents
|
|-<gfx>

|-images and graphics
|
|-<css>

|-Cascading style sheets

B.2.1.1 Index.html

Index.html is the main page of the application and contains the framesets.
Framesets are used to create a grid of frames which then is used to position the
various HTML-documents on the screen. This file contains framesets that
divide the screen into 5 frames (See fig. B.1 for layout):

- top; the header-frame

- bottom; the frame used for contact information

- menu; the menu frame.

- main; the presentation frame

- help; the help menu frame

TOP

MENU MAIN HELP

BOTTOM

Fig. B1: The layout of the frames of index.html

111

Appendix B Technical Solution of the BioTeach-system

B.2.1.2 top.html

Top.html is located in the top frame and contains the logo. The logo is placed
within a HTML-table to center it on the screen.

B.2.1.3 menu.html

Menu.html is located in the menu frame and contains the menu. The menu
consists of ordinary HTML-links which opens the applications in the centre
frame. The HTML-links are placed within two HTML-tables, an outer table
for centring and an inner table for vertical alignment, to create an orderly
menu. To ensure that the modules are presented in the main frame, the target
parameter of each link is set to the main frame. The menu also contains a link
to the download page of the BioTeach system.

B.2.1.4 help.html

help.html is located in the help frame and contains the help menu. The help
menu is composed of ordinary HTML-links that opens the help documents in
a separate browser window so as not to interrupt with the running of any of the
applications. The target parameters of these links are set to _new in order to
ensure that the links opens in a separate browser window.

B.2.1.5 Bottom.html

Bottom.html is located in the bottom frame, and contains contact information.

B.2.1.6 Main.css

Main.css is a cascading style sheet that controls the appearance of both the
framework and the clustering application. Main.css was originally intended to
be included in the alignment application as well, but it proved difficult to
include this style sheet in the alignment application. Instead, an identical style
sheet is included in the alignment application.

Cascading style sheets are very powerful, as they make it possible to centralise
all settings concerning the appearance of a site or application, and changes in a
style sheet appear immediately in the documents that are linked to a style
sheet. Style sheets has the ability to format standard HTML-tags, e.g. the
body-tag, as well as creating own classes of formatting with the notation

112

Appendix B Technical Solution of the BioTeach-system

SPAN.<class-name>{<settings>}

Main.css sets the following:

- the background colour to ivory by formatting the body tag

- the appearance of the text of the <H1>-tag

- the background colour of the <TH>-tag (table header)

and creates the following classes:

- optimal; used to mark the optimal path through the score matrix of
the alignment

- normal; used on normal text

- max; used to mark the calculation(s) which yields the max score

- error; used on error message text

B.2.2 The Alignment application

The alignment application is composed of two separate applications: the
visualisation application and the exercise application. Both the visualisation
application and the exercise application are implemented according to the JSP
Model 2 architecture.

113

Appendix B Technical Solution of the BioTeach-system

The alignment application is packaged as a web archive, or war-file, that is
organised as follows:

<path to alignment application>
|- HTML and JSP documents
|-<css>

|- cascading style sheet
|-<gfx>

|- images and graphics
|-<matrices>

|- substitution matrix files
|-<META-INF>

|- MANIFEST.MF (generated by Tomcat)
|-<WEB-INF>

|- web.xml
|
|-<classes>

|- the demo and the exercise package directory tree
|-<lib>

|- bio.jar
|-<tld>

|-<demo>
|- alignlib.tld

|-<exercise>
|-exercise.tld

All HTML and JSP documents are linked to the style sheet found in the css
directory. It was, as explained in the previous section, difficult to link the
HTML and JSP documents in this application to the style sheet used in the
portal, so an identical style sheet had to be created for this application.

Selecting the alignment application from the portal menu opens the page
index.html. This document provides a short introduction to the application and
links to the alignment visualisation and the alignment exercise.

Selecting the visualisation application from the index.html page opens the
page demoIndex.html. This page contains a short introduction to the
visualisation and provides links to the simple and the advanced visualisation.

114

Appendix B Technical Solution of the BioTeach-system

B.2.2.1 Starting a simple visualisation

Selecting the simple visualisation opens the page simpleDemo.html. This page
describes the parameters that are used in the simple visualisation, and provides
a button that starts the simple visualisation (the simple visualisation presents
the alignment of the sequences RWA and LSP using a gap penalty of -5 and
the Blosum62 substitution matrix). The start-button is named “demo” and is
embedded in a form that sends a POST-request to the page startSimple.demo.
startSimple.demo and all other pages with the postfix .demo is a mapping to
the control layer of the visualisation application represented by the class
ControlServlet in the package demo.control (see web.xml in the WEB-INF
directory for all servlet mappings in the alignment application). Hence,
pressing the start-button of the simple visualisation creates an instance of the
ControlServlet and sends a POST-request to the instance of the
ControlServlet. Creating an instance of the ControlServlet also initialises the
instance. Initialisation of the instance is handled by the init-method of the
ControlServlet-class. This method reads the init-parameter “matrixpath” found
in the web.xml file. This parameter contains the path to the substitution matrix
files that are implemented in the visualisation.

Once the initialisation process is completed, the visualisation application
proceeds to process the POST-request generated by the start-button of the
simple visualisation. The ControlServlet handles all POST-requests generated
by the visualisation application with the doPost-method, and the doPost-
method uses the name of the button that generated the request to handle the
different POST-requests. The start-button of the simple visualisation is named
“demo” and this button triggers the setAttributes-method of the
ControlServlet. This method first sets the parameters of the alignment, and
then checks if the parameters are valid. The parameters of the simple
visualisation are hard-coded in the application, and are therefore always valid.
The method then creates an instance of the NeedleBean-class. The
NeedleBean-class is one of the two classes that are situated in the model-layer
of the application (i.e. contained in the demo.model package). The
NeedleBean-class acts as an intermediary between the ControlServlet and the
bio.jar library. The purpose of using an intermediary instead of implementing
the Needleman-Wunsch algorithm directly into the visualisation application is
to separate the implementation of the algorithm from the visualisation of the
algorithm. It is therefore possible to use the implementation of the algorithm
in other applications by importing the classes of the bio.jar library. Creating an
instance of the NeedleBean-class also creates an instance of the Needleman
class in the bio.jar library. The Needleman-class is responsible for conducting
the alignment of a pair of sequences.

115

Appendix B Technical Solution of the BioTeach-system

Once the instance of the NeedleBean class is created, the setAttributes-method
of the ControlServlet calls the init-method of the NeedleBean-class, which in
turn conducts the alignment of the pair of sequences by running the init-
method of the Needleman-class. The init-method of the NeedleBean-class then
retrieves and stores the score matrix computed by the Needleman-class. The
ControlServlet then calls the method getMatrix in the NeedleBean-class. This
method retrieves the direction matrix from the Needleman-class and converts
both the score matrix and the direction matrix from primitive integer and
boolean matrices into matrices of Integer and Boolean objects. The converted
matrices are stored in an instance of the Matrix-class along with the length of
each of the two aligned sequences. The Matrix-class is the second of the two
classes that are situated in the model layer (i.e. located in the demo.model
package). This class is designed to store all necessary information about an
alignment of a pair of sequences. The instance of the Matrix-class is then
returned to the ControlServlet.

The ControlServlet then creates an instance of the HttpSession-class. Instances
of this class are used to store and pass information between the control-layer
and the view-layer. The information stored in the HttpSession is:

- the pair of sequences represented by the strings s1 and s2

- the gap penalty

- the path to the matrices

- the name of the substitution matrix used in the alignment

- the score matrix of the alignment

- the direction matrix of the alignment

- the optimal alignments retrieved from the Needleman-class through
the getAlignments-method of the NeedleBean-class

- the optimal path through the score matrix retrieved from the
Needleman-class through the getOptimalPath-method of the
NeedleBean-classthe score of aligning two residues represented by
the Integer-object weight. When a visualisation is started, there are
no residues that have been aligned, so the weight is set to zero

116

Appendix B Technical Solution of the BioTeach-system

The HttpSession is also used to store information about the state of the
application:

- the coordinates of the score matrix cell whose score and directions
are to be visualised represented by the Integer-objects x and y. At
the start of a visualisation these objects are set to zero

- the Boolean object xinit and yinit are used to determine whether or
not the first row and the first column are being initialised. At the
start of a visualisation xinit is set to true, while yinit is set to false

- the Boolean object finished is used to determine whether or not the
score matrix is completed. Set to false at the start of a visualisation

- the Boolean object simple is used to determine whether or not the
current visualisation is a simple visualisation. Set to true when the
visualisation is simple

Once all necessary information is stored in the HttpSession, the setAttributes-
method of the ControlServlet returns the path to the next page to be displayed
by the view-layer: the page align.jsp. The doPost-method of the
ControlServlet then redirects the application to the align.jsp page, which starts
the visualisation.

B.2.2.2 Starting an advanced visualisation

Selecting the advanced visualisation from the demoIndex.html page sends a
GET-request to the ControlServlet of the visualisation application as the link
points to the page advanced.demo. Thus, using this link creates and initialises
an instance of the ControlServlet-class. The initialisation process is identical
to the process described in the previous section. The ControlServlet handles
all GET-requests with the doGet-method. The doGet-method calls the
setMatrices-method, which reads all available substitution matrices into a
Properties-object. The available matrices are read from the file
matrix.properties in the matrices-directory. The matrix.properties lists the
available substitution matrices on the form:

Matrix1 = name_of_matrix_1
Matrix2 = name_of_matrix_2

.

.

.
MatrixN = name_of _matrix_N

117

Appendix B Technical Solution of the BioTeach-system

The names of the matrices have to correspond with the names of the matrix-
files (e.g. Blosum62.txt) without the .txt extention. This list of matrices is
used to populate the list of available substitution matrices in the configuration
form of the advanced visualisation.

Once the matrix-names have been read, the ControlServlet creates an instance
of the HttpSession-class, and stores the Properties-object in the HttpSession
and returns to the doGet-method. The doGet-method then redirects the
application to the page advDemo.jsp.

The page advDemo.jsp is linked to the tag library alignlib.tld found in the
demo-directory of the tld-directory. The tag library alignlib.tld contains the
mappings between the custom tags and the tag-handler classes. A link between
a jsp-page and a tag library is created by including the directive

<%@ taglib uri="path_to_tag_library” prefix="pfx" %>

at the top of the page. For advDemo.jsp the uri attribute is “/WEB-
INF/taglib/demo/alignlib.tld”, and the used prefix is “demo”. By including a
directive with these attributes, all tags given in the tag library aligntag.tld can
be included in advDemo.jsp by including the directive

<demo:tag_name attributes />

One of the two tags that are included in alignlib.tld is the tag NWForm, which
is mapped to the class FormTag in the view-layer (i.e. the class is found in the
demo.view package). The FormTag-class prints the HTML-code for the
configuration form of the advanced visualisation to the jsp-page the tag is
included in. The NWForm-tag requires a target-attribute to be provided in
order to function properly. The target attribute must contain a mapping to the
ControlServlet (i.e. a filename with a .demo postfix) in order for the advanced
visualisation to function properly. The directive used to include the NWForm-
tag in the advDemo.jsp page is:

<demo:NWForm action=”startAdvanced.demo”/>

Thus, selecting the advanced visualisation from the demoIndex.html page

1) creates an instance of the ControlServlet

2) reads the path to the substitution matrices

3) reads the list of available substitution matrices and stores the list in a
Properties-object, which is stored in a HttpSession

118

Appendix B Technical Solution of the BioTeach-system

4) redirects the application to the page advDemo.jsp

5) creates an instance of the FormTag-class, which prints the HTML-code
for the configuration form of the advanced visualisation

Creating an instance of the FormTag-class stores the action-attribute given in
the directive and runs the doStartTag-method. This method prints the text
fields and the start-button to the advDemo.jsp page. The list of available
substitution matrices is also populated by retrieving the Properties-object from
the HttpSession, and reading the matrices from the Properties-object. The
advDemo.jsp page also includes directions as to how an advanced
visualisation is configured.

Pressing the start-button sends a POST-request to the ControlServlet. The
ControlServlet handles this request as it handles the POST-request of the
simple visualisation with one exception: the parameters to the algorithm (i.e.
the sequences, gap penalty, and substitution matrix) are not hard-coded. These
parameters are supplied by the users through the configuration form, and have
to be retrieved from the POST-request. The setAttributes-method of the
ControlServlet handles the retrieval of the parameters, before an instance of
the NeedleBean-class is created and the alignment is conducted (see previous
section).

Once the necessary information has been stored in the HttpSession, the
ControlServlet redirects the application to the align.jsp page that starts the
visualisation

B.2.2.3 The visualisation

The visualisation starts once the page align.jsp is opened. This page is linked
to the tag library alignlib.tld using the same directive as the advDemo.jsp
page. Align.jsp incudes, apart from a header and information about how to
view the selected substitution matrix, the tag Align. This tag is mapped to the
class AlignTag in the view-layer (i.e. included in the package demo.view), and
requires the attribute action to be set. The directive used to include this tag in
align.jsp is

<demo:Align action=”show.demo”/>

This tag prints the score matrix of an alignment as well as the computation
table (or the optimal alignments) and the set of buttons that controls the
visualisation.

119

Appendix B Technical Solution of the BioTeach-system

Thus, once align.jsp opens, an instance of the AlignTag-class is created, and
the visualisation interface is printed to the align.jsp page. The printing of the
interface starts with the doStartTag-method in the AlignTag-class, which is
called as the instance of the AlignTag-class is created. This method calls the
getAttributes-method, which retrieves all attributes from the HttpSession-
object. The printing of the interface to align.jsp is then started by calling the
visualise-method. The visualise-method is the first of many methods that are
involved in the printing of the interface. The methods involved in the printing
process eventually decomposes the printing of the interface into the printing of
the cells of the score matrix, the printing of the computation table (or the
optimal alignments), the printing of the link to the substitution matrix, and the
printing of the control-buttons. The printing of the interface starts with the
printing of the one-celled outer table that is used to centre the other
components. The score matrix and the other components of the interface are
printed in steps starting with the score matrix. The first step is to format the
table that represents the score matrix followed by the printing of the header
row. The score and the pointers of remaining cells of the score matrix is
printed, row by row and cell by cell, until the current cell, cell F(x, y), is
reached. The computation table for the current cell is then printed, followed by
the link to the chosen substitution matrix and the control-buttons.

Pressing any of these buttons sends a POST-request to the doPost-method of
the ControlServlet:

- the next-button updates the state-information stored in the
HttpSession to enable the AlignTag-class to display the score,
pointers, and computations of the next cell

- the previous-button updates the state-information stored in the
HttpSession to enable the AlignTag-class to display the score,
pointers, and computations of the previous cell

- the finish-button updates the state-information to enable the
AlignTag-class to display the completed score matrix and the
optimal alignments

- the new alignment-button resets the HttpSession to remove any
stored information, and calls the doGet-method to redirect the
application to the advDemo.jsp page

- the main page-button resets the HttpSession and redirects the
application to index.html

120

Appendix B Technical Solution of the BioTeach-system

B.2.2.4 Running an exercise

Selecting the exercise application from the page index.html sends a GET-
request to the page start.exercise. The page start.exercise and all other pages
with the postfix .exercise are mapped to the control-layer of the exercise
application represented by the ControlServlet class in the package
exercise.control (see web.xml). Thus, using the link to the exercise application
creates an instance of the ControlServlet of the exercise application, and
initialises the instance. The initialisation of the ControlServlet is identical to
the initialisation process of the ControlServlet of the visualisation application,
that is, the path to the directory that contains the substitution matrix files is
read from web.xml. The doGet-method in the ControlServlet-class handles all
GET-requests and is identical to the doGet-method of the ControlServlet of
the visualisation application. Thus, the GET-request sent to the ControlServlet
triggers the doGet-method, which reads the available substitution matrices
from the matrix.properties file in the matrices directory and stores them in a
Propery-object. The Property-object is in turn stored in an instance of the
HttpSession-class. The doGet-method then redirects the exercise application
to the page exercise.jsp.

The page exercise.jsp is linked to the same tag-library as the page
advDemo.jsp using the directive

<%@ taglib uri="/WEB-INF/tld/demo/alignlib.tld"
 prefix="print" %>

Exercise.jsp includes the same description included in the advDemo.jsp page
as well as the same configuration form. The configuration form is included
with the directive

<print:NWForm action="start.excercise"/>

The NWForm tag is, as in the visualisation application, handled by the class
FormTag found in the view-layer of the visualisation application. The only
difference between the configuration form produced by the FormTag-class in
the exercise application and the visualisation application is the action
triggered by the start-button. The start-button of the exercise application sends
a POST-request to the page start.exercise (i.e. the ControlServlet of the
exercise application), while the start-button of the visualisation application
sends a POST-request to the page startAdvanced.demo. Thus, using the link to
the exercise application

121

Appendix B Technical Solution of the BioTeach-system

1) creates an instance of the ControlServlet-class in the package
exercise.control

2) reads the path to the substitution matrices from web.xml

3) reads the list of available substitution matrices from the
matrix.properties file, stores the list in a Properties-object, which is
stored in a HttpSession

4) redirects the exercise application to the exercise.jsp page, which
creates an instance of the FormTag-class that prints the configuration
form to the page.

Pressing the start-button created by the FormTag-class sends a POST-request
to the ControlServlet. The ControlServlet handles POST-requests with the
doPost-method. The doPost-method of the exercise application uses, as the
doPost-method of visualisation application, the names of the buttons that
triggered the requests to handle a POST-request correctly. The start-button of
the exercise (named “init”) triggers the method setAttributes. This method is
similar (but not identical) to the setAttributes-method of the ControlServlet in
the visualisation application. The two differences between the two methods
are

1) the setAttributes-method of the ControlServlet in the exercise
application does not contain any hard-coded parameter

2) the setAttributes-method of the ControlServlet in the exercise
application returns a different page (i.e. computeTable.jsp) to which
the exercise application is redirected.

Thus, pressing the start-button produced by the FormTag in the exercise
application conducts a pairwise sequence alignment as described in the section
concerning the visualisation (section B.3.2.3), that is, it uses an instance of the
NeedleBean-class in the demo.model-package to conduct the alignment, stores
the necessary information in an HttpSession. The exercise application is then
redirected to the page computeTable.jsp.

The page computeTable.jsp is linked to the tag-library exercise.tld found in
the exercise-subdirectory of the tld-directory. This tag-library is included in
computeTable.jsp with the directive

122

Appendix B Technical Solution of the BioTeach-system

<%@ taglib uri="/WEB-INF/tld/excercise/excercise.tld"
prefix="ex" %>

In addition to the description of how to perform an exercise, the page
computeTable.jsp includes an instance of the class ExerciseTag found in the
view-layer of the exercise application (i.e. located in the package
exercise.view) with the directive

<ex:Init action="inputTable.excercise" />

The ExerciseTag-class prints a score matrix based on the parameters entered
in the configuration form to the page in which the ExerciseTag instance is
included, a link to the selected substitution matrix, and a set of buttons that
controls the exercise. Each cell in the score matrix printed by this class
contains a text field in which the score is to be entered, and three check boxes
that represent the possible pointers. Pressing either of the buttons sends a
POST-request to the ControlServlet of the exercise application:

– the submit button triggers the compare-method of the
ControlServlet

– the new-button resets the HttpSession, and redirects the application
to the page exercise.jsp

– the main page-button resets the HttpSession, and redirects the
application to the page index.html

The compare-method creates an instance of the Corrector-class located in the
model-layer of the exercise application (i.e. the class is located in the package
exercise.model). The compare-method retrieves the scores and directions
entered into the score matrix by the users, and compares these scores and
directions to the scores and directions of the correct score matrix.

If the score matrix supplemented by the users match the correct score matrix,
the method redirects the exercise application to the page correctTable.jsp.
correctTable.jsp is linked to the tag-library exercise.tld using the same
directive as is used in the page computeTable.jsp, and includes an instance of
the CorrectMatrixTag-class by including the directive

<ex:showCorrect action="correct.excercise" />

The CorrectMatrixTag-class prints the correct score matrix with the optimal
path marked with red, and the optimal alignments. The class also prints two
buttons to the page the instance is included in:

123

Appendix B Technical Solution of the BioTeach-system

- the New exercise-button resets the HttpSession, and redirects the
exercise application to the page exercise.jsp

- the Main page-button resets the HttpSesssion, and redirects the
exercise application to the page index.html

If the submitted score matrix is incorrect, the compare-method creates an error
message that describes where in the score matrix the incorrect score or
direction occurs. If a score and a direction is incorrect, two error messages is
created, the first describes where in the score matrix the incorrect score
occurs, and the second error message describes where in the score matrix the
incorrect direction occur. The error message (or messages) is stored in the
HttpSession, and the exercise application is then returned to the page
computeTable.jsp. The ExerciseTag-class then prints a score matrix that
contains the scores and directions entered by the users in the previous step of
the exercise, the error message (or messages), the link to the substitution
matrix, and the set of buttons that controls the exercise. It is then possible to
correct the errors and re-submit the score matrix.

B.2.3 The clustering application

The clustering application is a Java Applet and is organised as follows:

<path to clustering application>
|
|-HTML documents
|
|-<classes>

|-java class files
|
|-<gfx>

|-images and graphics

124

Appendix B Technical Solution of the BioTeach-system

B.2.3.1 The interface components

Selecting the clustering application from the visualisation menu opens the
page index.html. This page serves as an introduction to the components of the
interface of the clustering application, and provides a link that opens the page
cluster.html. This page includes the clustering applet by including the tag

<APPLET CODE="ClusterApplet.class" codebase="classes/"
WIDTH=700 HEIGHT=570>

The code-parameter points to the class file that extends the JApplet-class,
while the codebase-parameter points to the directory that contains the classes
that are used by the applet. The width and height parameters set the width and
height of the applet respectively. Both index.html and cluster.html is linked to
the style sheet of the portal. Opening the cluster.html page creates an instance
of the ClusterApplet-class and initialises the instance.

The initialisation process (handled by the init-method) sets some of the state
variables, and sets up the interface of the clustering applet. The applet
interface is composed of a main panel, which in turn are composed of two
panels; the left panel and the right panel. The left panel contains the
coordinate system, the algorithm and variant list, the list of predefined
examples, the show-linkage check box, and the canvas upon which the
dendrogram of the hierarchical clustering is drawn. The right panel contains
the raw data table, the buttons that control the visualisation, and the clustered
data table.

The coordinatesystem is composed of a header label that asks the users to plot
the data in the coordinate system below, an instance of the CoordinateArea-
class, and a label that displays the coordinates of the position of the mouse-
pointer when it is situated within the coordinate system. The CoordinateArea-
class is a custom component extended from the JComponent-class. This class
contains all the logic for depositing points in the coordinate system and for
displaying the graphical visualisations of the clustering algorithms, as well as
the logic for handling mouse-pointer movements within the coordinate system.
Moving the mouse-pointer within the coordinate system triggers the method
mouseMoved-method in the CoordinateArea-class. This method transforms
the mouse-pointer’s position within the applet interface into the mouse-
pointer’s position relative to the origin of the coordinate system with the
method normalizeCoords. The method also triggers the updateCursorLocation
in the ClusterApplet class, which updates the label that displays the position of
the mouse-pointer in the coordinate system. Pressing a mouse button within
the coordinate system triggers the mouseClicked-method, which transforms
the mouse-pointer’s position in the applet interface into the mouse-pointer’s

125

Appendix B Technical Solution of the BioTeach-system

position relative to the origin of the coordinate system, deposits a point in the
coordinate system, creates an instance of the MicroArrayPoint-class, and
stores the MicroArrayPoint in the vector that contains all points that have been
deposited in the coordinate system. The MicroArrayPoint-class is used to store
all useful information about a deposited point such as coordinates of the point
in the applet interface, the coordinates of the point relative to the origin of the
coordinate system, the number of the point, which cluster and centroid the
point belongs to, and so forth.

The mouseClicked-method of the CoordinateArea-class also triggers the
updateClickPoint-method in the ClusterApplet-class. The updateClickPoint-
method in the ClusteringApplet-class retrieves the vector that contains the
deposited points, and adds the last point in the vector to the raw data table.
The method also sets some of the state variables of the applet, but as which
state variables are set depend on which algorithm is chosen, these state
variables are discussed when the different algorithm visualisations are
discussed.

The raw data table and the clustered data table are instances of the class
JTable, standard components of the java.swing package. These tables are
implemented with a custom background renderer in order to colour the
background of the cells in the second and third column according to the colour
scheme that is used in the heat maps. The custom background renderer is
represented by the class ColouredCellBgRenderer-class. This class ensures
that the cells in the second and third column of the tables receive the
appropriate green or red colour background based on the x- and y-coordinates
of a point.

The canvas for the dendrogram is an instance of the DendrogramArea-class,
which is an extension of the JComponent-class. This class contains all the
logic for drawing a dendrogram on the canvas. This class will be discussed in
more detail during the discussion of the visualisation of the hierarchical
clustering algorithm.

The buttons that controls the visualisation are:

- the new-button

- the predefined examples-button

- the place centroids-button (only available in the visualisation of the
k-means clustering algorithm)

126

Appendix B Technical Solution of the BioTeach-system

- the stepwise clustering-button

- the epochwise clustering -button (only available in the visualisation
of Self Organizing Maps)

- the automated clustering-button

- the finish-button

Pressing any of these buttons triggers the actionPerformed-method in the
ClusterApplet-class.

Pressing the new-button resets the applet by resetting the states of the
coordinate system and the dendrogram, removing all deposited points from the
coordinate system and the dendrogram by calling the clear-method of the
CoordinateArea and the DendrogramArea, emptying the raw data table and the
clustered data table, displaying the canvas, and resetting the algorithm lists
and the buttons.

Pressing the predefined examples-button activates the list of predefined
examples. Activating this list empties the canvas, the coordinate system and
the clustered data table, deactivates the coordinate system (i.e. the
CoordinateArea class will no longer respond to mouse activities in the
coordinate system), and creates an instance of the Example-class. The
example class generates a set of points distributed in 2, 3, or 4 clusters
composed of 50 points each (the number of points in each cluster can be
adjusted by supplying a higher or lower number when an instance of the class
is created). The instance of the Example-class that is created when the
predefined examples list is activated generates a set of points distributed in 2
clusters. The Example-class stores the points in a vector, which is retrieved by
the ClusterApplet and sent to the coordinate system by calling the method
setPoints in the CoordinateArea class. This method draws the points in the
vector in the coordinate system. The ClusterApplet also sends the vector to the
raw data table by calling the method setRawData in the ClusterApplet-class.

The stepwise clustering- and automated clustering-button are only available
under certain circumstances depending on the chosen algorithm. In general
these buttons are available once at least three points have been deposited in
the coordinate system. The place centroids-button is only available after the k-
means algorithm has been chosen, and at least three points have been
deposited in the coordinate system. The epochwise clustering-button is only
available after Self Organizing Maps have been chosen and at least three
points have been deposited in the coordinate system. The finish-button is only
available after a visualisation has been started.

127

Appendix B Technical Solution of the BioTeach-system

The finish-button is only available once a visualisation is started. Pressing this
button triggers the actionPerformed-method of the ClusterApplet-class, which
finishes a visualisation, and resets the clustering application.

B.2.3.2 Running a visualisation of the hierarchical clustering algorithm

Selecting the hierarchical clustering from the algorithm list triggers the
actionPerformed-method of the ClusterApplet-class, which empties the canvas
by calling the clear-method of the DendrogramArea-class, removes any lines
that have been drawn in the coordinate system by calling the removeLines-
method of the CoordinateArea-class, sets the state of the clustering application
to hierarchical clustering, empties the clustered data table, populates the list of
algorithm variants to display the implemented linkage options, enables the
automated-button and the stepwise-button if three or more points are plotted in
the coordinate system (the buttons are disabled otherwise), disables the
epochwise-button, displays the canvas, and enables the show linkage-check
box.

A visualisation of the hierarchical clustering algorithm is started by depositing
at least 3 points in the coordinate system and pressing either the automated
clustering-button or the stepwise clustering-button. Pressing either of these
buttons triggers the actionPerformed-method of the ClusterApplet-class, but
the two buttons are handled differently.

Pressing the automated clustering-button disables all buttons and components
except the finish-button. The vector containing the points deposited in the
coordinate system is retrieved by calling the getPoints-method of the
CoordinateArea-class, and converted into an array. The array containing the
deposited points is sent to the canvas by calling the setBoundingBox-method
of the DendrogramArea-class. This method places the points on the canvas
with equal distance between them. The automated clustering is then started by
calling the startAutomated-method of the ClusterApplet-class. This method
empties the clustered data table, creates an instance of the
ClusteringAnimator-class, and calls the start-method of the
ClusteringAnimator-class. The ClusteringAnimator-class implements a timer
that is set to trigger its own actionPerformed-method every 2 seconds for the
hierarchical clustering visualisation that does not show the linkage, and every
1 second if the linkage is to be shown. The timer is started by calling the start-
method of the ClusteringAnimator-class, and is stopped by calling the stop-
method. An instance of the HierarchicalClustering-class is then created. This
class contains all the logic that is needed to cluster a set of points according to
the hierarchical clustering algorithm. Creating an instance of this class
transforms the points in the point-vector into instances of the Cluster-class.
These instances are stored in a cluster-vector.

128

Appendix B Technical Solution of the BioTeach-system

Each time the actionPerformed-method of the ClusteringAnimator-class is
triggered, the cluster-method of the HierarchicalClustering-class is called. The
cluster-method computes the distance between each cluster (singleton or non-
singleton) according to the chosen linkage, and finds the two clusters that are
nearest each other. The cluster pair is removed from the vector that contains
the clusters, combined in a larger cluster, and the new cluster is inserted at the
end of the cluster-vector. The actionPerformed-method then retrieves the
modified vector of clusters from the HierarchicalClustering-class and sends
the vector to the coordinate system by calling the method setCurrentClusters
of the CoordinateArea-class. The repaint method of the CoordinateArea-class
is then called, which calls the drawHull-method. The drawHull-method of the
CoordinateArea-class uses the Graham’s Scan algorithm to draw the convex
hulls of each cluster in the cluster-vector. The actionPerformed-method also
sends the cluster-vector to the canvas by calling the setClusterVector-method
of the DendrogramArea-class. The repaint-method of the DendrogramArea-
class is then called. This method draws the dendrogram on the canvas. Lastly,
the actionPerformed-method calls the showClustered-method of the
ClusterApplet-class, which rearranges the clustered data table to display the
points in the order that they are clustered.

The procedure of visualising the hierarchical clustering algorithm if the show
linkage-box is ticked off is somewhat different. Ticking off this box instructs
the clustering application to show the pair of points that defines the least
distance between a pair of clusters. In order to do so, the actionPerformed-
method of the ClusteringAnimator-class retrieves the vector that contains the
clusters from the previous step and sends the vector to the coordinate system
by calling the method setPreviousClusters in the CoordinateArea-class. The
cluster-method of the HierarchicalClustering-class is then called, and the
actionPerformed-method then retrieves the new cluster-vector and sends it to
the coordinate system by calling the setCurrentClusters-method of the
CoordinateArea-class. The variable stepLinkage is set to 1, and the variable
linkageDrawn in the CoordinateArea-class is set to false before the repaint
method of the coordinateArea is called. By setting the linkageDrawn-variable
to false, the repaint-method of the CoordinateArea-class draws the convex
hulls of the previous clusters and a blue line between the pair of points that
define the least distance. The vector containing the current clusters is also sent
to the canvas, and the repaint-method of the DendrogramArea-class is called
to draw the dendrogram on the canvas.

The convex hulls of the current clusters are drawn in the coordinate system the
next time the actionPerformed-method is called. The method checks if the
stepLinkage-variable is set to 1, sets the linkageDrawn-variable of the
CoordinateArea-class to true, and the linkageStep-variable to zero before the

129

Appendix B Technical Solution of the BioTeach-system

repaint method of the CoordinateArea-class is called. Setting the
linkageDrawn-variable to true causes the repaint-method of the
CoordinateArea-class to replace the convex hulls of the previous cluster-
vector and the blue line between the pair of points that define the least
distance with the convex hulls of the current cluster-vector.

The cycle of calling the cluster-method, and repainting the coordinate system
and the dendrogram is repeated until all clusters are combined into one large
cluster, or until the finish-button is pressed.

A stepwise visualisation of the Hierarchical clustering is identical to the
automated clustering visualisation with one exception. The timer that triggers
the actionPerformed-method in the ClusteringAnimator-class is replaced by
the users. Pressing the stepwise clustering-button triggers the
actionPerformed-method in the ClusterApplet-class, which checks if the
button has been pressed to start a stepwise visualisation, or if the button has
been pressed to display the next step in the visualisation (the stepwise-button
is used both as a start-button and as a next-button in the stepwise
visualisation). If the button has been pressed to start a stepwise visualisation,
the actionPerformed-method deactivates all other buttons and components,
and activates the finish-button. The coordinate-system is also deactivated so
that it is impossible to deposit new points in the coordinate system during the
visualisation, and the canvas is cleared of any dendrogram. The label of the
stepwise clustering-button is changed so that the button shows the text “next”
(i.e. the stepwise-button becomes the next-button). The actionPerformed-
method then calls the startStepping-method. This method creates an instance
of the HierarchicalClustering-class, runs the cluster-method of the
HierarchicalClustering-class, repaints the coordinate system and the canvas
with the appropriate clusters and dendrogram, and rearranges the points in the
clustered datatable. If the show linkage box has been ticked off, the method
also creates an instance of the StepAnimator-class. This class enables the blue
line between the pair of points that define the least distance between a pair of
clusters to be drawn.

Pressing the next-button triggers the actionPerformed-method of the
ClusterApplet-class, which calls the step-method. This method runs the
cluster-method of the HierarchicalClustering-class, repaints the coordinate
system and the canvas, and rearranges the points in the clustered data table.

Once the visualisation is completet, automated or stepwise, the buttons are
reset, and the components are reactivated.

130

Appendix B Technical Solution of the BioTeach-system

B.2.3.3 Running a visualisation of the k-means clustering algorithm

Selecting the k-means algorithm from the algorithm list triggers the
actionPerformed-method of the ClusterApplet-class. This method sets the state
of the clustering application to k-means-visualisation, removes the canvas
from the interface, changes the automated clustering-button to display the text
“Place centroids” (i.e. the automated clustering-button becomes the place
centroids-button), disables the show linkage-box, and populates the variant list
with the options batch-variant and online-variant.

Depositing three or more points in the coordinate system activates the place
centroids-button. Pressing this button updates the state of the clustering
application to allow the centroids to be placed in the coordinate system, and
changes the text displayed in the place centroids-button to “Automated
clustering” (i.e. the place centroids-button becomes the automated clustering-
button). The coordinate system is now set up to handle points deposited in the
coordinate system as centroids, that is, the deposited points are coloured and
labelled C1, C2, C3, etc. and placed in a vector that contains the centroids.
Placing at least two centroids enables the automated clustering-button and the
stepwise-button. Pressing either of these buttons starts a visualisation of the k-
means clustering algorithm, and deactivates all other buttons and components
except the finish-button.

Pressing the automated clustering-button triggers the actionPerformed-method
in the ClusterApplet-class, which deactivates all components except the
finish-button, and calls the startAutomated-method. This method retrieves the
vector that contains the deposited points and the vector that contains the
deposited centroids from the coordinate system, retrieves the chosen variant
from the variant list and calls the startAutomated-method of the
ClusterApplet-class. This method creates an instance of the
ClusteringAnimator-class, and calls the start-method of this class. Creating an
instance of the ClusteringAnimator-class for the k-means clustering
visualisation sets the ClusteringAnimator up to display a k-means
visualisation, creates an instance of the Timer-class and sets the delay between
the steps to 1 second for the batch variant and zero for the online variant, and
creates an instance of the KmeansClustering-class. The KmeansClustering-
class contains all the logic for performing a k-means batch clustering and a k-
means online clustering. The start-method of the ClusteringAnimator-class
starts the timer, which triggers the actionPerformed method of the
ClusteringAnimator-class with the given delay until the stop-method is called.

Running an automated visualisation of the batch variant of the k-means
clustering algorithm causes the actionPerformed-method of the
ClusteringAnimator to call the cluster-method of the KmeansClustering-class

131

Appendix B Technical Solution of the BioTeach-system

with the parameter -1. Supplying the -1 parameter to this method means that
the cluster-method clusters the dataset according to the batch-variant. The first
step in the visualisation of the batch variant is to assign each point to the
closest centroid. Thus, the cluster-method of the KmeansClustering-class calls
the method assignPoints. This method iterates over the deposited points and
assigns each point to the closest centroid. The method also sets the colour of
each point to the same colour as the centroid the point is assigned to. The
actionPerformed-method of the ClusteringAnimator-class then retrieves the
vector that contains the centroids from the KmeansClustering-class and sends
them to the coordinate system by calling the method setCentroids of the
CoordinateArea-class. The actionPerformed-method also instructs the
CoordinateArea-class to draw the deposited points with the colours that
corresponds to the colour of the centroid each point is assigned to by calling
the method setUsePointColour of the CoordinateArea-clas with the parameter
true. The actionPerformed-method then calls the repaint-method of the
CoordinateArea, which draws the deposited points in the colour that
corresponds to the colour of the centroid each point is assigned to. Lastly, the
actionPerformed-method calls the showClustered-method of the
ClusterApplet-class, which updates the clustered data table to show the
deposited points in the clustered order. The backgrounds of the cells in the
first column of the clustered data table are also coloured with the same colour
as the centroid each point is assigned to.

The next time the cluster-method is called by the actionPerformed-method of
the ClusteringAnimator-class, the cluster-method calls the method
setCentroidCoord. This method recalculates the position of the centroids. The
method then reassigns the points to the closest centroid. The actionPerformed-
method then retrieves the vector that contains the centroids and sends them to
the coordinate system by calling the setCentroids-method of the
CoordinateArea-class, before the repaint-method of the CoordinateArea-class
is called. The CoordinateArea-class then draws the centroids in their new
positions, and updates the colour of the points to correspond to the colour of
the closest centroid. Lastly, the clustered data table is updated in the same way
as in the first step.

This cycle is repeated until the points remain stable (i.e. the points that are
assigned to each centroid remain the same in two consecutive cycles).
Pressing the finish-button before the clustering is completed causes the
clustering application to complete the clustering.

Running an automated visualisation of the k-means online algorithm is
slightly different. The actionPerformed-method iterates over the deposited
points, and calls the cluster-method of the KmeansClustering-class for one

132

Appendix B Technical Solution of the BioTeach-system

point at a time. Instead of using -1 as a parameter in the call to the cluster-
method, the parameter is the index of the current point in the vector of
deposited points. The cluster-method then calls the adjustCentroid-method,
which in turn finds the centroid that is closest to the current point and moves
the closest centroid somewhat closer to the point. The actionPerformed-
method of the ClusteringAnimator-class then retrieves the vector containing
the repositioned cluster, and sends it to the coordinate system by calling the
setCentroids-method of the CoordinateArea. The position of the centroid that
is closest to the current point in the coordinate system is then updated by
calling the repaint-method of the CooridinateArea-class. The
actionPerformed-method also updates the clustered data table to show the
points in the order they are clustered (i.e. calls the showClustered-method of
the ClusterApplet-class). This cycle is repeated until the points remain stable
and the centroids stop moving, or until the finish-button is pressed.

Conducting a stepwise visualisation of the k-means algorithm is identical to
the automated clustering with the exception that the instance of the
ClusteringAnimator is replaced by the users. Pressing the stepwise clustering-
button triggers the actionPerformed-method of the ClusterApplet-class, which
changes the state of the clustering application to that of a k-means clustering,
transforms the stepwise clustering-button into the next-button, deactivates all
components except the next-button and the finish-button, and calls the
startStepping-method. The startStepping-method creates an instance of the
KmeansClustering-class, and runs the cluster-method of this class. This
method performs the same actions as in the automated clustering. The
startStepping-method then retrieves the vector containing the adjusted
centroids and sends it to the coordinate system. The coordinate system is
updated in the same manner as in the automated clustering, as is the clustered
data table. Pressing the next-button triggers the actionPerformed-method of
the ClusterApplet-class, which calls the step-method. This method repeats the
cycle of adjusting the positions of the centroids and the updating of the
clustered data table. This procedure can be repeated until the clustering is
completed (see above), or the clustering can be completed by pressing the
finish-button.

B.2.3.4 Running a visualisation of Self Organizing Maps

Selecting SOM (Self Organizing Maps) from the list of algorithms triggers the
actionPerformed-method of the ClusterApplet-class, which sets the state of the
clustering application to a SOM-visualisation, removes the canvas, deactivates
the show linkage-box, and populates the list of variants with the options grid,
and line.

133

Appendix B Technical Solution of the BioTeach-system

Depositing at least three points in the coordinate system activates the
automated clustering-button, the stepwise clustering-button, and the
epochwise clustering-button.

Pressing the automated clustering-button triggers the actionPerformed, which
deactivates all components except the finish-button and calls the
startAutomated-method. This method creates an instance of the
ClusteringAnimator-class, and calls the start-method of this class. Creating an
instance of the ClusteringAnimator-class sets up the timer in accordance to the
SOM-visualisation, and creates an instance of the SelfOrganizing-class. This
class contains all the logic that is needed to conduct a clustering using SOMs.

Creating an instance of the SelfOrganizing-class creates the grid or the line of
units that is used in the clustering. The grid and the line of units are composed
of 1/3 as many units as there are deposited points. The number of units in the
grid is adjusted so that the grid is always a square of rectangle. The units are
generated randomly around the origin of the coordinate system, and organised
in neighbourhoods (see section 5.5 of chapter 5).

Calling the start method of the ClusteringAnimator-class retrieves the grid or
line of units, which is sent to the coordinate system by calling the
setCentroids-method of the CoordinateArea-class. The repaint-method of the
CoordinateArea is then called to draw the grid or line of units in the
coordinate system. The start-method then starts the timer, which triggers the
actionPerformed-method. The actionPerformed-method iterates over the
deposited points, and calls the adjustCentroids-method of the SelfOrganizing-
class for each deposited point. The adjustCentroids-method moves the nearest
unit and its neighbour(s) somewhat closer to the point. The actionPerformed-
method of the ClusteringAnimator-class then retrieves the centroid-vector
from the SelfOrganizing-class and sends it to the coordinate system by calling
the method setCentroids of the CoordinateArea-class. The actionPerformed-
method then calls the repaint-method of the CoordinateArea, which draws the
adjusted grid or line of units in the coordinate system. This process is repeated
for each deposited point 3000 times, or until the finish-button is pressed.

Pressing the stepwise-button triggers the actionPerformed-method of the
ClusterApplet-class, which sets the state of the clustering application up for a
SOM-visualisation, transforms the stepwise clustering-button into the next-
button, deactivates all components but the next-button and the finish-button,
and calls the startStepping-method. This method creates an instance of the
SelfOrganising-class, which generates the grid or line of units, retrieves the
grid or line, sends the vector containing the grid or line to the coordinate
system, and calls the repaint-method of the CoordinateArea-class. This
method then draws the grid or line of units in the coordinate system. Pressing

134

Appendix B Technical Solution of the BioTeach-system

the next-button triggers the actionPerformed-method of the ClusterApplet-
class, which calls the step-method. This method calls the adjustCentroids-
method of the SelfOrganizing with the current point as a parameter, which
adjusts the position of the unit closest to the current point. The vector
containing the adjusted unit is then retrieved and sent to the coordinate system
by calling the setCentroids-method of the CoordinateArea-class. The repaint-
method of the CoordinateArea-class is then called to draw the adjusted grid or
line in the coordinate system. This procedure can be repeated for each
deposited point 3000 times by pressing the next-button, or the clustering can
be completed by pressing the finish-button.

Pressing the epochwise clustering-button triggers the actionPerformed-method
of the ClusterApplet-class, which sets the state of the clustering application up
for a SOM-visualisation, transforms the epochwise clustering-button into the
next-button, deactivates all components but the next-button and the finish-
button, and calls the startEpochStepping-method. This method creates an
instance of the SelfOrganizing-class, retrieves the generated grid or line of
units and sends it to the coordinate system, and calls the repaint-method of the
CoordinateArea-class to draw the grid or line in the coordinate system.

Pressing the next-button triggers the actionPerformed-method in the
ClusterApplet-class, which calls the method epochStep. This method iterates
over the deposited points and calls the adjustCentroid-method of the
SelfOrganizing-class to adjust the grid or line of units. The method retrieves
the adjusted grid or line once all the deposited points have adjusted a unit once
(i.e. one full iteration over the deposited points, or an epoch), and sends the
adjusted grid or line to the coordinate system by calling the setCentroids-
method of the CoordinateArea. The adjusted grid or line is then drawn in the
coordinate system by calling the repaint-method of the CoordinateArea-class.
This process can be repeated 3000 times by pressing the next-button, or the
clustering can be completed by pressing the finish-button.

The interface of the clustering application is reset once the visualisation (SOM
or any other visualisation). Resetting the interface includes reactivating the
components, and resetting the state of the application.

135

