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Abstract

Abstract

This  thesis  explores  some  of  the  possibilities  web-technology  offers  for
creating an interactive learning environment for bioinformatics on the web. A
set  of  implemented  examples  on  how  some  of  the  basic  algorithms  in
bioinformatics  can  be  visualised  with  web-technology  is  presented  and
discussed. An implemented example on a web-based bioinformatics exercise
and  a  set  of  hypothetical  web-based  exercises  are  also  presented  and
discussed.
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Chapter 1 Why an interactive web-based learning environment? 

Chapter 1 

Why an interactive web-based learning

environment? 

1.1 Introduction

The  idea  of  this  project  is  to  explore  the  possibilities  and  challenges  of
creating  an  interactive  web-based  learning  environment  for  bioinformatics
based on discussions of theoretical and implemented examples of what such
an environment could include. 

The term interactive is used here to describe tools that allow experimentation
with  and  manipulation  of  concepts  and  principles.  In  other  words,  an
interactive web-based learning environment is an environment that allows the
users (e.g. students of bioinformatics) to experiment with and manipulate the
concepts  and  principles  it  discusses.  The  interactive  web-based  learning
environment discussed in this document is meant to be a supplement to, and
not a replacement of, the existing educational means in bioinformatics.

Web-technology offers a variety of possibilities for creating educational web-
applications, and it would be impossible to explore all possibilities in a single
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project. It was therefore necessary to focus on a few approaches: visualisation
of algorithms and interactive exercises. 

1.2 Visualisation of algorithms

Bioinformatics is concerned with the interpretation and analysis of biological
data, and a wide array of algorithms have been developed for this purpose.
These  algorithms  are  often  based  on  complex  statistical  and  mathematical
models. The traditional way of representing such algorithms in textbooks, is to
present the reader with the mathematical or statistical formula accompanied by
descriptive  text  and  figures  written  in  a  highly mathematical  or  statistical
language. These algorithms might  be easier  to  understand if  the traditional
descriptions  were  supplemented  with  step-by-step  visualisations  or  walk-
throughs. Traditional textbooks are, however, limited to static presentation of
information,  and  such  visualisations  and  walk-throughs  would  therefore
require an unreasonable amount of pages that probably would be uninspiring
to read. 

An  interactive  web-based  learning  environment  would  be  a  more  suitable
medium for visualisations and walk-throughs. Web-technology has reached a
stage where it is possible to create dynamic presentations of information based
on input from the user. It should therefore be possible to design web-based
learning experiences (i.e. web applications) that not only provide presentations
of how the algorithms work, but also allow the users to experiment with an
algorithm’s parameters to see how different parameters affect the results of the
algorithms.

There  are  too  many basic  algorithms  in  bioinformatics  to  give  a  thorough
discussion of how all of them could be visualised in an interactive web-based
learning environment.  Of  the  available algorithms,  the Needleman-Wunsch
alignment algorithm, and a selection of algorithms for clustering of microarray
data were chosen as candidates for discussion and visualisation. These were
chosen  because  sequence  alignment  and  clustering  of  microarray  data
represent two central, yet entirely different, fields in bioinformatics.

The  visualisation  examples  included  in  this  project  are  implemented  in  a
system called the BioTeach system. This system includes examples on how
the  Needleman-Wunsch  alignment  algorithm  and  three  central  clustering
algorithms can be visualised in an interactive web-based learning 
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environment. The BioTeach system also includes an interactive Needleman-
Wunsch exercise example. The system is discussed in detail in chapter 5. 

1.3 Biological databases and other tools

Biological databases are another important tool in bioinformatics. Researchers
use these databases to store their  work and to share their  work with other
researchers.  There  are  different  databases  for  different  types  of  biological
information, and different databases may have different ways of presenting
information. It is therefore necessary to know which information can be found
in  the  different  databases,  and  how  to  obtain  that  information.  The
development  of  portals  or  gateways  that  allow  multiple  databases  to  be
searched simultaneously have simplified the information search, but it is still
necessary to know how to perform a database search, which of the searched
databases to access to find the information they need, and how to read the
information. 

A web-based learning environment could be used to discuss the principles of
database searching, the portals, and the databases, but, as Wolfe (2001a, b)
argues, the web is not the best medium for long and exhaustive discussions.
Traditional textbooks would, for this reason, probably be better suited for a
detailed discussion of search principles, the databases, and the portals. 

However, both the databases and the portals are web-based, and a web-based
learning  environment  can  therefore  provide  direct  access  to  the  various
databases  and  portals.  A  web-based  learning  environment  could,  for  this
reason, be a convenient medium for short and precise discussions that provide
direct access to the various databases and portals through links. 

1.4 Interactive exercises

Exercises are an important  part  in the learning process because they allow
one’s understanding of a curricular subject to be tested and compared to the
goals  of  the  curriculum  (Anderson,  2001).  Thus,  exercises  concerning
databases and portals are a natural part of an interactive web-based learning
environment  for  bioinformatics.  The  web  provides  direct  access  to  the
databases and portals, and a web-based learning environment should therefore 
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be a convenient medium for exercises which are concerned with databases and
portals. Now, if these exercises were combined with the discussion mentioned
above, it would not be necessary to consult one or more traditional textbooks
to find the answers to the exercises. 

Exercises  in  an  interactive  web-based  learning  environment  offer
opportunities to create information presentations based on user input. In terms
of exercises, user input means answers, while information presentation refers
to comments. It should, in other words, be possible to use web-technology to
design web-based exercises that comment the answers that are given.

Traditional textbooks seldom provide any other comments to exercises than
the correct answers. The correct  answers are better than no comments,  but
providing the correct answers does not necessarily ensure that the subject an
exercise is concerned about is fully understood. Providing the correct answers
may not, for instance, be particularly helpful for students who are unable to
arrive at  the correct answer to an exercise, and who, at the same time, are
unable to  understand why the correct  answer is  correct.  Such students  are
forced to consult a third person, e.g. a fellow student or a lecturer, in order to
get help. 

The fastest way for a student to get help is probably through fellow students,
but as they are students, they may not have understood the subject well enough
to provide a correct explanation, or they may disagree in their understanding
of the subject, both of which may further confuse an already confused student.
Lecturers, on the other hand, are often busy, and may therefore have little time
to  consult  students,  even  through email.  Web-based exercises  that  provide
instant comments should therefore be a useful supplement for both students
and lecturers.

The Sourcer’s Apprentice system developed by Britt and Gabrys (2001) is an
example on how interactive exercises could be designed, and, although this
system  is  not  concerned  with  bioinformatics,  it  represents  one  possible
approach to interactive exercises in bioinformatics. The Sourcer’s Apprentice
system is discussed further in chapter 2. 

1.5 Other interesting features of web technology

Other interesting features with web-technology and web-applications are that
web-applications don’t require any installation on the part of the user apart
from  a  web-browser,  which  is  usually  preinstalled  by  the  computer
manufacturer along with the operating system; and that web-applications can 
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be  accessed  from  any  computer  anywhere  as  long  as  the  computer  is
connected to the web. 

1.6 Challenges

There are, as with any other educational tool, challenges connected to use the
web for educational purpose.

One of the elements that has to be taken into consideration when deciding
whether or not to use the web for educational purposes is access to the web;
that is, students obviously have to have access to the web to be able to use a
web-based  learning  environment,  and  must  therefore  be  supplied  with
equipment (e.g. computers) that provides them access to the web.

Access to equipment is not, however, the only consideration that has to be
taken  into  account.  Students  obviously  have  to  know  how  to  use  the
equipment and the web to be able to take advantage of a web-based learning
environment. Now, the web is a popular medium for distributing information
to the students, and most students should have some experience with the use
of  both  computers  and  the  web.  However,  some  students  might  feel
uncomfortable with the use of computers and the web, and may thus dislike
the notion of having to use the web as a learning environment. Such students
might feel more comfortable with a web-based learning environment if they
were presented with an environment that resembles a familiar environment.
Most students should be familiar with traditional textbooks and how they are
structured,  and  it  might  therefore  be  a  good  idea  to  design  a  web-based
learning environment to resemble a traditional textbook, both in appearance
and structure. 
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1.7 Document overview

The rest of this document is organised as follows:

- Chapter  2  discusses  the  biological  background information  that  the
algorithms  implemented  by the  BioTeach  system is  based  on.  The
chapter also includes a discussion of the Sourcer’s Apprentice system.
Chapter 3 contains an introduction to pairwise sequence alignment, a
discussion of the Needleman-Wunsch algorithm.

- Chapter 4 contains a short introduction to clustering of microarray
data, and a discussion of the three different clustering approaches
implemented and visualised by the BioTeach system: hierarchical
clustering, k-means clustering, and self organising maps.

- Chapter 5 presents the BioTeach system and discusses the design of
the algorithm visualisations and the exercise.

- Chapter 6 discusses hypothetical examples on how different interactive
exercises concerning the Blast algorithm, and biological databases and
portals can be designed.

- Chapter 7 contains a summary and conclusions.

- The appendices are concerned with the implementation of the
BioTeach system.

6
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Chapter 2 

Background on biology and

introduction to the Sourcer’s

Apprentice

2.1 Introduction

One of the objectives of this project is to discuss and provide examples on
how  a  selection  of  the  algorithms  used  for  interpretation  and  analysis  of
biological  data  could  be  visualised  in  an  interactive  web-based  learning
environment.  Sections  2.2 through 2.4 are meant  as  an introduction to the
biological principles the selected algorithms are based on, and the data these
algorithms are designed to analyse. 

Another objective of this project is to discuss how interactive exercises could
be designed in an interactive web-based learning environment. The Sourcer’s
Apprentice system represents one possible approach to exercise design, and is
discussed in section 2.5.

7



Chapter 2 Background on biology and introduction to the Sourcer’s Apprentice

Sections 2.2 to 2.4 is largely based on Draghici (2003), Causton et al. (2003),
and Berrar   et  al. (2003),  while  section  2.5  is  based  on  Britt  and  Gabrys
(2001).

2.2 DNA, genes, and gene expression

Most of the algorithms used in bioinformatics, the Needleman-Wunsch and
microarray data clustering algorithms included, are in some way concerned
with genes. Genes are segments of DNA that contain the instructions which
are  needed  to  build  and  maintain  organisms,  either  as  mechanisms  that
regulate cellular processes, or as recipes that allow a cell to produce a protein. 

The remainder of this section provides a short description of DNA, and the
process of transforming a gene into a protein, or the gene expression process.
Readers who are familiar with these concepts can safely skip the rest of this
section.

2.2.1 DNA and genes

DNA contains the hereditary material (i.e. the genes) of an organism, and is
found in most of the cells that compose the organism. The DNA is organised
in large molecules composed of two strands of nucleotides that form a double
helix (fig. 2.1). Each of the nucleotides in each of the strands is composed of a
sugar  residue,  a  phosphate  residue,  and  one  of  four  bases:  adenine  (A),
guanine (G), thymine (T), and cytosine (C). The sugar and phosphate residues
are identical in each nucleotide and form the backbone of the DNA strands,
while the bases vary from nucleotide to nucleotide. It is the order in which
these bases occur that determines how a gene functions (e.g. which protein it
produces), and it is common to refer to this order as a gene sequence. 

The chemical nature of the bases is such that only adenine and thymine bond
with each other, and only guanine and cytosine bond with each other. Adenine
and thymine are therefore said to be each others complement, as are cytosine
and  guanine.  The  two  DNA  strands  that  compose  a  DNA  molecule  are,
because of the bonding properties of the bases, base-by-base complements of
each other in order for the two strands to bond and form a DNA molecule.
This bonding process is called hybridisation, and is, as will be discussed in
section 2.4, utilised by the microarray technology. The DNA of an organism 
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can be divided into two groups: coding and non-coding regions. Non-coding
regions  make  up  the  majority  of  the  DNA and  have  no  known function.
Coding regions  are  segments  of  DNA that  contain  the  genes.  The  coding
regions are distributed, seemingly at random, in the DNA separated by non-
coding regions.

Fig. 2.1: A schematic description of the structure of a DNA molecule excerpt  The two
broad  spiralling  bands  represent  the  sugar-phosphate  backbone  of  the  two  DNA
strands. The horizontal bars represent the complementary bases that bind the two
strands  together.  (Illustration  adapted  from
http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookDNAMOLGEN.html)

2.2.2 Gene expression

The process of transforming a gene into a protein is called gene expression,
and a gene that is active in a cell (i.e. the cell produces the protein defined by
the gene) is said to be expressed. Although the cells contain the same DNA
and  the  same  genes,  different  cell  types  differ  in  their  pattern  of  gene
expression (i.e. all genes are not expressed in all cells, nor do all cells produce
the same amount of proteins). The gene expression levels of a cell may also
change with the state of a cell, or as a cell develops. A cell that, for example,
is  diseased may produce different proteins or different amounts of proteins
than a normal, healthy, cell. Thus, gene expression levels can indicate both the
type of a cell and its state. 

The two-step process of transforming a gene into a  protein starts  with the
transcription  of  the  DNA  segment  that  makes  up  the  gene  into  a
complementary messenger RNA, or mRNA, molecule. RNA is very similar to
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DNA except that RNA is a single stranded molecule, and that the thymine
base is replaced by a base called uracil (U). Uracil does, however, possess the
same hybridisation properties as thymine (i.e. it bonds with adenine, and vice
versa).

The second step of the gene expression process is called translation. This part
of the gene expression process translates the mRNA molecule into a protein.
Proteins are chains of amino acid molecules, and there are 20 different amino
acids that can be combined to form a protein. Amino acids are determined by
triplets,  or  codons,  of mRNA bases,  and the mRNA molecule is  therefore
translated into a protein three bases at a time. 

Once the gene expression process is completed (see fig. 2.2 for a schematic
description of the gene expression process), the chain of amino acids is folded
into a completed protein. The folding of the protein is partly determined by the
order in which the amino acids occur in the protein sequence, and errors in the
gene expression process that replaces, inserts or deletes amino acids in the
protein sequence may therefore cause the folding (i.e. the structure) of the 

DNA sequence AGT GTT CTC TGT

|
Transcription

↓

mRNA sequence UCA CAA UAU ACA

|
Translation

↓

Protein sequence SVLC

Fig. 2.2: A schematic description of the gene expression process. The DNA-sequence
is transcribed into a complementary mRNA sequence,  which in turn is  translated,
three bases at a time, into a sequence of amino acids (i.e. a protein)
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protein  to  change.  Changes  in  the  protein  structure  may in  turn cause  the
protein  to  malfunction.  An error  in  the  gene expression  process  does  not,
however, have to affect the protein structure if the error does not change any
of the amino acids. For instance, an amino acid may be determined by more
than one codon, and an error that changes a codon into another codon that
determines the same amino acid will not have any effect on the protein. Thus,
different mRNA molecules may produce the same protein even though the
mRNA molecules are different. A codon, on the other hand, only translates
into one specific amino acid, and an mRNA molecule can therefore only be
translated into one specific protein.  Thus,  it  is  impossible  to  use a protein
sequence to determine the gene sequence that produced a protein.

For instance, the DNA sequence (DNA sequences can be used to determine a
protein  sequence  because  of  the  complementary  relationship  between  the
DNA and mRNA sequences)

TTT TGC

produces a protein sequence composed of the amino acids phenylalanine, F,
and cystein, C:

FC

Phenylalanine and cystein are, however, determined by two codons each:

Phenylalanine (F) Cystein (C)

TTT TGT

TTC TGC

Thus,  the  protein  sequence  FC  can  be  the  product  of  these  four  DNA
sequences:

TTT TGT

TTT TGC

TTC TGT

TTC TGC
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The amount of protein produced by a gene is approximately the same as the
amount of mRNA molecules that are transcribed from the DNA sequence of
the gene. Since it is easier to measure the amount of mRNA transcripts present
in a cell than it is to measure the amount of proteins, the amount of mRNA
transcripts present in a cell is used to determine the gene expression levels of a
cell. 

2.3 Mutations

Mutations refer to changes in the DNA that may be transferred to offspring,
and are a natural part in the development of genes and species. 

There are different types of mutations, and a mutation may, or may not, affect
an organism depending on whether or not the mutation occurs in a coding
region, and the type of mutation. Some types of mutations can cause diseases
such as cancer, while other types are harmless.

Mutations that occur in coding regions of the DNA (i.e. regions that contains
genes)  can severely affect  an organism because they may change the gene
product (i.e. the protein the gene produces) or the function of the gene. Some
mutations may change the protein folding or the binding sites of a protein.
Changes in protein folding alter the structure of a protein and may cause the
protein to malfunction. Binding sites are locations in the protein where the
protein binds to  other molecules (e.g.  proteins),  and mutations  that  change
these sites may cause a protein to malfunction. Malfunctioning proteins may
cause entire cells to malfunction (e.g. cancer), which in turn may have severe
effects on an organism. But again, some mutations may not affect the gene
product at all.

Substitutions, or point mutations, are simple mutations in which a base in the
DNA sequence is replaced by another. The effects a substitution may have on
a gene depends on where in the gene the substitution occurs, whether or not
the substitution  changes the protein produced by the gene (i.e.  replaces an
amino acid with another), and if so, how different the replacement amino acid
is from the original amino acid. Common types of substitutions are:
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- Synonymous  substitutions  are  mutations  that  replace  a  base  with
another without changing the protein (e.g. TGT and TGC both encode
the amino acid cystein), and are thus harmless mutations.

- Substitutions that cause an amino acid to be replaced by another, or
missense mutations. A substitution of the last base of the codon TGT
with a G, for instance, would cause cystein to be replaced with the
amino acid tryptophan. Effects of missense mutations may be positive,
negative, or none depending on where in the gene it occurs and the
difference between the original and the replacement amino acid

- Substitutions that cause an amino acid to be replaced by a termination
signal  (e.g.  TGT  →  TGA),  or  nonsense  mutations.  A  nonsense
mutation causes a protein terminate prematurely, and the effects are
almost always negative, as a part of the protein is removed.

Insertion and deletion are other mutations that can occur. Insertions cause one
or more additional bases to be inserted in a gene sequence, while a deletion
removes one or more bases from a gene sequence. This kind of mutations may
have more dramatic  effects on gene products,  and may cause diseases like
cancer. 

2.4 Microarrays

Microarrays are used for various purposes in bioinformatics. A microarray is a
glass or polymer slide onto which single stranded DNA, i.e. gene sequences or
synthetic DNA, is attached at fixed locations. The DNA that is attached to the
microarray  has  to  be  single  stranded  because  the  microarray  technology
utilises the hybridisation properties of DNA. The attached DNA is commonly
referred to as DNA probes, while the fixed locations are referred to as spots
(or features depending on the chosen technology).

A  microarray may contain  tens  of  thousands  of  spots,  each  of  which  can
consist  of  millions  of  identical  DNA  probes.  The  DNA  probes  may  be
attached to the microarray in different ways depending on the technology that
is used. Some technologies print probes of synthetic DNA onto the microarray
(e.g. the Agilent technology), some use photolithographic techniques (e.g. the
Affymetrix  technology) or electrodes  (e.g. the CombiMatrix  technology) to
attach synthetic DNA probes to the microarray, while other technologies 
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deposit small amounts of solutions that contain DNA, i.e. gene sequences or
synthetic DNA, onto the microarray (e.g. the cDNA microarray technology).

One  of  the  applications  of  microarrays  is  in  gene  expression  level
experiments, that is, experiments that, for example, examine which genes are
and are not expressed in a cell type (e.g. a skin cell, a liver cell, a muscle cell,
etc.), or which genes are and are not expressed in a cell type under different
conditions  (e.g.  different  disease  stages  or  developmental  stages).  The
information  gene  expression  level  experiments  produce  can,  for  instance,
contribute to the development of gene expression profiles (or signatures) for
diseased cells such as cancer cells. Gene expression profiles can, for example,
be a useful tool for identifying disease in patients and determining how the
disease should be treated.

There  are  different  approaches  to  examine  gene  expression  levels  with
microarrays. The general approach is to extract mRNA from a tissue sample,
label the extract and hybridise the labelled extract with the DNA probes on the
microarray.  The  microarray  is  then  placed  in  a  scanner  that  detects  the
amounts of mRNA extract that have hybridised with the probes of each spot,
and creates an image of the microarray (fig. 2.3).

The image is then processed and converted into a gene expression data matrix
that contain the numerical representation of the expression levels of the genes
represented by the spots on the microarray.

One approach is to use cDNA microarrays to measure the gene expression
levels in different samples (e.g. liver cells in different disease states) relative
to the gene expression levels of a reference sample (e.g. healthy liver cells).

The first step in such an experiment is to prepare the microarrays, one for each
sample not including the reference sample. The preparation process involves
selecting  the  DNA  probes,  i.e.  the  genes  whose  expressions  are  to  be
measured, and depositing the DNA probes onto the microarrays.

The next step is to extract mRNA transcripts from the different samples, and
the  reference  sample.  The  mRNA  extracts  of  the  different  samples  are
commonly referred to as targets, while the mRNA extracted from the reference
sample  is  referred  to  as  a  reference.  The  targets  are  then  labelled  with  a
fluorescent red dye, while the reference is labelled with a fluorescent green
dye. Each target is then mixed with reference in equal amounts into target-
reference mixtures, one mixture for each target. The target-reference mixtures
are washed over one microarray each to allow the mRNA of the mixtures to
hybridise with the probes of the microarrays.

14
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Fig.  2.3:  An image of  a  microarray after  hybridisation.  The  red  circles  represent
genes that are over-represented in the target, the green circles represent genes that
are under-represented in the target, yellow circles represents genes that are equally
represented in the target and the reference, while black circles represent genes that
is not represented in the target or the reference. The colour intensities of the circles
represent the amount of mRNA-transcripts present in the target and/or the reference,
i.e. a high green intensity indicates that a high amount of the mRNA-transcript of a
gene is present in the reference, a high red intensity indicates that a high amount of
the mRNA-transcript of a gene is present in the target, while a high yellow intensity
indicates that a high amount of the mRNA-transcript of a gene is present in both the
target  and  the  reference.  (Illustration  adapted  from  http://smf.stanford.edu/cgi-
bin/data/clickable.pl?fullID=16954GENEPIX16954)
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The mixtures are allowed to hybridise with the probes of the microarrays for a
certain period of time before the excess mixture, i.e. the mRNA that has not
hybridised, is removed from the microarrays. The microarrays are then, one by
one, placed in a scanner that creates an image of each microarrays based on
the fluorescence of the spots of each microarray. The images depict the spots
of  each  microarrays as  coloured  or  black  circles  (fig.  2.3).  A black  circle
means that no mRNA transcripts have hybridised with the probes of a spot,
indicating that the gene represented by the spot represents is unexpressed in
both  the  reference  and the  target.  A green circle  means  that  more  mRNA
transcripts from the reference than from the target have hybridised with the
probes  of  a  spot,  indicating  that  the  gene  that  the  spot  represents  is
underexpressed (i.e. less active) in the target. A red circle is the opposite of a
green circle, meaning that more mRNA transcripts from the target than form
the  reference  has  hybridised  with  the  probes  of  the  spot,  and the  gene  is
therefore  underexpressed  in  the  reference.  A  yellow  circle  means  that
approximately the same amount of mRNA transcripts from the reference and
the target has hybridised with the probes of the spot, indicating that the gene is
more or less equally expressed in the reference and the target.

The next step is to transform each image into a spot quantitation matrix where
the colour intensities of the spots in each image are translated into a numerical
quantity. This process translates underexpression in the target (green spots)
into negative values, underexpression in the reference (red spots) into positive
values, and equal expression (yellow spots) into values around 1.

The last  step before the data generated by a microarray experiment can be
analysed is to convert the data of the spot quantitation matrices into a gene
expression data matrix. A gene expression data matrix is an n x m matrix in
which  each  column  represents  a  sample  (i.e.  a  target),  while  each  row
represents  a  gene.  The  values  in  a  row therefore  represent  the  expression
levels  of  a  particular  gene  in  the  different  samples,  while  the  values  in  a
column represent the expression levels of the different genes in a particular
sample. Hence, the rows of a gene expression data matrix are referred to as
gene  expression  profiles,  while  the  columns  are  referred  to  as  sample
expression  profiles.  The  gene  expression  data  matrix  is  the  basis  for  all
analysis of gene expression. Figure 2.4 shows a gene expression data matrix in
combination with a heat map.

A heat map is a gene expression data matrix presentation form that presents
the values of the gene expression data matrix as coloured squares; red squares
for positive expression,  green for  negative expression,  and black for  equal
expression.
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Note that none of the steps involved in a microarray experiment is trivial. The
description given above should therefore be regarded as a simplification.

Fig. 2.4: A combined gene expression data matrix and heat map that shows the gene
expression levels of 7 genes in two samples (x and y) as represented by the
BioTeach system. A green background indicates under-representation of a gene in
the target (i.e. negative expression level), a red background indicates over-
representation of a gene in the target (i.e. positive expression level), while a black
background indicates equal representation.

2.5 The Sourcer’s Apprentice

The Sourcer’s Apprentice (SA) developed by Britt & Gabrys (2001) is meant
to  teach  high  school  students  the  skill  of  sourcing and corroboration,  two
literacy  skills  that  are  required  to  use  multiple  sources  of  information
correctly. The SA-system is a web-application in which the students are to
identify  crucial  source  information  about  the  document  excerpts  they  are
presented  with.  Students  are  then  to  answer  questions  regarding  this
information,  and write  essays in which they use the information they have
found. 

First-time users of the Sourcer’s Apprentice receive instructions on how to use
the application through an interactive skills tutorial. This tutorial describes the
information  that  is  important  to  identify  when  using  multiple  sources  of
information, how this information can be found, how the information can be
used when writing papers, and how the information can be used to evaluate
the  trustworthiness  of  the  excerpts.  The  information  is  broken  down  into
components (e.g. the author, when the document was written, the publisher
etc.). Each component is discussed separately, and each discussion is followed
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by two  control  questions  that  are  meant  to  ensure  that  the  students  have
understood both how to find the information component and how to use it.

Students that have been through the tutorial can enter the practice environment
(fig. 6.1) in which they are to practice on finding the information components
discussed in the tutorial in a set of excerpts. The excerpts the students are to
read are represented by a shelf of books, and the students have to click on the
books to access the excerpts. Each book contains four scrollable pages; a table
of contents, a page about the author (contains name, credentials etc.), a page
about the document (contains publisher, when the document was written etc.),
and  a  page  with  the  actual  excerpt.  Each  book is  also  accompanied  by a
structured note card that lists the information components the students are to
find and insert into the note card.

An information component is inserted into a note card by selecting the text-
phrase  that  contains  the  information  and  dropping  the  text  into  a  bucket
corresponding to the  information component.  A correct  answer is  awarded
with points  and the component  is  displayed in the note card.  An incorrect
answer  produces  a  hint.  The  hints  become  clearer  each  time  an  incorrect
answer is dropped into a bucket, and each hint received reduces the points the
correct answer is awarded with. After a certain number of incorrect attempts
the hints more or less become instructions for finding the correct text-phrase.
Thus, all students should eventually be able to fill in the note cards correctly. 

The  Sourcer’s  Apprentice  also  offers  help  if  any  student  should  need  a
reminder of what kind of information the different buckets accept. Clicking on
a bucket produces the same instructions that were used in the tutorial. Britt &
Gabrys regarded three of the information components, the author’s motive for
writing the text, the main point of the text, and comments, to be too awkward
to answer by the drag and drop technique. Instead of using the excerpts to fill
in the note cards, students have to construct an answer to the three mentioned
components from the respective help texts. These answers are not evaluated
by the application, but are graded by the teacher.

When the note cards are filled in, the students are required to write an essay
about  the  excerpts  they have  read  supported  by the  note  cards,  which  are
available during writing. After finishing the essay, the students have to answer
several questions that are meant to ensure that the students have acquired the
literacy skills  interspersed  with  questions  about  the  contents  of  the  texts.
These questions are answered in the same way as the note cards are filled in,
that is, by dragging the correct answer from one of the books into an answer
bucket.  The  scoring system is  also  the  same;  if  the  answer  is  correct,  the
students receive a number of points, if it is incorrect, the number of points is
decreased for each hint the student receives.
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Fig. 6.1: The practice environment of the Sourcer’s Apprentice with the historical text
at the centre, the structured note cards at the bottom, and the buckets along each
side. The selected text has been dropped into the How Know bucket, and appears in
the How Know slot in the structured note card at the bottom.

2.5.2 Empirical results for the Sourcer’s Apprentice

Britt & Gabrys (2001) performed two studies of the effects of the use of the
Sourcer’s Apprentice. Both studies used a pretest-posttest methodology, and
both  studies  showed  that  students  that  had  been  exposed  to  the  Sourcer’s
Apprentice  showed  better  sourcing  skills  than  students  who had  not  been
exposed.

Given  the  good  empirical  results  it  could  be  useful  to  base  web-based
exercises in bioinformatics on the principles and the features of this system. 
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Chapter 3 

Pairwise global sequence alignment

3.1 Introduction

Pairwise global sequence alignment (Durbin et al., 1998; Baxevanis, 2005)
is a technique that is used to examine whether or not genes are related, that
is,  whether  or  not  genes  have  evolved  from  the  same  gene  through
different  sets  of  mutations.  This  technique  works  on  pairs  of  gene
sequences, and determines the relationship between a pair of sequences by
aligning (i.e. comparing) the two sequences residue by residue (e.g. amino
acid by amino acid). Related genes are interesting for various reasons, and
pairwise sequence alignment is therefore used for various purposes.

Related genes tend to function in the same, or at least in a similar, way.
Thus it is possible to use pairwise sequence alignment to gain insight into
the function of a gene with unknown functionality by examining the gene’s
relationship to genes with known functionality.

Another  application  of  pairwise  sequence  alignment  is  in  studies  that
examine  the  evolution  of  species.  Related  genes  have,  as  mentioned,
evolved from the same gene through different sets of mutations, and by
comparing related genes from different species (e.g. humans and gorillas),
it  is  possible  to  estimate  the  amount  of time  that  has  passed since  the
species  separated  from  their  common  ancestor  and  became  separate
species. 
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Pairwise  global  sequence  alignment  can  be  used  on  pairs  of  DNA
sequences  and pairs  of  RNA sequences,  as well  as  on pairs  of protein
sequences.  The  alignment  visualisation  of  the  BioTeach  system  is
implemented  to  align  protein  sequences,  and  protein  sequences  are
therefore used in the examples of this chapter.

A  global  alignment  of  two  protein  sequences  S1  and  S2,  here
WGQMNSFS and AMNESFQS, might look something like this:

 
W G Q M N - S F - S
- A - M N E S F Q S

The letters in the alignment represent the amino acids of the sequences,
while  the  character  ‘-‘  represents  insertions  or  deletions  that  may have
occurred during the evolution of either of the genes. The ‘-‘ character is
commonly referred to as a gap, or as an indel symbol.

When  and  where  to  insert  gaps  in  an  alignment  depends  both  on  the
algorithm  that  is  used  to  align  the  two  sequences  and  the  algorithm
parameters that are used. There are, however, certain rules that any global
alignment algorithm has to follow:

1) An amino acid in one sequence can be aligned with an amino acid
or a gap in the other sequence. A gap cannot be aligned with a gap.

2)  The aligned sequences (each of which contain zero, one or more
gap symbols) should have equal length, so that the i-th residue of
one sequence is aligned with the i-th residue of the other sequence. 

Inserting a gap in one sequence (e.g. column 3) means that an amino acid
has been deleted inserted in the other sequence, or that an amino acid has
been deleted from the sequence in which the gap is inserted. It is, however,
impossible to know which of the two alternatives has occurred. It is not
possible to know in which of the sequences a substitution (e.g. column 2)
has occurred either.The previous alignment example showed an alignment
of two sequences of equal length (i.e. with the same number of residues). It
is, however, possible to align two sequences of different lengths:

A C Q K M W F S
- - Q R - W - S

22



Chapter 3 Pairwise global sequence alignment

As this example shows, gaps are always inserted in such a manner that the
lengths of the sequences become identical in the alignment.

One of the problems with pairwise global sequence alignments is that gaps
make it possible to align two sequences in a number of ways. A global
alignment  of  a  pair  of  sequences  of  two residues,  for  instance,  has  13
possible alignments (see fig. 3.1), and the number of possible alignments
increases rapidly as the length of the sequences increases.  The problem
with  multiple  possible  alignments  is  simply to  determine  which  of  the
alignments  are  optimal,  that  is,  to  determine  which  of  the  alignments
represents the mutation sets that are most likely to have occurred naturally.

Another problem is to determine whether or not an global alignment of one
pair of sequences is more optimal than a global alignment of a different
pair of sequences. There are different ways of solving these two problems,
of which the Needleman-Wunsch alignment algorithm is one.

A R - -

- - N E

A - R -

- N - E

A - - R

- N E -

- - A R

N E - -

- A - R

N - E -

- A R -

N - - E

A R -

- N E

A R -

N - E

A - R

- N E

- A R

N E -

- A R

N - E

A - R

N E -

A R

N E

Fig. 3.1: The 13 possible alignments of the protein sequences AR and NE
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3.2 The Needleman-Wunsch alignment algorithm

The Needleman-Wunsch alignment algorithm is one of the algorithms that
is used to find the optimal alignment of a pair of sequences, and is the
algorithm that is visualised by the BioTeach system. It belongs to a group
of  algorithms  called  dynamic  programming algorithms,  and  is  used  for
finding optimal global alignments; global meaning that the algorithm finds
the optimal alignment of complete sequences, not parts of them as is the
purpose of local alignment algorithms. 

The Needleman-Wunsch algorithm finds the optimal alignment of a pair of
sequences by optimising a score function, that is, each possible alignment
is scored according to a score function, and the alignment that yields the
highest score is the optimal alignment of pair of sequence. If the score of
more than one of the possible alignments equals the highest score, there is
more than one optimal alignment of the pair of sequences.

The score of an alignment is computed by assigning each pair of aligned
residues and each residue-gap pair with a score term, and summing these
terms. The sum of these terms is then the score of an alignment. In order
for  the  score  of  an  alignment  to  provide  any  information  about  the
optimality of the alignment, it is important that the assigned score terms
reflect how mutations occur in nature. Insertions and deletions of residues
are  observed  less  frequently  than  substitutions  and  conservations  of
residues. Alignments that include insertions and deletions, i.e. gaps, should
therefore yield a lower score than alignments  that  do not include gaps.
Introducing gaps  into  an  alignment  is  therefore  penalised  by assigning
residue-gap  pairs  with  a  negative  score  term,  a  gap  penalty.  Some
substitutions are observed more frequently than others, and the score terms
of substitutions may therefore be both positive and negative. Conservations
of residues are observed more frequently than both insertions/deletions and
substitutions,  and the score terms for conservations are always positive.
Some conservations are, however,  observed more frequently than other,
and the score terms of conservations may therefore vary. Score terms that
corresponds to the observed frequencies of the different substitutions and
conservations  have  been  computed,  and  are  organised  in  substitution
matrices.

A substitution matrix (fig. 3.2) is a two-dimensional matrix in which each
row and each column contain  the  score  terms  for  each of  the  possible
substitutions  of  a  residue,  and  the  score  term  for  conservation  of  the
residue.  A  score  term  for  a  pair  of  aligned  residues  is  given  in  the
intersection of the row that represents the first residue in the pair and the
column that represents the other residue in the pair.

24



Chapter 3 Pairwise global sequence alignment

It  is,  however,  due  to  the  numerous  possible  alignments  of  a  pair  of
sequences,  inefficient  to  separately compute  the  score  of  each possible
alignment and then compare these scores to find the optimal alignment (or
alignments)  of  a  pair  of  sequences.  Instead,  the  Needleman-Wunsch
algorithm treats the optimal global alignment as a construction composed
from the optimal alignments of pairs of subsequences (i.e. shorter parts of
the sequences). 

Fig. 3.2: The Blosum62 substitution matrix. Each value in a row represents the
score of aligning the amino acid at the head of the row with each of the other
amino acids. The score of aligning a pair of amino acids is found where the row of
the first  amino acid and the column of  the second amino acid (or  vice versa)
intersect. B and Z are ambiguity codes and the values in those rows (or columns)
represent the score of aspargine or aspartic acid (B) or glutamine or glutamic acid
(Z) with the other amino acids. X represents any amino acid and a value in this
row (or column) represents aligning the amino acid at the head of a column with
any amino acid. The * represents the lowest possible score in a row or column.

With this approach it is possible to view the alignment of the sequences
WGQMNSFS and AMNESFQS given as an example in the previous
section 

W G Q M N - S F - S
- A - M N E S F Q S
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as being composed from the optimal alignment of the subsequence pair
WGQMNSF and AMNESFQ, which in turn is composed from the optimal
alignment of the subsequence pair WGQMNSF and AMNESF, which in
turn  is  composed  from the  optimal  alignment  of  the  subsequence  pair
WGQMNS and AMNES, and so forth. Thus, the problem of finding the
optimal  alignment  is  decomposed into  finding the optimal  subsequence
alignments  that  compose  the  optimal  global  alignment  of  a  pair  of
sequences. This problem is solved by constructing a score matrix, F (fig.
3.3),  composed  of  the  optimal  scores  of  the  optimal  subsequence
alignments, and following the optimal path from the last cell of the score
matrix to the first cell.

Fig.3.3: The score matrix of the alignment of the sequences PWR and WQNS
using  a  gap  penalty  of  -5  and  the  Blosum62  matrix  as  represented  by  the
BioTeach-system.  Each cell  represents the optimal  alignment of the  i (i.e.  the
column number) first  residues of the first sequence, here PWR, and the  j first
sequences  of  the second sequence,  here WQNS.  The arrows represents  the
pointers of the cells, and indicate through which of the neighbouring cells the path
to the first cell, cell F(0, 0), is. 

A score matrix  for  the  alignment  of  a  sequence  A of  i residues and a
sequence B of j residues is represented as a matrix of (i +1) rows and (j +
1) columns  excluding  the  header  row  and  column.  The  residues  of
sequence A is given in the cells of the header row preceded by an indel
symbol, while the residues of sequence B is given in the cells of the header
column,  also  preceded  by an  indel  symbol.  The  columns  of  the  score
matrix are numbered from 0 to i, while the rows are numbered from 0 to j.
Hence, a cell in a score matrix is referred to as F(i, j). The construction of
the score matrix starts with initialising the first cell of matrix, cell F(0, 0),
to  zero.  The  scores  of  the  remaining  cells  of  the  first  row  are  then
computed with the expression

F(i, 0) = i * gap penalty

Each  of  these  cells  represents  the  alignment  of  the  i first  residues  of
sequence A and a gap, as well as the score of each of these alignments. 
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A pointer to the preceding cell is also included in each of these cells to
indicate that the path from each cell to the first cell of the matrix is through
the preceding cell.

The next step is to compute the scores of the remaining cells of the first
column. The scores of these cells are computed with the expression

F(0, j) = j * gap penalty

Each  of  these  cells  represents  the  alignment  of  the  j first  residues  of
sequence B and a gap, as well as the score of each of these alignments. A
pointer to the preceding cell is included in these cells for the same reason
as a pointer was included in each of the cells of the first row.

The scores of each of the remaining cells, F(i, j), are then determined, row
by row, by extending the alignments represented by the cells F(i-1, j), F(i-
1, j-1), and F(i, j-1) with

1) the alignment of the i-th residue of the sequence A and a gap

2) the alignment of the i-th residue of sequence A and the j-th residue
of sequence B

3) the alignment of the j-th residue of sequence B and a gap

respectively. The extension that yields the highest score according to the
score function is the optimal alignment of the i first residues of sequence A
and the j first residues of sequence B. A pointer to the cell that represents
the alignment that was extended is therefore added to cell F(i, j) to indicate
that the path from F(i, j) to F(0, 0) is through the cell that represents the
alignment  that  was  extended.  If  the  score  of  more  than  one  extension
equals  the highest  score,  there are more than one optimal  alignment of
sequence  A  and  B.  A  pointer  to  each  of  the  cells  that  represents  an
alignments that was extended therefore has to be added to cell F(i, j).

Because of the order in which the scores of the cells  of the matrix are
computed, the scores of cells F(i-1, j), F(i-1, j-1), and F(i, j-1) have already
been computed. Thus, the score of each of the extensions can be computed
by

1) adding the gap penalty to the score of cell F(i-1, j)

2) adding  the  substitution  matrix  score  term  for  aligning  the  i-th
residue of sequence A and the j-th residue of sequence B to the
score of cell F(i-1, j-1)

adding the gap penalty to the score of cell F(i, j-1)
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The more formal representation of the calculation of the optimal score of a
cell is:
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where s(i, j) represents the substitution matrix score term for aligning the i-
th residue of sequence A with the j-th residue of sequence B. 

The optimal alignment of a pair of sequences can be found once the score
matrix is completed. The optimal alignment is found by following the path
of pointers from the last cell of the score matrix, cell  F(i, j), to the first
cell, cell F(0, 0). Note that the alignment is built in reverse. The directions
of the pointers determine how the sequences are aligned:

1) A pointer from F(i, j) up towards F(i, j-1) means aligning the j-th
residue of sequence B with a gap

2) A pointer from F(i, j) diagonally towards F(i-1, j-1) means aligning
the i-th residue of sequence A with the j-th residue of sequence B

3) A pointer from F(i, j) left towards F(i-1, j) means aligning the i-th
residue of sequence A with a gap

The  last  cell  of  the  score  matrix  represents  the  optimal  score  of  an
alignment, and it is this score that is used to determine whether or not an
alignment of one pair of sequences is more optimal than an alignment of a
different pair of sequences.
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Chapter 4 

Clustering of microarray data

4.1 Introduction

Clustering (Draghici, 2003; Causton et al., 2003; Berrar et al., 2003) is one of
the most popular approaches to analyzing gene expression data. The purpose
of this approach is to group genes or samples with similar expression profiles
(see fig.  4.1),  that  is,  to  group genes with similar  expression levels  in  the
different  samples,  or  to  group  samples  in  which  the  different  genes  are
expressed  similarly.  This  approach  to  microarray  data  analysis  can,  for
instance,  be  useful  for  identifying  different  types  of  behaviour,  and  for
reducing the dimensions of the data.

Clustering is a well-established field and a number of algorithms have been
developed.  Which  algorithm  performs  best  depends  on  the  dataset,  and
complex  algorithms  are  not  necessarily  better  than  simple  algorithms.  In
general there are two groups of clustering algorithms: hierarchical and flat. 

Only the three algorithms implemented in the clustering application of the
BioTeach system will be discussed in this chapter. 
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Fig. 4.1: A heat map in which the samples (i.e. the columns) have been grouped in
three distinct clusters, while the genes (i.e. the rows) have been grouped in 4 clusters.

4.2 Similarity between objects

The first step in a clustering process would be to define similarity between the
objects (i.e. genes or samples) that are to be clustered. By treating the gene
expression data matrix as a matrix of m samples (or columns) and n genes (or
rows), it is possible to treat a row (i.e. the expression levels of a gene in the m
samples) as an m-dimensional vector, and a column (i.e. the expression levels
of the n genes in a sample) as an n-dimensional vector.

As  it  is  possible  to  calculate  the  distance  between  vectors  of  the  same
dimension, it is possible to treat similarity between genes or samples as the
distance  between  their  vectors.  There  are,  however,  different  ways  of
calculating the distance between vectors, and which distance measurement to
use depends on the purpose of the clustering.

The clustering application of the BioTeach system (chapter 5) uses Euclidean
distance as the similarity measurement. The Euclidean distance, dE, between
two n-dimensional vectors x = (x1, x2, …, xn) and y = (y1, y2, …, yn) is
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This distance measurement corresponds to the distance between two points we
humans interpret as the length of a straight line between the two points. The
purpose of the clustering application of the BioTeach system is to demonstrate
the workings of different clustering algorithms by visualisation, and it would
be confusing if the data were clustered according to some distance measure
that  does  not  correspond to  the  distances  that  are seen  in the  data  on the
screen. 

Another  distance  measurement  is  the  Pearson  correlation  coefficient.  The
Pearson  correlation  coefficient  compares  the  components  of  two  n-
dimensional vectors to determine whether or not the components vary in the
same  way.  Vectors  whose  components  vary in  the  same,  or  similar,  way
produces  a  high  correlation  coefficient  and  are  said  to  be  similar,  while
vectors with components that  do not  vary in  the same way produce a low
correlation coefficient and are said to be dissimilar.

Please refer to chapter 11.2 of Draghici (2003) for information on the different
distance measurements. 

4.2 Hierarchical clustering

The hierarchical  clustering algorithm that  is  implemented in the  BioTeach
system is  agglomerative.  A  hierarchical  agglomerative  clustering  starts  by
treating  each  entity  (i.e.  row/gene  or  column/sample)  of  the  dataset  as
separate, or singleton, clusters. The two most similar, i.e. the closest, clusters
are then grouped together, reducing the total number of clusters by one. This
process is then repeated until all entities are grouped in one large cluster. 

The hierarchical clustering algorithm can be divided into the following steps
(Quackenbush, 2005):

1. Calculate the pairwise distance matrix for all of the singleton
clusters to be clustered, that is,  to calculate and organise the
distances  between  the  vectors  representing  the  genes  or
samples into a matrix.
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2. Search the distance matrix  for  the two most  similar  clusters
(i.e. the clusters with the least distance between them). This is
the true first  stage in  the clustering process.  If several  pairs
share the same similarity, a predefined rule is used to decide
between alternatives.

3. The two selected clusters are merged to produce a new cluster
that now contains two or more objects.

4. The distances are calculated between this new cluster and all
other  clusters.  There  is  no  need  to  calculate  all  distances
because only those involving the new cluster have changed

5. Steps 2 through 4 are repeated until all objects are grouped in
one cluster.

In order to make this algorithm work, one has to know the distance between
all the clusters, which is rather easy when there only are singleton clusters.
When non-singleton clusters are grouped with other clusters, singleton or non-
singleton,  the  distance  between  all  the  entities  in  one  cluster  and  all  the
entities in the other cluster has to be known, and there are different ways to
define the least distance. The three approaches implemented by the BioTeach
system are single linkage, complete linkage, and average linkage (see figure
4.2).

Single linkage

Single linkage, or nearest neighbour linkage, group the two clusters with the
least minimum distance between two of their respective entities.

Complete linkage

Complete linkage, or furthest neighbour linkage, groups the two clusters with
least maximum distance between two of their respective entities.

Average linkage

Average linkage groups the two clusters with least average distance. Average
distance is here the average of the distances between all the entities in one
cluster and all the entities in the other cluster.
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Fig.  4.2:  The  three  different  least  distance  measurements  implementet  by  the
BioTeach system. The connected objects represents the objects that define the least
distance between two clusters.

The  result  of  the  hierarchical  clustering  approach  is  represented  as  a
hierarchical tree or dendrogram in which the leaf nodes represent the entities
of the dataset. The clusters are found by drawing a horizontal line across the
dendrogram, and look at the subtrees below the line. 

Figure 4.3 shows the dendrogram of a clustering of 13 genes using complete
linkage, in which the horizontal line defines three different clusters. The leaf
nodes in the dendrogram represent the entities of the dataset (in figure 4.3,
genes). 

Fig. 4.3: A dendrogram as represented by the BioTeach system. It shows the
clustering of 13 genes using complete linkage. The horizontal line defines the
different clusters. Here it defines the three clusters A, B, and C:  A = 6, 7, 4, 5; B = 13,
8, 12, 10, 9, 11; and C = 1, 2, 3. Different cluster definitions can be found by moving
the horizontal line up or down.
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It is also possible to implement the algorithm to represent similarity through
the  length  of  the  branches.  This  option  is  implemented  in  the  BioTeach
clustering application, and the two most similar genes of figure 4.3 are gene 8
and gene 12. 

4.3 K-means clustering

K-means  clustering  is  one  of  the  simplest  and  fastest  algorithms,  and  is
therefore widely used. It is a non-hierarchical algorithm that starts by defining
k  points  as  cluster  centres,  or  centroids  in  the  input  space  (i.e.  the  n-
dimensional  space  defined  by the  number  of  genes,  or  the  m-dimensional
space defined by the number of samples). 

The algorithm clusters the objects (e.g. genes/rows or samples/columns) of a
dataset  by iterating  over  the  objects,  assigning  each  object  to  one  of  the
centroids,  and  moving  each  centroid  towards  the  centre  of  a  cluster.  This
process  is  repeated  until  some termination  criterion  is  reached.  When  this
criterion is reached, each centroid is located at a cluster centre, and the objects
that are assigned to a particular centroid form a cluster. Thus, the number of
centroids determines the number of possible clusters.

Hence,  the  number  of  centroids  affects  the  results  of  the  algorithm;  a
clustering using five centroids would obviously produce different results than
a clustering using four centroids. The results are further affected by the initial
positions of the centroids; different initial positions may cause an object to be
assigned  to  a  different  centroid,  and  the  algorithm  may  therefore  yield  a
different set of clusters. Thus, the number of centroids and their position has
to  be  chosen  carefully.  There  are  different  ways  of  implementing  this
algorithm. The BioTeach system implements two variants: the batch variant
and the online variant (The names are taken from Ripley, 1996).

4.3.1 The batch variant

The batch variant of the k-means algorithm can be divided into two steps:
object assignment and centroid relocation. The first step, object assignment,
starts once the centroids have been placed in the input space. In this step the
algorithm iterates over the objects in the dataset and assigns each object to the
closest centroid. The next step, centroid relocation, moves each centroid to the
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position in the input  space that  corresponds to the average position of the
vectors representing the objects assigned to each centroid.

As  the  centroids  are  moved,  some  of  the  objects  may  now  be  closer  to
different centroids than the ones they initially were assigned to, requiring the
object assignment step to be repeated. As the assignments of the objects are
revaluated, some centroids may receive additional objects, while others may
have some objects removed. The average position of the vectors representing
the objects assigned to a centroid may thus shift, requiring the centroids to be
relocated again.

The cycle of object assignment and centroid relocation is repeated until the
clusters stabilise (i.e. the objects assigned to the centroids remain the same), or
until  a predefined maximum number of cycles (e.g. 20.000 to 100.000) has
been reached.

The  batch  variant  implemented  in  the  BioTeach  system  uses  the  former
termination criterion.

Thus, the steps involved in a k-means batch clustering are:

1) iterate over the set of objects, and for each object in the set 

a. find the closest centroid

b.  assign the object to the closest centroid

2) iterate over the centroids, and for each centroid

a. calculate the average vector of the objects that are assigned to
the centroid

b. relocate the centroid at the position of the average vector of the
objects that are assigned to the centroid

3) repeat steps 1 and 2 until the centroids no longer have to be relocated,
or until the predefined number of cycles is reached.
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4.3.2 The online variant

This variant of the k-means algorithm uses the same approach as the batch
variant, that is, it can be divided into the same two steps as the batch variant.
The two variants do, however, differ in their execution of the two steps. While
the  batch  variant  iterates  over  the  objects  of  the  whole  dataset  before  the
centroids are relocated, the online variant moves a centroid at each step of the
iteration, that is, each object of the dataset pulls the nearest centroid a certain
distance towards itself.  In the BioTeach system this  distance is  1% of the
distance between the object and the centroid. This approach is similar to that
of Self Organizing Maps (which are discussed in the next section), and the
result is that the centroids appear to be gliding rather than jumping towards the
cluster centres of the dataset. 

The online variant also uses a different termination criterion than the batch
variant.  The centroids are only moved a slight  distance each time,  and the
objects assigned to a centroid could therefore appear to be stable for a while,
but, as the centroid moves towards the cluster centre, it could move in such a
way that it become the closest centroid to objects that are assigned to other
centroids.  Thus,  it  is  possible  for  a  centroid  to  “steal”  objects  from other
centriods  and  change  an  object  assignment  that  seemed  to  be  stable.  The
termination criterion used in the batch variant would, in such cases, cause the
algorithm to terminate prematurely. One way of ensuring convergence, and to
avoid premature termination, is  to reduce the distance a centroid is  moved
gradually over a number of iterations. The termination criterion implemented
in the BioTeach system will be discussed in the next chapter. 

The steps involved in a k-means online clustering are thus:

1. iterate over the set of objects, and for each object

a. find the closes centroid

b. move the closest centroid a certain distance towards the object

2. repeat step 1 until termination criterion is reached.
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4.4 Self organizing maps

Self organizing maps, or self organizing feature maps (hence referred to as
SOM), is a neural network technique developed by Teuvo Kohonen that can
be used to cluster microarray data. 

A SOM is a grid (e.g. a line, an array, a cube, a parallelepiped) of units that
represent the clusters. The units are organised in neighbourhoods, and the size
of the neighbourhoods depends on which grid is used to represent the SOM;
the units of a line grid, for instance, would, with the exception of the first and
the last unit, have two neighbouring units each, one behind and one in front. 

Clustering a dataset with a SOM is achieved by stretching the grid to fit the
dataset. This is accomplished by iterating over the entities of the dataset, and
for each entity, move the nearest  unit a certain distance towards the entity.
Because each unit is a part of a neighbourhood, the neighbours of a unit are
also moved. The neighbours are only moved a portion of the distance a unit is
moved, but the neighbours are moved in such a way that the distances between
a  unit  and  its  neighbours  mirror  the  similarity  between  the  cluster  a  unit
represents and the clusters the neighbours represent.

This  process  is  repeated  until  some  convergence  criterion  is  reached.  A
common way of ensuring convergence is to reduce the distance the units and
its  neighbours are moved, and/or to reduce the size of the neighbourhoods
gradually until the units stops moving. When convergence is reached, the grid
that represents the SOM has been stretched to fit the dataset in such a way that
the  organisation  of  the  units  represents  the  relationships  which  are  found
between the objects in the dataset.

The steps involved in a clustering with a SOM are then:

1. iterate over the set of objects, and for each object

a. find the closest unit

b. move the closest unit a certain distance towards the object

c. move  the  neighbouring  units  a  certain  distance  towards  the
object

2. repeat step 1 until convergence is achieved
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Chapter 5 

The BioTeach system

5.1 Introduction

The  purpose  of  developing  the  BioTeach  system  is  to  explore  how  the
Needleman-Wunsch  alignment  algorithm discussed  in  chapter  3.2,  and  the
clustering algorithms  discussed in chapter 4 (i.e.  hierarchical  clustering,  k-
means clustering, and self organising maps) can be visualised in a web-based
learning  environment  for  bioinformatics.  These  algorithms  were  chosen
because  they  represent  two  central,  yet  entirely  different,  fields  in
bioinformatics.

The  BioTeach  system  is  composed  of  a  Java-based  Needleman-Wunsch
alignment application, a Java-based clustering application, and a HTML-based
portal.  The  alignment  application  implements  a  visualisation  of  the
Needleman-Wunsch algorithm and a Needleman-Wunsch exercise, while the
clustering  application  implements  a  visualisation  of  the  three  clustering
algorithms.

This  chapter  does  not  discuss  the  details  of  the  technical  solution  of  the
BioTeach system. Readers who are interested in technical details about the
implementation, installation, and configuration of the system are advised to
refer to the appendices and the source code. The source code can be 
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downloaded by selecting the download-link from the visualisation menu of the
system.

5.2 The portal

The idea with the portal (fig. 5.1) is, apart from providing a single access point
to the two applications, to create a uniform and easily navigable environment
for the applications.

The portal is composed of a visualisation menu that provides access to either
web applications, a help menu that provides explanations of the Needleman-
Wunsch and clustering algorithms, a header, and a footer. The layout of the
portal is such that these four elements constitute the four edges of a frame: the
header is the top edge, the footer the bottom edge, the visualisation menu the
left edge, and the help menu the right edge. The space within the frame is
reserved for the two web applications, that is, once either of the applications is
chosen from the visualisation menu, the chosen application opens within the
frame.  Thus,  the  frame remains  the  same for  both  applications,  creating a
uniform environment  that  at  all  times  provides  access  to  the  visualisation
menu and the help menu.

The help menu is designed to open the explanations of the algorithms in a
separate browser window in order to allow an application to be run and an
explanation to be viewed simultaneously.

The portal and the web applications can be accessed at: 

http://www.ifi.uio.no/bioinf/Projects/BioTeach

Selecting the alignment application from the visualisation menu opens the
main page of the alignment application. This page provides links to the
Needleman-Wunsch visualisation and the exercise. Selecting the clustering
application from the menu opens the introduction page of the clustering
visualisation. This page explains the components of the clustering
visualisation interface, and provides a link that starts the visualisation
application. 
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Fig. 5.1: The BioTeach portal with the implemented visualisations to the left, and the
help menu to the right.

5.3 The Needleman-Wunsch visualisation

The  Needleman-Wunsch  visualisation  is  designed  to  teach  how  the
Needleman-Wunsch  algorithm  aligns  protein  sequences  by  visualising  the
steps  that  are  involved  in  protein  sequence  alignments.  The  key  to
understanding  the  algorithm  is  to  understand  how  the  score  matrix  is
computed. The focus of the visualisation is therefore on demonstrating how a
score matrix is computed, and how the optimal alignment is found in the score
matrix.

The score matrix (fig. 5.2) of the Needleman-Wunsch visualisation is based on
the principles that were discussed in chapter 3. The amino acids that compose
the first protein sequence, sequence A, of an alignment are given, preceded by
an indel symbol, in the header row, while the amino acids that compose the
second protein sequence, sequence B, are given,  also preceded by an indel
symbol, in the header column. The rows of the matrix are numbered from 0 to
i, while the columns are numbered from 0 to  j. The cells of the matrix are
assigned with a set  of coordinates on the form  (i,  j),  where  i refers to the
column and  j the row in which the cell can be found. Each cell, except the
cells in the first row and column, represents the optimal alignment of the i first
amino acids of sequence A and the j  first amino acids of sequence B, and
presents the optimal score of these optimal alignments. Each cell also includes
pointers that indicate through which of the neighbouring cells the path to the 
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first cell continues. The cells in the first row represent aligning each of the i
first amino acids of sequence A with a gap, while the cells in the first column
represent aligning each of the j first amino acids of sequence B with a gap.
The matrix is referred to as F, and a cell is referred to as F(i, j) The upper left
cell is the first cell of the matrix, and is referred to as cell 
F(0, 0).

The score  matrix  is  supplemented  with  a  computation  table  (fig.  5.2)  that
presents  the  expressions  and  the  calculations  that  are  involved  in  the
computation of the score matrix. The computation table also indicates how the
directions  of  the  pointers  are  determined.  The  idea  with  providing  this
information is to show how the expressions are used during the computation
of  a  score  matrix.  The  computation  table  also  shows  which  cell  is  being
processed  to  make  it  possible  to  verify  the  calculations  presented  by  the
computation table without having to count columns and rows.

The visualisation also provides a link (fig. 5.2) to the substitution matrix that
is used in an alignment. The purpose of providing this link is to allow the
calculations that include values from the substitution matrix to be verified.
The substitution matrix opens in a separate browser window in order to allow
the substitution matrix and the visualisation to be viewed simultaneously.

The visualisation is rounded off with a set of navigation buttons that controls
the progress of the visualisation. There is a next-button that displays the next
step in an alignment, a previous-button that displays the previous step in an
alignment, and a finish-button that completes an alignment and displays the
completed score matrix and the optimal alignments. There is also a button that
aborts a visualisation, and a button that allows a new alignment visualisation
to be configured.

The  Needleman-Wunsch  visualisation  is  implemented  with  two  types  of
visualisations: a simple visualisation and an advanced visualisation.

42



Chapter 5 The BioTeach system

Fig. 5.2: The visualisation interface with the score matrix, the computation table, the
link to the substitution matrix, and the buttons.

5.3.1 The simple visualisation

The simple visualisation is  meant to be an introduction to the Needleman-
Wuncsh  algorithm,  and  is  intended  for  first-time  users  who  have  limited
experience with the algorithm. The simple visualisation demonstrates how the
Needleman-Wunsch algorithm aligns the sequence pair LWA and RSP, using
a gap penalty of -5 and the Blosum62 substitution matrix. This visualisation
begins with a page that describes the input parameters that are used in the
visualisation, and a button that starts the visualisation. Since this visualisation
demonstrates the alignment of a specific pair of sequences using a specific gap
penalty  and  substitution  matrix,  the  button  that  allows  a  new  alignment
visualisation to be configured is excluded from this visualisation.
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5.3.2 The advanced visualisation

The advanced visualisation allows the users to define the input parameter of
the alignment that  shall  be visualised,  and is  intended for  users who have
some experience with the Needleman-Wunsch algorithm.

The idea with this visualisation is to provide an environment in which it is
possible  to  experiment  with  different  input  parameters,  and  learn how the
algorithm  works  by  observing  how  different  input  parameters  affect  an
alignment. An advanced visualisation is configured by entering a valid pair of
sequences and a valid gap penalty into a form, and by selecting one of the six
implemented  substitution  matrices  from  a  list  in  the  form.  The  six
implemented  substitution  matrices  are:  Blosum80,  Blosum62,  Blosum45,
Pam250, Pam120, and Pam30.

The advanced visualisation begins with a page that contains a listing of the
valid  amino  acids,  a  recommendation  regarding  a  sensible  gap  penalty
(negative  or  zero),  the  configuration  form,  and  a  button  that  starts  the
visualisation (fig 5.3). Entering invalid sequences or an invalid gap penalty
and pressing the start-button produces an error message instead of starting the
visualisation of the alignment. 

A valid sequence is  composed of at  least  one, and maximum eight,  of the
following amino acids: 

A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V, B, Z, X.

The limit of eight amino acids was set because sequences of greater length
produce a score matrix that is too wide to fit within the frame of the portal,
and it would then be impossible to view the complete score matrix.

A valid gap penalty is any integer in the range 

[-9.999.999, 99.999.999]

This range was chosen because gap penalties longer than eight digits, or seven
digits for negative numbers, produce scores that are too long to fit on a single
line in the score matrix, resulting in a score matrix that is difficult to read. 

The fields of the configuration form are implemented such that it is impossible
to enter sequences or gap penalties that exceed the limit of eight amino acids
or eight digits.
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Fig 5.3: The configuration form of the advanced visualisation. The form configures
here  a  visualisation  of  the  alignment  of  the  sequences  WGQMNSFS  and
AMNESFQS using a gap penalty of -5 and the Blosum62 substitution matrix.

5.3.3 Explanation of the visualisation

All  sequence  alignments  that  are  conducted  with  the  Needleman-Wunsch
algorithm starts with the initialisation of cell F(0, 0), the first cell of the first
row, of the score matrix. The score of this cell is predefined to zero. Thus,
both the simple and the advanced visualisation starts with a score matrix in
which cell F(0, 0) has been initialised to zero (fig. 5.4). 

Since the score of cell F(0, 0) is predefined, there are therefore no expressions
or calculations to display in the computation table.

The visualisation continues with the initialisation of the first row and column
once  cell  F(0,  0) has  been  initialised.  The  initialisation  process  includes
computing the scores of the cells of the first row and column, and setting the
direction of the pointers of the cells. 

The initialisation process starts with the initialisation of the first row. Thus,
pressing the next-button after the initialisation of cell F(0, 0) produces a score
matrix in which the two first cells of the first row, cell F(0, 0) and cell F(1, 0),
have been initialised (fig. 5.5). Cell F(0, 0) precedes cell F(1, 0), and a pointer
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Fig 5.4: An example of the visualisation interface the users are presented with when
a visualisation is started. The score matrix at the top shows that the score of cell 
F(0, 0),  the first  cell  of  the first  row is zero. The computation table at the bottom
shows that the current step in the alignment is the initialisation of cell F(0, 0).

to cell F(0, 0) is therefore included in cell F(1, 0) to indicate that the path from
cell F(1, 0) to cell F(0, 0) is towards the left.

The accompanying computation table now shows that the current step in the
alignment is the initialisation of cell  F(1, 0), and displays the expression and
the calculation with which the score of cell F(1, 0) were computed (fig. 5.5). 

The expression that is used to compute the score of the cell  F(1, 0) and the
other cells of the first row is 

i * gap penalty

in which i denotes the column that the cell is located in. The computation
table also displays that the current step of the alignment is the initialisation of
F(1, 0).

The next step in the alignment is the initialisation of the second cell of the first
row, cell  F(2, 0).  Thus,  pressing the next-button a second time produces a
score matrix in which cells F(0, 0), F(1, 0) and the third cell of the first row, F
(2, 0), have been initialised (fig. 5.6). The path from cell F(2, 0) to cell 
F(0, 0) is through cell F(1, 0), and hence a pointer to cell F(1, 0) is added to
cell F(2, 0).
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Fig. 5.5: An example of the score matrix and the computation table the users are
presented with in the first step of the initialisation of the first row of the score matrix.
The pointer in the second cell in the first row, cell F(1, 0) of the score matrix indicates
that the path from cell  F(1, 0) to cell  F(0, 0)  is to the left.  The computation table
displays that  the  current  step  in  the  alignment  is  the  initialisation  of  F(1,  0),  the
expression that is used to compute the score, and the calculation of the score.

The accompanying computation table now shows that the current step of the
alignment is the initialisation of cell F(2, 0), and displays the calculation of the
score of cell F(2, 0) (fig. 5.6).

This pattern of presentation is repeated for each of the remaining cells of the
first  row.  That  is,  each  time the next  button  is  pressed,  a  score  matrix  is
presented in which the next un-initialised cell, cell F(x, 0), has been initialised
with  a  score  and  a  pointer  to  the  preceding  cell.  The  accompanying
computation  table  shows  that  the  current  step  of  the  alignment  is  the
initialisation of cell F(x, 0), and displays the calculation with which the score
of cell F(x, 0) was computed.

Once  the  initialisation  of  the  first  row is  completed,  the  next  step  in  the
initialisation process is the initialisation of the first column. Thus, pressing the
next-button after the initialisation of the first  row is completed produces a
score matrix in which the cells of the first row, cells F(0, 0) to F(i, 0),
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Fig.  5.6: An  example  of  the  score  matrix  and  computation  table  the  users  are
presented with at the second step in the initialisation of the first  row of the score
matrix. The pointer in the third cell in the first row, cell F(2, 0), indicates that the path
from cell  F(2, 0) to cell  F(0, 0)  is through cell  F(1, 0). The computation table shows
that the current step in the alignment is the initialisation of cell F(2, 0), the expression
used to compute the score of cell F(2, 0), and the calculation of the score.

and the second cell of the first column, cell F(0, 1), have been initialised (fig.
5.7). Cell F(0, 0) precedes cell F(0, 1), and a pointer to cell F(0, 0) is therefore
added to cell F(0, 1) to indicate that the path from cell F(0, 1) to cell F(0, 0) is
upwards. 

The  score  of  cell  F(0,  1) and  the  rest  of  the  cells  in  the  first  column  is
computed with the expression 

j * gap penalty

where  j denotes the row in which the cell is located. Thus, the computation
table (fig. 5.7) that accompanies the score matrix now displays this expression
and the calculation of this expression for cell F(0, 1). 

The computation table also shows that the current step of the alignment is the
initialisation of cell F(0, 1).

The initialisation of the remaining un-initialised cells of the first column is
visualised in the same manner. That is, each time the next-button is pressed, a
score matrix is presented in which the next un-initialised cell, cell F(0, y), has
been initialised with a score and a pointer to the preceding cell.
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Fig 5.7: An example of a score matrix and computation table the users are presented
with in the first step of the initialisation of the first column of the score matrix. The
pointer of the cell in the first row and first column, cell F(0, 1), indicates that the path
from cell F(0, 1) to from cell F(0, 0) is upwards. The computation table shows that the
current step in the alignment is the initialisation of cell F(0, 1), the expression that is
used to compute the score of cell F(0, 1), and the calculation of the score.

The accompanying computation table shows that the current step of the
alignment is the initialisation of cell F(0, y), and displays the calculation with
which the score of cell F(0, y) was computed.

Once the initialisation process is completed, the next step is to compute the
scores  and determine  the  directions of  the pointers  of the  remaining cells,
starting with the second cell in the second row and column, cell F(1, 1). Thus,
pressing the next-button after the initialisation process is completed produces
a score matrix in which the scores and pointers of the cells of the first row, the
first column, and cell F(1, 1) have been determined (fig. 5.8).

The general expression that is used to compute the score of cell F(1, 1) and the
other remaining cells is
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Fig.  5.8: An  example  of  a  score  matrix  and  computation  table  the  users  are
presented with when the initialisation of the first row and column is completed. The
pointer in the second cell of the second row, cell F(1, 1), indicates that the path from
cell F(1, 1) to cell F(0, 0) is up and to the left. The computation table shows that the
current step in the alignment is the computation of cell F(1, 1), that the expression s(i,
j) represent  the  score  of  aligning  the  first  amino  acid  of  the  first  and  second
sequence,  the  expression  that  is  used to  compute  the  score  of  cell  F(1,  1),  the
calculations that are used to determine the score of cell  F(1, 1), and which pointer
directions the calculations represent.

where i denotes the column in which the cell whose score is being computed is
located, and  j the column. The term s(i, j) refers to the substitution matrix
score of aligning the i-th amino acid in sequence A  with the j-th amino acid in
the sequence B.

The score of  F(1,  1) and the other  remaining cells  is  found, as the above
expression shows, by computing the three expressions to the right of the brace
(hence  referred  to  as  the  sub-expressions)  for  F(1,  1) and  each  of  the
remaining cells, and for each cell compare the sums the sub-expression yields
to find the highest sum. The highest sum is then the score of a cell. 

The sub-expressions also represent the three rules an alignment has to obey: 

1) the j-th amino acid of sequence B can aligned with a gap (represented
by the first sub-expression)

2) the i-th amino acid of sequence A can aligned with the j-th amino acid
of sequence B (represented by the second sub-expression)
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3) the i-th amino acid of sequence A can be aligned with a gap
(represented by the third sub-expression)

The sub-expression that yields the highest score therefore determines the
direction of the pointer of a cell, cell F(x, y). Thus:

1) if the first sub-expression yields the highest score, the optimal
alignment represented by cell F(x, y) is an extension of the optimal
alignment represented by cell F(x, y-1), and a pointer to cell F(x, y-1)
is added to cell F(x, y).

2) if the second sub-expression yields the highest score, the optimal
alignment represented by cell F(x, y) is an extension of the optimal
alignment represented by cell F(x-1, j-1), and a pointer to cell 
F(x-1, y-1) is added to cell F(x, y).

3) if the third sub-expression yields the highest score, the optimal
alignment represented by cell F(x, y) is an extension of the optimal
alignment represented by cell F(x-1, y), and a pointer to cell F(x-1, y)
is added to cell F(x, y).

It is, however, possible for two, or all three, sub-expressions to yield the same
score, and there may therefore be up to three pointers in cell F(1, 1) and the
remaining cells. A cell with more than one pointer signifies that there is more
than one optimal alignment of sequence A and sequence B.

For F(1, 1) the sub-expressions are

1) F(1, 0) + gap penalty

2) F(0, 0) + s(1, 1)

3) F(0, 1) + gap penalty

Thus, the score of cell F(1, 1) is found by 

1) adding the gap penalty to the score of cell F(1, 0), the cell above cell F
(1, 1)

2) adding the score of aligning the first amino acid of the first sequence
with the first amino acid of the second sequence to the score of cell F
(0, 0), the cell above and to the left of cell F(1, 1)

51



Chapter 5 The BioTeach system

3) adding the gap penalty to the score of cell F(0, 1), the cell to the left of
cell F(1, 1)

and then comparing these sums to determine which is highest. The pointer (or
pointers) is then added to cell F(1, 1) according to the rules described above.

The computation table that accompanies the score matrix now displays, apart
from that the current step is the computation of F(1, 1), which alignment the
term s(i, j) represents, the general expression that is used in the computation of
cell F(1, 1) and the remaining cells, the calculation of the sub-expressions, and
the  pointer  direction  each  of  the  sub-expressions  represent  (fig.  5.9).  The
calculation  (or  calculations)  that  yields the  highest  sum is,  along with  the
pointer direction it represents, marked with red to make it easier to see the
connection between the sub-expression that yields the highest score and the
score and pointer (or pointers) that is found in cell F(1, 1). 

Fig. 5.9: An example of a computation table the users are presented with once the
initialisation  of  the  first  row  and  column  of  the  score  matrix  is  completed.  The
computation table shows the current step in the alignment (here the computation of
the  score  of  cell  F(1,  1)),  which  alignment  the  term  s(i,  j) represents  (here  the
alignment of the amino acids W and A), the expression that is used to compute the
score of a cell, the calculations that are made to compute the score, and the pointer
direction each of the calculations represent. The calculation(s) that yield the highest
score and the corresponding pointer direction(s) is marked with red to make it easier
for  the  users  to  connect  the  score  and  pointer  direction  of  the  cell  with  the
calculations.

The computation of the remaining cells are visualised in the same manner,
row by row, until the last cell, F(i, j), has been computed. Thus, pressing the
next-button after the computation of the score of cell  F(1, 1) is  completed
produces a score matrix in which the scores and pointers of the cells in the
first row, the first column, and cells F(1, 1) and F(2, 1) have been set.
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The  accompanying  computation  table  shows  that  the  current  step  in  the
alignment is the computation of cell  F(2, 1), and displays the calculations of
the sub-expressions for cell F(2, 1), which of the calculations yield the highest
score, and which alignment the term s(i, j) represents.

Once  the  second  row,  i.e.  cells  F(1,  1) to  F(i,  1),  is  completed,  the
visualisation continues with the computation of the third row, cells F(1, 2) to
F(i, 2), followed by the computation of the fourth row, cells F(1, 3) to F(i, 3),
and so forth until the last row, cells F(1, j) to F(i, j), is completed. Each step is
accompanied by a computation table similar to that which accompanies the
computation of cell  F(1, 1) and F(2, 1) updated to show the current step, the
calculations and so forth.

As the last row is completed, the next-button is replaced by a show-optimal-
alignments-button. Pressing this button presents the optimal alignment or set
of  alignments  for  a pair  of  sequences.  The optimal  alignment  is  found by
following the path of pointers from the last cell, cell F(i, j) to the first cell, cell
F(0, 0), and if there is more than one path from the last cell to the first cell,
then there is more than one optimal alignment. The optimal alignment(s) are
supplemented with a score matrix in which the optimal path (or paths) has
been marked with red to make it easier to verify the optimal alignment(s) 
(fig. 5.10).

 A visualisation of an alignment can, at any time, be completed by pressing the
finish-button.  Pressing the finish-button produces the same score matrix  as
was described in the above paragraph, and a listing of the optimal alignment
(or alignments).

A visualisation can also, at any time, be aborted by pressing the main page-
button, which returns the users to the main page of the alignment application.
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Fig 5.10: An example of a completed score matrix and the optimal alignments. The
optimal path through the score matrix is marked with red to make it easier for the
users to verify the optimal alignment(s).

5.4 The Needleman-Wunsch exercise

The Needleman-Wunsch exercise is meant as an example on how an exercise
can  be  implemented  in  a  web-based  learning  environment,  and  as  a
supplement  to the Needleman-Wunsch visualisation.  The visualisation only
demonstrates how the Needleman-Wunsch algorithm works, and, although the
visualisation allows the users to define the alignment that is visualised and to
control  the  progress  of  the  visualisation,  it  does  only  allow  the  users  to
participate  in  an  alignment  as  observers.  The  purpose  of  the  Needleman-
Wuncsh exercise is to provide a learning environment in which the users can
participate actively by defining an alignment and completing the score matrix
of the alignment. 

Selecting the exercise from the main page of the alignment application opens a
page that is identical to the configuration page of the advanced visualisation. 
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This  page  contains  the  same  listing  of  the  valid  amino  acids,  the  same
recommendation regarding the gap penalty, the same configuration form, and
a button that starts the exercise (fig 5.11). The limitations on the length of the
sequences and the gap penalty apply to this form for the same reason as they
were applied to the configuration form of the visualisation.

 

Fig 5.11: An example on a configuration form for the alignment exercise. Similar to
the configuration form of the alignment visualisation. This example will generate an
exercise in which the users are to complete the score matrix of the alignment of the
sequences  KNSF  and  RAGD  using  a  gap  penalty  of  -5,  and  the  Blosum62
substitution matrix.

Pressing the start button opens, given that the sequences and gap penalty are
valid, a page (fig. 5.12) that contains the empty score matrix of the alignment
defined by the parameters entered into the configuration form, a link to the
chosen  substitution  matrix,  a  submit  button  that  checks  if  the  scores  and
direction entered into the score matrix are correct, a button that allows a new
exercise to be configured, and a button that exits the exercise and opens the
main page of the alignment application. 

The cells of the score matrix each contain a text field, in which the correct
score is to be entered, and three check boxes. The check boxes are arranged to
correspond to the three possible directions the pointers of a cell can have (i.e.
left, upwards to the left, and up). A pointer is added to a cell by ticking off a
check box, and it is possible to add up to three pointers in each cell. 
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It may be argued that having to choose between three check boxes in the first
cell of the first row, which has no real pointer option, or in the remaining cells
of the first row and the first column, which only have one real pointer option
each, may be annoying and/or confusing. Using one check box for the cells
that only have one real pointer option, and none in the first cell of the first
row,  would  be  the  obvious  alternative  to  using  three  check  boxes.  This
alternative could, however, be equally annoying because being forced to select
an  alternative  when  there  is  only one,  mandatory,  alternative  would  seem
meaningless.

Fig. 5.12: An example of an alignment exercise. This exercise requires the users to
complete the score matrix of the alignment of the sequences KNSF and RAGD.

Removing  the  checkboxes  from  the  cells  of  the  first  row  and  column  is
another option. This alternative could, however, be even more confusing than
using one or three check boxes because it  does not correspond to how the
algorithm works. At worst, this alternative could give the impression that the
pointers of the first row and column are insignificant when a score matrix is
computed. Thus, the only alternatives are one or three check boxes. 
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The reason for choosing three check boxes over one check box for these cells
is that three check boxes requires some understanding of the purpose of the
pointers  before  the  correct  pointer  can  be  set  without  guessing.  With  one
check box it is possible to set the pointers of these cells without giving the
reason for why the pointers are set any thought. Pressing the submit-button
once the score matrix is completed produces, given that the submitted score
matrix is correct, a page that displays the correct score matrix and the optimal
alignment or alignments (fig. 5.13). The optimal path (or paths) through the
score matrix is marked with red to make it easier verify the optimal alignment
(or alignments).

Fig. 5.13: An example of a completed exercise. Once the users submit a correct
score matrix, they are presented with the completed score matrix in which the
pointers and the optimal path are included. The optimal alignment(s) is also
presented.

Submitting an incorrect score matrix produces an error message that explains
what is wrong and where the error is (fig. 5.14), e.g. “The score of cell F(2, 1)
is incorrect” or “The direction of cell F(4, 3) is incorrect”

Submitting an incomplete score matrix,  i.e. a score matrix in which one or
more scores is missing,  or an invalid score matrix,  i.e.  a score matrix  that
contains a score that is not an integer, produces an error message that states
that an invalid score has been entered.
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Pressing  the  new  test-button  aborts  an  exercise  and  opens  the  exercise
configuration page, while pressing the main page-button aborts  an exercise
and opens the main page of the alignment application.

Fig. 5.14: An example of the error messages the users receive id they submit an
incorrect score matrix.

5.5 The clustering visualisation

The  clustering  visualisation  is  designed  to  teach  how  the  implemented
clustering algorithms cluster gene expression data by providing a graphical
presentation of how the different clustering algorithms cluster the genes (i.e.
the rows) of a user-defined gene expression data matrix.

The clustering application is started through the link in the introduction page
of the clustering application. The interface of the clustering application (fig.
5.15) is composed of a two-dimensional coordinate system, two data tables, a
menu, a canvas, and a set of buttons.

The coordinate system has two roles in the clustering visualisation. Firstly, it
is  where  the  gene  expression  data  matrix  is  defined.  A  row  in  the  gene
expression data  matrix  is  defined by placing the mouse pointer  within the
coordinate system and pressing the left  mouse button. Once the left mouse
button is pressed within the coordinate system, a numbered point is deposited
in the position of the mouse pointer. The deposited point represents a gene,
where the number denotes the number of the gene, and the coordinates of the 
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point represents the gene expression levels of the gene in two samples: the x-
coordinate of the point represents the gene expression level of the gene in
sample x, while the y-coordinate represents the gene expression level of the
gene  in  sample  y.  Thus,  the  gene  expression  data  matrix  is  defined  by
depositing a set of points/genes in the coordinate system.

Secondly, the coordinate system is used to present how the algorithms cluster
a set of gene expression vectors. Exactly how the coordinate system is used to
present  a  clustering  depends  on  which  of  the  implemented  clustering
algorithms are chosen to be visualised, and the usage of the coordinate system
will  therefore be discussed in the sections that describe the visualisation of
each of the implemented clustering algorithms.

 

Fig.  5.15: The  visualisation  interface  the  users  initially  are  presented  with.  The
coordinate system at the upper left, the canvas at the lower left with the menu in the
middle, the raw data table to the upper right, the clustered data table to the lower right
with the buttons in the middle.
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The two data tables represent the gene expression data matrix whose rows (i.e.
genes) the algorithms are to cluster.  As the gene expression data matrix is
defined by the users, no gene expression data is available when the clustering
application is started. Both tables are therefore empty when the application is
started.  The  first  table,  named  the  raw  data  table,  represents  the  gene
expression data matrix as it is before it is clustered, and a row is added to this
table  each time a point  is  deposited in  the  coordinate  system. The second
table,  named  the  clustered  data  table,  represents  the  gene  expression  data
matrix during and after the clustering process, and therefore remains empty
until a visualisation is started. The rows of each of these tables are composed
of three columns where the first column displays the number of the gene (i.e.
the number of the point in the coordinate system), the second column displays
the gene’s expression level in sample x (i.e. the x-coordinate of the point), and
the third column displays the gene’s expression level in sample y (i.e. the y-
coordinate of the point). A gene expression data matrix can be presented as a
heat  map,  in  which the gene expression levels  are represented as coloured
squares instead of by the numerical values.  The intensity of the colours of
these squares corresponds to the expression levels of each gene in the different
samples  where  green  intensity  signifies  negative  expression,  red  intensity
positive expression, and no intensity (i.e. black) signifies zero expression. The
same colour scheme is used in the second and third column of the data tables
to emphasise that the deposited points represent gene expression data, and that
the data tables are gene expression data matrices,  not  merely tables of the
coordinates of the deposited points.

It is also possible to define the gene expression data matrix without depositing
the  points  manually.  The  clustering application  is  implemented  with  three
predefined sets  of genes in  which the  genes are distributed in 2,  3,  and 4
distinct clusters respectively (fig. 5.16). Each cluster is composed of 50 genes
each. Pressing the predefined examples-button activates the list  from which
the examples can be chosen. Selecting an example from this list generates the
selected set of genes, and displays the genes both as points in the coordinate
system,  and  as  rows  in  the  raw  data  table  (i.e.  the  gene  expression  data
matrix).  The  points  in  the  coordinate  system are  unnumbered  because  the
points are distributed too densely for the numbers to be read.

Since gene expression data normally are n-dimensional, some may argue that a
two-dimensional  representation  of  gene  expression  data  might  be  a  too
simplified  representation  to  have  any  educational  value.  The  reason  for
choosing a two-dimensional representation is simply that the computer screen
is two-dimensional, and it is therefore difficult to represent data properly in
more than two dimensions. Besides, understanding how multi-dimensional 
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gene expression data is clustered should not be problematic once clustering of
two-dimensional data is understood. 

Some may also argue that plotting the gene expression data in a coordinate
system may be misleading since gene expression data normally are presented
as  gene  expression  data  matrices,  not  as  plots.  Thus,  the  correct  way  of
defining a gene expression data matrix would have been to provide an empty
gene expression data matrix,  in which the gene expression data could have
been entered manually.  Although this  approach would be  correct,  it  might
have caused the visualisation to be too cumbersome to be interesting to use. 

Fig. 5.16: Three examples on the three possible predefined sets of genes. To the left
the set of genes is distributed in two clusters, in the middle the set is distributed in
tree clusters, and to the right the set is distributed in four clusters.

The clustering application requires at least three genes to be defined in the
gene expression data matrix before any visualisation can be started. The first
step of starting a clustering visualisation is to choose one of the implemented
clustering algorithms from the menu. The menu is composed of two lists, one
that  contains  the  algorithms,  and  one  that  contains  the  variants  of  the
algorithms. The algorithm has to be chosen before the variant can be chosen.
The next step of starting a visualisation depends on the chosen algorithm. A
started visualisation can,  at  any time,  be completed by pressing the finish-
button. 

Because the defined set of genes remains unchanged until either additional
points are plotted in the coordinate system or the new-button is pressed, it is
possible to use a set of genes in multiple visualisations. Pressing the new-
button resets the clustering interface to the state it was in when the clustering
application was started. 
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5.5.1 The hierarchical clustering visualisation

The  hierarchical  clustering  visualisation  demonstrates  how the  hierarchical
clustering algorithm clusters gene expression data. The key to understanding
how this algorithm clusters genes is to understand how the dendrogram (i.e.
the  hierarchical  tree)  is  constructed.  Hence,  the  visualisation  focuses  on
demonstrating  how  the  dendrogram  is  built.  The  algorithm  that  is
implemented in the BioTeach system is agglomerative,  that  is,  it  starts  by
treating the set  of genes as a set  of clusters where each gene is a separate
cluster, a singleton cluster, and constructs the dendrogram by grouping two
and two clusters together into a larger cluster until all  clusters are grouped
together in one large cluster. The first pair of clusters that are grouped together
in an agglomerative clustering is the pair of singleton clusters (i.e. the pair of
genes) that is most similar.  The similarity measurement that is used by the
BioTeach  system  is,  in  all  the  implemented  clustering  algorithms,  the
Euclidean distance between the clusters, that is, the length of a straight line
between two clusters. Thus, the Euclidean distance between all the singleton
clusters have to be calculated in order to find the pair of clusters that is most
similar. 

The next step is to group the next pair of clusters that is most similar. The pair
of clusters that was grouped together in the first step is now treated as one
cluster  composed of  two singleton clusters,  and the  distances  between the
clusters in the set of clusters therefore have to be recalculated. 

The distance between a non-singleton cluster (i.e. a cluster composed of two
or more singleton clusters) and other clusters, singleton or non-singleton, can,
as discussed in chapter 4, be defined in different ways. The options that are
implemented by the BioTeach system are single linkage, complete linkage,
and  average  linkage.  Single  linkage  defines  the  distance  between  a  non-
singleton  cluster  and  other  clusters  as  the  distance  between  the  pair  of
singleton  clusters  in  the  non-singleton cluster  and the  other  cluster  that  is
nearest to each other. If the other cluster is a singleton cluster, the distance is
defined  as  the  distance  between  the  singleton  cluster  in  the  non-singleton
cluster that is nearest the other singleton cluster. Complete linkage defines the
distance as the distance between pair of singleton clusters in the non-singleton
cluster and the other cluster that is furthest apart. Average linkage defines the
distance as the average distance between all the singleton clusters in the non-
singleton cluster and the other cluster.
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The hierarchical clustering continues to group the most similar pair of clusters
until all clusters have been grouped together in one single cluster.

A hierarchical  clustering is  started  by choosing hierarchical  clustering and
linkage  from  the  lists  in  the  menu,  and  pressing  either  the  automated
clustering-button, or the stepwise clustering-button. The automated clustering
starts a fully automated presentation of the hierarchical clustering algorithm,
while the stepwise clustering allows the progress of the visualisation to be
controlled by the users.

It  is  possible  to  choose  whether  or  not  the  visualisation  is  to  display the
singleton clusters that define the least distance in each step of the visualisation
by  ticking  off  in  the  show-linkage  box.  A  visualisation  with  this  option
enabled starts each step in the clustering with the drawing of a blue line in the
coordinate  system between  the  two  singleton  clusters  that  define  the  least
distance  according  to  the  chosen  linkage  (fig.  5.17).  The  blue  line  is
temporary, and is only displayed for one second before it is removed. Since
linkage is  not  used by any of the other implemented algorithm,  the show-
linkage  box  is  deactivated  in  the  visualisations  of  other  implemented
algorithms.  The  canvas  is  also  only  used  by  the  hierarchical  clustering
visualisation, so the canvas is removed from the visualisation interface if any
of the other algorithms is selected.

The automated and the stepwise visualisation start with the grouping of the
two singleton clusters that are closest  to each other. This step is visualised
(fig.  5.18)  by drawing a  line  between the  pair  of  points  in  the  coordinate
system that is closest to each other. The canvas is simultaneously updated to
show the grouped pair of clusters as a dendrogram with two leaf nodes, while
the remaining ungrouped clusters are presented as points in the canvas. The
clustered data table is also updated to display the genes in the order they are
grouped, that is, the ungrouped genes are displayed first, while the grouped
pair is found in the last two rows of the table.

In  an  automated  clustering  visualisation  the  next  step  in  the  clustering  is
presented  after  a  pause  of  one  second,  while  in  the  stepwise  clustering
visualisation the next step is presented after the next-button has been pressed.
The next step can be visualised in two different ways depending on whether
the next  pair  of clusters to be grouped is a pair of singleton clusters,  or  a
grouping of the non-singleton cluster from the previous step and a singleton
cluster. In the first case (fig. 5.19), a line is drawn in the coordinate system
between the two singleton clusters  that are nearest  each other.  The canvas
displays, in this case, two separate dendrograms of two leaf nodes each, while
the order of the genes in  the clustered data  table  is  rearranged so that  the
grouped pair of genes is found in the two last rows. 
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(a)

(b)

(c)

Fig 5.17: The visualisation of (a) single linkage in which the two object closest to each
other define the least distance, (b) complete linkage in which the two objects furthest
apart define the least distance, and (c) average linkage in which the average distance
between all objects define the least distance.
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In the second case (fig. 5.20), a line is drawn between the singleton cluster and
each of the singleton clusters in the pair of clusters that was grouped in the
first step of the visualisation. Thus, the three singleton clusters are connected
to  each  other,  and  the  lines  forms  a  triangle  that  signifies  that  the  three
singleton clusters belong to the same larger cluster. In this case, a branch is
added to the dendrogram that was drawn on the canvas in the first step so
thatthe tree becomes a tree composed of three leaf nodes. The genes of the
clustered data table are also rearranged so that the three grouped genes are
found in the three last rows of the table.

Fig 5.18: The visualisation of the first step of a hierarchical clustering. The coordinate
system shows that gene 4 and 5 are most similar, and are therefore clustered in the
dendrogram. The clustered data table has also been updated to list gene 4 and 5 in
the two last rows.
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The remaining steps in the clustering can be visualised in several  different
ways depending on if the most similar pair of clusters are a pair of singleton
clusters,  a  non-singleton  cluster  and  a  singleton  cluster,  or  a  pair  of  non-
singleton clusters.

Fig. 5.19: The second step in the visualisation in which genes 4 and 5, and 1 and 2
have been clustered. 
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Fig. 5.20: A second step in the visualisation where genes 1, 2, and 3 have been
clustered.

The steps that involve the grouping of two singleton clusters are visualised in
the  same  way  as  the  first  step  (fig.  5.17),  while  the  steps  that  involves
grouping a non-singleton cluster with a singleton cluster, or grouping a pair of
non-singleton clusters can be visualised in different ways.

A step that involves grouping a non-singleton cluster of two singleton clusters
with another singleton cluster  is  visualised in the same way as the second
possibility of the second step (fig. 5.20).

A  step  that  involves  grouping  a  non-singleton  cluster  composed  of  three
singleton  clusters  with  another  singleton  cluster,  or  grouping  two  non-
singleton clusters composed of two singleton clusters each, is visualised by
treating the four singleton clusters as the four corners of a quadrangle, and by 

67



Chapter 5 The BioTeach system

drawing  the  quadrangle  in  the  coordinate  system  to  signify  that  the  four
singleton clusters belongs to the same larger cluster (fig. 5.21). 

Fig. 5.21: The quadrangle. Signifies that the four genes/clusters belong to the same,
larger, cluster.

The  dendrogram  that  the  canvas  now  displays  is,  in  the  first  case,  a
dendrogram in which a fourth branch has been added to the tree of the non-
singleton cluster (fig. 5.22). 

Fig. 5.22: A dendrogram in which gene 4 has been clustered with an earlier cluster of
genes 1, 2, and 3.

In the second case, the dendrogram that the canvas displays is composed of the
two dendrograms of the non-singleton clusters linked together (fig. 5.23).

A step that  involves grouping a non-singleton cluster  composed of four or
more singleton clusters with another singleton cluster, or grouping a pair of
non-singleton clusters that has five or more singleton clusters between them,
is visualised by drawing the convex hull of the set of singleton clusters that
composes the grouped pair of clusters.  This is to signify that  the singleton
clusters that compose the grouped pair of clusters belong to the same larger
cluster. 
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Fig. 5.23:  A dendrogram in which two clusters separate clusters of two genes, 3 and
4, and 1 and 2, have been clustered.

The first scenario produces a dendrogram that is similar to that of fig. 5.22,
only with 5 or more branches instead of 4. The second scenario produces a
dendrogram similar to that of fig. 2.23, except that the linked dendrograms in
this case have 5 or more branches between them instead of 4. 

A completed visualisation of the hierarchical clustering algorithm (fig. 5.24)
presents a coordinate in which the convex hull of the complete set of genes is
drawn. This is to signify that the complete set of genes have been grouped
together in one large cluster. The accompanying dendrogram is presented as a
single tree in which each gene is a leaf node, while the clustered data table
presents the genes in the order that they are clustered.
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Fig. 5.24: A completed visualisation with the convex hull of the whole set of genes at
the top, the completed dendrogram at the bottom, and the genes in the clustered
order in the clustered data table at the lower right.
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5.5.3 The k-means visualisation

The k-means visualisation demonstrates how the batch variant and the online
variant of the k-means algorithm cluster a set of genes. The k-means algorithm
clusters  a  set  of  genes  by  placing  n  centroids  in  the  set  of  genes,  and
recalculating their position until they are located in the n cluster centres. Thus,
the number of centroids predefines how many clusters there are in a set of
genes. The number of centroids therefore has to be chosen with care. Normally
it  is  the  users  who  define  the  number  of  the  centroids,  while  it  is  the
implementation  of  the  algorithm  that  determines  their  initial  position.
However,  as  the  initial  positions  of  the  centroids  affect  the  results  of  the
algorithm, the number of clusters and their initial positions are user-defined in
the  clustering  application  to  allow  for  as  much  experimentation  with  the
algorithm parameters as possible.

When  the  algorithm  is  finished,  that  is,  when  all  centroids  have  been
repositioned at the cluster centres, all genes that are assigned (i.e. nearest) to a
centroid  belong to  the  same cluster.  A k-means  visualisation  is  started  by
choosing the  k-means algorithm and either  the batch  variant  or  the online
variant from the lists in the menu. 

The first  step in  the k-means visualisation  is  to  place the centroids  in  the
coordinate area. The centroids are placed in the same way as the genes are
plotted. However, in order to place centroids and not more genes, the place
centroids-button  has  to  be  pressed.  Attempting  place  centroids  in  the
coordinate area without pressing this button, will only add more genes to the
gene set. Once the place centroids-button is pressed, an indefinite number of
centroids can be placed in the coordinate system. Each centroid is represented
in the coordinate system as a coloured point labelled C1, C2, C3, and so forth
(fig. 5.25). A k-means clustering visualisation can be started once at least two
centroids have been placed. As with the hierarchical clustering visualisation, it
is  possible  to  choose  between  an  automated  visualisation  and  a  stepwise
visualisation. The progress of the stepwise visualisation is controlled with the
next-button,  while  the  automated  visualisation  presents  each  step  in  the
clustering after a delay of one second.

Independently  of  whether  the  automated  visualisation  or  the  stepwise
visualisation is chosen, the batch variant of the k-means visualisation starts by
iterating over the set of genes and assigning each gene to its nearest centroid.
The points that represent the genes are simultaneously coloured with the same
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colour as the nearest centroid to make it easier to discern which genes belongs
to which centroid.

Fig 5.25: The start of visualisation of a k-means clustering with four centroids.

The next step is to reposition the centroids. The goal is to place each centroid
in a position where the distance from the centroid to each of its assigned genes
is equal. This position is found by calculating the average of the positions of
the genes that are assigned to each centroid (fig. 5.26).

Fig 5.26: The second step of a k-means visualisation in which the centroids have
been relocated for the second time.
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Since the clusters have been repositioned it is necessary to control whether any
of the genes are nearer to a different centroid than the one they currently are
assigned to. The first step is therefore repeated to reassign each gene to its
closest  centroid.  The algorithm is considered to  be finished if  none  of the
genes are  reassigned.  Otherwise,  it  is  necessary to  reposition  the  centroids
again;  those  centroids  that  loose  genes  or  receive  genes  are  no  longer
positioned such that the distances from the centroids to their assigned genes
are equal. The positions of these centroids are therefore recalculated, and the
centroids repositioned.

The process of reassigning genes and repositioning the centroids is repeated
until no genes are reassigned, and, hence, no centroids have to be repositioned.
The clustered data table remains empty during this process. 

Fig 5.27: A completed k-means visualisation. The centroids have been relocated at
the four cluster centres, and the clustered data table shows that genes 2, 3, 15, 16,
and 18 are clustered together around C1, the red centroid.
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Once the process is finished, the clustered data table is rearranged so that the
order  corresponds  to  the  order  in  which the  genes  are  clustered.  The  first
column in each row is also coloured with the same colour as the centroid the
gene belongs to (fig. 5.27).

The online variant uses a different approach to position the centroids at the
cluster centres. Instead of assigning each gene to the nearest centroid and then
repositioning the centroids, the online variant iterates over the set of genes and
assigns one gene at a time to the nearest centroid. At the same time, each gene
moves the nearest centroid closer to itself. In the BioTeach implementation of
this k-means variant, each gene moves the nearest centroid 1% of the distance
between the gene and the centroid closer to itself. Thus, the centroids appear
to be gliding towards the cluster centres.

One of the challenges with the online variant of the k-means algorithm is to
find a good criterion for when the algorithm is finished. Using the termination
criterion  of  the  batch  variant  would  cause  the  algorithm  to  terminate
prematurely; the centroids  only move a slight distance every time they are
moved, and the set of genes that is assigned to each centroid could therefore
be the same over a number of iterations. The termination criterion of the batch
variant could therefore regard the algorithm as finished as early as after the
first  iteration.  The  termination  criterion  that  is  implemented  in  the  online
variant of the k-means algorithm stops the visualisation when the set of genes
that is assigned to each centroid is unchanged

a) the centroids have moved less than 0.4 pixels in each of the five last
movements  

b) the average distance of the last five movements is less than 0.2 pixels

These criterions prevent the algorithm from terminating too early when the
genes are distributed in well defined, but small, clusters. At the same time,
these criterions prevent the algorithm from terminating when the genes are
distributed in clusters that are large in circumference, or not well defined. In
the latter case, the visualisation has to be terminated manually by pressing the
finish-button.

The purpose of using these criterions is to illustrate that the online variant is
not as straightforward to use or implement as the batch variant, and that the
results  of  the online  k-means variant  may depend on  how the  termination
criterion is defined.
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5.5.5 The self organizing maps visualisation

The self organizing maps visualisation demonstrates how self organising maps
(SOM) cluster genes. SOMs cluster a set of genes by stretching a grid of units
(e.g. a line, an array, a cube, a parallelepiped) to fit the gene set. The grid is
fitted to the set of genes in such a way that the relationship between the units
corresponds to the relationships in the set of genes. Thus, the grid becomes a
map over the set of genes. To achieve this, the units of the grid is organised in
neighbourhoods, and when a unit is moved, the unit pulls the neighbouring
units with it.

The BioTeach implementation of SOMs allows the users to choose between a
line grid and an array grid. The line grid is composed of ⅓ as many units as
there are genes in the set of genes. Each unit in the line grid have a neighbour
in front and one behind, except the first,  which only has one neighbour in
front, and the last,  which only has one neighbour behind. The array grid is
initially composed of ⅓ as many units as there are genes in the gene set, but
the number is adjusted so that the array always is a full rectangle or square. 

Each unit in the array grid, except the corner units and the units along the side
of the square or rectangle, has four neighbours, the unit above, below, to the
left,  and to the right.  The corner  units  only have two neighbours, the unit
below or above, and the unit to the left or to the right. The units along the
horizontal edges have three neighbours each: the unit above or below, and the
units to the left and the right. The units along the vertical edges also have three
neighbouring units each: the unit above and below, and the unit to the left or
to the right.

During the stretching process, each gene moves the closest  unit  5% of the
distance between the gene and the unit,  while the neighbours of a unit  are
moved 2% of that distance. 

A visualisation of how SOMs work is started by selecting SOM and either the
line option, or the grid option (i.e. the array grid) from the lists in the menu,
and then  pressing the  automated  clustering-button,  the  stepwise clustering-
button, or the epochwise clustering button. The epochwise clustering presents
the visualisation in epochs,  that  is,  a full  iteration over the set of genes is
performed before any of the units  are moved.  In comparison,  the stepwise
clustering moves a unit at each step in the iteration. It is not recommended to
select the stepwise clustering because the visualisation is implemented to do
3000 full iterations before it is finished (if there are 50 genes in the dataset, the
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next-button  has  to  be  pressed  50  x  3000  =  15000  times  to  complete  the
visualisation.). Thus, the epochwise visualisation is the better alternative if the
users want to step through the visualisation. 

The visualisation of both the line grid variant and the array grid variant starts
with  the  units  of  the  grid  distributed  randomly  around  the  origin  of  the
coordinate system (fig. 5.28).

Fig. 5.28:  The beginning of a SOM visualisation in which the units of the array grid
has been distributed around the origin of the coordinate system.

The visualisation proceeds to iterate over the set of genes and stretch the grid
to gradually fit the set of genes (fig. 5.29). 

Fig. 5.29: The array grid during the stretching process.
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After 3000 iterations over the set of genes, the visualisation is completed and
the grid has been fitted to the set of genes (fig. 5.30).

The SOMs work best on large datasets (e.g. thousands of genes), and since the
coordinate system of the BioTeach system is too small to accommodate such a
number of genes, it is difficult to provide an exact visualisation of how SOMs
are constructed. The best results are produced by a visualisation that uses the
predefined example with the genes distributed in four clusters. Although the
visualisation  is  not  perfect,  it  should  provide  a  presentation  that  is  good
enough to enable the users to understand how a SOM is constructed.

Fig. 5.30:  The array grid after the stretching process is completed.
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Hypothetical exercise examples

6.1 Introduction

Although  web-technology  offers  possibilities  for  designing  exercises  that
comment  the answers  that  are  given,  there are  obvious limitations  to  such
exercises. Firstly, as it is difficult to design computer programs which are able
to  assess  the  quality of  answers  that  are  based  on  creative  thinking,  such
exercises should have a definite answer. Exercises that require discussion and
creative  thinking  could,  of  course,  be  included  in  a  web-based  learning
environment, but the answers to such exercises should be forwarded to the
lecturer, or to  his or hers assistants, for proper evaluation instead of being
evaluated by a computer program. Secondly, there should be a limited number
of possible incorrect answers to such exercises. The reason is more or less the
same as with exercises that has an indefinite answer; it is difficult to anticipate
all possible answers, and therefore difficult to provide appropriate comments. 

One approach that meets these limitations is multiple choice exercises. The
Needleman-Wunsch  exercise  discussed  in  the  previous  chapter  is  another
possible approach, and a third possible approach is the Sourcer’s Apprentice
approach discussed in chapter 2. 
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This  chapter  discusses  how  multiple  choice  exercises  and  the  Sourcer’s
Apprentice approach could be used in a web-based learning environment for
bioinformatics. 

6.3 A Blast example

The Blast algorithm (Higgs & Attwood, 2005) is a popular tool for searching
sequence databases (i.e.  databases of gene sequences), and it  is  a tool  that
students of bioinformatics are required to master. The algorithm uses a form
of pairwise sequence alignment to search a database for gene sequences that
are similar  to a query sequence.  An important part  of mastering the Blast
search tool is to interpret the results the search produce.

A typical Blast result (fig. 6.2) lists the similar sequences sorted by similarity
in descending order. Each row in the list represents a gene sequence, and each
row is composed of four columns. The first column provide information about
the different database ids of a sequence (a gene sequence can be stored in
multiple databases) and the name of the gene sequence, the second column
provides a short description of the gene sequence, the third column displays
the  score  of  aligning  a  sequence  with  the  query sequence,  and  the  fourth
displays the e-value of the alignment. The score and the e-value are used to
determine whether or not a sequence is similar to the query sequence. A high
score and a low e-value (e.g. e < 0.01) indicate that a sequence is similar to the
query sequence.  An  exercise  that  aims  at  teaching  how to  interpret  Blast
results  could  be  designed like  the  Sourcer’s  apprentice  (see  fig.  6.3  for  a
sketch). 
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Fig. 6.2: The 15 best matches for a blast search for the protein sequence of the gene
CFTR_HUMAN in the Swiss-Prot database.

One way of designing a Blast  exercise  based  on the Sourcer’s  Apprentice
could be to replace the different historical texts with different Blast results in
which the column headers have been removed. The exercise could then be to
identify specific information about a selection of the sequences that are listed
in each Blast result. Each sequence in the selection should have a note card in
which  the  information  are  to  be  entered.  The  specific  information  to  be
identified for each sequence could include

− the different database ids

− the name of the gene the sequence represent

− the score of aligning the sequence with the query sequence

− the e-value of the alignment

The exercise should be implemented with a drag and drop system similar to
the bucket system of the Sourcer’s Apprentice because it limits the possible
wrong answers, and, thus, makes it possible to provide comments if incorrect
information  is  attempted  to  be  entered  into  the  note  cards  (allowing
information to be typed into the note cards manually would allow information
that  is  impossible  to  comment  to  be  entered  into  the  note  cards).  If  the
information suggested above was to be identified, there should be separate 

81



Chapter 6 Hypothetical exercise examples

buckets for each of the possible database ids in the selection (a sequence can
be stored in different databases), for the name of the gene, the description of
the gene, the alignment score, and the e-value. 

Fig. 6.3:  A sketch of a Blast exercise based on the Sourcer’s Apprentice system.
The Blast results can be presented in the upper frame, while the structured notecards
for each set of results can be presented at the bottom. This example would require
that the gi-id and the sp-id for a selection of genes are found along with the name of
the genes, the score and the e-value.

The exercise should also require the scores and e-values of a selection of the
sequences to be discussed in order to ensure that the significance of the scores
and e-values has been understood. It would, as discussed above, be difficult to
design  a  computer  program that  could  evaluate  these  discussions,  and  the
discussions should therefore be sent to the lecturer, his (or hers) assistants for
evaluation.  These  discussions  could  also,  for  instance,  be  included  in  a
mandatory exercise.
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An exercise like this should be accompanied by the information necessary to
understand the algorithm and the results. Otherwise it would be necessary to
consult  textbooks  or  other  web  sites  to  understand  how  to  complete  an
exercise.  The  exercise  should  also  be  preceded  by  an  introduction  that
explains the features of the application as well as the purpose of the exercise.

6.4 Database and portal exercises

Mastery of web-based biological databases and portals are an essential part of
the bioinformatics curriculum. There are different databases for different types
of biological information, and there are different portals that provide access to
these databases. The different portals also have different ways of presenting
database entries (e.g. fig 6.4), and they provide access to a varying selection of
the available databases. Mastery of these tools requires knowledge about the
information  the  different  databases  provides,  which  portals  to  use  to  gain
access  to  them,  and  how  to  read  the  database  entry  presentations  of  the
different portals.

Mastery of the databases and the portals also requires knowledge about the
techniques  that  are used to find information in the databases,  i.e.  database
searching. The various portals provide search engines that allow the different
databases  to  be  queried.  Some portals  also  allow multiple  databases  to  be
queried simultaneously. The different portals do, however, have different ways
of presenting the search results (e.g. fig 6.5). Thus, it is necessary to know
how  to  read  these  presentations  in  order  to  find  the  information  that  the
databases was queried for. 

The Sourcer’s Apprentice approach could be used to design an exercise that
teaches the use of the different portals and databases, but it would require the
different features and presentation forms of the different databases and portals
to be integrated into a realistic interface. A less complicated approach would
be to exploit that the portals that provide access to the different databases are
web-based. 
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(a)

(b)

Fig. 6.4: (a) a database entry of the nucleotide sequence database of Entrez. (b) a
database entry of the nucleotide sequence database of Expasy
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One way of creating such an application is through the use of multiple choice
exercises that ask questions requiring that specific pieces of information are
found in the databases. Hence, it would be necessary to use the portals and
databases to answer the questions correctly. One of the challenges with using
multiple choice exercises is to provide answer alternatives to the questions in
which the correct answer does not stand out. The correct answer should not,
however,  be too difficult  to discern from the incorrect answers in order to
avoid confusion and frustration. This could be achieved by including common
misconceptions  or  information  that  is  found  alongside  the  requested
information  as  incorrect  alternatives.  Thus,  the  alternatives  of  a  multiple
choice exercise become tools for controlling that the usage of the portals and
the databases has been understood. This approach would also make it possible
to use comments on incorrect answers to explain common misconceptions and
provide guidance towards the correct answer.

6.4.1 A hypothetical example 

The following section discusses a general exemplification of how a web-based
multiple  choice  exercise  could  be  designed.  A  web-based  multiple  choice
exercise should be accompanied by the information that is necessary to find
the  information  the  questions  asks  for.  Otherwise  it  would,  rather
inconveniently, be necessary to consult  at  least  one textbook or third-party
web site to be able to find the requested information. This section therefore
also discusses the information that such exercises could be accompanied with
in a web-based learning environment.

Biological databases are highly specialised databases that researchers use to
store their results. Thus, users of such a learning environment should not be
expected  to  be  familiar  with  these  databases  or  the  portals.  A  learning
environment  meant  to  teach the  usage of the  databases  and portals  should
therefore start with an introduction to the databases and the portals.

One  approach  could  be  to  start  with  an  introduction  to  the  database  that
explains what kind of information they provide. As there are many different
databases,  the  databases  should  be  presented  separately,  at  least  the  most
important ones, to reduce the possibility of confusing the various databases
with  each  other.  Each  presentation  could  then  be  followed  by  a  multiple
choice exercise similar to that described in the above section.
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(a)

(b)

Fig. 6.5: (a) the search results of a search for cystic fibrosis through Entrez. (b) the
search results of the same search through Expasy.
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Since the portals would not have been introduced at this point, direct links to
the database entries should therefore be provided instead of requiring that a
portal has to be used to find the correct database entry. The links should open
in a separate browser window to make it possible to view the database entry
and the exercise simultaneously. 

An exercise regarding an entry in the nucleotide database (fig. 6.3a) of the
Entrez  portal  (2005a)  could  include  questions  regarding which  species  the
nucleotide sequence is found in, the id of the entry, the name of the sequence,
the length of the sequence, who the authors of the second reference to this
entry are, etc. The alternatives to the questions do not have to be taken from
the entry, but to be able to provide reasonable comments on incorrect answers,
they should. Comments like “the answer is wrong” are not particularly useful
(Wolfe, 2001b). An example on a question with such alternatives could be:

Question:
How  long  is  the  nucleotide  sequence  of
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=nucleotide&val=6302522
1?

Alt. 1: 63025221

Alt. 2: 2346

Alt. 3: 15854667

Alternative 2 is the correct answer, while the first alternative is the id of the
nucleotide  in  the  database,  and  the  third  alternative  is  the  id  of  the  first
reference in the PubMed database (see fig. 6.3a). With these alternatives it
would be possible to present comments like “The alternative you chose was
wrong.  63025221 is  the  id  of  the nucleotide sequence in  the  database”  or
“15854667 is the id of the first reference in the PubMed database”. Thus, it
should be possible to learn about the information the entry provides even if the
answers is incorrect.

The other databases Entrez provides access to could be presented in a similar
manner, followed by similar exercises.

The next step would then be to introduce the various portals, and how they
present database entries. Users should by now be somewhat familiar with the
information the  different  databases  provide,  and it  should therefore  not  be
necessary to present more than a few choice entries. One approach could be to
present some of the entries that were used in the introduction to the databases.
Thus, the information in the entries would be familiar, and it should therefore 
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be easier to become familiar with how the different portals present database
entries. 

Another way of starting a learning environment that means to teach the usage
of databases and portals could be to begin with a presentation of the various
portals. Such an approach would make it possible to present entries from a
selection of the databases of one portal, followed by a presentation of entries
from a different selection of databases of another portal. As with the above
described approach, each presentation should be accompanied by a multiple
choice exercise. These exercises should also provide direct links to database
entries because the principles of database searching yet have to be introduced.
Thus, the same exercises as those described above could be used. 

Independently of whether the first  or  the second approach should be used,
users  should  by  now  be  familiar  with  both  the  information  the  different
databases provide, and the different presentation forms of the various portals.
The next step could then be to introduce the principles of database searching.

The search engines that the portals provide are similar to the search engines
that are used to search the web. The search engines of both biological portals
and the web require a search phrase to be provided. The difference between
the two types of search engines lies in the search phrases the search engines
accept.  Search engines for  the web allow any kind of search phrase to  be
entered, including search phrases that contain logical operators such as AND,
OR,  and NOT.  The search  phrases  a  search  engine  of  a  biological  portal
allows may depend on the database that  is  to be searched. The Swiss-Prot
database (a protein knowledge base) at Expasy (2005a), for instance, does not
accept any of the logical operators. The operator AND can be included, but
since  this  operator  is  automatically  included  in  the  search  phrase  if  it  is
composed of more than two words separated by a space, there is no need to
include it. The AND operator is also added automatically by the search engine
at EBI (2005) when the protein database is searched. It does also allow the
users to include any of the other operators, but since the other operators are
removed  from  the  search  phrase  before  the  search  is  performed,  it  is
meaningless to include them. The search engine of Entrez  (2005b),  on the
other hand, allows any of the logical operators to be included, but it is not
apparent whether or not they are used. Biological databases may therefore be
experienced  as  difficult  to  search,  and  a  discussion  regarding  database
searching should therefore start with short presentations of how the different
databases are searched, accompanied by a set of exercises.

The exercises should start easy and gradually become more difficult, so that
all students are able to complete the exercises. One way of starting easy could 
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be to include the search phrase in the question. The set of exercise regarding
the Swiss-Prot database at Expasy could start with an exercise similar to this:

Question:
One of the following proteins is connected to the disease cystic fibrosis in
humans. Which is it? 

Alt. 1: CFTR_CAVPO

Alt. 2: CFTR_HUMAN

Alt. 3: S101A8_HUMAN

This exercise should be relatively easy to solve as it provides many hints to
the correct answer. First of all, the text provides a search phrase that yields
only two hits in the Swiss-Prot database: “cystic fibrosis human”. The two hits
are CFTR_HUMAN and S101A8_HUMAN. The Swiss-Prot database would
have been presented before this exercise could be encountered, and the Swiss-
Prot database should therefore be familiar. Hence, it should not be problematic
to find out that the correct answer is CFTR_HUMAN (Expasy, 2005b); the
protein  S101A8_HUMAN is  connected  to  chronic  inflammations  (Expasy,
2005c). Using the search phrase “cystic fibrosis” produces 12 entries from the
Swiss-Prot  database, of which the CFTR_CAVPO protein is one. This is a
protein that  is  connected to chloride transportation in guinea pigs (Expasy,
2005c). It is also possible to use the answer alternatives as search phrases. 

The exercises should gradually provide less and less hints, to force the users
to use their knowledge about the databases and database searching  to select
the correct database to search and an efficient search phrase. 
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Summary and Conclusions

This  project  is  a  part  of  the  ongoing  Flexible  Learning  (norw:  Fleksibel
Læring) (2005) project at the University of Oslo, which aims at contributing to
the  establishment  of  good  learning  environments  for  the  students  at  the
University of Oslo by integrating ICT with education and teaching. 

The purpose of the project described in this document has been to explore how
web-technology  can  be  used  to  create  an  interactive  web-based  learning
environment for bioinformatics. Bioinformatics is a complex field of science
that  combines  mathematics,  statistics,  biology,  and  informatics;  and  to
develop a complete learning environment that covers all aspects of this field of
science in one project would have been impossible. This project has therefore
focused on developing examples on how some of the algorithms used in the
field of bioinformatics can be visualised in a web-based learning environment
(i.e. the BioTeach system), and on discussing how exercises can be designed
in such a learning environment. 

Most of the work with this project has been concerned with the development
of the BioTeach system. There were three major challenges that  had to be
dealt  with  in  the  development  of  this  system.  The  first  challenge  was  to
implement the algorithms that were to be visualised. The second, and most
difficult,  challenge  was  to  visualise  these  algorithms  in  a  way that  could
improve the understanding of the algorithms. The BioTeach system provides
two  different  approaches  to  meet  this  challenge.  The  visualisation  of  the
Needleman-Wunsch  algorithm  presents  the  exact  calculations  that  are
involved in each step of an alignment of a pair of protein sequences.  The 
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visualisations  of  the  microarray  data  clustering  algorithms  specifically
emphasize the steps most crucial to the understanding of the algorithms. 

The third challenge was to create visualisation interfaces that appear uniform
on all computers. One of the problems with web applications is that different
web  browsers  may  present  the  contents  of  a  web  application  differently.
Another problem is that some computers may use screen resolutions that are
too low for the visualisations to fit completely into the browser window. Some
measures have been taken to reduce these problems (i.e.  the limits  on the
length of the sequences and the gap penalty limit in the Needleman-Wunsch
visualisation). The visualisations have been tested in three different browsers,
MS  Internet  Explorer,  Mozilla,  and  Opera;  and  the  visualisations  appear
approximately uniform in these browsers. 

The BioTeach system clearly shows that it  is possible to  create web-based
visualisations of algorithms. The interesting question is whether or not either
of the visualisations  improves the understanding of the algorithms that  are
visualised. There are, however, no empirical results to base such a prediction
on. There are two reasons for this. First, there was, unfortunately, not enough
time to conduct any studies of the effects of the visualisations. Second, if there
had been time to conduct any studies, it would have been difficult to produce
any reliable empirical results. The current implementation of the visualisations
provides little information about the biological and statistical foundation the
visualised algorithms are based on. It would therefore have been difficult for
anyone who is not familiar with the principles of pairwise sequence alignment
and clustering of microarray data to participate in a study of the effectiveness
of the visualisations. A suitable test population would therefore have been the
students that follow the introduction course to bioinformatics. There were less
than 10 students that completed this course. Although instructive, a statistical
study  of  the  effectiveness  of  the  visualisations  based  on  such  a  small
population would not render any statistically significant conclusions.

It is difficult to predict the usefulness of the visualisations without the support
of  empirical  results.  It  should,  however,  be  possible  to  use  the  Sourcer’s
Apprentice (SA) as a reference for a preliminary prediction of the usefulness
of the visualisations. SA starts with a tutorial that explains and tests the skills
that  are  necessary  to  use  multiple  sources  of  information  effectively  and
correctly. The tutorial is then followed by a practice environment in which the
skills  are  trained  on  sets  of  excerpts  from  authentic  history  texts.  The
visualisations of the BioTeach system are designed to visualise, step-by-step,
how the implemented algorithms work on simplified, but authentic, datasets,
and could therefore be, in combination with the textual  explanations of the
algorithms, viewed as tutorials to the algorithms. The visualisations do also 
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allow  the  datasets  that  are  visualised  to  be  experimented  with,  and  the
visualisations could therefore be viewed as virtual laboratory exercises similar
to the laboratory exercises that are used in chemistry and physics. It should
therefore, despite that the clustering visualisation is not supplemented by an
explicit  exercise,  be  possible  to  say,  as  a  preliminary prediction,  that  the
BioTeach system should be a useful tool for improving the understanding of
the algorithms that are visualised. 

One way of confirming or disproving this prediction can be to conduct a pre-
test/post-test experiment in which the test population is divided into a control
group  and  a  treatment  group.  The  first  step  of  such  an  experiment  is  to
administer  a  pre-test  to  that  tests  the  population’s  understanding  of  the
algorithms that are visualised by the BioTeach system. The pre-test could, for
instance,  be  a  paper  and  pencil  test  that  contains  exercises  that  require  a
sequence  alignment  with  the  Needleman-Wunsch  algorithm,  a  hierarchical
clustering, and a k-means batch clustering to be conducted by hand. Clustering
datasets with the k-means online algorithm and SOMs are complicated and
time consuming to conduct by hand, and ordinary questions regarding these
algorithms should therefore be included instead of exercises that require such
clusterings to be conducted. The next step could then be to provide the control
group with detailed articles on the different algorithms, while the treatment
group  is  provided  with  access  to  the  BioTeach  system in  addition  to  be
provided with the same detailed articles. The last step is to administer a post-
test similar (or identical) to the pre-test after the two groups have had time to
study the algorithms. The results of the pre- and post-tests for the two groups
can then be compared to see if the results for the treatment group are better
than those of the control group.

The BioTeach-system should, however, be tested more extensively to remove
any bugs  before  any studies  are  performed.  The  interfaces  should  also  be
implemented  with  online-help  such  as  tooltips  before  any  studies  are
preformed. A tooltip is a textbox that is displayed when the mouse-pointer is
placed  over  a  component  for  a  certain  period  of  time.  The  clustering
application is implemented with tooltips that provide a short description of the
components of the interface, but these tooltips should be implemented with
more elaborate descriptions and help. 

The  BioTeach  system  is  not  a  complete  learning  environment  for
bioinformatics, and it could be developed further if it proves to be a useful
educational  tool.  The  system  could,  for  instance,  be  implemented  with
clustering exercises that explicitly test the understanding of the implemented
clustering algorithms.  A hierarchical clustering exercise, for instance, could
present a dataset accompanied by a dendrogram in which the numbers of the 
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genes are  replaced by text  fields.  The exercise would then be to enter  the
number of the genes into the correct text fields. Another extension could be to
include  descriptions  of  the  mathematical  and  biological  foundation  upon
which the implemented algorithms are based to enable others than those who
are familiar with the implemented algorithms to use the system. The exercises
discussed in chapter 6 could also be interesting to implement
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Appendix A 

Downloading, installing and

configuring the BioTeach-system

This  appendix  is  concerned  with  the  installation  and  configuration  of  the
BioTeach-system.  The  appendix  also  provides  instructions  as  to  how  and
where the source code of the system can be downloaded.

The BioTeach-system is installed and configured in the following steps:

1. Download the archives portal_and_clustering.zip and needle.war from
http://www.ifi.uio.no/bioinf/Prosjekter/BioTeach (this page can also be
accessed through the downloads-link in the visualisation menu of the
system. 

2. Unpack the archive portal_and_clustering.zip on a web-server, or in a
directory  that  is  accessible  through  the  web.  The  portal  and  the
clustering applet  should now be accessible through the web. If not,
check directory and file permissions.

3. deploy the needle.war-archive on a servlet-container such as Tomcat

4. enter  the  BioTeach-directory  created  when  the  archive
portal_and_clustering.zip was unpacked
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5. open the file menu.html in a text-editor

6. change the href-attribute of the link to the alignment-application to:
<path to servlet container>/needle

7. locate and enter the needle-directory on the servlet container (should
be created when the needle.war-archive is deployed)

8. open the file web.xml located in the WEB-INF-subdirectory in a text
editor

9. change  the  value  of  the  init-parameter  matrixpath  to
<path_to_needle_directory_on_servlet_container>/matrices
There are two instances of this  init-parameter,  and both have to be
changed.

The  alignment  application  has  only  been  tested  with  the  Tomcat  servlet
container, and additional steps may therefore be needed in order to install the
alignment application on a different servlet container.

It is also possible to download the bio.jar library (see appendix B) from the
downloads-page. This library is embedded in the needle.war-archive, and it is
not necessary to download bio.jar to install the BioTeach-system. The library
is intended for visitors who might be interested in using the library in their
own projects.

The downloads-page also provides a link that downloads the source code. The
source code is packaged in a zip-archive that produces the following directory
tree when unpacked:

|-<alignment>
|-<demo>

|-<control>
|-<model>
|-<view>

|
|-<exercise>

|-<control>
|-<model>
|-<view>

|-<bio>
|-<clustering>
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The  alignment-directory  of  the  archive  contains  the  source  code  for  the
Needleman-Wunsch  visualisation  application  and  the  Needleman-Wunsch
exercise;  the  demo-  subdirectory  contains  the  source  code  for  the
visualisiation, while the exercise-subdirectory contains the source code for the
exercise.  The  visualisation  application  and  the  exercise  application  are
implemented according to the JSP Model 2-architecture (see appendix B), and
the subdirectories are therefore further divided into three subdirectories each.
The control-subdirectory contains the source code for the control layer of the
applications, the model-subdirectory contains the source code for the model-
layer, and the view-subdirectory contains the source code for the view-layer.

The bio-directory of the archive contains the source code for the bio.jar library
(see appendix B), and the clustering-directory contains the source code for the
clustering applet.
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Appendix B 

Technical Solution of the BioTeach-

system

This appendix serves as an introduction to the technology that is used in the
implementation  of  the  BioTeach-system,  and a  description  of  the  program
flow of the system.

B.1 Applied technology

There are various technologies that could be used to implement the BioTeach
system. This section provides a short introduction to the technology that is
used in the implementation of the BioTeach-system.

B.1.1 Java Applets

Java Applets (Lewis & Loftus, 1998) are Java applications that are designed to
be embedded and accessed through web-pages. Applets can be implemented
with the same functionality as standard java applications, and are well suited 
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for designing web-applications that uses graphical interfaces or components to
interact with the users (e.g. the clustering application of the BioTeach-system).
An applet must extend either the JApplet-class or the Applet-class in order to
be  run  in  a  web-browser  (or  other  environment  designed  to  run  applets).
Applets are embedded in web pages by including the tag

<APPLET code=”name_of_class_that_extends_JApplet.class”
codebase=”path_to_java_class_files” width=”x” height=”y”>

The code attribute in the tag is mandatory, and must contain the name of the
class that extends the JApplet (or Applet) class. The codebase attribute is only
necessary if the class-files that compose the applet are located in a different
directory than the web-page in which the applet-tag is included. The width and
height attributes sets the width and height of the applet. 

B.1.2 The JSP Model 2 architecture

The JSP Model 2 architecture (Callaway, 2001) is another approach to web-
application  design.  The  alignment  application  of  the  BioTeach  system  is
designed around this architecture. The JSP Model 2 architecture divides an
application into three layers: the control layer, the model layer, and the view
layer. The control layer handles all interaction with the users, the model layer
acts as an intermediary between the control layer and the data source, while
the view layer generates the presentations of the data. The purpose of dividing
an  application  into  these  layers  is  to  separate  business-logic  (e.g.  data
processing) from application-logic (e.g. request processing), and to separate
business  and  application  logic  from  presentation  logic  (e.g.  web  pages).
Applications  that  implement  this  architecture  are  said  to  be  server-side
applications because the application is executed on a server. Applets are said
to be client-side applications because they are executed on the computer that
opens  the  page  in  which  the  applet  is  embedded.  Java-based  server-side
applications require a container, or server, such as Tomcat to function. 

The communication between the users and a server-side application is handled
by the http-protocol  (Sandnes,  2002).  The http-protocol  is  request/response
based, that is, the actions of the users create an http-request that is sent to the
web-server, and the server generates an http-response that is returned to the
users. The requests that are generated can be of different types. Opening a link
in  a  web  page,  for  instance,  generates  a  GET-request.  The  alignment
application uses the GET-request in links, and the POST-request in forms.
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In the JSP Model 2 architecture all requests are processed by the control layer.
The  control  layer  of  the  alignment  application  of  the  BioTeach-system is
represented by an http-servlet. In short, an http-servlet is a class of Java-based
applications  that  are  designed  to  receive  and  process  http-requests,  and
generate http-responses (please refer to Callaway, 2001, and Sandnes, 2002,
for a thorough discussion of servlets). An application that is to be used as an
http-servlet  must  contain  a  class  that  extends  the  class
javax.servlet.HttpServlet. The HttpServlet-class receives the http-requests as
objects, and handles the different requests with different methods. The GET-
request,  for instance,  triggers the doGet-method  of an http-servlet,  while  a
POST-request triggers the doPost-method. An http-servlet must, however, be
given a logical name and mapped to an URL in order to be able to process any
form  of  http-requests.  The  Tomcat  server  uses  an  xml-file,  web.xml,  to
accomplish this. The following xml-code gives the ControlServlet-class of the
Needleman-Wunsch alignment visulisation a name and maps it to respond to a
certain set of URLs:

<servlet>
      <servlet-name>demoCtrl</servlet-name>

<servlet-class> demo.control.ControlServlet
</servlet-class>

      <init-param>
        <param-name>matrixpath</param-name>

  <param-value>
C:\Programfiler\Apache Software Foundation\
Tomcat 5.0\webapps\needle\matrices

</param-value> 
      </init-param>
</servlet>
<servlet-mapping>
     <servlet-name>demoCtrl</servlet-name>
     <url-pattern>*.demo</url-pattern>
</servlet-mapping>

The  servlet-name-tag  at  the  top  contains  the  name  of  the  servlet  (e.g.
demoCtrl),  while  the  servlet-class-tag  contains  the  servlet-class  (e.g.
demo.control.ControlServlet)  that  is  associated with the name.  The servlet-
mapping-tag maps the servlet associated with the servlet-name to respond to
all requests for URLs with the postfix .demo (e.g. start.demo, end.demo, etc). 

The web.xml  file  can  also be  used  to  define  init-parameters  for  a  servlet.
Servlets can easily access init-parameters given in the web.xml file through
the  method  getInitParameter,  and  init-parameters  are  an  easy  way  of
configuring a servlet.

105



Appendix B Technical Solution of the BioTeach-system

The model-layer in the JSP Model 2 architecture is concerned with retrieving
and processing information from the data  source  (the bio.jar  library in the
alignment application). The model-layer is composed of JavaBeans (Callaway,
2001; Sandnes 2002), which are Java-classes that retrieve information from
the data source, and format the retrieved information so the information can be
used by the view-layer. JavaBeans can be embedded in web pages, and the
information  stored  in  a  JavaBean  can  be  accessed  from  a  web  page  by
including certain directives in the web page. JavaBeans cannot, however, be
used to create complex presentations in which the length of the document is
unknown, or that require the data stored in the JavaBeans to be iterated over. 

The score matrix of the Needleman-Wunsch alignment visualisation and the
exercise is defined by the users, and it is therefore impossible to know the
dimensions of the score matrix on beforehand. Thus, the presentation of the
Needleman-Wunsch  visualisation  and  exercise  cannot  be  created  by
embedding  JavaBeans  in  the  web  pages  that  contains  these  presentations.
JavaBeans are, however, still used in the model-layer to retrieve and format
information  from  the  bio.jar  library,  but  the  retrieved  and  formatted
information is returned to the control-layer instead of being accessed directly
from the web pages of the view-layer.

The  problem  with  creating  the  score  matrix  of  the  Needleman-Wunsch
algorithm  is  solved  by using  custom  tags.  Custom  tags  (Callaway,  2001;
Sandnes, 2002) are a powerful tool for creating dynamic web pages because
the tags can be designed to produce any kind of HTML-code. A custom tag is
essentially a Java-class that is given a logical name, which is used to execute
the contents of the Java-class in a web-page. The Java-class that implements a
custom tag is commonly referred to as a tag-handler class. A tag-handler class
has  to  extend  either  the  javax.servlet.jsp.tagext.TagSupport-class  or  the
javax.servlet.jsp.tagext.BodyTagSupport-class.  The  custom  tags  that  are
implemented in the alignment application do not have a body (i.e. there is no
HTML or other code between the opening tag and the closing tag), and the
tag-handler-classes therefore extends the former class. The custom tags of the
alignment application produces the HTML-code for the configuration form,
the visualisation interface, the exercise interface, and the correct score matrix
of the exercise. The tag-handler-classes for these tags and the web pages that
include these tags make up the view-layer of the alignment application. 

The tag-handler classes are made available as custom tags by mapping the
classes to a logical name in a tag-library-descriptor, or tld-file. The tag-handler
class for the custom tag that produces the configuration form is mapped to a
logical name by including the following code in a tag-library-descriptor:
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<tag>
<name>NWForm</name>
<tag-class>demo.view.FormTag</tag-class>
<body-content>empty</body-content>
<attribute>
<name>action</name>
<required>true</required>

</attribute>
  </tag>

In  this  code  segment  maps  the  class  demo.view.FormTag  to  the  name
NWForm.  The  attribute-tag  implies  that  the  NWForm-tag  accepts  one
attribute, the action-attribute, and that the attribute is mandatory, otherwise the
tag will not work. The demo.view.FormTag-class must therefore implement a
method named setAction in order for the given attribute to be made available
in  the  tag-handler  class.  Other  attributes  can  be  implemented  by  adding
additional  attribute  tags,  and by implementing methods  in  the  tag-handler-
classes named setNameOfAttribute (e.g. setAge if the name of the attribute is
age).

Custom tags are included in a web-page by including the directive

<%@ taglib uri="path_to_tag_library_descriptor” prefix="pre-
fix_of_own_choice" %>

at the top of the web page. A custom tag without body or attributes is included
by including the following directive where the HTML-code generated by the
custom tag is to be inserted:

<prefix_of_own_choice:tag_name />

Web-pages that include embedded JavaBeans, custom tags, or any other form
of Java-technology (e.g. scriptlets) are commonly referred to as Java Server
Pages or JSP-documents.

B.1.3 The bio.jar library

The  bio.jar  library is  the  data  source  of  the  alignment  application  of  the
BioTeach-system,  and  contains  the  Java-classes  that  implement  the
Needleman-Wunsch alignment algorithm. This section discusses the general
steps  that  are  involved  when  using the  bio.jar  library to  conduct  a  global
pairwise sequence alignment,  the data structures that are used to represent the
score matrix of an alignment, the optimal alignment (or alignments) of a pair 
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of sequences, and the optimal path through a score matrix. How these data
structures are retrieved is also discussed. Readers are advised to consult the
source  code  for  the  exact  implementation  of  the  Needleman-Wunsch
alignment  algorithm.  Please  refer  to  appendix  A  for  instructions  on
downloading the source code.

The classes that implement the Needleman-Wunsch alignment algorithm are:

− the Needleman-class

− the Element-class

− the SubstMatrix-class

The Needleman-class implements the algorithm, the Element-class represents
a cell in a score matrix, and the SubstMatrix-class represents a substitution
matrix.

A global pairwise sequence alignment starts  by creating an instance of the
Needleman-class,  and running the init-method of the Needleman-class.  The
init-method  creates  an  instance  of  the  SubstMatrix-class,  which  the
Needleman-class uses to retrieve the scores of aligning a residue pair from the
substitution matrix that is used in the alignment. The init-method then runs the
setWeight-method of the Needleman-class, which computes the score matrix
of the alignment, and the align-method of the Needleman-class, which finds
the optimal alignment (or alignment) of the pair of sequences.

The  score  matrix  of  an  alignment  is  represented  by  a  two-dimensional
Element array of (n+1) columns and (m+1) rows, n being the length of the first
sequence and m being the length of the second sequence. Each Element-object
in the array represents a cell in the score matrix, and contains the score and the
pointers of a cell. The optimal path through a score matrix is represented by a
two-dimensional  boolean  array  of  (n+1)  columns  and  (m+1)  rows.  Each
boolean value given in this array either states that the Element object given in
the corresponding row and column of the Element  array is included in the
optimal path (i.e. the boolean value is true), or that the Element-object is not
included in  the  optimal  path  (i.e.  the  boolean value is  false).  The  optimal
alignment  (or  alignments)  of  a  pair  of  sequences  is  stored  in  a  two-
dimensional String array of x columns and 2 rows. Each String-object in this
array represents a sequence, and each column represents an optimal alignment
of a sequence pair.

The  score  matrix  is  retrieved  from  the  Needleman-class  by  calling  the
getWeightMatrix-method, the optimal path is retrieved by calling the getPath-

108



Appendix B Technical Solution of the BioTeach-system

method, the optimal score of an alignment is retrieved by calling the getScore-
method, and the optimal alignment (or alignments) is retrieved by calling the
getAlignment-method.

B.1.4 Graham’s Scan

Graham’s scan (Lazlo, 1996) is a linear programming algorithm that is used to
find the convex hull of a set of points. This algorithm is implemented in the
CoordinateArea-class of the clustering algorithm to find the convex hull of
clustered points. The algorithm starts by selecting an extreme point, p0, e.g.
the point with the highest x-coordinate and the lowest y coordinate. The
remaining points are then sorted around p0. A hypothetical line is then drawn
between p0 and the next point in the sorted point collection, p1. The position
of the third point in the sorted point collection is then compared to the line
between p0 and p1. If p2 is to the left of the line, p2 may be in the convex hull,
and is stored. The hypothetical line between p0 and p1 is then replaced by a
hypothetical line between p1 and p2. If p2 is to the right of the line, p1 is not in
the convex hull. p1 is discarded while p2 is stored. The hypothetical line
between p0 and p1 is then replaced by a line between p0 and p2.

The  next  step  is  to  compare  the  position  of  the  fourth  point,  p3,  to  the
hypothetical line between the two previously stored points (i.e. p1 and p2, or  p0

and p2) If p3 is to the left of the hypothetical line, p3 may be in the convex
hull,  and  is  stored.  The  previous  hypothetical  line  is  then  replaced  by  a
hypothetical line between the previously stored point and p3. If p3 is to the
right of the hypothetical line, the point stored in the previous step is not in the
convex hull,  and is  discarded.  The position of  p3 is  then  compared to  the
hypothetical line between the two points that was stored prior to the previous
point. If p3 is to the left of this line, p3 may be in the convex hull, and is stored.
Otherwise, the last point to be stored prior to the point that was removed is not
in the convex hull, and is discarded.  The algorithm continues the process of
finding the points that compose the convex hull of the set of point by

1. draw a hypothetical line between the two points that was last stored

2. retrieve the next point from the sorted set of points (hence referred to as the
current point)
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3. compare the position of the current point with the hypothetical line and

1. if the current point is to the left of the line: store the the current point
and go to step 1

2. if the current point is to the right: remove the point that was last stored,
and draw a hypothetical line between the point that now is the lastly
stored point and the point that was stored prior to the new lastly saved
point. Got step 3.

Repeat this cycle until the last point in the sorted set is reached.

B.2 Application organisation and program flow

This section describes the organisation of the portal and the applications of the
BioTeach system and the program flow of the applications, and is intended as
a supplement to the source code. Readers are advised to consult the source
code for the exact implementation of the system. Please refer to appendix A
for instructions on downloading the source code. 

The BioTeach system is divided in three separate modules/applications:

− the portal

− the alignment application

− the clustering application

B.2.1 The portal

The portal  is  the top level  presentation layer created to provide a uniform
interface to the two applications. The two applications are, as described in the
walkthrough, presented in the center frame without changing the menu or the
header, thus creating the desired uniform look. The portal is designed with
HTML-framesets, HTML-pages, and cascading style sheets. The directory tree
of the portal is organized in the following manner:
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 <path to portal>
|

    |-HTML-documents
|
|-<gfx>

|-images and graphics
|
|-<css>

|-Cascading style sheets

B.2.1.1 Index.html

Index.html  is  the main page of the application and contains  the framesets.
Framesets are used to create a grid of frames which then is used to position the
various  HTML-documents  on  the  screen.  This  file  contains  framesets  that
divide the screen into 5 frames (See fig. B.1 for layout):

- top; the header-frame

- bottom; the frame used for contact information 

- menu; the menu frame.

- main; the presentation frame

- help; the help menu frame

TOP

MENU MAIN HELP

BOTTOM

Fig. B1: The layout of the frames of index.html
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B.2.1.2 top.html

Top.html is located in the top frame and contains the logo. The logo is placed
within a HTML-table to center it on the screen.

B.2.1.3 menu.html

Menu.html is located in the menu frame and contains the menu. The menu
consists of ordinary HTML-links which opens the applications in the centre
frame. The HTML-links are placed within two HTML-tables, an outer table
for centring and an inner table  for vertical  alignment,  to  create  an orderly
menu. To ensure that the modules are presented in the main frame, the target
parameter of each link is set to the main frame. The menu also contains a link
to the download page of the BioTeach system.

B.2.1.4 help.html

help.html is located in the help frame and contains the help menu. The help
menu is composed of ordinary HTML-links that opens the help documents in
a separate browser window so as not to interrupt with the running of any of the
applications. The target parameters of these links are set to _new in order to
ensure that the links opens in a separate browser window.

B.2.1.5 Bottom.html

Bottom.html is located in the bottom frame, and contains contact information.

B.2.1.6 Main.css

Main.css is a cascading style sheet that controls the appearance of both the
framework and the clustering application. Main.css was originally intended to
be included in the alignment  application as well,  but  it  proved difficult  to
include this style sheet in the alignment application. Instead, an identical style
sheet is included in the alignment application. 

Cascading style sheets are very powerful, as they make it possible to centralise
all settings concerning the appearance of a site or application, and changes in a
style sheet  appear immediately in  the documents that  are linked to a  style
sheet.  Style  sheets  has  the  ability to  format  standard  HTML-tags,  e.g.  the
body-tag, as well as creating own classes of formatting with the notation 
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SPAN.<class-name>{<settings>}

Main.css sets the following:

- the background colour to ivory by formatting the body tag

- the appearance of the text of the <H1>-tag

- the background colour of the <TH>-tag (table header)

and creates the following classes:

- optimal; used to mark the optimal path through the score matrix of
the alignment

- normal; used on normal text

- max; used to mark the calculation(s) which yields the max score

- error; used on error message text

B.2.2 The Alignment application

The  alignment  application  is  composed  of  two  separate  applications:  the
visualisation application and the exercise application. Both the visualisation
application and the exercise application are implemented according to the JSP
Model 2 architecture.
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The alignment application is packaged as a web archive, or war-file, that is
organised as follows:

<path to alignment application>
|- HTML and JSP documents
|-<css>

|- cascading style sheet
|-<gfx>

|- images and graphics
|-<matrices>

|- substitution matrix files
|-<META-INF>

|- MANIFEST.MF (generated by Tomcat)
|-<WEB-INF>

|- web.xml
|
|-<classes>

|- the demo and the exercise package directory tree
|-<lib>

|- bio.jar
|-<tld>

|-<demo>
|- alignlib.tld

|-<exercise>
|-exercise.tld

All HTML and JSP documents are linked to the style sheet found in the css
directory. It was,  as explained in  the previous section,  difficult  to  link the
HTML and JSP documents in this application to the style sheet used in the
portal, so an identical style sheet had to be created for this application.

Selecting  the  alignment  application  from  the  portal  menu  opens  the  page
index.html. This document provides a short introduction to the application and
links to the alignment visualisation and the alignment exercise.

Selecting the  visualisation  application  from the  index.html  page opens  the
page  demoIndex.html.  This  page  contains  a  short  introduction  to  the
visualisation and provides links to the simple and the advanced visualisation.
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B.2.2.1 Starting a simple visualisation

Selecting the simple visualisation opens the page simpleDemo.html. This page
describes the parameters that are used in the simple visualisation, and provides
a button that starts the simple visualisation (the simple visualisation presents
the alignment of the sequences RWA and LSP using a gap penalty of -5 and
the Blosum62 substitution matrix). The start-button is named “demo” and is
embedded in a form that sends a POST-request to the page startSimple.demo.
startSimple.demo and all other pages with the postfix .demo is a mapping to
the  control  layer  of  the  visualisation  application  represented  by  the  class
ControlServlet in the package demo.control (see web.xml  in the WEB-INF
directory  for  all  servlet  mappings  in  the  alignment  application).  Hence,
pressing the start-button of the simple visualisation creates an instance of the
ControlServlet  and  sends  a  POST-request  to  the  instance  of  the
ControlServlet. Creating an instance of the ControlServlet also initialises the
instance.  Initialisation of the instance is  handled by the init-method of  the
ControlServlet-class. This method reads the init-parameter “matrixpath” found
in the web.xml file. This parameter contains the path to the substitution matrix
files that are implemented in the visualisation.

Once  the  initialisation  process  is  completed,  the  visualisation  application
proceeds  to  process  the  POST-request  generated by the  start-button  of  the
simple visualisation. The ControlServlet handles all POST-requests generated
by the  visualisation  application  with  the  doPost-method,  and  the  doPost-
method uses the name of the button that generated the request to handle the
different POST-requests. The start-button of the simple visualisation is named
“demo”  and  this  button  triggers  the  setAttributes-method  of  the
ControlServlet. This method first sets the parameters of the alignment, and
then  checks  if  the  parameters  are  valid.  The  parameters  of  the  simple
visualisation are hard-coded in the application, and are therefore always valid.
The  method  then  creates  an  instance  of  the  NeedleBean-class.  The
NeedleBean-class is one of the two classes that are situated in the model-layer
of  the  application  (i.e.  contained  in  the  demo.model  package).  The
NeedleBean-class acts as an intermediary between the ControlServlet and the
bio.jar library. The purpose of using an intermediary instead of implementing
the Needleman-Wunsch algorithm directly into the visualisation application is
to separate the implementation of the algorithm from the visualisation of the
algorithm. It is therefore possible to use the implementation of the algorithm
in other applications by importing the classes of the bio.jar library. Creating an
instance of the NeedleBean-class also creates an instance of the Needleman
class in the bio.jar library. The Needleman-class is responsible for conducting
the alignment of a pair of sequences.
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Once the instance of the NeedleBean class is created, the setAttributes-method
of the ControlServlet calls the init-method of the NeedleBean-class, which in
turn  conducts  the  alignment  of  the  pair  of  sequences  by running the  init-
method of the Needleman-class. The init-method of the NeedleBean-class then
retrieves and stores the score matrix computed by the Needleman-class. The
ControlServlet then calls the method getMatrix in the NeedleBean-class. This
method retrieves the direction matrix from the Needleman-class and converts
both  the  score  matrix  and  the  direction  matrix  from primitive  integer  and
boolean matrices into matrices of Integer and Boolean objects. The converted
matrices are stored in an instance of the Matrix-class along with the length of
each of the two aligned sequences. The Matrix-class is the second of the two
classes that are situated in the model  layer (i.e.  located in the demo.model
package). This class is designed to store all necessary information about an
alignment  of a  pair  of sequences.  The instance of the Matrix-class  is  then
returned to the ControlServlet.

The ControlServlet then creates an instance of the HttpSession-class. Instances
of this class are used to store and pass information between the control-layer
and the view-layer. The information stored in the HttpSession is:

- the pair of sequences represented by the strings s1 and s2

- the gap penalty

- the path to the matrices

- the name of the substitution matrix used in the alignment

- the score matrix of the alignment

- the direction matrix of the alignment

- the optimal alignments retrieved from the Needleman-class through
the getAlignments-method of the NeedleBean-class

- the  optimal  path  through  the  score  matrix  retrieved  from  the
Needleman-class  through  the  getOptimalPath-method  of  the
NeedleBean-classthe score of aligning two residues represented by
the Integer-object weight. When a visualisation is started, there are
no residues that have been aligned, so the weight is set to zero
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The  HttpSession  is  also  used  to  store  information  about  the  state  of  the
application:

- the coordinates of the score matrix cell whose score and directions
are to be visualised represented by the Integer-objects x and y. At
the start of a visualisation these objects are set to zero

- the Boolean object xinit and yinit are used to determine whether or
not the first row and the first column are being initialised. At the
start of a visualisation xinit is set to true, while yinit is set to false

- the Boolean object finished is used to determine whether or not the
score matrix is completed. Set to false at the start of a visualisation

- the Boolean object simple is used to determine whether or not the
current visualisation is a simple visualisation. Set to true when the
visualisation is simple

Once all necessary information is stored in the HttpSession, the setAttributes-
method of the ControlServlet returns the path to the next page to be displayed
by  the  view-layer:  the  page  align.jsp.  The  doPost-method  of  the
ControlServlet then redirects the application to the align.jsp page, which starts
the visualisation.

B.2.2.2 Starting an advanced visualisation

Selecting the advanced visualisation from the demoIndex.html page sends a
GET-request to the ControlServlet of the visualisation application as the link
points to the page advanced.demo. Thus, using this link creates and initialises
an instance of the ControlServlet-class. The initialisation process is identical
to the process described in the previous section. The ControlServlet handles
all  GET-requests  with  the  doGet-method.  The  doGet-method  calls  the
setMatrices-method,  which  reads  all  available  substitution  matrices  into  a
Properties-object.  The  available  matrices  are  read  from  the  file
matrix.properties  in  the  matrices-directory.  The  matrix.properties  lists  the
available substitution matrices on the form:

Matrix1 = name_of_matrix_1
Matrix2 = name_of_matrix_2

.

.

.
MatrixN = name_of _matrix_N
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The names of the matrices have to correspond with the names of the matrix-
files (e.g. Blosum62.txt) without the .txt extention. This list of matrices is
used to populate the list of available substitution matrices in the configuration
form of the advanced visualisation.

Once the matrix-names have been read, the ControlServlet creates an instance
of the HttpSession-class, and stores the Properties-object in the HttpSession
and  returns  to  the  doGet-method.  The  doGet-method  then  redirects  the
application to the page advDemo.jsp.

The page advDemo.jsp is  linked to the tag library alignlib.tld  found in the
demo-directory of the tld-directory. The tag library alignlib.tld contains the
mappings between the custom tags and the tag-handler classes. A link between
a jsp-page and a tag library is created by including the directive

<%@ taglib uri="path_to_tag_library” prefix="pfx" %>

at  the  top  of  the  page.  For  advDemo.jsp  the  uri  attribute  is  “/WEB-
INF/taglib/demo/alignlib.tld”, and the used prefix is “demo”. By including a
directive with these attributes, all tags given in the tag library aligntag.tld can
be included in advDemo.jsp by including the directive

<demo:tag_name attributes />

One of the two tags that are included in alignlib.tld is the tag NWForm, which
is mapped to the class FormTag in the view-layer (i.e. the class is found in the
demo.view  package).  The  FormTag-class  prints  the  HTML-code  for  the
configuration form of the advanced visualisation to the jsp-page the tag is
included in.  The NWForm-tag requires a  target-attribute to  be provided in
order to function properly. The target attribute must contain a mapping to the
ControlServlet (i.e. a filename with a .demo postfix) in order for the advanced
visualisation to function properly. The directive used to include the NWForm-
tag in the advDemo.jsp page is:

<demo:NWForm action=”startAdvanced.demo”/>

Thus, selecting the advanced visualisation from the demoIndex.html page

1) creates an instance of the ControlServlet

2) reads the path to the substitution matrices

3) reads the list of available substitution matrices and stores the list in a
Properties-object, which is stored in a HttpSession
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4) redirects the application to the page advDemo.jsp

5) creates an instance of the FormTag-class, which prints the HTML-code
for the configuration form of the advanced visualisation

Creating an instance of the FormTag-class stores the action-attribute given in
the  directive and runs  the  doStartTag-method.  This  method  prints  the  text
fields  and  the  start-button  to  the  advDemo.jsp  page.  The  list  of  available
substitution matrices is also populated by retrieving the Properties-object from
the  HttpSession,  and  reading  the  matrices  from the  Properties-object.  The
advDemo.jsp  page  also  includes  directions  as  to  how  an  advanced
visualisation is configured.

Pressing  the  start-button  sends  a  POST-request  to  the  ControlServlet.  The
ControlServlet  handles  this  request  as  it  handles  the  POST-request  of  the
simple visualisation with one exception: the parameters to the algorithm (i.e.
the sequences, gap penalty, and substitution matrix) are not hard-coded. These
parameters are supplied by the users through the configuration form, and have
to  be  retrieved  from  the  POST-request.  The  setAttributes-method  of  the
ControlServlet handles the retrieval of the parameters, before an instance of
the NeedleBean-class is created and the alignment is conducted (see previous
section).

Once  the  necessary  information  has  been  stored  in  the  HttpSession,  the
ControlServlet  redirects the application to the align.jsp page that  starts  the
visualisation

B.2.2.3 The visualisation

The visualisation starts once the page align.jsp is opened. This page is linked
to  the tag library alignlib.tld  using the same directive as  the  advDemo.jsp
page. Align.jsp incudes, apart from a header and information about how to
view the selected substitution matrix, the tag Align. This tag is mapped to the
class AlignTag in the view-layer (i.e. included in the package demo.view), and
requires the attribute action to be set. The directive used to include this tag in
align.jsp is

<demo:Align action=”show.demo”/>

This tag prints the score matrix of an alignment as well as the computation
table  (or  the  optimal  alignments)  and  the  set  of  buttons  that  controls  the
visualisation. 
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Thus, once align.jsp opens, an instance of the AlignTag-class is created, and
the visualisation interface is printed to the align.jsp page. The printing of the
interface starts with the doStartTag-method in the AlignTag-class, which is
called as the instance of the AlignTag-class is created. This method calls the
getAttributes-method,  which  retrieves  all  attributes  from  the  HttpSession-
object. The printing of the interface to align.jsp is then started by calling the
visualise-method. The visualise-method is the first of many methods that are
involved in the printing of the interface. The methods involved in the printing
process eventually decomposes the printing of the interface into the printing of
the cells  of the score matrix,  the printing of the computation table (or the
optimal alignments), the printing of the link to the substitution matrix, and the
printing of the control-buttons. The printing of the interface starts with the
printing  of  the  one-celled  outer  table  that  is  used  to  centre  the  other
components. The score matrix and the other components of the interface are
printed in steps starting with the score matrix. The first step is to format the
table that represents the score matrix followed by the printing of the header
row. The score  and  the  pointers  of  remaining cells  of  the  score matrix  is
printed,  row by row and cell  by cell,  until  the current cell,  cell  F(x,  y), is
reached. The computation table for the current cell is then printed, followed by
the link to the chosen substitution matrix and the control-buttons. 

Pressing any of these buttons sends a POST-request to the doPost-method of
the ControlServlet:

- the  next-button  updates  the  state-information  stored  in  the
HttpSession  to  enable  the  AlignTag-class  to  display  the  score,
pointers, and computations of the next cell

- the  previous-button  updates  the  state-information  stored  in  the
HttpSession  to  enable  the  AlignTag-class  to  display  the  score,
pointers, and computations of the previous cell

- the  finish-button  updates  the  state-information  to  enable  the
AlignTag-class  to  display  the  completed  score  matrix  and  the
optimal alignments

- the  new alignment-button  resets  the  HttpSession  to  remove any
stored  information,  and  calls  the  doGet-method  to  redirect  the
application to the advDemo.jsp page

- the  main  page-button  resets  the  HttpSession  and  redirects  the
application to index.html
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B.2.2.4 Running an exercise

Selecting the  exercise  application  from the  page index.html  sends  a  GET-
request to the page start.exercise. The page start.exercise and all other pages
with  the  postfix  .exercise  are  mapped  to  the  control-layer  of  the  exercise
application  represented  by  the  ControlServlet  class  in  the  package
exercise.control (see web.xml). Thus, using the link to the exercise application
creates  an  instance  of  the  ControlServlet  of  the  exercise  application,  and
initialises the instance. The initialisation of the ControlServlet is identical to
the initialisation process of the ControlServlet of the visualisation application,
that is, the path to the directory that contains the substitution matrix files is
read from web.xml. The doGet-method in the ControlServlet-class handles all
GET-requests and is identical to the doGet-method of the ControlServlet of
the visualisation application. Thus, the GET-request sent to the ControlServlet
triggers  the  doGet-method,  which  reads  the  available  substitution  matrices
from the matrix.properties file in the matrices directory and stores them in a
Propery-object.  The Property-object  is  in  turn  stored  in an instance  of  the
HttpSession-class. The doGet-method then redirects the exercise application
to the page exercise.jsp.

The  page  exercise.jsp  is  linked  to  the  same  tag-library  as  the  page
advDemo.jsp using the directive

<%@ taglib uri="/WEB-INF/tld/demo/alignlib.tld"
 prefix="print" %>

Exercise.jsp includes the same description included in the advDemo.jsp page
as well as the same configuration form. The configuration form is included
with the directive

<print:NWForm action="start.excercise"/>

The NWForm tag is, as in the visualisation application, handled by the class
FormTag found in the view-layer of the visualisation application. The only
difference between the configuration form produced by the FormTag-class in
the  exercise  application  and  the  visualisation  application  is  the  action
triggered by the start-button. The start-button of the exercise application sends
a  POST-request  to  the  page  start.exercise  (i.e.  the  ControlServlet  of  the
exercise application),  while  the start-button  of the  visualisation  application
sends a POST-request to the page startAdvanced.demo. Thus, using the link to
the exercise application
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1) creates  an  instance  of  the  ControlServlet-class  in  the  package
exercise.control

2) reads the path to the substitution matrices from web.xml

3) reads  the  list  of  available  substitution  matrices  from  the
matrix.properties file,  stores the list  in a Properties-object,  which is
stored in a HttpSession

4) redirects  the  exercise  application  to  the  exercise.jsp  page,  which
creates an instance of the FormTag-class that prints the configuration
form to the page.

Pressing the start-button created by the FormTag-class sends a POST-request
to  the  ControlServlet.  The  ControlServlet  handles  POST-requests  with  the
doPost-method.  The doPost-method of the exercise application uses, as the
doPost-method  of  visualisation  application,  the  names  of  the  buttons  that
triggered the requests to handle a POST-request correctly. The start-button of
the exercise (named “init”) triggers the method setAttributes. This method is
similar (but not identical) to the setAttributes-method of the ControlServlet in
the visualisation application. The two differences between the two methods
are 

1) the  setAttributes-method  of  the  ControlServlet  in  the  exercise
application does not contain any hard-coded parameter

2) the  setAttributes-method  of  the  ControlServlet  in  the  exercise
application returns a different page (i.e. computeTable.jsp) to which
the exercise application is redirected.

Thus,  pressing  the  start-button  produced  by  the  FormTag  in  the  exercise
application conducts a pairwise sequence alignment as described in the section
concerning the visualisation (section B.3.2.3), that is, it uses an instance of the
NeedleBean-class in the demo.model-package to conduct the alignment, stores
the necessary information in an HttpSession. The exercise application is then
redirected to the page computeTable.jsp.

The page computeTable.jsp is linked to the tag-library exercise.tld found in
the exercise-subdirectory of the tld-directory. This tag-library is included in
computeTable.jsp with the directive
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<%@ taglib uri="/WEB-INF/tld/excercise/excercise.tld"
prefix="ex" %>

In  addition  to  the  description  of  how  to  perform  an  exercise,  the  page
computeTable.jsp includes an instance of the class ExerciseTag found in the
view-layer  of  the  exercise  application  (i.e.  located  in  the  package
exercise.view) with the directive

<ex:Init action="inputTable.excercise" />

The ExerciseTag-class prints a score matrix based on the parameters entered
in the configuration form to the page in which the ExerciseTag instance is
included, a link to the selected substitution matrix, and a set of buttons that
controls  the  exercise.  Each  cell  in  the  score  matrix  printed  by  this  class
contains a text field in which the score is to be entered, and three check boxes
that represent the possible pointers.   Pressing either of the buttons sends a
POST-request to the ControlServlet of the exercise application:

– the  submit  button  triggers  the  compare-method  of  the
ControlServlet

– the new-button resets the HttpSession, and redirects the application
to the page exercise.jsp

– the  main  page-button  resets  the  HttpSession,  and  redirects  the
application to the page index.html

The compare-method creates an instance of the Corrector-class located in the
model-layer of the exercise application (i.e. the class is located in the package
exercise.model).  The  compare-method  retrieves  the  scores  and  directions
entered into  the score matrix  by the users,  and compares  these scores and
directions to the scores and directions of the correct score matrix. 

If the score matrix supplemented by the users match the correct score matrix,
the  method  redirects  the  exercise  application  to  the  page  correctTable.jsp.
correctTable.jsp  is  linked  to  the  tag-library  exercise.tld  using  the  same
directive as is used in the page computeTable.jsp, and includes an instance of
the CorrectMatrixTag-class by including the directive

<ex:showCorrect action="correct.excercise" />

The CorrectMatrixTag-class prints the correct score matrix with the optimal
path marked with red, and the optimal alignments. The class also prints two
buttons to the page the instance is included in:
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- the New exercise-button resets the HttpSession, and redirects the
exercise application to the page exercise.jsp

- the  Main  page-button  resets  the  HttpSesssion,  and  redirects  the
exercise application to the page index.html

If the submitted score matrix is incorrect, the compare-method creates an error
message  that  describes  where  in  the  score  matrix  the  incorrect  score  or
direction occurs. If a score and a direction is incorrect, two error messages is
created,  the  first  describes  where  in  the  score  matrix  the  incorrect  score
occurs, and the second error message describes where in the score matrix the
incorrect direction occur. The error message (or messages) is  stored in the
HttpSession,  and  the  exercise  application  is  then  returned  to  the  page
computeTable.jsp.  The  ExerciseTag-class  then  prints  a  score  matrix  that
contains the scores and directions entered by the users in the previous step of
the  exercise,  the  error  message  (or  messages),  the  link  to  the  substitution
matrix, and the set of buttons that controls the exercise. It is then possible to
correct the errors and re-submit the score matrix.

B.2.3 The clustering application

The clustering application is a Java Applet and is organised as follows:

<path to clustering application>
|
|-HTML documents
|
|-<classes>

|-java class files
|
|-<gfx>

|-images and graphics
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B.2.3.1 The interface components

Selecting the clustering application from the visualisation menu opens the
page index.html. This page serves as an introduction to the components of the
interface of the clustering application, and provides a link that opens the page
cluster.html. This page includes the clustering applet by including the tag

<APPLET CODE="ClusterApplet.class" codebase="classes/"
WIDTH=700 HEIGHT=570>

The code-parameter points to the class file that extends the JApplet-class,
while the codebase-parameter points to the directory that contains the classes
that are used by the applet. The width and height parameters set the width and
height of the applet respectively. Both index.html and cluster.html is linked to
the style sheet of the portal. Opening the cluster.html page creates an instance
of the ClusterApplet-class and initialises the instance.

The initialisation process (handled by the init-method) sets some of the state
variables, and sets up the interface of the clustering applet. The applet
interface is composed of a main panel, which in turn are composed of two
panels; the left panel and the right panel. The left panel contains the
coordinate system, the algorithm and variant list, the list of predefined
examples, the show-linkage check box, and the canvas upon which the
dendrogram of the hierarchical clustering is drawn. The right panel contains
the raw data table, the buttons that control the visualisation, and the clustered
data table.

The coordinatesystem is composed of a header label that asks the users to plot
the data in the coordinate system below, an instance of the CoordinateArea-
class, and a label that displays the coordinates of the position of the mouse-
pointer when it is situated within the coordinate system. The CoordinateArea-
class is a custom component extended from the JComponent-class. This class
contains all the logic for depositing points in the coordinate system and for
displaying the graphical visualisations of the clustering algorithms, as well as
the logic for handling mouse-pointer movements within the coordinate system.
Moving the mouse-pointer within the coordinate system triggers the method
mouseMoved-method  in  the  CoordinateArea-class.  This  method  transforms
the  mouse-pointer’s  position  within  the  applet  interface  into  the  mouse-
pointer’s  position  relative  to  the  origin  of  the  coordinate  system with  the
method normalizeCoords. The method also triggers the updateCursorLocation
in the ClusterApplet class, which updates the label that displays the position of
the mouse-pointer in the coordinate system. Pressing a mouse button within
the coordinate system triggers the mouseClicked-method,  which transforms
the mouse-pointer’s position in the applet interface into the mouse-pointer’s 
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position relative to the origin of the coordinate system, deposits a point in the
coordinate  system,  creates  an  instance  of  the  MicroArrayPoint-class,  and
stores the MicroArrayPoint in the vector that contains all points that have been
deposited in the coordinate system. The MicroArrayPoint-class is used to store
all useful information about a deposited point such as coordinates of the point
in the applet interface, the coordinates of the point relative to the origin of the
coordinate system, the number of the point,  which cluster  and centroid the
point belongs to, and so forth. 

The  mouseClicked-method  of  the  CoordinateArea-class  also  triggers  the
updateClickPoint-method in  the ClusterApplet-class.  The updateClickPoint-
method in the  ClusteringApplet-class  retrieves  the  vector  that  contains  the
deposited points, and adds the last point in the vector to the raw data table.
The method also sets some of the state variables of the applet, but as which
state  variables  are  set  depend  on  which  algorithm  is  chosen,  these  state
variables  are  discussed  when  the  different  algorithm  visualisations  are
discussed.

The raw data  table  and the  clustered  data  table  are  instances  of  the  class
JTable,  standard  components  of  the  java.swing  package.  These  tables  are
implemented  with  a  custom  background  renderer  in  order  to  colour  the
background of the cells in the second and third column according to the colour
scheme that  is  used in the heat  maps.  The custom background renderer is
represented  by the  class  ColouredCellBgRenderer-class.  This  class  ensures
that  the  cells  in  the  second  and  third  column  of  the  tables  receive  the
appropriate green or red colour background based on the x- and y-coordinates
of a point.

The canvas for the dendrogram is an instance of the DendrogramArea-class,
which is an extension of the JComponent-class.  This class contains all  the
logic for drawing a dendrogram on the canvas. This class will be discussed in
more  detail  during  the  discussion  of  the  visualisation  of  the  hierarchical
clustering algorithm.

The buttons that controls the visualisation are:

- the new-button

- the predefined examples-button

- the place centroids-button (only available in the visualisation of the
k-means clustering algorithm)
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- the stepwise clustering-button

- the epochwise clustering -button (only available in the visualisation
of Self Organizing Maps)

- the automated clustering-button

- the finish-button

Pressing  any  of  these  buttons  triggers  the  actionPerformed-method  in  the
ClusterApplet-class.

Pressing  the  new-button  resets  the  applet  by  resetting  the  states  of  the
coordinate system and the dendrogram, removing all deposited points from the
coordinate  system and  the  dendrogram by calling  the  clear-method  of  the
CoordinateArea and the DendrogramArea, emptying the raw data table and the
clustered data table, displaying the canvas, and resetting the algorithm lists
and the buttons.

Pressing  the  predefined  examples-button  activates  the  list  of  predefined
examples. Activating this list empties the canvas, the coordinate system and
the  clustered  data  table,  deactivates  the  coordinate  system  (i.e.  the
CoordinateArea  class  will  no  longer  respond  to  mouse  activities  in  the
coordinate  system),  and  creates  an  instance  of  the  Example-class.  The
example  class  generates  a  set  of  points  distributed  in  2,  3,  or  4  clusters
composed of 50 points  each (the  number  of points  in  each cluster  can be
adjusted by supplying a higher or lower number when an instance of the class
is  created).  The  instance  of  the  Example-class  that  is  created  when  the
predefined examples list is activated generates a set of points distributed in 2
clusters. The Example-class stores the points in a vector, which is retrieved by
the ClusterApplet and sent to  the coordinate system by calling the method
setPoints  in the CoordinateArea class. This method draws the points in the
vector in the coordinate system. The ClusterApplet also sends the vector to the
raw data table by calling the method setRawData in the ClusterApplet-class.

The stepwise clustering- and automated clustering-button are only available
under certain circumstances depending on the chosen algorithm. In general
these buttons are available once at least three points have been deposited in
the coordinate system. The place centroids-button is only available after the k-
means  algorithm  has  been  chosen,  and  at  least  three  points  have  been
deposited in the coordinate system. The epochwise clustering-button is only
available  after  Self  Organizing Maps  have been  chosen and  at  least  three
points have been deposited in the coordinate system. The finish-button is only
available after a visualisation has been started.
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The finish-button is only available once a visualisation is started. Pressing this
button triggers the actionPerformed-method of the ClusterApplet-class, which
finishes a visualisation, and resets the clustering application.

B.2.3.2 Running a visualisation of the hierarchical clustering algorithm

Selecting  the  hierarchical  clustering  from  the  algorithm  list  triggers  the
actionPerformed-method of the ClusterApplet-class, which empties the canvas
by calling the clear-method of the DendrogramArea-class, removes any lines
that have been drawn in the coordinate system by calling the removeLines-
method of the CoordinateArea-class, sets the state of the clustering application
to hierarchical clustering, empties the clustered data table, populates the list of
algorithm variants  to  display the implemented linkage options,  enables the
automated-button and the stepwise-button if three or more points are plotted in
the  coordinate  system  (the  buttons  are  disabled  otherwise),  disables  the
epochwise-button, displays the canvas, and enables the show linkage-check
box.

A visualisation of the hierarchical clustering algorithm is started by depositing
at least 3 points in the coordinate system and pressing either the automated
clustering-button or the stepwise clustering-button.  Pressing either  of these
buttons triggers the actionPerformed-method of the ClusterApplet-class,  but
the two buttons are handled differently.

Pressing the automated clustering-button disables all buttons and components
except  the finish-button.  The  vector  containing the points  deposited  in the
coordinate  system  is  retrieved  by  calling  the  getPoints-method  of  the
CoordinateArea-class, and converted into an array. The array containing the
deposited points is sent to the canvas by calling the setBoundingBox-method
of the DendrogramArea-class. This method places the points on the canvas
with equal distance between them. The automated clustering is then started by
calling the startAutomated-method of the ClusterApplet-class.  This  method
empties  the  clustered  data  table,  creates  an  instance  of  the
ClusteringAnimator-class,  and  calls  the  start-method  of  the
ClusteringAnimator-class. The ClusteringAnimator-class implements a timer
that is set to trigger its own actionPerformed-method every 2 seconds for the
hierarchical clustering visualisation that does not show the linkage, and every
1 second if the linkage is to be shown. The timer is started by calling the start-
method of the ClusteringAnimator-class, and is stopped by calling the stop-
method. An instance of the HierarchicalClustering-class is then created. This
class contains all the logic that is needed to cluster a set of points according to
the  hierarchical  clustering  algorithm.  Creating  an  instance  of  this  class
transforms the points in the point-vector into instances of the Cluster-class.
These instances are stored in a cluster-vector.
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Each  time  the  actionPerformed-method  of  the  ClusteringAnimator-class  is
triggered, the cluster-method of the HierarchicalClustering-class is called. The
cluster-method computes the distance between each cluster (singleton or non-
singleton) according to the chosen linkage, and finds the two clusters that are
nearest each other. The cluster pair is removed from the vector that contains
the clusters, combined in a larger cluster, and the new cluster is inserted at the
end  of  the  cluster-vector.  The  actionPerformed-method  then  retrieves  the
modified vector of clusters from the HierarchicalClustering-class and sends
the vector to the coordinate system by calling the method setCurrentClusters
of the CoordinateArea-class. The repaint method of the CoordinateArea-class
is then called, which calls the drawHull-method. The drawHull-method of the
CoordinateArea-class uses the Graham’s Scan algorithm to draw the convex
hulls of each cluster in the cluster-vector. The actionPerformed-method also
sends the cluster-vector to the canvas by calling the setClusterVector-method
of the DendrogramArea-class.  The repaint-method of the DendrogramArea-
class is then called. This method draws the dendrogram on the canvas. Lastly,
the  actionPerformed-method  calls  the  showClustered-method  of  the
ClusterApplet-class, which rearranges the clustered data table to display the
points in the order that they are clustered.

The procedure of visualising the hierarchical clustering algorithm if the show
linkage-box is ticked off is somewhat different. Ticking off this box instructs
the  clustering application  to  show the  pair  of  points  that  defines  the  least
distance between a pair of clusters. In order to do so, the actionPerformed-
method of the ClusteringAnimator-class retrieves the vector that contains the
clusters from the previous step and sends the vector to the coordinate system
by calling the method setPreviousClusters in the CoordinateArea-class. The
cluster-method  of  the  HierarchicalClustering-class  is  then  called,  and  the
actionPerformed-method then retrieves the new cluster-vector and sends it to
the  coordinate  system  by  calling  the  setCurrentClusters-method  of  the
CoordinateArea-class. The variable stepLinkage is set to 1, and the variable
linkageDrawn in the CoordinateArea-class is  set  to false before the repaint
method of the coordinateArea is called. By setting the linkageDrawn-variable
to  false,  the  repaint-method  of  the  CoordinateArea-class  draws the convex
hulls of the previous clusters and a blue line between the pair of points that
define the least distance. The vector containing the current clusters is also sent
to the canvas, and the repaint-method of the DendrogramArea-class is called
to draw the dendrogram on the canvas. 

The convex hulls of the current clusters are drawn in the coordinate system the
next  time the actionPerformed-method is  called.  The method checks  if  the
stepLinkage-variable  is  set  to  1,  sets  the  linkageDrawn-variable  of  the
CoordinateArea-class to true, and the linkageStep-variable to zero before the 
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repaint  method  of  the  CoordinateArea-class  is  called.  Setting  the
linkageDrawn-variable  to  true  causes  the  repaint-method  of  the
CoordinateArea-class  to  replace  the  convex  hulls  of  the  previous  cluster-
vector  and  the  blue  line  between  the  pair  of  points  that  define  the  least
distance with the convex hulls of the current cluster-vector. 

The cycle of calling the cluster-method, and repainting the coordinate system
and the dendrogram is repeated until all clusters are combined into one large
cluster, or until the finish-button is pressed.

A  stepwise  visualisation  of  the  Hierarchical  clustering  is  identical  to  the
automated clustering visualisation with one exception. The timer that triggers
the actionPerformed-method in  the ClusteringAnimator-class is  replaced by
the  users.  Pressing  the  stepwise  clustering-button  triggers  the
actionPerformed-method  in  the  ClusterApplet-class,  which  checks  if  the
button has been pressed to start a stepwise visualisation, or if the button has
been pressed to display the next step in the visualisation (the stepwise-button
is  used  both  as  a  start-button  and  as  a  next-button  in  the  stepwise
visualisation). If the button has been pressed to start a stepwise visualisation,
the  actionPerformed-method  deactivates  all  other  buttons  and  components,
and activates the finish-button. The coordinate-system is also deactivated so
that it is impossible to deposit new points in the coordinate system during the
visualisation, and the canvas is cleared of any dendrogram. The label of the
stepwise clustering-button is changed so that the button shows the text “next”
(i.e.  the  stepwise-button  becomes  the  next-button).  The  actionPerformed-
method then calls the startStepping-method. This method creates an instance
of  the  HierarchicalClustering-class,  runs  the  cluster-method  of  the
HierarchicalClustering-class,  repaints  the  coordinate  system and the  canvas
with the appropriate clusters and dendrogram, and rearranges the points in the
clustered datatable. If the show linkage box has been ticked off, the method
also creates an instance of the StepAnimator-class. This class enables the blue
line between the pair of points that define the least distance between a pair of
clusters to be drawn.

Pressing  the  next-button  triggers  the  actionPerformed-method  of  the
ClusterApplet-class,  which  calls  the  step-method.  This  method  runs  the
cluster-method  of  the  HierarchicalClustering-class,  repaints  the  coordinate
system and the canvas, and rearranges the points in the clustered data table.

Once the visualisation is  completet,  automated or stepwise, the buttons are
reset, and the components are reactivated.
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B.2.3.3 Running a visualisation of the k-means clustering algorithm

Selecting  the  k-means  algorithm  from  the  algorithm  list  triggers  the
actionPerformed-method of the ClusterApplet-class. This method sets the state
of  the  clustering  application  to  k-means-visualisation,  removes  the  canvas
from the interface, changes the automated clustering-button to display the text
“Place  centroids”  (i.e.  the  automated  clustering-button  becomes  the  place
centroids-button), disables the show linkage-box, and populates the variant list
with the options batch-variant and online-variant.

Depositing three or more points in the coordinate system activates the place
centroids-button.  Pressing  this  button  updates  the  state  of  the  clustering
application to allow the centroids to be placed in the coordinate system, and
changes  the  text  displayed  in  the  place  centroids-button  to  “Automated
clustering” (i.e. the place centroids-button becomes the automated clustering-
button). The coordinate system is now set up to handle points deposited in the
coordinate system as centroids, that is, the deposited points are coloured and
labelled C1, C2, C3, etc. and placed in a vector that contains the centroids.
Placing at least two centroids enables the automated clustering-button and the
stepwise-button. Pressing either of these buttons starts a visualisation of the k-
means clustering algorithm, and deactivates all other buttons and components
except the finish-button.

Pressing the automated clustering-button triggers the actionPerformed-method
in  the  ClusterApplet-class,  which  deactivates  all  components  except  the
finish-button, and calls the startAutomated-method. This method retrieves the
vector  that  contains  the  deposited  points  and  the  vector  that  contains  the
deposited centroids from the coordinate system, retrieves the chosen variant
from  the  variant  list  and  calls  the  startAutomated-method  of  the
ClusterApplet-class.  This  method  creates  an  instance  of  the
ClusteringAnimator-class, and calls the start-method of this class. Creating an
instance  of  the  ClusteringAnimator-class  for  the  k-means  clustering
visualisation  sets  the  ClusteringAnimator  up  to  display  a  k-means
visualisation, creates an instance of the Timer-class and sets the delay between
the steps to 1 second for the batch variant and zero for the online variant, and
creates  an  instance  of  the  KmeansClustering-class.  The  KmeansClustering-
class contains all the logic for performing a k-means batch clustering and a k-
means online clustering.  The start-method of the ClusteringAnimator-class
starts  the  timer,  which  triggers  the  actionPerformed  method  of  the
ClusteringAnimator-class with the given delay until the stop-method is called. 

Running  an  automated  visualisation  of  the  batch  variant  of  the  k-means
clustering  algorithm  causes  the  actionPerformed-method  of  the
ClusteringAnimator to call the cluster-method of the KmeansClustering-class 
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with the parameter -1. Supplying the -1 parameter to this method means that
the cluster-method clusters the dataset according to the batch-variant. The first
step in the visualisation of the batch variant  is  to assign each point  to the
closest centroid. Thus, the cluster-method of the KmeansClustering-class calls
the method assignPoints. This method iterates over the deposited points and
assigns each point to the closest centroid. The method also sets the colour of
each point to the same colour as the centroid the point is assigned to. The
actionPerformed-method  of  the  ClusteringAnimator-class  then  retrieves  the
vector that contains the centroids from the KmeansClustering-class and sends
them  to  the  coordinate  system by calling  the  method  setCentroids  of  the
CoordinateArea-class.  The  actionPerformed-method  also  instructs  the
CoordinateArea-class  to  draw  the  deposited  points  with  the  colours  that
corresponds to the colour of the centroid each point is assigned to by calling
the method setUsePointColour of the CoordinateArea-clas with the parameter
true.  The  actionPerformed-method  then  calls  the  repaint-method  of  the
CoordinateArea,  which  draws  the  deposited  points  in  the  colour  that
corresponds to the colour of the centroid each point is assigned to. Lastly, the
actionPerformed-method  calls  the  showClustered-method  of  the
ClusterApplet-class,  which  updates  the  clustered  data  table  to  show  the
deposited points in the clustered order. The backgrounds of the cells in the
first column of the clustered data table are also coloured with the same colour
as the centroid each point is assigned to.

The next time the cluster-method is called by the actionPerformed-method of
the  ClusteringAnimator-class,  the  cluster-method  calls  the  method
setCentroidCoord. This method recalculates the position of the centroids. The
method then reassigns the points to the closest centroid. The actionPerformed-
method then retrieves the vector that contains the centroids and sends them to
the  coordinate  system  by  calling  the  setCentroids-method  of  the
CoordinateArea-class, before the repaint-method of the CoordinateArea-class
is  called.  The  CoordinateArea-class  then  draws  the  centroids  in  their  new
positions, and updates the colour of the points to correspond to the colour of
the closest centroid. Lastly, the clustered data table is updated in the same way
as in the first step.

This cycle is repeated until the points remain stable (i.e. the points that are
assigned  to  each  centroid  remain  the  same  in  two  consecutive  cycles).
Pressing  the  finish-button  before  the  clustering  is  completed  causes  the
clustering application to complete the clustering.

Running  an  automated  visualisation  of  the  k-means  online  algorithm  is
slightly  different.  The  actionPerformed-method  iterates  over  the  deposited
points, and calls the cluster-method of the KmeansClustering-class for one 
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point at a time. Instead of using -1 as a parameter in the call to the cluster-
method,  the  parameter  is  the  index  of  the  current  point  in  the  vector  of
deposited points.  The  cluster-method then calls  the  adjustCentroid-method,
which in turn finds the centroid that is closest to the current point and moves
the  closest  centroid  somewhat  closer  to  the  point.  The  actionPerformed-
method of the ClusteringAnimator-class then retrieves the vector containing
the repositioned cluster, and sends it to the coordinate system by calling the
setCentroids-method of the CoordinateArea. The position of the centroid that
is  closest  to  the  current  point  in  the coordinate  system is  then updated by
calling  the  repaint-method  of  the  CooridinateArea-class.  The
actionPerformed-method  also  updates  the  clustered  data  table  to  show the
points in the order they are clustered (i.e. calls the showClustered-method of
the ClusterApplet-class). This cycle is repeated until the points remain stable
and the centroids stop moving, or until the finish-button is pressed.

Conducting a stepwise visualisation of the k-means algorithm is identical to
the  automated  clustering  with  the  exception  that  the  instance  of  the
ClusteringAnimator is replaced by the users. Pressing the stepwise clustering-
button triggers the actionPerformed-method of the ClusterApplet-class, which
changes the state of the clustering application to that of a k-means clustering,
transforms the stepwise clustering-button into the next-button, deactivates all
components  except  the  next-button  and  the  finish-button,  and  calls  the
startStepping-method.  The  startStepping-method  creates  an  instance  of  the
KmeansClustering-class,  and  runs  the  cluster-method  of  this  class.  This
method  performs  the  same  actions  as  in  the  automated  clustering.  The
startStepping-method  then  retrieves  the  vector  containing  the  adjusted
centroids  and  sends  it  to  the  coordinate  system.  The  coordinate  system is
updated in the same manner as in the automated clustering, as is the clustered
data table.  Pressing the next-button triggers the actionPerformed-method of
the ClusterApplet-class, which calls the step-method. This method repeats the
cycle  of  adjusting  the  positions  of  the  centroids  and  the  updating  of  the
clustered data table.  This  procedure can be repeated until  the clustering is
completed (see above),  or  the clustering can be completed by pressing the
finish-button.

B.2.3.4 Running a visualisation of Self Organizing Maps

Selecting SOM (Self Organizing Maps) from the list of algorithms triggers the
actionPerformed-method of the ClusterApplet-class, which sets the state of the
clustering application to a SOM-visualisation, removes the canvas, deactivates
the show linkage-box, and populates the list of variants with the options grid,
and line.
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Depositing  at  least  three  points  in  the  coordinate  system  activates  the
automated  clustering-button,  the  stepwise  clustering-button,  and  the
epochwise clustering-button. 

Pressing the automated clustering-button triggers the actionPerformed, which
deactivates  all  components  except  the  finish-button  and  calls  the
startAutomated-method.  This  method  creates  an  instance  of  the
ClusteringAnimator-class, and calls the start-method of this class. Creating an
instance of the ClusteringAnimator-class sets up the timer in accordance to the
SOM-visualisation, and creates an instance of the SelfOrganizing-class. This
class contains all the logic that is needed to conduct a clustering using SOMs. 

Creating an instance of the SelfOrganizing-class creates the grid or the line of
units that is used in the clustering. The grid and the line of units are composed
of 1/3 as many units as there are deposited points. The number of units in the
grid is adjusted so that the grid is always a square of rectangle. The units are
generated randomly around the origin of the coordinate system, and organised
in neighbourhoods (see section 5.5 of chapter 5).

Calling the start method of the ClusteringAnimator-class retrieves the grid or
line  of  units,  which  is  sent  to  the  coordinate  system  by  calling  the
setCentroids-method of the CoordinateArea-class. The repaint-method of the
CoordinateArea  is  then  called  to  draw  the  grid  or  line  of  units  in  the
coordinate system. The start-method then starts the timer, which triggers the
actionPerformed-method.  The  actionPerformed-method  iterates  over  the
deposited points, and calls the adjustCentroids-method of the SelfOrganizing-
class for each deposited point. The adjustCentroids-method moves the nearest
unit and its neighbour(s) somewhat closer to the point. The actionPerformed-
method  of  the  ClusteringAnimator-class  then  retrieves  the  centroid-vector
from the SelfOrganizing-class and sends it to the coordinate system by calling
the method setCentroids of the CoordinateArea-class. The actionPerformed-
method then calls the repaint-method of the CoordinateArea, which draws the
adjusted grid or line of units in the coordinate system. This process is repeated
for each deposited point 3000 times, or until the finish-button is pressed.

Pressing  the  stepwise-button  triggers  the  actionPerformed-method  of  the
ClusterApplet-class, which sets the state of the clustering application up for a
SOM-visualisation,  transforms the stepwise  clustering-button into  the  next-
button, deactivates all components but the next-button and the finish-button,
and calls  the startStepping-method.  This method creates an instance of the
SelfOrganising-class, which generates the grid or line of units, retrieves the
grid or line,  sends  the vector  containing the grid or line to  the coordinate
system,  and  calls  the  repaint-method  of  the  CoordinateArea-class.  This
method then draws the grid or line of units in the coordinate system. Pressing 
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the  next-button  triggers  the  actionPerformed-method  of  the  ClusterApplet-
class,  which calls  the step-method.  This  method calls  the  adjustCentroids-
method of the SelfOrganizing with the current point as a parameter, which
adjusts  the  position  of  the  unit  closest  to  the  current  point.  The  vector
containing the adjusted unit is then retrieved and sent to the coordinate system
by calling the setCentroids-method of the CoordinateArea-class. The repaint-
method of the CoordinateArea-class is then called to draw the adjusted grid or
line  in  the  coordinate  system.  This  procedure  can  be  repeated  for  each
deposited point 3000 times by pressing the next-button, or the clustering can
be completed by pressing the finish-button.

Pressing the epochwise clustering-button triggers the actionPerformed-method
of the ClusterApplet-class, which sets the state of the clustering application up
for a SOM-visualisation, transforms the epochwise clustering-button into the
next-button,  deactivates  all  components  but  the next-button and the finish-
button,  and  calls  the  startEpochStepping-method.  This  method  creates  an
instance of the SelfOrganizing-class, retrieves the generated grid or line of
units and sends it to the coordinate system, and calls the repaint-method of the
CoordinateArea-class to draw the grid or line in the coordinate system.

Pressing  the  next-button  triggers  the  actionPerformed-method  in  the
ClusterApplet-class, which calls the method epochStep. This method iterates
over  the  deposited  points  and  calls  the  adjustCentroid-method  of  the
SelfOrganizing-class to adjust the grid or line of units. The method retrieves
the adjusted grid or line once all the deposited points have adjusted a unit once
(i.e. one full iteration over the deposited points, or an epoch), and sends the
adjusted  grid  or  line  to  the coordinate  system by calling the  setCentroids-
method of the CoordinateArea. The adjusted grid or line is then drawn in the
coordinate system by calling the repaint-method of the CoordinateArea-class.
This process can be repeated 3000 times by pressing the next-button, or the
clustering can be completed by pressing the finish-button.

The interface of the clustering application is reset once the visualisation (SOM
or any other visualisation).  Resetting the interface includes reactivating the
components, and resetting the state of the application.
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