
University of Oslo
Department of Informatics

Utilizing Generic
Packages with
Expandable Classes
in a Java-like
context

Sigmund M. Nilssen

Master Thesis

20th July 2005

Abstract

Generic Packages with Expandable Classes is a statically type safe program-
ming mechanism which combines type parameterisation on the package
level with class expansion. The former makes the mechanism useful for
solving common “generic” problems. The latter offers a kind of “static in-
heritance” and can be used to write “unfinished” groups of classes. Such
classes can be finally specified when the packages containing them are im-
ported.

This thesis provides an evaluation of the usefulness of Generic Packages
with Expandable Classes. In particular, it looks at how the mechanism can
be used as an alternative to multiple inheritance and covariance. Being able
to solve such problems is the main advantage of GePEC compared to most
other type-parameterized module mechanisms.

As part of the evaluation, it is discussed how Generic Packages with
Expandable Classes might be best utilized in practice. Several problems
arise when we attempt to use the mechanism with typical Object Oriented
techniques. These problems and their reasons are pointed out during the
description and discussion of the mechanism. Based on these observations,
an approach to programming is suggested which avoids problems but still
allows us to take advantage of the mechanisms involved. This strategy,
called package-hierarchy programming, also seems promising as a way to
make programs more flexible for code reuse, although it sacrifices readab-
ility.

Contents

Contents i

1 Introduction 1

1.1 The Purpose and Focus of this Thesis . 2

1.1.1 The Structure of this Thesis . 3

1.1.2 Implementation of GePEC? . 3

2 Generic Packages with Expandable Classes 5

2.1 The Background of GePEC . 5

2.1.1 GePEC and Programming Languages . 6

2.2 GePEC: A Generic Toolbox . 6

2.3 Generic Packages . 7

2.3.1 Generic Imports . 8

2.3.2 The “common” Qualifier . 10

2.4 Type Parameterization . 11

2.4.1 An Example of Type Parameterization Syntax 12

2.4.2 Differences from “classic” type parameterization 13

2.4.3 Differences from “classic” GePEC . 14

2.5 More about Type Parameter Constraints . 14

2.5.1 Parameters with Fields . 15

2.5.2 Nonfinal Parameters . 15

2.5.3 F-bounds . 16

2.6 Class Expansion . 18

2.6.1 Static Inheritance . 18

2.6.2 An Example of Class Expansion . 19

2.6.3 Explicitly Expandable Classes and Expandable Methods 20

2.6.4 Overriding methods in the actual expansion 22

2.6.5 Expandable classes and actual expansions as subclasses 23

2.6.6 Expandable classes and actual expansions as superclasses 24

2.6.7 Multiple static inheritance . 25

2.6.8 Other expandable types . 26

2.7 Renaming . 26

2.7.1 The Syntax of Renaming . 27

2.7.2 Renaming and Type Parameters . 27

2.7.3 Renaming and Overriding . 28

2.8 Summary: Generic Packages with Expandable Classes 30

i

3 Static Multiple Inheritance 31

3.1 Multiple Inheritance . 31

3.1.1 The Benefits of Multiple Inheritance . 32

3.1.2 Problems with Multiple Inheritance . 34

3.1.3 Common Alternatives to Multiple Inheritance 37

3.2 Static Inheritance . 39

3.2.1 The Diamond Problem in GePEC . 39

3.2.2 Comparing Static and Normal Multiple Inheritance 42

3.2.3 Combining two Independent Classes . 43

3.2.4 Making a Mix-and-match library . 45

3.2.5 Breaking up a large class . 47

3.3 Class Expansion and Interfaces . 49

3.3.1 Using Interface-enhanced GePEC . 49

3.3.2 Limitations of common-declared Interfaces 53

3.4 Summary: Static Multiple Inheritance . 54

4 Static Covariance 55

4.1 The Problem with Covariance . 56

4.1.1 Type Safety and Covariance . 56

4.2 The Usefulness of Covariance . 57

4.2.1 Famous Languages and Mechanisms with Covariance 58

4.2.2 Practical Uses for Covariance . 58

4.2.3 Preserving Self-Recursion in Subclasses 59

4.2.4 Preserving Mutual Recursion . 60

4.2.5 Introducing Mutual Recursion . 60

4.2.6 Summary: Usefulness of Covariance . 61

4.3 Static Covariance . 62

4.3.1 Sufficiency of Static Covariance . 62

4.3.2 GePEC Covariance and Substitutivity . 63

4.3.3 Limitations of GePEC Covariance . 65

4.4 Summary: Static Covariance . 69

5 Alternative Mechanisms 71

5.1 Genericity and Covariance . 71

5.1.1 Virtual Types . 72

5.1.2 Structural Virtual Types . 73

5.1.3 Summary: The Advantages of Structural Virtual Types 77

5.2 Comparing GePEC and Structural Virtual Types 77

5.2.1 Genericity . 77

5.2.2 Covariance . 83

5.2.3 Extending Groups of Classes . 85

5.2.4 Summary: GePEC versus Structural Virtual Types 89

5.3 Static Inheritance . 89

5.3.1 Traits . 90

5.3.2 Using Traits . 93

5.3.3 Comparing GePEC and Traits . 95

ii

6 Structuring Programs using GePEC 97

6.1 Towards a Strategy for using GePEC . 97

6.1.1 Separating Types from Implementation 98

6.1.2 Large Generic Packages are Inflexible . 98

6.2 Package-hierarchy Programming . 99

6.2.1 A Hierarchy of Packages . 100

6.2.2 Creating the hierarchy . 101

6.2.3 Creating Package Hierarchies with GePEC 102

6.2.4 Summary: Package-hierarchy Programming 104

6.3 An Example: Writing a Simple Parser . 106

6.3.1 The Language . 106

6.3.2 The Compiler . 107

6.3.3 Package-hierarchy Programming . 108

6.3.4 Implementing the generic package PARSETREE 110

6.3.5 Implementing SYMBOLGENERATOR and SCOPEHANDLER 113

6.3.6 Implementing the Generic Package PARSENODES 114

6.3.7 Implementing the Various Parse Tree Nodes 116

6.3.8 Experiences from the Compiler Example 117

7 Summary and Conclusion 119

7.1 Results and Contributions . 120

7.1.1 The usability of GePEC . 120

7.1.2 The practical problems of GePEC . 120

7.1.3 GePEC compared to alternative mechanisms 121

7.1.4 A programming strategy for GePEC . 121

7.1.5 Secondary contributions . 122

7.2 Further Work . 124

7.2.1 Testing Package-hierarchy Programming 124

7.2.2 Alternatives to Package-hierarchy Programming 124

7.2.3 Better solutions to renaming difficulties 125

7.2.4 New kinds of parameterisation . 125

7.2.5 New uses for sharing . 125

7.2.6 Other language contexts . 125

7.3 Summary . 126

7.4 Acknowledgements . 126

iii

A Source Code for a Simple Parser 127

A.1 Utility Packages . 127

A.1.1 Generic Package SYMBOLGENERATOR . 127

A.1.2 Generic Package SCOPEHANDLER . 128

A.2 Parse Tree Node Packages . 128

A.2.1 Generic Package PROGRAMNODE . 129

A.2.2 Generic Package BLOCKNODE . 129

A.2.3 Generic Package FUNDECLNODE . 130

A.2.4 Generic Package VARDECLNODE . 130

A.2.5 Generic Package RETNODE . 131

A.2.6 Generic Package ASSNODE . 131

A.2.7 Generic Package CALLNODE . 132

A.2.8 Generic Package EXPRNODE . 132

A.2.9 Generic Package SIMPLENODE . 133

A.2.10Generic Package PARNODE . 133

A.3 Composed Packages . 133

A.3.1 Generic Package PARSENODES . 134

A.3.2 Generic Package PARSETREE . 136

Bibliography 138

iv

Chapter 1

Introduction

When developing programming language mechanisms, an important task
is to examine how they are likely to be utilized in practice. This thesis is
such an examination, seeking to test and describe the usability of “Generic
Packages with Expandable Classes”, proposed by Krogdahl in [13].

Researching how a mechanism is likely to be used is important because
it allows us to tailor the mechanism to better support its expected usage.
The process helps us discover limitations and problems with the mechan-
ism that might otherwise have gone unnoticed. There may be details that in
practice prevent the mechanism from performing as well as we would hope.

Examining the practical usefulness of a mechanism may also uncover
uses for the mechanism besides those intended when it was first concieved
of. If such unintentional advantages are found at an early stage and are
deemed useful, then the mechanism may be changed to better support
them.

A classic example where this might have been done (but was not) is C++
template meta-programming. Template meta-programming is the program-
ming strategy that was developed after discovery that type parameterisa-
tion in C++ could be used to make the compiler perform as an interpreter
of a recursive language [32]. Such compile-time computations are useful,
in particular to write code that is optimised at compile time. But C++ tem-
plates have been criticised, for instance in [33], because its syntax and se-
mantics makes it awkward for this purpose.

As mentioned, this thesis is an evaluation of Generic Packages with Ex-
pandable Classes. The abbreviation “GePEC” will be used to refer to the
mechanism, to avoid its longer name being a detriment to readability. While
the thesis does not uncover any dramatic new uses for GePEC, it does to a
large extent confirm its expected usefulness. It also reveals several prac-
tical problems with using the mechanism, and provides solutions to many
of them.

GePEC seems useful in many ways. It is able to provide us with genericity
similar to that provided by typical type parameterization. But GePEC is

1

also promising as a useful alternative to certain controversial mechanisms,
such as multiple inheritance and covariance. As GePEC is a relatively recent
mechanism and as it is still in development, it is both useful and interesting
to look at how it may be used in practice.

1.1 The Purpose and Focus of this Thesis

Krogdahl describes a basic version of GePEC in [13], along with several “vari-
ants”. The basic version has many restrictions, but, as the paper mentions,
not all of these may be truly necessary. The variants further add function-
ality which may or may not prove useful in practice.

The main goal of this thesis is to examine how GePEC might best be
used in practice, to look for unexpected strengths and weaknesses in the
mechanism. To do this, I have chosen a version of generic packages with
expandable classes which I call “Liberal GePEC”. Note that whenever nothing
else is noted, uses of the term “GePEC” in this thesis refer to liberal GePEC.
Liberal GePEC allows most of the suggested variants of [13], and ignores
many of the restrictions. I have also added certain changes myself, which I
have found useful during my work with the mechanism.

Liberal GePEC is defined with a Java-like context in mind. It is hard, if
not impossible, to evaluate a mechanism without a host language. In this
thesis, Java-like syntax and rules are used for this purpose. The reasons
for this are explained in section 2.1.1. However, note that this thesis is not
an evaluation of GePEC in the presence of every mechanism in the entire
Java language. Several aspects of the language, such as nested classes and
visibility modifiers, are largely ignored.

Using Liberal GePEC, I look at two of its most promising aspects: The
first is that it offers something Krogdahl calls “static inheritance”. This
may be used to gain multiple inheritance of implementation while avoiding
most of the problems normally associated with multiple inheritance. The
second is something I call “static covariance”, which may solve many of the
problems solvable by covariance while still being statically type safe.

As part of evaluating these possibilities, I also examine the context
which is needed for GePEC to work in each case. Mapping the circumstances
where GePEC works best is necessary for a later part of the thesis, in which
I aim to describe a strategy of programming which gives us the benefits of
GePEC with the least amount of difficulties.

There are other mechanisms that aim to solve the same problems as
GePEC. My work has included comparing GePEC and such mechanisms, two
of which are presented in this thesis.

The goals of this thesis can be summarised:

• To evaluate the usefulness Liberal GePEC, especially as an alternative
to multiple inheritance and covariance.

2

• To find and describe the practical problems of programming with
GePEC, and provide solutions to them where possible.

• To see how GePEC compares to alternative mechanisms.
• To search for and suggest a strategy of programming which suits

GePEC and avoids any problems which are not easily solvable.

1.1.1 The Structure of this Thesis

Following this introduction, chapter 2 describes Liberal GePEC. Each part of
the mechanism is described in some detail, with focus on functionality and
syntax. Where liberal GePEC is more detailed than the basic GePEC of [13],
the choices made in making it so are briefly explained. The chapter also
describes obvious potential problems with the various parts of GePEC and
aims to describe possible solutions to these.

Chapter 3 and chapter 4 explain and evaluate static inheritance and
static covariance respectively. Both chapters use many examples both to
demonstrate how GePEC serves in these cases and to illustrate various
points. Potential problems are identified and discussed, and solutions are
suggested.

In chapter 5, two comparisons between GePEC and other mechanisms
are presented. The first, between GePEC and Structural Virtual Types, is
quite detailed and thorough. The second comparison, between GePEC and
Traits, is more brief. This is because Traits is a simpler mechanism than
Structural Virtual Types and because its advantages so closely mirror some
of those of GePEC that a briefer comparison still has value.

The conditions required to get the most out of GePEC are recounted
in chapter 6, based on results of the previous chapters. Then, a way of
using GePEC to structure programs is suggested. This style of programming
allows us to avoid the practical problems of GePEC, while still gaining all of
its advantages. However, this comes at the cost of decreased readability
and perhaps other disadvantages.

Finally, chapter 7 briefly recounts the discoveries and conclusions of the
thesis. It also suggests topics for further work.

1.1.2 Implementation of GePEC?

To my knowledge, no good compiler for GePEC currently exists, though
work is being done on that front by other master students. It is clear from
[13] however, that the mechanism could be implemented in a compiler as
simple textual substitution prior to actual compilation. While this would
probably not be an optimal solution, we at least know that one possible
implementation exists.

This thesis concerns itself with the usability of GePEC, not how it should
be implemented in a compiler. In some cases, where it is relevant to the dis-
cussion, certain points may be made about how GePEC can be implemented.

3

But in most cases we will simply assume that the mechanism can be imple-
mented in a sensible manner.

4

Chapter 2

Generic Packages with
Expandable Classes

As explained in the introduction, this thesis seeks to evaluate the usefulness
of Generic Packages with Expandable Classes, GePEC for short. The first
part of this chapter discusses the basics of GePEC in a brief manner. Fol-
lowing that, I present the form of GePEC used in this thesis, Liberal GePEC,
in more detail.

Note that, the version presented here has many differences from the ba-
sics presented by Krogdahl in [13]. This is mostly because it incorporates
several of the changes suggested in “Extensions and Variations” in [13, sec-
tion 7], but also because of additions I have made during my work on this
thesis. Finally, the syntax used in this thesis is very different from those of
[13] and [25].

All this means that those familiar with previous work on Generic Pack-
ages with Expandable Classes cannot expect to instantly recognize all de-
tails of the mechanism. Even those experienced with the mechanism should
still read this chapter thoroughly, with an eye out for the new additions.

The changes I have introduced have been discussed with my supervisor,
Stein Krogdahl, and some of the ideas are partially due to him. This is noted
in the text where appropriate. Also, significant differences from the GePEC
version described in [13] are explained at appropriate places in this chapter.

2.1 The Background of GePEC

The concepts behind GePEC are not new. According to Rognerud’s Cand.
Scient. thesis [25], the ideas behind generic packages were first conceived
in the mid-eighties. As several people worked with the mechanism in the
following years, Expandable Classes were slowly introduced.

5

2.1.1 GePEC and Programming Languages

GePEC originates in work for the Simula language. Rognerud [25] looks
at them from a purely Java point of view. In [13], Krogdahl presents the
mechanisms in a way less dependent on language, although the syntax of
his examples is clearly Java-like.

This thesis follow their example, and assume a very Java-like context.
Java-like syntax is used, and Java-like rules are assumed: All methods are
virtual, the concepts of “static” and “abstract” work as in Java, and so on.
Where there are exceptions to this, they will be duly noted.

Why rely this much on Java? First of all, it is hard or impossible to
evaluate a mechanism without an underlying language. Java is in most ways
quite simple, with clear rules and few options compared to certain other
languages, such as C++. Also, Java is statically typed. As GePEC is created
with static typing in mind, choosing a dynamically typed language for its
evaluation would be nonsense.

Finally, it turns out that GePEC works very well along several of Javas
native mechanisms, especially interfaces. These mechanisms are used a lot
later in the thesis.

2.2 GePEC: A Generic Toolbox

The main mechanism in GePEC is the generic package. These packages have
two major features: Type parameters and expandable classes. Very briefly,
type parameters are temporary types that can be replaced by other types
at import time. Expandable classes are classes that can be given a new
name and new members at import time. In addition to parameterization
and expansion, there are two minor mechanisms that can be used on the
members of generic packages: renaming and the “common” qualifier.

The mechanisms of GePEC cooperate with one another: For example,
renaming can be used to sort out name collisions caused by class expansion.
We will see several other such examples throughout this thesis.

GePEC is not a single homogeneous mechanism. Rather it should be
seen as a collection or toolbox of mechanisms that work well together. This
does sometimes mean that there is more than one way to solve a problem
using GePEC. Particularly, common problems such as writing a generic list
can be solved using either parameterization (taking the element type as a
parameter) or class expansion (having an expandable element type).

One might expect this to be a problem, as a programmer might not
know which solution is better. With some experience with the mechanism
however, picking the best solution have proved to be quite easy. A rule
of thumb is that type parameters should be used when we want to write
“generic code”, whereas class expansion is more suited for its role as “static
inheritance” described in chapter 3.

The rest of this chapter is devoted to describing GePEC in detail.

6

2.3 Generic Packages

Both of the major features of GePEC rely on redefining “temporary types”.
As we will see, neither type parameters or expandable classes are valid as
types outside the packages in which they are defined. But they can be re-
placed by things that are: Actual type parameters and actual expansions. A
generic package, is a collection of such “temporary types”.

• A generic package can have type parameters. A type parameter is
a type declared using the “parameter” keyword. Parameters are de-
scribed in section 2.4.

• The members of a generic package are expandable (see section 2.6),
unless they are declared as common (see section 2.3.2). Classes can be
implicitly or explicitly expandable (see section 2.6.3) with some minor
differences.

• Generic packages can only be imported using generic import state-
ments. Generic imports are described in section 2.3.1. In brief, a
generic import is a “copy-import”, which means it can be viewed as
creating a new copy of the imported package for each time it is impor-
ted. It should feel like a heterogeneous implementation.

• The members of the classes, interfaces, etc. contained in a generic
package may be renamed as part of a generic import. This is explained
in section 2.7.

In the code examples of this thesis, a generic package is declared with a
“generic package statement”, consisting of the keywords “generic package”
and the name of the package, followed by a semicolon. The rest of the file
is then considered contents of the generic package, as with a traditional
package statement in Java. We will assume that the whole package must be
within a single file, although this is not a must and is mostly irrelevant for
this thesis.

The contents of a generic package

A generic package should not be used in the same way as a Java package.
One reason for this is the possibility of importing only selected members
of a Java package. This is not possible with generic packages, for reasons
that will become obvious in section 2.3.1. With a generic package you either
import all of it, or nothing at all.

For this reason, we should not use generic packages to group conceptu-
ally similar classes, such as different collection classes like sets, lists and
maps. This illustrates the difference between a GePEC package and a normal
package, as the latter is often used to group conceptually similar classes.

7

As a rule of thumb, two classes should not be put in the same generic
package unless they are related by code. Classes A and B are related by
code if one or more of the following statements are true:

• A contains a reference to B.
• B contains a reference to A.
• A is related to another class which is also related to B. This rule can

be used in several steps for distant relationships.

The most obvious exception to this rule of thumb is classes that are expec-
ted to always be used together even though they are not related.

2.3.1 Generic Imports

A generic import statement is used to import a generic package. Part of
the statement is the actual use of the mechanisms of GePEC: Actual type
parameters, renaming clauses and actual expansions are specified. In this
thesis, I use the following syntax for generic import statements:

generic import PACKAGENAME [as IMPORTNAME][, <EFFECTLIST>];

The keywords “generic import” are followed by the name of the gen-
eric package which should be imported. Optionally, this is followed by the
keyword “as”, and a name for the import (see page 9). This is, if necessary
or desirable, followed by a comma and an “effect list”. This is a comma-
separated list with actions to do as part of the import. Each such action can
be either to supply an actual type parameter or actual expansion, or to re-
name something. The actual syntax for this will be shown in due time, as the
various mechanisms are explained. There, examples will also be provided.
Finally, the statement is terminated by a semicolon.

Copy imports versus access imports

The most important thing to know about generic imports is how they work.
There is one major difference from the normal import statements of e.g.
Java. To use the terminology of [13], traditional imports, as in Java, are
“access imports”: Each import simply allows us to access the contents of
the package. Contrarily, generic imports are “copy imports”. This means
that every generic import statement can be seen as making a new instance
of the generic package which is imported. Indeed, a generic import can be
referred to as an instantiation of a generic package.

The result is that if we import the same generic package twice, we get
two instances of its contents: If the package contained a class MyClass, we
now have two classes called MyClass. They are equal, as long as we didn’t
change either of them using GePECs other mechanisms. But they do not

8

share any type relationship and are for all intents and purposes two differ-
ent classes. This is the reason why we cannot import only certain members
of a generic package. If they contained references to other members in the
package, we need instantiations of those members as well.

Of course a program cannot have two classes with the same name, so
name collisions occuring because of multiple copy-imports will have to be
resolved somehow. Fortunately, GePEC provides several ways that this can
be done. More on this later.

This “copy-property” of generic packages can be a bit troublesome. For
instance, some old code can import a generic package and use its content.
We may then wish to write new code importing the same package. This
results in the objects in the old code being incompatible with the types of
the new code even though they use seemingly equal classes.

But the copy-property of generic imports is the cornerstone of GePEC.
Type parameterization, class expansion and renaming mean that the con-
tents of a generic package may look very different each time it is imported.
The copy-property means that we can allow this and still have both static
typing and a relatively simple implementation.

Naming Generic Imports

As mentioned, importing the same generic package twice in the same con-
text causes name collisions because of the copy-property. This can be
avoided by using class expansion or renaming to give the classes involved
new names.

But we may not always want to rename the classes, especially if the
generic package has many members and we need no other modifications.
Therefore, a generic import can be given a name using the “as” clause in the
generic import statement. If an import is named, all references to the mem-
bers of that instantiation of the generic package must be done by prefixing
the classes with the import name and a dot:

//Assume that the package contains a single class Set.
generic import SETPACKAGE as mysets; //import #1
generic import SETPACKAGE as yoursets; //import #2

class A {
void someMethod() {

mysets.Set s1 = new mysets.Set(); //refers to import #1
yoursets.Set s2 = new yoursets.Set(); //refers to import #2

Set s3 = new Set(); //is erroneous, there is no class Set
// availabe here without prefixing.

s1 = s2; //is erroneous, because mysets.Set and yoursets.Set
// are separate, nonrelated types.

}
}

9

Note that in this example, due to generic imports being copy imports,
mysets.Set and yoursets.Set are different, incompatible types even though
they are created by importing the same class in the same package. Note also
that, as a naming convention in order to improve readability in the Java-like
setting, I write package names with all caps, and import names in all lower-
case.

2.3.2 The “common” Qualifier

Generic packages may contain classes and interfaces (but not parameters)
declared with the “common” qualifier. The common qualifier is a way to by-
pass the copy-property of the generic import statement. Members declared
using it will be access-imported instead. That is, the generic import simply
gives us access to the common members of the package, instead of making
new instances of them for every import.

To make this work, there are many limitations on common members of
generic packages. They may not contain references to non-common mem-
bers of the same generic package: They may not reference or subclass para-
meters, explicitly or implicitly expandable classes and so on. Also, the mem-
bers of a common class or interface may not be renamed.

On the other hand, non-common members of a package may contain ref-
erences to common members. This can be very useful, especially because
an expandable class can be given a common supertype by inheriting a com-
mon class or interface. As the common type is not copy-imported, it can be
used as a supertype to all actual expansions of its expandable subtype. We
will see examples of this later in the thesis. For now, to illustrate the differ-
ence, assume we have a package similar to the one in the example above,
but containing a class List which is declared as common:

//Assume that the package contains a single, common class List.
generic import LISTPACKAGE as mylists; //import #1
generic import LISTPACKAGE as yourlists; //import #2

class B {
void someMethod() {

mylists.List l1 = new mylists.List(); //refers to import #1
yourlists.List l2 = new yourlists.List(); //refers to import #2

s1 = s2; //is allowed.
}

}

As List is common, it is the same type regardless of the originating im-
port. Therefore, the assignment s1 = s2 is allowed.

Background of the “common” qualifier

The common qualifier has not appeared in any previous works on GePEC.
During the work which resulted in chapter 3, I came upon the idea of using

10

classes and interfaces access-imported by generic packages as superclasses
to expandable classes. I went on to speculations about “special” Java-like
interfaces which would work the same as common-declared interfaces do
now. I also touched upon the possibility of using a qualifier to prevent
certain members of a generic package from being expandable.

After reading those suggestions, Stein Krogdahl suggested calling such
a qualifier “common” and allowing classes and interfaces declared with it
to be access-imported in the same way as my “special” interfaces. This led
to the birth of the mechanism as described above.

2.4 Type Parameterization

Type parameterization of classes1is a tried and tested way to obtain para-
metric polymorphism. This approach has, with relatively minor variations,
been used in many languages such as CLU [14], Eiffel [17], C++ [27] and
others. More recently it has been introduced into Java [36] and C# [35].

One of the major features of GePEC is type parameterization. Unlike
most such mechanisms, GePECs type parameters are on packages rather
than classes. A generic package may contain local types declared with the
keyword “parameter”. These are the type parameters of the package. They
can be used as types throughout the generic package, with properties as
defined by their constraints.

A parameter may be defined with the keyword “parameter”, a name and
an empty body delimited by curly brackets. Optionally one can add one or
more qualifiers to the declaration, and the body may contain field declar-
ations and method signatures2. These optional features of a parameters
declaration are known as the constraints or bounds of the parameter.

There are two special qualifiers available only to parameter declarations:

“concrete” means that only concrete classes (no abstract classes, interfaces
or the like) may be passed as actual parameters, meaning it is safe to
create objects of the parameter type.

“nonfinal” means that only types that can be subtyped (no final classes) can
be passed as actual parameters. This means that it is safe to subclass
the parameter type using “extends”. It is not allowed to subclass type
parameters that are not declared with this keyword. (If an interface
is passed, “extends” will be wrong in a Java-like setting, but this is a
purely syntactic issue.)

1Type parameterization as a concept is not restricted only to classes. Indeed, several
languages allow type parameterization of other language constructs, such as functions.
GePEC has parameterized packages, as explained in this section.

2The parameter body may not contain field initializations or method implementations.

11

When importing a generic package, a programmer must supply types
(actual type parameters) for each parameter in that package. Where those
parameters have constraints, the actual parameters have to match the con-
straints in some way. For example, if a parameter is constrained to have
a method “char myMethod(int a)”, then the actual parameter must have a
method myMethod taking an integer as a parameter and returning a char-
acter. It should also be called “myMethod”, but if it is not, it is possible to
use renaming to change the name of the constraint in the formal parameter.
This is further discussed in section 2.7.2.

When a generic import is done, every use of the formal parameter through-
out the generic package will be replaced with the actual parameter for the
import.

2.4.1 An Example of Type Parameterization Syntax

To illustrate the syntax of type parameters in GePEC, figure 2.1 shows an ex-
ample of a generic package with a type parameter. The class Cgt subclasses
the type parameter, and has two methods: The method isGreaterThan is
implemented using the methods isLessThan and isEqualTo, which the para-
meter is constrained to require. The method createNewC returns a new
object, either of the parameter type or of type Cgt, depending on the value
of the parameter to the method. The usability of this class should be ig-
nored, the example exists purely to illustrate the syntax of type parameters
in GePEC.

Figure 2.1 GePEC Type Parameter: Example of Declaration
generic package COMPARABLEEXTENSION;

concrete nonfinal parameter C {
boolean isLessThan(C c);
boolean isEqualTo(C c);

}

class Cgt extends C { //Okay because C is nonfinal

C createNewC(boolean oldversion) {
if (oldversion) {
return new C(); //Okay because C is concrete

} else {
return new Cgt(); //Okay because Cgt extends C

}
}

boolean isGreaterThan(C c) {
return !(this.isLessThan(c) || this.isEqualTo(c));

}
}

Note that the constraints on C use C itself as a type. Parameters may use

12

themselves or other parameters as types in their constraints. This is very
useful, and is discussed further in section 2.5.3.

Figure 2.2 GePEC Type Parameter: Example of Import
generic import COMPARABLEEXTENSION,

C := ComparableClass;

class ComparableClass {
int value;

boolean isLessThan(ComparableClass cc) {
return this.value < cc.value;

}

boolean isEqualTo(ComparableClass cc) {
return this.value == cc.value;

}
}

Figure 2.2 illustrates how the generic package of figure 2.1 may be used.
Note the way actual parameters are specified in the generic import state-
ment. In the effect list, a statement is written where the left hand side is the
name of the formal parameter in the expandable class, and the right hand
side is the actual parameter for this import. The formal and the actual
parameters are separated by the operator “:=”.

Note also that the actual parameter class may be declared after the im-
port itself. That said, we do not demand that generic import statements are
at the top of the file, the way import statements must be in Java. In many
cases it may improve readability to place them elsewhere in the code. They
cannot, however, be inside classes or similar constructs such as interfaces.

2.4.2 Differences from “classic” type parameterization

Most languages that support type parameterization, such as Java 1.5 or C++,
do so on the class level, or sometimes on functions or methods. In contrast,
GePEC parameters are common for entire generic packages. Package-wide
parameters have been used before, but isn’t common in currently popular
languages. Also, the most famous language with parameterized packages,
Ada, is not object oriented.

Letting parameters be common to the package has both advantages and
disadvantages compared to the more common approach: It is an advantage
when several classes need to be parameterized by the same class. Letting
them share a parameter makes life easier for the programmer when he uses
those parameterized classes.

On the other hand, bundling several classes together that are similar but
operate independently may be difficult, as explained at the end of section
2.3. Also, creating an entire package in order to parameterize a single class
may seem like overkill.

13

To counter the latter problem one might have traditional parameter-
ization alongside GePEC, or, perhaps better, one could make a shorthand
notation for generic packages containing a single class, as suggested in [13,
section 7.3]

2.4.3 Differences from “classic” GePEC

The main differences between Liberal and Classic GePEC when it comes to
type parameterisation are constraints and syntax.

Constraints

Constraints on parameters were not discussed in much detail in [13]. The
need for some sort of constraints (“specifications”) is stated, and it is sug-
gested that they be implemented either using subtyping or as some variant
of where-clauses. But no conclusion is reached on the matter in that paper.

Syntax

[13] uses a very different syntax from the version in this thesis. There, the
parameters are listed after the name of the generic package. This looks
more like the traditional approach of having a list of parameters after the
name of the block which is parameterized.

Declaring the parameters as blocks, as is done in this thesis, has ad-
vantages: If there are many such parameters, it becomes easier to comment
them separately. This syntax also allows us a tidy way of expressing just
about any kind of constraints. On the other hand, with the more traditional
approach it may be easier to see exactly what contents of the package are
parameters and what are not.

I feel that the syntax chosen for this thesis works well. The syntax in
[13] did not lend itself well to the addition of where-clause constraints.
This is the primary reason I changed the syntax. Another point was to use
the names of formal parameters to pass actual parameters, instead of their
order. I feel that using names for this purpose makes the code for generic
imports a lot more readable.

2.5 More about Type Parameter Constraints

The constraints I suggest for type parameters in this thesis (section 2.4) are
a combination of two traditional constraint mechanisms. These are subtyp-
ing [1] and where-clauses [8]. My suggestion also incorporates two relatively
untraditional constraint options: the concrete and nonfinal qualifiers.

14

Before proceeding, note that while the term “where-clause” has recently
been used in a different way in C#, this thesis only uses the term to refer to
the kind of constraints discussed under the same name in [8]: The ability to
constrain type parameters to have certain methods without saying anything
about supertypes.

2.5.1 Parameters with Fields

Note that parameters may be constrained to have certain member variables,
or fields. This is different from the typical where-clause, which focuses on
methods. While constraining a parameter to have a field is not likely to be
very useful in most cases, they have the potential of being advantageous in
certain exceptional situations.

In Java, all methods are virtual, while variables are not. If we want to
ensure that we always use the field in the class that is actually passed to us,
and not one with the same name in a subclass, just using a constraint that
demands “set” and “get” methods is not sufficient. Set and get methods
are virtual, while variables are not. It is not hard to construct an example
where this makes a difference, although most such examples are artificial
in nature.

It should be no harder to implement a constraint for requiring fields
than it is to implement a constraint for requiring methods. However, in a
language with Java-like interfaces, constraining a parameter to have a field
may be more constricting than we would like: No interface can ever be
passed to a parameter constrained to have a field. This, combined with
the limited usefulness, may be enough reason not to include this particular
type of constraint in GePEC.

It is testament to the rarity of situations when “field constraints” are
useful that we shall see little more of them for the rest of this thesis. Their
inclusion in this chapter serves only as a statement that they should be no
harder to implement than “method constraints” in GePEC, and that there
are situations, however rare, where they might prove useful.

2.5.2 Nonfinal Parameters

The “nonfinal” keyword allows us to subclass parameters. Many languages
with type parameterisation do not allow this, as it can make the mechanism
significantly more complex to implement. For example, some implementa-
tions of type parameterisation are implemented by automatically substitut-
ing generics with the generic idiom and dynamic typecasts. This obviously
prevents inheriting from a type-parameter, as inheritance cannot be repres-
ented by casts and type checks.

But GePEC type parameterisation is handled entirely at compile time,
just as C++ templates. We can therefore allow subclassing of type paramet-
ers, and the fact that generic imports already instantiate packages mean

15

that the heterogenous implementation which will most likely be necessary
to subclass parameters does not cause us further problems.

The “nonfinal” keyword allows us to explicitly demand that actual para-
meters should be possible to subclass. However, it is somewhat unneces-
sary: The information could be found by parsing the entire generic package
to see if the parameter is ever used as a supertype. It is included for the
same reason as the “concrete” keyword: To make it easy to see exactly what
types may be passed as actual parameters. Indeed, this is true for all con-
straints, as they could in theory be deduced by the compiler from the uses
of the parameter within the package.

2.5.3 F-bounds

A special case of the subtype constraint is the F-bound [6]. In F-bounded
type parameterisation, we allow recursion between type parameters. That
is, type parameters may be used in defining parameter constraints. GJ [4], a
suggested extension of Java with type parameterisation, supports F-bounds.
The generics mechanism that were introduced to Java in version 1.5 also
supports F-bounding. Let us look at an example written in that language.

Figure 2.3 F-bounded type parameterisation
interface Ordered<A> {

boolean lessThan(A other);
}

/* Note that the keyword extends is used to specify parameters
* even though the specification (Ordered) is an Interface. This
* is the syntax of Java 1.5.0.
*/
class Pair<E extends Ordered<E>> {

E elem1, elem2;
E min() {

if (elem1.lessThan(elem2)) return elem1;
else return elem2;

}
}

In figure 2.3, we have an interface Ordered and a class Pair. The Pair
class stores two elements, and has a method min which is supposed to
return the lesser of the two elements. To guarantee that the elements can
be compared to one another, we constrain their type to be a self recursive
subtype of Ordered. The objects of the element class must be comparable
to each other, not to the objects of some other class.

Figure 2.4 shows a class which would be accepted as an actual parameter
to Pair. The class passes itself as the actual parameter to Ordered when
implementing it. Therefore, the class is guaranteed to have a self-recursive
lessThan method.

16

Figure 2.4 Class IntegerWrapper
class IntegerWrapper implements Ordered<IntegerWrapper> {

int i;
public boolean lessThan(IntegerWrapper other) {

return this.i < other.i;
}

}

F-bounds in GePEC

GePEC has constrained type parameterisation, but it does not support F-
bounds in the same way as GJ or Java 1.5. GePEC type parameters are not
local to a class. It is therefore hard to refer to a class or interface which
should be parameterised in a certain way, such as “E extends Ordered<E>”.
Experimentation has only supported this conclusion: The fact that para-
meters are on packages, combined with the copy-property of the generic
import, mean that it is unlikely that a way can be found to express F-bounds
on subtype constraints in GePEC.

But GePEC offer another kind of F-bound: As seen in section 2.4.1, GePEC
parameters can appear in their own where-clause constraints, or the where-
clause constraints of other parameters in the same package. Using this, we
can write the Pair example in the following way:

generic package PAIRPACKAGE;

parameter OrderedElement {}
boolean lessThan(OrderedElement other);

}

class Pair {
OrderedElement elem1, elem2;
OrderedElement min() {

if (elem1.lessThan(elem2)) return elem1;
else return elem2;

}
}

As with normal F-bounded parameterisation, we achieve a self-recursive
constraint. We also have the advantage of doing away with the complexity
of actual parameters having to implement an interface. They simply have to
provide a lessThan method for comparison with objects of the same type.
If they do, then we have a match.

The fact that GePEC can express F-bounds only on where-clause-like con-
straints is a strong indicator that subtype constraints are not sufficient for
this mechanism. As where-clauses are at least as flexible as subtype con-
straints [8], the weakness of not being able to express F-bounds on subtype
constraints is unlikely to be a problem in practice.

17

2.6 Class Expansion

All classes declared in a generic package are expandable, unless they are
declared common (see section 2.3.2). An expandable class can be seen as
a potentially unfinished class. A programmer importing a generic package
may provide any expandable class in the package with an actual expansion.

The actual expansion is a class which is declared and implemented in
the context into which the generic package is imported. At compile time, an
expandable class and its actual expansion is merged into a single class with
the name of the actual expansion. All references to the expandable class
are retyped to the actual expansion.

If an expandable class is not given an actual expansion, then the class is
imported as it is. Note, however, that one should view this as if the system is
creating an empty actual expansion with the same name as the expandable
class. It is important to view it this way because the expandable class is
only a temporary type, for use within the generic package but not usable as
it is in the context into which the generic package is imported. The actual
expansion is a real type, usable in the context in which it is declared. It
gives that context indirect access to the expandable class, this being only
way that the importing context may make use of an imported expandable
class. This distinction will become more important later in the thesis.

Note that if a generic package is imported into another generic package,
the actual expansions of its expandable classes may themselves be expand-
able.

2.6.1 Static Inheritance

The way an expandable class is merged into its actual expansion creates a
kind of “static inheritance”: The actual expansion “inherits” the contents of
the expandable class. The word “static” is used because the mechanism can
be implemented so as to be invisible to actual running code: All necessary
actions are performed by the compiler and there are no type relationships
to worry about.

Note the major differences between static inheritance and normal inher-
itance:

• First of all, the original expandable classes do not exist as far as the
context into which they are imported is concerned. Only the actual ex-
pansion, into which the expandable class has been merged, is defined
there.

• Secondly, classes created from the same expandable class using static
inheritance do not normally share any type relationship. They will
only do that if the expandable class has a common or access-imported
supertype, or if the actual expansions declare the same supertype.

18

• Finally, all references to the class that is being expanded will be changed
so that they are typed with the actual expansion.

Even with these differences, “static inheritance” is similar to standard inher-
itance and can often be used in much the same way. The differences may
seem mostly disadvantagous. As we shall see, there are also advantages
that may make class expansion a better choice than inheritance in some
situations, especially when we want multiple inheritance or covariance.

2.6.2 An Example of Class Expansion

The following example illustrates the syntax and use of expandable classes.
Figure 2.5 shows a generic package with a very simple expandable class.
The class, Person, contains a field “age” and a method for deciding whether
another person is younger than this person.

Figure 2.5 Expandable Classes: Example of Use
generic package PERSONPACK;

class Person {
int age;

boolean olderThan(Person other) {
if (age > other.age) return true;
else return false;

}
}

Now, consider the situation where someone writing a program needs
this functionality, but they also want the class to have a field to keep the
name of the person, and a method to check if two people have the same
name. As they are writing a system for keeping track of members in some
club, they also want their class to be called “Member”. The way to do this is
illustrated in figure 2.6.

Figure 2.6 Expandable Classes: Example of Use
generic import PERSONPACK,

Person => Member;

class Member {
String name;

boolean hasSameNameAs(Member other) {
if (name.equals(other.name)) return true;
else return false;

}
}

19

Note the way we specify the actual expansion. The generic import state-
ment gets a clause specifying the expandable class on the left hand side
and the actual expansion on the right hand side, with the operator “=>” in
between. It should be read as “Person expands into Member”.

In effect, we get a class Member which has properties as if it was written
exactly like the one in figure 2.7. Note the way the type of the argument
to the olderThan method will change from Person to Member as part of the
expansion.

Figure 2.7 Expandable Classes: Example of Use
class Member {
int age;
String name;

boolean olderThan(Member other) {
if (age > other.age) return true;
else return false;

}

boolean hasSameNameAs(Member other) {
if (name.equals(other.name)) return true;
else return false;

}
}

In this case, we do not gain much compared to making a subclass Mem-
ber of some class Person. But later in this thesis we will see many situations
where class expansion is advantageous.

2.6.3 Explicitly Expandable Classes and Expandable Methods

Using the keyword “expandable”, a class may be declared “explicitly expand-
able” in a generic package. An explicitly expandable class differs from an
implicitly expandable class in two ways: First, it must explicitly be given an
actual expansion at import time. Second, it may contain methods declared
with the expandable keyword.

These expandable methods have no implementation in the expandable
class. They are there only to ensure that the actual expansion does have
an implementation for a method with that signature. The exception is if
the actual expansion is itself an explicitly expandable class, in which case it
may simply have an expandable method with the same signature.

The most simple way of providing implementation for an expandable
method is to write a method in the actual expansion with the same signa-
ture. There are two other ways of providing the method, however:

• If the actual expansion is shared with another expandable class (see
section 2.6.7) and the other expandable class has a non-expandable

20

method with the same signature, then that method will replace the
expandable method.

• If the actual expansion declares a superclass and this superclass has
a method with the same signature, then that method replaces the ex-
pandable method.

Note that in the second case, expandable methods behave very different
from other methods in expandable classes. Those methods would override
any method with the same signature in the superclass of the expansion.
This is not the case with expandable methods. Indeed, expandable methods
can be viewed simply as a rule saying “the actual expansion must, somehow,
have a method which matches this signature”.

Abstract methods?

While we could perhaps introduce rules that let abstract methods be given
an implementation in the actual expansion, and even rules that let abstract
classes be given non-abstract actual expansions as long as all their abstract
methods were implemented, the expandable method still has one advant-
age:

We can use the new statement to order objects created of an explicitly
expandable class. Afterall, we know that it will be replaced in the actual
expansion. The same is not true for abstract classes. This is the reason
that I have introduced expandable methods instead of special rules for the
abstraction mechanism.

Expandable Methods and the “static” qualifier

Assuming a Java-like concept of “static”, we should note that expandable
methods may be replaced by normal or static methods, as long as they
themselves are not declared static. The reason is that static methods can be
called from both static and nonstatic contexts. Therefore, it does not mat-
ter if a nonstatic expandable method is replaced by a static implemented
method.

The opposite is not true, as a static expandable method might be called
from a static context. Letting it be replaced by a nonstatic method would
therefore not work.

Allowing a non-static expandable method to be replaced by a static one
may be useful in some cases. It gives the mechanism flexibility: If there
is no need for an expandable method to be static in the expandable class
itself, the choice of whether it is static or not is postponed until the actual
expansion is written. Note that the same rule may be applied to parameter
constraints: There is no problem with letting non-static constraints accept
static members in the actual parameter.

21

Explicit versus implicit expandable classes

Explicitly expandable classes are the only kind available in Krogdahls paper
[13], although he does mention the possibility of implicit ones. In my work
I have found that allowing implicitly expandable classes with the option
of implicit actual expansions work well in most cases. The addition of ex-
pandable methods, which were not part of GePEC as presented by Krogdahl,
made me include the option of explicitly stating a class as expandable.

Of course, the information that a class must explicitly be given an actual
expansion could be gleaned from the presence of any expandable methods.
The requirement of the class also being explicitly declared as expandable is
simply to improve readability.

An example of an explicitly expandable class

Illustrating syntax, the following generic package contains an explicitly ex-
pandable class. The class contains an expandable method, implementation
for which must be provided by the actual expansion. The point of the class
is to provide the shell of a class meant to hold an array of integers and
providing functionality to sort these numbers. Some other package may
want several such list classes, but with different sorting algorithms. This
generic package may be imported once for each such class, so that only the
actual implementation of the sorting algorithm needs to be written for each
of them.

generic package SORTEDNUMBERS;

expandable class sortedlist {
int [] content;

void put(int location, int number) { ... }
int get(int location) { ... }
boolean contains(int number) { ... }

expandable void sort();
}

Note that in this particular case, an abstract class would perhaps be a
better choice than this. However, as we shall see later in the thesis, there are
situations when class expansion is preferrable to inheritance. In such cases,
explicitly expandable classes provide an alternative to abstract classes.

2.6.4 Overriding methods in the actual expansion

The actual expansion may declare methods with the same names and sig-
natures as methods in its expandable class. In this case, the version in the
expandable class should be automatically renamed to something suitable,

22

in our syntax “classname#methodname”, where classname is the name of
the expandable class and methodname is the name of the method.

The exception to this is expandable methods, which are simply ignored
after checking that the actual expansion replaces them.

As an alternative to automatic renaming, one could simply treat this
kind of overriding as a name collision. Then the overridden method would
have to be renamed as part of the generic import. Unfortunately the kind
of renaming we are dealing with here needs to be special, to avoid colli-
sion with the solution to a problem that we will deal with in section 2.7.3.
This means that we might as well have automatic renaming of overridden
methods.

Overriding methods in the actual expansion were not mentioned in [13],
but the ability to leave certain methods open for later implementation can
be very useful.

A potential problem: Overriding constructors

Depending on the underlying language, overriding constructors from an
expandable class in its actual expansion may prove to be a problem. There
is no doubt that doing so might be useful: As we may add fields in the
actual expansion, we may well want to alter a constructor so that it now
initiates these fields as well.

But what happens to the old constructor? If it is treated like meth-
ods, the constructor of a class MyClass should be renamed. Renaming con-
structors can be problematic, however: What about calls to super(), the
constructor of the superclass, in the renamed constructor? Renaming the
constructor makes it possible that it could be called directly from a method,
and direct calls to constructors (such as super()) are forbidden in methods.

Two simple solutions present themselves: A constructor in an expand-
able class can be made to disappear if overridden, no automatic renaming
is performed. This is unfortunate however, as we may have to write a lot of
constructor code all over again just to add initiation of a single field. An-
other solution might be to rename it as above, but with the limitation that
the renamed version can only be called from within a constructor in the
same class, and that if it is, its contents are inlined (copied) into the code
where it is called.

For a Java-like host language, the latter approach seems better and not
much harder to implement. This is a question which does depend on the
host language, however, and someone making an actual implementation
will have to consider the problem based on that.

2.6.5 Expandable classes and actual expansions as subclasses

An expandable class can be declared to inherit a class, but if it is, then
its actual expansion cannot be declared to inherit any class. The actual

23

expansion will be inheriting the same class as its expandable class, however.

On the other hand, if the expandable class was not declared to inherit
any class, the actual expansion may optionally be declared to inherit some
other class.

These considerations are only neccesary when the programming lan-
guage does not support multiple inheritance.

2.6.6 Expandable classes and actual expansions as superclasses

It is fully possible to subclass (using normal inheritance) an expandable
class, as long as it is done within the same generic package as the expand-
able class is declared. Outside the package, it is possible to subclass the
actual expansion of an expandable class.

Subclassing an expandable class has one interesting and useful side-
effect. When the expandable class is later given an actual expansion, its
subclasses suddenly inherit the entire actual expansion, not merely the ex-
pandable part of it. This allows a programmer to expand the root class of
an inheritance tree to, for instance, add fields and methods that are needed
in the entire tree.

In [13], Krogdahl mentions this feature as a possibility. In my work I
have found the usefulness to be relatively limited, but nice to have available
in certain cases.

A potential problem: inheritance loops

Allowing expandable classes and actual expansions to be both subclasses
and superclasses does have one unfortunate consequence: It makes it pos-
sible to create inheritance loops.

Consider the generic package given in figure 2.8 and its use in figure
2.9. According to the rules laid down so far, this is a perfectly legal generic
package (and it should be), and a legal use of it (which it should not be).

Figure 2.8 Inheritance loop part 1
generic package GP;

class A { ... }
class B extends A { ... }

class S { ... }
class T extends S { ... }

After expansion is performed, class newA will inherit class T. T will in-
herit class newS, which in turn inherits from B. Finally, B is the subclass of
newA. We have an inheritance loop, which obviously should not be legal.

24

Figure 2.9 Inheritance loop part 2
generic import GP,

A => newA,
S => newS;

class newA extends T { ... }
class newS extends B { ... }

Figure 2.10 Inheritance loop illustrated

Before expansion After expansion

newA newS

B T

Generic Import of GP

GP

A

B

S

T

Figure 2.10 illustrates the class hierarchy before and after the generic im-
port.

Fortunately, detecting this problem is relatively easy. A compiler can
simply search for loops of the above kind and issue an error if any exist.

2.6.7 Multiple static inheritance

It is possible for two or more expandable classes to share an actual expan-
sion. Also, different imports of the same expandable class can share an
expansion. The only requirements are:

1. If the underlying language does not support multiple inheritance, no
more than one of the expandable classes may have a declared super-
class.

2. Name collisions between methods and fields must be sorted out by re-
naming (see section 2.7). If two instances of the same class are used,
every single field and method causes a name collision of this type. Col-
lisions may also occur between constructors, causing a slightly worse
problem. This situation is treated later in this section.

In this way we get what can be called “static multiple inheritance”: The
resulting merged class contains the features of all the expandable classes
as well as the actual expansion. This should be easier to implement than

25

full multiple inheritance, and gives us some of the same advantages. The
usefulness of static multiple inheritance is treated in detail in chapter 3.

Note that in one case, the first of the requirements is possibly too strict:
If two expandable classes have the same declared superclass, then it might
be possible to give them the same actual expansion: The resulting class
would then be a normal subclass of the inherited class. The net effect would
be similar to that of a “virtual base class” in C++. Someone implementing
GePEC in practice should consider this possibility. For this thesis, the sim-
pler solution of requirement one above will be assumed in most cases.

A potential problem: Constructor collisions

What happens if two or more expandable classes are given the same actual
expansion, and they have declared constructors with the same amount and
types of arguments? If we treat constructors like methods, they will have to
be renamed. This causes trouble with calls to super(), however, as discussed
in the constructor override problem on page 23.

The solution can be relatively easily solved, however, as long as we have
a working solution to the constructor override problem: Simply demand
that any colliding constructors are overridden in the actual expansion. If
the old constructors were renamed, they can be called by the new one easily
enough. Other solutions may be more or less satisfactory than renaming in
this case.

2.6.8 Other expandable types

There is no real reason why only classes can be expandable. Interfaces, for
instance, could easily be expandable. Of course, their actual expansions
would have to be interfaces, not classes. The concept can most likely be
expanded to all kinds of declarable types, and expansion for these should
work in much the same way as it does for classes.

With expandable interfaces, we need one extra rule: If an interface is
expanded to be given a new method declaration, all classes in the same
import implementing it must also be expanded to have an implementation
for the new method.

This thesis deals mostly with expandable classes.

2.7 Renaming

In addition to type parameterisation and class expansion, GePEC allows re-
naming. Non-common members of a generic package may have their mem-
bers renamed. All uses of those members in the package will be changed to
reflect the new name. Non-common members of generic packages, with the

26

exception of parameters, may also be renamed themselves. This functions
in the same way as providing them with empty actual expansions with a
different name, but we save having to write an actual expansion class with
an empty body.

Note that renaming not only applies the code actually written in the
generic package we are importing, but also for code that is copy-imported,
using generic imports, into that package.

2.7.1 The Syntax of Renaming

Figure 2.5 on page 19 showed a simple generic package with a class Person.
Figure 2.11 imports that package, renaming its features into norwegian in
order to outline the syntax of renaming.

Figure 2.11 Renaming Syntax Example
generic import PERSONPACK,
Person->Menneske,
Person.age->alder,
Person.olderThan(Person other)->eldreEnn(Person other);

}

The following rules govern renaming:

• Renaming is done using the “->” operator in a generic import.

• When a class is renamed, it cannot also be given an actual expansion.
If a class is given an actual expansion, any renaming should be done
by giving the actual expansion its new name. It is possible, however,
to give a class an actual expansion and still rename its members.

• When renaming a member of a class, the name of that class must be
specified as part of the left hand side of the renaming operator, using
dot-notation. This in order to know which class the renamed entity is
a member of.

• When renaming a method, its parameters must be listed in case the
method is overloaded. If a rule is introduced to rename all over-
loaded methods simultaneously, then this seems unnecessary. Note
that some means of keeping it separate from a variable with the same
name might still be necessary.

2.7.2 Renaming and Type Parameters

Be sure to note the fact that type parameter constraints (fields and meth-
ods) can be renamed. This is very useful, and makes the type parameter
constraints of GePEC, as presented in this thesis, more flexible than many

27

other constraint mechanisms. Renaming of constraints means that the con-
straint is reduced to only requiring a method with a certain return type
and a certain number of arguments typed in a certain way. The name is
unimportant, as the parameter may have its constraint name renamed to
whatever fits our purposes.

2.7.3 Renaming and Overriding

Renaming is for the most part a straightforward mechanism, but it does
lead to two related and somewhat problematic questions: First, what hap-
pens when we rename a method which is overridden in a subclass? Second,
what happens when we rename a method which overrides a method in a su-
perclass (or interface)? If ignored, either situation can let renaming create
unforeseen sideeffects.

For example, in the generic package detailed below, we have classes Sol-
dier, Sharpshooter (inheriting Soldier) and Tester. The two former each have
a method Shoot which returns true with a certain probability: The probab-
ility of that kind of soldier scoring a hit. Tester has a method which takes
a Soldier object and calls shoot ten thousand times, counting the hits and
returning the average number of hits per one hundred firings.

generic package GP;

class Soldier {
boolean shoot() {

//return true with 25% chance, false otherwise
}

}

class Sharpshooter extends Soldier {
boolean shoot() {

//return true with 75% chance, false otherwise
}

}

class Tester {
//Returns the % of hits out of 10000 shots
int percentageHits(Soldier s) {

int tmp = 0;
for (int i=0; i < 10000; i++) {
tmp += s.shoot();

}
return tmp/100;

}
}

Now, what happens if we want to rename “shoot” in Soldier to “fire”?
As the parameter s in “percentageHits” is of type Soldier, calls of “s.shoot”
are affected by the renaming, becoming “s.fire”. Which, if we ignore the
questions at the beginning of this section, means that Sharpshooters now

28

score as badly as normal Soldiers on the shooting test, because their “shoot”
method no longer overrides the correct method in Soldier.

The other way around is no better, as renaming “shoot” in Sharpshooter
to “snipe” also causes it to fail at overriding. And a programmer wishing to
perform renaming may not be aware of all the overrides in the package he
is using. Therefore we need another solution.

A simple answer to both questions, which feels natural and avoids prob-
lems with unforeseen side effects, is “cascading renaming”: If a method
is renamed, all other methods with the same signature in sub and super
classes are also renamed in the same manner. So if we rename “shoot”
in Soldier to “fire”, we have also renamed the corresponding methods in
Sharpshooter.

It may be wise to also rename all other methods in sub- and superclasses
with the same name, not just those with the same signature. This will keep
overloaded methods together. This may be critical to avoid unforeseen side
effects of renaming in some cases. One example might be if overloading
is used to separate objects of a class from objects of its subclass, and we
rename one of the methods.

Cascading Renaming

Cascading renaming works well in subclasses: The subclasses must be within
the same generic package. If not, then they are subclasses of some ac-
tual expansion instead of the expandable class itself, and therefore not af-
fected by the renaming operation. Furthermore we know that they are not
common-declared, as a common type may not refer to a non-common one.
This means that cascading renaming is safe for the subclasses of the class
whose members we are renaming. If there are references to them anywhere,
these references will be within the same generic package, and therefore also
subject to the renaming operation.

But in the superclass direction, cascading can be problematic. Cascad-
ing renaming works well for expandable superclasses. Because of the copy-
property of generic imports, this includes classes from other generic pack-
ages that have been imported.

The problems start when the method we rename overrides a method
in a common-declared supertype. As they are access-imported, common-
declared types may be accessed from outside the generic package. There-
fore, we cannot rename their contents. If we did, our code would be incom-
patible with other imports of the same package, defeating the purpose of
the common-qualifier.

It is an open question what to do in these cases. Cascading renaming
can be done up to the ancestor which first inherits the common (or access-
imported) supertype. But there things stop. For this reason, it seems un-
avoidable that renaming methods inherited from common supertypes will

29

have the possibility of causing unforeseen behavior. To avoid this, we ban
renaming of such methods. Renaming, then, can only be done for methods
that originate in an (implicitly or explicitly) expandable class or interface.

This is unfortunate, because renaming is our means of solving other
problems such as name collisions. Forbidding members originating in com-
mon supertypes from being renamed is nevertheless assumed as the solu-
tion of choice in this thesis, because better solutions are unavailable.

Cascading renaming and expansion overrides

Note that the renaming we used to obtain sensible overriding (see section
2.6.4) must not cascade, or its entire purpose is defeated. This supports us-
ing automatic renaming in the case of overriding as part of class expansion.

Other solutions

Possibly, the question about renaming overriding and overridden methods
can be answered in some other way than simple cascading renaming. It
might, for example, be possible to solve it using some sort of implementa-
tion on the virtual table level, where renaming might not be held as “abso-
lute” but simply a way to access different variables using different names
in different scopes. The merits and flaws of such a solution, as well as the
possible existence of other solutions, are left as open questions.

2.8 Summary: Generic Packages with Expandable Classes

In this chapter, I have presented Liberal GePEC and explained how its mech-
anisms work. I have discussed anticipated problems with some of the mech-
anisms, and outlined possible solutions to these problems.

It should be clear by this point that GePEC is in many ways a very power-
ful mechanism, but also one that has its weak points. Some of the features
collide, such as renaming and the common qualifier, causing problems that
it may be difficult to find suitable solutions for. Avoiding such problems
will be a major goal when looking for a style of programming suitable for
GePEC later in the thesis.

30

Chapter 3

Static Multiple Inheritance

It was explained in section 2.6.1 that class expansion can be viewed as
“static inheritance”. One of the main advantages of this is that static mul-
tiple inheritance carries with it fewer problems than normal multiple inher-
itance, yet offers some of the same advantages. In this chapter I will look at
static multiple inheritance in more detail, as it is one of the most promising
aspects of GePEC. But first, I will describe what the advantages of normal
multiple inheritance are, and explain why so few languages allow it.

3.1 Multiple Inheritance

Multiple inheritance is a rather controversial concept. In theory, and from
a modellers viewpoint, it is desirable: A class can be composed by inherit-
ing all classes relevant to it, inheriting both implementation and type. But
there are several practical problems. There are semantic questions, such
as the infamous “diamond problem”, and there are problems regarding im-
plementation. Some also claim that multiple inheritance leads to poorly
designed programs. Others reply that this only comes from using it the
wrong way, and point out that wrong use of single inheritance can also lead
to poor designs.

Today, C++ and Eiffel are the most noteworthy languages that offer full
multiple inheritance. Even those using these languages tend to use multiple
inheritance with caution. And that multiple inheritance has its enemies is
never more obvious than if you search for the term on the internet and read
peoples opinions of the mechanism: “I got too close to multiple inheritance,
and now the hair on that side of my head is falling out” or “Oh yeah? Me,
Multiple Inheritance and my wife were mutually acquainted, and now I’m
pretty darn sure my kids aren’t mine...”.

But multiple inheritance is not all bad. If it was, it would not be a part
of C++ and Eiffel, and other languages would not seek to offer alternatives
such as the interface-mechanisms of Java and .NET. Indeed, it can be a very
useful mechanism.

31

We will return to the problems of multiple inheritance in section 3.1.2
and then look at some alternatives in section 3.1.3. But first, we will look at
what multiple inheritance can be good for.

3.1.1 The Benefits of Multiple Inheritance

Inheritance gives us two major benefits: Subtyping and implementation re-
use. Multiple inheritance simply allows a class to be a subtype of more than
one class, as well as to reuse the implementation of several other classes.

Subtyping is very valuable, as subtype polymorphism means an object
of a class can be used instead of objects of any of its superclasses. It is
often useful for a class to have more than one supertype, and it is hard
to emulate this using other mechanisms. The solution of Java and .NET
has been to introduce so-called interfaces, which are explained in section
section 3.1.3. Interfaces give us multiple subtyping but not implementation
reuse.

Reusing the implementation of more than one class allows us to com-
pose complex classes from many simple classes. This is useful because
simple classes are often easier to maintain than complex ones. Further-
more, the ability to reuse implementation from more than one source can
be critical in eliminating code duplication from a system. Implementation
reuse can be achieved without inheritance however, usually by forwarding
certain method calls to other objects. This is called delegation, and is ex-
plained in section 3.1.3. But in some cases, inheritance is preferable com-
pared to such techniques.

Snyder’s basic uses for multiple inheritance

On Panel P2 of OOPSLA’87, Alan Snyder spoke about the importance of mul-
tiple inheritance, as reported in [7]. He divided the basic uses of multiple
inheritance into three classes:

Multiple Independent Protocols (MIP): This is the use of multiple inherit-
ance where a class is created by combination of independent super-
classes. The example given by Snyder was a TextWindow class inher-
iting Window and IOStream classes.

The intention of MIP is both subtyping and implementation reuse:
Subtyping gives us the opportunity to use objects of the new class
in any context expecting either of its superclasses. Implementation
reuse is created as we use the implementations of the superclasses to
make our new class.

Mix-and-match: Here, several classes have been created specifically for the
purpose of subsequent combination. One creates a library of light-
weight classes to be combined by a programmer by means of multiple

32

inheritance. Snyder supplies the example where classes Button, Act-
iveBorder and Sprite are inherited by MyButton. The parent classes are
not entirely independent of one another, but are designed specifically
to work together in any combination.

Again, the intention is both subtyping and reuse. Other parts of the
library may use the parent classes as types, making it possible to pro-
cess objects of any class inheriting those classes. The programmer is
able to create the classes he wants with a minimal amount of coding,
reusing the librarys implementations as he sees fit.

Submodularity: Someone designing a class may well realize that certain
features are independent of the rest of the class. In these cases, those
features can often be “factored out” into their own independent class,
which is then used by the main class in some way, for example through
inheritance. This increases the modularity of a system, which is good
for maintainability and reuse potential. It becomes even more useful
if the same features can be factored out of several different classes,
as this allows code which is used in several places to be written only
once.

If several sets of features can be factored out of a class, one may well
want to use multiple inheritance to include them in the class one is
actually designing. This is what Snyder called Submodularity.

The main intent of submodularity is that of splitting up and reusing
implementation. We want to split up classes in smaller, more easily
manageable fragments. Subtyping is less important here, as we do not
need it to split up classes. Even so, if the features that were given their
own class are common to several classes, we may want to use the new
class as a supertype to these.

A famous example of multiple inheritance

C++ is probably the most widespread of the languages which feature mul-
tiple inheritance. When multiple inheritance was introduced to the lan-
guage, one of the payoffs was a significant simplification of the IO stream
library1[27, chapter 12].

This example is often used to illustrate the usefulness of multiple in-
heritance. It is a typical case of submodularity, where existing classes are
re-factored into a better hierarchy using multiple inheritance.

1It should be noted that some sources, such as Scott Meyers in [34], claim that Jerry
Schwartz, one of the men behind the IO stream library of C++, later said that if he were
to design that library again, he would have avoided multiple inheritance. I have not been
able to find the reasoning behind, or the date and location of this alleged statement.

33

3.1.2 Problems with Multiple Inheritance

Having seen briefly what multiple inheritance can be used for, we turn to the
classical problems with the mechanism: The Diamond Problem, the compu-
tation of relative addresses and name collisions. The problem with using
multiple inheritance in a way which leads to poor designs has also been
mentioned. In this section, I will explain these problems in more detail.

The Diamond or Repeated Ancestors Problem

This is perhaps the most classical of the problems regarding multiple in-
heritance. In short, it can be defined with the following question: How do
we handle repeated ancestors? A repeated ancestor is a base class which
occurs more than once among the ancestors of a class.

The problem got its more famous name, the Diamond Problem, after
the shape of its simplest case, as shown in figure 3.1. Here, Parent1 and
Parent2 are both subclasses of Ancestor. When Child inherits both Parent1
and Parent2, it gives rise to the diamond problem: Ancestor now occurs
twice in the hierarchy, once as the parent of Parent1 and once as the parent
of Parent 2.

Figure 3.1 The Classic Diamond Problem

Ancestor

Child

Parent2Parent1

The problem is how to interpret this situation. There are two possib-
ilities: Child might end up with one internal instance of each of the state
variables of Ancestor, or it might end up with one such instance for every
time Ancestor appears above it in the inheritance hierarchy.

Neither choice is always desirable. First, consider the case where class
Person is the superclass of both classes Citizen and Politician. The class
President should inherit both of these. Clearly, class President only needs
one set of the instance variables of Person.

34

On the other hand, the class Person might inherit the class Personality.
Consider a class Schizophrenic, representing a person with two personalit-
ies. This class should inherit Person. That gives us the data about a person,
and a single personality. We also want it to inherit Personality directly, be-
cause a Schizophrenic should have two personalities. In this case, we clearly
want to inherit two instances of the contents of Personality.

In order to choose between these interpretations, C++ has the concepts
of virtual and non-virtual inheritance. Virtual inheritance leads to a shared
version of the superclass, desirable in the President example. Non-virtual in-
heritance leads to the situation needed in the Schizophrenic example. Non-
virtual inheritance is the default. Virtual inheritance has to be declared for
each base class which should be shared if a diamond problem later appears.

The approach works, but it is a disadvantage that whether a method is
virtual or not has to be decided so early. In the President example, it would
have to be declared when writing the Citizen and Politician classes, as these
need to inherit Person virtually. But the designers of these classes might
not know how the classes are going to be subclassed later.

Solving the Diamond Problem in a better way than C++ would require
choosing between the solutions at a later moment. Preferably, we should
make the choice in the class where the choice makes a difference. In other
words, in the declaration of the class in which the repeated ancestors first
appear as repeated. In the examples above, that would mean classes Pres-
ident and Schizophrenic.

Name and Signature Collisions

A name or signature collision occurs when two or more base classes declare
variables with the same name, or methods with the same signatures. In
these cases, we need to decide which inherited method or variable is used
in context of the inheriting class.

Name collisions can also occur as a result of the diamond problem: If
a “non-virtual” approach is chosen, there will be name collisions between
each and every one of the members of the repeated ancestor.

Solving collisions can be done by requiring explicit choice in ambiguous
cases. Possibilies for making that choice include aliasing mechanisms and
requiring variable and method names to be prefixed by the name of the
superclass from which it is inherited. The latter method is unfortunate,
however, as it does not work well for classes that inherit the same class
more than once in a direct fashion.

Note that for the rest of this thesis, the term “name collision” will be
used about both actual name collisions and signature collisions. When used
about methods the meaning is signature collisions, when used about vari-
ables, name collisions.

35

Computing Relative Addresses

A common way of accessing the contents of objects is to compute the ad-
dresses of these contents relative to the start of the object’s representation
in memory. When inheriting from a superclass, the content inherited is rep-
resented first, so that the relative addresses of that content is the same in
this class as it is in the superclass. This makes it easy to implement subtype
substitutivity.

Multiple inheritance makes this problematic. For obvious reasons, only
one of the superclasses can have their content at the start of the repres-
entation of the subclass object. This means that relative addresses will not
be correct with regard to the other superclasses, and an extra offset will
have to be added when accessing the object as if it was an object of those
superclasses.

While this problem can obviously2be solved or avoided, static multiple
inheritance is much simpler in this regard. As static inheritance does not
imply subtyping, requirements that relative addresses should be equal in
static subclasses and static superclasses is unnecessary.

Poor Design using Multiple Inheritance

A major source of poor inheritance-based designs is the use of inheritance
to model class relationships that are not strictly “is a” relationships. Letting
Pie inherit from Sugar and Flour, for instance, may let Pie access the data
we needed from Sugar and Flour, but it is still poor design. This kind of
problem is made by inexperienced programmers in any object oriented lan-
guage, but the temptation may be greater with multiple inheritance present.

With multiple inheritance, there is also another common source of poor
design. It appears in situations when we have a set of classes and a need
for several different combinations of these classes. A programmer can try
to create all these combinations using multiple inheritance. Consider figure
3.2 as an example. This can become a problem when the number of base
classes is high and we may need almost any combination of them.

Now imagine adding a couple of base classes, such as MusclePowered-
Vehicle and FlyingVehicle, and trying to keep adding classes to exhaust all
possible combinations.

In this case, a better design would have been to have a class vehicle,
with a pointer to some subclass of a class Powersource and a pointer to
some subclass of a class Terrain.

As we can see, multiple inheritance allows us to make poor design de-
cisions that would not have been available to use if not for that mechanism.
So when using multiple inheritance, one needs to be careful: Not all poor
designs are as obvious as the ones described above. But experience with the

2“Obviously” because there are languages that allow multiple inheritance.

36

Figure 3.2 Very poor design

mechanism should reduce the chance of such errors, probably to the point
where they do not occur often in practice.

3.1.3 Common Alternatives to Multiple Inheritance

With multiple inheritance being a problematic yet useful mechanism, there
have been many suggested alternatives. Two of the most successful ones
are delegation and interfaces.

Delegation

Delegation is a rather simple technique, where an instance of one class
keeps a pointer to an instance of another class and forwards certain method
calls to this other instance. While this does not give us a type relationship
between the two classes, it does allow the delegating class to “reuse” the
implementation of the delegate. Delegating access to variables is slightly
more difficult and tends to rely on encapsulation of the variable in set- and
get-methods. It should be noted that delegation is a lot more powerful a
mechanism in dynamically typed languages such as Smalltalk, as the fact
that delegation does not imply a type relationship does not matter to these
languages.

If we ignore the possibility of visibility modifiers, delegation can be used
to gain the code reuse advantages of inheritance, even multiple inheritance.
However, the lack of a type relationship between delegating and delegate
classes prevents it from fully representing an “is a” relationship. Delega-
tion also costs us quite a bit in glue code, as the methods forwarding the

37

calls have to be written. While delegation can be automated, relieving us
from writing these calls ourselves, none of the more popular languages
today offer this. The forwarding of calls may also be problematic concern-
ing runtime speed, although this is less important considering the speed of
current computers.

The main advantage of delegation is that it provides reuse of code from
multiple sources without requiring any other mechanisms than those provided
by typical object oriented languages. It is not hampered by the problems of
multiple inheritance either, although in the case of repeated ancestors and
name collisions this is more a result of the limitations of delegation. The
lack of subtyping leads to name collisions being unproblematic: We can
give new names to the forwarding methods. The fact that we have no way
of sharing the superclass representation of classes we delegate to (should
they inherit the same class) means there is no diamond problem, as the
choice of “virtual” vs “non-virtual” inheritance is not present.

Interfaces

Subtyping is a major advantage of inheritance. Multiple subtyping is per-
haps the most sought-after advantage of multiple inheritance, especially as
this cannot be simulated by simple techniques such as delegation.

The solution in both Java and C# has been to introduce so-called inter-
faces. An interface is basically an abstract class containing only abstract
methods. It may contain no instance variables or method implementations,
but it can be used as a type. The specification of Javas interfaces can be
found in [10, chapter 9]. The .NET version functions in much the same way.

A class is allowed to implement, that is inherit, as many interfaces as
it wants. The only requirement is that it must provide implementation for
the methods declared by the interfaces it implements. The result is mul-
tiple subtyping, as a class may have several supertypes. This means that a
variable typed with an interface can be used to refer to objects of any class
which implements that interface.

Interfaces work well along with techniques such as delegation. As long
as no name collisions occur, the delegating class may have the same su-
pertype as its delegate: An interface. In many cases, this is a sufficient
alternative to multiple inheritance.

Name collisions can occur with interfaces. When two interfaces declar-
ing the same method are implemented by the same class, this is not initially
a problem. The class simply has to provide that method.

But in some cases we might have wanted different implementations
for each interface. An example of that might be interfaces Cowboy and
ScreenItem, both declaring the method “draw”. Code that uses these in-
terfaces as types probably expect very different behavior from those two
draw-methods.

38

This inability to handle certain name-collisions in a sensible way is the
main limitation of interfaces. Luckily, it occurs quite rarely in practice.

3.2 Static Inheritance

In this thesis, we define static inheritance as follows: If one class statically
inherits another, the content of the static subclass is the union of the con-
tents of the static superclass and the contents actually declared in the static
subclass. The contents declared in the static subclass can use the content
“inherited” from the static superclass as if it was declared locally.

We can think of static inheritance as if the content of the superclass
is copy-pasted into the subclass. Unlike inheritance, this does not imply a
type relationship between the two classes3. Also, static inheritance ignores
visibility qualifiers. For example, in a Java-like setting, private members
of the static superclass will simply become private members of the static
subclass.

If one class can have several static superclasses, we have multiple static
inheritance. This gives us an alternative to multiple inheritance when we
want to reuse code from several sources.

In GePEC, the relationship between expandable classes and their actual
expansions is one of static inheritance. The actual expansions have the
same content as their expandable classes, with certain additions. Class
expansion also means that any references to the static superclass will be
changed so that they reference the static subclass. This makes the mechan-
ism more useful in a lot of cases.

As was the case for delegation, static inheritance does not suffer from
problems regarding the computation of relative addresses. Name collisions
can become a problem, but GePEC has a renaming mechanism that solves
this. Unfortunately, the diamond problem does occur for multiple static
inheritance, but in GePEC we can solve this in a satisfactory manner (see
section 3.2.1).

3.2.1 The Diamond Problem in GePEC

Static multiple inheritance may lead to occurrences of the diamond prob-
lem, where we do not know if a repeated static ancestor should be inherited
once or repeatedly. In GePEC, a repeated static ancestor appears in those
cases where two or more actual expansions of the same expandable class
are themselves expandable, and are in turn given a common actual expan-
sion. Note that, as with the diamond problem for normal inheritance, there
may be any number of “inheritance steps”, that is expansions, between the
repeated ancestor and the class in which the problem occurs.

3This assumes nominal typing, as used by most statically typed languages today. With
structural typing, however, such a subtype relationship could well exist.

39

There is a rule in GePEC, defined in section 2.6.7, which defines the basic
way GePEC handles such problems: All name collisions must be solved us-
ing renaming. But this leaves us with always having one version of the fields
and methods of the repeated static ancestor for every time it is repeated.
What do we do in situations where a repeated static ancestor should result
in only a single set of fields and methods in the actual expansion?

In C++, the corresponding problem for multiple inheritance is solved
using virtual inheritance, as explained in section 3.1.2. We will now see a
similar solution for GePEC, but one which avoids the problem of needing to
choose between one and several versions of the repeated ancestor before it
is actually repeated.

A solution for GePEC diamonds

As part of the generic import statement, certain fields and methods of im-
ported non-common classes may be declared as “shared”. If a name col-
lision occurs between two “shared” members, we check whether they are
equal. Two members are equal if they:

• Have the same type.
• Have the same implementation if they are methods.

Note that this should be checked after all retyping due to class expan-
sion and parameter passing has been performed. This should not be a
problem, as for methods we do not know if two methods generate a name
collision until after this anyway. The reason is that depending on such
“instantiation” of types, two methods with the same name may collide or
simply overload one another.

If two colliding members are equal and shared, then only a single version
of them is included in the actual expansion. In any other case a compile
time error is issued in the normal manner, stating that renaming is needed
to resolve a name conflict.

This allows us to rename certain parts of a repeated static ancestor and
share other parts. The solution is very similar to the one in Eiffel, where a
repeatedly inherited member is shared by default and must be renamed if
it should not be shared [19, chapter 11.6].

An example of four packages is given in figure 3.3. The first contains
a single class, which is imported and expanded by the next two. The final
one combines those two classes in an actual expansion, giving us a “GePEC
diamond”. The diamond is resolved using the “shared” option. The example
is rather inane, but demonstrates the use of “shared” adequately.

40

Figure 3.3 A GePEC Diamond
generic package CounterPackage;

class CounterContainer {
//Any methods should increase this variable,
//so that it always represents the number of
//calls made to methods in the package.
int numCalls;

}

generic package ClassAPackage;

generic import CounterPackage,
CounterContainer => ClassA;

class A {
void inaneMethodA() {

numCalls++;
}

}

generic package ClassBPackage;

generic import CounterPackage,
CounterContainer => ClassB;

class B {
void inaneMethodB() {

numCalls++;
}

}

generic import ClassAPackage,
ClassA => FinalClass
ClassA.numCalls is shared;

generic import ClassBPackage,
ClassB => FinalClass,
ClassB.numCalls is shared;

class FinalClass {
/* Due to the use of ‘‘shared’’, this method as
* well as inaneMethodA and inaneMethodB, all use
* the same numCalls variable, and no name
* collision exists between the numCalls of
* ClassA and ClassB.
*/

void inaneMethodC() {
numCalls++;

}
}

41

Sharing members of different origins?

Note that the conditions for equality above do not include a demand for the
two colliding members to originate in the same class. The fact that GePEC
has type parameters, renaming and expansion means that equal origins is
both insufficient and unnecessary as a condition for two members to be
equal.

This means that we can share members originating in different classes,
as long as they are equal. The practical usefulness of this is unclear, but ex-
pressivity is improved. More importantly, the ability to share equal fields/methods
from different classes does not seem to introduce any new major problems
as long as the mechanism is used wisely.

Implementing sharing

Sharing should be relatively simple to implement for variables, as only the
name and type must be checked. Sharing methods should also be possible,
but may be harder to implement as there are more ways in which they can
differ.

It may even be close to impossible to implement sharing of methods
if the compiler performs optimizations prior to resolving class expansion.
But it seems likely that doing this is unnecessary.

But note that sharing methods can be seen as unnecessary: Two equal
methods, their name collision solved by renaming if necessary, working
on shared variables will give the same effect as a shared method working
on the same shared variables. Therefore, sharing only variables should be
sufficient if sharing methods proves hard.

Summary: Shared Members

I believe that sharing, as explained above, is a good complement to renam-
ing for solving name collisions between equal members. This can be used
to obtain a solution to the “static” diamond problem in the same way C++
“virtual inheritance” solves it, whereas renaming can be used to gain the
opposite in most cases. The mechanism may also have other uses, as we do
not demand that shared members originate in the same class.

3.2.2 Comparing Static and Normal Multiple Inheritance

I will now present several problems which can easily be solved with multiple
inheritance, but in the best case requires careful thought when multiple in-
heritance is unavailable. Explanations of why the problems are solved easily
with multiple inheritance will be provided, and some thoughts given on why
single inheritance might be inconvenient. Thereafter, I will try to solve each

42

of the problems using static multiple inheritance as provided by GePEC’s
Class Expansion mechanism. The intention is to discover the situations in
which class expansion is a workable alternative to normal multiple inherit-
ance.

Note that the problems are all artificial examples. Even so, they are
representative of situations that appear in real world programming, and
are therefore interesting.

3.2.3 Combining two Independent Classes

Consider the case where you have two independent classes, probably from
different libraries, and you want to combine their features. This is perhaps
the most basic and intuitive use for multiple inheritance, and falls clearly
in the MIP class of problems.

As a practical example we will assume we have two libraries: The first,
which we will call GraphicLibrary, contains the classes necessary to code a
graphical user interface. The second library, TimeLibrary, contains classes
with functionality having to do with time and timing.

Now, assume that TimeLibrary contains a class Timer, which can be set
up to give some sort of interrupt after a given amount of time. Timer has
a subclass Clock, which specifies the functionality of timer to give such an
interrupt once every second.

Furthermore, imagine GraphicLibrary to have the class Widget, a base
class containing functionality needed to draw something on the screen.
Widget has a subclass RedrawableWidget which adds functionality for chan-
ging how the widget looks on the screen after its first initialization. Note
that these classes are intended for subclassing; one will probably not want
to make objects of them. They can be thought of as abstract, and one can
assume that several subclasses exist of both of them inside GraphicLibrary.

Now, in this example we want to make a small program showing an
analogue clock. We want to do this by using the features from Redraw-
ableWidget to draw things on the screen, and the features from Clock to
know when to update the image on the screen.

Implementation using Multiple Inheritance

The most straightforward way to make the clock program is to make a class
ClockWidget, inheriting RedrawableWidget from GraphicLibrary and Clock
from TimeLibrary. Here, we can use the interrupts from Clock to update
the Widget part of the object. We then use this widget in the program.

Note that we might need subtype polymorphism along both lines of in-
heritance in the program: We are using other classes from GraphicLibrary
which will look at ClockWidget as a RedrawableWidget, and we may want

43

Figure 3.4 The intended inheritance tree for ClockWidget

the widget to be accessible to other parts of the program as a normal Clock
object.

It should be pretty clear why normal multiple inheritance solves this
case well. Assuming there are no name-conflicts, combining Clock and Re-
drawableWidget should be no problem. Multiple inheritance provides both
the reuse we wanted and the subtyping. As the parent classes are com-
pletely independent, we can also assume that we have no repeated ancestor
problems.

Implementation using Single Inheritance

Implementing the clock program using only single inheritance is possible,
but the solution will not necessarily be neat. We have to make a Clock
and a RedrawableWidget talk to one another. This is most likely best done
through mediator classes or subclasses.

There is no reason why this would not work, but multiple inheritance is
most likely preferable. It provides a neater model and most likely requires
less glue code.

Implementation using Static Multiple Inheritance

Assume that both TimeLibrary and GraphicLibrary are implemented as gen-
eric packages with no common members. There are two possibilities open
to us: We can create ClockWidget by making it an actual expansion to both
RedrawableWidget and Clock, or we can create it by subclassing one class
and expanding the other.

Unfortunately, none of these approaches work: Both classes we wish
to combine have declared superclasses. This means they cannot be given
a shared actual expansion. With the second approach, the new subclass
would have to be the actual expansion of the class it does not inherit. An

44

expandable class with a declared superclass cannot be given an actual ex-
pansion with a declared superclass.

Even if the classes did not have superclasses, we might still have prob-
lems: If the class we chose to expand had subclasses within its package,
these would now be subclasses of ClockWidget. In the case of Redraw-
ableWidget for instance, this would mean all redrawable widgets defined in
that package would now display clocks, an undesirable situation.

All in all, it seems that class expansion is a poor tool when it comes to
solving problems of the Multiple Independent Protocols class. It works in
very simple situations, but most cases are likely to be complex enough to
cause problems. Class expansion is not a good tool for combining inde-
pendent classes from different class hierarchies.

3.2.4 Making a Mix-and-match library

Snyder’s second use for multiple inheritance is Mix-and-match. A mix-and-
match library consists of several classes created with multiple inheritance
in mind: They are supposed to be inherited into the same subclasses and
work together.

Imagine a graphic library. It contains several base classes which provide
different behavior which could be wanted by graphical components (wid-
gets). Such components might be scrollbars, textfields, radiobuttons and
so on. Of the base classes, GraphicComponent provides basic functionality
for any such components. It should be inherited by all graphical compon-
ents. Class Renewable provides extra functionality for a component with
an appearance that can be altered at runtime. Class Clickable provides
functionality for mouse interaction. There could also be others, but these
are enough for this example.

Given such a library, we want to be able to combine the features of the
base classes to make new classes, in this case new graphical components,
such as a button.

A button is clickable, it changes its appearance when it is clicked and it
is certainly a graphical component. So it should have the functionality of
all classes mentioned above.

Implementation using Single Inheritance

In a single inheritance system, making this kind of library is a bit tricky.
Our best bet is probably the Decorator design pattern [9].

Using this pattern, we can make AbstractComponent an abstract super-
class defining all operations that should work for any graphical component
as abstract methods. We then make GraphicalComponent be a subclass of
that class.

45

Renewable and Clickable also become subclasses of AbstractCompon-
ent, but with one difference: These classes now contain a pointer to another
AbstractComponent object. They forward most method calls to that object
(delegation), except where they need to implement their own functionality.
These classes are our “decorators”: They decorate a GraphicalComponent
object. We can wrap such an object in any number of Renewable and Click-
able objects; client classes will still be able to access it using the interface
of AbstractComponent.

To make our button object, we can now do something like the following:

AbstractComponent button =
new Clickable(
new Renewable(
new ConcreteComponent(.../*parameter values that

make this look like a
button*/...)));

This approach allows us to combine features of our graphical library in
any way we want. It only relies on single inheritance and allows for a good
and very flexible design.

Unfortunately, the “multi-level delegation” involved can detract from
runtime efficiency and can be hard to develop for a novice programmer.
Furthermore, we get a system consisting of a lot of small interacting ob-
jects. This can make the system harder to debug, when the interaction of
two decorators causes a problem in certain cases.

Implementation using Multiple Inheritance

Multiple inheritance allows us to solve the problem in a more straightfor-
ward manner. The classes can be provided independently, and we can just
inherit the ones we need when making new classes, such as Button. As they
were designed to work together, there will be no name-collisions and most
likely no diamond-problems. We have less dynamic flexibility than in the
Decorator approach, which means the system will most likely be easier to
learn and debug.

Implementation using Static Multiple Inheritance

The question now is whether class expansion can do the same thing. As-
sume that the base classes for widgets are put in a single GePEC package.
We can easily import it and provide a single actual expansion for Graph-
icalComponent, Renewable and Clickable: Button. So Button gets all the
functionality it needs.

But on the other hand, we have just renamed GraphicalComponent, Re-
newable and Clickable to Button for this import. In other words, we need

46

a separate import for every new widget we want to make. And now, sud-
denly, the widgets have nothing in common: They are expansions of the
same class, but different imports of the same class. Due to the renaming,
they do not end up with a common superclass. We have lost the benefit of
polymorphism, which is very likely to be critical in this kind of library.

Of course, the library designers, knowing we would be using GePEC,
could have given each of the classes a supertype declared as “common”,
most likely a Java-like interface to avoid any problems with superclasses.
This gives us our type relationships back. The solution is still more com-
plicated than multiple inheritance. But it works, and is much simpler than
the single inheritance solution.

Note that we begin to see the value of common supertypes here, espe-
cially interfaces. This will be discussed in more depth later in this chapter.

3.2.5 Breaking up a large class

Often, a class will be required to do several things. A TextWindow class
may have to supply both the properties of a String and those of a window.
A Movie class will usually contain information about both a soundtrack and
a series of pictures, as well as methods and fields common to all media
classes.

When a class grows big enough to embody two or more different con-
cepts, it is generally a good idea to split it up. If this is not done, the
resulting class will often become complex to understand and hard to main-
tain in the future. Smaller classes can be altered with less fuss, at least if
proper encapsulation is maintained.

The factoring can most often be performed adequately by means of del-
egation, that is creating other classes for the tasks and letting a class keep
pointers to objects of those classes. As an example, it probably would not
hurt the Movie class to have pointers to objects of classes Soundtrack and
PictureSeries. A pointer to a Media object makes less sense modelling-wise,
but we can always inherit from a Media class.

But this kind of delegation is not always a practical way of splitting up
a class. The situation with Media above is one example: First of all, a Movie
is a Media, it does not use a Media. This implies inheritance. Secondly, it
is likely that the media methods will often be called, and the forwarding
of method calls made necessary by delegation can slow execution down
considerably.

Indeed, in a class made for a real-time media like Movie, we might not
even want to tolerate delegation of Soundtrack and PictureSeries. It makes
more sense to delegate these relationships, however, as a Movie does not
have a “is a” relationship to neither its soundtrack or its series of pictures.

Consider a situation where we want to factor out two “is a” relationships:
We are making a program which will keep track of restaurants. Now, on one

47

hand we want customer-relevant information about the restaurants, such as
menu, opening hours, atmosphere, size and so on. A restaurant is an eating
establishment. On the other hand we want information regarding the place
as a business: Number of employees, wages, notes on work morale, etc. A
restaurant is a work place.

Implementation using Single Inheritance

With single inheritance, we can break up the Restaurant class a little bit. We
can take out one part as another class, and inherit it. For example, we could
make the class WorkPlace, put all the business information in that, and let
Restaurant inherit from WorkPlace and add what we need.

But what if we want to reuse the eating establishment part of the Res-
taurant class, without the business behavior? We could split up the class
using delegation, but this would not make sense modelling wise. This kind
of problem is hard to solve in a satisfactory manner using single inherit-
ance.

Implementation using Multiple Inheritance

Multiple inheritance solves the problem nicely. We can factor out Work-
Place as described above, and then factor out EatingEstablishment as well.
Restaurant inherits both these classes and adds a tiny bit of glue code. Not
only have we split up the code into more workable fractions, we have also
created two reusable units.

Implementation using Static Multiple Inheritance

Using GePEC class expansion, we can factor out WorkPlace and EatingEstab-
lishment exactly as above. We put these classes in GePEC packages (they
could be put in the same one, but separate ones make more sense as they
really have little to do with one another). Then, we make Restaurant the
actual expansion of both classes.

The result is much the same as for ordinary multiple inheritance. We
can factor out as many classes as we want, and retain the same behavior
while maximizing the modularity of our code. Reusability is high.

There is only one small problem here. For example, say we want to add
night clubs to our system. The class Nightclub would also be an actual ex-
pansion of WorkPlace. For the part of our system dealing with workplaces,
we would like to ignore the difference between night clubs and restaurants.

But but Restaurants and Nightclubs would have no supertype in com-
mon, as actual expansions of the same class through different imports share
no type relationship. Again, this can be solved using common-declared su-
pertypes, requiring only a little more work. This does assume access to

48

Java-like interfaces or another mechanism allowing multiple supertypes to
avoid declared supertypes preventing expansion.

Static multiple inheritance seems a very viable alternative to normal mul-
tiple inheritance for purposes of submodularity.

3.3 Class Expansion and Interfaces

As we have seen, multiple class expansion offer an alternative to multiple
inheritance in some cases, namely those were we are interested in only code
reuse and/or modularity. Unfortunately it is all but useless in most cases
where we would like multiple subtyping.

The need for multiple subtyping has led to the development of inter-
faces in Java and .NET. As described in section 3.1.3, this mechanism gives
us multiple subtyping, but no code reuse.

So interfaces and class expansion each give us one of the two benefits of
multiple inheritance: Subtyping and Implementation Reuse. Both mechan-
isms avoid the worst problems regarding multiple inheritance. The question
which arises is, can these mechanisms be used together to provide a better
alternative to multiple inheritance than either is on its own? The answer is
yes.

What we basically want is to give all actual expansions of the same gen-
eric package a mutual supertype, regardless of whether they belong to dif-
ferent generic imports. This is what the common qualifier (see chapter
2.3.2) was developed for. We can declare a common interface and let the ex-
pandable class implement it. Now, all actual expansions of that expandable
class will share a mutual supertype.

We could have tried to do the same thing with common superclasses,
but this would prevent us from giving the same actual expansion to this
and other expandable classes using the same approach: We would end up
with multiple inheritance. So instead, we use interfaces, which any class
can implement an unlimited number of.

3.3.1 Using Interface-enhanced GePEC

Using the common qualifier to declare some interfaces, we can give our
actual expansions mutual supertypes that they “inherit” from their expand-
able classes. In this section, I will give two examples that demonstrate the
usefulness of this.

The first example is the same as the one in section 3.2.3, with some
thoughts given to how widespread use of common interfaces and GePEC
might change the situation.

The second example deals with classes for a parsing tree in a compiler.
In some cases when making these classes, multiple inheritance would be

49

useful. The example shows how Interface-enhanced GePEC can be used
instead of multiple inheritance in one such case.

Example 1: Combining Independent Classes Again

In section 3.2.3, we wish to take two classes from different situations and
combine them into one. This is the first use of multiple inheritance where
Class Expansion came up short of a solution.

Unfortunately the situation does not seem to have improved much. There
were two problems. First of all, when combining two independent classes,
we may not want to add functionality to all their subclasses. Class Expan-
sion does this, and having a common supertype does not help us directly.
But the problem is likely to occur less frequently if we use GePEC sensibly:

In the example of section 3.2.3, we want to combine classes Redraw-
ableWidget and Clock to make the class ClockWidget. With GePEC, these
classes might be given actual expansions instead of subclasses when design-
ing the libraries. We can use common interfaces for our typing needs. In
this case, we do not need to worry about every other widget displaying
clocks, as no member of the libraries have subtypes, and are only related
through common supertypes. Of course, this requires that the libraries are
implemented as sets of generic packages instead of just putting everything
in the same generic package.

The second problem was that if both Clock and RedrawableWidget have
declared superclasses, then we end up with multiple inheritance. But if
we make Clock and RedrawableWidget as actual expansions instead of sub-
classes, we avoid this problem as well.

Example 2: A Parse Tree

When building parse trees of the kind used in compilers, an object oriented
approach can be very useful. For every symbol in the grammar, one has a
class. Actually parsed symbols are represented as objects of these classes.
Here, subtype polymorphism can be very important, as the classes are nat-
urally implemented in inheritance trees and we sometimes want to look at
objects grouped by superclass. Also, as we shall see, certain problems may
be solved easiest using multiple inheritance.

Consider the following EBNF grammar for an extremely simple program-
ming language:

<PROGRAM> ::= ’begprog’ <BLOCK> ’endprog’
<BLOCK> ::= {<STMT> ’;’}*
<STMT> ::= <VARDECL>|<FUNDECL>|<CALL>|<ASSIGNMENT>|<RETURN>
<VARDECL> ::= ’var’ <NAME>
<FUNDECL> ::= ’fun’ <NAME> ’beg’ <BLOCK> ’end’
<CALL> ::= ’cal’ <NAME> ’(’ <EXPR> ’)’

50

<ASSIGNMENT> ::= ’ass’ <NAME> ’=’ <EXPR>
<RETURN> ::= ’ret’ ’(’ <EXPR> ’)’
<EXPR> ::= <TERM> {<OP> <EXPR>}?
<TERM> ::= <CALL> | <NAME> | <NUMBER> | ’par’
<OP> ::= ’+’ | ’-’

Here, we assume that the programming language only has one type: the
integer. The symbol <NAME> expands to any alphabetic string which is
not a keyword in the language, and <NUMBER> expands to any sequence
of digits. We further assume that all functions take a single parameter,
and always have a return value. The keyword ’par’ can be used as a term
inside functions, and should contain the value of the parameter passed to
the function. If used outside functions, we assume it contains the value
of a parameter given to the program. This is unimportant to our example,
however.

The classes necessary for storing a parse tree in this language are presen-
ted in figure 3.5.

Figure 3.5 Classes for Parse Trees

Note the multiple inheritance on the Call class. It is not a perfect situ-
ation for using multiple inheritance: A call appearing in code is a term or a
statement, but not both at the same time. A better class model might have
two separate classes, TermCall and StmtCall. Unfortunately, the two classes
would have duplicated code: We need to store mostly the same things about
a call whether it is done as its own statement or as a term in an expression.

This is a case where GePEC provides a very suitable alternative to mul-
tiple inheritance. There are two possible approaches. The first is to first

51

split the Call class up into StmtCall and TermCall, and then factor the du-
plicated code out into an expandable class Call. StmtCall and TermCall
should be actual expansions of Call. Include a common interface to give us
a mutual type for the Call classes. This solution runs exactly parallel to the
solution in Example 2.

The other possibility is to use static inheritance and interfaces as an al-
ternative to inheritance throughout the class structure. In particular, the ab-
stract classes Statement and Term could be made into expandable classes.
Their subclasses could be made actual expansions instead. Of course, the
subtype relationship is very important here, as we may want, for example,
to use the Statement type for a list of statements4 .

Fortunately, common-declared interfaces can give us almost exactly the
types we want. For ease of reference, assume we make two common-declared
interfaces called StatementInfc and TermInfc, implemented by Statement
and Term respectively. They should of course contain declarations of the
important methods of their respective classes.

These interfaces could then be used in the cases were we would have
used Statement and Term in the version based on inheritance. A possible
annoyance is that such things as next-pointers will have to be encapsulated:
The interface only allows us access to methods.

Using class expansion along with common-declared interfaces as an al-
ternative to inheritance in this case works well. The Call class would be an
actual expansion of Term and Statement, containing all their methods and
having both TermInfc and StatementInfc as supertypes.

The reader might wonder how we solve the problem of Term and State-
ment both declaring their own superclass (TreeNode). In this case, please
remember that the idea was to replace inheritance by expansion throughout
the model:

We can make TreeNode an expandable class, and replace the inheritance
of it with expansion. The only problem is if we intend to use static fields
and methods in TreeNode as a kind of “global variables” for everything else
in the tree. Expansion allows us to write the code only once, but we may not
want it to be duplicated even at runtime. In this case, such global variables
would have to be removed from the TreeNode class and put somewhere
else. Another class implemented using the singleton design pattern (see
[9]) would be a good option.

Using class expansion as an alternative to inheritance throughout the
structure of the program gives flexibility for later extension of the class
model which may require multiple inheritance. Common interfaces can
supply all the supertypes we need for this example, although at the cost
of requiring encapsulation of certain variables.

4Associations are not shown in figure 3.5, to make the diagram easier to read. A list
of statements would most likely be used in the Block class. Other uses can also easily be
found for the types of Statement and Term.

52

On the other hand, GePEC can also be used in a less intrusive manner,
just to factor out any duplicated code from classes which would have that in
a standard model. This was the suggested approach with making TermCall
and StmtCall classes replace the Call class of figure 3.5, and letting them
be actual expansions of an expandable Call class. In this case, a common
interface based on the contents of the expandable Call class would help us
in the cases where we need to pretend that there is no difference between
the call classes.

3.3.2 Limitations of common-declared Interfaces

At this point it may seem that the combination of common-declared inter-
faces and expandable classes amounts to something almost as powerful as
full multiple inheritance. While it is true that the mechanism can now fill
many, if not most, of the roles of multiple inheritance, there are still some
problems to consider.

The limitations of the “common” qualifier

As explained in chapter 2.3.2, a common-declared interface has the follow-
ing limitation: It cannot include method signatures with expandable classes
as return or parameter types. This means that if an expandable class has
methods returning or receiving objects typed with itself or another expand-
able class or a parameter, these methods cannot be included in the inter-
face. This may reduce the usefulness of our common-declared supertypes
somewhat.

The inability to refer to methods referring to expandable classes is not
likely to be very severe in practice. If what we want is a method which
has the same signature and return type in all actual expansions, we should
type it using common interfaces implemented by those expandable classes.
Such methods can be declared in a common interface, as they only refer to
common types.

If we actually want retyping as part of actual expansion, there is also a
possible solution. It uses method overloading and explicit dynamic typing
to obtain what we want. The technique is described in chapter 4.3.2. This
technique should also work in those cases where we want our common
interface to refer indirectly to methods taking or receiving objects of some
type given by a type parameter.

Common supertypes and renaming

The renaming functionality of GePEC is very useful. It allows us to give
methods and classes names more appropriate to the context of the generic

53

import. More importantly, it is also a vital tool in handling the name colli-
sions which may occur when using class expansion for the purpose of static
multiple inheritance.

Unfortunately, common-declared supertypes interfere with the renam-
ing mechanism. This was discussed in section 2.7.3, where it is concluded
that we should not allow renaming of methods that are declared in common
supertypes.

This is a very good reason to be careful what methods we declare in
common interfaces. Only those methods that we truly need to be able to
access from the supertype should be declared there. If we declare too many,
we will be painting ourselves into a corner. A corner we will regret being in
on the day where we really need to use renaming to avoid name collisions.

3.4 Summary: Static Multiple Inheritance

The static multiple inheritance provided by GePEC is a useful feature. Un-
fortunately it leaves a lot to be desired when compared to full multiple
inheritance, mostly because it provides no subtyping.

This is no longer completely true in the presence of a mechanism such
as Java’s interface mechanism, which allows multiple inheritance of type
but not implementation. Using GePEC with interfaces results in a good al-
ternative to multiple inheritance for most purposes. But doing so relies
upon the use of common supertypes, which again may interfere with re-
naming. As renaming is our defense against name collisions, this makes it
vital that a programmer is very careful about what is declared in a common
interface. Hopefully, we can avoid some or all of these problems by using
a programming strategy better adapted to GePEC. This will be treated in
chapter 6.

54

Chapter 4

Static Covariance

When an expandable class is given an actual expansion, all references typed
with that expandable class are changed so that they are now typed with
the actual expansion. This is one of the basic effects of class expansion as
described in section 2.6.

This effect of retyping is very similar to covariance. Covariance is one
way of retyping a feature of a class in a subclass. For example, when a
method is overridden in a superclass, one might imagine that it could be
given new types for its return value and/or parameters. Similarly, the type
of a variable could be changed in a subclass. This kind of retyping is gen-
erally called variance. If the new type is a subtype of the old one, we have
covariance. If the opposite is true, we have contravariance. Finally, the
case where the type is left unchanged is known as invariance or, in certain
papers, novariance [18] or conservative contravariance [20].

In GePEC, all class members typed with an expandable class change type
to the actual expansion of that class at import time. Import time is also the
moment when the classes these members are declared in are given actual
expansions. It is easy to see that this is very much like covariance, as both
the type of class members and the type in which they are declared changes
in the same direction.

This static covariance is limited, however. Expandable classes can have
only one actual expansion per import. The features typed with expandable
classes are always changed to be typed with the actual expansion for that
particular import. This means that we cannot have some class members for
a given import change type to one particular actual expansion, and other
members to another actual expansion. We have less freedom than with
normal covariance, and no subtyping.

The purpose of this chapter is to show that static covariance can be
used instead of covariance in most situations where the latter mechanism
would be useful. This is advantageous, because traditional covariance has
problems regarding type safety whereas static covariance does not.

Contravariance and invariance is less interesting in our context. Invari-
ance is already allowed by all object oriented languages. Contravariance has

55

issues with type safety, similar to those of covariance. Also, contravariance
is considered less useful in practice (see for example [18]). Finally, GePEC
does not offer us anything in the way of contravariance. For these reasons,
further discussion of contravariance will be kept to a minimum.

4.1 The Problem with Covariance

Both covariance and contravariance suffer from not being statically typesafe
in certain situations: Covariant retyping is not statically type safe for fields
and method parameters. Contravariance, on the other hand, can be used
type safely only on method parameter types. Fields cannot be retyped type
safely with either approach.

Remember that in this thesis, we generally assume that all methods are
virtual, that we are in a statically typed language and that subtype poly-
morphism is in effect. This is important for this discussion, as the absence
of any of these conditions affects the static type safety of covariance: Pierre
America stated at TOOLS Europe in 1990, that “one can at most have two
of the three properties: Static typing, Substitutivity, Covariance”. There has
been several attempts at giving us all three since then (see for example [18]
or [31]), but it is quite obvious in each such case that the new approach in
some way sacrifices static typing or substitutivity.

For the examples in this chapter, a special qualifier “redef” will be used
to note covariant redefinitions. For variables this is crucial, as we do not
have any concept of “overriding” which we could attatch the renaming to
when it comes to variables. Thus, a variable declared with the “redef” shall
be read as a covariant redefinition of a variable from a superclass. The “re-
def” will also be used on methods, where they are supposed to override an-
other method but have their return type or one or more of their parameter
types redefined covariantly. The reason for this is to separate overriding
with covariant retyping from method overloading.

4.1.1 Type Safety and Covariance

When the value of a typed member can be set by code which is not aware
of the retyping, covariance is not type safe. This is easily proven by an
example, here using a method parameter. The argument against type safety
for covariant retyping of variables is similar, and constructing it given the
example below is trivial. Note that the shape of the example is well known,
appearing in many texts on covariance with only minor differences.

Consider the following code:

class A {
void m(A par) { par.a(); }
void a() { ... }

56

}

class B extends A {
//overriding of m with covariant redefinition of the return type:
redef void m(B par) { par.b(); }
//A new method in B:
void b() { ... }

}

class MakeTrouble {
void main() {

A var1 = new B();
A.m(new A());

}
}

With common type rules, static type checking can find no fault with this
code. As var1 is of type A it should be able to hold an object of type B
because of subtype polymorphism. Furthermore, as var1 is of type A and
A has a method “m” taking an argument of type A, the call to m should be
legal. Unfortunately, the covariant redefinition of m’s argument in B causes
a problem here: We have just passed an argument of type A to a method
requiring an argument of type B, and static type checkers cannot detect
this error if subtype polymorphism is allowed. Trouble begins when we
then try to call the method b on an object of class A, which does not have
any method called “b”.

To make covariance statically type safe, we have to sacrifice either sub-
stitutivity (subtype polymorphism) or static typing. With dynamic (as op-
posed to static) typing, we can catch the error the moment we try to call
the method b on an object of A. And if we disallow substitutivity, we would
never have been able to assign an object of type B to a variable of type A in
the first place.

Method return types

One should note that method return types can be covariantly redefined with
full static type safety as long as we allow subtype polymorphism. The case
that might have been dangerous is when an overridden method is called,
and the overriding method has had its return type covariantly redefined.
But it turns out that there is no danger: The covariant redefinition merely
ensures that the returned object is of a subtype of the type we are expecting.
According to the rules of subtype polymorphism, this is allowed anyway.

4.2 The Usefulness of Covariance

While covariant redefinition of the types of fields and method parameters
is not statically safe, some have deemed it so useful that they implement it

57

anyway. To do so safely, they either introduce the necessary dynamic type
checks or introduce static type rules that sacrifice subtype polymorphism
where covariance could otherwise lead to problems. The latter approach is
always a pessimistic one, disallowing any assignment or call that has the
potential to be dangerous.

4.2.1 Famous Languages and Mechanisms with Covariance

The programming language Eiffel allows covariant redefinition of method
parameters. Bertrand Meyer, the man behind Eiffel, is a staunch supporter
of covariance. Eiffel allows covariance by pessimistic static typing. In other
words, it sacrifices subtype polymorphism to some extent.

Various languages that offer so-called virtual types1 also offer means of
achieving covariant retyping: A virtual type is a type defined to be equal to
some other type. It is usually limited in scope to the class in which it was
defined, and can be redefined in subclasses. This means that they are cov-
ariant, and as they can be used as types for fields and method parameters
they are not statically type safe. Again, there have been many attempts at
creating statically safe virtual types, but these invariably end up sacrificing
substitutivity in some way. Virtual types are described in more detail in
chapter 5.1.1.

Even Java has some covariance: Arrays in java are actually covariant. As
one particular example, a pointer declared to be of type “Object []” (pointer
to an array of Object objects) can point to arrays of any other class. This
leads to the case where we may try to insert objects of any type into an array
of (say) Strings. This means that in arrays of anything but primitive types,
Java has to perform a runtime type check every time anything is assigned
into an array. This leads to performance problems with Java arrays when
assignments are frequent. Even so, the people at Sun obviously thought the
advantages of covariance greater than the disadvantages in this case.

4.2.2 Practical Uses for Covariance

Most uses of covariance revolve around the case where the objects of one or
more classes are accessing each others members. If we use inheritance to
extend the classes in question, the objects of the new classes should often
work only on one another, not on objects of the superclasses. Self recursive
and mutually recursive classes are special cases of this, where covariance
is often desirable: The subclasses of self recursive classes should often
also be self recursive rather than have pointers to their superclasses. The
situation is the same for sets of mutually recursive classes.

With invariance, enforced by most major object oriented languages today,
this kind of retyping cannot be performed: A member inherited from a su-
perclass has the same type as it did in the superclass. As we will see in
the example of section 4.2.3, this may not be what we want. Objects of

58

the subclass may be meant to work only with specialised versions of their
fields’ former types. In many languages, such as Java, this kind of prob-
lem must be solved using explicit dynamic type checks and type casting.
This sacrifices static type safety and can make the code larger and harder
to read.

4.2.3 Preserving Self-Recursion in Subclasses

As a detailed example, we will consider the self-recursive case. In the fol-
lowing code, class Person is a class for simulating the evolution of eyecolor
in a population. It has a method createChild which, when passed another
Person object, returns a new Person object (the child) with an eye color
computed using the eye colors of the parents and the rules of genetics2 .

class Person {
int eyecolor;

Person createChild(Person mate) {
Person child = new Person();
child.calculateEyes(this,mate);
return child;

}

void calculateEyes(Person parent1, Person parent2) {
... //Calculate and assign the eye color of the child,
... // based on the eye color of the parents.

}
}

Now, we want to make a subclass of Person which also calculates hair
color, based on similar rules. The createChild method should be overrid-
den by a new createChild method that also calculates the hair color of the
child. But this is normally impossible without type casting, as the argument
“mate” to the method is of class Person: This class has no knowledge of
hair colors. With covariance however, the solution might look like this:

class NewPerson extends Person {
int haircolor; //1=blue, 2=brown

//Return type and parameter type covariantly redefined:
redef NewPerson createChild(NewPerson mate) {

NewPerson child = new NewPerson();
child.calculateEyes(this,mate);
child.calculateHair(this,mate);

}

void calculateHair(NewPerson parent1, NewPerson parent2)
... //Calculate and assign the hair color of the child,
... // based on the hair color of the parents.

}
}

2And statistics, where the chances of carrying a recessive gene are involved.

59

Covariance basically allows us to state that we do not want NewPerson’s
createChild method to accept Person objects. Note that we can still pass a
NewPerson object to Person’s createChild method. This is okay, as NewPer-
son still supports the eyecolor information needed by Person. Covariance
can also be desirable in more than one “generation” of classes. An example
of that might be adding a subclass to NewPerson, which should include
simulation of skin color.

4.2.4 Preserving Mutual Recursion

As another brief example, consider the case where we want to preserve mu-
tual recursion. In [13], Krogdahl uses the mutually recursive classes Node
and Edge to implement the classes City and Road. He does this using class
expansion. If we wanted to do the same with inheritance, covariance would
clearly be desirable: The classes are mutually recursive, mainly because
Edge objects keeps track of their origin and destination nodes and because
Node objects keep track of the edges connecting it to other nodes.

A City should likewise keep track of departure roads, and Road should
know what cities it connects. But without covariance, Road will be able to
connect any two Node objects, even nodes that are not Cities. If the Node
and Edge classes are not used for anything else in the system, then this
is not really a problem. If they are, for example to implement ports and
shipping lines, then small programmers errors can lead to serious errors
like enabling a ship to sail along a road.

4.2.5 Introducing Mutual Recursion

Another interesting, but less frequently occuring, problem that covariance
solves is the case where we want to make mutually recursive subclasses
of a self recursive class. For example, we may have a class Person, with a
variable “spouse” and a method marryTo which sets the variable and makes
sure that marriage relationships are symmetrical: If A is married to B, then
B is also married to A. For simplicity, we assume that no already married
person tries to marry again. The class would look like this:

class Person {
Person spouse;

void marryTo(Person mate) {
spouse = mate;
mate.spouse = this;

}
}

We now want to make two subclasses of Person: Man and Woman. And
we want to introduce the rule that a marriage can only be registered between

60

people of opposite genders. But without covariance the inherited spouse
variable and the parameter of marryTo is still typed with Person. Explicit
dynamic type checks, to find out whether the Person object received by
marryTo is actually a Man or a Woman object, will be necessary.

Using covariance, we can type the methods correctly, as shown in the
following code:

class CovariantMan extends Person {
redef Woman spouse;

redef void marryTo(Woman mate) {
super.marryTo(mate);

}
}

class CovariantWoman extends Person {
redef Man spouse;

redef void marryTo(Man mate) {
super.marryTo(mate);

}
}

What we have achieved here is to introduce mutual recursion (man-
woman) by subclassing and covariantly redefining the contents of a self-
recursive class (person). One reason for doing so is to automatically type
check the rule that all marriages are between people of opposite genders.
The type check will have to be dynamic for Person to work as a supertype,
but the code is simpler than it would have been with explicit checks and
casting.

Another reason for writing the code this way is writing the contents of
Person only once. In this case we did not save all that much code by doing
so, but it is easy to imagine more verbose examples where we would save
more on using covariance.

Note that languages with covariance often have advanced mechanisms
for reducing the amount of code written in such cases as this. In Eiffel for
instance, the type of marryTo’s parameter could be tied to the type of the
variable spouse. The result is that when the type of spouse is redefined, the
parameter of marryTo is automatically redefined to the same new type, and
we would not have had to write anything beyond the redef on the variable
in the case above.

4.2.6 Summary: Usefulness of Covariance

In light of examples such as the ones above, it is easy to see why people
like Bertrand Meyer [18] argue for covariance. It is unfortunate that it is not
statically type safe without sacrificing substitutivity. Even with this problem
however, many languages and mechanisms include some sort of covariance,
a testimony to its usefulness.

61

4.3 Static Covariance

As explained at the beginning of this chapter, an effect of class expansion
in GePEC is static covariance: When an expandable class is given an actual
expansion, all references to that expandable class are changed so that they
now refers to the actual expansion. This can be seen as a kind of covariance:
Anything typed with an expandable class is redefined to be typed with the
actual expansion. The change is variant along a case of static inheritance,
therefore the term static covariance.

Static covariance is type safe, but of course there are limitations. As
explained in previous chapters, class expansion does not give us subtyping.
As there is no subtyping, there cannot be subtype polymorphism, which is
why we can have statically type safe covariance.

4.3.1 Sufficiency of Static Covariance

Static covariance is sufficient in all cases where we want covariance but do
not care about substitutivity. Even when we do want substitutivity, GePEC
may be a big help. That is covered in the next section. In this section,
we will look at an example of a common context where static covariance
is sufficient simply because we have no use for subtyping: Instantiation of
so-called frameworks.

Frameworks are sets of reusable code that captures a design common
to several applications. They are often nearly complete applications, where
only certain areas in the code need to be implemented in order to obtain
a complete program. These areas in the code are usually called hotspots
[21]. Supplying this code and making an application from a framework is
called instantiating the framework. For more details and discussion about
frameworks, see for instance [12] and [24].

A common way of implementing a framework is as a collection of mu-
tually dependent abstract classes. Hotspots are often provided as abstract
methods in these classes. To instantiate such a framework, a programmer
must make a subclass of each abstract class and override the abstract meth-
ods.

This is a case where covariance is often desirable, as the new classes
should inherit the recursive relationships of their parents rather than have
pointers typed with their parents. It is also a case where we do not need
or want subtyping. We are interrested in reusing the code in the abstract
classes and inheriting the inter-class relationships.

This scenario is perfect for GePEC: Instead of using abstract classes,
we can use expandable classes. Instead of using abstract methods, we can
use expandable methods. Class expansion is used instead of inheritance to
instantiate the framework, giving us both reuse and covariance. GePEC also
gives us other functionality that can be very useful in conjunction with this

62

kind of framework: Type parameterisation may be used to hook up classes
at instantiation time rather than before. Static multiple inheritance makes
it easier to combine more than one such framework. Renaming can let us
name the parts of the framework, even the contents of its classes, to fit
better with the finished application.

So we see that cases where static covariance is both sufficient and desir-
able actually do occur in practice. Whereas not all frameworks are imple-
mented in this particular way, having GePEC available does seem to make
that style of programming more attractive.

4.3.2 GePEC Covariance and Substitutivity

While “static covariance” is sufficient in many cases, the sacrifice of sub-
stitutivity may be problematic in other cases. While it is not possible to
have static typing, covariance and substitutivity at the same time, there may
be cases where we want to sacrifice static typing instead of substitutivity.

There is a pattern, described below, which may be sufficient for many
cases where subtype polymorphism would be useful. It gives us a common
supertype of the expandable classes, just like the common-declared inter-
faces described earlier. Using overloading, we obtain a common-declared
interface which appears to be able to reference methods which refer to
non-common members of the generic packages. Using overloading to by-
pass the rules of GePEC in this way is not statically type safe, so we must
rely on explicit dynamic type checks and casting. But these checks and casts
need only be written once for each method, even if they are used in several
places.

A technique for static covariance and subtyping

Consider the following example. Class A has a method “m” which takes
an argument of type A. We want to make a class B, inheriting from A but
overriding “m” and redefining its parameter to be of type B. Assuming A
is an expandable class, this can be done in GePEC by giving A an actual
expansion called B.

But what if we also want to make a class “P”, which should work on ob-
jects of either type A or B? In other words, we want to take advantage of the
similarities of type A and B? With inheritance we would have substitutivity
allowing us to use B objects when A objects are expected. In GePEC we can
gain something which may be as good in most cases. The technique is illus-
trated, using GePEC in a Java-like language, in the code of figures 4.1 and
4.2.

Consider first the contents of “APack” in figure 4.1. The interface “Ai”
represents the self-recursive parts of A, the ones we want to be covariant.
The interface is common, so it will always be the same: It cannot be ex-
panded or renamed, and each generic import doesn’t give a new copy of

63

Figure 4.1 Covariance and Substitutivity: “Superclasses”
generic package APack;

common interface Ai {
void m(Ai p);

}

class A implements Ai {
void m(Ai p) throws ... {

//Insert dynamic type check and casting:
if (p instanceof A) { m((A)p); }
//If there is a type error:
else { /* Handle the error */ }

}

void m(A p) {
... //What we want m to do.

}
}

it. Therefore, “Ai” will be the type we use when we need to be able to use
objects of either A or B.

Note that both class A of figure 4.1 and class B of figure 4.2 are (impli-
citly) expandable. When I say “objects of either A or B”, I mean in a final
program where both packages have been imported without giving either
class an actual expansion. That will make the expandable classes into real
classes by creating empty actual expansions with the same names. These
actual expansions can have objects, which some class, such as P, can deal
with.

Class A implements “Ai”, and thus is a subtype of it. It is an expandable
class with two “m” methods: We have overloaded the method. The one
which corresponds to the interface simply contains a check for whether the
received argument is an allowed one. If it is not, some sort of error-handling
code is called. If it is, the argument is type-casted to A, and “m” is called
on it again. This time however, due to the cast and the way methods are
chosen in Java-like languages, the other “m” is used:

This “m” method takes a parameter of type A and does what we actually
want the “m” method to do in A. The code in this “m” method does not
need to concern itself with the possibility of covariance, which was handled
by the first “m”.

In figure 4.2, we make B the actual expansion of an import of A. We then
override the “m” method to do what we want it to do in B. This is overriding,
not overloading, because the “m” method in A that took a parameter of type
A is changed as part of the expansion: By the time it is inherited by B, it
takes a parameter of type B and all we need to do is override it.

We can ignore the other “m” that we statically inherit from A. Its signa-
ture is still the same, so it still satisfies the interface. Its content is changed

64

Figure 4.2 Covariance and Substitutivity: “Subclasses”
generic package BPack;

generic import APack,
A => B;

class B {
void m(B p) {

... //What we want m to do in B.
}

}

by expansion however, with every use of A as a type becoming retyped to B.
Thus, in B the method calls error-handling code if the received object is not
of type B.

If we now want to make a class “P” which could take objects of either
A or B, we first have to import APack and BPack into the context of P so
that both A and B are available. Then, P should have methods and variables
typed using the interface “Ai”.

We have obtained a kind of substitutivity and covariance, although at
the cost of static typing. The typing relationship is not direct, but Ai can be
used in any case where objects of any actual expansion of A is needed. It
works in several steps as well, so the actual expansions of B are also of type
Ai, and so on. The interface and the overloaded “m”-methods gives us the
dynamic typing we need for the covariance to be safe.

One of the major advantages is that the method “m(Ai p)” only has to
be written once. Any actual expansion of A or its actual expansions will
contain the method. Its contents will, due to static covariance, be retyped
to work for each particular actual expansion.

As seen, the scheme can be used for self-recursive classes. Only small
changes are needed for classes that refer to other classes in the same gen-
eric package.

4.3.3 Limitations of GePEC Covariance

The entire concept of covariance in GePEC is limited to cases where the
classes involved are expandable and in the same generic package. The
former should not prove a problem too often, as long as classes are put
into generic packages and made expandable as often as possible. This is
also important for other advantages of GePEC, such as multiple static in-
heritance.

The fact that the classes must be part of the same generic package is
even less of a problem. It is never a problem for self-recursive or mutu-
ally recursive classes: The former is a trivial case, and mutually recursive
expandable classes must be defined in the same package: They cannot be

65

referred to from anywhere else because new copies are made of them each
time they are imported.

For the same reason the requirement does not cause problems in cases
where one class refers to another but no mutual recursion exists. The
reffered-to class must be expandable for covariance to work. If a class
refers to an expandable class, then it must be in the same generic pack-
age, as above. It must also be expandable itself: Common-declared types
may not refer to non-common types.

Early declaration of dynamic typing?

If we want to use the technique for inheriting dynamic type checks de-
scribed in section 4.3.2, it may seem that we need a certain amount of
clairvoyance: The original classes involved must implement the dynamic
type check and the common supertype. The designer of those classes may
not have foreseen the need for both covariance and a supertype.

This seems to be a problem, but actually is not. The things necessary
for the dynamically typed static covariance pattern can be introduced later.
Suppose we want to use several self-recursive expandable classes that have
been made using class expansion. They exist in a number of different gen-
eric packages and are each others actual expansions. For example, A may be
defined in APack. Then we let BPack, CPack and DPack each import APack
and make classes B, C and D respectively, each an actual expansion of A.

Further, EPack and FPack could import DPack and classes E and F are
actual expansions of D. And so on. What if we want to import all of these
packages to get classes A through F? And what if the original implementa-
tion of APack did not foresee the need for all of these classes to have a type
relationship, and dynamic tests for covariance?

Well, we can still get what we want, and we still only have to write the
dynamic type cast function once. Consider the case above and assume that
class A had a method “m”, taking a parameter of type A. Due to static inher-
itance and static covariance, this method exists in classes B through F also.
Its parameter is in each case redefined to be of the same type as the class it
resides in.

Now, we want to import and use these classes, and we want an interface
to be able to access all of their different “m” methods just as we had in the
previous example. To do this, we first make the following generic package:

generic package XPack;

common interface Xi {
void m(Xi p);

}

expandable class X {
void m(Xi p) {

66

if (p instanceof X) { m((X)p); }
else { /* Handle the error */ }

}

expandable void m(X p);
}

Then, in the context where we want to use classes A through F, we do
the following when importing those classes:

generic import XPack, X=>A;
generic import APack, A=>A;
class A {} //Actual expansion combining X and A

generic import XPack, X=>B;
generic import APack, B=>B;
class B {} //Actual expansion combining X and B

generic import XPack, X=>C;
generic import APack, C=>C;
class C {} //Actual expansion combining X and C

... //And so on for each class up to and including F...

The result of this is that the interface Xi is a supertype of all the classes
A through F. Also, each class has two m-methods: One statically inher-
ited from X, which performs the necessary dynamic typechecks, and one
statically inherited from the other expandable class with the desired imple-
mentation. The presence of the latter method is ensured by teh expandable
method in X.

We get what we want, and we did not have to write the type checking
more than once. We do have to write more imports though, tripling the
amount of necessary code when importing the classes in this case. That
code is quite trivial to write however, and is easy to read. Finally, if there
had been more than one method requiring overloading, as is likely to often
be the case, we would have saved ourselves writing a lot more code than we
did in this example.

So if we did not plan ahead when writing the original generic package,
we can introduce a common supertype and necessary typecasting later on
using multiple static inheritance.

Does the explicit dynamic typing scheme always work?

The technique presented in section 4.3.2 does not always work. We will see
an example of this shortly. But in most such cases, it seems that sensible
object-oriented remodelling will avoid the problem.

In the example outlined in section 4.2.4, classes Node and Edge were
used to implement classes City and Road. In that case, subtyping was un-
necessary and even undesirable. But use of Node and Edge as types might

67

be desirable in other cases, for instance if a single graph might have several
kinds of nodes and edges.

To continue the roadmap example, we may want to use Node to imple-
ment classes City, Village and Farm. We also want a common type for City,
Village and Farm, and Node is the natural candidate. Unfortunately, GePEC
does not allow Node to be used as such, and the dynamic typing pattern of
section 4.3.2 does not work in this case.

In the Node-Edge example, we are dealing with two mutually recursive
classes. A Node has pointers to the edges connected to it, and an Edge
has pointers to its origin and destination Nodes. In our example, we want
to make three different actual expansions of Node: City, Village and Farm.
This gives us three different actual expansions of Edge, as the classes are
in the same generic package. We can make a common supertype of all the
Edge-expansions and another of all the Node-expansions, but we cannot
change the pointers inside the classes to use that supertype. We have one
kind of road that can only go between farms, one that connects cities and
one that lets us travel between villages. But it is impossible to connect, for
example, a village and a city. And we did not want three types of road to
begin with.

Adding a supertype is not the solution here. But a better object oriented
design will solve our problem. To see the solution we must look again at
what we are trying to do: We want to model cities, villages and farms, and
the roads connecting these sites. The concept of a site is our solution. It
does not matter to a road whether it connects two farms, a farm and a
city or any other combination of two sites. It only needs to know that it
connects two sites. Also, the code needed to be connected to roads is the
same whether a site is a farm, village or city. The solution is to make one
generic import of the package with Node and Edge, and to make their actual
expansions Site and Road. City, Village and Farm are then created as normal
subclasses of Site.

Of course, one example is not a proof. There may still be cases where
GePEC is insufficient for some problem which covariance could solve. This
could be either in a situation similar to the one above but where sensible
modelling does not solve the problem, or in a completely different situation.
As the potential cases are endless and hard to predict, all I can conclude is
that I have been unable to find any practical example of covariance that
could not be solved using some combination of GePEC and thoughtful re-
modelling.

Introducing mutual recursion is difficult

The example of section 4.2.5 describes using covariance to create mutual
recursion from self recursion. This cannot be done using GePEC covariance
only. The reason is that each generic import gives us one, possibly altered,
version of each class in the generic package. Creating the Man and Woman

68

classes of that example would require two expansions of Person, and there-
fore two generic imports. Even if this was not the case, GePEC offers no way
of making a self-recursive pointer become non-self recursive.

The solution is to not use self-recursive pointers. To achieve what we
want, we need to use a type parameter. Consider the following version of
class Person:

generic package PersonPackage;

parameter OtherPerson {
Person spouse;
void marryTo(Person mate);

}

class Person {
OtherPerson spouse;

void marryTo(OtherPerson mate) {
spouse = mate;
mate.spouse = this;

}
}

Using two generic imports of PersonPackage, we can make Man and Wo-
man work the way we want:

generic import PersonPackage as ManImport,
OtherPerson := Woman,
Person => Man;

generic import PersonPackage as WomanImport,
OtherPerson := Man,
Person => Woman;

class Man { /* empty block */ }
class Woman { /* empty block */ }

Unfortunately, this approach requires preparation in the original class,
requiring the author of that class to have been aware of our needs. But we
do avoid code duplication.

4.4 Summary: Static Covariance

Using the static inheritance of GePEC gives us a useful version of covariant
redefinition of types. This is statically type safe, because static inheritance
does not include subtyping. However, there is a pattern that allows us to
add a supertype to expandable classes, even on covariantly redefined meth-
ods. This pattern relies on explicit dynamic type checks and type casting,
and therefore sacrifices static typing. GePEC covariance appears to be suffi-
cient for most practical situations where covariance is needed.

69

On the other hand, there are limitations on what GePEC offers. Using it
for covariance requires a bit of forward planning, making the right classes
expandable and putting them in the right generic packages and so on. So in
the same way as with static multiple inheritance, we see that static covari-
ance is most useful if GePEC is used in such a way that all classes we want
to reuse actually exist in generic packages.

70

Chapter 5

Alternative Mechanisms

As we saw in chapter 3 and 4, GePECs class expansion mechanism offers a
kind of static inheritance that can be used for many purposes. In particu-
lar, the opportunities for multiple static inheritance and static covariance
are promising. Also, as was briefly discussed in chapter 2, GePEC offers
genericity which is as flexible as normal constrained type parameterization
in most cases, and more so in a few.

However, GePEC is not the only mechanism offering some sort of static
inheritance, and there have been many attempts at creating a means of type
safe covariance. There are also a great number of generic mechanisms on
the market.

In this chapter, I will discuss two other mechanisms: Structural Virtual
Types and Traits. These mechanisms both offer some of the same advant-
ages as GePEC. They are compared with GePEC to examine whether GePEC
measures up to other mechanisms that offer some of the same advantages.

Note that there are many mechanisms in existence that could have been
mentioned in this chapter, but that are not. While I did compare GePEC
with other mechanisms during my work on this thesis, the ones presented
here are the most interresting ones. The first because it is a very different
mechanism which offers the same advantages as GePEC on several points,
not just one. The first comparison also illustrates how GePEC works. The
second mechanism is interresting because the comparison raises a very in-
terresting point about GePECs problems. That point partially inspired the
coding style presented in chapter 6.

5.1 Genericity and Covariance

Using GePEC for genericity is a simple matter of using type parameteriz-
ation. This is comparable to most other parameterization mechanisms.
The main difference from most of these is that GePECs type parameters
are on packages, rather than classes and functions. Other mechanisms for

71

parametric polymorphism do have parameters on packages, but differ from
GePEC either by being in languages without object orientation such as Ada,
or taking packages instead of types as their parameters, as with the para-
meterised packages presented in [2]. But even these work in much the same
way as GePEC, at least in the large. Details do vary.

5.1.1 Virtual Types

An approach to genericity which does not rely on type parameterisation is
Virtual Types. This mechanism is inspired by the virtual patterns of the pro-
gramming language BETA [16]. In BETA, a pattern is an abstract mechanism
replacing the more common concepts of classes, procedures, functions and
types [16, chapter 1.2:BETA]. A pattern can be virtual, which in this context
means it can be specialized in a sub-pattern. A result of this is that the
language not only offers virtual methods, as is offered in one form or an-
other by most object oriented languages, but also virtual classes and types.
Drawing on experiences from BETA, Madsen and Møller-Pedersen have de-
scribed the concept of “virtual classes” [15]. Virtual types have developed
from virtual classes.

Virtual types can be thought of as aliases for classes. The class that the
virtual type is a name for is called its binding. A virtual type is itself an
attribute of a class, and it can be redefined in subclasses. The redefinition,
which is often called a further binding must be a subclass of the former
binding. This redefinition is what makes virtual types a generic mechanism,
as we can specialize the virtual types of a class by subclassing it. This can
be compared with passing actual type parameters to a parameterized class
with subclass constraints on all its parameters.

Note that the redefinition of virtual types is covariant. As virtual types
are a means to both covariance and genericity, they are interesting for a
comparison with GePEC.

Virtual types have been the focus of much research. For example, Bruce,
Odersky and Wadler [5] suggested a combination of virtual types and para-
metric polymorphism to express mutually recursive classes . Because of the
covariance inherent in virtual types, the static type safety of virtual types
has also been a matter of concern. This has been addressed by Torgersen
[31] and then Igarashi and Pierce [11].

In his paper Genericity in Java with Virtual Types [29], Kresten Krab
Thorup describes an extension of Java that includes Virtual Types. There,
a programmer can use the keyword typedef to define or redefine a virtual
type.

For example, a programmer may use typedef to bind a class-name T1
to a name inside a class A. In a subclass B of A, a new typedef-statement
can be made for the same name, further binding the same name to a new
class T2. Due to the covariance requirement, this can only be done if T2 is a
subclass of T1. Objects of A naturally use the former definition (T1), while

72

objects of B use the latter definition (T2) for all purposes, including those
inherited from the superclass.

Type safety of virtual types

As was shown in chapter 4.1.1, covariance is not statically type safe in the
presence of subtype polymorphism. This is still true where virtual types
are concerned, as they are covariant and can be used to type both variables
and method parameters. In BETA, dynamic type checks are used in the
situations where covariance may potentially cause problems.

There is one possible compromise, however, explained by Torgersen
in his paper Virtual Types are Statically Safe [31]. It involves a variant of
further binding called final binding. The difference from normal further
binding is that a finally bound virtual class may not be further bound in
subclasses. In this way, further covariance of the virtual type is explicitly
prohibited.

Torgersen demonstrates that we can achieve static type safety by limit-
ing what variables can be assigned: As long as a virtual type is not finally
bound, we must forbid assignment to variables typed with it1. The excep-
tion is if the assigned expression is guaranteed to be the same type as the
variable it is assigned to. This will usually mean that the expression is either
a variable typed with the same virtual type or an expression that creates an
object of the virtual type directly. In brief, the solution is to emit a type
error wherever a dynamic type check would otherwise be necessary.

The limitation is actually a special case of limiting substitutability, so
Pierre Americas statement (see section 4.1) holds. As we cannot assign to
a variable typed with an open virtual type, we do not have substitutability:
Objects of the virtual types open binding or its subclasses cannot be used as
objects of the virtual type, because it could be covariantly redefined.

5.1.2 Structural Virtual Types

Structural Virtual Types was first presented by Thorup and Torgersen in
[30]. They combine the idea of Virtual Types (see section 5.1.1) with that
of F-bounded parametric polymorphism (see section 2.5.3). The result is a
mechanism which increases the power of subtype polymorphism by main-
taining complex type hierarchies, and allows covariant subtyping and mu-
tually recursive types via nested virtual classes.

Structural Virtual Types and GePEC both offer means of achieving stat-
ically type safe covariance and generic typing, though they do this in very
different ways. The mechanisms will be compared with these similarities in
mind.

1Note that this also means forbidding calls to methods whose parameters are typed
with non-finally bound virtual types.

73

Basic genericity can be expressed in a type-safe way using either virtual
types or F-bounded parametric polymorphism. However, each has unique
advantages. Virtual types provide covariance. F-bounding can specify cer-
tain kinds of class relationships, in particular self recursion. Structural
Virtual Types is an attempt at obtaining the best of both worlds, enhancing
virtual types with the expressiveness of F-bounded type parameters.

Structural Virtual Types were created by taking virtual types and adding
F-bounds to the virtual typedef statements. This is annotated in a special
block for each class, contained by square brackets. These contain declara-
tions and bindings of virtual types, and nothing else.

A further note on syntax

The following sections will have several code examples. The syntax used in
those examples is the same as the one used in [30]. Presumably, this is the
syntax of the language IDEA. A technical report describing this language
was to appear at the University of Aarhus in 1999. Unfortunately I have
been unable to find any copy of this report. Not knowing the correct style
of comments for the language, I have used C-style commenting in the code
examples.

As mentioned, virtual types are declared in their own block delimited
by square brackets for each class. The implementation block of a class,
delimited by curly brackets, is optional. An equals-sign separates the name
of a class and its implementation blocks. If the class has a superclass, its
name is written after the equals-sign and before the blocks. In the definition
of the virtual types, the string <: is used to annotate further binding and =
is used to annotate final binding. Finally, Object seems to be the name of
a “global” superclass, in the same way as in Java.

Structural Virtual Types and Subtyping

F-bounded virtual classes work mostly the same way as the normal virtual
types explained above. As mentioned above, they can be open, in other
words “not final bound”, as shown in the following example:

T1 = {...}
T2 = T1{...}
A = [T <: T1]{...} //T1 is the open bound on the virtual class T
B = A[T <: T2]{...} //T is further bound to T2, but still open

...or they can be closed, or final bound, to disallow further covariance:

T3 = T2{...}
T4 = T3{...}
C = B[T = T3]{...} //T is final bound to T3 in C.
D = C[T = T4]{...} //ILLEGAL because T was final bound in C.

74

Structural Virtual Types use nominal typing for the most part, but there
is one exception: The authors of [30] define two ways in which one class may
be a subclass of another. The first is normal, explicitly declared inheritance.
But a class is also a subtype of another if the two classes have a common
superclass, to which the latter class (the supertype) adds nothing but new
bounds for existing virtual types, all of which are matched by equivalent or
stronger bounds in the former class (the subtype).

This type relationship can be said to be “structural”: It is not explicitly
declared, but the demands ensure that the classes are compatible enough
to be subtypes as structural type checking would make them subtypes of
one another. Hence the word “structural” in the name of the mechanism.

Assuming we have two classes Human and Woman where Woman is a
subclass of Human, these are some examples of the use of Structural Virtual
Types:

Collection = [E <: Object] {...}

//This class is a subtype of Collection:
HumanCollection = Collection[E <: Human]{...}

//This class is a subtype of Collection:
//(E is inherited and does not need to be mentioned again as its
//binding is not changed.)
Set = Collection {...}

//This class is a subtype of Collection and Set:
HumanSet = Set[E <: Human]

//This class is a subtype of Collection, HumanCollection,
// Set and HumanSet:
//(HumanSet because Woman is a subtype of Human.)
WomanSet = Set[E <: Woman]

//This class is a subtype of Collection and HumanCollection:
FinalBoundHumanCollection = HumanCollection[E = Human] {...}

//...and so on...

In fact, there are what Thorup and Torgersen call three dimensions of
subtyping. Note that these are in addition to the subtyping inherent in
normal subclassing.

Subclassing If one class with Structural Virtual Types is a subclass of an-
other, as with Set and Collection above, then a subtype relationship
exists between identical further bindings of the two. In the example
above, this is demonstrated by HumanSet and HumanCollection.

Covariance If two classes are created through different further bindings
of the structural virtual types of the same generic class, then they
may be in a subtype relationship. If one of the classes do not add

75

implementation details, and the bindings in this class are matched by
equal or stronger bindings in the other, then the former is a supertype
of the latter. This subtyping dimension is demonstrated by HumanSet
and WomanSet above.

Binding When subclassing a class with an open structural virtual type, the
open type may be final bound to the same type as it was further bound
to in the superclass. In such a case, a subtype relationship exists
between the final bound and the further bound version of the class,
with the final bound version being the subtype. This is the relationship
between FinalBoundHumanCollection and HumanCollection above.

As subtyping is transitive, we get a lot of possible subtype relationships.
This greatly increases the possible uses of subtype polymorphism, making
it easy to write generic code.

Structural Virtual Types and F-bounds

Apart from the special subtyping rules, Structural Virtual Types differ from
normal Virtual Types in one major way: They are F-bounded.

Earlier in this thesis we looked at F-bounds on type parameters. It might
not be immediately clear how F-bounds would work for virtual types, but
it is actually quite simple. In the following example, F-bounding is used to
make sure that the items of a pair are subclasses of Ordered with the virtual
type of Ordered final bound to themselves. This ensures that the items can
be compared with one another using their lessThan methods.

Ordered = [A <: Object] {
lessThan(obj : A): bool;

}

Pair = [B <: Ordered[A = B]] {
x, y : B;
min() : B {

if (x.lessThan(y)) return x;
else return y;

}
}

As we can see, F-bounds enter the world of virtual types when we allow
them to be further or final bound when they appear as bindings for other
virtual types, and let their new bound be the virtual type that they are now
a binding for.

For more details on the expressiveness of Structural Virtual Types, see
[30].

76

Nested virtual classes

A possible feature of virtual types is providing the bound on a virtual type
as an anonymous nested class. In [30], the authors refer to this as “nes-
ted virtual classes”. When further or final binding such a virtual type, the
original bound can be subclassed. In Structural Virtual Types this is done
using the keyword super to represent the name of the anonymous super-
class.

Note that if a class has several nested virtual classes, these may have
references to one another. They may even be mutually recursive. When
further binding these classes, the recursive relationships between them are
preserved. This means that Structural Virtual Types offer some of the same
functionality as the expandable classes of GePEC: We may specialize related
classes, with the specialized versions being related in the same way as their
parents rather than simply referring to their parents as would have been
the case with standard inheritance.

5.1.3 Summary: The Advantages of Structural Virtual Types

Structural Virtual Types is a powerful mechanism for maximizing the num-
ber of sensible subtype relationships. It also gives us covariance along with
nearly complete subtype polymorphism. We can write generic code by us-
ing virtual types as “parameters”, constrained by subtyping and F-bounds.
Furthermore, Structural Virtual Types give us nested virtual classes, which
can be used to extend groups of mutually recursive classes.

5.2 Comparing GePEC and Structural Virtual Types

As described above, Structural Virtual Types offer us genericity, covariance
and a way to conserve recursive relationships between classes when ex-
tending them. This is the same as the main advantages of GePEC, although
GePEC achieves these ends very differently and also offer some other ad-
vantages such as multiple implementation inheritance.

In this section, I will compare Structural Virtual Types and GePEC on
each of these points, in order to see whether GePEC is as useful as one of
its many competing mechanisms.

5.2.1 Genericity

Genericity can be seen as “a way to write code that can later be retyped to
fit the context at hand”. GePEC offers two means of achieving genericity:
Constrained type parameterization on the package level, and expandable
classes. The latter, as a generic mechanism, is usually redundant compared
to the first. Its strengths are greater as a means to static inheritance. When

77

parametric polymorphism can solve the problem, it is usually a better solu-
tion than expansion, and typical needs for genericity fall in this category.
Therefore, and for simplicity, this comparison will focus on the type para-
meterization of GePEC.

Structural Virtual Types also offer genericity. They may be further bound
in order to specialize their parent classes, and final binding them is com-
parable to instantiating a parameterised class with F-bounded subtype con-
straints.

Subtyping

Compared to GePEC, Structural Virtual Types has an advantage in that it
offers subtyping as part of its genericity. A class can have many subclasses
with different further and final bindings of its structural virtual types, and
still be a supertype of all these classes. But no assignment is allowed to
variables or formal parameters typed with these virtual types.

Common-declared types in GePEC can only make use of other common
types, not expandable classes or type parameters. Classes with open struc-
tural virtual types can be used as supertypes directly, unlike classes us-
ing type parameters in GePEC. But methods with arguments typed with the
open virtual types cannot be used to “forward” virtual method calls to sub-
classes. This means that the only real advantage of this subtyping, as far as
genericity is concerned, is comparable to that of common supertypes. Of
course, common supertypes must be explicitly declared, and come in addi-
tion to the classes using the type parameters, so Structural Virtual Types
are more convenient.

Constraints

As a generic mechanism, GePEC has an advantage over Structural Virtual
Types when it comes to constraints. Structural Virtual Types has gen-
ericity comparable to F-bounded subtype constrained type parameterised
classes. GePECs type parameters are, as discussed in section 2.5.3, not lim-
ited to subtype constraints but also have “F-bounded where-clauses” that
are slightly more expressive because they are not reliant on subtype rela-
tionships.

This advantage may be mitigated a bit however, as the three dimensions
of subtyping given by Structural Virtual Types mean that mechanism has
many more such subtype relationships to rely on. Still, being able to ignore
the presence of supertypes when describing constraints is a strength of
GePEC as described in this thesis.

78

Linked genericity

GePEC type parameters can be used by all the classes inside a generic pack-
age. It is unclear whether Structural Virtual Types can be used as types
outside the class they were declared in. If they do, their power is compar-
able to GePEC on this point. If not, GePEC has an advantage.

Mix-ins

A special use of generics is the mix-in. In [1], Agesen et al. define a mix-in
as a type parameterized class that inherited from one of its parameters.
In this way a generic construct could for instance add methods such as
notEqual, greaterThan, lessEqual and greaterEqual to any class with equal
and lessThan methods.

It is more reasonable to use a slightly less strict definition, and we shall
do so here: A mix-in is here a generic construct that can somehow add func-
tionality to already fully defined classes. The added functionality should be
able to require certain methods to be implemented in the original class.

GePEC, as we shall see, has two ways of doing this, whereas it is im-
possible using Structural Virtual Types. The latter mechanism can, however,
do something which is almost as good.

As it is the easiest way, we will use an example to demonstrate this. For
the sake of tradition, we will be using a scaled-down version of the example
mentioned by Agesen et al. in [1]:

Assume we have a class A with boolean methods equal(A a) and lessThan(A
a), with the intuitive semantics. The mix-in problem is to supply a generic
construct that, if fed with the class A, can add to it a greaterThan method
with similar properties to the equal and lessThan methods.

A traditional solution to the mix-in problem is to use type parameteriza-
tion. The solution showed in figure 5.1 is written in C++.

The template class MixIn is the actual solution to the mix-in problem
here. The class A is an example of a class it may be used on. The main
method shows a trivial example of how the mixin can be used.

GePEC can solve the Mix-in problem in two ways. First of all, we can use
the traditional solution of type parameterization:

generic package ComparisonMixin1;

nonfinal parameter SupClaPar {
boolean equal(SupClaPar o);
boolean lessThan(SupClaPar o);

}

79

Figure 5.1 A Mix-In in C++
#include <iostream.h>

template <class Base>
class MixIn : virtual public Base {
public:
bool greaterThan(Base* b) {

return !(this->lessThan(b)||this->equals(b));
}

};

class A {
public:
bool lessThan(A* a) {

return false;
}
bool equals(A* a) {

return true;
}

};

int main(void) {
MixIn<A>* miA1 = new MixIn<A>();
MixIn<A>* miA2 = new MixIn<A>();
cout << "Greater than?: " << miA1->greaterThan(miA2) << "\n";

return 0;
}

80

class MixedClass1 extends SupClaPar {
boolean greaterThan(SupClaPar o) {

return !(this.equal(o) || this.lessThan(o));
}

}

Using this, if we have a class A which fits the parameter constraints, we
can make a subclass of it in the following way:

generic import ComparisonMixin1 as CM1,
SupClaPar := A,
MixedClass1 -> MixedA1;

But with GePEC, we do not need to inherit a type parameter to create a
mix-in. Instead, we can simply use an explicitly expandable class:

generic package ComparisonMixin2;

expandable class MixedClass2 {
expandable boolean equal(SupClaPar o);
expandable boolean lessThan(SupClaPar o);

boolean greaterThan(SupClaPar o) {
return !(this.equal(o) || this.lessThan(o));

}
}

Given the class A again, we could now create the mix-in as follows:

generic import ComparisonMixin2 as CM2,
MixedClass2 => MixedA2;

class MixedA2 extends A { /* empty */ }

This solution is better in a lot of cases. Not introducing inheritance until
later means we are less likely to have trouble if we want to use multiple
static inheritance. Furthermore, if the class on which we want to use the
mix-in is itself expandable, we can give it a shared actual expansion with
MixedClass2. In this way, we would actually be able to add the required
methods to the class that needs them, instead of making a subclass which
has them. This may often be desirable, and can let us get away with fewer
type casts.

Structural Virtual Types cannot solve the mix-in problem directly. Vir-
tual types have traditionally been criticised for not being able to solve mix-
in type problems, and Structural Virtual Types are not much better as we
cannot parameterize the superclass of a given class, or simulate multiple
inheritance.

81

However, we may be able to write a generic construct that provides the
required functionality, just without the subtype relationship. Unfortunately
we need to require the original class to be a subclass of some abstract Com-
parable class.

Comparable = [C <: Object] {
equal(o: C) : bool;
lessthan(o: C) : bool;

}

A = Comparable[C = A] {
equal(o: C) : bool { ... }
lessThan(o: C) : bool { ... }

}

GreaterThanMixIn = [SC <: Comparable[C = SC]]{
greaterThan(o1, o2: SC) : bool {

return (!o1.equal(o2) && !o1.lessThan(o2));
}

}

MixedClass = GreaterThanMixin[SC = A]

This solution now allows us to call MixedClass.greaterThan(...) for any
pair of objects of A and thus gain the desired comparison. The greaterThan
method should be static in a language supporting it, if not we would have
to make a singleton object of MixedClass. We do not have a subtype rela-
tionship between A and MixedClass, but since we will only be working with
objects of A anyway, this hardly matters.

We do require the original class (A) to subclass Comparable. This is
neccesary to avoid assuming the existence of equal and lessThan methods.
In a Java-like environment with interfaces, an interface could probably have
been used instead. This is not entirely certain, however, as it is unclear
whether it would be wise to let an interface contain virtual types.

Still, we could write this solution in GePEC as well, using type parameter-
ization. And GePEC can also solve the mix-in problem in a more traditional
way. Indeed, it can even be said to be a little bit better than the traditional
solution.

GePEC seems better for genericity

All in all, GePEC seems to be both easier to use and more powerful than
Structural Virtual Types when they are compared as generic mechanisms.
That said, I have noticed little practical advantage in one mechanism over
the other when applied to examples similar to common applications of C++
templates or Java generics. The only thing that really comes into play in
small examples is the more powerful constraint mechanism of GePEC, and
the nice way GePEC can handle mix-ins. This makes GePEC a better mech-
anism than Structural Virtual Types if all we are interrested in is genericity.

82

5.2.2 Covariance

Structural Virtual Types offer covariance as part of normal inheritance,
where GePEC offers covariance as part of static inheritance. Both mech-
anisms are statically type safe. This seems to give a major advantage to
Structural Virtual Types, as they offer subtyping along with covariance.

But this advantage is seriously mitigated by the steps taken to make
Structural Virtual Types statically type safe. As mentioned in the compar-
ison of genericity above, the using a class with open virtual types as a type is
very comparable to the uses of a GePEC common supertype. This also holds
true where covariance is concerned, as common supertypes in GePEC has
the same relationship with expandable classes as it has to type parameters:
It may not refer to them.

Therefore, a class with open structural virtual types are comparable to
a combination of an expandable class with type parameters and a common
supertype. Unlike such an expandable class, the class with open structural
virtual types can be used to create objects. The limitations on such classes
means that the objects would be very limited in use, however.

Introducing Mutual Recursion

When it comes to covariance, Structural Virtual Types seems more power-
ful than GePEC. For example, consider the problem of introducing mutual
recursion from section 4.2.5. The following code is an attempt at a solution
using Structural Virtual Types:

Person = [SpouseType <: Person] {
spouse : SpouseType;
marryTo(mate : SpouseType) {

spouse = mate;
mate.spouse = this;

}
}

Man = Person[SpouseType <: Woman]
Woman = Person[SpouseType <: Man]

Maninst = Man[SpouseType = Woman] { ... }
Womaninst = Woman[SpouseType = Man] { ... }

This seems much better than the GePEC solution (see page 68), which
had to rely on type parameterization. Unfortunately, this example does not
type check, due to the content of the method marryTo in class Person. The
first assignment to spouse looks bad, because we are assigning to a variable
typed with an open virtual type. This is safe, however, because mate is also
typed with SpouseType.

It is the second assignment that is bad. We know that “mate.spouse”
is of type “this.mate.SpouseType”, while “this” is of type “Person”. The

83

following code2would break the above implementation of Person if the type
checker let it pass:

UnhappyMan = Person[SpouseType <: Lesbian]
Lesbian = Person[SpouseType <: Lesbian]

UMinst = UnhappyMan[SpouseType = Lesbian]
Linst = Lesbian[SpouseType = Lesbian] {
method1() {

spouse.method2();
}
method2() { ... };

}

SomeClass = {
someMethod() {

UMinst u = new UMinst(); //ok
Linst l = new Linst(); //ok
m.setSpouse(l); //typechecks but should be bad
l.method1(); //creates an error

}
}

This code type checks with the rules given for Structural Virtual Types.
The assignments of the new-statements are obviously legal. The call to
setSpouse should also be so, according to our static type checking rules. But
because of the dangerous call in class Person, this sets the spouse pointer
of an Linst object to refer to a UMinst object.

If this does not cause a crash by itself, the next call will, as the Linst
object tries to call a method in its spouse, which is not there because its
spouse is of an unexpected type.

So a solution is not that simple. In fact, I can find no statically type
checkable solution to this problem using Structural Virtual Types that is.
Using nested virtual classes, we can write a self-recursive class making as-
sumptions about that self recursion being preserved. But in that case, it
seems impossible to introduce mutual recursion based on that self-recursive
relationship. The code for a Person class written in this way looks like this:

PersonHolder = [
Person <: {

spouse : Person;
marryTo(mate : Person) {
spouse = mate;
mate.spouse = this;

}
}

]

With Structural Virtual Types, then, we must choose. We can write pre-
servable but immutable class relationships, using nested virtual classes.

2The syntax used here uses new-statements to create objects, just as in Java.

84

Alternatively, we may write self recursive class relationships that may be
changed into other class relationships, but in that case the code we can
write is under certain limitations.

The choice of dynamic typing

As was described in section 4.3.2, there is a way to give GePEC a version
of statically unsafe substitutability on covariantly redefined methods. It
is interresting to note that in a language with overloading, typecasts and
explicit dynamic type checks, almost the exact same scheme can be used
for Structural Virtual Types. This assumes that an expression can be casted
to an open virtual type, so that the static type checking is bypassed.

Structural Virtual Types are slightly better for covariance

Compared to GePEC, the covariance offered by Structural Virtual Types is
more powerful. Using nested virtual classes, it can do the same as GePEC,
although at the cost of a little extra syntax. This is offset by GePEC needing
to declare its own supertypes, should this be necessary.

Without using nested virtual classes, we can get a means of covariance
which does allow us to write self recursive relationships that may later be
changed into mutually recursive ones. But in this case we are limited in
what we may assume about the relationship, which is reasonable but may
also be annoying.

5.2.3 Extending Groups of Classes

As mentioned in section 4.3.1, GePEC is suitable for instantiating frame-
works. This is because GePEC can be used to specify a group of related
classes. When these classes are specified using class expansion, the rela-
tionships between them are preserved. Structural Virtual Types can be used
for the exact same thing, using nested virtual classes, although it relies on
inheritance of anonymous classes instead of static inheritance.

To see if either mechanism have an edge on the other in this respect, as
well as to demonstrate how both mechanisms are beneficial to frameworks,
let us look at an example.

Problems with Static Typing and Frameworks

In [20], Gail C. Murphy and David Notkin consider the effects of static typ-
ing upon frameworks. They list the three operations that are common on
frameworks:

Instantiation, in which a framework is incorporated into a piece of actual
software.

85

Extension, in which a framework is used to create another framework in-
tended to simplify the construction of an even broader class of applic-
ations than the original framework.

Refinement, in which a framework is specialized into another framework
meant to simplify construction of a related but more specific class of
applications.

They conclude that normal static typing does not support refinement
of frameworks in a satisfactory way. The problems are, mainly, that re-
finement of a framework through subclassing usually requires subclassing
of mutually recursive classes. This leads to a need for covariance. As both
GePEC and Structural Virtual Types offer statically type safe covariance, this
is the kind of problem they cater for. Note that instantiation of frameworks,
as mentioned previously in this thesis, suffer from the same problems as
refinement.

We will now look at a specific framework and a specific refinement of
that framework. The framework in question is the Model-View framework
described and used in [20], and mentioned in [30]. Two solutions to the
problem will be given, one using Structural Virtual Types (taken from [30])
and one using GePEC. Then the solutions will be evaluated.

For attempts at solutions without special mechanisms, and a discussion
of why and how they are unsatisfactory, the reader is reffered to [20].

The Problem: Refining a Model-View framework

As mentioned, the frameworks used here are taken from [20]. The Model-
View (MV) framework is a simplified version of Smalltalk’s famous Model-
View-Control (MVC) framework. The MV framework represents the data of
an application (Model), which will be displayed and manipulated through a
user interface (View). There may be more than one view registered with a
model, and when the model changes these views must be updated.

The MV framework is represented as two classes, Model and View. Model
should have a method registerView, taking a View object as a parameter,
and a changed method which will update the registered Views. The View
class should have a method update, taking the Model object performing the
update as a parameter. Thus, the classes are mutually recursive.

The actual problem consists of refining the Model-View framework. We
wish to use it to create a Drawing-DrawingView (DDV) framework. The
Drawing should inherit the specification of Model and add a new method,
getFigure, to retrieve a graphical figure stored in a Drawing instance. Draw-
ingView inherits from View, redefining its update method in some suitable
manner.

86

The Structural Virtual Types Solution

In [30], Thorup and Torgersen use the MV framework to demonstrate nested
virtual classes. The solution given here is taken from that paper, provided
almost without change: Some of the method content, which is not interrest-
ing to this evaluation, has been removed. Also, final binding in DrawFW has
been replaced by further binding, as we are performing refinement and not
instantiation. If we used final binding, the DDV framework could not have
been further refined or instantiated.

The original Model-View framework can be represented in a language
with Structural Virtual Types as a pair of anonymous nested virtual classes
(see page 77):

ModelViewFW = [
Model <: {

registerView(v: View) {
//add the view

}

changed() {
//for each view, call update

}
...

}

View <: {
abstract update(m: Model);

}
]

The MV framework can then be refined into DDV as follows:

DrawFW = ModelViewFW [
Model <: super {

getFigure(): ...{...}
}

View <: super {
update(m: Model) {
... m.getFigure() ...

}
}

]

The solution is simple. Subtype substitutability is unnecessary, so the
limitations due to static type safety are not interresting. We have covari-
ance, allowing us to properly represent the refined framework. We are also
guaranteed that covariant redefinition is performed wherever neccesary: As
the entire types are redefined, it is impossible to “forget” to redefine method
parameters: It is done automatically.

87

The GePEC Solution

As mentioned before, subtype polymorphism or even subtyping is not really
necessary when refining a framework. Therefore, using class expansion to
do this is fine. With GePEC, the MV framework is represented as a generic
package:

generic package ModelViewFW;

class Model {
void registerView (View v) { ... }
void changed() { ... }

}

expandable class View {
expandable void update (Model m);

}

Given the above framework, we can create the Drawing-DrawingView
framework in the following way:

generic package DrawFW;

generic import ModelViewFW,
Model => Drawing,
View => DrawingView;

class Drawing {
... getFigure() { ... }

}

class DrawingView {
/* Because Model is completely replaced by Drawing during

expansion, this method overrides the expandable method
from View, despite that it looks like overloading. */

void update (Drawing m) { ... m.getFigure() ... }
}

Now we have no subtype relationship between the classes of the MV and
DDV frameworks. But this should never be needed, and it ensures static
type safety.

Drawing and DrawingView are now the only classes we need to care
about in the DDV framework (the DrawFW package). Model and View will
provide no difficulties: As they have been expanded into the new classes,
they do not exist as far as the content of DrawFW is concerned. As with
Structural Virtual Types, we have covariant redefinition of the method para-
meters where we need it, and this happens automatically with the expansion
operation.

88

The mechanisms seem equally good for framework refinement

GePEC and Structural Virtual Types both seem to solve framework refine-
ment and instantiation equally well. At least there were no difficulties in
the example presented above, or in any other example I have tested them.

For frameworks, the type parameterization and multiple static inherit-
ance of GePEC may offer opportunities for creating hotspots that are much
harder to create using Structural Virtual Types. But with regard to pre-
serving class relationships, the mechanisms are comparable.

5.2.4 Summary: GePEC versus Structural Virtual Types

GePEC and Structural Virtual Types are very different mechanisms, and yet
have a lot of functionality in common. It is hard to say which mechanism
is better overall. GePEC is better as a pure generic mechanism, while Struc-
tural Virtual Types are better where covariance is concerned. But in both
cases, the least preferrable mechanism seems able to solve the most com-
mon problems. And both mechanisms can preserve class relationships in
the face of specialisation.

GePEC has one disadvantage compared to Structural Virtual Types. For
its mechanisms to work, code must be implemented in expandable classes.
Contrarily, Structural Virtual Types is a mechanism that works alongside
more common mechanisms such as normal inheritance. There are also the
many minor problems of GePEC, as discussed in previous chapters, to con-
sider.

That said, it is my impression that what GePEC actually offers is slightly
more valuable than Structural Virtual Types. Genericity is most likely more
important than covariance, and GePEC excels here with effective constraints
and mix-ins. Furthermore, GePEC has advantages beyond those of Struc-
tural Virtual Types, such as multiple static inheritance. It also has fewer
subtleties than the virtual types, such as having no seemingly innocent as-
signments suddenly generating type errors.

My conclusion is that these mechanisms are of comparable power. If we
do not care about multiple static inheritance, perhaps because our language
offers full multiple inheritance, and we care about introducing as few new
concepts as possible, Structural Virtual Types is most likely the way to go.
On the other hand, if multiple static inheritance is a goal, and we can find
good solutions to the problems regarding GePEC, GePEC is preferrable.

5.3 Static Inheritance

Static inheritance has been shown to be at the source of many of the biggest
advantages of GePEC. In particular, it is interresting because of multiple
static inheritance, which can let us avoid code duplication. But the static

89

inheritance of GePEC is also at the heart of other advantages, such as static
covariance.

5.3.1 Traits

The mechanism called Traits also aims at avoiding code duplication and
maximising reuse. In many ways its functionality resembles static inherit-
ance, in particular as it offers a kind of multiple implementation inherit-
ance. Traits also offer a kind of statically type safe covariance, but this is
extremely limited as it only works for self-recursive references and cannot
be used in classes.

Traits were first presented by Schärli, Ducasse, Nierstrasz and Black in
[26]. They argue that classes as they are used today are not fine grained
enough to be used as the fundamental unit of code reuse. Instead they
propose to use Traits, which are lightweight modules of code which does
not contain state. While the articles do not specifically define what they
mean by lightweight, it is clear that they use it about very simple units of
code that encapsulate only a single, quite simple, area of responsibility.

Traits are mixed and matched for the desired effect when composing
classes, in a way very similar to multiple inheritance. One should note,
however, that Traits are not types, not even local to a package such as
GePECs expandable classes. They are simply modules of behaviour which
can be included when writing classes.

Traits at a glance

Traits are lightweight entities that require and provide behaviour. The
provided behaviour is based on the required behaviour. More specifically,
a trait consists of a set of implemented methods, and a set of required
methods. The implemented methods specify the behaviour of the trait. The
implementations can call the other methods in the trait, as well as the re-
quired methods. When a trait is used to create a class or another trait, that
class or trait must somehow provide the methods required by the trait.

A trait cannot define state and can never access fields directly, only
through its required methods. Classes, and other traits, can be created from
one or more traits, the only requirement is that they provide the methods
required by the traits they are created from.

In many ways, Traits are comparable to generic packages containing
single explicitly expandable classes with expandable methods. The differ-
ence is that the expandable classes can declare and refer to variables, in
other words to state.

90

Composing classes from traits

Schärli et al. describe Traits as “a logical evolution of the single inheritance
paradigm” [26, page 14]. They emphasize that Traits and trait composition
complements, rather than replaces, single inheritance.

In a system with single inheritance and Traits, a class can be created
through any combination of the following means:

Class Definition: A class may be defined with methods and fields independ-
ent of other classes and traits in the normal manner.

Single Inheritance: A class may inherit from at most one other class, as
with normal single inheritance.

Trait Composition: A class may “use” one or more traits. For the class to
be complete (not abstract), it must provide all the methods required
by the traits. This can be done through normal definition, inheritance
from another class or usage of other traits that provide the required
behaviour.

A trait can also be created by a combination of several means:

Trait Definition: In the same way as a class may be written normally, a trait
may be defined independently by writing explicit code.

Trait Composition: A trait may “use” one or more traits in the same way a
class might.

Conflict resolution

As explained above, traits provide a kind of multiple inheritance of meth-
ods, but not of fields. This leads to the possibility of conflicts, many of
which paralell the problems with multiple inheritance.

If we combine two traits providing methods with equal signatures, we
get a name conflict. However, this conflict is only interresting if the identic-
ally named methods originate in different traits. If they originate in the
same trait but are obtained via different paths, a repeated ancestor situ-
ation, there is no conflict. As the two methods will have the same signature
and implementation, we get only one version of them. Of course, we might
have wanted “repeated inheritance”, but Traits do not offer this.

To resolve the conflicts that remain, the Smalltalk Traits implementation
[26] makes it possible to alias specified methods from a used trait, as well as
to not import specified methods from a used trait. The latter mechanism is
called exclusion, the former aliasing. In addition to this functionality, meth-
ods from used traits can be overridden in the normal manner, although it
is unclear if the overridden methods can then be called from the overriding
ones.

91

In the trait model presented, naming conflicts are solved explicitly through
aliasing and exclusion or implicitly through the generation of “conflict meth-
ods”3at compile time.

Traits are not Types

Traits were originally designed for Smalltalk and implemented in the dialect
Squeak. They fit well for this language both because they supplement Small-
talk’s indigenous single inheritance and because Smalltalk has a dynamic
type system. This type system allows a simple implementation of Traits for
two reasons: First of all, methods specified in and required by Traits do
not need specific types for their parameters or return values. Secondly, one
does not have to think about any kind of “subtype” polymorphism between
Traits and the classes using them, as the callable behaviour of an object is
not dependent on the type of some pointer or variable.

But this thesis is focused on mechanisms for statically typed languages.
Efforts have been made to make Traits usable under these circumstances.
In Quitslund’s papers [22] and [23], his efforts to bring Traits to Java are
described.

Java is (mostly) a statically typed language, and introducing Traits to it
is not trivial. It is made possible by what is known as Design Point 4 in
[23]: Traits are not Types. This design point is necessary mainly because
exclusion and aliasing operations leave us with no guarantees about the
interface of a class constructed from traits.

This again means that we gain no kind of subtype polymorphism between
a trait and a class using that trait, making Traits a mechanism very much
focused on code reuse as it cannot be used efficiently for any kind of gen-
ericity.

ThisType

While it is true and neccesary that Traits are not types, it is sometimes
beneficial to let Traits contain self-references: Method variables typed with
the class into which the trait is instantiated. Of course, if a trait is used by
two different classes A and B, the self-reference will be type A in class A
and type B in type B.

Design point 5 [23] introduces a ThisType construct. ThisType can be
used in Traits to refer to the instantiating class. It can be used both as
a type and to call its constructors. The former is useful for a number of
purposes, among other things to implement methods taking the same type
as the implementing class. The latter is useful mainly for methods that
need to create copies of the object they are executed from.

3If a conflict is left unresolved, a special marker method will be generated to indicate
the conflict. This ensures that the conflict is resolved at the level of the composition.

92

How to think about Traits

The Traits used in the creation of a class can be seen in one of two ways.
From a modelling point of view, especially while constructing the class, it
may be useful to see them as building blocks for classes. In other words,
one may wish to view a class as a combination of fields, Traits and “glue
code” and inherited code. “Glue code” is here used about the methods
actually written directly for the class, and not implemented through Traits.
If Traits are in wide use, most of this code is likely to be the methods
required by the used Traits. Thus the name “glue code” as it connects the
Trait to the class.

However, to a programmer using the finished class and to the program
in which it is a part, it is far better to view the behaviour added to the
class through Traits as no different from methods explicitly declared and
implemented in the class. In [26] and [3] this is called a “flattened” view
of the class. The flattened view ignores the composition of the class apart
from normal inheritance. It is in this flattened view that trait usage most
resemble static inheritance.

5.3.2 Using Traits

Traits are a means to split classes into smaller, easily reusable modules.
Classes composed from Traits can share their code with other classes without
any actual type relationship being neccesary.

Various work on Traits has demonstrated their usefulness by showing
how much code duplication can be eliminated from various Smalltalk and
Java libraries. Based on these results, presented in [26], [3], [22] and [23],
it seems safe to say that Traits are very effective at eliminating the kind of
code duplication which could be avoided with multiple inheritance. But as
with any mechanism, there are still some problems connected with Traits:

Traits in a Statically Typed Environment

One set of problems and questions originates in the fact that Traits were
designed with the dynamic typing of Smalltalk in mind. While the work of
Quitslund and Black ([22], [23]) shows that that Traits can be introduced
to statically typed languages like Java relatively painlessly, some questions
seem to remain:

First of all, it seems impossible to perform full type checking of a trait by
itself. The exclusion operation allows us to use a trait without including all
of its methods. Since we do not know what methods will be excluded until
the trait is actually used in a class, we cannot safely typecheck constructs
using ThisType until the actual use of the trait. In other words: A trait
calling one of its own methods is in trouble if, when the trait is used, the
method it calls is excluded.

93

It may be that the creators of Traits meant that excluded methods would
still be present, but that only the other methods in the same trait should
be able to access it. If this is the case, it is not presented in an easily
understood manner in the articles. But it would most likely make type
checking work without too much trouble.

Programming tools are needed

Traits are small, lightweight entities. While this means they are flexible
units for code reuse, it also means that you will have to deal with a great
many of them. If the mere rewriting of some 29 classes from the Smalltalk
Collection Classes required 52 traits ([3]), one can expect the number of
traits needed for a complete overhaul of the standard Java libraries to be
great indeed. The package java.util alone contains about 40 classes, not
counting exceptions, in Java 1.4.2, and that is just one package.

So if Traits are used often, as they should be in a language incorporating
them, you should expect to see hundreds and hundreds of traits in a large
library, in addition to an already large amount of classes. Furthermore,
when a class you are designing consists of as many as 20 traits, keeping
track of what trait does what, what aliasing and exclusion operations you
have done and so on can easily become cumbersome.

For these reasons, programming tools become essential when using Traits.
This was first noted by the designers of Traits themselves. In [26], Schärli
et al. write:

Having the right programming tools have proven to be crucial
for giving the programmer the maximum benefit from Traits.

In their original implementation, they changed an already existing tool
for Smalltalk to support Traits. This tool helped them keep track of name
collisions, trait requirements and so on.

In summary, good use of a language with Traits requires good program-
ming tools. Even with such tools it is not impossible that the number of
Traits in a big project can make it difficult to add to and/or maintain the
code: It suddenly becomes neccesary to understand the interaction of many
small pieces of code. Unfortunately, how much of an impact this has on real
life usability can only be bought with real life experience with the mechan-
ism.

Summary: Traits

Traits is a mechanism which primarily provides multiple implementation
inheritance on a level “higher” than classes. Classes, in a world with Traits,
are mostly reduced to collections of traits and glue code. Traits are a simple

94

concept to understand and use, and are effective at eliminating code duplic-
ation. Their major potential downside seems to be that the sheer number
of traits may become detrimental to maintainability.

5.3.3 Comparing GePEC and Traits

Traits provide multiple implementation inheritance, limited to method im-
plementations and self recursion. They provide the possibility of aliasing
and exclusion to customize the provided methods. Traits are lightweight,
streamlined and easy to use. Finally, Traits can require certain methods,
and build upon them.

GePEC also offer multiple implementation inheritance, but not as lim-
ited as Traits. With expandable classes we may inherit variables as well,
and we may preserve mutually recursive relationships. GePEC renaming
and overriding provide as much flexibility as aliasing and exclusion, and
GePEC has the potential for a more flexible solution to repeated inheritance
problems (see section 3.2.1). Finally, expandable methods can be used to
require behaviour in the same way as traits can require the presence of
certain methods.

In addition to all that, GePEC offers several other advantages, such as
type parameterization. It pays for all this with a heavier syntax, and with
its potential problems described in previous chapters. If our only goal is
multiple implementation inheritance, Traits is probably the better choice.
But GePEC is a toolbox which offers the functionality of traits as well as
other useful mechanisms.

Inspiration for GePEC from Traits

Traits do have one advantage over GePEC. It is a mechanism designed to cre-
ate lightweight units of reusable code. GePEC works with packages, which
by their nature can contain quite a lot of code, even several classes. Putting
a lot of code in the same generic package can severely limit flexibility, as
the relationships between classes in such a package cannot be changed.

However, if generic packages are written simple and lightweight, we
might gain the flexibility of Traits. This is an idea which may be valuable
to remember in the next chapter, when we look for a fitting coding strategy
for GePEC. It may be that we can gain a lot by thinking along the lines of
traits, using expandable classes as relatively lightweight units of reusable
code.

GePEC is more powerful

Comparing GePEC and Traits, GePEC is the more expressive mechanism. It
can potentially offer better ways of solving repeated ancestor problems, and

95

can maintain mutually recursive relationships between code units. It also
allows static inheritance of fields.

On the other hand, Traits is a more elegant mechanism with fewer in-
tricacies. The possibility of combining them with other mechanisms such
as type parameterisation has been mentioned [23, section 7]. If this is done,
they may compete with GePEC in a lot of ways. But to my knowledge, this
has not yet been done.

The comparison of Traits and GePEC is interresting because it lights up
something which may be a problem with GePEC: Its generic packages can
be filled with a lot of code, making them complex and cumbersome to use.
And complexity in generic packages, such as using inheritance and adding
common interfaces, is the source of many of the potential problems of the
mechanism. It may therefore be wise to learn from Traits, and aim at a
coding strategy using relatively small generic packages.

96

Chapter 6

Structuring Programs using
GePEC

As stated in the introduction, one of the main goals of this thesis is to
look for a programming strategy suitable for GePEC. It is important that
such a style of programming avoids the problems described in the previous
chapters. This can be done by preventing conflicting mechanisms from
being used together.

In this chapter I discuss the requirements on a strategy for using GePEC,
based on results from previous chapters. Then I suggest a way to use GePEC
to structure programs. This approach seems promising in several ways,
although more research is needed to verify its usefulness.

Note that where the term “package” is used below, I refer to generic
packages. Where normal Java-like packages are discussed, this will be ex-
plicitly stated.

6.1 Towards a Strategy for using GePEC

There are three major difficulties with GePEC discovered in this thesis.
While other problems have been mentioned, these three are the only ones
that do not seem to have comparatively simple solutions:

• Normal inheritance interferes with class expansion when using it as
a means of multiple implementation inheritance. This was discussed
in chapter 3. Common interfaces were suggested for typing, which
would allow us to avoid using inheritance.

• Common supertypes interfere with renaming, as discussed in chapter
2.7.3. We must therefore either not use them, or be able to somehow
avoid name collisions when using multiple static inheritance.

• The useful mechanisms of GePEC only apply to expandable classes.
This means that most meaningful code should be put in expandable
classes if we want to maximize the benefits of GePEC.

97

These problems are the main reason we need to look for a new program-
ming strategy for GePEC. Traditional programming techniques introduce
inheritance early, and replacing that with class expansion and common in-
terfaces only exchanges one problem for another. We need a programming
style where:

• All important code is placed in expandable (non-common) classes.

• Inheritance and type relationships are introduced in such a way that
they do not prevent us from using GePECs mechanisms.

The former is a relatively minor requirement, and helps the latter: If
code is written in expandable classes, we can use class expansion instead
of inheritance for code reuse. That leaves only common interfaces and
inheritance used for subtyping as problems.

Note, however, that there is one kind of type relationship which does not
trouble GePEC: Expandable classes may implement as many non-common
interfaces as they like. Non-common interfaces are themselves expandable
and do not hinder renaming. They do not cause problems for multiple static
inheritance either, as they can be multiply inherited.

6.1.1 Separating Types from Implementation

As explained above, we need to place implementation in expandable classes.
We also need to introduce type relationships in such a way that they do not
interfere with GePECs other mechanisms. The one type relationship we can
use safely is the non-common interface.

This reminds us of an existing technique: the separation of types from
their implementation. When we separate types from their implementation,
it is easy to make changes to the implementation. This increases code main-
tainability. In a Java-like setting, the typical approach is to use interfaces in
all cases where types are needed. Classes are simply units of implementa-
tion, and almost all their relationships to one another go through interfaces.
In order to create objects when using such a strategy, it is generally wise
to use factory classes. These classes that have no other purpose than the
creation of new objects of various other classes.

When programming like this, inheritance between classes is usually only
a mechanism for code reuse. With GePEC, we can use class expansion for
code reuse instead. This means we can avoid inheritance between classes,
which solves one of our problems. Using non-common interfaces as types
seems to solve the other. Unfortunately, there are still problems.

6.1.2 Large Generic Packages are Inflexible

To avoid the problems of GePEC when writing a program, we could avoid
class inheritance and implement the the entire program in a single generic

98

package. When we want to reuse code from one class in other classes, we
factor this code out into expandable classes in other generic packages. Im-
porting these packages several times and making actual expansions should
let us avoid code duplication. Multiple class expansion can be used where
more than one part of a single class should be factored out, and static
covariance will help each class be typed appropriately. When we wish to
compile the program, we import it into an otherwise empty file and compile
it.

Unfortunately, as we noted when comparing GePEC with Traits in section
5.3.3, large generic packages suffer from being inflexible. The relationships
between the classes of a generic package cannot be changed when importing
the package, only their contents may. This is inflexibility is further demon-
strated by the inability of class expansion to provide a good solution for the
“introducing mutual recursion” problem, as described in section 4.3.3.

If we had implemented a program as a single large package, with a few
smaller packages factored out, the inflexibility of the large package would
make it hard to reuse portions of the code later. While the code we factored
out to avoid code duplication could easily be reused, that code would be
likely consist of very small, separate units. We may often want to reuse
larger parts of our program, but if it is trapped in a single generic package,
we cannot import parts of it without the rest.

Working on an entire program in a single package is also likely to be
impractical, especially in large projects: It is hard for several people to
work on the same unit of code simultaneously. This is especially true if we
use a syntax like the one in [13], where generic packages are surrounded by
brackets, implying that they must be located in a single file.

We must therefore break up the larger package into several smaller ones.
In the next section, I suggest a way of doing this.

6.2 Package-hierarchy Programming

As explained previously, it makes some sense to collect an entire program
in a generic package, using only non-common interfaces as types and no
class inheritance. Unfortunately, even if we factor out duplicated code into
other packages, a large program cannot sensibly be written in a single large
generic package. The obvious solution is to have one such package, but
keep very little implementation in it. Instead, it gains the implementation
by importing other generic packages.

In this section, I suggest one way of using GePEC to break up a program.
To be able to more easily discuss it, I call the strategy “Package-hierarchy
Programming”1. This strategy should allow us to keep using most conven-
tional wisdom about object-oriented programming, and still gain the ad-
vantages of GePEC without any of the major problems. After describing the

99

approach, I present an example that demonstrates how it can be used.

6.2.1 A Hierarchy of Packages

The main package of a program can be split up by importing a relatively
small number of other packages. Each of these represent a major concern
in the program, an area of responsibility. Examples of such areas can be
user interface, datastructure, or communication with hardware. The con-
cerns chosen will differ from application to application, in a compiler we
might choose front-end and back-end as our major areas of responsibility.
Remaining in the package that has been split is code that does not fit in any
of the areas of responsibility we chose, as well as “glue code” to combine
the imported packages.

The packages imported by the main package can be split in the same
fashion. The packages produced by that split can again be split, and so
on. In the end, we end up with a hierarchy of packages that combine small,
lightweight pieces of code into a large program in a series of import steps.
This hierarchy reflects the hierarchy of responsibilities in our program.

For the rest of this chapter, I will sometimes refer to packages split
out of and imported by another package as subpackages of the importing
package.

This way of splitting up a program is not new. Indeed, when program-
ming without GePEC, we may often use normal packages in this fashion.
It is a sensible way of splitting up a program. Using generic packages in-
stead gives us access to the useful mechanisms in GePEC. As we shall see,
however, this is not entirely unproblematic.

The hierarchy is actually a DAG

Note that this “hierarchy” may often actually be a directed acyclic graph
(DAG). There are two reasons for this. First of all, code may be factored out
of two different packages and therefore imported by both those packages.
Secondly and likely to happen more often, we will use library packages in
various portions of the code. This will also break our tree-structure and
make it a directed acyclic graph.

However, the main concept here is the hierarchy of responsibilities that
we use to split our program into a hierarchy of packages. These main pack-
ages form a hierarchy. With the auxilliary packages that they import, con-
taining factored out code and library routines, the package hierarchy is a
DAG. However, following the imports in the DAG, we always end up in the
same package. This is the same package which represents the root of the

1“Package-hierarchy Program Structuring” would perhaps be a more descriptive name,
but is too long to use as an easy handle.

100

responsibility-hierarchy, the program itself. We will refer to this package as
the root package.

Because the DAG shares a root with the responsibility hierarchy, and
because the most important packages will reflect the areas of responsibility,
we will refer to our package structure as the package hierarchy.

6.2.2 Creating the hierarchy

The package hierarchy is created by defining areas of responsibility within
packages and creating new packages for each such area. Just as if we were
splitting up a program this way using normal packages, the solution can be
approached in several ways:

We can implement the packages in a top-down manner, where we first
implement the main package, deciding what we need from the packages it
should import and delegating responsibility to them. As soon as the main
package is finished, we start working on the packages it imports, and so
on. Alternatively, we can adopt a bottom-up approach, starting by trying
to identify very small areas of responsibility in the program we are going
to write and implementing these as generic packages. These packages can
then be imported by more complex ones, and so on until we have combined
all packages in one: the root package.

The top-down approach rapidly divides the project, making it easy for
several people to work together. We avoid problems with packages written
by different people being incompatible. This approach also makes it easier
to look out for and factor out duplicated code. On the downside, it will be
hard to test any part of our software before the entire package hierarchy
is implemented. This makes it likely that errors are detected later in the
design process, when they will be more expensive to correct.

The bottom-up approach makes it easier to test each package as we go
along. Unfortunately, this advantage is countered by packages needing to
be combined that we may not have planned properly how should be com-
bined. Problems with “clicking together” different parts of the code can
become very expensive, especially at the later stages when the larger pack-
ages are being brought together. Note, however, that GePECs mechanisms
of renaming and expansion has the potential to make some of these prob-
lems easier to solve than we might expect.

Most likely, the best solution lies somewhere between the two approaches
described above. Planning the package hierarchy well before beginning im-
plementation may let us use the bottom-up approach without problems
because we have planned how to click packages together. It could also let
us use the top-down approach with a better idea of what code will look like
further down in the hierarchy.

The use of generic packages is unlikely to greatly affect how exactly
we choose what packages to create. Conventional wisdom about systems

101

engineering is still applicable. The difference is in the details of exactly how
things have to be implemented.

6.2.3 Creating Package Hierarchies with GePEC

When programming without GePEC, we may often use normal packages in
the kind of hierarchy described above. It is a fairly common way of splitting
up a program. However, the limitations of generic packages force us to
implement things in a slightly different manner than we might otherwise
have wished to.

The most important difference stems from the copy-property of generic
imports. A direct effect of this is that we cannot allow import-cycles, as
two generic packages importing one another leads to an unresolvable loop
of package instantiations. The properties of generic imports also give us
several instantiations of a package if we import it in more than one place.

This can make it hard to split up the program using generic packages:
The different parts cannot refer to one another directly. In some ways, this
is a good thing: As the mechanism itself forces packages to be independent
from one another, each package is a separate potential unit of reuse. It also
means each package is more likely to be separately verifiable.

But what do we do when two parts of the same program need to use
the same type for its variables? How can we split up a program into two
separate areas of concern if one of the classes is relevant and necessary in
both contexts? Fortunately, GePEC offers us mechanisms that allows us to
do this without different packages being aware of each other before they
are imported into the same context.

Splitting packages using GePEC

When we split a generic package by creating several other generic packages
for it to import, we can run into two related problems:

• An interface or a class may be needed in two or more of the sub-
packages. With normal Java-like packages, such code could be put in
the package where it fit best, and imported wherever else it might be
needed. GePEC copy-imports prevent this from working well, as we
would get several instantiations of the code.

• An interface or a class may consist of several parts, each of which
belong in different subpackages. With normal packages, this could be
solved using delegation. In GePEC, we actually have several options.

The second problem is relatively easy to solve with GePEC. If the class
is not actually needed in the subpackages, we can decide not to push it
into a subpackage but rather keep it in the current package (the one being

102

split). If it is needed in the subpackages, we can still keep it here. The
subpackages can represent it using a type parameter. Alternatively, we can
implement each part of the class separately, in the subpackages where they
belong. Then we use class expansion to combine the parts. This is useful
for complex classes.

The first problem is no harder to solve. We can use type parameters
or expandable classes that will later be combined. If we allow sharing as
described in section 3.2.1, we have another option as well: We can put the
problematic class or interface in a separate generic package and import it
wherever its content is needed. When the different importing packages are
later combined (which will happen no later than in the root package), we
can use multiple static inheritance combined with sharing to merge these
classes back into one. This approach is dangerous however, as different
instantiations of the class may have been altered using expansion, overrid-
ing and renaming. Therefore, using type parameters is probably a better
solution in most cases.

Splitting a class

As mentioned above, we may want to split a class and let parts of it be
implemented in one or more subpackages. This works in GePEC because of
multiple static inheritance. But splitting a class in this way can be difficult
if different parts of the same class are dependent on one another.

In these cases, we can still split the class in a sensible manner. GePEC
has two mechanisms that may be used: Expandable methods and sharing.
Expandable methods are the easiest, but may not be desirable in all cases.
If one part of a split class needs to access another part, it can simply call an
expandable method. In the actual expansion, this expandable method can
be replaced by a method which accesses the data statically inherited from
the other part. In this way we achieve a well-defined “interface” between
different parts of the same class, which may be valuable for maintenance
and code reuse.

Alternatively, we may simply implement the feature in both parts of the
class, and share it in the actual expansion. In that way, we only end up with
a single version of the shared code. This is one situation where sharing
members from different origins may be useful. Sharing is most useful for
variables, because only methods can be represented by expandable meth-
ods. However, sharing is also dangerous. If we do not have full control
over the ways in which different parts of the class use the same variable, we
may find ourselves with two pieces of code that do not work well together.
Therefore, expandable methods should probably be used in most cases,
even if this means we have to write get- and set-methods for variables.

103

6.2.4 Summary: Package-hierarchy Programming

My suggested method for getting the most out of GePEC, package-hierarchy
programming, can now be summarized: To avoid the problems described
in section 6.1, we implement everything in generic packages and use only
non-common interfaces as types. We limit ourselves to using no class in-
heritance, relying on class expansion for code reuse.

Note that a possible variant is to use only non-common interfaces as
supertypes, but to still use classes themselves as their own types. This sac-
rifices a little bit of flexibility, because we cannot add subtypes to classes
without using inheritance. However, fewer interfaces may increase readab-
ility, which may be more important than the little flexibility we loose.

In order to structure a program well under these limitations, we divide
the program into a hierarchy of “areas of responsibility”, and create a hier-
archy (actually a DAG) of generic packages to reflect it.

The nature of GePEC and generic packages combined with this approach
means that a program will consist of a hierarchy of relatively independent
packages. While each package should be of similar difficulty to implement,
the functionality they provide will be of various complexity. Most com-
plex is the root package, in which the actual program is composed. The
packages it imports, its subpackages, are less complex. These again have
subpackages, each providing even less complex functionality.

Packages can be split without too much trouble by virtue of GePECs
mechanisms. Even classes, should they be complex enough to belong in
more than one area of responsibility, can be split.

Expected Advantages

The packages are independent in the sense that they do not directly de-
pend on the implementation in most other packages. Rather, they access
such implementation through type-parameters. Packages are more reliant
on the packages they import directly, but even in that case will tend to rely
mostly that the imported package contains a few given classes with given
behaviour.

This should make packages easier to reuse, because they are parameter-
ized. With a good choice of areas of responsibility, we will be able to reuse
almost any part of the program, no matter how fine-grained or complex.

If we keep dividing packages for long enough, we will also end up with
very fine-grained packages at the bottom of the hierarchy. These may well
contain only a couple of very tightly related classes, and are fine-grained
and flexible for reuse in much the same way as Traits. Therefore, we avoid
the problem found in section 5.3.3, of generic packages being likely to be
large and inflexible.

The packages being this separate may also increase maintainability and
verifiability. Changes made in one package may not affect others as long

104

as they are relatively small, aiding maintainability. Verifiability is helped
by the relative independence of packages, as we may be able to test them
separately.

Most importantly, using package-hierarchy programming allows us the
benefits of GePEC. Avoiding common supertypes and inheritance in most
situations means that renaming, static covariance and static inheritance can
all be used for all they are worth.

Expected Disadvantages

Package-hierarchy programming is not only beneficial. It is designed as
a work-around to avoid the problems described in section 6.1. While the
solution seems to have some potential advantages compared to traditional
programming, we have made sacrifices to get there.

The main problem is probably readability. As discussed in section 6.2.3,
we run into some problems when two packages need to access the same
class or type. While it seems relatively simple to solve these problems
given GePECs mechanisms, doing so may create substantial amounts of
“glue code”, code which only serves to let packages work together. This
is likely to reduce readability directly.

Readability can also be hurt by the splitting itself. It may be hard to fol-
low the execution of a program as it jumps back and forth between a great
number of packages. This is especially true if we choose to split classes.

There may also be other problems with the approach. More experience
is needed with it before anything conclusive can be said about whether the
gains are greater than the sacrifices.

Other ways of using GePEC

Package-hierarchy programming may not be the best way to use GePEC for
application programming. It even needs to be tested a lot more before we
can even say with certainty that it is a good way to use GePEC. For now, after
many small experiments, I can only say that it is promising.

There may be other ways of using GePEC that also let us avoid the prob-
lems listed in section 6.1. In my work, however, I have only found variations
upon the same theme: To avoid using inheritance and common supertypes,
at least until we can be certain we will not want to use GePECs mechan-
isms on the code. Package-hierarchy programming is a way to structure
code which allows us to do this. Indeed, we avoid common supertypes and
inheritance altogether.

That said, generic packages with expandable classes seem to be more
suitable for writing libraries and frameworks than they are for structuring
application programs. Those cases are when multiple static inheritance,
static covariance and type parameterisation are needed the most. By using

105

GePEC carefully, always avoiding inheritance and using common interfaces
only where it is really necessary, we can implement very flexible libraries
using GePEC. Remember that because of the powerful where-clause con-
straints available in Liberal GePEC, we do not need subtyping for type para-
meterisation, and code reuse can be had by using class expansion. This
enables us to avoid inheritance and may help reduce the need for common
interfaces, which would otherwise be high in lightweight library modules.

Implementing frameworks may be a bit harder, but as has been men-
tioned in previous chapters, GePECs mechanisms lend themselves well to
them. This is especially true for static covariance. Frameworks tend to be
more complex than the examples we have seen in this thesis however, and
we may need to structure them better than a single generic package. In
such cases, it may be advantageous to use package-hierarchy programming
to structure the framework, though more research is needed to verify this.

6.3 An Example: Writing a Simple Parser

To demonstrate and evaluate package-hierarchy programming, I will explain
how a simple parser may be structured using the technique. This will be
described in the context of a compiler which needs the parser, so a brief
explanation of how the parser could be coupled with a compiler back-end
will also be provided.

The code presented is incomplete pseudocode, and only interresting
pieces of code are reproduced in the text. This keeps the example relatively
short, but the techniques used should still be clear. Full source pseudocode
for the parser2can be found in appendix A.

6.3.1 The Language

To write a compiler, we need a language to compile. We will use the lan-
guage from example 2 of section 3.3.1, page 50. For ease of reference, the
grammar and basic rules of the language are repeated here:

<PROGRAM> ::= ’begprog’ <BLOCK> ’endprog’
<BLOCK> ::= {<STMT> ’;’}*
<STMT> ::= <VARDECL>|<FUNDECL>|<CALL>|<ASSIGNMENT>|<RETURN>
<VARDECL> ::= ’var’ <NAME>
<FUNDECL> ::= ’fun’ <NAME> ’beg’ <BLOCK> ’end’
<CALL> ::= ’cal’ <NAME> ’(’ <EXPR> ’)’
<ASSIGNMENT> ::= ’ass’ <NAME> ’=’ <EXPR>
<RETURN> ::= ’ret’ ’(’ <EXPR> ’)’
<EXPR> ::= <TERM> {<OP> <EXPR>}?

2Only code for the parser is included. Neither the code generation/compiler back-end
or the root-package for the entire compiler are listed. Details for these packages, beyond
what is described over the next few pages, should be unimportant to the understanding
of the example.

106

<TERM> ::= <CALL> | <NAME> | <NUMBER> | ’par’
<OP> ::= ’+’ | ’-’

The language has only one type, the integer. The grammar symbol
<NAME> represents any alphabetic string which is not a keyword. All func-
tions take a single parameter, stored in the (automatically declared) formal
parameter ’par’. All functions return an integer, assumed to be 0 if the func-
tion does not contain a return statement. The language has simple static
scoping rules. Further details are unnecessary for our example.

6.3.2 The Compiler

We want to write a compiler for the above language, which should be very
simple: Code generation should be performed immediately upon comple-
tion of a parse tree, bypassing the optimization and other steps of a real-
world compiler. We also want to write the compiler in a very “object ori-
ented” fashion. That is, we want to let the classes representing the parse
tree have methods that perform semantic parsing by calling one another.
In this way, the parse tree builds itself by means of recursive descent. The
parse tree should also have methods performing code generation in much
the same fashion, traversing the tree by a series of calls.

While this may not be the best way of implementing a compiler, it gives
us an interresting object oriented model for our example.

Modelling

To model our compiler, we will use the variant described in section 6.2.4:
We will use classes as types, but use non-common interfaces in all cases
where we need a supertype. With that in mind, we can create a class model.
The process of doing this is not described here, as it can be done in the ways
common for object-oriented design. We decide on the following classes and
types:

• A class that will read the inputfile and perform lexical parsing. We will
implement this as a singleton class called SymbolGenerator, which will
have methods to access the current symbol in the input file and to read
the next. It will also have methods that check whether a given string
is a name, number or operator.

• Classes to represent each node in the parse tree. Each class will need
a method “parse” for parsing, and a method “codegen” for code gen-
eration because of the way we wanted to implement our compiler.

• A factory class, called TreeFactory, to create objects of the parse tree
node classes.

107

• Supertypes to handle sets of similar parse tree nodes. We introduce in-
terfaces for nodes representing statements, terms, containers (nodes
that contain blocks) and declarations.

• A class to keep track of what declarations are in scope and what are
not during parsing. This could have been done directly in the parse
methods of the nodes, but putting it in its own class (which the parse
methods will need to call) reduces the complexity of the nodes. This
class can also be a singleton, and we will call it ScopeHandler.

Figure 6.1 is a UML class diagram with the classes and types described
above. To keep the diagram simple only inheritance relationships are shown.
In the following sections, however, we will assume that we have planned ex-
actly what each class should store and how the different classes interact.
Unfortunately, a fully detailed class diagram with all the information neces-
sary would take up several pages.

The classes on the left hand side are the node classes. On the right
hand are the three utility classes and the interfaces. Some class names
may be hard to understand: RetNode and AssNode represent return and
assignment statements respectively. ParNode represents uses of the ’par’
keyword and OpNode represents operators.

Note that some of these classes, especially ScopeHandler and Symbol-
Generator, would most likely be implemented using several help classes.
These are ignored here for simplicity, as only outlines of those two classes
are given in this thesis.

6.3.3 Package-hierarchy Programming

To write the parser, I adopted a mix of top-down and bottom-up philo-
sophies. This is described later, in section 6.3.8. To keep things short, the
following description is written as if the code is being developed in a purely
top-down manner.

We start out by looking at the root package, which we will call COM-
PILER. We decide that we want to simplify COMPILER by dividing it up into
packages PARSETREE and CODEGEN. PARSETREE should contain all things
relevant to the parser, while CODEGEN worries about code generation. The
code for the COMPILER package is outlined in figure 6.2.

Splitting parsing from code generation creates a problem, because we
decided that the parse tree nodes would do their own code generation. To
solve this, we split the classes. Each class named SomethingNode in the
model will go into the PARSETREE package, where its functionality for pars-
ing will be implemented. It will, however, have a twin called SomethingCode,
containing the code generating functionality. The code generating methods
will need to access information stored in the parsing phase. Where this is
necessary, we will use the techniques outlined previously.

108

Figure 6.1 The Classes of the Parser

109

Figure 6.2 Generic Package COMPILER
class Compiler {
public static void main(String [] args) {
//Set up the SymbolGenerator singleton to read
// the correct file:
SymbolGenerator.initiate(args[0]);

ProgramNode parseTree = new ProgramNode();

parseTree.parse();
parseTree.codeGen();

}
}

//GENERIC IMPORTS:

generic import PARSETREE,
ProgramNode => ProgramNode,
BlockNode => BlockNode,
FunDeclNode => FunDeclNode,
...; //and so on for each node

generic import CODEGEN,
ProgramCode => ProgramNode,
BlockCode => BlockNode,
FunDeclCode => FunDeclNode,
...; //and so on for each node

//ACTUAL EXPANSIONS:

class ProgramNode extends TreeNode {
//Implement expandable method statically
// inherited from ProgramCode:
BlockNode getBlock() {

//Return variable statically inherited
// from ProgramNode:
return b;

}
}

... //and so on...

For example, ProgramNode and ProgramCode from the subpackages are
given an actual expansion called ProgramNode. Note the method we write
there. The ProgramCode class will need to call the codegen method in
BlockCode. But it does not have a pointer to the BlockCode object, be-
cause this will be stored in its twin, ProgramNode. Therefore, it uses an
expandable method called getBlock. It is typed with BlockCode in Program-
Code, but BlockCode is given BlockNode as an actual expansion. Therefore,
the method is typed with BlockNode in the context of COMPILER, as shown
in figure 6.2. We implement it to return the variable we have decided that
ProgramNode uses to reference its BlockNode: b.

We will have to write glue code like this for every node class, and in
many cases it will be alot more complex than in this example. With good
planning, however, it should not be impossible.

6.3.4 Implementing the generic package PARSETREE

We now have to implement the generic package PARSETREE. As mentioned
before, this example focuses on the parser of the compiler, so we will ignore
the CODEGEN package. This keeps the example simple.

PARSETREE must provide the classes and interfaces of figure 6.1. We
decide to split three areas of responsibility from it:

110

• File IO and lexical parsing is a relatively autonomous part of a com-
piler, and is nicely encapsulated in the SymbolGenerator class. We put
it in the package SYMBOLGENERATOR.

• The parse tree nodes are quite similar, and are all part of performing
semantic parsing. We put them, their supertypes, and the TreeFactory
class in the package PARSENODES.

• We want to track scope during parsing, so some scope handling im-
plementation will need to be put in the parse nodes. To avoid dealing
with that in subpackages, we add that to the relevant parse methods
in this package. We put the ScopeHandler class in its own package
SCOPEHANDLER.

In PARSETREE we need to to import packages SYMBOLGENERATOR, PARSEN-
ODES and SCOPEHANDLER, and add functionality for letting the Scope-
Handler class know about declarations and blocks. We also need to write
code for fetching information about declarations into classes that represent
variable use, function calls, use of the ’par’ keyword and return statements.
We will look at some parts of the package in more detail:

The imports

We need to import the three subpackages of PARSETREE:

generic import SYMBOLGENERATOR;

generic import SCOPEHANDLER,
DN := DeclNode,
BN := BlockNode;

generic import PARSENODES,
SG := SymbolGenerator,
BlockNode => BlockNode,
FunDeclNode => FunDeclNode,
VarDeclNode => VarDeclNode,
CallNode => CallNode,
VarUseNode => VarUseNode,
RetNode => RetNode,
ParNode => ParNode;

SYMBOLGENERATOR is simple. It does not need to know about any
types from the other packages, so it can merely be imported.

SCOPEHANDLER is more complex. The ScopeHandler class will need to
know about the DeclNode interface and the BlockNode class. These are im-
plemented in ParseNodes. To represent them, SCOPEHANDLER will use type
parameters. Therefore, we let the import pass DeclNode and BlockNode to
parameters DN and BN respectively.

PARSENODES is even more complex. It needs to know about the Scope-
Handler class from package SCOPEHANDLER, so we again use a type para-
meter. We also wanted to implement the parts of the parse nodes that deal

111

with the scope handler in this package. Therefore, we make explicit actual
expansions of several classes imported from PARSENODES: The classes in
which we need to write implementation for scope tracking.

Class BlockNode (actual expansion)

Class BlockNode (imported from PARSENODES) will need to register with
the ScopeHandler instance upon entry and exit. We can do this by call-
ing methods in ScopeHandler immediately upon entering and immediately
upon exiting the parse method in BlockNode. This is done in the actual
expansion of PARSENODES.BlockNode, as follows:

class BlockNode { //Actual expansion
//Override statically inherited method:
void parse() {

ScopeHandler sh = ScopeHandler.getinstance();
sh.enterBlock(this);
BlockNode#parse(); //Call overridden method
sh.leaveBlock(this);

}
}

We override the parse method to call methods in the ScopeHandler in-
stance upon entry and exit. We call the overridden method to make use
of the semantic parsing implementation, statically inherited from PARSEN-
ODES.BlockNode. Note that we assume automatic renaming of the overrid-
den method as described in section 2.6.4.

Class RetNode (actual expansion)

Objects of class RetNode represent return statements. These should know
the declaration of the function they belong to, or if they appear directly in
the program, the ProgramNode object. The actual expansion of PARSEN-
ODES.RetNode looks like this:

class RetNode { //Actual expansion
ContainerNode c;

//Override statically inherited method
void parse() {

ScopeHandler sh = ScopeHandler.getinstance();
//Let the return statementknow what function
// declaration or program it belongs to.
c = sh.getCurrentBlock().c;

RetNode#parse(); //Call overridden method
}

}

112

We override the parse method, and use the scope handler to access the
current block. We also decide that BlockNode objects should have a field
“c”, which should point to the ContainerNode that the block belongs to. We
let RetNode know the ContainerNode of the current block.

The other actual expansions

The rest of the code in PARSETREE are actual expansions for other classes
that must help track scope. The techniques used are the same as those ex-
plained above. The entire code for package PARSETREE is given in appendix
section A.3.2.

6.3.5 Implementing SYMBOLGENERATOR and SCOPEHANDLER

The ScopeHandler and SymbolGenerator classes can be implemented in a
straightforward manner in their respective packages, without need for wor-
rying about package-hierarchy programming. The only exception is that the
ScopeHandler will need to use type parameters to represent declarations
and blocks. The code for these classes is outlined in appendix section A.1.

The ScopeHandler class is implemented as a singleton, with “getinstance”
the method which creates and returns the singleton instance. Apart from
that, the class has the following methods:

regDecl: Registers that a declaration is parsed.
enterBlock: Registers that the parsing of a block begins.
leaveBlock: Registers that the parsing of a block has ended.
getDecl: Returns the declaration node with a given name according to cur-

rent scope.
getCurrentBlock: Returns the BlockNode object representing the current

scope.

The SymbolGenerator class is also a singleton, with a method “initiate”
to create and initiate the singleton and a method “getinstance” to return it.
The class has the following methods:

viewCurr: Returns the current grammar symbol as a string.
readNext: Reads the next grammar symbol from the input file.
isName: Returns whether a given string is a valid name for the language.
isNumber: Returns whether a given string represents a valid number in the

language.
isOperator. Returns whether a given string is a valid operator for the lan-

guage.

113

6.3.6 Implementing the Generic Package PARSENODES

PARSENODES should, as mentioned previously, provide the classes that rep-
resent the parse tree nodes, and their superclasses. It should also provide
TreeFactory, the factory class which creates objects of the various node
classes. We decide to split this package by making each parse tree node its
own area of responsibility.

The various classes in this package will need access to the SymbolGen-
erator, so the first thing to do is to create a type parameter to represent
it, called “SG”. We then create the various interfaces; StatementNode, Term-
Node, DeclNode and ContainerNode.

Figure 6.3 The TreeFactory Class
class TreeFactory {

static ContainerNode nextBlockBelongsTo = null;

static ProgramNode newProgramNode {
return new ProgramNode();

}

static BlockNode newBlockNode {
if (nextBlockBelongsTo == null) { /* ERROR */ }
BlockNode b = new BlockNode();
//Let the block know its container:
b.c = nextBlockBelongsTo;
nextBlockBelongsTo = null;
return b;

}

static StatementNode newStatementNode {
SG sg = SG.getinstance();
String s = sg.viewCurr();
if (s.equals("var")) {

return new VarDeclNode();
} else if (s.equals("fun")) {

return new FunDeclNode();
} else if (s.equals("ret")) {

return new RetNode();
} else if (s.equals("ass")) {

return new AssNode();
} else if (s.equals("cal")) {

return new CallNode();
} else {

/* ERROR */
}

}

static ExprNode newExprNode {
return new ExprNode();

}

static OpNode newOpNode {
return new OpNode();

}

static TermNode newTermNode {
SG sg = SG.getinstance();
String s = sg.viewCurr();
if (s.equals("par")) {

return new ParNode();
} else if (s.equals("cal")) {

return new CallNode();
} else if (sg.isName(s)) {

return new VarUseNode();
} else if (sg.isNumber(s)) {

return new NumNode();
} else {

/* ERROR */
}

}
}

Next up is the TreeFactory class. Code is given in figure 6.3. It contains
methods to create every kind of treenode. Note, however, the methods

114

newTermNode and newStatementNode. These methods perform a little bit
of semantic parsing in order to choose what kind of term or statement node
to create. By letting TreeFactory do this, we make it simpler to write the
parse methods of ExprNode and BlockNode: They can now treat all terms
and statements in exactly the same way.

Note also the field nextBlockBelongsTo and the implementation of new-
BlockNode. We stated previously that every block should know its con-
tainer, that is the ProgramNode or FunDeclNode object which “contains” it
in the program. The newBlockNode method sets the field “c” in the new
BlockNode object accordingly, based on nextBlockBelongsTo. That field
must be set by each ProgramNode and FunDeclNode, as soon as it begins
parsing.

We now need to import all the subpackages of TREENODE. As mentioned
above, we decided to put each node class in its own package, so there is one
import per node. In a lot of cases we have to make actual expansions, most
often simply to add the interfaces as supertypes. In some cases we have
to do more, most notably in FunDeclNode and ProgramNode, to update the
field in TreeFactory which it uses to create BlockNode objects. Using class
ProgramNode as an example, the code for importing and expanding it is
given in figure 6.4.

Figure 6.4 Import of package PROGRAMNODE
generic import PROGRAMNODE,

TF := TreeFactory,
BN := BlockNode,
SG := SG,
ProgramNode => ProgramNode;

class ProgramNode implements ContainerNode {
//Actual expansion with interfaces and method added

//Override statically inherited method:
void parse() {

TreeFactory.nextBlockBelongsTo = this;
ProgramNode#parse(); //Call the overridden method

}
}

We see that the ProgramNode class will need to know about the TreeFact-
ory, BlockNode and SymbolGenerator classes, so package PROGRAMNODE
will have parameters representing these. We do not know of the SymbolGen-
erator class in package PARSENODES, so we simply pass our own parameter
along.

In the actual expansion, we add the interface which ProgramNode should
implement, and override the parse method to update the aforementioned
field in TreeFactory. It then calls the overridden method to perform parsing.

The rest of the ParseNodes package is done in much the same fashion,
code is given in appendix section A.3.1.

115

6.3.7 Implementing the Various Parse Tree Nodes

As mentioned above, each parse tree node should be implemented in its
own package. The code for these is given in appendix section A.2. Once
these are implemented, we will have a complete parser in the PARSETREE
package.

The parse nodes are relatively straightforward to implement where package-
hierarchy programming is concerned. We really only need to remember to
use type parameters to represent other types and classes. If we refer to the
initial class model as written before we began thinking about the package-
hierarchy, should also keep in mind what parts of the class have been im-
plemented elsewhere.

A special case is the parse tree nodes OpNode, VarUseNode and Num-
Node. When writing them, I discovered great similarities between the classes.
They all had a single text field, and a parse method which looked at the cur-
rent symbol, checked if it was of the appropriate type and read the next
symbol.

Figure 6.5 Package SIMPLENODE
generic package SIMPLENODE;

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();
boolean issomething(String s);

}

//Used to implement OpNode, VarUseNode and NumNode
class SimpleNode {

String str; //String to store a textual piece of information

void parse() {
SG s = SG.getinstance();
str = s.viewCurr();
if (!s.issomething(str)) { /* ERROR */ }
s.readNext();

}
}

To avoid code duplication, I decided to only write these once. Package
SIMPLENODE, given in figure 6.5, is used to implement OpNode, VarUseN-
ode and NumNode. To create node classes from SimpleNode, the following
code was used in package PARSENODES:

generic import SIMPLENODE, //Make OpNode from SimpleNode
SG := SG,
SG.issomething(String s) -> isOperator(String s),
SimpleNode -> OpNode,

116

SimpleNode.str -> operator;

generic import SIMPLENODE, //Make VarUseNode from SimpleNode
SG := SG,
SG.issomething(String s) -> isName(String s),
SimpleNode => VarUseNode, //expansion!
SimpleNode.str -> name;

class VarUseNode implements TermNode {
//Actual expansion with a non-common interface added.

}

generic import SIMPLENODE, //Make NumNode from SimpleNode
SG := SG,
SG.issomething(String s) -> isNumber(String s),
SimpleNode => NumNode, //expansion!
SimpleNode.str -> number;

class NumNode implements TermNode {
//Actual expansion with a non-common interface added.

}

Note the way we rename the type parameter constraint to call the correct
method from the SymbolGenerator in each case. Note also that renaming
is used to give the field a name appropriate for the class. By using a single
expandable class to make these three classes, we have saved writing some
code.

In this case removing code duplication may not have been truly neces-
sary, as a change to one of these classes may not mean a change to the
other two. We do not gain much in the way of reduced code size either. But
the example aptly demonstrates the degree to which GePEC may be used
to specialize a class. We could even have used SimpleNode to implement
some of the other nodes, which also have a text field and have similar pars-
ing rules. In those cases more code would have to be written however, and
the parse method from SimpleNode would have to be overridden to add
more semantic parsing. I have refrained from doing this to keep readability
at a human level.

6.3.8 Experiences from the Compiler Example

Using package-hierarchy programming to structure the parser was not too
difficult. The main problem is the splitting of classes, which can some-
times make it difficult to remember what parts of a class are implemented
where. This is especially true when making changes late in the design pro-
cess. These problems are probably about as serious as the similar problems
which can be found in systems relying heavily on normal inheritance, but
may occur more often in our case.

As presented above, we did a very clean top-down pass to structure and
implement the program. Reality was not that pretty. I started out using a

117

top-down approach of deciding what packages would be made, and what
should be implemented in each of them. The implementation was then
written for the packages high in the hierarchy using pseudocode. Then, I
implemented the packages furthest down in the hierarchy, and proceeded
with a bottom-up approach until I reached the root package, in this case
PARSETREE.

While I did have to make a few changes to already implemented code
during this experiment, this was not much more of a problem than it is
when structuring programs using more conventional object oriented tech-
niques. In some cases, package-hierarchy programming even helped keep
me focused on one matter at a time, especially concerning the parse meth-
ods.

Advantages and Disadvantages

Of the expected advantages mentioned in section 6.2.4, it seems clear that
this code is quite flexible for code reuse. We can reuse code at several
levels, picking any package or set of packages which suits us. The type
parameterisation used means that we can retype the classes to suit new
contexts.

The code should also facilitate changes reasonably well, probably about
as easily as common object oriented programs.

Verifiability is improved in some ways and made harder in other ways.
In this case, verifying each package on its own should be relatively easy,
because of the way classes are split according to their different responsib-
ilities. On the other hand, problems tied to how different parts of a class
interact may be harder to find.

Readability is sacrificed, as expected. There is a lot of glue code around,
and if we want to find a particular piece of code we do not only need to
know what class it is in, but also what package. In this way, splitting of
classes is unfortunate. Following program execution forces us to skip from
package to package a lot.

All in all, as a work-around to the problems of GePEC, package-hierarchy
programming seems to have quite a lot of advantages. It does also have
disadvantages, however, but that is to be expected. The question is whether
the advantages outweigh the disadvantages in practice. It is also uncertain
how the model will scale to larger programs. Readability will most likely get
worse, but it is uncertain if the advantages will become more pronounced.

To answer either of these questions, more research is needed. However,
based on the example presented here and a few others that I have written,
I feel that package-hierarchy programming is a promising way of avoiding
GePECs problems while keeping its advantages.

118

Chapter 7

Summary and Conclusion

The goal of this thesis was to evaluate the usefulness of generic packages
with expandable classes, with focus on the “variants” described in [13]. As
part of this, it was deemed useful to develop a coding strategy suitable for
use with GePEC. This proved especially true because of certain problems
that arise if we are not careful how we use the mechanism.

In chapter 2 I introduced Liberal GePEC, a version of GePEC based on
the suggested variants of [13], as well as my own experiences. Compared
to that paper, Liberal GePEC introduces one entirely new mechanism: The
common qualifier. The common qualifier is best used along with interfaces
to create mutual supertypes for all the actual expansions of an expandable
class. This can be very useful, especially when writing library-like code, but
unfortunately can cause certain problems with regard to renaming.

Other important discussions in chapter 2 include the one on type para-
meter constraints, which concludes that it is hard to express F-bounded
subtype constraints in GePEC. This is unlikely to be a problem, because
we can easily support “F-bounded where-clauses”, a very flexible constraint
mechanism. The discussion of what to do when overridden methods are
renamed, and the suggested solution of cascading renaming, is also im-
portant, especially so because the suggested solution is the source of the
problems involving the common-qualifier.

Chapter 3 explored the potential in GePEC for multiple static inherit-
ance. We saw that the combination of common-declared interfaces and
class expansion can provide a powerful alternative to multiple inheritance,
although too much use of normal inheritance may prevent its utilization in
many cases. We also saw that the diamond problem can be solved sens-
ibly in GePEC, by allowing both renaming and a mechanism that was called
sharing.

A discussion of the static covariance offered by GePEC was given in
chapter 4. The conclusion was that GePEC seems to be powerful enough
for most needs for covariance, especially as a pattern was found that gives
substitutability on covariant methods at the cost of static type safety.

119

In chapter 5, GePEC was compared with Structural Virtual Types and
Traits. It was found to be comparable or better in usefulness than these
alternatives, although the comparison with traits did uncover one possible
weakness: The ability of generic packages to be very complex is a detriment
to reusability, as light-weight units are more easily reused.

Based on that lesson and the idea of separating types from their imple-
mentation, chapter 6 introduces “Package-hierarchy Programming”, an ap-
proach to using GePEC that plays to its strengths and avoids its weaknesses.
Package-hierarchy programming is an approach to structuring programs,
which may improve code reusability at the cost of readability. Verifiability
and maintainability also seem to be affected by the approach, positiviely in
some ways and negatively in other ways.

7.1 Results and Contributions

In section 1.1, I listed the four major goals of this thesis. It seems safe to
claim that I have reached these goals to a large extent. The results for each
goal are summarized below.

7.1.1 The usability of GePEC

The first main goal of this thesis was to evaluate the usefulness of GePEC,
especially as an alternative to multiple inheritance and covariance.

In this thesis, we have seen several uses of GePEC. Its usefulness as an
alternative to multiple inheritance and covariance has been well treated in
chapters 3 and 4. The conclusion is that GePEC can provide a very viable
alternative to both controversial mechanisms, but that this depends on pro-
grams being written in the right way. The most important condition is that
normal inheritance must be avoided if we want the option of using multiple
static inheritance in all contexts.

Apart from the observations done in the above mentioned chapters, the
comparison of GePEC with Structural Virtual Types in chapter 5.2 contains
several small examples of using GePEC. There are also other small examples
in the other chapters of the thesis. Based on these examples, it must be
concluded that GePEC is a very flexible and powerful mechanism.

7.1.2 The practical problems of GePEC

The second main goal of this thesis was to describe the practical problems
of programming with GePEC and to provide solutions where possible.

This thesis has identified many practical problems with GePEC. The most
troublesome ones led to the creation of package-hierarchy programming.
They are briefly summarized at the beginning of section 6.1, and are:

120

• The interference between normal inheritance and static multiple in-
heritance.

• The interference between common supertypes and cascading renam-
ing, actually a result of our solution to the problem of renaming meth-
ods that override other methods in superclasses.

• The fact that GePECs mechanisms only work for expandable classes
and interfaces, meaning that anything implemented outside a generic
package, or using the common-qualifier, is not helped by the mechan-
isms.

Other potential problems have also been treated, but in those cases solu-
tions have been suggested. Of these, the following are probably the most
important:

• Renaming in the presence of overriding (and to a lesser extent over-
loading), as discussed in section 2.7.3. Solved by cascading renaming,
which unfortunately leads to the interference between common super-
types and renaming.

• The static diamond problem, described in section 3.2.1. Not too much
of a problem in GePEC because of renaming, but a suggested mechan-
ism called “sharing” increases expressivity.

There are other potential problems as well, such as the prospect of “name
collisions” between constructors, but these seem quite easy to solve.

7.1.3 GePEC compared to alternative mechanisms

The third main goal of this thesis was to see how it compared to other
mechanisms.

We have seen comparisons of GePEC with two untraditional mechan-
isms, Structural Virtual Types and Traits. In both cases GePEC appears to
be at least as useful as the mechanisms to which it is compared. GePEC
has also been compared to multiple inheritance and covariance, as part of
evaluating it as an alternative to those mechanisms.

7.1.4 A programming strategy for GePEC

The fourth main goal of this thesis was to describe a strategy of program-
ming with GePEC which avoids most of its practical problems.

Based on the problems found earlier in the thesis, chapter 6 introduces
package-hierarchy programming. This is a way of structuring programs
which plays to the strengths of GePEC and avoids its problems. Package-
hierarchy programming should make it possible to avoid code duplication,
and should increase reusability.

121

Unfortunately, package-hierarchy programming is detrimental to read-
ability. Further research is needed to see if this disadvantage is prohibitively
strong. The effects of package-hierarchy programming upon verifiability
and maintainability are also uncertain.

7.1.5 Secondary contributions

As part of reaching these primary results, this thesis presents several con-
tributions of a more “low-level” nature. These contributions do not directly
answer any of the main goals of the thesis, but may be just as important.
The ones that seem most notable are:

GePEC and interfaces

Throughout this thesis, we see examples of how well the mechanisms in
GePEC work when combined with Java-like interfaces. While it is a minor
conclusion, my work indicates that any language built around GePEC should
also offer Java-like interfaces.

Shared fields and methods

In section 3.2.1, a suggestion is made to let statically inherited fields and
methods be “shared”. This means they will only be present once in the
actual expansion, even if present in several expandable classes.

This gives us a way to solve the repeated static ancestors problem in a
way similar to the way “virtual inheritance” solves the normal repeated an-
cestors problem in C++. The other alternative is already available in GePEC,
through the use of renaming.

Shared members may also have other uses besides solving the diamond
problem for static inheritance. It can, for example, be used to assimilate
equal members of completely different origins. The extent to which this is
useful in practice is uncertain, but one possible use was indicated in the
section on splitting a class on page 103.

Expandable methods

The idea of expandable methods, suggested in section 2.6.3, seems very
promising. Using expandable methods, we can write very flexible mix-ins
which do not rely on inheritance of a subtype parameter. This was demon-
strated in the section on Mix-ins on page 79. Expandable methods can also
be used when splitting classes in package-hierarchy programming, as ex-
plained in section 6.2.3.

In general, expandable methods work in much the same way for class
expansion as abstract methods do for inheritance. This can make them very

122

useful in all situations where we need to “postpone” the implementation of
a method until later. For example, we can use them to create hotspots in
frameworks.

Renaming

The description and discussion of renaming in section 2.7 treats problems
that were not mentioned in [13]. These problems arise because liberal
GePEC embraces concepts that were only mentioned as variants in that pa-
per.

In particular, renaming of parameter constraints is an interresting addi-
tion to GePEC in this thesis. It has proven useful in several practical experi-
ments, including certain examples in this thesis. Perhaps the most notable
example is the use of the package SIMPLENODE in section 6.3.7.

The discussion of how to treat renaming in the presence of overriding,
and to a lesser extent overloading, is also important. No perfect solution
to these problems was found, and the one that was suggested (cascading
renaming) leads to new problems. A minor conclusion of this thesis is that
further research is needed before we obtain a flexible enough statically type
safe renaming mechanism.

Common package members

Section 2.3.2 explains the common-qualifier, which gives the possibility of
having certain members of a generic package be “access-imported” instead
of “copy-imported”. This is primarily useful to give a supertype to all the
actual expansions of a particular generic package.

Unfortunately, this mechanism can prevent renaming, as described in
the section about cascading renaming on page 29. For this reason, the
common-qualifier is avoided in package-hierarchy programming. It is still
useful, however, as a means to write “glue code packages”, such as the one
presented on page 66. It may also be that other approaches to using GePEC
may rely more on the common qualifier and find other ways of avoiding the
problems surrounding cascading renaming.

Parameter constraints

Parameter constraints in GePEC were evaluated in sections 2.4 and 2.5. The
conclusion is that GePEC can offer a wide variety of constraints, but that it
can only offer F-bounding on so-called “where-clauses”, not on subtype con-
straints. This is, however, potentially more useful than F-bounded subtype
constraints.

The other important conclusion about GePEC type parameter constraints
is that GePEC should provide where-clause constraints. Subtype constraints

123

will most likely not be sufficient for the mechanism, even if they could be
made F-bounded. There are two reasons for this.

First, as mentioned above, where-clause constraints are most likely our
only way of describing F-bounds in GePEC.

Second, because of the problems regarding inheritance and the common-
qualifier, we may end up using type parameterisation more and subtype
polymorphism less. We will almost certainly use less inheritance, because
class expansion in some ways is more powerful for code reuse. All this will
probably lead to fewer subtype relationships being defined, which again will
reduce the value of subtype constraints.

7.2 Further Work

The results of this thesis open up many interresting, yet unanswered ques-
tions. This section seeks to list the most important of these questions as
suggestions for further work.

7.2.1 Testing Package-hierarchy Programming

Package-hierarchy programming as described in chapter 6 seems promising
as a way to use GePEC to structure programs. Unfortunately, it has certain
problems and has only been tested on relatively small examples.

The strategy needs further testing, especially in larger projects. This
may require a working GePEC compiler, something which is not available
today. Writing such a compiler could be done relatively easily, however,
perhaps even through pure textual substitution.

7.2.2 Alternatives to Package-hierarchy Programming

There may well be good alternatives to package-hierarchy programming,
in which case further research is needed to find them. In particular, it
may be interresting to look at possible modifications to GePEC which may
reduce the severity of problems discussed in this thesis. If this can be done,
alternatives to package-hierarchy programming will be easier to find.

For example, it may be possible to let two expandable classes with su-
perclasses share an actual expansion, if the superclasses are also merged
as part of the same imports. In this way, it may be possible to merge entire
inheritance trees as long as they are topologically equal. This may open new
approaches in using GePEC, not explored by this thesis.

Other ways of using GePEC is to create libraries and frameworks. These
have been treated briefly in this thesis, but it may be interresting to look
deeper at what problems and opportunities arise when GePEC is used for
this kind of purpose.

124

7.2.3 Better solutions to renaming difficulties

Renaming of methods that are overriding, overridden and/or overloaded
must be treated somehow. The suggestion in this thesis, cascading renam-
ing, causes problems with common supertypes. It would be valuable to find
other approaches to solve these problems, especially if we can avoid the
collision between common supertypes and renaming of overridden meth-
ods. This is unlikely to come easy, but may be valuable enough to look for
anyway.

Also, further research is needed to decide whether these problems really
need solving at all. It may be that renaming would be used seldom enough
in practice that we can accept a less-than-perfect solution.

7.2.4 New kinds of parameterisation

In this thesis, we have assumed that generic packages have only type para-
meters. It could be interresting to look at the possibility of other kinds of
parameterisation on GePEC packages. Is it advantageous to let actual para-
meters be other packages (as was done in [2]), instead of single types? Or
it may perhaps be useful to parameterize packages with values, similar to
what is possible with C++ templates.

7.2.5 New uses for sharing

Sharing was suggested in section 3.2.1 as a way to help solve the static
diamond problem. However, because we can share members of different
origins, it may be useful beyond solving the repeated ancestor problem.
Further work is needed to find these uses, if they exist.

Furthermore, it is likely that some variant of sharing might be used in
conjunction with normal multiple inheritance. Would it still be possible to
share members of different origins in this case, and would it be useful in
practice?

7.2.6 Other language contexts

Finally, it could be valuable to look at GePEC in other contexts than Java.
This thesis has been very focused on a Java-like context, assuming virtual
methods, non-virtual variables, single inheritance and the presence of inter-
faces.

But the choice of a Java-like context for this thesis was a way to limit the
number of possible problems that had to be considered. It was not a goal
to check GePEC against everything that is in Java. Therefore, it is uncertain
how GePEC works with Java mechanisms such as visibility qualifiers, and it
could be interresting to look into this further.

125

It is also possible to look at how GePEC works with mechanisms com-
pletely alien to Java. How does GePEC work with non-virtual methods, or
in the presence of full multiple inheritance? The development of Traits
seem to indicate that static inheritance is useful in dynamically typed lan-
guages. Is it useful to tie static inheritance to a package concept in such
settings? And how useful is multiple static inheritance alone, without in-
terfaces? While some questions of this kind are tentatively answered in
this thesis, further examination could further improve the understanding
of GePEC.

7.3 Summary

This thesis has provided an evaluation of Generic Packages with Expand-
able Classes in a Java-like context. The mechanism appears to be a good
alternative to multiple inheritance and covariance in most situations. Un-
fortunately, programs must be written a certain way to avoid problems.
This thesis suggests one way of avoiding these problems, but the approach
may decrease the readability of programs significantly.

GePEC works very well in the Java-like context, especially combined with
interfaces. However, more research is needed to see if GePEC works well
with certain other mechanisms in Java, such as visibility qualifiers. Work
is also needed to evaluate GePEC in the presence of non-Java mechanisms
such as multiple inheritance or non-virtual methods.

The flexibility we can give GePECs type parameter constraints is great,
especially with “F-bounded where-clauses” that can actually be renamed to
suit the actual parameter. If nothing else, GePEC is a very flexible generic
mechanism, and should be useful for implementing generic libraries and
the like. More resarch is needed to evaluate this in detail, however.

This thesis has presented Liberal GePEC and used it to demonstrate that
despite problems, GePEC can be used advantageously in several different
situations.

7.4 Acknowledgements

In closing, I would like to thank my supervisor, Stein Krogdahl, for being an
ever helpful and inspiring presence over the last two years. Thanks also to
those of my friends who kept me sane by reminding me of my social life,
and to those other friends who kept me serious by reminding me of my
master thesis.

126

Appendix A

Source Code for a Simple Parser

Here is presented the full source code for the parser discussed in section
6.3. Certain methods whose implementation is not interesting to this thesis
have been left without implementation, but comments state what they are
supposed to do.

Please note that because no compiler exists for liberal GePEC, the code
may contain simple errors of the kind a compiler would usually catch.

A.1 Utility Packages

The packages presented here each implement a basic need for the compiler
such as lexical parsing or handling of scope.

A.1.1 Generic Package SYMBOLGENERATOR

This package defines the symbol generator of the parser. This code is re-
sponsible for file reading and lexical parsing.

generic package SYMBOLGENERATOR;

class SymbolGenerator {

private SymbolGenerator instance = null;

static void initiate(String filename) {
instance = new SymbolGenerator(filename);

}

static SymbolGenerator getinstance() {
return instance;

}

private SymbolGenerator(String filename) {
... //Open the file and read the first symbol.

}

String viewCurr() { /* return current symbol */ }

void readNext() {
... //Scan forward one token in the inputfile

}

boolean isName(String s) {
//If s is alphabetic and not a keyword,

127

// return true, otherwise false.
}

boolean isNumber(String s) {
//If s is numeric, return true, otherwise false.

}

boolean isOperator(String s) {
//If s is a valid operator in the language, return
// true, otherwise false.

}
}

A.1.2 Generic Package SCOPEHANDLER

This package defines the scope handler for the parser. This code is respons-
ible for keeping track of what variables are in scope during parsing.

generic package SCOPEHANDLER;

parameter DN { //Parameter to represent declaration nodes
String getName();

}

parameter BN {
//Parameter representing a BlockNode, unconstrained

}

class ScopeHandler {

private ScopeHandler instance = null;

static ScopeHandler getinstance() {
if (instance == null) {

instance = new ScopeHandler();
}
return instance;

}

private ScopeHandler() {
//Prevent others from making objects.

}

/*Call this method for every declaration,
* immediately after it has been parsed. */

void regDecl(DN declaration) {
... //Register the declaration.

}

/*Call this method every time a block is entered during parsing. */
void enterBlock(BN b) {

... //Register block entry.
}

/*Call this method every time a block is exited during parsing. */
void leaveBlock(BN b) {

... //Register block exit.
}

/*Call this method to find a declaration object.
* Must be called when the function call is found during parsing. */

DN getDecl(String name) {
... //Return the declaration of the function or variable named.
... //Handle the error if current scope has no such declaration.

}

/*Call this method during parsing to get a reference to the
* current BlockNode object. */

BN getCurrentBlock() {
... //Return the current BlockNode object.

}
}

A.2 Parse Tree Node Packages

The packages presented here represent the nodes in the parse tree.

128

A.2.1 Generic Package PROGRAMNODE

The class in this package represents the root node of the parse tree.

generic package PROGRAMNODE;

parameter TF { //Parameter representing the TreeFactory class
static BN newBlockNode();

}

parameter BN { //Parameter representing the BlockNode class
void parse();

}

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();

}

class ProgramNode {

//The child of this node in the inheritance tree:
BN b; //a block node

//Method for parsing a program:
void parse() {

SG s = SG.getinstance();
if (!s.viewCurr().equals("begprog")) { /* ERROR */ }
s.readNext();
b = TF.newBlockNode();
b.parse();
if (!s.viewCurr().equals("endprog")) { /* ERROR */ }

}
}

A.2.2 Generic Package BLOCKNODE

The class in this package represents blocks in the parse tree.

generic package BLOCKNODE;

parameter TF { //Parameter representing the TreeFactory class
static SN newStatementNode();

}

parameter SN { //Parameter representing the StatementNode class
void parse();

}

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();

}

/*We assume that there exists some generic package with
* a suitable generic list implementation. It should have
* a method addToEnd for appending elements to the end
* of the list and a method getLast for accessing the
* element currently at the end of the list.
*/

generic import LISTPACKAGE, //Some list package
ElementType := SN, //Use SN as the element type
List -> SNList, //Call the list class SNList

class BlockNode {

SNList snl; //List of statements in the block

BlockNode() {
snl = new SNList();

}

void parse() {
SG s = SG.getinstance();
while (!(s.viewCurr().equals("endprog") ||

s.viewCurr().equals("end"))) {
snl.addToEnd(TF.newStatementNode());
snl.getLast().parse();
if (!s.viewCurr().equals(";")) { /* ERROR */ }

129

s.readNext();
}

}
}

A.2.3 Generic Package FUNDECLNODE

The class in this package represents function declarations in the parse tree.

generic package FUNDECLNODE;

parameter TF { //Parameter representing the TreeFactory class
static BN newBlockNode();

}

parameter BN { //Parameter representing the BlockNode class
void parse();

}

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();
boolean isName(String s);

}

class FunDeclNode {
String name; //The name of the function
BN b; //The code block of the function

void parse() {
SG s = SG.getinstance();
if (!s.viewCurr().equals("fun")) { /* ERROR */ }
s.readNext();
name = s.viewCurr();
if (!s.isName(name)) { /* ERROR */ }
s.readNext();
if (!s.viewCurr().equals("beg")) { /* ERROR */ }
s.readNext();
b = TF.newBlockNode();
b.parse();
if (!s.viewCurr().equals("end")) { /* ERROR */ }
s.readNext();

}
}

A.2.4 Generic Package VARDECLNODE

The class in this package represents variable declarations in the parse tree.

generic package VARDECLNODE;

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();
boolean isName(String s);

}

class VarDeclNode {
String name; //The name of the variable

void parse() {
SG s = SG.getinstance();
if (!s.viewCurr().equals("var")) { /* ERROR */ }
s.readNext();
name = s.viewCurr();
if (!s.isName(name)) { /* ERROR */ }
s.readNext();

}
}

130

A.2.5 Generic Package RETNODE

The class in this package represents return statements in the parse tree.

generic package RETNODE;

parameter TF { //Parameter representing the TreeFactory class
static EN newExprNode();

}

parameter EN { //Parameter representing the ExprNode class
void parse();

}

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();

}

class RetNode {

EN expr; //The expression to be returned

void parse() {
SG s = SG.getinstance();
if (!s.viewCurr().equals("ret")) { /* ERROR */ }
s.readNext();
if (!s.viewCurr().equals("(")) { /* ERROR */ }
s.readNext();
expr = TF.newExprNode();
expr.parse();
if (!s.viewCurr().equals(")")) { /* ERROR */ }
s.readNext();

}
}

A.2.6 Generic Package ASSNODE

The class in this package represents assignment statements in the parse
tree.

generic package ASSNODE;

parameter TF { //Parameter representing the TreeFactory class
static EN newExprNode();

}

parameter EN { //Parameter representing the ExprNode class
void parse();

}

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();
boolean isName(String s);

}

class AssNode {

String name; //Name of variable to be given value
EN expr; //The expression to be assigned

void parse() {
SG s = SG.getinstance();
if (!s.viewCurr().equals("ass")) { /* ERROR */ }
s.readNext();
name = s.viewCurr();
if (!s.isName(name)) { /* ERROR */ }
s.readNext();
if (!s.viewCurr().equals("=")) { /* ERROR */ }
s.readNext();
expr = TF.newExprNode();
expr.parse();

}
}

131

A.2.7 Generic Package CALLNODE

The class in this package represents calls (both statements and terms) in
the parse tree.

generic package CALLNODE;

parameter TF { //Parameter representing the TreeFactory class
static EN newExprNode();

}

parameter EN { //Parameter representing the ExprNode class
void parse();

}

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();
boolean isName(String s);

}

class CallNode {

String name; //The name of the expression...
EN actualParam; //The expression passed here...

void parse() {
SG s = SG.getinstance();
if (!s.viewCurr().equals("cal")) { /* ERROR */ }
s.readNext();
name = s.viewCurr();
if (!s.isName(name)) { /* ERROR */ }
s.readNext();
if (!s.viewCurr().equals("(")) { /* ERROR */ }
s.readNext();
actualParam = TF.newExprNode();
actualParam.parse();
if (!s.viewCurr().equals(")")) { /* ERROR */ }
s.readNext();

}
}

A.2.8 Generic Package EXPRNODE

The class in this package represents expressions in the parse tree.

generic package EXPRNODE;

parameter TF { //Parameter representing the TreeFactory class
static ON newOpNode();
static TN newTermNode();
static ExprNode newExprNode();

}

parameter ON { //Parameter representing the OpNode class
void parse();

}

parameter TN { //Parameter representing the TermNode class
void parse();

}

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();
boolean isOperator(String s);

}

class ExprNode {

TN term = null;
ON operator = null;
ExprNode expression = null;

void parse() {
SG s = SG.getinstance();
term = TF.newTermNode();
term.parse();

132

if (s.isOperator(s.viewCurr())) {
operator = TF.newOpNode();
operator.parse();
expression = TF.newExprNode();
expression.parse();

}
}

}

A.2.9 Generic Package SIMPLENODE

The class in this package is used to implement classes that represent oper-
ations, variable uses and constants in the parse tree.

generic package SIMPLENODE;

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();
boolean issomething(String s);

}

//Used to implement OpNode, VarUseNode and NumNode
class SimpleNode {

String str; //String to store a textual piece of information

void parse() {
SG s = SG.getinstance();
str = s.viewCurr();
if (!s.issomething(str)) { /* ERROR */ }
s.readNext();

}
}

A.2.10 Generic Package PARNODE

The class in this package is used to represent the keyword ’par’ in the parse
tree.

generic package PARNODE;

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();

}

class ParNode {

void parse() {
SG s = SG.getinstance();
if (!s.viewCurr().equals("par")) { /* ERROR */ }
s.readNext();

}
}

A.3 Composed Packages

The packages presented here each combine utility packages (section A.1)
and parse tree node packages (section A.2) into more complex program
parts.

133

A.3.1 Generic Package PARSENODES

This package combines the various parse tree nodes. It adds a factory class
for creating objects of the nodes, and some necessary supertypes. It also
adds functionality that lets block nodes be aware of what function they
belong to.

generic package PARSENODES;

parameter SG { //Parameter representing the SymbolGenerator class
static SG getinstance();
String viewCurr();
void readNext();
boolean isName(String s);
boolean isNumber(String s);
boolean isOperator(String s);

}

interface StatementNode { //Interface for statements
void parse();

}

interface TermNode { //Interface for terms
void parse();

}

interface DeclNode { //Interface for declarations
String getName();

}

interface ContainerNode { //Interface for nodes that contain blocks
...

}

class TreeFactory {
static ContainerNode nextBlockBelongsTo = null;

static ProgramNode newProgramNode {
return new ProgramNode();

}

static BlockNode newBlockNode {
if (nextBlockBelongsTo == null) { /* ERROR */ }
BlockNode b = new BlockNode();
//Let the block know its container:
b.c = nextBlockBelongsTo;
nextBlockBelongsTo = null;
return b;

}

static StatementNode newStatementNode {
SG sg = SG.getinstance();
String s = sg.viewCurr();
if (s.equals("var")) {

return new VarDeclNode();
} else if (s.equals("fun")) {

return new FunDeclNode();
} else if (s.equals("ret")) {

return new RetNode();
} else if (s.equals("ass")) {

return new AssNode();
} else if (s.equals("cal")) {

return new CallNode();
} else {

/* ERROR */
}

}

static ExprNode newExprNode {
return new ExprNode();

}

static OpNode newOpNode {
return new OpNode();

}

static TermNode newTermNode {
SG sg = SG.getinstance();
String s = sg.viewCurr();
if (s.equals("par")) {

return new ParNode();
} else if (s.equals("cal")) {

return new CallNode();
} else if (sg.isName(s)) {

134

return new VarUseNode();
} else if (sg.isNumber(s)) {

return new NumNode();
} else {

/* ERROR */
}

}
}

generic import PROGRAMNODE,
TF := TreeFactory,
BN := BlockNode,
SG := SG,
ProgramNode => ProgramNode;

class ProgramNode implements ContainerNode {
//Actual expansion with interfaces and method added

//Override statically inherited method:
void parse() {

TreeFactory.nextBlockBelongsTo = this;
ProgramNode#parse(); //Call the overridden method

}
}

generic import BLOCKNODE,
TF := TreeFactory,
SN := StatementNode,
SG := SG,
BlockNode => Blocknode; //expansion!

class BlockNode { //Actual expansion
ContainerNode c; //Let a block point to the program or

//function declaration node that contains it.
}

generic import FUNDECLNODE,
TF := TreeFactory,
BN := BlockNode,
SG := SG,
FunDeclNode => FunDeclNode; //expansion!

class FunDeclNode implements StatementNode, ContainerNode, DeclNode {
//Actual expansion with interfaces and methods added

//Demanded by interface DeclNode:
String getName() {

return name;
}

//Override statically inherited method:
void parse() {

TreeFactory.nextBlockBelongsTo = this;
FunDeclNode#parse(); //Call overridden method

}
}

generic import VARDECLNODE,
SG := SG,
VarDeclNode => VarDeclNode; //expansion!

class VarDeclNode implements StatementNode, DeclNode {
//Actual expansion with interfaces and a method added.

//Demanded by interface DeclNode
String getName() {

return name;
}

}

generic import RETNODE,
TF := TreeFactory,
EN := ExprNode,
SG := SG,
RetNode => RetNode; //expansion

class RetNode implements StatementNode {
//Actual expansion with a non-common interface added.

}

generic import ASSNODE,
TF := TreeFactory,
EN := ExprNode,
SG := SG,
AssNode => AssNode; //expansion

class AssNode implements StatementNode {
//Actual expansion with a non-common interface added.

}

135

generic import CALLNODE,
TF := TreeFactory,
EN := ExprNode,
SG := SG,
CallNode => CallNode; //expansion

class CallNode implements StatementNode, TermNode {
//Actual expansion with non-common interfaces added.

}

generic import EXPRNODE,
TF := TreeFactory,
ON := OpNode,
TN := TermNode,
SG := SG;

generic import SIMPLENODE, //Make OpNode from SimpleNode
SG := SG,
SG.issomething(String s) -> isOperator(String s),
SimpleNode -> OpNode,
SimpleNode.str -> operator;

generic import SIMPLENODE, //Make VarUseNode from SimpleNode
SG := SG,
SG.issomething(String s) -> isName(String s),
SimpleNode => VarUseNode, //expansion!
SimpleNode.str -> name;

class VarUseNode implements TermNode {
//Actual expansion with a non-common interface added.

}

generic import SIMPLENODE, //Make NumNode from SimpleNode
SG := SG,
SG.issomething(String s) -> isNumber(String s),
SimpleNode => NumNode, //expansion!
SimpleNode.str -> number;

class NumNode implements TermNode {
//Actual expansion with a non-common interface added.

}

generic import PARNODE,
SG := SG,
ParNode => ParNode; //expansion!

class ParNode implements TermNode {
//Actual expansion with a non-common interface added.

}

A.3.2 Generic Package PARSETREE

This package completes the parser. The scope handler (section A.1.2 is
combined with the parse tree nodes from package PARSENODES (section
A.3.1). Calls and variable uses are tied to their correct representations.

generic package PARSETREE;

generic import SYMBOLGENERATOR;

generic import SCOPEHANDLER,
DN := DeclNode,
BN := BlockNode;

generic import PARSENODES,
SG := SymbolGenerator,
BlockNode => BlockNode,
FunDeclNode => FunDeclNode,
VarDeclNode => VarDeclNode,
CallNode => CallNode,
VarUseNode => VarUseNode,
RetNode => RetNode,
ParNode => ParNode;

class BlockNode { //Actual expansion
//Override statically inherited method:
void parse() {

ScopeHandler sh = ScopeHandler.getinstance();
sh.enterBlock(this);
BlockNode#parse(); //Call overridden method
sh.leaveBlock(this);

}

136

}

class FunDeclNode { //Actual expansion

//Override statically inherited method
void parse() {

FunDeclNode#parse(); //Call overridden method

ScopeHandler sh = ScopeHandler.getinstance();
sh.regDecl(name);

}

}

class VarDeclNode { //Actual expansion

//Override statically inherited method
void parse() {

VarDeclNode#parse(); //Call overridden method

ScopeHandler sh = ScopeHandler.getinstance();
sh.regDecl(name);

}
}

class CallNode { //Actual expansion
FunDeclNode mydeclaration;

//Override statically inherited method
void parse() {

CallNode#parse(); //Call overridden method

ScopeHandler sh = Scopehandler.getinstance();
DeclNode d = sh.getDecl(name);
if (d instanceof FunDeclNode) {

mydeclaration = (FunDeclNode)d;
} else {

/* ERROR */
}

}
}

class VarUseNode { //Actual expansion
FunDeclNode mydeclaration;

//Override statically inherited method
void parse() {

VarUseNode#parse(); //Call overridden method

ScopeHandler sh = Scopehandler.getinstance();
DeclNode d = sh.getDecl(name);
if (d instanceof VarDeclNode) {

mydeclaration = (VarDeclNode)d;
} else {

/* ERROR */
}

}
}

class ParNode { //Actual expansion
ContainerNode c;

//Override statically inherited method
void parse() {

ScopeHandler sh = ScopeHandler.getinstance();
//Let the ParNode know what function declaration
// or program it belongs to.
c = sh.getCurrentBlock().c;

ParNode#parse(); //Call overridden method
}

}

class RetNode { //Actual expansion
ContainerNode c;

//Override statically inherited method
void parse() {

ScopeHandler sh = ScopeHandler.getinstance();
//Let the return statementknow what function
// declaration or program it belongs to.
c = sh.getCurrentBlock().c;

RetNode#parse(); //Call overridden method
}

}

137

Bibliography

[1] Ole Agesen, Stephen N. Freund and John Mitchell. Adding type Parameterization to
the Java Language. In Proceedings of the 12th ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pp. 49-65, 1997.

[2] Débora Aranha and Paulo Borba. Parameterized Packages and Java. In II Brazilian
Symposium on Programming Languages, pp 204-218, September 1997.

[3] Andrew P. Black, Nathanael Schärli and Sthéphane Ducasse. Applying Traits to the
Smalltalk Collection Classes. In Proceedings of the 18th ACM Conference on Object-
Oriented Programing, Systems, Languages, and Applications, pp. 47-64, 2003.

[4] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the fu-
ture safe for the past: Adding Genericity to the Java Programming Language. In
Proceedings of the 13th ACM Conference on Object-Oriented Programing, Systems,
Languages, and Applications, October 1998.

[5] Kim Bruce, Martin Odersky, Philip Wadler. A statically safe alternative to virtual
types. In Proceedings of European Conference on Object Oriented Programming 1998,
pp. 523-549, Springer Verlag, 1998.

[6] Peter Canning, William Cook, Walter Hill, Walter Olthoff and John C. Mitchell. F-
Bounded Polymorphism for Object-Oriented Programming. In ACM Conference on
Functional Programming and Computer Architecture, pp. 273-280, September 1989.

[7] Steve Cook. OOPSLA’87 Panel P2: Varieties of Inheritance. In Addendum to the Pro-
ceedings of the 2nd Annual Conference on Object-Oriented Programming Systems,
Languages, and Applications, pp. 35-40, October 1987.

[8] Mark Day, Robert Gruber, Barbara Liskov and Andrew C. Myers. Subtypes vs. Where
Clauses: Constraining Parametric Polymorphism. In Proceedings of the 10th Annual
Conference on Object-Oriented Programming Systems, Languages, and Applications,
pp. 156-168, 1995.

[9] Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison Wesley Professional, January
1995, ISBN 0201633612.

[10] James Gosling, Bill Joy, Guy Steele and Gilad Bracha. The Java Language Specification
Second Edition. Addison-Wesley Publishing Company, June 2000, ISBN 0201310082.

[11] Atsushi Igarashi and Benjamin C. Pierce. Foundations for Virtual Types. In Proceed-
ings of European Conference on Object Oriented Programming 1999, pp. 161-185,
Springer Verlag, 1999.

[12] Ralph E. Johnson and Brian Foote. Designing Reusable Classes. In Journal of Object-
Oriented Programming, Volume 1, Issue 2, pp. 22-35, June/July 1988.

138

[13] Stein Krogdahl. Generic Packages and Expandable Classes. Research Report no. 298,
Department of Informatics, University of Oslo, Norway, October 2001.

[14] Barbara Liskov, Alan Snyder, Russel Atkinson and Craig Schaffert. Abstraction Mech-
anisms in CLU. In Communications of the ACM, Volume 20, Issue 8, pp. 564-576,
1977.

[15] Ole Lehrmann Madsen and Birger Møller-Pedersen. Virtual Classes: A powerful mech-
anism in object oriented programming. In Proceedings of the 4th Annual Conference
on Object-Oriented Programming Systems, Languages, and Applications, pp. 397-
406, October 1989.

[16] Ole Lehrmann Madsen, Birger Møller-Pedersen and Kristen Nygaard. Object-Oriented
Programming in the BETA Programming Language. Addison-Wesley, June 1993,
ISBN 0-201-62430-3.

[17] Bertrand Meyer. Genericity versus Inheritance. In Proceedings of the 1st Annual Con-
ference on Object-Oriented Programming Systems, Languages, and Applications, pp.
391-405, 1986.

[18] Bertrand Meyer. Static Typing. In Addendum to the Proceedings of the 10th Annual
Conference on Object-Oriented Programming Systems, Languages, and Applications,
pp. 20-29, 1995.

[19] Berthrand Meyer. Object-oriented Software Construction. Prentice Hall, 1998, ISBN
0-13-629049-3, ISBN 0-13-629031PBK.

[20] Gail C. Murphy and David Notkin. The Interaction Between Static Typing and Frame-
works. Technical Report 93-09-02, Department of Computer Science and Engineer-
ing, FR-35, University of Washington, 1993.

[21] Wolfgang Pree Design Patterns for Object-Oriented Software Development. Addison
Wesley Longman Inc., August 1994.

[22] Philip J. Quitslund and Andrew P. Black. Java with Traits – Improving Opportunities
for Reuse. Presented at the MASPEGHI Workshop at ECOOP 2004. Available on the
net as of September 22nd 2004:
http://www.cse.ogi.edu/~philipq/

[23] Philip J. Quitslund. Java Traits – Improving Opportunities for Reuse. Technical Report
no CSE-04-005, Department of Computer Science and Engineering, Oregon Health &
Science University, September 2004. Available on the net as of September 22nd 2004:
http://www.cse.ogi.edu/~philipq/

[24] Don Roberts and Ralph Johnson. Evolving Frameworks: A Pattern Language for De-
veloping Object-Oriented Frameworks. The Frameworks Homepage, publishing date
unknown. Available on the net as of March 4th 2005:
http://st-www.cs.uiuc.edu/users/droberts/evolve.html

[25] Endre Meckelborg Rognerud. Vurdering av Generiske Typer i Programmeringss-
pråket Java. Cand. Scient Thesis, Department of Informatics, University of Oslo,
Norway, February 2001.

[26] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz and Andrew P. Black. Traits:
Composable Units of Behaviour. In Proceedings of European Conference on Object
Oriented Programming 2003, pp. 248-274, Springer Verlag, 2003.

[27] Bjarne Stroustrup. The Design and Evolution of C++. Addison Wesley Publishing
Company, 1994, ISBN 0-201-54330-3.

139

[28] Krishnaprasad Thirunarayan, Günter Kniesel and Haripriyan Hampapuram. Simulat-
ing Multiple Inheritance and Generics in Java. In Computer Languages, 25, Elsevier
Science, pp. 189-210, 2001.

[29] Kresten Krab Thorup. Genericity in Java with Virtual Types. In Proceedings of
European Conference on Object Oriented Programming 1997, pp. 444-471, Springer
Verlag 1997.

[30] Kresten Krab Thorup and Mads Torgersen. Unifying Genericity – Combining the Be-
nefits of Virtual Types and Parameterized Classes. In Proceedings of European Con-
ference on Object Oriented Programming 1999, pp 186-204,Springer Verlag, 1999.

[31] Mads Torgersen. Virtual types are statically safe. In 5th Workshop on Foundations of
Object Oriented Languages, San Diego, CA, January 1998.

[32] E. Unruh. Prime number computation, 1994, ANSI X3J16-94-0075/ISO WG21-462.

[33] Todd L. Veldhuizen. C++ Templates as Partial Evaluation. Technical Report TR519,
Computer Science Department, Indiana University, November 1998. Available on the
web as of July 7th 2004:
http://www.cs.indiana.edu/Research/techreports/

[34] Bill Venners. Multiple Inheritance and Interfaces: A Conversation with Scott Meyers
part I, December 2002. An interview with Scott Meyers, published on the internet.
Available on the web as of April 23rd 2005 on:
http://www.artima.com/intv/abcs.html

[35] C# 2.0 Specification. Microsoft, 2004. Available on the web as of July 19th 2004:
http://msdn.microsoft.com/vcsharp/team/language/default.aspx

[36] Java TM 2 SDK, Standard Edition, Version 1.5.0 Summary of New Features and En-
hancements. Sun Microsystems, 2004. Available on the web as of July 19th 2004:
http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html

140

