
University of Oslo
Department of Informatics

Mapping of
QoS-Enriched
Models to a Generic
Resource Model

Cand. Scient. Thesis

Espen Abrahamsen

18th May 2005

Acknowledgements

This thesis concludes my work for the Cand. Scient. degree at the In-
stitute of Informatics, University of Oslo. The work has been done at
SINTEF and Simula Research Laboratory.

I want to thank my supervisors, Jan Øyvind Aagedal and Arnor Solberg,
for their great help and patience. I also want to thank my family and my
friends for their great support during my work with this thesis.

3

Contents

1 Introduction 7

1.1 Quality of Service and Model-Driven Development 7

1.2 Problem Statement . 9

1.3 Thesis Overview . 10

2 Background 11

2.1 Model Driven Development . 11

2.1.1 Modeling . 11

2.1.2 Metamodeling . 12

2.1.3 XMI . 13

2.1.4 UML Profiles . 13

2.1.5 Model Transformation 15

2.1.6 Code Generation . 16

2.2 Quality of Service . 16

2.2.1 Classification of QoS Characteristics 17

2.2.2 QoS Specification . 17

2.3 Resource Modeling . 21

2.4 QoS-Management in Middleware 25

2.4.1 Component Architectures 25

2.4.2 QoS-Aware Component Architecture 25

2.4.3 QoS Monitoring . 26

2.4.4 Resource Management 27

4

CONTENTS 5

3 QoS in Model-Driven Development 28

3.1 QoS Specification in Models . 29

3.2 Platform-Independent QoS . 29

3.3 QoS Vocabulary . 30

3.4 Considering QoS in Model Transformation 30

3.5 Run-Time Support for QoS in MDA 32

4 Resource Model 34

4.1 Basic Concepts . 34

4.1.1 Resource . 34

4.1.2 Resource Model . 36

4.1.3 Resource Model Implementation 37

4.1.4 Resource Model and Run-Time Resources 37

4.2 Requirements and Design Goals 38

4.3 Design . 39

4.3.1 Relation to the UML Profile for QoS 40

4.3.2 Core Resource Model . 40

4.3.3 Resource Types . 41

4.3.4 Resource Type Catalogue 43

4.3.5 Logical Resource Model 43

4.3.6 Resource Management Model 44

4.3.7 Resource Trader . 47

4.3.8 QoS Repository . 48

4.3.9 Resource Type Repository 49

4.3.10 Complete Model . 50

4.4 Prototype Implementation . 50

4.4.1 QoS Profile Implementation 51

4.4.2 Resource Model Implementation 54

4.5 Platform Integration of the Resource Model 57

4.6 UML Profile for Resource Modeling 57

4.6.1 Resource QoS Modeling 59

6 CONTENTS

5 Model-Driven QoS Mapping 61

5.1 Basic Concepts . 61

5.1.1 QoS-Enriched Models . 61

5.1.2 Mapping . 62

5.2 Motivation . 62

5.3 Resource QoS Mapping . 62

5.3.1 Overview . 63

5.3.2 Source Model . 64

5.3.3 Model Reader . 65

5.3.4 Mapping Code Generator 70

5.4 Resource Model Execution . 71

6 An Application Development Case 75

6.1 Component Modeling in UML 75

6.2 Application Model . 76

6.3 Resource QoS Models . 77

6.4 Code Generation . 81

6.5 Reosurce Model Execution . 82

7 Evaluation 85

7.1 Evaluation of the Resource Model 85

7.2 Resource QoS Mapping . 90

8 Conclusion 92

A Generated Code 94

Chapter 1

Introduction

1.1 Quality of Service and Model-Driven Develop-
ment

Model-driven development (MDD) moves the focus from code to models.
It has gained a lot of attention, especially in conjunction with software
development for middleware platforms such as CORBA, Java 2 Enter-
prise Edition and Microsoft .NET.

In tradiitional, code-centric development, the creating models is typic-
ally merely a tool for sketching before writing the actual code. In model-
driven development, the models are intended to become first-class en-
tities, just as important as the code. The models are intended to be used
throughout the software lifecycle.

Model Driven Architecture (MDA) [21] is an approach to model-driven
development proposed by the Object Management Group, and uses the
Unified Modeling Language [25] as default modeling language. Central
in MDA are the concepts of platform-independent model (PIM) and the
platform-specific model (PSM). A central goal is to support automated
model transformation from PIM to PSM.

When modeling a PIM the developer should only have to worry about the
business logic of the application, as opposed to platform-specific im-
plementation details. The PIM can later be transformed into a PSM. This
activity could be performed automatically (through predefined mappings)
or with some degree of human intervention. Code generation from a PSM
can also be considered a kind of model transformation, where the code

7

8 Chapter 1. Introduction

is considered a target model. The generated code could be fully execut-
able or could need refinement by the developer in order to run. Today,
the UML does not include the necessary semantics to create fully execut-
able models. This is especially due to limited support for expressing
system behaviour.

Quality of Service (QoS) deals with qualitative properties of services
provided by a system. Some qualities can be measured objectively, through
quantitative measures (like latency and throughput), others can only be
measured subjectively by humans (such as learnability). QoS require-
ments differs from the functional requirements of a system. QoS is not
concerned with what functions a system can perform, but how well it
performs these functions.

In [3] it is argued the capturing and handling of QoS requirements should
be an essential part of the MDA. QoS concerns must be identified early
in the development process, because they are difficult to manage after
the system is designed and perhaps set into operation.

Considerable research effort is put into investigating how QoS could be
managed by the middleware platform. In particular, component archi-
tectures are developed to support QoS management. The QoS-aware
Component Architecture (QuA) platform [29] is one such platform de-
veloped as part of a currently ongoing research project. The QuA pro-
ject looks into how a service planner can realize a certain level of QoS
by selecting appropriate compositions and configurations of compoents
to form services.

Resource availability is a low-level factor that helps determine what level
of QoS the system is able to deliver. Thus, resources should be managed
appropriately in order to adapt to the needs of the applications. A re-
source model provides an abstraction of the concrete resources in the
system, and serves as a way to access and deal with these resources in a
structured way.

We will look at how such a resource model can be incorporated in QoS-
enabled, model-driven development. This extends the MDA paradigm to
also include a runtime-level model.

A general definition of resource from Britannica dictionary is: “A source
of supply and support”. We need to specialize this definition to support
our needs. For example, it does not mention that resource must be lim-
ited. In order for QoS management to be meaningful, resource supply
must be of limited nature. An unlimited resource would perform per-
fectly under any condition, and thus does not need to be managed.

1.2. Problem Statement 9

It is not our intention to model all thinkable resources in the world,
such as natural resources or economic resources. Instead, we deal only
with resources usable within a computer system. The UML Profile for
Schedulability, Performance and Time [24] defines a resource instance
as “a run-time entity that offers one or more services for which we need
to express a measure of effectiveness or quality of service (QoS)”. This
definition implies that resources provide a limited level of Quality of
Service, thus having a finite capacity. We use this definition as basis
when dealing with resources.

1.2 Problem Statement

In this thesis we propose a method for handling Quality of Service con-
cerns in a model-driven development context. An important aspect of
QoS management is the management of limited resources. Our focus
is on how resource-level QoS requirements can be treated in a model-
driven development process, from design-time QoS specification to run-
time resource management.

In order to find out whether our approach is feasible, we will investigate
the following:

• How resource QoS requirements can be modeled at design-time in
a way such that they can be considered later in the development
process.

• How to transform the resource QoS requirements expressed in the
model to a form that is manageable by the target platform.

• How a resource model can be designed and implemented on a tar-
get platform in order to supports mapping of resource QoS require-
ments.

We believe that QoS requirements for resources can be specified as part
of the application model, and that these requirements can be automatic-
ally transformed and mapped to the resource model of the implementa-
tion platform. This will allow the identification and specification of QoS
at design-time, and ease the implementation of QoS-related aspects later
in the development process.

10 Chapter 1. Introduction

1.3 Thesis Overview

Chapter 2 summerizes the theoretical and technological foundation for
the rest of this tesis.

In Chapter 3 we look at how Quality of Service aspects can be treated
in a model driven development context. We look at related work in this
area, and discuss how the approach proposed in this thesis fit into this
context.

In Chapter 4 we define a generic resource model with support for model
driven development and middleware-level resource management.

Chapter 5 presents an approach to model transformation concerning
resource-level QoS requirements. The target model is a platform- spe-
cific model targeted towards the resource model.

In Chapter 6 we demonstrate our model transformation approach and
usage of the resource model by an application development case.

Chapter 7 is a discussion of the results and experiences gained from
experimenting with the application case. We try to answer the addressed
problems and claims based on this.

In Chapter 8 we conclude our work by summarizing the results of this
thesis.

Chapter 2

Background

2.1 Model Driven Development

Model-driven development is by many predicted to be the next big leap
in the software development industry, moving the main focus from code
to models. The Object Management Group (OMG) has proposed Model
Driven Architecture (MDA) as their approach to model-driven develop-
ment. It defines model-driven as "providing a means for using models
to direct the course of understanding, design, construction, deployment,
operation, maintenance and modification" [21].

An important advantage of MDA is the separation of implementation de-
tails from business concerns [8]. By making business modeling a separ-
ate activity, we are able to make models independently of any particular
platform. This way, the same model could be deployed on different plat-
forms, thus better supporting changes in technology over time, such as
the appearance of new platforms.

2.1.1 Modeling

Modeling is the activity of creating models [16]. A model can repres-
ent virtually any system, but we are mainly concerned with modeling
information systems.

A model is in [32] defined as a set of statements about some system under
study. It mentions two purposes a model may serve. The first purpose
is a description, trying to describe a system already in existence, and the
second is a specification, that states how the modeler wants the system

11

12 Chapter 2. Background

to become prior to its existence. The latter kind of model is typical in
software development.

In order to be understood, models must be created in a modeling lan-
guage. Typically, models are presented a combination of drawings and
text [21]. The Unified Modeling Language (UML) [25] is the default lan-
guage in MDA, and a def facto standard for object-oriented modeling in
general. Even though modeling of object-oriented systems is the most
common application of UML, it is a general language that can support
other modeling paradigms as well.

2.1.2 Metamodeling

A metamodel can generally be considered a model of a set of models.
How to model models, on the other hand, is not self-explaining. Ac-
cording to [32], a metamodel makes statements about what can be ex-
pressed in the valid models of a certain modeling language. By this, they
mean that metamodels describe how models can be constrcuted by de-
fining the abstract syntax of their modeling language. This definition
fits well with the definition in the Meta-Object Facility specification [9]:
A metamodel is an “abstract language” for describing different kinds of
data; that is, a language without a concrete syntax or notation.

The specification of UML [25] is such a metamodel, and thus, the model
of all UML models.

Meta-Object Facility

The Meta-Object Facility (MOF) [9] from OMG contains a language for
creating metamodels. The UML specification, for example, is defined
with MOF. The modeling constructs in MOF are a subset of the static
UML elements used in class diagrams. For example, MOF models may
consist of classes, attributes, data types, packages, and so forth. In the
UML metamodel, a MOF class will typically represent a UML element.
Relations between the UML elements could be modeled using MOF asso-
ciations. Even though the MOF elements do not have a specific graphical
notation, a subset of the UML notation can be used to represent it. This
approach has been used in the UML specification.

The MOF specification includes a separation of four metalevels for mod-
els:

2.1. Model Driven Development 13

M3 Meta-metamodels

M2 Metamodels

M1 Models

M0 Information

Meta-metamodels are models of metamodels, and can be seen as a lan-
guage for creating metamodels. The metamodels define the abstract lan-
guage of models. Models are specifications of systems. The information
metalevel represents information in the system specified by systems, for
example records in a database.

2.1.3 XMI

The XML-based Metadata Interchange (XMI) [26] is an exchange format
for metadata. XMI documents are valid XML documents, and are there-
fore supported by existing XML tools. XMI documents can hold any kind
of metadata that can be expressed using the MOF specification, including
both model and metamodel information [26]. As well as MOF metamod-
els, the XMI format can be used to store any model of which MOF is the
metamodel. A typical usage of XMI is the serialization of UML models
for exchange between UML tools.

2.1.4 UML Profiles

Since UML is a general-purpose language, it may not be suitable for mod-
eling within particular domains [19]. UML provides a set of light-weight
extension mechanisms that can be applied without modifying the UML
metamodel. UML profiles are in [6] described as a way of representing
and structuring these UML extensions.

A profile is typically tailored towards a particular application domain
or implementation platform, where the UML extensions reflect domain-
specific or application-specific concepts. A profile is a grouping of UML
extensions, including:

Stereotypes are attached to elements of the UML metamodel. When us-
ing these elements in a model, the modeler may apply the available

14 Chapter 2. Background

stereotypes where appropriate. A stereotype is intended to give
the element an extended meaning without redefining its original
semantics. For instace, in a UML profile for relation databases, a
table could be modeled as a class with stereotype «Table».

Tagged values are attributes related to a stereotype. Its values can be
set for each instance of the stereotype used in a model. The tagged
value can be used to supply additional information about the ste-
reotyped model element.

Constraints can be applied to UML profiles to constrain the usage of
modeling elements.

UML profiles were first introduced in [6] as a set of guidelines for how to
implement UML profiles. The upcoming UML 2.0 will have a more precise
definition of profiles and mechanisms for how to specify them. However,
we do not consider UML 2.0 in this work, as it is not yet finalized by the
OMG, and the tool support at the time of writing is very limited.

Profiles are a light-weight alternative to defining a completely new domain-
specific language (e.g., by defining a new MOF metamodel). Since the UML
metamodel must be respected when defining profiles, one can still use
the wide range of available UML tools. However, profiles are less flexible
than defining a new language. Compatibility over flexibility is a typical
trade-off when defining new modeling languages and choosing between
a UML profile and a new metamodel [19].

In order to define a UML profile, the first step is to create a model of the
element that comprise our platform or system, and the relationships
between them [19]. This type of model is refered to as a domain view-
point or conceptual model. In order to use these concepts in models, they
must be represented by UML extensions such as stereotypes and tagged
values. This relationship is defined in another model, often called the
UML viewpoint. The purpose of this viewpoint is to relate the domain
concepts with the UML notation.

In [4] it is argued that UML profiles provide only content, and not form
(linguistic relationships). Therefore, the domain viewpoint of UML pro-
files is not a linguistic metamodel like the metamodel of UML, but instead
supplements UML models with additional information.

In [19] it is claimed that UML profiles have a central place in MDA. They
can play an important role in describing the platform model and the

2.1. Model Driven Development 15

transformation rules between models. Central in MDA is the transform-
ation between PIMs and PSMs, and UML profiles are very well suited to
represent platform-specific concepts.

2.1.5 Model Transformation

The MDA Guide [21] defines model transformation as "the process of
converting one model to another model of the same system". In MDA,
the source model of the transformation is typically a PIM, and the target
model is a PSM. Additional information may also be available to help
make decisions about how to perform the transformations.

Figure 2.1 Model Transformations in MDA

PIM

PSM

Transformation

An example of a model transformation taken from [21] is shown in Fig-
ure 2.1. It shows a transformation from a PIM to a PSM. The empty box
represents additional information that may be provided in order to make
decisions while performing the transformation.

In [33] model transformation is defined as "automated processes that take
one or more source models as input and produce one or more target mod-
els as output, while following a set of transformation rules". This defini-
tion assumes that model transformations must be automatic. However,
the MDA also allows manual or semi-manual transformations of models
[21].

MOF 2.0 Query/Views/Transformations is an effort by OMG to stand-
ardize how to specify model transformations by defining a specialized
transformation language for MOF models. Transformations defined in

16 Chapter 2. Background

QVT are based on mappings between MOF metamodel elements. Thus, a
transformation from a source model to a target model is represented in
QVT as a transformation between the two metamodels. Both metamod-
els are expressed using MOF.

2.1.6 Code Generation

In [12] it is argued that programmers typically need to achieve the same
functionality in different places, and building code generators is an ef-
fective tool against this repetitive typing. Writing a code generator means
writing code that writes code.

A special kind of code generation is model-to-code transformation, where
code is generated based on a source model. In an MDA context, the PSM
is a typical source model for generating platform-specific code. Code
may be generated based on parts of, or a complete model.

The OMG has issued a request for proposal for a MOF Model to Text
Transformation Language [22]. It aims to provide a language for trans-
forming MOF models (such as UML models) to text. One of the purposes
mentioned is the transformation of PIMs and PSMs to code, XMI, human-
readable UML format, documentation, and HTML. Since the QVT stand-
ard omg:qvt does not address model-to-code transformations, this RFP
seeks to fill this gap.

It is argued in [22] that XSLT is not a suitable transformation language
for MOF models. Even thought it supports transforming an XMI model,
the transformation code will be complex and difficult to maintain.

2.2 Quality of Service

Quality of Service (QoS) is in Open Distributed Processing - Reference
Model - Quality of Service [15] defined as: “a general term for an ab-
straction covering aspects of the non-functional behaviour of a system.”
Functional behaviour is the actual functionality offered by the system,
while non-functional behaviour describes how well this functionality is
carried out Performance and latency are examples of non-functional as-
pects.

A QoS characteristic is presented as a basic entity in [15], expressing
various things with respect to one or more values associated with the

2.2. Quality of Service 17

characteristic. It represents an aspect of QoS as opposed to a measure-
ment.

A QoS requirement is an expression that involves one or more QoS char-
acteristics and one or more values, where the value(s) say something
about the level of QoS required.

2.2.1 Classification of QoS Characteristics

There are several dimensions that can be used to classify QoS require-
ments. Abstraction level is one such dimension. The lowest levels of
abstraction are closest to the physical implementation of the system,
such as requirements related to physical resources. These requirements
can be mapped directly to the physical properties of the system. Thus,
the realization of these requirements is straight-forward, given that the
resources provide sufficient capacity.

More abstract QoS requirements make statements about the behaviour
of software entities (such as applications or services) rather than re-
sources. The realization of such requirements is less trivial, and involves
more complex reasoning. Often, these kinds of requirements implicitly
lead to lower-level requirements (e.g. resource QoS requirements). Ap-
plication QoS is a common name for non-functional requirements of ap-
plcations. Application QoS requirements are usually expressed object-
ively, involving statements that are measurable.

User QoS, or perceived QoS, involves even more abstract QoS require-
ments. These are typically statements about how humans should per-
ceive the quality of a service (for example, “the video should have a
sharp picture with good sound quality”). This kind of requirement is
easy to understand for the non-technical user, but does not map easily
to the implementation that is responsible for realizing it.

QoS requirements are often also classified into different domains. Typ-
ical domains that deal with QoS requirements are multimedia, real-time
systems, and networking.

2.2.2 QoS Specification

In order to handle QoS concerns in a system, the QoS must be specified.
Specification can be done at different domains and abstraction levels,

18 Chapter 2. Background

and can be expressed in different specification languages. In [16] it is ar-
gued that QoS specification is important in several development phases,
including analysis and design.

By QoS specification we mean the activity of making statements about
QoS in a formal way using a specification language. If we allowed in-
formal QoS specification (e.g. using natural language), a computer would
not be able to extract its meaning.

In the following subsections we look at some languages that support
QoS specification.

CQML

The Component Quality Modeling Language (CQML) is specified in the
Ph.D. thesis by Aagedal [16]. It is a generic QoS specification language,
not tied to phase of the software life-cycle or any specific purpose. It is
a declarative language, and does not express any beavioural features.

Figure 2.2 CQML Overview

Profile_1

Statement_2

Characteristic_1

Characteristic_2

Statement_1

Characteristic_1

Statement_1

Characteristic_1

Characteristic_2

Statement_3

Characteristic_1

Statement_4

Characteristic_1

Profile_1

Component
specification

An overview of CQML from [16] is shown in Figure 2.2 CQML adopts
some basic concepts, such as QoS characteristic, from the ISO QoS frame-
work [13]. QoS characteristics (QoS characteristics in CQML) are user-
defined types that define how a certain type of QoS is measured. These
QoS characteristics can be as simple or complex as the modeler wants,
and may involve both simple numerical ranges or statistical properties.
Figure 2.2 shows how QoS statements can include one or more QoS char-
acteristics, and QoS statements can be grouped into QoS profiles. A pro-
file can further be associated with a component specification.

2.2. Quality of Service 19

In order to express QoS requirements, a QoS statement may refer to one
or more QoS characteristics and put a constrain on the range of valid
values.

QoS profiles are used to relate QoS characteristics to components. A
profile may incorporate multiple QoS statements.

QoS categories are a mechanism to group QoS characteristics, QoS state-
ments and QoS profiles based on their common properties and domain.
An example of a QoS category is timeliness, incoroprating output and
delay.

UML Profile for QoS

A specification called UML Profile for Quality of Service and Fault Toler-
ance Characteristics and Mechanisms is currently under finalization by
the OMG. We use a working document of September 2004 [23] in this
thesis. The specification provides a framework for the description of
QoS requirements and properties, as well as a set of UML extensions
to represent these concepts in models. The QoS framework defines the
metamodel of the QoS modeling language that is supported by the UML
profile.

We do not consider the fault tolerance aspects of the UML profile, as this
is beyond the scope of this thesis.

The UML profile for QoS supports applying non-functional requirements
to UML models. The QoS elements are expressed orthogonally to the
functional elements, so that the functional specification of the system
will not be affected by non-functional concerns. The UML profile sup-
ports both the specification of QoS characteristics (i.e., how QoS can be
measured) and QoS constraints (i.e., what QoS is required).

QoSCharacteristics are model elements that represent quantifiable as-
pects of QoS. Each characteristic is quantified by one or more QoSDi-
mensions. A QoS characteristic is defined independently of the values it
quantifies. In order to describe values, a QoS characteristic has one or
more QoS values, modeled as stereotyped attributes. Two examples of
QoS characteristics are shown in Figure 3.2.

A QoSDimension is represented as a stereotyped UML attriute. Its basic
type for measurement maps to the UML data types, such as Integer, Real,
and Enumeration. As well as this value, QoS characteristics are described
by some tagged values:

20 Chapter 2. Background

Figure 2.3 QoS Characteristics

<<QoSCharacteristic>>

throughput
<<QoSCharacteristic>>

latency

<<QoSDimension>>

{unit(bit/s),

direction(icreasing)}

+rate : integer

<<QoSDimension>>

{unit(ms),

direction(decreasing)}

+average-delay : real

<<QoSDimension>>

{unit(ms),

direction(decreasing)}

+jitter : real

direction expresses whether higher values represent higher quality than
lower values (increasing), or higher values represent lower quality
(decreasing).

unit represents the measuring unit of the QoS dimension.

statisticalQualifier is used to express statistical that the QoS dimension
represents statistical properties, e.g., mean, maximum and min-
imum.

The latency characteristic in Fiugre 3.2 is described by the dimension
rate, with an increasing direction and is measured in bit/s.

QoS characteristics can be grouped into QoS categories, which are modeled
as UML packages with stereotype «QoSCategory». A QoS category typ-
ically contains QoS characteristics of the same domain, and describe
different parts of the same aspects. For example, the QoS catalogue
presented in [23] contains categories like Performance and Dependabil-
ity.

A QoSValue expresses a specific quantification of a QoS characteristic,
and is considered an instance of the characteristic. It contains a fixed
value defined within the range of allowed values according to the QoS
dimensions of the characteristic.

QoSConstraints limit the allowed values of one or more QoS characterist-
ics [23]. It is declared as an abstract metaclass, and has the subclasses

2.3. Resource Modeling 21

QoSRequired, QoSOffered and QoSContract. These can be modeled as
stereotyped UML constraints with the respective stereotype names, or
alternatively, a stereotyped UML dependency to an instance element ste-
reotyped «QoSValue». A QoS constraint must be defined within a certain
QoSContext. QoS characteristics define QoS context for expressions in-
volving its QoS dimension. QoS context may also involve more than
a single QoS characteristic, and be based on other QoS characteristics
and/or other QoS contexts. An example QoS constraint expressed in
OCL is depicted in Figure 2.4, connected with an interface element.

Figure 2.4 QoS Constraint

IDownloadService

<<QoSContract>>

{context Throughput inv:
 rate >= 12600
}

This OCL expression could for example be defined within a constraint
with the stereotype «QoSContract» connected with a model element which
it describes. The QoS context of the expression is the throughput QoS
characteristic (from Figure 3.2), and the expression limits the allowed
values of rate.

2.3 Resource Modeling

By resource modeling we mean the creation of resource models. A re-
source model is a model of reources. In the QoS specification of RM-ODP
[15], a resource model is said to make the computing and communica-
tion resources explicit. This resource model provides a run-time repres-
entation of the resourcs.

Other offorts have been made to support the modeling of resources at
design-time (e.g. as part of application models), such as [24] and [30].

Different resource models have been developed, having different ab-
straction levels and intended usages.

22 Chapter 2. Background

RM-ODP Resource Model

The resource model described in [15] is a refinement of the RM-ODP com-
putation model [14]. It provides two software construction entities; ap-
plication objects and resource objects. The limited capacity of resources
is represented as QoS constraints.

The resource model allows a recursive hierarchy of resources, in which
resource objects can also be application objects and depend on other
resource objects. Pure resources are resources that do not rely on other
resources.

UML Profile for Schedulability, Performance and Time

The core of the UML Profile for Schedulability, Performance and Time
[24] is the General Resource Model. This model provides a framework
for dealing with resources in analysis of schedulability-, performance-
and time-aspects in predictable systems.

Figure 2.5 Core Resource Model

Instance Descriptor

ResourceInstance Resource

ResourceServiceInstance ResourceService

QoSValue QoSCharacteristic

+offeredService

+offeredQoS

+offeredQoS

1
*

+instance

*

+type

1..*

+type

1..**

1

1..*

*

*

+offeredQoS

*

*

*

1..*

1

+instance

*

+type

1

+instance

*

+type

*

*

In the resource model, resources are viewed as servers that provide one
or more services to their clients. A resource service, again, provides

2.3. Resource Modeling 23

a certain level of QoS. It makes a destinction between descriptor ele-
ments (resource, resource service, and QoS characteristic) and instance
elements (resource instance, resource service instance, and QoS value).
The descriptor elements describe the instance element, for example, a
QoS characteristic defines what QoS values could be used.

The profile has a usage model for modeling resource usage. This model
is based on a causality model which can represent cause-effect chains.
Resource usage can be modeled as static (constant) or dynamic (varies
over time).

The General Resource Model also provides classification of resources.
Classification can be done based on purpose, activeness, and protection.
Purpose is either processing resource (capable of storing and execut-
ing code), communication resource (enabling communication between
resources) and device (for devices that do not fit in the first two cat-
egories). The second classification criteria is activeness. An active re-
source is capable of generating a stimulus (i.e., make something hap-
pen), whereas passive resources must be explicitly prompted in other to
be utilized. Resources are either protected or unprotected. Protected
resources must be acquired in order to be used, and may only be used
by one entity at a time. Acquirements are carried out according to an
access control policy. Protected resources must be explicitly released in
order for others to use them.

The resource management model of the GRM introduces resource brokers,
that administer the access to resources according to access control policies.
Resource managers keep track of the status of resources.

This UML profile provides a set of UML extensions to support the model-
ing of resources in UML models. It is meant to serve as basis for different
real-time analysis techniques.

OpenORB Resource Metamodel

The resource metamodel of the OpenORB platform is presented in [11].
The main entity in this model is abstract resources, that represent real
system resources. It has a hierarchic structure, where resources can be
made up of other, lowel-level resources. For example a team of threads
is an abstract resource composed of a set of thread resources. At the
bottom of the hierarchy are the physical resources, such as CPUs. The
uppermost level of the hierarchy is called a virtual task machine (VTM),
capable of performing a certain task.

24 Chapter 2. Background

Each abstract resource has a resource manager. These mangers make
up a manager hierarchy aligned with the resource hierarchy. A resource
scheduler is a special type of manager, for scheduling lower-level pro-
cessing resources.

Resource factories create abstract resources. They make up a another
kind of hierarchy called the factory hierarchy. Higher-level resource
factories can use lower-level factories in order to create their resources.

CQML+

CQML+ [30] is an extension of CQML that includes support for modeling
resource demand. Resource is introduced as a new construct, but it is
left to the user to specify the resource types and properties.

A resource has a name and a list of characteristics describing its QoS
properties. CQML does not define any semantics for these character-
istics, but instead leave it to the resource managers of the underlying
system. Instead of making quality statements about components like in
CQML, CQML+ supports expression of statements about resources us-
ing CQML syntax. Such expression could for example make statements
about the required bandwidth of a network resource.

Other Approaches to Resource Modeling

In [5] it is proposed a uniform way to model resource usage. It specifies
a model of the basic resource types. Resources can be classified in two
ways; resources are either space-shared or time-shared, and either de-
pendent or independent. Time-shared resources are shared in time, and
can only be used by one task at each instant. Access to a time-shared
resource is handled by a scheduler. Processors and network resources
are typical time-shared resources. Space-shared resources can be viewed
as a space that is shared among clients. It is a set of identical elements,
and each task may use a subset of it. Memory could be viewed as a
space-shared resource.

Dependent resources have a dependency-relationship to other resources
to carry out their jobs. Independent resources are not dependent on
other resources. This makes up a hierarchic structure of resources,
where the independent resources are the leaf nodes.

2.4. QoS-Management in Middleware 25

2.4 QoS-Management in Middleware

In this section we look at how QoS can be handled by the middleware
platform. We look at some approaches to enable platform-managed QoS,
and some activities involved in realizing this.

2.4.1 Component Architectures

Software components are software entities inspired by their hardware
equivalents. Components are computational entities whose functional
specification is known. Applications can be assembled by certain com-
positions of components. A major goal of component architectures is
providing the ability to re-use components in multiple applications. In
distributed systems, component platforms may hide the distribution of
components over a network.

An established definition of components by Clemens Szyperski, quoted
in [29] is: A software component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject tocompos-
ition by third parties. The definition mentions interfaces as the contract
between components. Explicit context dependencies mean that the com-
ponent may pose certain requirements on its environment, such as the
requirement of certain interfaces of other components or the compon-
ent platform.

Common component architectures today are the Java 2 Enterprise Edi-
tion (J2EE) and Microsoft .NET platforms. The Object Management Group
has released a specification for the CORBA Component Model, which is
an evolution Of CORBA with components as the main abstraction.

It has been argued that QoS management should be handled by compon-
ent platforms. We look at some attempts to manage QoS and resources
in middleware and component platforms in particular.

2.4.2 QoS-Aware Component Architecture

The goal of the QoS-aware Component Architecture (QuA) is essential de-
sirable features of current component architectures and to experiment
with extensions to support QoS management.

26 Chapter 2. Background

The notion of a service is central in QuA. It is defined as a subset of input
messages to some composition of objects and their causally related out-
puts [29]. A service is created by making the right composition of com-
ponents. Services are expressed as service specifications that describe
these compositions, as well as the inputs and outputs.

A mechanism to support QoS management in QuA is the service planner.
The service planner takes as input both the service specification and a
QoS specification in order to plan a service to fulfil these requirements.
The functional and non-functioanl requirements are here expressed in-
dependently.

In order to fulfil the QoS requirements, the service planner can choose
between different implementations of components with the same func-
tional behaviour but deliver a different quality have different require-
ments to its environment (e.g., resource requirements). QuA provides a
repository of component implementations with different properties.

Instead of having a single, common service planner, QuA supports the
implementation of specialized service planners for different kinds of
services, since there is not a single, general solution to the service plan-
ning problem [29].

The service planner uses utility functions in order to find optimal service
compositions. A utility function returns a value between 0 (useless) and
1 (perfect) that represents the level of utility of a service. The utility
function can be used to find out what trade-offs (e.g., with regards to
resource requirements) will result in the best overall quality.

Components have access to their own implementation and the service
context through reflection. Reflection can be used for QoS-based adapt-
ation.

2.4.3 QoS Monitoring

QoS monitoring is concerned with observing the acheived QoS from
parts of the system. Monitoring can take place in different parts of the
system, for example within bindings.

In the QoS management architecture presented in [16], Aagedal includes
a QoS monitor that monitors system behaviour according to a set of
constraints. Thus, monitoring is concerned with making sure QoS re-
quirements are fulfiled.

2.4. QoS-Management in Middleware 27

Monitoring the QoS provided by resources can be used as a mechanism
for deciding when to perform adaptations in a system [18].

2.4.4 Resource Management

According to [7], resource management should be performed at the mid-
dleware level. Two main purposes of resource management are men-
tioned. The first is to acheive a high utilisation of system resources in
order to enhance system performance. The second is to be able to alloc-
ate resources in order to meet application requirements. Both resource
awareness and support for dynamic configuration of resources are im-
portant characteristics.

Chapter 3

QoS in Model-Driven Development

In this chapter we look at how Quality of Service concerns can be handled
in a model-driven development context. We discuss where and how QoS
concerns come in, and look at related research in this field.

By doing this, we define a context for the main topics of this thesis, and
discuss in what ways we can contribute to the realization of this vision.

Figure 3.1 Managing QoS in MDA

QoS Specification

QoS Mapping

QoS Negotiation

QoS Management

”Traditional” QoS
management

PIM

PSM

Code

Model-driven
development

? ?
?

?

ApplicationApplication

28

3.1. QoS Specification in Models 29

Figure 3.1 shows how we believe QoS management could be incorporated
in model-driven development. The left-hand side of the figure illustrates
some activities traditionally related to QoS-aware systems. It starts with
specification of the required QoS. Mapping of QoS requirements to lower
abstraction levels are typically necessary in order to realize high-level
QoS requirements. QoS negotiation and QoS management are required
also required in order to realize the specified QoS.

On the right-hand side, we show the typical abstraction levels of MDA,
starting with a platform-independent model of the application, and re-
fining it to meet the platform-specific concepts.

We believe that the traditional activities related to QoS management can
be successfully incorporated in a model-driven development process.

3.1 QoS Specification in Models

The UML Profile for Schedulability, Perfromance and Time Specification
and Mechanisms [24] and the UML Profile for QoS [23] both provide sup-
port for QoS specification in UML models. Both provide support for QoS
specification at different abstraction levels.

The latter UML profile supports specification of custom QoS character-
istics for any domain imaginable. It is therefore well suited for both
platform-independent and platform-specific models.

3.2 Platform-Independent QoS

A goal of MDA is to specify applications independently of implementa-
tion technology. This should also be the case when modeling QoS.

In [17] the authors motivate the introduction of QoS concepts at the
plantform-independent level. It argues that services should be specified
at a level of abstraction that does not consider the supporting infrastruc-
tures, and in that way be able to reason about qualitative aspects in the
inital phases of the design.

By specifying QoS at in a platform-independent model, the realization of
the QoS requirements can be handled when transforming it to a platform-
specific model. The transformation process involves mapping the PIM

30 Chapter 3. QoS in Model-Driven Development

QoS requirements down to lower-level QoS requirements that the plat-
form is able to manage. QoS requirements can also affect functional
decisions when performing model transformation.

In order to be meaningful, QoS requirements must be associated with
functional entities, so that we know what functionality it is describing.
Since models are only abstractions of complete systems, the require-
ment must be connected with the system in such a way that it is clear
what it really means. This means we must have strict rules for how
QoS-requirements are associated with functional elements in the PIM.

3.3 QoS Vocabulary

An application developer needs to know what QoS properties he is al-
lowed to express. We believe there is no general solution to modeling
QoS in ways that the system can understand. Instead, a set of QoS char-
acteristics must be provided along with information about how they are
managed. Thus, a catalogue of predefined QoS characteristics should
be available for the application developer. It should also be possible to
extend this catalogue by defining new QoS characteristics and associ-
ated management descriptions, such as transformation rules. A similar
approach is presented in [31], where measurement designer (a person
responsible for defining ways of measuring QoS) is a separate role in the
development process.

In the PIM, QoS requirements are modeled as QoS constraints using the
UML profile for QoS. These QoS constraints must conform to QoS char-
acteristics in the catalogue.

3.4 Considering QoS in Model Transformation

The model transformation activity takes the PIM as input and generates
a PSM for a given platform.

We consider model transformation to be a suitable place for performing
QoS mapping. By QoS mapping we mean translation of QoS require-
ments from higher to lower abstraction levels, as well as the assignment
of QoS requirements to mechanisms capable of realizing them.

3.4. Considering QoS in Model Transformation 31

A framework for performing QoS-aware model transformations is pro-
posed in [2]. Based on the assumption that QoS requirements impact
the system design, the model transformation should be able to choose
particular patterns in order to meet the requirements. The model trans-
former could get hold of suitable patterns by querying a broker service
with access to a QoS library.

In [31], a model-driven development process supprting non-functional
properties is suggested. The process targets the COMQUAD platform
[10], which is developed as part of a research project. It argues that
QoS should be expressed at multiple levels of abstraction, and model
transformations should be specified to map between these levels.

The development process defines two separate roles; measurement de-
signer and application designer. The measurement designer defines the
measurements, which are synonymous with QoS characteristics. The
application designer, should be able to focus merely on modeling the
application logic, and be able to use the measurements provided by the
measurement designer without having to worry about how it is imple-
mented.

Along with the measurement definition (expressed in CQML+) are con-
text models that specify the context of the measurements. The con-
text model describes the features of an application system that must be
known in order to establish the value of a measurement [31]. Mapping
between abstraction levels with different measurements is performed
through transformations between context models. The definition of con-
text models is said to allow measurements to be defined independently
of the application. The context models and transformation specifica-
tions are all responsibilities of the measurement designer. For this ap-
proach to work, it is stated that a mapping between the context model
and a component model (e.g. COMQUAD or QuA) must exist.

A method for model-driven development of component-based applica-
tions with QoS-support is proposed in [28].

QoS requirements are specified in the form of QoS contracts, and can
be modeled independently of target platform (as part of the PIM). This
method uses the UML profile for EDOC (Enterprise Distributed Object
Computing) for the functional, platform-independent specification. The
PIM model is divided into two steps, where the second step can be auto-
matically generated through transformation from the first step. In the
first step, called PIM level 1, the application is modeled as components,
as well as QoS contracts (using a custom UML profile for QoS-aware com-

32 Chapter 3. QoS in Model-Driven Development

Figure 3.2 Process Overview

QoS
specification

Functional
model

QoS
specification

Functional
model

EDOC

UML-QMC

UML-QC

PIM Level 1

PIM Level 2

<<described with>>

<<described with>>

<<described with>>

<<described with>>

QoS
Instrumentation

Functional
model

PSM

QoS
monitoring

UML profile for
EJB, CCM, COM+

Transformation
process

<<described with>>

ponents.) The transformation to the second step, PIM level 2, generates
monitors responsible for enforcing the QoS contracts specified in the
first PIM. Monitors are modeled using another custom UML profile called
the UML profile for QoS monitoring components.

The QoS characteristics available are included in a global QoS catalogue.
The second PIM, containing QoS monitoring mechanisms, can be further
transformed to a target platform technology, such as EJB, as exemplified
in [28]. The example assumes the ability to monitor QoS at runtime.
Components in the PIM are for example transformed to EJBs in the target
platform.

3.5 Run-Time Support for QoS in MDA

In his master thesis [20], Lars Lundby presents a framework for model-
ing QoS-aware applications using UML and CQML, facilitating the genera-
tion of QoS management- and configuration code. The run-time support
of the framework includes a run-time implementation of CQML and sup-
port for CQML monitoring.

Resource management on a middleware platform can also support model-
driven development. In [3] we discuss how a platform-level resource

3.5. Run-Time Support for QoS in MDA 33

model can be used to add and release resources in order to meet QoS
requirements.

By modeling resources as services, we can quantify their usage and ca-
pacity in terms of QoS (e.g. bandwidth). This allows the realization of
reosurce-level QoS requirements on the platform resource model, and
could used be a target for QoS mapping in a model-driven process.

Chapter 4

Resource Model

In this chapter we present a generic resource model. It is intended to be
used as a basic framework for dealing with resources in Quality of Ser-
vice aware systems. A version of this resource model has been published
in [3].

The design of the resource model is presented in a set of UML diagrams.
We also describe a prototype implementation of the resource model. The
prototype implementation is the target platform for our experimenta-
tion with QoS management in model-driven development. Also, to sup-
port model-driven development, we have defined a UML profile for mod-
eling resources, providing a syntax for modeling resource concepts in
UML.

4.1 Basic Concepts

We need to define the basic concepts to be used later in the thesis. For
instance, the word resource has some very broad definitions. It means
different things to different people, and within different domains. Thus,
we need to specify what it means in our context.

4.1.1 Resource

The main unit of abstraction in a resource model is the resource. A
resource represents an entity in the system, physical or logical, that can

34

4.1. Basic Concepts 35

be used by a client. A client is a generic term meaning any system entity
allowed to use resources (such as a process or a thread).

Resources provide a set of services to their clients, each with a capacity
indicating the maximum level of QoS. We refer to this as the capacity of
the service. A resource is limited and has a fixed capacity. Furthermore,
resources have a status reflecting the currently available and currently
delivered QoS. Thus, resource usage can be quantified in terms of Quality
of Service measurements.

Figure 4.1 Memory Resource

status

Memory

store

read

write

Storage amount

(bytes)

Measurement

Throughput
(bytes/second)

Throughput
(bytes/second)

Resource services can be seen as an level of abstraction above the re-
sources, each representing one kind of resource usage. For example, as
illustrated in Figure 4.1, a memory resource may provide the services
store, read and write, each providing a certain level of QoS. Each service
maintains a status indicating how much of the offered QoS is currently
in use.

From our viewpoint, a resource is a provider of services, and not the “ma-
terial” delivered through the service. If we (for some awkward reason)
wanted to model a goldmine, our resource abstraction would be the gold-
mine, not the gold. Likewise, we model a processor as a resource and
not as CPU cycles.

System performance is largely dependent on resource performance, and
can be optimized and customized by having access to resource manage-
ment facilities. In order to support QoS management, some additional
requirements must apply to resources:

36 Chapter 4. Resource Model

• The resource can be managed by a resource manager.

• The resource has a measureable status.

• Resource usage can be monitored and constrained in order to en-
force reservations.

Examples of resources include physical resources such as memory, pro-
cessors and network connections, and logical resources such as buffers,
thread pools and virtual processors.

4.1.2 Resource Model

A resource model is a model of resources. According to [32], a model
is a description or specification of a system under study. A specification
represents something to be made before making it, while a description
represents something in existence. The resource model is actually some-
thing in between, as it is a description of the resources already in the
system, but is also a specification of a new run-time representation of
resources that doesn’t exist on beforehand.

The resource model is a description of the resources in the system
from a specific point of view, and from a specific level of abstraction.
It also includes additional properties, such as resource management
mechanisms, that do not exist in the system, but we have to implement
ourselves.

An implementation of the resource model is a platform for resource
management, providing facilities that can be used to carry this out. This
includes abstract representations of resources and resource managers
and the interfaces they provide. The run-time entities such as resources
and maangers are instantiations of the resource model.

In our context, the resource model serves another purpose as well; it
acts as a domain model, or “virtual metamodel” for a UML profile for
modeling resource instances. It shows the relation between the concepts
included in the profile and how they fit into their context.

Resources are typically heterogeneous entities, and a goal in designing a
resource model is to find an abstraction level on which resources can be
modeled in a uniform way.

Resource-related concepts include:

4.1. Basic Concepts 37

• Resource representation, expressing how resource instances are
represented on the target platforms.

• How resource usage and capacity is measured.

• How to interact with resources and resource managers.

• How to represent relationships between resources, such as depend-
encies.

• Resource protection and admission control.

4.1.3 Resource Model Implementation

The implementation of the resource model is a piece of runnable code
that implements the concepts of the resource model. It supports the
instantiation of run-time resource models.

4.1.4 Resource Model and Run-Time Resources

Figure 4.2 Resources and Resource Instances

Instance Descriptor

ResourceInstance Resource

ResourceServiceInstance ResourceService

QoSValue QoSCharacteristic

+offeredService

+offeredQoS

+offeredQoS

1
*

+instance

*

+type

1..*

+type

1..**

1

1..*

*

*

+offeredQoS

*

*

*

1..*

1

+instance

*

+type

1

+instance

*

+type

*

*

38 Chapter 4. Resource Model

We adopt the concepts of the core resource model from the UML Profile
for Schedulability, Performance and Time [24]. In our resource model,
the left-hand side of Figure 4.2 represents run-time instances that exist
on the platform on which the resource model is deployed. The right-
hand side represents the design-time elements.

Like in [24], resources provide one or more services, and services can
be quantified using QoS characteristics. However, unlike Figure 4.2, we
do not allow a resource service to provide any number of QoS character-
istics. Instead, a single QoS characteristic quantifies the service, and at
run-time, its usage level and capacity must be values of this character-
istic.

4.2 Requirements and Design Goals

We here present a set of requirements that the resource model must
fulfil.

In [7] a set of evaluation criteria for adaptive resource management in
middleware are presented. We use these as an input for what is required
of the underlying resource model, since we consider the resource model
as a basis for the QoS management mechanisms. The first requirement
presented is that resource sharing must be controlled and predictable.
Thus, the resource model must provide the necessary facilities to control
resource sharing. In order to solve this, we require that reservation of
resources must be supported. This guarantees that clients get the level
of QoS they need as long as sufficient resource capacity is available.

The authors further mention resource awareness as a requirement, mean-
ing that the systet must be aware of the availale resources. This is an
inportant purpose of the resource model.

The resource model must be generic, meaning it must support all kinds
of resources. To be a valid resource, it must satisfy the definition in Sec-
tion 4.1.1. A necessary assumption is that the environment (e.g., oper-
ating system) provides the necessary control of resources; the resource
model cannot support management of all thinkable resources without
explicitly providing management methods. However, there must be no
inherent limitation in the resource model per se that hinders certain
(valid) resources.

The range of supported resources must be extensible, in order to support

4.3. Design 39

the introduction of new resource types. It must be possible to model new
resources in the same way as existing resources.

In [7] it is argued that resources are very heterogenerous, and this must
be tackled by the resource model. Therefore, we try to model resources
as uniformly as possible, meaning that resources are represented the
same way and can be managed using the same kinds of interfaces des-
pite their heterogeneity. This results in a more consistent model that is
easier to use and understand, since it hides the underlying details about
the resoures.

The resource model must support admission control. Some resources
have certain access control policies that make sure clients have the ne-
cessary rights to access them. This must be reflected in the resource
model by implementing mechanisms for access checking and querying.

Resource mapping from design-time models to run-time resources must
be supported. A mechanism for this mapping must be available in order
to facilitate our vision of using the resource model as a part of model-
driven development.

The resource model must support logical resources as well as physical
resources. It must be possible to deal with resources that are implemen-
ted as software entities (for example thread pools or buffers) as well as
physical resources. Such resources typically depend on hardware entit-
ies to carry out their services, and these relationships should be con-
sidered.

4.3 Design

We here present our design of the resource model. It is a specification
of the resource concepts from an implementation point of view.

The resource model is specified in UML using class diagrams. The classes
are metaclasses, and meant to be instantiated in runtime resourcs.

We present a set of small diagrams that all represent parts of the model.
The purpose of this is to leave out details not related to the respective
sections. We summarize the design with a figure containing the com-
plete resource model.

40 Chapter 4. Resource Model

4.3.1 Relation to the UML Profile for QoS

We use the UML profile for QoS [23] as our QoS vocabulary in the re-
source model. It is used for dealing with resource QoS in different con-
texts:

• for modeling with QoS concepts in the resource model.

• for handling resource QoS for run-time resource instances (part of
the resource model implementation).

• for modeling resource QoS in application models (using the UML
profile for resource modeling defined later in this chapter).

The UML profile for QoS is a general approach to supporting QoS spe-
cification in models, and a wide range of different QoS characteristics
can be constructed. Our needs only stretch to QoS specification and for
resources. This means we that only need a subset of the expressibility
in the UML profile.

A QoSCharacteristic is composed of one or more QoSDimensions. A
dimension defines the type of one aspect of a QoSValue. For our usage of
the QoS profile, we only allow one QoSDimension per QoSCharacteristic.
This means that a QoSValue is a single value.

QoSConstraints can be defined, limiting the range of allowed values
within a QoSCharacteristic. The QoS profile supports practically infin-
ite ways to specify QoSConstraints. For our resource QoS usage, we will
only support simple invariant expressions having the form

<QoSDimension> <ComparisonOperator> <Value>

For example: rate >= 100. We support three kinds of basic types for
QoS dimensions: float, integer and enumeration.

4.3.2 Core Resource Model

The core resource model (Figure 4.3) shows the basic resource concepts
that are common to resources. It borrows its QoS vocabulary from the
UML Profile for QoS [23]. A QoSCharacteristic defines the range of al-
lowed values of a QoSValue. We only use a minor subset of the express-
ibility of the QoS profile necessary to specify resource QoS.

4.3. Design 41

Figure 4.3 Core Resource Model

Resource

ResourceService QoSValue

QoSCharacteristic

usage

instance

descriptor+getService(In name:string):ResourceService

+getType():string

+getServices(): [] ResourceService

+getCapacity():QoSValue

+getUsage():QoSValue

provider

provides

1

1..*

*

hasUsage

* 1

hasCapacity

+isProtected():boolean

capacity

1

1

*

Resource objects represent system resources. A resource provides ac-
cess to its services, either by providing the serivce name (getService)
or by retrieving a list of all services (getServices). Also, a resource can
be queried about its type. Resource types are identified by their names
(e.g. “read”).

A resource provides one or more ResourceSerivces. Resource usage and
capacity is quantified through these services in terms of QoSValues. The
range of valid QoSValues is defined by their type, or QoSCharacteristics.
Each resource service must have an associated QoSCharacteristic defin-
ing how it can be measured. The ResourceSerivce can be queried for
current usage and capacity through the status and capacity opera-
tions. The isProtected method is used to check whether or a reource
is protected.

The Resource class is declared abstract because it meant to be sub-
classed to specific resource types. Since every resource must be of ex-
actly one type, we do not want to instantiate the Resource class.

4.3.3 Resource Types

Every resource must be of a single type. Resource types are either direct
subclasses of the abstract class Resource or subclasses of other resource
types.

42 Chapter 4. Resource Model

Figure 4.4 Resource Types

Resource

Processor Memory ThreadPool

The behavoiur of a resource is determined by its type. This is ensured
by requiring that resources of a certain type always provide the same
set of services. We know by its type that a resource is capable of per-
forming a certain task, but we know nothing about the QoS (capacity)
of the resources. The capacity may differ between resource instances.
The fixed set of services provided by a specific resource type share the
same QoSCharacteristic, which is instantiated as QoSValues for resource
instances.

Resource types may subclass other resource types, and make up a re-
source type hierarchy. For example, RISCProcessor and CISCProcessor
may be specializations of the more general Processor resource. Sub-
classing is necessary until we reach a level where the behaviour of the
resource type resembles the behaviour of the actual resource.

The implementation of a resource type includes “glue code” that maps
the abstract representation of the resource to the actual resource. This
glue code could for example be for utilizing resource management APIs
provided by a realtime-capable operating system. If the OS completely
hides all control over resource allocation, it is not possible to implement
a resource type for it.

In Figure 4.4, three resource types are shown. Processor and Memory are
typically physical resources, while ThreadPool is a logical resource. Each
one must provide the set of services required by the type. These are
only examples; the set of aviable is meant to be extended to support as
many different resources as possible. In each context where the resource
model is in use, there must be a common set of resource types available.
A resource type is identified by its name, and has a fixed set of resource

4.3. Design 43

services attached.

4.3.4 Resource Type Catalogue

An underlying assumption for using this resource model is the existence
of a global resource type catalogue. By this, we mean that the range
of available resource types and some of their characteristics must be
known in order to use the resource model. The following must be true:

• The set of services provided by a resource and their behaviour
must be known to the modeler that has to deal with resources. A
resource and its services are represented by names, that uniquely
defines them anywhere in the development process.

• The QoS characteristics that quantify resource services must be
known by the modeler dealing with resource QoS. It must be pos-
sible to express these characteristics using the UML profile for QoS.

• A runtime representation of QoS the QoS characteristics of re-
source services must available at run-time as well as design-time,
as these are required to hold values related to resources.

• Information about resource types must be available at run-time.
This information can for example be used when performing model
transformation and code generation.

This ensures awareness of all the available resources in the system and
how to deal with them.

4.3.5 Logical Resource Model

Logical resources (Figure 4.5) do not map to real resources in the system,
but resemble the same structure and properties as physical resources.
Logical resources may use other resources (physical or logical) to carry
out its services. This allows a hierarchy of resources, where the logical
resources are above the physical resources. Physical resources are al-
ways leaf nodes. Logical resources can also be leaf nodes if they do not
depend on any other resources. As well as using other resources, logical
resources have their own level of logic.

44 Chapter 4. Resource Model

Figure 4.5 Logical Resource Model

LogicalResource

Resource ResourceManagerClient

user
*

*

As seen in Figure 4.5, logical resources are sublcasses of Client. This
means that they are allowed to reserve resources. Unlike physical re-
sources, logical resources do not implement “glue code” that binds them
to the actual resources. The resource manager is used to reserve other
resources. For example, a thread pool is a logical resource that depends
on a physical processor resource.

A logical resource that requires other resources in order to perform its
services, is responsible of reserving these resources.

4.3.6 Resource Management Model

The resource manager is responsible for providing resource manage-
ment facilities to the clients. A resource manager can manage a number
of resources, while a resource can only be managed by a single manager.
A resource manager may only manage resources that exist within the
same address space.

Resource managers are responsible for providing access to resources, re-
servation of resources, enforcement reservations by constraining usage,
and adminssion control.

4.3. Design 45

Figure 4.6 Resource Management Model

ResourceManager

Resource

ResourceService

Client

Reservation

QoSValue

+getResourcesByType(In type:string ,In type:string): [] Resource

+reserve(In client:Client ,In resource:Resource ,In service:ResourceService ,In amount:QoSValue)

+release(In client:Client ,In resource:Resource ,In service:ResourceService ,In amount:QoSValue)

1

1

amount

+getResources(): [] Resource

+acquire(In client:Client ,In resource:Resource)

+free(In client:Client ,In resource:Resource)

+getAvailable(In resource:Resource):QoSValue

+isProtected(In resource:Resource):boolean

manages*

1 managedBy

uses

serves

*

*

+checkAccess(In resource:Resource):boolean

provider

provides

1

1..*

11

manager

manages

1

*

46 Chapter 4. Resource Model

Resource Access

In order to get access to resources and resource services, clients must
query the resource manager of that resource. The resource manager
provides two methods for gaining resource access; getResourceswhich
returns an array of all the managed resources, and getResourcesByType
which returns only the resources of a specific type.

Reservation

Reservation can be defined as acquiring the right to use a resource. A
reservation is a contract between a client and a resource service, and in-
cludes a value with the amount that is reserved. It is the resource man-
ager that is responsible of keeping track of reservations. A reservation is
made using the reserve method. Input arguments are client, resource
service and amount. A reservation is active until it is explicitly released,
using the release method. It takes the same arguments as reserve,
and amount is the amount to be released. The last argument is optional,
and if it is not given, the entire reserved amount will be released.

Protection

Figure 4.7 Resource Access Model

Resource

ProtectedResource ReleaseResource

AcquireResource

Action

isBlocking : boolean

1 1

1

1

4.3. Design 47

Resource protection is concerned with access to resources. This is also
a responsibility of the resource manager. We adopt the notion of a pro-
tected resource from the General Resource Model in [24]. We use a sim-
plified conceptual model (Figure 4.7), where a resource provides a single
service instead of providing per-service protection.

The AcquireResource action is either blocking or non-blocking. If block-
ing, the client will be blocked when the operation is called, and must
wait until access is granted. If it is non-blocking, the client will either
get a negative result immediately if access cannot be granted, or it will
gain access.

The operations acquireResource and releaseResource are concerned
with admission control. Some resources are protected, meaning they
cannot be used concurrently by any number of clients as long as there
is spare capacity. A protected resource requires the client to acquire it
before using it. When done using it, the client must release it to make it
available to other clients.

The ResourceManager in Figure 4.6 is responsible for keeping track of
a set of resources on a platform. It is responsible for providing clients
with access to resources, and performing admission control.

Decisions related to admission control, such as deciding to let a client
acquire a resource, are made based on access control policies. An
access control policy might contain statements about things like number
of concurrent users, access levels of clients, etc. An AccessControlPolicy
is associated with a resource.

Resource Managers provide two methods for providing access to the re-
sources they manage. getAllResources returns a set of references to
all resources managed by the respective manager. getResourcesOfType
returns only the resources of a certain type.

The attribute isProtected is true for protected resources. The default
value is false.

4.3.7 Resource Trader

The resource trader (Figure 4.8) can be used to locate and select re-
sources based on client requirements. It provides the service of resource
discovery based on QoS constraints.

The lookup method is used by clients to request appropriate resources.
Two parameters are given; resourceType and requiredQoS. The first

48 Chapter 4. Resource Model

Figure 4.8 Resource Trader

ResourceManagerResourceTrader
serves requests

* *

+lookup(In type:string ,In constraint:QoSConstraint)

+register(In manager:ResourceManager)

is a string, containing the name of the resource type. The second is
an array of QoS constraints which specifies the QoS required from the
resource service(s). The constraint may include one or more services
provided by the resource, and one QoS constraint is given for each ser-
vice we want to constrain.

If a resource matching the specified criteria is found, a reference to the
resource is returned. If no match is found, the null value is returned.

In order to access and discover resources, the resource trader uses one
or more resource managers. A manager can be registered with a trader
using the register method. A reference to the resource manager is
given as parameter.

4.3.8 QoS Repository

QoS characteristics represent the types of values in the UML profile for
QoS. These characteristics and their values must be available at run-time
as well as design-time. It would be a lot of redundant work to have to
define these characteristics every time we need them. To solve this, we
define a QoS repository to store QoS characteristics at run-time.

The QoSRepository is shown in 4.9. A QoS characteristic is identified
by its name (e.g. CommunicationThroughput or StorageAmount). The
operation getQoSCharacteristic takes the name as an argument, and
returns the QoS characteristic.

A QoS characteristic is capable of instantiating QoS values, thus having
access to the QoS characteristics is sufficient for being able to define
values.

The QoS repository can be extended with new QoS characteristics by
using the addQoSCharacteristic operation. The name of the charac-

4.3. Design 49

Figure 4.9 QoS Repository

QoSRepository

+getQoSCharacteristic(In name:string):QoSCharacteristic

+addQoSCharacteristic(In name:string ,In qoschar:QoSCharacteristic)

teristic and the characteristic itself is given as arguments, in order to be
stored in the repository.

The QoS repository must be globally available to any entity that works
with QoS characteristics. This enables a common QoS vocabulary through-
out the resource model.

4.3.9 Resource Type Repository

The resource type repository (Figure 4.10) can be used to acquire in-
formation about resource types at run-time. A resource type is identi-
fied by its name. The getQoSCharacteristics method takes the name
as parameter, and returns the list of QoS characteristics for the services
provided by the resource. getResourceType returns a ResourceType
object, which contains information about the resource type, such as its
name and whether it is a protected resource. The getService method
returns the QoS characteristic of the requested service.

Figure 4.10 QoS Repository

ResourceTypeRepository ResourceType

+getQoSCharacteristics(): [] QoSCharacteristic

+getResourceType():ResourceType

* *
name : string

protection : boolean

+getService():QoSCharacteristic

50 Chapter 4. Resource Model

4.3.10 Complete Model

Figure 4.11 Resource Model

Resource

ResourceService

QoSValue

Reservation

LogicalResource

ResourceManager

ProtectedResource

AccessControlPolicy

Client

ResourceTrader

getUsage()

getCapacity()

hasCapacity

acquire()

user

getService()

getType()

getServices()

hasPolicy

amount 1

usage

*

1

capacity

*

1

hasUsage
provider

1

provides

1..*
*

manages *

manages

*

1

1

1

uses

*

getResources()

getResourcesByType()

reserve()

release()

getAvailable()

isProtected()

managedBy

1

usedBy*

policyFor1

manager1

*

serves

*

*

requests lookup()

register()

serves

*

checkAccess()

free()

We have gathered the main entities of the resource model in Figure 4.11.

4.4 Prototype Implementation

We have done a prototype implementation of the resource model in or-
der to validate the resource model design, and to create a target platform
for experimentation with resource management.

The programming language of choice for implementing the resource
model is Python. Python is an object oriented, interpreted dynamic
langeuage, and is well suited for rapid prototyping [1]. Also mentioned
in [1] is the ability to test individual code segments in the interactive
interpreter. This is a great advantage for us as well, in order to tackle
the complexity and “play around” with concepts. A particular feature

4.4. Prototype Implementation 51

in Python useful for the resource model is the ability to implement spe-
cial methods that emulate mathematical operators. This enables us to
treat QoS values like primitive values such as integers. For example, one
could support adding two QoS values together using the regular plus (+)
operator.

4.4.1 QoS Profile Implementation

We have implemented a small subset of the concepts of the UML pro-
file for QoS [23]. This includes the vocabulary necessary to quantify
resource usage. Our mission is not to validate the QoS profile through
implementation, but that resources can be quantified in multiple way by
using its concepts.

We have also added some new operations to the classes of the QoS pro-
file’s domain model to realize some functionality, such as functions for
the instantiation of QoS values from QoS characteristics.

The concept of a QoS characteristic is greatly simplified. In the QoS pro-
file, a QoS characteristic can be composed of several QoS dimensions. A
QoS value is an instance of a characteristic, and thus an instance of all
these QoS dimensions combined. In the resource model, we describe a
QoS characteristic by a single dimension. In order to reduce code com-
plexity, we do not use the QoS dimension concept at all, but instead
include its contents in the QoS characteristic. Thus, QoS characteristics
represent types and QoS values represent values.

QoSCharacteristic

Instances of this class represent the QoS characteristics at runtime. They
contain the information needed about how QoS values are measured.
QoS characteristics have the ability to instantiate QoS values, and to
compare two QoS values. A QoS characteristic can be created with:

qc = QoSCharacteristic(name, basictype, unit, direction, [enum])

where name is a string with the name of the characteristic, and basictype
is the primitive type of the of QoS values it describes. Unit is the meau-
sring unit the characteristic describes, and direction (either ’increasing’
or ’decreasing’) decides whether resource usage goes up when the value

52 Chapter 4. Resource Model

increases, or whether it goes up when the value decreases. The last ar-
gument for creating QoSCharacteristic is enum. This argument is only
required if the basic type is enumeration.

We have implemented support for three kinds of basic types. These were
selected because they map directly to Python’s basic types, and they are
sufficient to cover most resource measurements.

integer All integers.

float All float values (same precision as the float type of the Python im-
plementation)

enumeration The range of allowed values is defined as an enumeration
of states. It is assumed the difference between one state and the
next is the same for any two subsequent states. It maps to a Python
list.

Two methods exist for instantiating QoS values from a QoS character-
istics; makeZero for the zero (i.e., non-usage) value and makeValue for
any value. makeZero calls makeValue with the zero value of the char-
acteristic. For the two numerical types, zero is the number 0. For the
enumeration type, zero is either the first or last state (depending on
whether the direction is increasing or decreasing).

makeValue creates a QoSValue object with the specified value.

QoSValue

A QoS value is an instance of QoS characteristic. Instantiation is done
by creating a new QoSValue object. A QoS value can created with the
following syntax:

qosval = QoSValue(qoschar, [value])

The first parameter is the characteristic of the value, and the second is
the initial value. The value parameter is optional, and if not provided,
the value will be set to None (undefined). It can then be set at a later
time using the set method.

The value method is used to retrieve the primitive value of the QoS
value (which is either a integer, a float, or a string representing a state
within an enumeration). set is used to set this value. getQoSCharacteristic

4.4. Prototype Implementation 53

is used to retrieve the QoSCharacteristic object from the QoS value. The
QoS characteristic and primitive value are attributes of the object.

Special methods for arithmetic and comparison operators have been im-
plemented for QoS values. This is done to be able to use QoS values in
expressions as if they were primitive values.

__lt__, __le__, __gt__ and __ge__ implement the comparison operat-
ors. In order to compare values, the methods call the compare method
of their QoS characteristic. The characteristic holds enough information
to decide which value is the highest.

In addition to comparison operators, we have also implemented spe-
cial methods for addition and subtraction of QoS values. The meth-
ods __add__ and __sub__ support inclusion of QoS values in expres-
sions like val1 + val2 and val1 - val2. Here, too, the calculation is
forwarded to the QoS characteristic by calling the addValues method.
In order to support the notation val1 += valu2 (a convenient short-
cut for val1 = val1 + val2), we have implemented the __radd__ and
__rsub__ special methods.

QoSConstraint

As mentioned in Section 4.3.1, our usage of QoS constraints is limited to
expressions on the form:

<QoSDimension> <ComparisonOperator> <Value>

Instead of representing the QoS dimension part of the expression in the
QoSConstraint object, we consider it implicit. Instead, functionality to
evaluate values against the constraint has been added. By evaluation
we mean checking that a QoS value is within the legal range of the con-
straint.

A QoS constraint is constructed with two arguments. The first one,
refval, is the reference value on the right-hand side of the expression.
The comparison operator is given in the op argument. The argument is a
string that identifies the operator (’lt’ for less than, ’le’ for less than
or equal to, and so on).

The evaluate method evaluates the QoS constraint against a QoS value.
It first checks which operator is defined for this constraint, and then
compares the value to be evaluated against the reference value.

54 Chapter 4. Resource Model

4.4.2 Resource Model Implementation

The resource model implementation depends on the QoS profile for reas-
oning about QoS. It is an implementation of the concepts presented in
the resource model. However, we have not implemented resource types
for any physical resources such as network connections or processors.
Instead, we look at how this mapping has been realized in other systems.

Resource

The Resource class is the superclass of all resource types. It implements
some methods common to all resources, that are inherited by the sub-
classes. Its constructor is called from the subclasses when instantiated,
with a list of ResourceService objects and the name of the resource type
as parameters.

Resource also contains methods to access the resource services. getServices
returns the list of all provided services, and getService takes the ser-
vice name as argument, and find this service in the list of services.

Resource types are subclasses of Resource. These implement the re-
source specific code that glues the resource model representation of the
resource with the actual resource in the system.

ResourceService

Resource services are provided by resources. A resource service is cre-
ated with:

srvc = ResourceService(name, qoschar, cap)

The name is a string that identifies the service. qoschar is the QoS char-
acteristic for this service, and cap is the capacity (which has qoschar as
its type).

The ResourceService object provides methods for checking status; getUs-
age for to see how much is currently used and getCapacity to check the
capacity of the service. getName and getQoSCharacteristics are used
to inspect the service name and its QoS characteristic.

4.4. Prototype Implementation 55

ResourceManager

The ResourceManager provides resource management functions to its
clinets. A resource manager object keeps a list of the resources it man-
agers, and a dictionary of reservations.

The methods getResources and getResourcesByType are used to ac-
quire references to the resources. The first returns the whole list of
managed resources, while the second iterates through the list of man-
aged resourecs, and picks out the ones of a specific type. The type is
given as an argument.

The manager keeps track of how much a resource service’s capacity is
available for reservation. This can be checked using getAvailability.
The method calculates the sum of all reserved amounts of this service,
and then finds the difference between this sum and the capacity.

Reservation of resources is done with reserve. It takes the following
arguments:

reserve(client, resource, service, amount)

Thus, a client may reserve a certain amount of a certain resource ser-
vice. reserve first calls the getAvailability method to see if there
is enough spare capacity. If not, the False value is returned. If enough
is available, we go on to check whether a reservation of this resource
service to this client already exists. If so, we add the amount to reserve
to the amount of the reservation. If not, we create a new reservation.

release is the opposite method, and is used to release reserved amounts.
We provide the service and the client as arguments, along with the amount
to be reserved. Amount is optional, and if no value is given, everything
that the client has reserved of the resource will be released.

A Reservation object represents each reservation. It keeps the reserved
amount, and implements special methods for adding and subtracting
amounts.

Resource Configurations

We have used a custom XML-based format to store information about the
resources that exist on a platform. A configuration file can be read by
a resource manager by calling a method named readConfig that takes
the filename as parameter.

56 Chapter 4. Resource Model

For each resource, we store the resource type (e.g., Memory) and the
capacities of all the services it provides. We also store the location of
the resource, so that it can be mapped to the actual resource it repres-
ents. Since we have not implemented resource types for any physical
resources, the location is left unspecified in our usage examples.

AccessControlPolicy

We have implemented a very simple type of access control policies,
where the only property is the number of clients allowed to use the
resource concurrently. The AccessControlPolicy object is created in each
resource type implementation, and is thus resource type-specific.

ResourceTrader

The ResourceTrader object has access to a set of managers that it can
query in order to find appropriate resources. New resource managers
can be added to this set by calling

rtrader.register(manager)

The lookup method is used to discover resources based on the resource
type and some QoS constraints. The name of the resource type (e.g.,
’Memory’) and a list of tuples of QoSConstraint objects and names of
the services they refer to are provided as parameters.

The method iterates all the resource managers it has access to. For each
of these, it requests a list of all resources of the required type using the
getResourcesByTypemethod. For each of the QoS constraints provided
by the caller, it uses the getAvailability method of the resource man-
ager to check how much is available for reservation. If there is enough
avaiable capacity for all the required services, the resource broker re-
turns the matching resource.

ResourceTypeRepository

The ResourceTypeRepository is used for acessing information about dif-
ferent resource types at run-time. The resource type information is
stored in a file. It can be read using the readResourceTypes method
and stored using the saveResourceTypesmethod. getQoSCharacteristic(rname)
returns a dict, where each key is the name of a service provided by the

4.5. Platform Integration of the Resource Model 57

resource, and the value is the QoS characteristic. The QoS characteristic
is retrieved from the QoSRepository.

The resource type repository can also return information about a single
resource type with getResourceType(name). The method returns a Re-
sourceType object, holding information about protection and a list of the
provided services.

4.5 Platform Integration of the Resource Model

The resource model presented in this chapter is meant for implementa-
tion on a middleware platform. Most importantly, the resource manage-
ment interfaces, such as the resource manager and the resource broker
must be available to tasks in the system responsible for managing re-
sources.

For example, in reflective component architectures, the resource model
could be made available through a meta-interface. In QuA [29], the ser-
vice planner would typically need access to resource model in order to
manage resources when planning services.

4.6 UML Profile for Resource Modeling

We have defined a UML profile for modeling with the concepts of thes
resource model in UML models. This will allow us to deal with resources
at design-time, modeling them and adding QoS requirements to them.
The reosurce model defines the domain for the profile, and is in this
sense similar to a metamodel. Unlike a metamodel, it does not define
the rules for how the profile can be used.

For the QoS part of the resource modeling, we use a subset of the UML
profile for QoS, including some rules about how it may be used.

The UML profile has been defined with the support for model-driven
development in mind. However, is could be used for modeling resources
in general.

The UML viewpoint of the profile is shown in Figure 4.12. The intended
interpretation of the stereotypes is as follows:

58 Chapter 4. Resource Model

Figure 4.12 UML Profile for Resource Modeling

<<profile>>

UMLProfileForResourceModeling

<<metaclass>>

Class

<<stereotype>>

Processor
<<stereotype>>

Memory
<<stereotype>>

Network
<<stereotype>>

Buffer

<<stereotype>>

Resource

<<stereotype>>

Client

<<metaclass>>

Dependency
<<stereotype>>

RequiresResource

<<metaclass>>

Interface
<<stereotype>>

ResourceService

4.6. UML Profile for Resource Modeling 59

Client

A client is the consumer of resources. A class stereotyped with Client
can reserve and use resources, and may have dependencies to them in
the model.

Resource

This stereotype is the superclass of all resources. It is abstract because
only its children are meant to be instantiated. Resources are modeled
using sublcasses of Resource, such as Network or Memory. These sub-
classes are all in the global resource type catalogue.

ResourceService

Every resource has one or more resource services. In this UML profile,
services are modeled as interfaces provided by the resource, stereotyped
with ResourceServce. The resource type determines what services the
resource provides, and thus defines the range of what resource services
that are valid to specify for a resource.

ResourceRequires

Resource requirements are modeled using stereotyped dependencies. A
dependency is specified between a Client and a ResourceService. The de-
pendency alone only states that the client requires the resource service.
Using a QoS constraint (a constraint stereotyped QoSRequires), the re-
source requirement can be further detailed with QoS requirements. This
constraint is connected with the resource requirement dependency.

4.6.1 Resource QoS Modeling

We use a subset of the UML Profile for QoS [23] as QoS vocabulary for
resources. QoS characteristics of resource services and QoS constraints
involving these can be epxressed using the profile. The definition of QoS
characteristics is part of the resource type catalogue (Section 4.3.4).

Each resource type implies a set of resource services with specific QoS
characteristics. When adding QoS constraints to resource dependencies,

60 Chapter 4. Resource Model

we must use values that comply with the QoS characteristic of the re-
source service. It is an assumption that the QoS characteristics of the
resource types exist in the model.

QoSRequired

Resource QoS requirements are specified using a constraint with a «QoS-
Required» stereotype. We use OCL to express the constraint, where the
QoS characteristic of the required service is the context. The first vari-
able of the expression is the QoS dimension of the QoS characteristic.
Then comes a comparison operator (e.g. > or >=), and at last the value
that constrains the resource QoS. The value must of course be in the
range of allowed values within the QoS characteristic.

Chapter 5

Model-Driven QoS Mapping

In this chapter we investigate how the resource model can be included
in a model-driven development context.

A resource model is a model of the resources on a platform. This model
can be utilized by defining mappings from other system models. In
this chapter we define a framework for model-based mapping to the
platform resource model as a means for performing QoS-based resource
management.

We first discuss the motivation for mapping to the resource model, and
how this can facilitate QoS management. Then, we define a set of re-
quirements for what functionality our QoS mapping framework should
provide. We define how mappings to the resource model are defined,
and how mappings can be automatically generated from models. Finally,
we describe how these mappings are applied on the platform resource
model.

5.1 Basic Concepts

We describe the basic terms used in this chapter, along with the intended
interpretation in our context.

5.1.1 QoS-Enriched Models

QoS-enriched models are models that include QoS requirements. They
are said to be enriched because the QoS requirements are supplements

61

62 Chapter 5. Model-Driven QoS Mapping

to already meaningful models. Thus, the model may function as a struc-
tural and functional specification without the QoS requirements.

The QoS elements in the model are specificed orthogonally to the non-
QoS elements. This means that the QoS requirements are related to the
non-QoS elements, but not the other way around. This orthogonality is
a property of the UML profile for QoS, which we use for the QoS part of
the model.

5.1.2 Mapping

By mapping we mean the transition from the representation of a concept
in one context to a representation of the same concept in another con-
text.

The use of mapping in this work is concerned with the transition from
resource- and QoS-representation in a design-time model to the repres-
entation of the same concepts in a run-time resource model.

5.2 Motivation

We try to show how the resource model can be useful as part of a
model-driven development process. It is a way of testing the usabil-
ity of the resource model by performing mappings of resources and QoS
from design-time models to run-time resources as represented by the
resource model. This involves finding a way of representing the design-
time concepts in the resource model.

It also aims to realize a small part of the vision of handling Quality of
Service requirements in model-driven development.

The practical purpose of this mapping is to generate QoS management
code in order to ease the development process, especially coding by
hand.

5.3 Resource QoS Mapping

We suggest a set of process steps that enable mapping from design-
time to run-time resource QoS management. A set of rules for how to

5.3. Resource QoS Mapping 63

perform these steps, along with a description of the implementation of
the tools to automate parts of the process, is presented in the following
subsections.

5.3.1 Overview

Figure 5.1 Resource Mapping Overview

<xml>
...
</xml>

class X:
def

...

QoS-Enriched
Model

XMI Document Model Reader
Code Generator

Resource
Mapping Code

Platform
Execution

Memory
0x400

CPU
0x8F2

Resource
Configuration

Serialize model
to XMI

Generate
Python code

Parse XMI
document

Execute
Code

Read
configuration

An overview of the resource QoS mapping process is shown in Figure 5.1.
It shows the steps from an application model decorated with resource
QoS requirements to the execution on a runtime platform that supports
resource management.

The model is first serialized as an XMI representation of the model. The
XMI document is fed into a new tool, which to generate code. We have
divided this tool into two parts; a model reader which parses the XMI
data and read it into a set of data structures for further processing, and
a code generator that generates code based on this data. The code gen-
erator outputs a source code skeleton consisting of Python class defini-
tions and methods for resource management (discovery, authorization,
reservation, etc.). Application code is inserted into this skeleton.

When executed on the target platform (the resource model), the elements
of the source model are mapped to runtime entities on the platform. In
order to initialize the runtime resources, the resource model depends
on a resource configuration file.

64 Chapter 5. Model-Driven QoS Mapping

Figure 5.2 Source Model Example

<<Memory>>

SomeMemory

<<ResourceService>>

Read
<<ResourceService>>

Write
<<ResourceService>>

Store

<<Client>>

VideoDecoder

<<QoSRequired>>

{context MemoryAmount inv:
 amount >= 100}

1

1

1

1

1

1

<<RequiresResource>>

5.3.2 Source Model

The source model is an application model enriched with resource QoS
requirements. A simple example is shown in Figure 5.2. It features a
component with a single resource requirement. It has been modeled
using two UML profiles; the UML Profile for QoS [23] and the UML Profile
for Resource Modeling, presented in Chapter 4.

Our QoS mapping method assumes that this model is designed in a spe-
cific way, and constraining how the UML profile constructs are used and
interpreted.

Resource requirements are specified as dependencies stereotyped with
«ResourceRequires», where a client depends on resource services. Only
classes with stereotype «Client» are allowed to require resources.

Resources are modeled using classes stereotyped with the type of the
resource (such as «Memory» or «Processor». The resource type implies
the set of services provided by the resources. However, not all resource
services must be included in the model, only those involved in a resource
requirement. Both the resource and the services required by clients must
be included.

5.3. Resource QoS Mapping 65

Resource services are connected with resources using a 1:1 composition
relationship. Resource services are classes stereotyped «ResourceSer-
vice», and the class name is the name of the service.

A resource requirement is further detailed using a constraint with ste-
reotype «QoSRequired» (from the QoS profile). The constraint is ex-
pressed using an OCL expression whose context is the QoS character-
istic describing how the resource service usage is measured. In Figure
5.2, MemoryAmount describes the QoS of a Memory resource. The ex-
pression compares the QoS dimension of the QoS characteristic with a
QoS value, stating how much of the resource is required.

Interpretation

We interpret the model in Figure 5.2 in the following way:

The client VideoDecoder poses a requirement on the Store service of a
Memory resource. It needs 100 kb or more from the resource service
capacity. (We know that the measuring unit is kb because it is part of
the characteristic MemoryAmount).

5.3.3 Model Reader

The model reader reads a QoS-enriched model into a data structure that
facilitates code generation. It only deals with the QoS- and resource-
parts of the model, in order to generate code for resource QoS manage-
ment.

Before the source model can be read, it must be transformed into a sup-
ported format. We use XMI because this is a standard format for UML
models serialized to XML. It is fairly modeling tool-independent, and
supported by most tools, including Objecteering, which we have used.

Preconditions

In order for the model reader to be able to process the input model cor-
rectly, the model must be well-formed according to the rules described
in Section 5.3.2. The QoSProfile implementation presented in Chapter 4
must also be available and used by the model reader.

66 Chapter 5. Model-Driven QoS Mapping

Implementation

Figure 5.3 shows the classes and relationships used to store the in-
formation gathered from the model. We leave the description of the
generateCode methods to Section 5.3.4.

Figure 5.3 Model Reader

Client

ResourceRequirement

QoSRequired

ResourceService

Resource

+addService(In service:ResourceService)

name : string

+addResourceRequirement(In requirement:ResourceRequirement) +generateCode():string

name : string

resourceType : string

1

*

name : string

+setResource(In resource:Resource)

1

*

+generateCode():string
* 1

referenceValue : undefined

operator : string

1

1

Client represents a single client. A client has a name, and may have a
set of resource requirements. These are associated with the client us-
ing addResourceRequirement. A Resource has a name and a resource
type. Its resource services can be included using addService. Likewise,
a ResourceService has a name, and can be assigned to a resource us-
ing setResource. Finally, a ResourceRequirement consists of the client
that poses the requirement, the resource service that is required, and a
QoSRequired constraint (from the UML profile for QoS implementation).

The classes above will be instantiated as the script reads the model from
the XMI file. The methods are called when relations between the model
elements are discovered.

5.3. Resource QoS Mapping 67

XMI Parsing

An XMI document is XML, so we may use a standard XML DOM parser to
read it. We use the xml.dom.minidom Python module for this.

The stereotypes are an essential part of the models we want to read.
These provide information about how to interpret the QoS- and resource-
related model elements, and help us disctinguish these from the remain-
ing model elements.

In XMI, all model elements are uniquely identifed by an xmi.id attrib-
ute. References to other model elements are expressed with xmi.idref
attributes, refering to the xmi.id of the target elements. We use Python
dictionaries (often called dicts) for intermediate storage while reading
the XMI document. It is convenient to use the key for the xmi.id and
the value for the model element information.

First, we make a dict holding all the stereotypes. The stereotypes can be
found using:

res = doc.getElementsByTagName(’UML:Stereotype’)

We iterate the result and generate a dict with (<id>, <stereotype name>)
mappings. This enables us to inspect the stereotype of a model element
by checking stereotypes[idref]. The next step is gathering all classes
in the model:

res = doc.getElementsByTagName(’UML:Class’)

This will return every class in the model, but we are only interested in
the classes with stereotype «Client», «ResourceService», or one of the re-
source types, e.g. «Network». We iterate all the classes in the model,
and inspect the stereotype of each one. These are split into three dif-
ferent dicts according to stereotype; clients, resourceservices and
resources. The xmi.id is the key in each of the dicts, and the value is
set in the following way:

• clients[id] = Client(name)

• resourceservices[id] = ResourceService(name)

• resources[id] = Resource(name, resourcetype)

Now that we have instantiated all the resources, resource services and
clients, the relations between these and the costraints must be read.

68 Chapter 5. Model-Driven QoS Mapping

We need a relation between resources and their provided services (in
order to check what resource a service belongs to). This is done by
getting all UML:Association elements and checking which ones go from
a resource to a resource service. The connection is stored the following
way (resourceid is the xmi.id of the resource and serviceid is the
xmi.id of the resource service):

resources[resourceid].addService(resources[serviceid])
resourceservices[serviceid].addService(resources[resourceid])

If the association is not a resource-service relationship, we check if it
has the stereotype «RequiresResource». If so, we insert it in a separate
list of resource requirements to be processed later.

We then collect all UML constraints with stereotype «QoSRequired». We
assume that this type of constraint only exists for resource requirements
in the model. We parse the OCL expression, and create a QoSConstraint
object to represent it. The (xmi.id, QoSConstraint) mappings are put
into a new dict.

To relate the QoS constraints with the resources and clients, we iterate
the list of resource requirements gathered earlier. For each requirement,
we find both ends of the association and get hold of the id of the client
and the resource service involved. Also, we find what UML constraints
apply to this association. Based on this information, we create a Re-
sourceRequirement object:

resreq = ResourceRequirement(clients[clientid],
resourceservices[serviceid],
qosconstraints[constraintid])

This requirement is associated with the client using:

client[clientid].addResourceRequirement(resreq)

Now, the classes in Figure 5.3 hold all the information necessary to start
generating code.

5.3. Resource QoS Mapping 69

Figure 5.4 Example Output Code
class VideoDecoder(Client):

def __init__(self):
self._reservations = []

def run(self):
self._reserveResources()
do stuff
self._releaseResources()

def _reserveResources(self):
constraints = []

qoschar = qosrep.getQoSCharacteristic(’MemoryAmount’)
amount = qoschar.makeValue(100)

constraints.append((’Store’, QoSConstraint(amount, ’ge’)))

match = rtrader.lookup(’Memory’, constraints)
if not match:

raise ’NoSuchResourceFound’

qoschar = qosrep.getQoSCharacteristic(’MemoryAmount’)
amount = qoschar.makeValue(100)

service = match.getService(’Store’)
resmngr.reserve(self, match, service, amount)
self._reservations.append((match, service, amount))

def _releaseResources(self):
for reservation in self._reservations:

resource, service, amount = reservation
resmngr.release(self, resource, service)

if resource.isProtected():
resmngr.free(self, resource)

70 Chapter 5. Model-Driven QoS Mapping

5.3.4 Mapping Code Generator

Based on the data read by the model reader, we are ready to generate
code for resource mapping. The method named generateCode is re-
sponsible for generating the code for each client.

Each client object now contains a list of the requirements it poses, and
each requirement consists of a service and constraint, along with the
client.

If the client has at least one resource requirement, the method _reserveResources
is declared. We now need to make a separate list of constraints for each
resource that the client requires. These requirements are put into a dict
with the resource as a key and the list of required services as keys:

for req in self.requirements:
if not resources.has_key(resource):

resources[resource] = [req]
else:

resources[resource].append(req)

We now loop through each resource (iterate through resources.keys()).
The code for each resource should first make a list of constraints to pass
to the resource broker in order to discover an appropriate resource. We
get hold of the type of the resource, and check whether it is protected or
not.

We then go through the requirements this client has on the services
of the resource. The code generated for each resource consists of two
parts; resource discovery (the establishment of QoS constraints on re-
source services and a lookup request to the resource trader) and re-
source reservation (if the resource trader returns a matching resource).
Since discovery must take place before reservation, we put the reserva-
tion code in a separate string in order to append it to the code later.

For each requirement, we must first generate code to build the necessary
QoS values:

qoschar = qosrep.getQoSCharacteristic(’<characteristic_name>’)
amount = qoschar.makeValue(<value>)

First, we get the QoS characteristic of the resource service from the QoS
repository. Then we use this characteristic to instantiate a QoS value.
The <value> is a basic value, and can be get from the QoSValue object of

5.4. Resource Model Execution 71

the requirement. We use this code to create QoS values for both resource
discovery and resource reservation, so it is both outputted immediately,
and put in the reservation code string.

The resource discovery code builds a list of resource service constraints,
where each requirement is added in turn:

constraints.append((’<service_name>’,
QoSConstraint(amount,’<operator>’)))

The <operator> is also a part of the QoS constraint associated with the
requirement.

Now, we are ready to generate reservation code for the requirement:

service = match.getService(’<service_name>’)
resmngr.reserve(self, match, service, amount)
self._reservations.append((match, service, amount))

The match is the resource returned from the resource broker (if a match-
ing resource was found). We then reserve the specific amount of the
matching resource, and finally we append it to the client’s list of reser-
vations in order to keep track of what’s reserved. The amount is the QoS
value declared on beforehand.

The code for expressing the list of constraints to the resource broker is
already generated. We now add the lookup request:

match = rtrader.lookup(self, ’<resource_type>’, constraints)

We also supply code to raise an exception if no match is found. At last,
we append the code to perform the actual reservations. The code for all
clients can now be generated by calling the generateCode method of all
objects in the clients list.

The code generator also adds a method _releaseResources to the cli-
ents with resource requirements. This code is common for all clients, as
seen in Figure 5.4.

5.4 Resource Model Execution

We illustrate the behaviour of the generated code produced by the code
generator in two sequence diagrams (Figure 5.5 and Figure 5.6). These il-
lustrate behavoiur of the _reserveResources and _releaseResources
methods.

72 Chapter 5. Model-Driven QoS Mapping

Figure 5.5 Resource Reservation

C
lient:

R
esource:

Q
oS

R
epository:

Q
oS

C
haracteristic:

Q
oS

C
onstraint:

R
esourceT

rader:
R

esourceM
anager:

_reserveR
esources()

getQ
oS

C
haracteristic(nam

e)

m
akeV

alue(value)

Q
oS

C
onstraint(am

ount, operator)

lookup(resource, service, constraints)

getR
esourcesB

yT
ype(type)

getA
vailability(resource, service)

acquire(self, resource) isP
rotected()

reserve(self, resource, service, am
ount)

getS
ervice(service)

5.4. Resource Model Execution 73

Resource Reservation

After _reserveResources is called, we first get the QoS characteristics
needed to quantify resource requirements. Given the name of the QoS
characeteristic, the QoSRepository can return the characteristic object.
The name is known by the code generator, and is included in the output
code. The QoS characteristic objects have a makeValue method that
returns the QoS value(s) needed for defining resource constraints.

Resource constraints are represented as a list of (resource service,
QoSConstraint) tuples. For each constraint, a QoSConstraint object is
instantiated using the QoS value.

Now that we have the required resource type and a list of constraints
on its services, we are ready to perform a lookup in the ResourceTrader.
The resource trader queries the ResourceManager for all resources of
the needed type. It also queries the manager for the availability of each
resource (the amount available for reservation). If available, the resource
trader returns a matching resource to the client.

If the resource type in mind is protected, it must be acquired by the
client. Acquirement is the responsibility of the resource manager. Be-
fore performing the reservation, we need a pointer to the resource ser-
vice instance. Since we already have the name, we can get it by call-
ing getService on the resource object. Finally, the reservation is per-
formed, with the client, resource, service, and amount as parameters.

Resource Release

The execution of the _releaseResource method is much simpler. It
tells the resource manager to release the entire amount of each resource.
For the protected resources, it also calls the free method to make it
available to others.

74 Chapter 5. Model-Driven QoS Mapping

Figure 5.6 Resource Release

Client: ResourceManager:

_releaseResources()

release(self, resource, service)

free(self, resource)

Chapter 6

An Application Development Case

In this chapter we try out our proposed approach in a case study, in-
volving a part of the development of a QoS-sensitive application. By
trying it out on this development example, we hope to get some clues
about the usefulness of the approach, as well as weaknesses and ideas
about what could be done to make more useful.

We chose an audio conferencing application for the case study, since
it is relatively simple to model and generally well understood. It can
be modeled as a set of components with individual resource require-
ments in a straight-forward way. The components are typically distrib-
uted among nodes. Thus, it matches our development approach well.

We do not try to create a complete model in any way. Instead, we look
only at how it can be modeled in terms of components and resource QoS
requirements.

6.1 Component Modeling in UML

UML 1.5 and prior versions have very limited support for the model-
ing of software component. This has been addressed in UML 2.0 [27].
It introduces a Compenent package, and offers modeling elements for
component modeling and new types of diagrams for component mod-
els.

Even though UML 2.0 has better support for components, the QoS map-
ping approach presented in Chapter 5 is based on UML 1.5. Instead
of using the new component elements, we represent components with

75

76 Chapter 6. An Application Development Case

classes. Thus, we model class structure and not component instances. In
UML 2.0, one can express interfaces provided by a component as facets
and interfaces required as receptacles. Since this cannot be expressed
directly in UML 1.5, we model provided interfaces using UML interface
elements connected to the components with an association relationship.
Components requiring other components

In accordance with our QoS mapping approach, we model components
as classes stereotyped with «Client». Client is a general term that rep-
resents entities that use resources. In this case we assume that the com-
ponents are the users of resources.

6.2 Application Model

Figure 6.1 Audio Conference Application

<<Client>>

VoiceRecorder
<<Client>>

AudioEncoder
<<Client>>

DataSink

<<Client>>

ConferenceManager

<<Client>>

AudioPlayer
<<Client>>

AudioDecoder
<<Client>>

DataSource

IAudioDecoder IDataSink

IConferenceManager

IDataSourceIAudioPlayer

Figure 6.1 shows a model of the components involved in the audio con-
ference application. The relationships between the components are only
modeled as dependencies to interfaces provided by other components.
Thus, information about multiplicities or anything instance-related is
not considered.

The VoiceRecorder is responsible for recording voice input from the au-
dio conference participants. This component must be present at the

6.3. Resource QoS Models 77

nodes of each participant.

The VoiceRecorder uses the AudioEncoder component to encode the re-
corded audio to an appropriate format, in order to reduce the amount
of data needed to be transfered.

A DataSink component is responseible for transmitting the audio data
over a network. It is used by the AudioEncoder. The DataSource com-
ponent is the receiving end of the audio connection, and receives data
from the DataSink.

The DataSink provides an interface to the AudioDecoder for receiving
the audio data to be decoded. Finally, the audio can be played back
using an AudioPlayer component.

The components mentioned above model sound recording, audio stream-
ing over a network, and finally, audio playback. An audio conference
application must support these features, and they must be supported
both ways; a listener is also a recorder, and vice versa. It could also sup-
port multiple participants. The ConferenceManager component controls
the audio flows among participantants by providing an interface to the
recording- and playback-components. It managemes the setup and ter-
mination of conferences, and control the routing of audio among the
participants.

6.3 Resource QoS Models

The application model in Figure 6.1 also includes a set of resource re-
quirements that involve QoS constraints. Resource reuqirements are ex-
posed by the clients, and involve resource services. These requirements
are modeled using the UML profile for resource modeling specified in
Chapter 4, as well as the UML profile for QoS [23].

In general, every piece of computer code, such as a component, will need
at least a little bit of processing power and a little bit of memory, and
typically some other resources as well. In order to keep this develop-
ment case simple, we only model the resource requirements that put a
significant strain on the resources and raise a real need for resourcee
management.

Since our approach assumes the existence of a global catalogue of QoS
characterististcs and resource types, we present a portion of this cata-
logue used in this chapter in Figure 6.2. Like all resource types and

78 Chapter 6. An Application Development Case

QoS characteristics in the catalogue, these are also available to the code
generator and resource model implementation.

Figure 6.2 Resource Types and QoS Characteristics

<<Processor>>

Processor

<<ResourceService>>

Process

<<Memory>>

Memory

<<Network>>

Network

<<ResourceService>>

Read
<<ResourceService>>

Write
<<ResourceService>>

Store

<<ResourceService>>

Send
<<ResourceService>>

Receive

<<QoSCharacteristic>>

CommunicationThroughput

<<QoSCharacteristic>>

MemoryAmount
<<QoSCharacteristic>>

ProcessingThroughput

<<QoSDimension>>

{direction(increasing),

unit(kbit/s)}

rate : integer

<<QoSDimension>>

{direction(increasing),

unit(kb)}

amount : integer

quantifies

1

1

quantifies

1

1

1

1

1

1

<<QoSDimension>>

{direction(increasing),

unit(instr/s)}

rate : integer

1

1 1

1

quantifies

quantifies

We use associations between resource services and QoS characteristics
to express that the characteristics quantify the services. The Read and
Write services of the Memory resource have no associated QoS charac-
teristic because these services are not considered in the case.

In the UML profile for resource modeling, resource requirements are
modeled using dependency relationships with stereotype «RequiresResource».
Due to problems with adding constraints to UML dependency elements
in the modeling tools, we modeled resource requirements using associ-
ation elements instead.

6.3. Resource QoS Models 79

AudioEncoder

The reosource requirements of the AudioEncoder is shown in Figure 6.3.
This component requires two types of resources, Processor and Memory.
It requires that the processor resource is able to process at least 20000
instructions per second. The required memory resource must be able to
store more than 2048 kilobytes. The QoS characteristics that represent
the context of the «QoSRequired» expression are seen in Figure ??.

Figure 6.3 QoS Model for AudioEncoder Component

<<Client>>

AudioEncoder

<<Processor>>

EncodingCPU

<<ResourceService>>

Process

<<QoSRequired>>

{context ProcessingThroughput inv:
 rate >= 20000}

<<Memory>>

SomeMemory

<<ResourceService>>

Store

<<QoSRequired>>

{context MemoryAmount inv:
 amount > 2048}

1

1

<<RequiresResource>>

1

1

<<RequiresResource>>

DataSink and DataSource

The responsibility of the DataSink component is to send audio data over
the network. To do this, a Network resource is required that is able to
send more than 645 kilobits per second.

The DataSource is the recevier of the audio data sent by the DataSink
component. It requires a Network resource able to receive more than
645 kbit/s.

80 Chapter 6. An Application Development Case

Figure 6.4 QoS Model for DataSink Component

<<Client>>

DataSink
<<Network>>

NetworkConnection

<<ResourceService>>

Send<<QoSRequired>>

{context CommunicationThroughput inv:
 rate > 645}

1

1

<<RequiresResource>>

Figure 6.5 QoS Model for DataSource Component

<<Network>>

OtherNetConn

<<ResourceService>>

Receive
<<Client>>

DataSource

<<QoSRequired>>

{context CommunicationThroughput inv:
 rate > 645}

1

1

<<RequiresResource>>

6.4. Code Generation 81

AudioDecoder

The AudioDecoder component poses requirements on a Network- and
a Memory-component. It requires more than 100 000 instructions per
second of processing throughput and more than 400 kilobytes of storage
in memory.

Figure 6.6 QoS Model for AudioDecoder Component

<<Client>>

AudioDecoder

<<Processor>>

SomeCPU

<<ResourceService>>

Store

<<Memory>>

SomeMemory

<<ResourceService>>

Process

<<QoSRequired>>

{context ProcessingThroughput inv:
 rate > 100000}

<<QoSRequired>>

{context MemoryAmount inv:
 amount > 400}

1

1

<<RequiresResource>>

1

1

<<RequiresResource>>

6.4 Code Generation

The resource QoS models from the former sections are automatically
transformed into code that maps the QoS specifications onto a platform-
level resource model.

The model presented in the former section was serialized to XMI using
the Objecteering/UML XMI module. It is then fed into the code generator.
The output is a Python code skeleton containing declaration of classes
representing the clients, and methods to support resource management
and reservation in order to realize the modeled resource requirements.

82 Chapter 6. An Application Development Case

The output from the code is included in Appendix A. We here describe
very briefly what the code does. Each «Client» in the model resulted in
a class with the name of the client. It is declared as subclass of Client.
The interesting method of each client is _reserveResources. In Data-
Source, this method first performs a lookup using the resource trading,
for a Network resource. The constraints given states that Receive service
that can deliver more than 645 kbit/s is required. If no such resource
is found, an exception is raised. Else, the resource manager is told to
reserve 645 kbit/s of the Receive service of the Network resource.

The AudioEncoder class first does a resource trader lookup for a Memory
resource having a Store service that can store more than 2048 kb. Just
like the DataSource, it raises an exception if now match is found, or else
continues to reserve the specified amount. Then it performs a lookup
for a Processor resource that can process at least 20000 instuctions per
second.

The AudioDecoder ’s _reserveResources method is almost identical to
that of the AudioEncoder, in that it requires the same resource services.
Unlike AudioEncoder, it requires less of both.

The ConferenceManager, VideoRecorder and AudioPlayer methods do
not contain the _reserveResources and _releaseResources, but only
declare the __init__ constructor method.

6.5 Reosurce Model Execution

By including some text output in the resource model implementation,
we can see what happens when the generated code is run.

Simplifications

The following simplifications have been used for the execution environ-
ment environment of clients:

• All clients exist within the same address space. This simplifies the
resource configurations and deployment of the code. A real audio
conference application would be of little use if all components ex-
ecuted on the same node. However, it is sufficient to demonstrate
mapping to a resource model.

6.5. Reosurce Model Execution 83

• There is only a single resource manager available in this address
space, that manages all available resources.

• The code skeletons created by the code generator have not been
enriched with application logic. This is sufficient because the re-
source management code is the interesting part for resource map-
ping.

Resource Configuration

A resource configuration to be read by the resource model has been
provided. A part of the configuration for a network resource is shown in
Figure 6.7.

Figure 6.7 Resource Configuration
<Resource>
<ResourceType>Network</ResourceType>
<ResourceService>

<Name>Send</Name>
<Capacity>1500</Capacity>
<Location>Unspecified</Location>

</ResourceService>
<ResourceService>

<Name>Receive</Name>
<Capacity>3000</Capacity>
<Location>Unspecified</Location>

</ResourceService>
</Resource>

The resource configuration specifies the resources available to a resource
manager. We have left the location unspecified because these resource
type implementations are not mapped to real resources. As well as the
resources depicted in Figure 6.7, the configuration includes a Memory
resource having a Store service with capacity 512000 kb, and a Processor
resource with processing capacity 2000000 instrunctions per second.

Execution

In order to observe what is going on in the resource model, we have im-
plemented test outputs when doing resource trader lookups, reservation

84 Chapter 6. An Application Development Case

of resources and release of resources. An excerpt of the test output is
shown if Figure 6.8. It shows the execution of the code generated for the
AudioEncoder client.

Figure 6.8 Test Output
Looking for a Memory resource with constraints:

Store service with at least 2048 kb
Memory resource found with services:

Store service with available 512000 kb
Reserved 2048 kb of Store service (Memory resource)
Looking for a Processor resource with constraints:

Process service with at least 20000 instr/s
Processor resource found with services:

Process service with available 2000000 instr/s
Reserved 20000 instr/s of Process service (Processor resource)
Released 2048 kb of Store service (Memory resource)
Released 20000 instr/s of Process service (Processor resource)

The resource QoS requirements of the audio conference application com-
ponents were all successfully transformed to resource trader lookups
and reservations, and later released. Since none of the resources in-
volved in the case were protected, there were no acquire or free requests
to the resource manager.

Chapter 7

Evaluation

In this chapter we discuss and evaluate the design and implementation
of the resource model presented in Chapter 4 and the resource QoS map-
ping framework in Chapter 5. We compare the results with our own re-
quirements, and requirements posed by others in solutions of similar
problems.

The case study in Chapter 6 is also an input to the evaluation, as it in-
volves experimentation with the resource model and resource mapping
method. In particular, it gives an indication of the usefulness of the
approach suggested in this work.

Finally, we discuss how the results answer our research problem, and
how it contributes to the problem domain.

The research method used in mainly qualitative, involving model- and
software-construction and evaluation through comparison with certain
design goals and requirements, including related work.

7.1 Evaluation of the Resource Model

In this section we discuss how the design of the resource model fulfils
the requirements and goals stated in Chapter 4.

Generic

The first design goal of the resource model was that it should be generic.
By this we mean support for many different types of resources, and

85

86 Chapter 7. Evaluation

support many different usages.

We believe that this goal has been met, since the resource model is not
tied to any particular platform or technology. We assume it could be
implemented on a wide range of platforms and be a tool for resource
management. We also believe the resource model can support any type
of resource, as long as there exists some way to monitor it and control
its usage, and a resource type implementation exist. With the semantics
of the UML profile for QoS [23] we use QoS values to quantify resource
usage, both at design-time and run-time. Since the UML profile is very
general, we are able to express any thinkable QoS statement about re-
sources. The prototype implementation of the QoS profile is not com-
plete, but this is due to simplification, not technical limitations. A more
complete implementation could be created if necessary.

The UML profile for resource modeling supports representation of the
resource model concepts in UML models. This profile can be used to
model any type of resource that may exist on a run-time platform, and
associated QoS requirements.

Resource Sharing Control

A requirement of the resource model is to support control over the re-
source sharing in a predictable way. We have not included resource shar-
ing mechanisms as part of the resource model, but instead that such a
resource model can be built as a layer on top of the resource model. Re-
source reservation can be used to guarantee the availability of resources
to clients. Thus, reservation can be used as a mechanism to implement
resource sharing. It does not advocate any particular methods or policies
for how to share resources among clients.

Extensible

It is a requirement that the resource model is extensible. By extensibil-
ity we understand the ability to support new resource types that might
evolve, for example due to the emergence of new hardware devices. This
is supported by the ability to add new resource types by supplying an
implementation for controlling it. A mapping function between the ac-
tual resource status and the QoS value as described by the QoS char-
acteristic(s) of the resource must also be supplied. As mentioned, we

7.1. Evaluation of the Resource Model 87

assume the QoS profile support is general enough to support new kinds
of measurements.

Uniform

A uniform resource model provides a uniform way of representing re-
sources. We believe that hiding the heterogeneity of resources reduces
complexity and thus eases the usage. Uniformness is also a trade-off
with expressiveness. We must be able to express enough for the re-
source model to be useful, but nothing more than we need.

We think that this goal to a large extent has been met. From a certain
level of abstraction, all resources can be viewed a unit with a name, a
type, and a set of services, each with a QoS value representing its offered
QoS described by a QoS characteristic. Making all resource quantification
QoS values enables us to have common interfaces for the management
of all resource types. The implementation details of each type is hidden
from the resource model’s point of view. A property that can not be
hidden is the protection property; a protected resource must use the
acquire and free methods while unprotected resources do not.

Deign-time/Run-time Consistency

In order to support resource QoS mapping, we require the presence of a
consistent vocabulary at design-time and at run-time. This implies that
design-time concepts can be represented at run-time and vice versa.

The implementation of parts of the UML profile for QoS enables a com-
mon QoS vocabulary for resources. This allows the modeler to use OMG
standards for QoS specifications (when the standardization process of
the UML profile is completed). The UML profile for resource modeling
presented in Chapter 4 provides UML extensions for modeling resources
in UML models using the resource model concepts.

Having a global repository of resource types and QoS characteristics al-
lows us to speak of the same objects, typically referenced by their name,
at design-time and run-time. In particular, the resource type vocabulary
allows mapping from type-level to instance-level resources, thus facilit-
ating automated resource discovery. This is possible since the resource
type identifies the behaviour of the resource. Because of this, several
resource instances may be able to perform the same task.

88 Chapter 7. Evaluation

However, the resource model lacks support for modeling resource in-
stances at design-time. This makes it unsuitable for real-time analysis
techniques, which is a typical application of the resource model in the
UML profile for schedulability, performance, and time [24]. Neither does
it support resource modeling in UML behavioural modeling, such as in
sequence diagrams.

Support for Access Control Policies

Access control for resources is handled by the resource manager. We
have implemented support for very simple policies in the resource model
prototype, covering how many clients may use a resource at once.

RM-ODP Resource Model

The resource model in Open Distributed Processing - Reference Model -
Quality of Service [15] describes a set of properties of a resource model.
In order to comply with RM-ODP, these properties should be supported
by our resource model.

The RM-ODP resource model involves QoS contracts for resources. We
do not model such contracts, but provide a QoS vocabulary and resource
management system that would support the implementation of QoS con-
tracts.

A second requirement of the RM-ODP resource model is recursiveness.
Resources can encapsulate other resources, creating a hierarchy of de-
pendency relationships. Logical resources in our resource model can
encapsulate other resources. Logical resources are both resources and
clients. The implementation of a logical resource type is responsible of
managing (such as reserving and acquiring) the resources it uses.

Other Resource Model Requirements

In his Ph.D. thesis [11], Hector Duran-Limon expresses a set of require-
ments about resource management in middleware. We discuss some of
these requirements with respect to our resource model.

The first requirement is the support of various levels of abstraction. This
can be supported by implementing logical resource types on top of other
resource types.

7.1. Evaluation of the Resource Model 89

The second requirement states that resource management must be con-
figurable in order to support deployment on a platform. This require-
ment is met in the resource model, as resource types are implemented
independently of deployment. A separate resource configuration in each
address space holds the information necessary to map resource types to
resource instances.

Resource reconfiguration is another requirement, refering to dyanmic
reconfiguration of resources at runtime. Since we have not considered
resource management over time on the resource model, this require-
ment is beyond our scope. However, a mechanism for resource reconfig-
uration could presumably be built as a layer above the resource model.
The reconfiguration manager could reserve and release resources for the
different clients dynamically to meet QoS requirements.

Duran-Limon further requires support for evolution, refering to extens-
ibility as discussed above, as well as good performance. We have no
basis for discussing the performance of our resource model, but we be-
lieve the performance is largely dependent on how the resource types
are implemented. We are not aware of any design decisions that should
hinder good performance.

Prototype Implementation

A prototype of the resource model was implemented in Python. The
implementation work has shown that the resource model design could
be implemented without major modifications. The implementation of
a small subset of the UML profile for QoS showed how some basic QoS
characteristics could be used at run-time.

In order to demonstrate its usefulness in managing real-world resources,
it would have been appropriate to implement a resource type for a phys-
ical resource. Instead, we implemented a logical resource type (license
pool) with virtaully no physical underpinnings as an example resource
type. However, we think we have provided enough evidence to prove that
resource types can manage real resources provided that the subsystem
does not hide too much of the access to them.

90 Chapter 7. Evaluation

7.2 Resource QoS Mapping

In the problems tatement in Section 1.2, two of the subproblems ad-
dressed were:

• How resource QoS requirements can be modeled at design-time
in a such way that they can be handled later in the development
process.

• How to transform the resource QoS requirements expressed in the
model to a form that is manageable by the target platform.

In Chapter 3, we discussed in a more general way how QoS requirements
can be handled in model-driven development. In this context, how have
we contributed to this challenge?

Backed by the resource model, the resource QoS mapping approach
presented in Chapter 5 is the main contribution in investigating these
problems.

We have showed how resource-level QoS requirements can be modeled
in UML as part of application models using a UML profile for QoS. Even
though applications may have many QoS requirements that are not dir-
ectly related to resources, resource QoS must still be considered. Some
research work in QoS management in component architectures has re-
lated resource QoS specifications to components (e.g., [30]).

In some applications, the QoS of interest can be more or less directly
mapped to resources. For example, the speed of a download service is
closely related to the QoS of a network resource.

As discussed in Chapter 3, it is desirable to include QoS mapping from
higher to lower absctraction levels in PIM-to-PSM model transformation.
In this context, low-level QoS such as QoS for resources will be part of
the PSM. Thus, our approach can support the part of this process that
involves transforming the PSM to code and to the platform-level resource
model.

The code generated from QoS-enriched models map the modeling con-
cepts to the resource model on that platform on which it is executed.
The resulting classes generated for each client provides one method for
reserving all necessary resource capacity and one for releasing all re-
servations. This demonstrates the mapping from the UML model to the
resource model, but supports a very static kind of QoS management. A

7.2. Resource QoS Mapping 91

possible extension for supporting more dynamic QoS management is to
model different resource requirements for the same elements (e.g., com-
poments), representing different operational models. This information
could be used to generate methods for resource reconfiguration.

The case study in Chapter 6 gave us an impression of the usefulness of
our resource QoS mapping approach. While modeling the audio confer-
ence application, it was fairly easy to identify resource QoS requirements
of each component. This is likely to be the case of several types of ap-
plication. There was generated a considerable amount of code from the
application model, which would have been a time-consuming effort to
write by hand. The generation of code and execution on the resource
model demonstrated the ability to map design-time QoS requirements
onto a run-time resource model. Even though we did not develop a com-
plete audio application, the experiences gained from modeling and auto-
matic transformation gave us the impression usefulness. Being able to
identify QoS requirements at design-time, and not having to worry about
these when writing application code seems to be very useful.

Chapter 8

Conclusion

In many applications, Quality of Service concerns are critical, and must
be specified and managed in the system. It is argued by many that QoS
should be managed at the middleware level, and be specified independ-
ently of application logic.

Model-driven development raises the abstraction level of models above
the implementation technology, allowing platform-independent applica-
tion models. It is envisioned automatic transformation from platform-
independent to platform-specific models, mapping the application logic
to platform-specific concepts.

The emergence of middleware platforms with QoS management support
makes it feasible to include modeling of QoS requirements in model-
driven development. This would allow modeling QoS independently of
implementation platform, and make QoS mapping to a form realizable
on the platform a part of model transformation.

We have in this thesis shown how to realize a part of this vision, by
focusing on resource QoS. It is solved by modeling QoS requirements
on resources as part of application models and performing automatic
mapping of these models to a platform-level resource model. This way,
the QoS model is realized on the target platform.

Resource QoS requirements are only a subset of the QoS requirements
of interest in most application. Nevertheless, resource management is
a concern of virtually any QoS-aware system, and a typical target of
QoS mapping. Therefore, we believe that the approach presented in this
thesis is useful in the handling of QoS in model-driven development in
general.

92

93

The transformation of platform-specific models to code is one place
where this approach could be implemented, making resource QoS a part
of the PSM and support automatic mapping to a platform-level resource
model.

The resource model suggested in this work seems to provide the ex-
pressibility necessary to represent and manage all kinds of resources.

Appendix A

Generated Code

This appendix contains the QoS mapping code generated from the audio
conference model in Chapter 6.

class DataSource(Client):

def __init__(self):
self._reservations = []

def run(self):
self._reserveResources()
do stuff
self._releaseResources()

def _reserveResources(self):
constraints = []

qoschar = qosrep.getQoSCharacteristic(’CommunicationThroughput’)
amount = qoschar.makeValue(645)

constraints.append((’Receive’, QoSConstraint(amount, ’gt’)))

match = rtrader.lookup(’Network’, constraints)
if not match:

raise ’NoSuchResourceFound’

qoschar = qosrep.getQoSCharacteristic(’CommunicationThroughput’)
amount = qoschar.makeValue(645)

94

95

service = match.getService(’Receive’)
resmngr.reserve(self, match, service, amount)
self._reservations.append((match, service, amount))

def _releaseResources(self):
for reservation in self._reservations:

resource, service, amount = reservation
resmngr.release(self, resource, service)

if resource.isProtected():
resmngr.free(self, resource)

class AudioEncoder(Client):

def __init__(self):
self._reservations = []

def run(self):
self._reserveResources()
do stuff
self._releaseResources()

def _reserveResources(self):
constraints = []

qoschar = qosrep.getQoSCharacteristic(’MemoryAmount’)
amount = qoschar.makeValue(2048)

constraints.append((’Store’, QoSConstraint(amount, ’gt’)))

match = rtrader.lookup(’Memory’, constraints)
if not match:

raise ’NoSuchResourceFound’

qoschar = qosrep.getQoSCharacteristic(’MemoryAmount’)
amount = qoschar.makeValue(2048)

service = match.getService(’Store’)
resmngr.reserve(self, match, service, amount)
self._reservations.append((match, service, amount))
constraints = []

qoschar = qosrep.getQoSCharacteristic(’ProcessingThroughput’)

96 Chapter A. Generated Code

amount = qoschar.makeValue(20000)

constraints.append((’Process’, QoSConstraint(amount, ’ge’)))

match = rtrader.lookup(’Processor’, constraints)
if not match:

raise ’NoSuchResourceFound’

qoschar = qosrep.getQoSCharacteristic(’ProcessingThroughput’)
amount = qoschar.makeValue(20000)

service = match.getService(’Process’)
resmngr.reserve(self, match, service, amount)
self._reservations.append((match, service, amount))

def _releaseResources(self):
for reservation in self._reservations:

resource, service, amount = reservation
resmngr.release(self, resource, service)

if resource.isProtected():
resmngr.free(self, resource)

class DataSink(Client):

def __init__(self):
self._reservations = []

def run(self):
self._reserveResources()
do stuff
self._releaseResources()

def _reserveResources(self):
constraints = []

qoschar = qosrep.getQoSCharacteristic(’CommunicationThroughput’)
amount = qoschar.makeValue(645)

constraints.append((’Send’, QoSConstraint(amount, ’gt’)))

match = rtrader.lookup(’Network’, constraints)
if not match:

97

raise ’NoSuchResourceFound’

qoschar = qosrep.getQoSCharacteristic(’CommunicationThroughput’)
amount = qoschar.makeValue(645)

service = match.getService(’Send’)
resmngr.reserve(self, match, service, amount)
self._reservations.append((match, service, amount))

def _releaseResources(self):
for reservation in self._reservations:

resource, service, amount = reservation
resmngr.release(self, resource, service)

if resource.isProtected():
resmngr.free(self, resource)

class ConferenceManager(Client):

def __init__(self):
self._reservations = []

class VoiceRecorder(Client):

def __init__(self):
self._reservations = []

class AudioPlayer(Client):

def __init__(self):
self._reservations = []

class AudioDecoder(Client):

def __init__(self):
self._reservations = []

def run(self):
self._reserveResources()
do stuff
self._releaseResources()

98 Chapter A. Generated Code

def _reserveResources(self):
constraints = []

qoschar = qosrep.getQoSCharacteristic(’MemoryAmount’)
amount = qoschar.makeValue(400)

constraints.append((’Store’, QoSConstraint(amount, ’gt’)))

match = rtrader.lookup(’Memory’, constraints)
if not match:

raise ’NoSuchResourceFound’

qoschar = qosrep.getQoSCharacteristic(’MemoryAmount’)
amount = qoschar.makeValue(400)

service = match.getService(’Store’)
resmngr.reserve(self, match, service, amount)
self._reservations.append((match, service, amount))
constraints = []

qoschar = qosrep.getQoSCharacteristic(’ProcessingThroughput’)
amount = qoschar.makeValue(100000)

constraints.append((’Process’, QoSConstraint(amount, ’gt’)))

match = rtrader.lookup(’Processor’, constraints)
if not match:

raise ’NoSuchResourceFound’

qoschar = qosrep.getQoSCharacteristic(’ProcessingThroughput’)
amount = qoschar.makeValue(100000)

service = match.getService(’Process’)
resmngr.reserve(self, match, service, amount)
self._reservations.append((match, service, amount))

def _releaseResources(self):
for reservation in self._reservations:

resource, service, amount = reservation
resmngr.release(self, resource, service)

if resource.isProtected():
resmngr.free(self, resource)

99

Bibliography

[1] Anders Andersen. OOPP, A Reflective Middleware Platform includ-
ing Quality of Service Management. Dr. sci. thesis, Department of
Computer Science, University of Tromsø, Tromsø, Norway, Febru-
ary 2002.

[2] Arnor Solberg, Jon Oldevik, Jan Øyvind Aagedal. A Framework for
QoS-Aware Model Transformation, Using a Pattern-Based Approach
. 2004.

[3] Arnor Solberg, Knut Eilif Husa, Jan Øyvind Aagedal, Espen Abra-
hamsen. QoS-aware MDA, 2003.

[4] Colin Atkinson and Thomas Kühne. Model-driven development: A
metamodeling foundation. IEEE Software, 20(5):36–41, 2003.

[5] Lothar Baum and Thorsten Kramp. Towards a uniform modeling
technique for resource-usage scenarios. In PDPTA, pages 1324–
1329, 1999.

[6] P. Desfray. White paper on the profile mechanism. OMG Document
ad/99-04-07, April 1999.

[7] Hector A. Duran-Limon, Gordon S. Blair, and Geoff Coulson. Adapt-
ive resource management in middleware: A survey. IEEE Distributed
Systems Online, 5(7), 2004.

[8] Marie-Pierre Gervais. Towards an mda-oriented methodology. In
Proceedings of the 26th International Computer Software and Ap-
plications Conference on Prolonging Software Life: Development and
Redevelopment, pages 265–270. IEEE Computer Society, 2002.

[9] Object Management Group. Meta object facility (mof) specification,
version 1.4. OMG Specification formal/02-04-03, Object Manage-
ment Group, 2002.

100

BIBLIOGRAPHY 101

[10] Steffen Göbel, Christoph Pohl, Simone Röttger, and Steffen Zschaler.
The comquad component model: Enabling dynamic selection of im-
plementations by weaving non-functional aspects. In AOSD ’04:
Proceedings of the 3rd international conference on Aspect-oriented
software development, pages 74–82, New York, NY, USA, 2004. ACM
Press.

[11] Hector A. Duran-Limon. A Resource Management Framework for
Reflective Multimedia Middleware. PhD thesis, University of Lan-
caster", 2001.

[12] Andrew Hunt and David Thomas. The Pragmatic Programmer:
From Journeyman To Master. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1999.

[13] ISO/IEC. QoS – basic framework. ISO Report ISO/IEC JTC1/SC21
N9309, ISO/IEC, 1995.

[14] ISO/IEC. ISO/IEC 10746-2 Reference Model for Open Distributed Pro-
cessing - Part 2: Foundations, 1996.

[15] ISO/IEC. Working draft for open distributed processing reference
model, quality of service. Approved meeting output, editor’s draft
6.4, ISO/IEC, June 1998.

[16] Jan Øyvind Aagedal. Quality of Service Support in Development og
Distributed Systems. PhD thesis, Faculty of Mathematics and Natural
Sciences, University of Oslo, 2001.

[17] Luis Ferreira Pires João Paulo Almeida, Marten van Sinderen and
Maarten Wegdam. Handling qos in mda: A discussion on availability
and dynamic reconfiguration. 2003.

[18] Fabio Kon, Manuel Román, Ping Liu, Jina Mao, Tomonori Yamane,
Luiz Claudio Magalhães, and Roy H. Campbell. Monitoring, Secur-
ity, and Dynamic Configuration with the dynamicTAO Reflective
ORB. In Proceedings of the IFIP/ACM International Conference on
Distributed Systems Platforms and Open Distributed Processing (Mid-
dleware’2000), number 1795 in LNCS, pages 121–143, New York,
April 2000. Springer-Verlag.

[19] Antonio Vallecillo Lidia Fuentes. An introduction to uml profiles,
2004.

102 BIBLIOGRAPHY

[20] Lars Sveen Lundby. Qos monitoring framework, nov 2004.

[21] Joaquin Miller and Jishnu Mukerji. MDA Guide. Object Management
Group, Inc., June 2003. Version 1.0.1.

[22] Object Management Group. MOF Model to Text Transformation Lan-
guage - Request for Proposal.

[23] Object Management Group. UML Profile for Modeling Quality of Ser-
vice and Fault Tolerance Characteristics and Mechanisms, Revised
submission August 18 2003, www.omg.org (members only).

[24] Object Management Group. UML Profile for Schedulability, Perform-
ance and Time Specification, March 2002.

[25] Object Management Group, Inc. Unified Modeling Language Specific-
ation, March 2003. Version 1.5 (formal/03-03-01).

[26] Object Management Group, Inc. XML Metadata Interchange (XMI)
Specification, May 2003. Version 2.0 (formal/03-05-02).

[27] Object Management Group, Inc. UML 2.0 Superstructure Specifica-
tion, October 2004. FTF convenience document (ptc/04-10-02).

[28] Roney Pignaton, Víctor A. Villagrá, Juan I. Asensio, and Julio Ber-
rocal. Developing qos-aware component-based applications using
mda principles. In EDOC, pages 172–183, 2004.

[29] Richard Staehli, Frank Eliassen. QuA: A QoS-Aware Component
Architecture. Technical Report Simula 2002-12, Simula Research
Laboratory, 2002.

[30] Simone Röttger and Steffen Zschaler. CQML+: Enhancements to
CQML. In J.-M. Bruel, editor, Proc. 1st Int’l Workshop on Qual-
ity of Service in Component-Based Software Engineering, Toulouse,
France, pages 43–56. Cépaduès-Éditions, June 2003.

[31] Simone Röttger and Steffen Zschaler. A software development pro-
cess supporting non-functional properties. In Proc. IASTED Int’l
Conf. on Software Engineering (IASTED SE 2004). ACTA Press, 2004.

[32] Ed Seidewitz. What models mean. IEEE Softw., 20(5):26–32, 2003.

[33] Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development. IEEE Softw.,
20(5):42–45, 2003.

