
University of Oslo
Department of Informatics

Evaluating the
suitability of EML
4.0 for the
Norwegian
Electoral System

Patricia Aas

A prototype approach

June 22, 2005

Abstract

The Election Markup Language (EML) is a communication language
used between and within different subsystems of a computerized electoral
information system. EML is defined by means of a set of 33 XML Schemas.

This thesis tests the hypothesis that the EML communication language
is suitable for a computerized Norwegian Electoral System. The testing
is performed using a prototype implementation in Java. Though the imple-
mentation does not take into consideration security and anonymity concerns,
it is a full implementation of the Electoral System. The prototype system
consists of five subsystems that communicate using a network connection.
The implementation spans 10115 lines of code and 58 classes.

EML is found to be very close to a communication language suitable
for the Norwegian Electoral System, though a few changes would have to
be made to the standard to express the information exchange required by
law. The shortcomings in EML are countered with proposed changes in the
standard, and in addition a some parts of the Norwegian Election Law and
Election regulations are proposed changed.

Contents

Contents 2

1 Introduction 6
1.1 Introduction . 6

1.1.1 Concept and Word Clarification 7
1.2 Modeling the Norwegian Electoral System through the Proto-

type Subsystems . 7
1.3 EML Seen as a Language . 8
1.4 The Prototype Approach to EML 4.0 9
1.5 The Scope of the Thesis . 11

2 The Norwegian Electoral System and the Subsystems that
Model it 12
2.1 Introduction . 12
2.2 Norwegian Laws and Regulations 12
2.3 The Design of the Prototype 13

2.3.1 The Subsystems . 13
2.3.2 The Splitting of the Subsystems into a Server and a

Client . 14
2.3.3 The Initialization Stage 15
2.3.4 User Interfaces . 16

2.4 The Election Event Client . 16
2.4.1 Defining a Contest . 16
2.4.2 Defining an Election Event 17
2.4.3 The Function of the Election Event Client 17

2.5 The Electoral Roll . 18
2.5.1 The Electoral Register 18
2.5.2 Laws and Regulations Regarding the Electoral Register 18
2.5.3 Electoral Register and What it Contains 19
2.5.4 The Election List Server 20
2.5.5 The Legality of the Election List Prototype Subsystem 22

2.6 The Nomination Process . 22
2.6.1 Defining a Proposer or a Signer 22

2

2.6.2 The List Proposals . 23
2.6.3 Personal Identification Number as a Unique Identifier 24
2.6.4 The Nomination Server 24
2.6.5 The Nomination Client 26
2.6.6 The Legality of the Nomination Prototype Subsystem 28

2.7 The Casting of Votes . 30
2.7.1 Defining a Ballot . 30
2.7.2 Voter Changes to the Ballot 30
2.7.3 The Ballot Presented to the Voter 31
2.7.4 Candidate Ids as a Unique Identifier 31
2.7.5 The Voting Server . 32
2.7.6 The Voting Client . 32
2.7.7 The Legality of the Voting Prototype Subsystem . . . 34

2.8 The Counting of the Votes . 37
2.8.1 Provisional/Final Count 37
2.8.2 Counting Algorithms 37
2.8.3 The Counting Server 39
2.8.4 The Legality of the Counting Prototype Subsystem . . 40

3 EML Interface 43
3.1 Introduction to EML Interface 43

3.1.1 EML Interface Maintaining Validity 44
3.1.2 A Stable Interface to a Changing Standard 44
3.1.3 Inserting Methods Defining Content 44
3.1.4 Table over the EML Schemas 45

3.2 Creating EML Interface . 45
3.2.1 The Classes Constituting the EML Interface 45
3.2.2 Compiling EML . 47
3.2.3 Generated Code as Libraries for EML Interface 48
3.2.4 EML Interface as a Library for the Subsystems 48
3.2.5 Design Issues for EML Interface 48

3.3 EML Documents Outside the Prototype Subsystems 49
3.3.1 Multipurpose EML documents 49
3.3.2 Referendum Nomination Documents 50

3.4 The Election Defined . 50
3.4.1 ElectionEvent110.java 50

3.5 The Nomination Process . 52
3.5.1 Nomination210.java 52
3.5.2 NominationResponse220.java 54
3.5.3 CandidateList230.java 55

3.6 The Election List . 57
3.6.1 ElectionList330.java 58

3.7 Voting . 60
3.7.1 Voting Server . 60

3

3.7.2 Authentication420.java 60
3.7.3 AuthenticationResponse430.java 61
3.7.4 CastVote440.java . 64
3.7.5 VoteConfirmation450.java 66
3.7.6 Votes460.java . 66
3.7.7 Ballots410.java . 67
3.7.8 Remaining Schemas for the Voting Subsystem 68
3.7.9 Voting Client . 68

3.8 Counting . 69
3.8.1 Count510.java . 69
3.8.2 Result520.java . 71

4 Conclusion 73
4.1 Introduction . 73
4.2 Changing a Standard . 73

4.2.1 Keeping Backwards Compatibility 74
4.2.2 Extending EML using the Wildcard Mechanism 75

4.3 Proposed Modifications to EML 4.0 76
4.3.1 Accommodating Norwegian Party List Nomination . . 76
4.3.2 Allowing more Candidate Information on Ballots . . . 79
4.3.3 Input Documents to the Counting Server 80

4.4 Proposed Adaption of the Election Law and Election Regula-
tions . 80
4.4.1 Enclosed Document 80
4.4.2 Candidate Eligibility 81
4.4.3 Electronic Signatures for Proposers 81
4.4.4 Personal Identification Numbers for Candidates in List

Proposals . 81
4.4.5 Candidate Numbers for Municipal Council Elections . 81

4.5 Future Work . 82
4.5.1 Stress Testing of the Voting Server 82
4.5.2 Using EML as an Interface Language for a N-Version

Model . 82
4.6 Conclusion . 82

A Evaluating Binding Compilers by Compiling EML 3.0 84
A.1 Compiling Emlcore . 84

A.1.1 Introduction . 84
A.1.2 Testing the Binding Compilers 85
A.1.3 Results . 87
A.1.4 Conclusions . 88

4

B Switching to EML 4.0 and the Changes Made to it 91
B.1 Why EML 4.0 was Chosen. 91
B.2 Changes Made to EML4.0 for Compilation 92

C Prototype for elektroniske valg basert på EML3.0-standarden 93

D Concept and Word Clarification 94

E Design of Input/Output in the Prototype 96
E.0.1 EMLServer.java . 96
E.0.2 EMLClient.java . 97
E.0.3 EML_io.java . 97
E.0.4 Global.java . 97

Bibliography 99

List of Figures 102

List of Tables 103

5

Chapter 1

Introduction

1.1 Introduction

An electoral system encapsulates different subsystems, either manual or com-
puterized, with different purposes and periods of execution. Some are used in
preparation for an election, some during and some after the election. These
can be viewed as autonomous entities that perform very clearly defined tasks.
Today these tasks are described in Norwegian laws as if they were to be per-
formed manually, although many are already computerized. The Election
Markup Language (EML) is a standardized communication language to be
used between, and within, different computerized subsystems in an elect-
oral information system. Such a standardized language is meant to make
it easier to integrate different subsystems, so that these can be delivered
by different software suppliers and still be able to communicate. For this
reason, the Council of Europe’s Committee of Ministers recommended EML
in Rec(2004)111. The idea of not leaving the entire electoral system, with all
its subsystems, to one supplier, has its democratic advantages. One might
not wish to leave the entire power of information to one company. This
idea is reflected in the modern democratic principle of division of power and
the arguments there can also be used here. Quite simply, a check and bal-
ance system is there to keep everyone honest. By dividing a system into
subsystems with clear interfaces, it is possible to exchange one subsystem
from one producer with another one from a different company. This reflects
the basic idea in Object Orientation, where a part of a system (or in this
case, a subsystem as a whole) adheres to a clear definition of what services
it provides. Since the EML standard has been developed with very little
Norwegian involvement, it is the purpose of this thesis to explore if it can

1“Open standards shall be used to ensure that the various technical components or
services of an e-voting system, possibly derived from a variety of sources, interoperate. At
present, the Election Markup Language (EML) standard is such an open standard and
in order to guarantee interoperability, EML shall be used whenever possible for e-election
and e-referendum applications” [22, B.66-67]

6

carry the data needed for the elections called for by the Norwegian Election
Law as of today.

1.1.1 Concept and Word Clarification

Since this thesis concerns itself with the Norwegian Electoral System, many
words and concepts are in Norwegian. This thesis, however, is written in
English and to avoid misunderstandings it is important to clarify these words
and concepts early on. The translation of the relevant words and concepts
follow the table supplied in appendix D. Concepts that require a more
detailed definition are defined when used.

1.2 Modeling the Norwegian Electoral System through
the Prototype Subsystems

The communication defined in EML 4.0 [1] is based on a model that divides
the Electoral System into 6 subsystems. This model can be viewed in figure
1.1, which is a simplification of the figure “High-Level Model - Technical
View” from EML Process & Data Requirements [5]. Following this model
was a prerequisite for the thesis2.

Candidate Nomination
Subsystem

Referendum Nomination
Subsystem

Election Event

Counting Subsystem

Voting Subsystem

Election List
Subsystem

Nomination Subsystem

Figure 1.1: Information flow between the subsystems

2The thesis description is supplied in appendix C, note that it is in Norwegian

7

The subsystems in the model define different conceptual systems: A can-
didate nomination system, a referendum nomination system, an election list
system, a voting system, a counting system and in addition an election event
system. These systems are really only parts of the electoral system as a
whole, and will be referred to as subsystems for the remainder of this thesis.

Only five of these subsystems will be explored in this thesis. The ref-
erendum nomination subsystem, which was introduced in EML 4.0, is not
examined. This subsystem would, however, replace the candidate nomina-
tion subsystem in a referendum.

The Election Event subsystem defines the elections that are to be held in
this election event 3 and outputs this information to three other subsystems
through the EML document called ElectionEvent. The subsystem is, in this
manner, the election definition subsystem, providing the other subsystems
with the information necessary to begin the pre-election process.

The EML standard has, so far, evolved through four versions. The latest
version is EML 4.0, which was released in January 2005. The versions are not
backwards compatible, and though the thesis description called for the use of
EML 3.0, this was later abandoned. The reasons for this are outlined in sec-
tion B.1 in appendix B and further explained by the problems encountered in
handling EML 3.0 that became apparent in the testing described in appendix
A.

A part of this thesis will be the description of a five part prototype repres-
enting the five out of the six subsystems of an electoral system conforming to
the EML model. The subsystems communicate using XML messages, often
called EML documents, indicating that they are messages defined by EML.

1.3 EML Seen as a Language

The communication between subsystems and possibly between a subsystem
and an external system or resource, is in the EML model achieved using XML
documents. EML defines a language, and each schema defines the criteria for
deciding whether an XML document is a member of this language or not,
this deciding process is called validation. A XML document is valid with
regard to a schema.

As a part of the prototype, the package called EML_Interface was im-
plemented to handle the EML documents. The package EML_Interface
encapsulates the concept of a document in EML. It is designed to provide
a simple guarantee: All documents produced or received are valid. Each
schema is represented by a class in EML_Interface, and the public meth-
ods in each class are meant to keep the above guarantee. Consequently, the

3The concept of an “election event” is defined in detail later in the thesis. For now, it
is sufficient to say that an election event encapsulates elections that are held at the same
time.

8

information placed into the document is clearly defined by the parameters
allowed to these methods.

An EML schema consists of mostly optional fields. This being so, these
methods also define a restriction to the schemas themselves in that they
require some fields to be used and do not supply access to others. In this
manner EML_Interface defines a subset of EML.

EML_Interface is imported by all the subsystems and none of these pro-
cess a document through any other means than the public methods provided
in this interface.

1.4 The Prototype Approach to EML 4.0

The communication within the EML model is defined in 33 XMLSchemas in
EML 4.0. Some of these concern communication within a subsystem, others
address the communication between subsystems.

Originally it was thought that the EML standard that would be used was
EML 3.0. And though this was later abandoned, the description below was
of the work done under that assumption.

In the initial phase of the development of the prototype subsystems, an
issue that had to be dealt with was how to handle the XMLSchemas. Time
was a factor, and hand coded parsers would take time away from the testing
of the thesis question. Several approaches were explored, among others the
approaches described in [8], which were adopted in the customizations of
EML for the UK described in [6] and [7]. However, these do not explicitly
deal with the parsing of XML documents, but rather with the validation of
XML documents and restricting their format through requiring fields that
are optional. Yet the focus of this thesis is not if the schemas are possible
to restrict, but rather if they are too strict.

A parser generating tool was preferred over other more time consuming
approaches. A binding compiler could be used to compile the elements in the
schemas to classes that could further be used to validate and parse documents
adhering to the schemas. A number of binding compilers were tested, this
testing is described in appendix A.

During the testing the binding compilers it became clear that there were
flaws in the EML 3.0 standard. Although an attempt was made to correct
the schemas, this was really not an optimal solution since the corrected
schemas could not still be thought of as representing the EML 3.0 standard.
In the search for solutions to the problems found, the new EML 4.0 was
investigated and it was found that in EML 4.0 the problems in EML 3.0 had
been resolved. The focus of the thesis was then shifted to EML 4.0.

Although the previous problems in EML 3.0 had been resolved in 4.0, it
was still not suitable for compilation. Even though most schemas compiled
on their own, name conflicts appeared when they were compiled together.

9

It seemed preferable that they constitute one language also in code, to ac-
complish this, the name conflicts had to be resolved. There were two other
minor changes, all changes are described in appendix B and do not change
the format of the EML documents in any significant way.

The use of the binding compiler chosen is described in chapter 3. Note
that the code generated by the binding compiler only facilitated the parsing
and generating of documents adhering to EML schemas and did not reveal
anything that was not already known through the diagrams depicting each
schema in the EML Schema Descriptions [4].

Each of the subsystems will send and/or receive EML documents. The
generated code described above is used by these subsystems to parse the
documents on arrival and to create the documents that are to be sent. This
parsing and creating of documents has been encapsulated in a separate pack-
age called EML_Interface, which contains a wrapper class for each document
to provide the above mentioned guarantee: That the documents are valid at
all times.

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

Election Event Nomination Voting CountingElection List

EMLclasses.jar

EML Interface

EML 4.0

Client Client

Server

Server Client

Server

Server

The subsystems with their internal package structure and the layering of the EML processing code

Supplied/Generated Hand coded

Figure 1.2: View of the layering of packages

The subsystems and EML_Interface were hand coded. Each of the sub-
systems can be seen as a pair consisting of a client application and server

10

application, though some of the subsystems only contain one of these. The
client and server applications are implemented as Java packages. Within
each of the packages there are classes constituting the applications internal
data structure and a central class representing the logical function of the
application. The central classes take their name from the subsystem they
are a part of, for example the central class in the Voting subsystems server
application is called VotingServer.

The EML_Interface library is imported only by the central class in each
application. In the package VotingClient, for example, only the VotingClient
class imports EML_Interface. Figure 1.2 shows the layering of the packages.
Note that everything has been hand coded by the author, with the excep-
tion of the code generated by the binding compiler (EMLclasses.jar) and, of
course, EML. The subsystems and their internal applications are described
in chapter 2 and the EML_Interface library is described in chapter 3.

1.5 The Scope of the Thesis

The design of the prototype subsystems is based strongly on the idea of
testing the concerns of this thesis. However, it is necessary that they reflect
a realistic model, so that any results are not achieved because of an unrealistic
design.

The problem domain of this thesis can, in this context, be seen as a graph,
where the subsystems are a collection of nodes and the EML documents
passed are a collection of edges. This is also reflected in figure 1.1.

The purpose of this thesis is to evaluate the edges, that is EML, as it
pertains to the subsystems. The evaluating criteria is whether EML can
carry the data needed for the subsystems to perform their functions. To test
this, the subsystems have to conform to the Norwegian Election Law and
Election regulations.

Consequently, to be able to state anything about EML it must first be
shown that the subsystems are in accordance with the laws and regulations
that govern them. Only then can the conclusions about EML have any
validity.

In the following chapter the subsystems will be described individually,
together with the applicable laws and regulations. They will then be meas-
ured up to the requirements of the law. In chapter 3 the EML documents
will be discussed individually and measured up to the requirements of the
subsystems that utilize them.

11

Chapter 2

The Norwegian Electoral
System and the Subsystems
that Model it

2.1 Introduction

The purpose of this thesis is to explore how well EML is suited for the Norwe-
gian Electoral System. This system is modeled by the prototype subsystems,
and the goal of this chapter is to assure that these prototype subsystems do
model the Norwegian Electoral System.

The laws that govern each subsystem will be interpreted and the imple-
mentation analyzed. In that way, each of the subsystems will be evaluated
against the laws that govern it. In chapter 3 a closer examination of the
documents passed between the subsystems will reveal if the EML schemas
allow for the information exchange necessary for the subsystems to perform
their functions.

2.2 Norwegian Laws and Regulations

The Norwegian Electoral System is governed by the Election Law [16] and, in
addition, by the Electoral regulations [13] [14] issued by the Ministry of Local
Government and Regional Development. These regulations expand upon the
law itself and, to some extent, provides a more detailed view of the electoral
process. In addition, the Electoral Handbook [18] provides information not
sufficiently detailed in the law and regulations, in particular the counting
algorithms.

The Election Law is divided into 16 chapters. Not all of these are relevant
for this thesis, since many concern the organizational structure required when
doing an election and others the rights and obligations of voters as well as

12

the registration process of political party names (this last process is briefly
discussed in conjunction with the Nomination subsystem).

As already mentioned, the Election Law describes an electoral process
as if it were to be performed manually. In most cases this is not a problem,
but occasionally it results in an ambiguity that has to be resolved in a com-
putational environment. These ambiguities are probably solved today by
acquiring the additionally needed information elsewhere. Examples of this
will be mentioned where appropriate.

2.3 The Design of the Prototype

The prototype has different design ideas on different levels. These ideas are
reflected throughout the subsystems, and it is the purpose of this section to
explicitly state these ideas and justify their use. In the subsequent sections
each subsystem is discussed and evaluated.

2.3.1 The Subsystems

The prototype models the Norwegian Electoral System. It does this through
the implementation of five subsystems. These communicate EML messages
over a standard network connection. The prototype subsystems span 40
classes with a total of 5788 lines of code. The size of the subsystems is
presented in table 2.1.

Packages Lines of code Number of classes
CountingServer 963 6
ElectionEventClient 369 4
ElectionListServer 619 6
NominationClient 614 4
NominationServer 755 6
VotingClient 1386 7
VotingServer 1082 7
Total 5788 40

Table 2.1: Lines of code in the subsystems

The prototype simulates an election event with three elections: a Muni-
cipal Council Election, a County Council Election and a Storting Election.
The simulation runs from the dispatch of the ElectionEvent document to the
counting of votes in the Counting Server.

13

2.3.2 The Splitting of the Subsystems into a Server and a
Client

The EML model is reflected in the structure of the prototype subsystems.
However, some design issues are not detailed in the description of the model
found in [4] and [5]. Specifically, the internal structure of each subsystem is
not detailed. In a design were the responsibility of a subsystem is split into
several cooperating subsystems, there are no guidelines on how the responsib-
ility should be split. The design of the prototype subsystems has been based
on the client/server architecture and the implementation of this design is
briefly discussed below. This client/server application distribution is today
an established model, and is, consequently, one of many likely options for
such a subsystems design.

The Client/Server Architecture

Each prototype subsystem can be viewed as a client/server pair, though
only two subsystems actually have both. This distinction is made here and
throughout the thesis and code, to clarify whether a part of a subsystem is an
active sender of EML documents or if it a passive receiver of such documents.
Note that a passive receiver can also send documents, but will only do so if
prompted by an active sender. Similarly an active sender can also receive
documents, but will only expect these as a response to a prompt. Such an
active sender will be called a client and a passive receiver will be called a
server.

A server will go through three stages in its lifetime. In the first stage it
will receive the input it needs to produce the required internal data struc-
tures. It will then move on to a server stage where it can be contacted by
a client application and perform the services required. At some point in
time the server period ends, and the server passes into its third and final
stage, where it produces its output and communicates this output to the
subsystems depending on it.

One can view these states simply as: an initialization/input state, a
server/client state and an output state. Figure 2.1 depicts the prototype as
a whole, with all its subsystems, this is a more detailed look at the same
structure seen in figure 1.1 but with this state idea reflected. Each arrow
indicates a transfer of information, primarily through XML documents con-
forming to EML schemas. Some information, however, is presumed to be
transferred by other means, such as the information communicated to the
voter prior to the election.

The overall view seen in figure 2.1 is crucial since the most important
communications in this electoral system are between these subsystems or
between a server and a client within a subsystem.

14

ELECTION RESULT

12.

4.

Voter Card / Information

 Server/Client state

 Final state − output state

 Initialization/input state

1. ELectionEvent110

2. ElectionList330

3. CandidateList230

4.Authentication420

5. AuthenticationResponse430

6. CastVote440

7. VoteConfirmation450

8. Votes460

9. CandidateNomination210

10. Resp. to Nomintation220

11. Inter DB Comm. 120

12. Result520

11.

1.

5.

9.

10.

3.2.

1.

8.

1.

11.

Election EventClient

Nomination Server

Voting Server

Counting Server

Election List Server

6. 7.

Nomination Client

Voting Client

Election Official

Party representative

Voter

Population Registry Authority Brønnøysund register

Population Registry Authority

Figure 2.1: State model of the prototype subsystems

2.3.3 The Initialization Stage

The first state entered by a server or a client is the initialization/input state.
What characterizes this state is that the server/client will build its internal
data structure from the input received in this state.

For some of the servers and clients this input comes in the form of internal
documents received from other parts of the electoral system. For some the
input is read from files.

This design is to assure that a subsystem will not base its data struc-
ture on external input, for example votes received. The data structures
will always be based on documents internal to the electoral system or the
applications own files.

Achieving this is generally not a problem in the prototype subsystems,
though it will be discussed in conjunction with the Counting subsystem

15

where the EML model does not provide any document to build data struc-
tures from or to double check the votes received.

2.3.4 User Interfaces

In a real life implementation, some of the subsystems might have many
interfaces based on the type of user and/or type of use. The prototype
subsystems, in general, only reflect the interfaces dictated by law or otherwise
necessary to perform the functions of the individual subsystem.

2.4 The Election Event Client

The Election Event subsystem is in charge of defining the election event to
be held. The subsystem has one application and that is the Election Event
Client.

The Election Event Client is responsible for producing the document
called ElectionEvent which defines the elections that are to be held and the
contests within each of the elections. This subsystem corresponds to the box
at the top of figure 1.1 on page 7. Before the functionality of this subsystem
can be explained, two concepts have to be clarified: contest and election
event.

2.4.1 Defining a Contest

The term contest has a clearly defined meaning in the EML model. However,
a few things will have to be explained before this meaning can be succinctly
stated.

An election is for a specific organ or body, in the Storting Election the
body is the Storting, in the County Council Election the bodies are the
County Councils and in the Municipal Council Election the bodies are the
Municipal Councils.

In the case of a County Council Election the election results from all the
municipalities in the county have to be combined into the final result for the
county, and this result determines the composition of the County Council
representing that county.

In the Storting Election the results from all the municipalities in a county
are combined into the results for the county as a whole and this determines
the distribution of the seats allocated to that county in the Storting.

In the Municipal Council Election the situation is unique in that the
composition of the body the election is for, is solely decided by the results
of the election in that municipality. There is no combination of results.

In this context a contest in a Municipal Council Election will be the
municipality. In the County Council Election and in the Storting Election
the contest will be the county, since the seats are to represent the county as

16

a whole either in the Storting or in the County Council. In short the word
contest defines the seats that are contested in the election.

2.4.2 Defining an Election Event

The term election event is in the EML model meant to signify that there
is not necessarily only one election in an election event. In Norway there
are two types of election events, each at a four year interval. These election
events are interleaved such that an election event occurs every two years.
The County Council Election and the Municipal Council Election are held
at the same time in Norway, the Storting Election is held on its own. In the
case of a Norwegian Municipal Council and County Council Election, there
will consequently be two elections in the one election event.

2.4.3 The Function of the Election Event Client

The Election Event Client produces the ElectionEvent document which is
the fundamental document in the electoral system. The information supplied
the ElectionEvent document is listed in the section 3.4.1, which is the section
covering the ElectionEvent document in chapter 3.

In an election event one may have several elections. Within each of the
elections, there is a contest for each municipality in the Municipal Council
Election and for each county in the County Council and Storting Election.
What is expressed in the ElectionEvent document is the elections to be held
and the contests that they contain.

The Election Event Client subsystem essentially reads a set of input files,
sets up its internal data structure, produces the Election Event document
and sends it to the subsystems waiting for it. The internal data structure of
the Election Event Client is as shown in figure 2.2.

The ElectionEvent document is input to the Nomination subsystem, the
Election List subsystem and the Voting subsystem, and is used by these
subsystems to set up their internal data structures.

These subsystems will, for that reason, remain in their first stage until
all their input documents are received. In the case of the Nomination sub-
system and the Election List system, all they require is the Election Event
document. When that is received, they move on to their second server state.
The Voting system, however, also depends on the Election List (output from
the Election List subsystem) and the Candidate List (output from the Nom-
ination subsystem), and will only proceed to its server state when these have
been received. This is illustrated in figure 1.1 on page 7 and figure 2.1 on
page 15.

17

Figure 2.2: Internal data structure for the Election Event Client

2.5 The Electoral Roll

2.5.1 The Electoral Register

The Electoral Register is the Norwegian Electoral Roll. In a Norwegian con-
text each municipality will have the Electoral Register for their municipality,
the Election Law and the Election regulation [13] dictate how this register is
managed by the municipality. This process is in the prototype modeled by
the Election List subsystem, so called because the EML schema that defines
its output is called the Election List. The Election List document is the
internal representation of the Electoral Register for the Electoral System as
a whole.

2.5.2 Laws and Regulations Regarding the Electoral Register

The Electoral Register and the right to vote are treated in chapter 2 of the
Election Law. There are different rules that govern who can vote in the
elections, but in the County Council Election and the Municipal Council
Election the same rules apply. This means that a person that is eligible to

18

vote in one is also eligible to vote in the other [16, §2-3(2)]. Consequently,
there is only one Electoral Register for each election event.

The Electoral Committee in a municipality is in charge of the Electoral
Register for that municipality [16, §2-3(1)], and the Population Registry
Authority is obliged to supply information on who should be entered into
the Electoral Register [16, §2-5].

The Electoral Committee is responsible for making the Electoral Register
available to the public so that any errors can be discovered and corrected
[16, §2-6/§2-7]. The specific instances where the Electoral Register should be
corrected in the Municipal Council Election and the County Council Elec-
tion are listed in the corresponding regulation [13, §1]. Paragraph 2 in this
regulation concerns the period of time during which the corrections should
be made and the care that should be taken that a voter is not present in two
Electoral Registers at the same time.

2.5.3 Electoral Register and What it Contains

In the context of this thesis it is necessary to explore the applicable laws and
regulations applying to a subsystem to find indications as to what kind of
information should be stored.

For most of the subsystems this is clearly defined in the law or regula-
tions. However, it is not clear in the law nor in the regulations what kind of
information should be in the internal representation of the Electoral Register
about a specific voter.

The information contained in the Population Registry is listed in §30 of
the Population Registry regulation [20], and the information contained in
the Electoral Register would have to be a subset of this information.

Both the Election regulation [13, §23(2)] and the Electoral Handbook [18,
4.8] deal with the exclusion of the full personal identification number from
public electoral documents concerning the voters. The Electoral Handbook
explicitly deals with the published versions of the Electoral Register. The
above indicates that the internal representation of the Electoral Register is
intended to contain personal identification numbers.

Having personal identification numbers in the internal representation of
the Electoral Register will ease the assurance process of making sure that a
voter is only present in one Electoral Register at any given time.

In addition to personal identification numbers it would seem desirable
to store the address of the voter including the postal code. This would
make it possible to send the voter information regarding the election. The
voting circuit would also be useful, since this information would probably be
included when sending election information to the voter.

The internal representation of the Electoral Register in the Election List
prototype subsystem is discussed in the following section, and has been in-
fluenced by the concerns above.

19

2.5.4 The Election List Server

The Election List subsystem is responsible for the Electoral Register. This
is in Norway based on the information in the Population Registry. However,
each municipality is responsible for updating and maintaining the Electoral
Register in the time before the election. This updating will probably be done
by a few employees in the municipal administration, and since Norway does
not require it citizens to register to vote, there is really no need for a client
application for this server. One can, for this reason, question the “server”
name, but it will be kept if only for maintaining the overall general design
of the subsystems.

The Election List subsystem could, as a result, have a user interface
directly, and not separate this functionality out into a client application.
The user interface has not been created since it is clear that it brings no
new complications to the model. Updating, adding and deleting entries are
internal tasks and bring nothing new to the analysis.

This prototype subsystem is, for this reason, designed so that it reads
the required initialization information from a file and from that builds the
internal data structures. The Election List document is produced from these
internal data structures, and sent to the Voting Server. See figure 2.3 for an
overview of this subsystems internal data structure.

The information that is read from file about a specific voter is of the
form:

<number of elections voter is entitled to vote in>
<election name (i)>
<contest name (i)>
<voter voting circuit (i)>
<voter first name(s)>
<voter last name>
<voter street address>
<voter postal code>
<voter postal location>
<voter personal identification number>

Note:

Middle names are not supplied, these are in the prototype subsystem
grouped in first name(s). This is for convenience only.

Date of birth is not supplied, date of birth is the first 6 digits of the
personal identification number and, for that reason, implied.

20

Figure 2.3: Internal data structure for the Election List Server

Sex is not supplied. The middle digit in the remaining 5 digits in the
personal identification number indicates sex. Odd number being male,
even being female. Sex is therefore implied as well.

The elections do not really need to be listed, since in Norway all voters
entitled to vote in one election in an election event are entitled to vote
in all. The fact that a voter is present, therefore, implies that the voter
is allowed to vote in all elections in this election event. Nonetheless,
what is modeled is a situation where a voter may not be allowed to
vote in all elections in an election event. This will allow one to exclude
a voter from an election in an election event without having to manage
separate Electoral Registers for the elections in the election event.

21

2.5.5 The Legality of the Election List Prototype Subsystem

This subsystem introduces few, if any, complications. The subsystem would
need a user interface for updating the register. Apart from that, the Nor-
wegian process of registration in the Population Registry solves the voter
registration issues.

Personal identification numbers are in the Voting and Counting subsys-
tem used as VTokens, a token that uniquely identifies a voter. In a real life
implementation this can introduce privacy and anonymity concerns.

Since most of the legislation regarding the Electoral Register deals with
the updating process, there really remains only one issue: Making sure a
voter is only present in one Electoral Register at any given time. This can
be resolved by having the servers synchronize this process, or by keeping a
central Electoral Register instead of having it distributed. Regardless of the
solution chosen, this is beyond the scope of this thesis. It should be clear,
based on the above, that this subsystem fulfills the requirements of the law.

2.6 The Nomination Process

The Norwegian Electoral System is based on the voter voting for a partys list
of candidates rather than for singular candidates. In the pre-election process
the parties submit list proposals, which are submitted to the appropriate
committee for the specified election.

The registration of political party names is administrated by the Brøn-
nøysund register and is, for that reason, not an issue for an electoral system
in a Norwegian setting. It will, however, be necessary to check whether a
party that submits a list is in fact registered in the Party Register. This is
not implemented, though in a real world system this will have to be done,
either manually or through an exchange with the appropriate database.

2.6.1 Defining a Proposer or a Signer

The Election Law demands that a list proposal has a certain number of
signatures. In that respect two concepts should be made explicit, since these
concepts are, in fact, equivalent: signer and proposer.

In the Election Law a person that signs a list proposal has to also supply
some information that identifies him/her. Such a person will in the following
be called a signer.

In the EML model a nomination document has associated with it a num-
ber of proposers. These are listed in the document with information to
identify them.

If one accepts that in signing a list proposal one is endorsing it, the
concept of a signer and a proposer is equivalent.

22

In the following the above definition will be followed, and the word pro-
poser will be used to indicate the signer and the word signature to indicate
the physical signature of the proposer.

2.6.2 The List Proposals

The form of list proposals and the processing of these are treated in chapter
6 of the Election Law. This chapter describes what a valid list proposal
has to contain and the number of candidates that can be present in on the
party list. In addition to this, a list proposal might need a certain number
of signatures to be valid. The list proposal has to contain the following:

1. The identity of the election the list is for [16, §6-1(2a)].

2. The name of the party or group that has submitted the list [16, §6-
1(2b)].

3. The candidates that are to be on the list. The information supplied
about a candidate are in some cases required, in others optional:

(a) Names: First and last name is required.
(b) Profession: The candidates’ profession can be supplied.
(c) Place of residence: The candidates’ place of residence can be

supplied.
(d) Year of birth: Is required
(e) Restriction of information present : If candidates’ profession an-

d/or place of residence is supplied, it has to be supplied for all
candidates on the list [13, §17(1)].
This information is also required if it is necessary to avoid ambi-
guity within the list itself [16, §6-1(2c)].

(f) Representing party/group: If the list is a collaborative list where
several groups or parties have one common list, the affiliation of
the candidates may also be supplied [13, §17(2)].

(g) Increased share of the poll : In a Municipal Council Election a cer-
tain number of candidates may be given an increased share of the
poll, which means that these candidates will be given a additional
vote count that varies with the votes for the list. The number of
candidates that may be given this increased share varies with the
number of representatives in the corresponding Municipal Council
[16, §6-2(3)].

4. Number of candidates: The number of candidates on the list is subject
to paragraph 6-2, and varies with the type of election and the number
of representatives in the corresponding body for which the election is
for.

23

5. Proposers: The required number of signatures [16, §6-1(2d)]. The
number of signatures necessary is specified in paragraph 6-3 and varies
with the partys results in the last election and the type of election that
will be held. Paragraph 12 in the Election regulation [13] specifies that
the signatures must be written on paper.

6. The name of a representative and an alternate, which should both be
among the proposers [16, §6-1(2e)].

7. Enclosed there has to be a document adhering to the following [16,
§6-1(3)]: A list of the candidates date of birth, a list of the date of
birth and address of the proposers and possibly a declaration that the
eligibility of a candidate will be fulfilled [16, §6-4].

It is also important to note that the list proposal may not contain any
other type of information for the voter but what is explicitly mentioned in
paragraph 6-1 [16, §6-1(4)].

2.6.3 Personal Identification Number as a Unique Identifier

It should be clear that the form of these lists is tightly governed by the
aforementioned rules. However, the enclosed document only contains the
date of birth of a candidate. Now, since a candidate may only appear on one
list in a contest [16, §6-1(2c)], it is necessary to check that two lists do not
list the same candidate. This will be easier to check if they are listed with
their personal identification numbers in the enclosed document.

There is no reason to believe that name and date of birth is enough to
distinguish two people. This ambiguity can easily be eliminated by using
the full personal identification number.

Since the eligibility of a candidate has to be checked to be in accordance
with Chapter 3 paragraph 3-1 for the Storting Election and paragraph 3-3
for the Municipal Council Election and the County Council Election, and
assuming the internal representation of the Electoral Register has full per-
sonal identification number, this check will also be made easier if one also
here uses the full personal identification number.

2.6.4 The Nomination Server

The main function of the Nomination server is to receive list proposals.
There are two EML documents that can be used to facilitate communication
between a central Nomination Server and a Nomination Client application.
These documents are Nomination and NominationResponse, where the docu-
ment Nomination represents a list proposal including the enclosed document.
This exchange, receiving a list proposal and responding to it, is the Nom-
ination Servers second stage. This stage can be omitted and replaced with

24

reading the lists from files if the mentioned exchange is not meant to be
measured or modeled. Both of these approaches have been implemented in
this prototype subsystem. The client/server approach is depicted in figure
2.4 and shows the exchange with the Nomination Client.

Brønnøysund register

Nomination Client

Population Registry Authority

Party representative

Nomination Server

CANDIDATELIST

Interdb(Not implemented)

NominationResponse

Nomination

(Not implemented)

Nomination Subsytem

Figure 2.4: Nomination Subsystem state diagram

Receiving List Proposals and their Enclosed Documents

The nomination document sent from the Nomination Client to the Nomina-
tion Server, represents a list proposal. In the Election Law the list proposal
is associated with a separate enclosed document that contains additional in-
formation. This information can be seen as internal information as opposed
to the public information in the list proposal. The list proposal, if approved,
will become the partys party list and the information it includes public.

In the prototype subsystem there is no separation between the list pro-
posal and the enclosed document. Since the information that can be ex-
pressed in the enclosed document does not include any information that is
optional in the list proposal, there is no real loss of separation here.

Producing the Candidate List

The Nomination Server builds its primary data structures when it receives
the ElectionEvent document. The list proposal data structures are built
either from an exchange with clients or by reading the list proposals from

25

files. The server application then produces a Candidate List document,
which actually in a Norwegian context is a list of approved party lists, and
outputs this document to the Voting subsystem. The internal data structure
of the Nomination Server is shown in figure 2.5.

Figure 2.5: Internal data structure for the Nomination Server

2.6.5 The Nomination Client

The Nomination Client application tests the exchange of Nomination doc-
uments and NominationResponse documents. It does not bring anything
really new to the process, but eases the testing of the subsystems in a simu-
lation by having a user interface to manipulate the list proposals at will. Its
internal structure is shown in figure 2.6.

The list proposals are read from file and can be edited in the user inter-
face by adding list proposals, adding a candidate to a list proposal, removing

26

Figure 2.6: Internal data structure for the Nomination Client

a candidate from a list proposal and giving a candidate an increased share of
the poll. The list proposal in the implementation of the Nomination Client
contains the following:

<election name>
<contest name>
<party name>
<candidate (i) name>
<candidate (i) year of birth>
<candidate (i) profession>
<candidate (i) place of residence>
<candidate (i) increased share of the poll (true/false)>
<candidate (i) representing party/group (common lists)>

Note:

Profession: This field is optional.

Place of residence: This field is optional.

27

Increased share of poll : Indicates whether this candidate should be
given an increased share of the poll. This field is either “true” or “false”.

Representing party/group: The party or group this candidate repres-
ents. To be used if the candidate is on a collaborating list. This field
is optional.

2.6.6 The Legality of the Nomination Prototype Subsystem

Evaluating the legality of this subsystem can be reduced to whether the
Nomination document can express the information that a list proposal and
the enclosed document are required to contain. Considering the list on page
23, these requirements will have to be met by the Nomination document for
this subsystem to adequately model the Norwegian nomination process.

The list below mirror the list on page 23 and will discuss the different
pieces of information separately.

1. Election identity : Met by the field election name and contest name.

2. Party name: Met by the field party name.

3. Candidates:

(a) Names: First and last name are not separated in this prototype
subsystem, but both are present in the field candidate name.

(b) Profession: Present

(c) Place of residence: Present

(d) Year of birth: Present

(e) Restriction of information present : The check of whether a piece
of information is present for all candidates is internal to the Nom-
ination Server and, for that reason, not relevant for this thesis.

(f) Representing party/group: Present

(g) Increased share of the poll : EML does not cater to the concept
of increased share of the poll. However, a workaround is possible
(and has been implemented) by using a field that is meant to indic-
ate that a candidate is independent. This field is then interpreted
to indicate that the candidate should receive an increased share
of the poll. This is further explained in section 3.5.1 in chapter 3
that discusses the Nomination document. This workaround would
have to be known in the other relevant subsystems: Voting Client
in the Voting subsystem and the Counting Server in the Counting
subsystem. This is, of course, not an optimal solution and will
also be treated again in the final concluding chapter.

28

The number of candidates that can be given an increased share of
the poll is a function of the number of representatives to the Mu-
nicipal Council being elected in the contest. This number is avail-
able to the subsystem, since it is supplied by the ElectionEvent
document.

4. Number of candidates: The limit on the number of candidates that can
be on the list, must be checked internally by the Nomination Server
and is, therefore, not relevant for the purpose of this thesis.

5. Proposers: The nomination document has proposer fields that can be
used to list proposers. This structure is not used, since the election
regulation [13, §12] explicitly states that the signatures must be written
on paper. The proposer element does open for digital signatures using
the form1:

<complexType name="SignatureType ">
<sequence>

<element r e f=" d s : S i gn ed In f o"/>
<element r e f=" ds :S ignatureValue "/>
<element r e f=" ds :KeyIn fo" minOccurs="0"/>
<element r e f=" ds :Object " minOccurs="0" maxOccurs="unbounded"/>

</ sequence>
<a t t r i b u t e name=" Id" type="ID" use=" opt i ona l "/>

</complexType>

If so desired, the Object field could here be used to store a scanned
representation of a signature on paper. However, since it is clear that
the Election regulation [13] requires the signatures to be on paper,
an electronic transfer of these is beyond the scope of this thesis. For
this reason the proposer mechanism of the Nomination document is
not used. This shortcoming will also be addressed in the concluding
chapter.

6. Name of a representative and an alternate, can be placed in the doc-
ument. The check to see if they are in the signature list can be per-
formed manually, if the signature list has been sent in paper form. If
the electronic signature implementation above is used, this check could
be done electronically. Since this touches on the above discussion on
signatures, it has not been implemented.

7. The nomination document provides the fields for giving candidate date
of birth, and the ProposerStructure has fields for giving addresses for
proposers. However, date of birth of proposers is not provided for. The
declaration of eligibility is also not provided for.

1this can be found at http://www.w3.org/TR/xmldsig-core/

29

To sum up, it is clear from the above that EML does not inherently suit
this process. Specifically, the proposer requirement of the law is not fulfilled.
This has, in any case, no bearing on the rest of the electoral system as long
as the party lists can be sufficiently expressed. Since the information that
could not be expressed is information that would be expressed in the enclosed
document this information is internal to the Nomination subsystem and does
not affect the rest of the Electoral System.

It should be clear that it is possible to isolate this deficiency to the
Nomination subsystem. This will ensure that the other subsystems will
not be affected, with the exception of the less than perfect solution to the
“increased share of the poll” problem (see 3(g) on the list on page 23).

2.7 The Casting of Votes

The Voting subsystem deals with the casting of votes. Since votes are the
central issue for this subsystem the concept of a ballot has to be clarified
before the laws and regulations governing this subsystem are explored.

2.7.1 Defining a Ballot

A ballot in the context of the EML model, and for that reason the proto-
type subsystems, presents the choices available to a voter in a contest. The
ballot structure, which is used in the AuthenticationResponse and Ballots
document, is defined in the XML Schema 340-410-430-include-v4-0.xsd. Al-
though this schema allows more than one election to be present in a ballot,
the prototype makes one ballot for each contest in the election(s). The ballot
contains all the party lists for a given contest, meaning that there is not a
separate ballot for each party list in the contest.

It is important to be explicitly clear on this, since the law and regulations
view a ballot as only representing one party list, and a contest will, in that
context, have one ballot for each party putting forth a list in the contest.

In this section the interpretation of the law will be followed, in chapter
3 the EML interpretation will be used.

2.7.2 Voter Changes to the Ballot

The Norwegian voting process is today a manual system, where a voter phys-
ically casts physical ballots. A ballot in this context, is the party selection
made by the voter in a contest. In such a manual election event where there
is more than one election, there may be several physical votes cast, each
containing one ballot.

Chapter 7 of the Election Law lists the voters rights in changing a ballot.
This is described according to the elections in which the changes may be
done. The same distinction will be made here:

30

• Storting Election: The voter is here entitled to change the order of
the candidates on the ballot by putting a number next to the name.
The voter can also strike one or more candidates from the ballot [16,
§7-2(1)].

• Municipal Council Election: The voter can give a candidate a person
vote by placing a mark by their name on the ballot [16, §7-2(2)]. The
voter can also give candidates on other party lists a person vote by
putting their names on the ballot. The number of such additions can
not exceed a fourth of the number of members of the Municipal Council,
still one can always list at least five [16, §7-2(3)].

• County Council Election: The voter can give a candidate a person vote
by placing a mark by their name on the list [16, §7-2(2)].

Other changes to the ballot will be disregarded [16, §7-2(4)].

2.7.3 The Ballot Presented to the Voter

The form and content of the ballot presented to the voter has to be in
compliance with the Election regulation [13, §19(6)c, §19(9)]. This paragraph
lists the information that a ballot can express with regard to a candidate on
a party list. The information allowed is:

The candidates first and last name.

The candidates year of birth.

The candidates profession.

The candidates place of residence.

Whether the candidate will receive an increased share of the poll.

The party/group the candidate represents [15, §19(6)c].

All of the above information has to be available to the voter when voting.

2.7.4 Candidate Ids as a Unique Identifier

Using the a candidates name when adding the candidate to the ballot, again
brings up the discussion of using a name as though it were a unique iden-
tifier. A name is, of course, not a unique identifier; many people have the
same name. In addition, text comparison in itself is prone to failure, simply
because people have a tendency to misspell.

Providing each candidate with a unique identifier will easily resolve these
ambiguities, and in the prototype this subsystem does, in fact, implement
this.

31

2.7.5 The Voting Server

The Voting Server is a part of the central subsystem of the electoral system,
the Voting subsystem. The information from the pre-election subsystems
are input to it and the votes cast are its output. This interaction and the
exchange with a voting client is depicted in the figure 2.7.

Voting Client

Authentication

AuthenticationResponse

CastVote

VoteConfirmation

Voter

Voter Card / Information

(Not Implemented)

ELECTION EVENT

CANDIDATE LIST

ELECTION LIST

Voting Server

VOTES

Voting Subsytem

Figure 2.7: Voting Subsystem state diagram

EML does not dictate the form of the voting action, whether it be manual
(as is done in Norway today) or electronic (over the Internet or by mobile
phone etc). The prototype of this subsystem will, however, use electronic
voting.

The Voting Server follows, as seen in figure 2.7, the three state model
described earlier. It starts off waiting to receive the Election List, Candidate
List and Election Event documents. Once these are received it moves on to
a server state where it responds to authentications and cast votes. When
the election is over, the Voting Servers server state ends, and it moves on to
its final output state where it sends the votes received on to the Counting
Server. The internal data structure used by the Voting Server is depicted in
figure 2.8.

2.7.6 The Voting Client

The Voting Clients most important focus in terms of this thesis is whether it
can present to the voter the manipulation options required by the Election
Law. The Voting Client works closely with the Voting Server in an exchange
of four messages constituting the authentication of the voter and the casting
of the vote. This interaction is depicted in the figure 2.7 on page 32. This
process seen from the Voting Client is briefly described below.

The messages sent between the Voting Client and Server are really at
the center of this process and are described individually in the next chapter.
The implementation of the changing of the ballot mechanism is discussed in

32

Figure 2.8: The Voting Server Java package - class diagram

section 2.7.7.

33

The Voting Process in the Voting Client

The client is implemented as basically one loop, the login loop. When a voter
wants to vote, he/she has to login using his/her unique personal identification
number. Using this number an authentication message is sent to the voting
server and an authentication response is returned. This response will be
negative if the voter is not in the Election List. If, however, the voter is
found in the Election List, the response includes the ballots for the elections
in which the voter is allowed to vote. Associated with each contest in a ballot
are the party lists for the contest.

This information is then used to create the internal data structure from
which the user interface is dynamically created. Subsequently, the voter
makes his/her selections and finally chooses to submit the vote. A Cast Vote
message is constructed from the choices made, and is sent to the server. The
server responds with a Vote Confirmation message which is either positive
or negative and the result is displayed to the user. The client application
clears most of its internal data structures and is ready for a new voter. The
internal data structure of the Voting Client is seen in figure 2.9.

2.7.7 The Legality of the Voting Prototype Subsystem

Evaluating the legality of this subsystem can be reduced to whether the
Voting Client can present the required ballot and express the voter changes
to the ballot. The voter changes are treated first followed by the presenting
of the ballot.

Changing the Ballot

These changes allowed to the ballot were above divided into the elections
that allow them, the same distinction will be made here. Note that the
classes mentioned are all in the VotingClient package, a class diagram of this
package is presented in figure 2.9 on page 35:

• Storting Election - Implementation: A party list is represented as an
object of the class PartyList. When a list is chosen, the array contain-
ing the candidates is copied to an ArrayList in the Ballot class called
candidateArray. These are the operations done to achieve the lawful
changes:

Strike one or more candidates from the list :
candidateArray . remove(<index o f Cand. >);

Change the order of the candidates on the list :
Candidate c =
(Candidate) candidateArray . remove(<index o f Cand. >);
candidateArray . add(<New placement >, c) ;

34

Figure 2.9: The Voting Client java package - class diagram

Expressing the changes in the CastVote document : Candidates
are entered into the document in the order they are listed in the
ArrayList candidateArray, and only the candidates present in the
ArrayList are entered. This will express both removed candidates
and a change of order.

• Municipal Council Election - Implementation: The candidates from
other party lists, that are given person votes, are put into a separate
ArrayList called addedCandidates. Person votes for candidates both
on the list and on other lists, are represented by a HashSet personVotes.
This will assure that a voter cannot give several person votes to the
same candidate on the list. It is for this reason also necessary to check
that a candidate has not already been added to the addedCandidates

35

before adding the candidate.

Give a candidate a person vote - same list

personVotes . add(<Candidate Id >);

Give a candidate a person vote - other list

Candidate cand = getCandidate(<Candidate id >);
addedCandidates . add (cand) ;
personVotes . add (cand . get Id ()) ;

Expressing the changes in the CastVote document : Candidates in
candidateArray are first inserted into the CastVote document, fol-
lowed by the candidates in addedCandidates. For each candidate
the following is tested:

personVotes . conta in s (candidateNum) ;

If this is test is true, the candidate is marked as having a per-
son vote. It should be clear that this expresses person votes for
candidates both on the list and on other lists.

• County Council Election - Implementation: This is solved in the same
manner as giving a person vote to a candidate on the same list - see
“Municipal Council Election - Implementation” above.

For this subsystem to be valid with regard to the law the changes de-
scribed above will have to be expressed in the CastVote document. The form
of the CastVote document and the fields used are elaborated in the section
concerning this document in chapter 3 section 3.7.4 on page 64.

Presenting the Ballot

The requirements to the ballot when presented to the voter, are listed in
section 2.7.3 on page 31. For this application to fulfill its obligation in
presenting a lawful ballot, this information has to be presented. In section
3.7.3 the AuthenticationResponse document is discussed. For the above
information to be available to the Voting Client, this document must present
it. Displaying information is a simple matter if the information is available.

The internal implementation of the Voting Client should, by the above,
assure that the Voting Client application internally fulfills the law. This
fulfillment depends on the information that can be expressed in the CastVote
and AuthenticationResponse documents.

36

2.8 The Counting of the Votes

Since any documents used in the Counting subsystem are internal, the count-
ing of the votes is really outside the scope of this thesis. For this reason,
this subsystem is not complete with regard to the law. The Election Law de-
scribes two countings, a provisional and final count, and these are discussed
below. What was implemented in this subsystem was implemented to test
the inclusion of the voter corrections in the final count.

The counting algorithms in the different elections is briefly described.
The Counting Server is then presented and its conformance to the law dis-
cussed.

2.8.1 Provisional/Final Count

Chapter 10 of the Election Law paragraph 10-5 and 10-6 dictate that there
has to be two separate countings, the provisional count and the final count.
The provisional count will be done by only counting the list votes, that is
the vote for the list, not taking into account the voter changes [16, §10-
5(5)]. The final count will also take into consideration the voter changes [16,
§10-6(3&4)].

The Election regulation [14] explicitly states that a modification of the
ballot will only be taken into account if it is done by more than half of the
voters that voted for the list in both County Council Elections and Storting
Elections [13, §7(2), §8(2)]. An electronic counting mechanism will make it
possible to take into consideration all changes made, since such a mechanism
can process a greater amount of information than any manual system within
a reasonable time frame. This would provide for more voter input into the
electoral process.

2.8.2 Counting Algorithms

The counting algorithms described below are from the Electoral Handbook,
where the counting mechanism for each type of election is treated separately.
Section 18 of the Electoral Handbook deals with the counting in a Stortings
Election, section 19 with a County Council Election and section 20 with a
Municipal Council Election.

The counting algorithms can be divided into two groups, seat distribution
and seat allocation:

• Seat distribution: The result of the seat distribution count will decide
how many seats each party gets in the corresponding body the election
is for.

• Seat allocation: The result of the seat allocation count will decide which
candidates from the partys list will fill the seats won by the party.

37

Only in the Municipal Council Election does the voter changes affect the
seat distribution count. The counts described below are only counts that are
affected by the voter changes.

Counting Voter Changes in a Storting Election

In a Storting election the voter can make two types of changes. The voter
can change the candidate order and/or strike candidates from the list.

The counting that results in the awarding of seats to a party is based
on the number of votes for the list. After the number of seats awarded to
the party is known, the candidates that are to fill the seats will have to be
determined. The seat allocation algorithm is based on the changes made by
the voters:

• Seat allocation: The candidate that the most voters placed as number
1 will receive the first seat. The candidate that has the greatest sum
when adding the number of voter placements of either number 1 or
2 (excluding the candidate that received the first seat) receives the
second seat. This continues until all seats awarded the party are filled.
If two candidates have the same sum the order on the party list takes
precedence.

Counting Voter Changes in a County Council Election

In the County Council Election the voter can give person votes to the candid-
ates on the list. This is taken into consideration in filling the seats awarded
to the party. All candidates that have a total of person votes that exceeds
8% of the total votes for the list are to be allocated seats first. The algorithm
for this allocation is as follows:

• Seat allocation: The candidate that received the most person votes
(above the 8% limit) is awarded the first seat. The second seat goes
to the candidate that had the second most person votes. This goes on
until all seats are filled or no more candidates have person votes over
the 8% limit. If there are more seats, then the remaining seats are
allocated to the candidates on the list in the order they are listed on
the official list, skipping candidates already allocated a seat.

Counting Voter Changes in a Municipal Council Election

In a Municipal Council Election the voter can give person votes to candidates
on the same list, much like the County Council Election. However, they can
also give person votes to candidates on other lists in the same contest. This
last voter change affects the number of seats awarded the party, which is not
the case for the voter changes in the Storting Election and County Council
Election.

38

• Seat distribution: The list number is used when distributing the seats.
This number is computed as follows:
V = Number of votes for the list
N = Number of representatives in the Municipal Council
R = Number of person votes received from voters voting for other lists
L = Number of person votes lost by voters voting for this list person
voting for candidates on other lists

List number = (V * N) + R - L

This number is used to distribute the seats among the parties.

• Seat allocation: The allocation of seats among the candidates on the
list is done in the following manner:

1. Candidates that were listed to receive an increased share of the poll
receives this now, which is equivalent to 25% of the total number of
votes for the list.

2. The person votes for each candidate is calculated, both from the
partys own voters or from voters voting for other lists.

The candidate that receives the most person votes receives the first
seat, the candidate that received the second most person votes receives
the second. This is continued until all seats are allocated. If two
candidates have the same number of person votes the order on the
official list takes precedence.

2.8.3 The Counting Server

The Counting Server is in charge of counting the votes. The votes are re-
ceived in the form of the Votes document sent by the Voting Server. Although
the counting process is really not an issue for this thesis, it is necessary to
explore whether it can be done based on the information supplied to the
Counting Server. The internal data structure of this subsystem is depicted
in figure 2.10.

Input Documents to the Counting Server

In figure 1.1 the counting subsystem is shown as only receiving the Votes
document. The Voting Server prototype subsystem, however, also provides
the CandidateList document. This follows cleanly from the principals ad-
hered to in the other subsystems, where the internal data structure is created
based on internal documents and the external input is used to update this
data structure.

39

Figure 2.10: Internal data structure of the Counting Server

If security was an issue, one would also make the VTokenLog (described
on page 68) available to the Counting Server. These two documents, Candid-
ateList and VTokenLog, could then be used to check the votes to make sure
they are from legitimate voters and list legitimate candidates. VTokenLog
is, however, not used in the prototype, since this is beyond the scope of the
thesis.

The NumberOfPositions field present in the Count document, described
in section 3.8.1 in chapter 3, seems to indicate that the ElectionEvent docu-
ment is also necessary for this subsystem. This information would otherwise
be unavailable to the Counting subsystem.

2.8.4 The Legality of the Counting Prototype Subsystem

Since this subsystem is the end of the line in terms of the election process,
evaluating its legality is not as critical in terms of this thesis. The point

40

that is relevant is whether the changes that the voter could make in the
Voting Client can be recognized here. The counting process for the different
elections is described in the Election Manual [18], and the discussion below
is based on that description. The counting processes described below will
only be those that deal with the voter changes. These will be divided into
the elections in which the changes can be made:

• Storting Election - Implementation:

Each candidate has a int array called placement. For each ballot ex-
amined the placement of a candidate is noted and the corresponding
array location in placement is incremented:

void r eg i s t e rP lacement (i n t index){
placement [index]++;

}

After all ballots have been examined the final order is found by the
method below (found in the class PartyList.java in the CountingServer
package):

Candidate [] candidates InOrder (){

Candidate [] order = new Candidate [candidates . l ength] ;
boolean [] mask = new boolean [candidates . l ength] ;
i n t [] r e s u l t = new in t [candidates . l ength] ;

f o r (i n t i = 0 ; i < candidates . l ength ; i++){

//add the prev ious r e s u l t s to the new
f o r (i n t c = 0 ; c < candidates . l ength ; c++){

i f (! mask [c]) {
r e s u l t [c] += candidates [c] . g e tResu l t (i) ;

}
}

i n t index = 0 ;
whi l e (mask [index]) { // the f i r s t a l l owab l e va lue

index++;
}
i n t max = r e s u l t [index] ;

f o r (i n t j = index+1; j < r e s u l t . l ength ; j++){
i f (! mask [j]) {

i f (r e s u l t [j] > max){
max = r e s u l t [j] ;
index = j ;

} e l s e i f (r e s u l t [j] == max){
/∗ i f a l i k e the o r i g . order takes precedence
t h i s ho lds by de f au l t s i n c e :

41

∗/
a s s e r t (index < j) ;

}
}

}

a s s e r t ! mask [index] ;
order [i] = candidates [index] ;
mask [index] = true ;

}

return order ;
}

If the result of two candidates is equal, the original placement takes
precedence. This takes care of both a change of order and of strikings
since striked candidates will not have a placement on the ballot.

• Municipal Council Election - Implementation:

The list of candidates is split into two lists, one with the candidates that
were on the original list and one with the added candidates (candidates
from other lists receiving a person vote).

– Candidates on the party list : For each candidate on the original
list, if the candidate received a person vote, the candidates per-
sonVotes variable is incremented.

– Candidates on other party lists: For each of the added candid-
ates the candidates personVotes variable is incremented and the
party lists lostPersonVotes variable is incremented. The candid-
ates party lists wonPersonVotes is also incremented.

The person votes received by each candidate will determine the alloc-
ation of the seats won by the party.

The lostPersonVotes and wonPersonVotes are used in the distribution
of seats among the parties.

• County Council Election - Implementation:

In the County Council Election the voter is only entitled to person
vote for candidates on the list chosen. The processing of personVotes
for candidates on the party list is done in the same manner as the
Municipal Council Election implementation.

42

Chapter 3

EML Interface

3.1 Introduction to EML Interface

The subsystems described in the previous chapter, model the Norwegian
Electoral System. EML provides the language used when these subsystems
and the applications they consist of, communicate. The subsystems need
a practical way to utilize the EML language, this is what EML Interface
provides.

The EML_Interface package provides both a practical layer of abstrac-
tion from the XMLSchemas themselves and the analysis criteria when evalu-
ating the communication between the subsystems. The layer of abstraction
provided serves two important purposes; it leaves the subsystems unaware
of the complexities of maintaining validity, and it provides an interface to
a standard that is constantly changing. It provides an analysis criteria by
unambiguously defining the data placed into an EML document, since modi-
fication of the document can only be done by the public methods in the
interface.

This section concerns itself with the creation of the EML Interface. First
it will detail the purposes of the interface, subsequently describing the im-
plementation of it. This will involve describing the compilation of EML by
a binding compiler, and the actual implementation of the EML_Interface
package and the use of it as a library package.

The rest of this chapter is dedicated to the XML schemas in EML 4.0
and the wrapper classes in EML Interface that represent them. Each of
the EML documents will be discussed under the header of the subsystem
that produces it. They will be described in terms of the information that
is put into them, thus defining the information exchanged using them. Any
shortcomings in the schemas, with regard to the Norwegian Electoral System,
will be discussed in conjunction with the relevant schema and wrapper class.

In the final chapter of this thesis the aforementioned shortcomings will
be further discussed, with suggestions on changes to the EML language ne-

43

cessary to accommodate the Norwegian Electoral System.

3.1.1 EML Interface Maintaining Validity

The EML schemas were compiled using a binding compiler. This process
is further discussed later in section 3.2.2. What is important to note is
that the classes produced through this compilation do not maintain validity.
Meaning, one can create documents that are not valid.

EML_Interface was written primarily to provide a second layer of ab-
straction, in addition to the abstraction provided by the compiled schemas.
The purpose of this layer was primarily to provide the guarantee that the
documents would always be valid. In this way it was possible to leave the
applications unaware of the complications of maintaining validity.

This layered implementation is an established model in system design.
Each layer is supposed to only rely on the layer below and provide services
to the layer above. Each layer usually has a guarantee associated with it. In
this manner the quality of service should increase with each layer.

3.1.2 A Stable Interface to a Changing Standard

The EML standard provides no backward compatibility guarantees, meaning
that a new EML version may differ substantially from the previous version
and a document valid under a previous EML version may no longer be valid.

EML Interface can minimize the changes necessary in the subsystems
when changing to a new EML version, by having most, if not all, changes
only apply to the wrapper classes in it.

This change of standard has already been felt by the EML Interface. It
was originally written to encapsulate EML 3.0. When it was found that
EML 3.0 was unsuitable, the focus shifted to EML 4.0. It was then apparent
that these two versions were not compatible and EML Interface had to be
rewritten.

There is no reason to believe that EML 5.0 will be backwards compatible
with EML 4.0. In light of this, EML Interface could limit the reprogram-
ming effort mostly, or entirely, to EML Interface, keeping the subsystems
unaffected.

3.1.3 Inserting Methods Defining Content

The information exchanged between two applications in the prototype is
done using an EML document created by a wrapper class. The description
of each such document is based on a simple idea. The information that can
be exchanged using an EML document created by a wrapper class, is solely
defined by the parameters to the inserting methods in the class.

The expression inserting method is meant to signify a method that will
cause something to be added to the underlying document. Since the methods

44

have to maintain validity, the constructors are always inserting methods.
They will insert the minimum of information necessary for the document to
be valid and still serve the purposes for which it is used.

Each EML document will therefore be discussed in terms of these meth-
ods and their parameters.

3.1.4 Table over the EML Schemas

The 33 XML Schemas that define EML 4.0 are listed in table 3.1 on page 46.
Together with these are the schemas in the external directory, these schemas
are not treated separately in this chapter since they are not strictly a part
of EML. The table shows where in this chapter the schemas are described, it
also indicates whether a schema is used. Some schemas are marked as Import,
this is to indicate that they do not constitute a message in EML, but are
rather imported by other schemas. Imported schemas are not discussed since
they do not constitute documents in EML, but rather function as libraries
for schemas sharing common definitions.

3.2 Creating EML Interface

EML as a language is defined in 33 XMLSchemas. In addition to these there
are 5 XMLSchemas in the directory external, which are separated from the
language itself, and can be substituted with country specific schemas. All
together these schemas span 5606 lines of XML Schema code. Supporting
the entire standard is a formidable task. There are today several different
ways of dealing with such a language. The manner chosen for this thesis is
using a binding compiler. This process is briefly described in section 3.2.2.

The EML Interface is a collection of wrapper classes for EML documents
and a set of input/output utility classes. The wrapper classes are discussed
individually throughout this chapter. The utility classes are treated separ-
ately in appendix E. These classes deal primarily with network communic-
ation, which is outside the scope of this thesis.

Where table 3.1 focused on the schemas, this section will view EML as a
collection of wrapper classes. After the classes have been briefly introduced,
the building of the layered architecture will be presented chronologically.
This layering can be viewed in figure 1.2 on page 10 and the description
below will begin will the lower layers.

Finally, before each schema is discussed, some issues regarding the im-
plementation will be presented.

3.2.1 The Classes Constituting the EML Interface

The wrapper classes present in the interface correspond to the schemas
marked as “Used” in table 3.1. In addition to these, there exists wrapper

45

Schema Name Used Page
110-electionevent-v4-0.xsd Used 50
120-310-330-include-v4-0.xsd Import -
120-interdb-v4-0.xsd Not Used 50
130-480-include-v4-0.xsd Import -
130-response-v4-0.xsd Not Used 50
210-nomination-v4-0.xsd Used 52
220-nominationresponse-v4-0.xsd Used 54
230-candidatelist-v4-0.xsd Used 55
310-voterregistration-v4-0.xsd Not Used 57
330-electionlist-v4-0.xsd Used 58
340-410-430-include-v4-0.xsd Import -
340-pollinginformation-v4-0.xsd Not Used 57
350a-outgoinggeneric-v4-0.xsd Not Used 57
350b-incominggeneric-v4-0.xsd Not Used 57
350c-internalgeneric-v4-0.xsd Not Used 57
360a-outgoingchanneloptions-v4-0.xsd Not Used 58
360b-incomingchanneloptions-v4-0.xsd Not Used 58
410-ballots-v4-0.xsd Used 67
420-authentication-v4-0.xsd Used 60
430-authenticationresponse-v4-0.xsd Used 61
440-460-include-v4-0.xsd Import -
440-castvote-v4-0.xsd Used 64
445-retrievevote-v4-0.xsd Not Used 68
450-voteconfirmation-v4-0.xsd Used 66
460-votes-v4-0.xsd Used 66
470-vtokenlog-v4-0.xsd Not Used 68
480-auditlog-v4-0.xsd Not Used 68
510-count-v4-0.xsd Not Used 69
520-result-v4-0.xsd Not Used 71
610-optionsnomination-v4-0.xsd Not Used 50
620-optionsnominationresponse-v4-0.xsd Not Used 50
630-optionslist-v4-0.xsd Not Used 50
emlcore-v4-0.xsd Import -
emlexternals-v4-0.xsd Import -
emltimestamp.xsd Import -
xal.xsd Import -
xmldsig-core-schema.xsd Import -
xnl.xsd Import -

Table 3.1: Table over the schemas in EML 4.0, indicating if they are used
in the prototype subsystems and on which page they are discussed in this
thesis.

46

classes for the Count and Result documents, though these are not utilized in
the prototype subsystems. The classes present in the interface are listed in
table 3.2 and the size of each class is measured in terms of the lines of code
it contains. In total the EML Interface package spans 4327 lines of code.

Wrapper class Lines of code
Authentication420 121
AuthenticationResponse430 479
Ballot 153
Ballots410 183
CandidateList230 404
CastVote440 262
Count510 217
ElectionEvent110 288
ElectionList330 377
Nomination210 315
NominationResponse220 140
Result520 191
VoteConfirmation450 111
Votes460 337
EMLServer 396
EMLClient 240
EML_io 140
Global 73
Total 4327

Table 3.2: Lines of code in EML_Interface

The classes EMLServer, EMLClient, EML_io and Global are the utility
classes mentioned, and are further discussed in appendix E. The wrapper
classes contain a set of get methods that are not discussed in this thesis.
This is not done since these methods do not supply any information on the
data transmitted.

3.2.2 Compiling EML

XMLSchemas define a language, or a set of XML documents. This definition
is sufficiently formal to make it possible to compile the schemas to code. This
compilation is done by a binding compiler.

In exploring manners of handling these schemas for this thesis a number
of such compilers were tested, the results of this test is described in appendix
A. Based on this test, the binding compiler chosen was XMLBeans. The
compilation is done from the command line, although a Makefile was written
to do this for this thesis. The command for doing the compilation is shown
here (The options used are explained on page 86 in appendix A):

47

SCOMP = scomp
SFLAGS = −verbose −noupa −nopvr −out EMLclasses . j a r −s r c EMLsrc
$ (SCOMP) $ (SFLAGS) $ (XSDFILES)

3.2.3 Generated Code as Libraries for EML Interface

The code generated by XMLBeans is put into the directory EMLsrc and
the compiled class files are jar’ed and put in a jar called EMLclasses.jar
which then has to be placed in the CLASSPATH. The classes produced
contain methods for creating documents, inserting elements into documents
and parsing XML files adhering to the schemas.

3.2.4 EML Interface as a Library for the Subsystems

The EML_Interface is, as mentioned, a resource package for the subsystems
and is imported by them as a library. It includes, besides the wrapper
classes for the EML documents, also four other classes to abstract some
input/output functions away from the subsystems. These classes will be
discussed in appendix E.

In the same manner that the packages produced by XMLBeans are im-
ported by the classes in EML_Interface, EML_Interface is also compiled
into a jar and placed in the CLASSPATH and subsequently imported by
the application subsystems. The compilation and jar’ing is also done by a
Makefile in the prototype:

JAVAC = javac
JAVACOPTS = −d .
JAR = j a r
JAROPTS = cv f
JARDEST = EML_Interface . j a r
JAVACDEST = EML_Interface

$ (JAVAC) $ (JAVACOPTS) $ (JAVAFILES)
$ (JAR) $ (JAROPTS) $ (JARDEST) $ (JAVACDEST)

3.2.5 Design Issues for EML Interface

Use of Ids and Names in EML Interface

Uniquely identifying objects brings with it a disproportionate amount of dif-
ficulty in most real life systems. The representation used to identify objects
is often called identifiers, and one usually does not desire that user input be
used unexamined as identifiers. Usually an even better solution than check-
ing user input, is to only allow the user to choose from a list of real identifiers
rather than to type one in.

48

This returns to the issue of using strings to uniquely identify objects and
the human problem with spelling, punctuation and capitalization, to name
a few.

This problem is usually solved in practice by to complementing proced-
ures:

1. Pick-one menus: The user has to pick one of a set of predefined options.
The user does not actually type in identifiers, unless in a specific input
environment.

2. Use of internal ids: The string that constitutes a name might be user
friendly, but might not be unique. An internal id can be made unique
and is therefore used internally.

EML 4.0 provides for both name and id. However, in the prototype a
name is often used as an id. As explained above, this is not an optimal
solution, but sufficient in terms of testing of the thesis question. Below is a
list of the structures in EML 4.0 (all defined in emlcore) that identify certain
objects in an Electoral System. All provide for both name and id.

• Event Id and Event Name: EventIdentifierStructure - none of the
fields are used. The prototype simulates one election event and is
not meant to simulate several. An election event does not need to be
identified, since there is only one.

• Election Id and Election Name ElectionIdentifierStructure - only
the id field is used and the name of the election is the id.

• Contest Id and Contest Name ContestIdentifierStructure - only
the id field is used and the name of the contest is the id.

• Party Id and Party Name AffiliationIdentifierStructure - only the
RegisteredName field is used.

• Candidate Id and Candidate Name CandidateIdentifierStructure
- both name and id is used.

3.3 EML Documents Outside the Prototype Sub-
systems

3.3.1 Multipurpose EML documents

There are two EML messages that could have been used by several subsys-
tems, these are in addition to the messages that clearly belong to one of
the subsystems. These two are briefly described here. Though neither is
currently in use, they would be very interesting in a real implementation:

49

Inter Database (120): This schema describes a message that can be
either a request or a response to a request. The schema allows for
such requests/responses about a Voter Registration or Candidate. One
could, in the context of this thesis, find this schema useful in commu-
nicating with the Population Registry Authority to query the eligibility
of a candidate or whether a specific voter is also registered in another
Electoral Register. This message can, then, be used by both the Nom-
ination and the Election List subsystem.

Response (130): This schema defines a generic response that can be
used where no explicit response exists. It has an “Accepted” field and
an optional “Errors” field and can in that way communicate the error.
This would be a crucial message in a real time system. In the prototype,
however, error recovery is at a minimum and this message is, therefore,
not used.

3.3.2 Referendum Nomination Documents

As already mentioned, referendums are not explored in this thesis, there are,
however, three schemas in EML 4.0 dedicated to this, they are:

Options Nomination (610): Schema for submitting a proposal for a
referendum.

Options Nomination Response (620): A response to the above Nom-
ination with an accepted field and possibility of giving a reason for
rejection in the Remark field.

Options List (630): A list of proposals for a referendum. There can be
many elections, since each proposal is constitutes an election.

3.4 The Election Defined

3.4.1 ElectionEvent110.java

Only one schema is relevant to the Election Event Client: the ElectionEvent
document. It contains only five different pieces of information, and the idea
is that this should define an election sufficiently for the subsystems that
receive it.

Table 3.3 shows the public inserting methods in ElectionEvent110.java,
which is the wrapper class for this document.

Election Name is the name of an election. Each election held in an
election event will have its name in the document.

50

Public set methods Parameters
Constructor String electionName

String contestName
String votingMethod
String maxVotes
String numberOfPositions

appendContest String electionName
String contestName
String votingMethod
String maxVotes
String numberOfPositions

Table 3.3: Public inserting methods in ElectionEvent110.java

Contest Name is the name of a contest, in a Norwegian setting this will
be the name of a municipality or a county. Note that there are muni-
cipalities that have the same name in Norway, that is, the municipality
names are not unique per se. For this reason, one should have used id
field for a unique identifier such as municipality number. However, as
discussed earlier, this is not implemented.

Voting Method is not specified in the prototype, but is required by the
EML schema, it is, therefore, only set to “other”.

Max Votes indicates the maximum number of votes for this contest.

NumberOfPositions is needed by the Voting subsystem because the
number of changes a voter can make on a ballot is often a function of
the number of representatives in the corresponding body being elected.

An example of such a document is shown below:
<Elect ionEvent xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l ">

<Even t Id en t i f i e r />
<Elec t i on>

<E l e c t i o n I d e n t i f i e r Id=" S to r t i n g sva l g "/>
<Contest>

<Con t e s t I d e n t i f i e r Id="Oslo "/>
<VotingMethod>other</VotingMethod>
<MaxVotes>500000</MaxVotes>
<NumberOfPositions>40</NumberOfPositions>

</Contest>
</Elec t i on>

</Elect ionEvent>

Note: The field NumberOfPositions is undocumented in the EML Schema
Description. In the DataDictionary for EML 4.0, however, this field is said

51

to have the following definition: “Represents the number of identical posi-
tions being elected in a contest.” The interpretation of this thesis is that
this field indicates the number of representatives in the representative body
that is up for election in this contest. In the Norwegian setting this is the
number of representatives in the County Council in this county, Municipal
Council in this municipality or the number of representatives in the Storting
representing this county.

3.5 The Nomination Process

For nomination there are only three schemas, the CandidateList, the Nomin-
ation and NominationResponse. The Nomination and NominationResponse
document constitute the communication between the Nomination Server and
the Nomination Client, whereas the Candidate List is the output of the entire
Nomination subsystem, sent to the Voting Server.

3.5.1 Nomination210.java

Nomination210.java produces and parses Nomination documents. Table 3.4
shows the public inserting methods for this document. The information
inserted is discussed below:

Public set methods Parameters
Constructor String electionName

String contestName
String partyName

appendCandidate String candidateName
String yearOfBirth
String profession
String location
boolean increased
String partyName

Table 3.4: Public inserting methods in Nomination210.java

The constructor takes three parameters: election name, contest name and
party name. It takes all of these to ensure a valid document is produced.
These are not discussed here since they are covered by the discussion in
section 3.2.5.

The additional method is the appendCandidate method, which takes six
arguments. The profession, place of residence and partyName are optional in
the general case. The specific requirements with regard to this document are
listed on page 23 in section 2.6.2 where the laws and regulations regarding
list proposals are treated. If the above mentioned fields are empty this is

52

done by placing a dummy string in its place. Here, as is the case in all the
schemas communication this information, the string used is “_”.

candidateName: The full name of the candidate.

yearOfBirth: Year of birth of the candidate.

profession: Profession of the candidate.

location: Location or place of residence of the candidate.

increased : This field is either true or false indicating whether the can-
didate should receive an increased share of the poll.

partyName: Name of the candidates party/group, this field can be used
if the list is a collaborative list.

Below is an example of a document produced in this manner:

<Nomination xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l "
xmlns:urn=" u rn : o a s i s : names : t c : c i q :x sds ch ema : xAL: 2 . 0 ">
<E l e c t i o n I d e n t i f i e r Id="ElectionName"/>
<Con t e s t I d e n t i f i e r Id="ContestName"/>
<A f f i l i a t i o n>

<A f f i l i a t i o n I d e n t i f i e r>
<RegisteredName>Party Name</RegisteredName>

</ A f f i l i a t i o n I d e n t i f i e r>
<Candidate Independent="no">

<Cand ida t e I d en t i f i e r>
<CandidateName>Candidate Name</CandidateName>

</Cand ida t e I d en t i f i e r>
<DateOfBirth>1970−01−01</DateOfBirth>
<Qual i fy ingAddress>

<urn :Lo ca l i t y>
<urn:Local i tyName Type="Locat ion "/>

</ urn :Lo ca l i t y>
</Qual i fy ingAddress>
<A f f i l i a t i o n>

<A f f i l i a t i o n I d e n t i f i e r>
<RegisteredName>_</RegisteredName>

</ A f f i l i a t i o n I d e n t i f i e r>
</ A f f i l i a t i o n>
<Pro f e s s i on>Pro f e s s i on</Pro f e s s i on>

</Candidate>
</ A f f i l i a t i o n>

</Nomination>

53

Note:

• yearOfBirth: The method appendCandidate takes year of birth and
not date of birth. The schema demands date of birth, but in §6 of
the Election Law only the year of birth is allowed. This is, therefore,
resolved in Nomination210.java by adding a dummy day and month
(day 01 and month January) and having the corresponding get method
(getCandidateInfo) strip these off.

• location: The addresses used are meant to be local specific in EML.
That is, each country is allowed, one might even say encouraged, to
supply a country specific address schema. In this document a simple
option in the eXtensible Address Language1 (xAL) is used. Another
option in xAL might be preferred or a Norwegian specific schema can be
decided upon. This schema would then replace xal.xsd in the directory
external.

Location is used since it is not specified in the law to which degree
of precision an address is to be specified. In this EML document it is
simply treated as a string.

• Increased share of the poll : This schema has no facility to indicate that
a candidate should receive an increased share of the poll. A workaround
was implemented to provide this information. A field meant to indicate
whether a candidate is independent or not has been used to indicate
whether a candidate should receive an increased share of the poll. In
the XML document displayed above, the candidate was inserted with
increased set to false. This is reflected in the document in this manner:

<Candidate Independent="no">

This is not an optimal solution, and this deficiency in the schema and
a proposed solution will be further discussed in the concluding chapter.

3.5.2 NominationResponse220.java

NominationResponse220.java produces or parses, as the name implies, a
nomination response document.

Table 3.5 shows the one inserting method for this document, the con-
structor.

The constructor takes four arguments: election Name, contest Name,
party Name and accepted. The accepted field can contain one of two strings:
“yes” or “no”.

A NominationResponse document looks like this:
1The schema defining the eXtensible Address Language is found in the directory ex-

ternal in EML 4.0, the standard was developed by the OASIS Customer Information
Quality Committee (CIQ)

54

Public set methods Parameters
Constructor String electionName

String contestName
String partyName
String accepted

Table 3.5: Public inserting methods in NominationResponse220.java

<NominationResponse xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l ">
<E l e c t i o n I d e n t i f i e r Id="ElectionName"/>
<Con t e s t I d e n t i f i e r Id="ContestName"/>
<A f f i l i a t i o n>

<A f f i l i a t i o n I d e n t i f i e r>
<RegisteredName>PartyName</RegisteredName>

</ A f f i l i a t i o n I d e n t i f i e r>
</ A f f i l i a t i o n>
<Accepted>yes</Accepted>

</NominationResponse>

3.5.3 CandidateList230.java

The CandidateList schema describes a document that has to contain a bit
more information than the previous two. Table 3.6 shows the public inserting
methods for this document. As is the case with many of the documents, other
set methods are private to maintain validity.

Public set methods Parameters
Constructor String electionName

String contestName
String partyName

appendCandidate String electionName
String contestName
String partyName
String [] candidateInfo

Table 3.6: Public inserting methods in CandidateList230.java

The constructor takes the following arguments: election name, contest
name and party name.

AppendCandidate takes the above three as well, but in addition it takes
a String array containing candidate information. This array has seven pieces
of information:

Candidate name: Full name of candidate.

Candidate year of birth: Year of birth of candidate.

55

Candidate profession: Profession of candidate.

Candidate location: Location or place of residence of candidate.

Candidate id : Id of candidate.

Candidate party : Party of candidate.

Candidate increased share of poll : True/false indicating whether the
candidate should receive an increased share of the poll.

A simple CandidateList document with only one candidate looks like
this:

<CandidateLi s t xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l "
xmlns:urn=" u rn : o a s i s : n ame s : t c : c i q : x sd schema : xAL :2 . 0 ">
<Elec t i on>

<E l e c t i o n I d e n t i f i e r Id="ElectionName"/>
<Contest>

<Con t e s t I d e n t i f i e r Id="ContestName"/>
<A f f i l i a t i o n>

<A f f i l i a t i o n I d e n t i f i e r>
<RegisteredName>Party Name</RegisteredName>

</ A f f i l i a t i o n I d e n t i f i e r>
<Candidate Independent="no">

<Cand ida t e I d en t i f i e r Id="20000">
<CandidateName>Candidate Name</CandidateName>

</Cand ida t e I d en t i f i e r>
<DateOfBirth>1970−01−01</DateOfBirth>
<Qual i fy ingAddress>

<urn :Lo ca l i t y>
<urn:Local i tyName Type=" l o c a t i o n"/>

</ urn :Lo ca l i t y>
</Qual i fy ingAddress>
<A f f i l i a t i o n>

<A f f i l i a t i o n I d e n t i f i e r>
<RegisteredName>_</RegisteredName>

</ A f f i l i a t i o n I d e n t i f i e r>
</ A f f i l i a t i o n>
<Pro f e s s i on>p r o f e s s i o n</Pro f e s s i on>

</Candidate>
<Proposer>

<Name/>
</Proposer>

</ A f f i l i a t i o n>
</Contest>

</Elec t i on>
</CandidateLi s t>

56

Note:

• Candidate id : A unique id was added for all candidates. This id is
visible to the voter at voting time and is used by the voter to indicate
a specific candidate. The id is produced in the Nomination Server and
remains constant for all candidates throughout the other subsystems,
specifically the Voting Server, Voting Client and Counting Server.

• Remaining fields The same solutions to the year of birth, location
and increased share of the poll problems, discussed in the section on
Nomination210.java (page 54) are used here.

3.6 The Election List

The only schema used by the Election List Server is the ElectionList. A
document conforming to this schema is sent to the Voting server and is the
Electoral Roll for the election(s). The other schemas in EML relevant for
this subsystem are:

Voter Registration (310) This schema is not used, although it could be
used by the Population Registry Authority to, one by one, register the
voters with the Election List Server. This is, however, not done, and
it would seem that this schema is more applicable in a country that
require the voters to register.

Polling Information (340) This schema is meant to give information
to a voter. The information is on where, how and when to vote. This
information can be tailored to the voter such that voter specific inform-
ation can be provided. This can be taken advantage of when designing
the security in an election where electronic voting is allowed. This
schema is not used because there are no voters to communicate with
and security is not an issue for this thesis. In a real setting this message
has many uses, especially with regard to security.

Outgoing/Incoming Generic Communication (350a&b) These are gen-
eric message schemas to communicate to and receive communications
from a voter. This schema is not used since there are no voters to com-
municate with. Although individual voter communication seem at first
glance to be quite a massive process, this message can, for example, be
used as a template for generated letters.

Internal Generic (350c) These are generic message schemas for com-
munication between election organizers. It is not used since there are
no such people to communicate with. This can be useful, perhaps,
as a template for a message passing system running on the different
subsystems.

57

Outgoing/Incoming Channel Options (360a&b) These schemas define
a possible exchange between the electoral system and a voter, offering
a set of channels through which the voter can vote or (possibly in
response to the previous) a voter requests channels to vote through.
This is not used since there are no voters to communicate with.

3.6.1 ElectionList330.java

Table 3.7 shows the constructor and appendVoter methods constituting the
public insert method for this document.

Public set methods Parameters
Constructor String electionName

String contestName
String pollingPlace
String firstNames
String lastName
String address
String postalCode
String postalLocation
String personNumber

appendVoter String electionName
String contestName
String pollingPlace
String firstNames
String lastName
String address
String postalCode
String postalLocation
String personNumber

Table 3.7: Public inserting methods in ElectionList330.java

The constructor takes nine arguments. The appendVoter method takes
the same arguments and is, in fact, called by the constructor. Election
name and contest name have already been discussed on page 48. The other
arguments are:

Polling place: Location of the polling place the voter is to vote in.

First names: Voter first names.

Last name: Voter last name.

Address: Voter street address.

Postal code: Voter postal code.

58

Postal location: Voter postal location.

Personal id number : Voter personal identification number.

A simple ElectionList document with only one voter will look like this:

<El e c t i onL i s t xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l "
xmlns:urn=" u rn : o a s i s : names : t c : c i q :x sds ch ema : xNL: 2 . 0 "
xmlns:urn1=" u rn : o a s i s : n ames : t c : c i q : x sdsch ema :xAL :2 . 0 ">
<Vote rDeta i l s>

<Vote rReg i s t ra t i on>
<Voter>

<Vo t e r I d e n t i f i c a t i o n>
<VoterName>

<urn:NameLine Type=" F i r s t ␣Names"/>
<urn:NameLine Type="LastName"/>

</VoterName>
<Elec to ra lAddre s s>

<urn1:Country>
<urn1:AddressLine Code="PostalCode"

Type="StreetAddress "/>
<urn1 :Lo ca l i t y>

<urn1:Locali tyName Type="Posta lLocat ion "/>
</ urn1 :Lo ca l i t y>

</urn1:Country>
</Elec to ra lAddre s s>
<Id Type="PersonalIdNumber"/>

</Vo t e r I d e n t i f i c a t i o n>
</Voter>

</Vote rReg i s t ra t i on>
<Elec t i on>

<E l e c t i o n I d e n t i f i e r Id="ElectionName"/>
<Con t e s t I d e n t i f i e r Id="ContestName"/>
<Po l l i ngP lace Channel=" other ">

<OtherLocat ion Id="Po l l i ngP lace "/>
</Po l l i ngP lace>

</Elec t i on>
</Vote rDeta i l s>

</ E l e c t i onL i s t>

Note:

• Address: Here a more complex address in xAL is used, as opposed to
the one used in the Nomination subsystem. This address form allows
for sending information by mail to the voter.

• Name: The name also uses a more complex form, this one from the
eXtensible Name Language (xNL). This schema (xNL) is also in the
directory external and can be replaced if deemed appropriate.

59

• Polling place: A more complex address can be used, but in terms of
this thesis this is not necessary.

• Personal identification number : This number is reused as a VToken
in the Voting subsystem. The number uniquely identifies a voter, but,
for anonymity concerns, could not be used in that manner in a real
implementation.

3.7 Voting

3.7.1 Voting Server

The schemas applicable to the Voting Server are described below. Note
that four of these also are applicable to the Voting Client, since these four
constitute the communication between the Voting Server and Client. The
final one, Votes, is the Voting Servers output, sent to the Counting Server.

3.7.2 Authentication420.java

Table 3.8 shows the only public insert method this document has, its con-
structor.

Public set methods Parameters
Constructor String vTokenString

Table 3.8: Public inserting methods in Authentication420.java

This schema describes a login message. Only one field is used: the
VTokens Component field. The constructor takes the VToken string as in-
put. Such a message is shown below:

<Authent icat ion xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l ">
<VToken>

<Component Type="PersonalIdNumber"/>
</VToken>

</Authent icat ion>

Note:

• VToken: VToken is meant as a way to uniquely distinguish a voter.
Since privacy is not an issue for this thesis, the personal identification
number is here used as a VToken. This is unique because all citizens
of Norway have such unique numbers.

60

3.7.3 AuthenticationResponse430.java

AuthenticationResponse is meant as a response to an Authentication mes-
sage. It also serves another significant purpose: It provides the voter with
the ballots for the contests the voter is allowed to vote in. This is used in
the prototype in a simple manner. The Voting Client has no information
in its internal data structures before it receives an AuthenticationResponse.
This message supplies the elections, contests and party lists used to fill up
the internal data structures, and from these the menus are created.

Table 3.9 shows the two constructors that constitute the inserting meth-
ods for this document.

Public set methods Parameters
Constructor String response

Ballot []ballots
Constructor String response

String ballotId

Table 3.9: Public inserting methods in AuthenticationResponse430.java

Response: Either “no” or “yes” depending on whether the voter is al-
lowed to vote.

Ballots: The class Ballot is described below. There will be one ballot
for each contest in the AuthenticationResponse document.

BallotId : Not used, but required. Can be set to anything, there is no
get method in AuthenticationResponse430.java that returns it.

Table 3.10 shows the public insert methods in the class Ballot. Ballot
is not a document in EML. This class was constructed so that ballots could
be created by the Voting Server and inserted into the Ballots410 document.
Each time an Authentication message is received, the ballots for the con-
test(s) the voter can vote in are retrieved from the Ballots410 document and
inserted into the AuthenticationResponse document sent in reply.

Three of the parameters, electionName, contestName and partyName,
are not described here, these follow the same structure as discussed on page
48.

maxWriteIn: Indicates the maximum number of candidates, on other
party lists, that the voter can person vote for in a Municipal Coun-
cil Election. For other elections this field will hold the value zero.
This number is computed in the Voting Server based on the number
NumberOfPositions (discussed in conjunction with the ElectionEvent
document).

61

Public set methods Parameters
Constructor String electionName

String contestName
String maxWriteIn
String partyName
String [][] candidateArray

appendParty String electionName
String contestName
String maxWriteIn
String partyName
String [][] candidateArray

Table 3.10: Public inserting methods in Ballot.java

The double array candidateArray, parameter to the Ballot constructor
and method appendParty, contains the following for each candidate:

Candidate id : This is the same id that was created in the Nomination
subsystem, unique for each candidate.

Candidate information: This is all the information about the candid-
ate, in one long string, that the party wants to display to the voter.
This is further discussed below.

An AuthenticationResponse message is shown below, where there is one
election and its corresponding contest. Only one party has a submitted a
party list, listing two candidates:

<Authenticat ionResponse xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l ">
<Authenticated>yes</Authenticated>
<Even t Id en t i f i e r />
<Ba l l o t>

<Elec t i on>
<E l e c t i o n I d e n t i f i e r Id="ElectionName"/>
<Contest>

<Con t e s t I d e n t i f i e r Id="ContestName"/>
<MaxWriteIn>200000</MaxWriteIn>
<Ba l l o tCho i c e s>

<A f f i l i a t i o n>
<A f f i l i a t i o n I d e n t i f i e r>

<RegisteredName>Party Name</RegisteredName>
</ A f f i l i a t i o n I d e n t i f i e r>
<Cand ida t e I d en t i f i e r Id="ID1">

<CandidateName>CandidateInfo1</CandidateName>
</Cand ida t e I d en t i f i e r>
<Cand ida t e I d en t i f i e r Id="ID2">

<CandidateName>CandidateInfo2</CandidateName>

62

</Cand ida t e I d en t i f i e r>
</ A f f i l i a t i o n>
<A f f i l i a t i o n>

<A f f i l i a t i o n I d e n t i f i e r>
<RegisteredName>PartyName</RegisteredName>

</ A f f i l i a t i o n I d e n t i f i e r>
<Cand ida t e I d en t i f i e r Id="ID1">

<CandidateName>CandidateInfo1</CandidateName>
</Cand ida t e I d en t i f i e r>
<Cand ida t e I d en t i f i e r Id="ID2">

<CandidateName>CandidateInfo2</CandidateName>
</Cand ida t e I d en t i f i e r>

</ A f f i l i a t i o n>
</Ba l l o tCho i c e s>

</Contest>
</Elec t i on>

</Ba l l o t>
</Authenticat ionResponse>

Note:

• MaxWriteIn: In the EML Schema Descriptions, the MaxWriteIn field is
not documented. In the DataDictionary, however, the following defin-
ition is found: “Where an election allows write-in candidates, this is
the maximum number of such candidates that can be included.” This
field is used to indicate the maximum number of candidates a voter can
give a person vote to, where that candidate is not on the list chosen.
In the Municipal Council Election, which is the only kind of election
in Norway that allows this, this limit is set to a fourth of the number
of representatives to the Municipal Council (or at least 5), this was
described in section 2.7.2.

• Candidate Information: The AuthenticationResponse document only
allows a CandidateIdentifierStructure which means that it really only
allows for Candidate name and Candidate id. This is insufficient for
Norwegian purposes, since the law allows/requires that more informa-
tion on a candidate be displayed to the voter (see section 2.7.3 on page
31).

This is problem is solved in the prototype by stringing the required
information together in a string separated by “,” and splitting up the
string on arrival at the Voting Client. The information contained in
the string is:

candidateName: Candidates first and last names
YearOfBirth: Here sent as year of birth, since there is no field
requiring date of birth.

63

Profession: Candidates profession
Location: Candidates place of residence
Id : Candidate id, this is the same id produced in the Nomination
subsystem.
Increased share of the poll : A string, either “true” or “false” de-
pending on whether the candidate was awarded an increased share
of the poll when nominated.
Representing party/group: Used if this is a collaborative list to
present the individual candidates affiliation.

The fields above that are optional are listed as “_” in the string if not
present.

3.7.4 CastVote440.java

The CastVote is the central schema in the EML model and the central
concept in any Electoral System. In a Norwegian setting, this is document
is crucial since it has to express the voters changes to the ballot, if there are
any.

CastVote is perhaps one of the most complex documents used in the pro-
totype. It has a constructor and two other insert methods. The appendSe-
lection is a blank vote. For a vote that is not blank the appendCandidate
method is used. These methods and the parameters they take are seen in
table 3.11.

Public set methods Parameters
Constructor String electionName

String contestName
String vTokenString

appendCandidate String electionName
String contestName
String partyName
String candidateName
String candidateId
boolean personVote

appendSelection String electionName
String contestName

Table 3.11: Public inserting methods in CastVote440.java

Besides the parameters electionName, contestName and partyName, the
parameters to the inserting methods in the CastVote document are:

VTokenString : VToken of the voter. In the prototype this is the per-
sonal identification number of the voter.

64

Candidate Name: Full candidate name.

Candidate Id : The same id created in the Nomination subsystem.

PersonVote: True or false. Indicates whether the voter wants to give
this candidate a person vote.

An example of a document conforming to this schema is shown below.
The thing to notice is the Candidate element. There can be a list of such
elements in a Selection element. For a modification of order to be registered
it is necessary that the order is fixed, which it is. Candidates can be added
and the order can be changed. The Value attribute in the Candidate element
indicates whether the candidate has received a person vote. If the field is “1”
that indicates no person vote, if the field is “2” that indicates a person vote.

<CastVote xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l ">
<VToken>

<Component Type="vToken"/>
</VToken>
<Even t Id en t i f i e r />
<Elec t i on>

<E l e c t i o n I d e n t i f i e r Id="ElectionName"/>
<Contest>

<Con t e s t I d e n t i f i e r Id="ContestName"/>
<Se l e c t i o n>

<A f f i l i a t i o n I d e n t i f i e r>
<RegisteredName>PartyName</RegisteredName>

</ A f f i l i a t i o n I d e n t i f i e r>
<Candidate Value="2">

<Cand ida t e I d en t i f i e r Id="CandidateId ">
<CandidateName>Candididate Name</CandidateName>

</Cand ida t e I d en t i f i e r>
</Candidate>
<Candidate Value="1">

<Cand ida t e I d en t i f i e r Id="CandidateId2 ">
<CandidateName>Candididate Name2</CandidateName>

</Cand ida t e I d en t i f i e r>
</Candidate>

</ S e l e c t i o n>
</Contest>

</Elec t i on>
</CastVote>

Note:

• Person Votes using WriteinCandidateName: The CastVoteStructure
has a field in the element Selection called WriteinCandidateName. The
definition of this field in the DataDictionary is: “Some elections allow a

65

voter to write-in the name of the person they would like to see elected,
although they are not included on the ballot paper. This is known
as a write-in candidate.” The field, however, only allows one write-in
candidate and is, therefore, not appropriate for Norwegian purposes.

• Person Votes using VotingValueType: This field is documented in the
schema emlcore (line 887) as having the following meaning: “The
weight or preference applied to a selection”. In terms of this thesis,
this is interpreted to be a person vote. A person vote indicates a
“weight or preference” and the value held by this field is interpreted as:
“1” - no person vote and “2”- a person vote.

3.7.5 VoteConfirmation450.java

This is a simple schema outlining a message to communicate to the voter
whether a vote was accepted or not. The constructor to this wrapper class
is the only public insert method. This is displayed in table 3.12.

Public set methods Parameters
Constructor String accepted

Table 3.12: Public inserting methods in VoteConfirmation450.java

If the vote was not accepted, the schema allows a reason to be supplied.
In the prototype only the accepted field is used, which can be set to either
“yes” or “no”.

This constructor takes a string, either “yes” or “no”. A message created
in this way is shown here:

<VoteConfirmation xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l ">
<Accepted>yes</Accepted>

</VoteConfirmation>

3.7.6 Votes460.java

The Votes schema outlines a document that, essentially, is a list of votes.
In the prototype the votes are transferred from the Voting Server to the
Counting Server unprocessed, meaning that no field, except VToken, is ever
read by the Voting Server.

Table 3.13 shows the public inserting methods in this wrapper class.

Public set methods Parameters
Constructor CastVote440 castVote440Doc
appendCastVote CastVote440 castVote440Doc

Table 3.13: Public inserting methods in Votes460.java

66

The constructor and appendCastVote both only take a CastVote440 doc-
ument as input. The method appendCastVote inserts a vote into the Votes
document. AppendCastVote is also called from the constructor.

An example of such a document is shown below. There is only one cast
vote inserted and in it there is only one candidate.

<Votes xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l ">
<CastVote>

<VToken>
<Component Type="VToken"/>

</VToken>
<Even t Id en t i f i e r />
<Elec t i on>

<E l e c t i o n I d e n t i f i e r Id="elect ionName"/>
<Contest>

<Con t e s t I d e n t i f i e r Id="contestName"/>
<Se l e c t i o n>

<A f f i l i a t i o n I d e n t i f i e r>
<RegisteredName>partyName</RegisteredName>

</ A f f i l i a t i o n I d e n t i f i e r>
<Candidate Value="1">

<Cand ida t e I d en t i f i e r Id=" candidateId ">
<CandidateName>candidateName</CandidateName>

</Cand ida t e I d en t i f i e r>
</Candidate>

</ S e l e c t i o n>
</Contest>

</Elec t i on>
</CastVote>

</Votes>

3.7.7 Ballots410.java

This document represents a list of Ballots. It can be used in many ways, in
the context of this thesis it is used by the Voting Server to keep the ballots
for the contests in the elections. Though not strictly necessary for this thesis,
it speeds up the Voting Server because it will have very little construction to
do when making an AuthenticationResponse. The relevant ballots are inser-
ted directly, and very little actual building of the AuthenticationResponse
message is needed. The public inserting methods for this wrapper class is
depicted in table 3.14.

The document is used much like a HashMap. A ballot is inserted with the
concatenation of election and contest name as a key. As mentioned on page
48 with regard to using a name as a unique identifier, this is not sufficient
for Norwegian purposes, since there are municipalities in Norway that have
the same name. However, the prototype simulates a small election event
with only a few municipalities so this problem is not encountered. In a real

67

Public set methods Parameters
Constructor Ballot ballot

String key
insertBallot Ballot ballot

String key

Table 3.14: Public inserting methods in Ballots410.java

implementation ids would have to be used to keep the keys unique.

3.7.8 Remaining Schemas for the Voting Subsystem

In addition to the schemas above, EML 4.0 provides the following three
documents for this subsystem. These are not currently in use. VToken Log
and Audit Log, both having to do with security, are outside the scope of this
thesis.

Retrieve Vote (445) This schema is meant to be used when a pre-ballot
box is used. One might view the Voting Server as a pre-ballot box, or
one might see the votes received by the Counting Server to be such a
pre-ballot box. In any case, used in this prototype this would be an
internal document and would, therefore, not bring anything new to the
analysis.

VToken Log (470) This is a list of VTokens and/or VTokenQualifieds
(these are not pursued in this thesis). It can have a variety of purposes,
in the context of this thesis’ prototype, it could have communicated
the VTokens (either only the used ones, or possibly all) to the Voting
Server so that the votes could be checked before counting. This would
ensure that invalid VTokens are not used. This is, as mentioned, a
security issue and not relevant for the thesis.

Audit Log (480) This message is used to keep an audit of seals used.
It would be used as a part of the security measures of an election and
is, therefore, not relevant for this thesis.

3.7.9 Voting Client

The four schemas for the Voting Client have already been discussed with
regard to the Voting Server. Of the five documents discussed there the
Votes document is the only one that is not either written or read by the
Voting Client.

68

3.8 Counting

The final two documents for used in the termination of the election event are
the Count510 and Result520 documents. Neither is used in the prototype
since the counting implemented does not produce complete results. Wrapper
classes have been implemented anyway, mostly to illustrate their use.

3.8.1 Count510.java

The Count document represents an intermediate count using a specific al-
gorithm. As described in the section on the Counting subsystem, Norwegian
law do call for a number of different counting algorithms to be performed.

The count document can represent the results of a count. In a Norwegian
context this could then be used to store/present an intermediate count using
a specific algorithm that can be identified using the CountingAlgorithm field.
Each candidate is represented in the Selection element and equipped with a
Value attribute and a ValidVotes field. These, together with the ordering,
allow for some additional information to be given as to the results of the
count.

The Count510 wrapper class has a constructor and an appendSelection
as its public inserting methods. These methods and the parameters they
demand is seen in table 3.15.

Public set methods Parameters
Constructor String electionName

String contestName
String candidateId
String countingAlgorithm
String numberOfPositions
String partyName
String validVotes
String votingValueType

appendSelection String electionName
String contestName
String candidateId
String countingAlgorithm
String numberOfPositions
String partyName
String validVotes
String votingValueType

Table 3.15: Public inserting methods in Count510.java

The constructor and the appendSelection method both take the following
parameters in addition to electionName, contestName and partyName:

69

candidateId : Indicates the same id generated in the Nomination sub-
system.

countingAlgorithm: Indicates the algorithm used for the count.

numberOfPositions: The number of positions in the body to be elected.
This field is further discussed below.

validVotes: Number of valid votes in the count.

votingValueType: This same type of field was used to express a person
vote in the CastVote document. Here it may serve a variety of purposes
in expressing the result of the counting algorithm.

An example of a Count document is shown below:

<Count xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l ">
<Even t Id en t i f i e r />
<Elec t i on>

<E l e c t i o n I d e n t i f i e r Id="ElectionName"/>
<Contests>

<Contest>
<Con t e s t I d e n t i f i e r Id="ContestName"/>
<CountingAlgorithm>CountingAlgorithm</CountingAlgorithm>
<NumberOfPositions>40</NumberOfPositions>
<TotalVotes>

<Se l e c t i o n Value="6">
<A f f i l i a t i o n I d e n t i f i e r>

<RegisteredName>PartyName</RegisteredName>
</ A f f i l i a t i o n I d e n t i f i e r>
<Cand ida t e I d en t i f i e r Id="CandidateId "/>
<ValidVotes>5000000</Val idVotes>

</ S e l e c t i o n>
<Se l e c t i o n Value="3">

<A f f i l i a t i o n I d e n t i f i e r>
<RegisteredName>PartyName2</RegisteredName>

</ A f f i l i a t i o n I d e n t i f i e r>
<Cand ida t e I d en t i f i e r Id="CandidateId2 "/>
<ValidVotes>700000</Val idVotes>

</ S e l e c t i o n>
</TotalVotes>

</Contest>
</Contests>

</Elec t i on>
</Count>

Note:

70

• NumberOfPositions: This field is referred to here in Count, though
the Counting subsystem does not receive the ElectionEvent document
that gives this number, this seems to imply that the figure “High-Level
Model - Technical View” on which figure 1.1 is based, is incomplete.

3.8.2 Result520.java

The result document does not give the final results of the election, hence the
name is a bit misleading. It does, however, give the candidates individual
results. All candidates in a contest in the election(s) will have their results
summed up in this document.

Since the Counting Server has not implemented the full counting scheme
of Norwegian elections this schema is not used in the Counting subsystem.
Nonetheless, a wrapper class was created, where only the set methods are
implemented. These are one constructor and one public method appendSe-
lection both requiring the same parameters. Table 3.16 shows the parameters
for these methods.

Public set methods Parameters
Constructor String electionName

String contestName
String candidateId
String partyName
String numVotes
String ranking
boolean elected

appendSelection String electionName
String contestName
String candidateId
String partyName
String numVotes
String ranking
boolean elected

Table 3.16: Public inserting methods in Result520.java

The three pieces of information given for a candidate are: Votes, Ranking
and Elected.

Votes: Will imply the number of votes received by this candidate.

Ranking : Can communicate the ranking that the candidate received.

Elected : Will be a “yes” or “no” answer.

71

Since candidates that were not elected are still in the document, one
might see this as a last step before a complete result giving the overall picture
of the candidates elected and the distribution of seats between the parties.

Below is an example of such a document.

<Resul t xmlns=" u rn : o a s i s : n ame s : t c : e v s : s ch ema : em l ">
<Elec t i on>

<E l e c t i o n I d e n t i f i e r Id="ElectionName"/>
<Contest>

<Con t e s t I d e n t i f i e r Id="ContestName"/>
<Se l e c t i o n>

<Cand ida t e I d en t i f i e r Id="CandidateId "/>
<A f f i l i a t i o n I d e n t i f i e r>

<RegisteredName>PartyName</RegisteredName>
</ A f f i l i a t i o n I d e n t i f i e r>
<Votes>200000</Votes>
<Ranking>2</Ranking>
<Elected>yes</Elected>

</ S e l e c t i o n>
<Se l e c t i o n>

<Cand ida t e I d en t i f i e r Id="CandidateId2 "/>
<A f f i l i a t i o n I d e n t i f i e r>

<RegisteredName>PartyName</RegisteredName>
</ A f f i l i a t i o n I d e n t i f i e r>
<Votes>400000</Votes>
<Ranking>1</Ranking>
<Elected>yes</Elected>

</ S e l e c t i o n>
</Contest>

</Elec t i on>
</Resu l t>

72

Chapter 4

Conclusion

4.1 Introduction

There are some shortcomings in the EML standard with regard to the Nor-
wegian Electoral System. Though, these shortcomings are minor, they do
require changes to the schemas in EML.

This chapter concerns itself with these shortcomings and suggests changes
to the standard to make it a more suitable interface language for the Norwe-
gian Electoral System. The solutions suggested will be based on the idea of
keeping backwards compatibility to EML 4.0, in this manner not affecting
other electoral systems supporting EML 4.0.

Finally, some issues regarding the current Election Law and Election
regulations are dealt with, and possible improvements suggested.

4.2 Changing a Standard

EML 4.0 supports Norwegian elections reasonably well. This is illustrated
by the fact that the prototype does manage to simulate the elections. The
problems that were encountered have been described in the previous two
chapters, and it is the purpose of this section to suggest changes in the
schemas in EML 4.0 to further accommodate the Norwegian Electoral Sys-
tem. First a few concepts are clarified so that the extent of the change to
the standard is clear. It is important to note that the changes that will be
described are not implemented in the prototype subsystems use of EML 4.0.

Problems Encountered when Changing a Standard

Modifying a communication standard that is in use, creates difficulties for
subsystems conforming to the standard. This problem occurs when two
subsystems in a system implement different versions of the standard and
when a system is ported to a new version of the standard.

73

The aforementioned issues are really two different problems, and can be
better distinguished if one more clearly defines what is meant by backwards
compatibility. Further it is necessary to discuss if it is desirable to extend
EML 4.0 without changing the standard itself. These two topics are dealt
with before the proposed changes to EML are presented.

4.2.1 Keeping Backwards Compatibility

When changing a language, one usually modifies it so that it expresses more
than it did. This will be called a language extension. If one wishes to modify
a language such that it expresses less than it did, it will be called a language
restriction. Finally, a language can be changed so that, whether it expresses
more or less, it does express common elements in the versions differently.
This will be called a language modification.

Language extension, language restriction and language modification present
different problems, both between subsystems implementing different versions
and when porting a system to a new version.

Using Different Versions of a Standard

The problem that occurs when two subsystems with different versions of
a standard communicate, is that a document that is valid with regard to
one version, may not be valid with regard to the other. The subsystem
that suffers depends on whether the new version is a language extension or
a language restriction. If the new version is a language modification both
subsystems may suffer.

• Consider a subsystem A implementing a version V1 and a subsystem
B implementing a version V2. Assume that V2 is a language extension
of V1. In such a case subsystem B can produce documents not in the
language of V1, therefore not valid to subsystem A.

• Assume now that V2 is a language restriction of V1. Subsystem A
can now produce documents that are not in the language of V2 and,
subsequently, not valid for subsystem B.

The above problems cannot be solved. If a subsystem implementation
takes advantage of a mechanism not present in both versions, the above
is unavoidable.

• Finally assume that V2 is a language modification of V1. If the subsys-
tems use elements that have been modified in V2, the communication
between the two will break down.

This is also unavoidable if there are no other common mechanism in
the versions facilitating the same data exchange. If there is, both

74

subsystems will have to be rewritten to use the common mechanism in
order to communicate.

Porting a Subsystem to a new Version

When porting to a new version of the standard, the problems really only
occur during a language restriction or a language modification.

• A language extension will make it possible to keep the implementation
as it is. If there is no need to take advantage of the additions to the
language, the electoral system only has to be able to parse documents
containing these new structures.

• A language restriction may not be possible to implement. Some fa-
cilities in the language critical to the function of the electoral system
could have disappeared from the language, making it impossible to up-
grade. Another possibility is that the electoral system will have to be
rewritten to take advantage of other facilities still in the language to
achieve the same effect.

• Finally, if the modifications done in the language modification affects
the parts of the language used by the electoral system, it needs to be
rewritten.

One would hope that a language restriction does not occur. In any case,
a language modification is the worst of both worlds. Remember, a language
modification can include a language restriction or a language extension or
even both.

Defining Backwards Compatibility

In this context, based on the above, the concept of backwards compatibility
will be defined as meaning a language extension with no language modifica-
tion. Meaning that the additions to the language have to be elements that
are optional in the schemas.

The rest of this section will be dedicated to proposed changes in the
schemas in EML. It is the intent of the author that these changes maintain
backwards compatibility, in the sense that any EML document that was valid
in EML 4.0 remains valid in the altered version.

4.2.2 Extending EML using the Wildcard Mechanism

XML Schemas allow wildcard elements called “any”, these have associated
with them a namespace. Most, if not all, schemas in EML 4.0 allow “any” ele-

75

ments. These elements in EML use the “##other” namespace. An example
of this is shown below1:

1 <xs:any namespace="##other "
2 minOccurs="0"
3 maxOccurs="unbounded"/>

The “##other” namespace is defined to be: “Any well-formed XML that
is from a namespace other than the target namespace of the type being
defined (unqualified elements are not allowed)” 2

This means that the schemas can be extended to include other elements
(not in EML).

Since there are concepts in the Norwegian Electoral System that are not
provided for in the EML 4.0 standard, this mechanism could be utilized in
an interim phase. However, these extensions would be nation or producer
specific and would to some extent erode the standard. Different subsystems
would no longer be compatible unless all the implementations supported the
extensions. It seems, then, to be more desirable to push for a change in the
standard, rather than having nation specific elements.

4.3 Proposed Modifications to EML 4.0

The modifications proposed below all aim at maintaining backwards compat-
ibility with EML 4.0. Where elements from schemas are listed, portions that
are not relevant have been cut out and replaced with “/*...*/”.

4.3.1 Accommodating Norwegian Party List Nomination

The Norwegian party list nomination process is hard to express in EML. The
process is complex, and input received here has to be propagated throughout
the electoral system. The candidate information has to be displayed on the
ballot presented to the voter, and the counting process is in some elections
affected by information provided in the Nomination document, i.e. the can-
didates receiving an increased share of the poll. Some issues regarding this
process has to be changed by law, others can be resolved by changing EML.
The latter is presented here, the former is presented in section 4.4.

Proposer Date of Birth

The ProposerStructure3 does not supply a field for a proposers date of birth.
This information is, however, required to be present in a list proposals en-
closed document [16, §6-4(b)].

1line 72 210-nomination-v4-0.xsd
2http://www.w3.org/TR/xmlschema-0/
3line 546 emlcore-v4-0.xsd

76

The ProposerStructure contains several other optional fields, and adding
another would not change the structure in any significant way. The suggested
element would have the form:

1 <xs : e l ement name="DateOfBirth" type=" x s : da t e " minOccurs="0"/>

Below is the ProposerStructure after the element has been inserted (note
lines 8 through 10):

1 <xs:complexType name="ProposerStructure ">
2 <xs : s equence>
3 <xs : e l ement name="Name"
4 type="PersonNameStructure "/>
5 <xs : e l ement name="Contact "
6 type="Contac tDeta i l sS t ruc ture"
7 minOccurs="0"/>
8 <xs : e l ement name="DateOfBirth"
9 type=" x s : da t e "

10 minOccurs="0"/>
11 / ∗ . . . ∗ /
12 </xs:complexType>

Since the field has minOccurs set to 0, this is a language extension and
not a language modification.

Increased Share of the Poll

In a Municipal Council Election a party can give certain candidates an in-
creased share of the poll [16, §6-2(3)]. This information has to be present in
the following documents to fulfill the requirements of the Election Law and
regulations:

Nomination This information is required to be present in the list
proposals enclosed document [16, §6-2(3)].

CandidateList This information is required by the Counting sub-
system to perform the counting in a Municipal Council Election [16,
§6-2(3)]. The CandidateList also has to be input to the Counting sub-
system for this transfer of information to be possible, this is further
treated in section 4.3.3.

Ballots and AuthenticationResponse The candidates that receive
an increased share of the poll have to be indicated on the ballot [13,
§19(9)].

Adding an attribute to the CandidateStructure 4 would include this in-
formation in the Nomination and CandidateList documents. The Candidate-
Structure will have to be included in the Ballots and AuthenticationResponse

4line 155 emlcore-v4-0.xsd

77

documents for this information to be available there, this change described
in section 4.3.2. The proposed attribute would have the form:

1 <xs : a t t r i b u t e name=" IncreasedShareOfPol l "
2 type="YesNoType"
3 use=" opt i ona l "/>

Below is the CandidateStructure after this attribute has been inserted
(note lines 29 through 31):

1 <xs:complexType name="CandidateStructure">
2 <xs : s equence>
3 <xs : e l ement r e f="Cand ida t e I d en t i f i e r "/>
4 <xs : e l ement name="CandidateFullName "
5 type="PersonNameStructure "
6 minOccurs="0"/>
7 <xs : e l ement name="DateOfBirth"
8 type=" x s : da t e "
9 minOccurs="0"/>
10 / ∗ . . . ∗ /
11 <xs : e l ement name="Qual i fy ingAddress "
12 type="Qua l i f y ingAddres sS t ruc ture"
13 minOccurs="0"/>
14 / ∗ . . . ∗ /
15 <xs : c h o i c e minOccurs="0">
16 <xs : e l ement r e f=" A f f i l i a t i o n "/>
17 <xs : e l ement r e f="Logo"
18 maxOccurs="unbounded"/>
19 </ x s : c h o i c e>
20 <xs : e l ement name="Pro f e s s i on"
21 type=" xs : token "
22 minOccurs="0"/>
23 / ∗ . . . ∗ /
24 </ xs : s equence>
25 / ∗ . . . ∗ /
26 <xs : a t t r i b u t e name=" Independent "
27 type="YesNoType"
28 use=" opt i ona l "/>
29 <xs : a t t r i b u t e name=" IncreasedShareOfPol l "
30 type="YesNoType"
31 use=" opt i ona l "/>
32 </xs:complexType>

Inserting this attribute constitutes a language extension, and since the
attribute is optional this is not a language modification.

78

4.3.2 Allowing more Candidate Information on Ballots

A CandidateStructure in AuthenticationResponse/Ballots

The Election regulation [13, §19(6), §19(9)] requires/allows the following
information regarding each candidate to be present on the ballot:

The candidates first name and last name.

The candidates year of birth.

The candidates profession.

The candidates place of residence.

Whether the candidate is to receive an increased share of the poll.

The party/group the candidates is representing [15, §19(6)c].

The BallotChoices element in the BallotStructure 5 used in the Authentic-
ationResponse and Ballots documents only provides for a CandidateIdenti-
fierStructure6 when listing candidates. Of the information listed above, this
structure only allows for a candidates name. To list the additional inform-
ation the law allows, a full CandidateStructure could be used. The element
within the BallotChoices that has to be changed is Affiliation 7. The current
definition of this element is as shown here:

1 <xs : e l ement name=" A f f i l i a t i o n ">
2 <xs:complexType>
3 <xs:complexContent>
4 <xs : e x t en s i on base=" A f f i l i a t i o n S t r u c t u r e ">
5 <xs : s equence>
6 <xs : e l ement r e f=" Cand ida t e I d en t i f i e r "
7 minOccurs="0"
8 maxOccurs="unbounded"/>
9 </ xs : s equence>

10 </ xs : e x t en s i on>
11 </xs:complexContent>
12 </xs:complexType>
13 </ xs : e l ement>

By adding a choice to the sequence and, by this, allowing for either a full
CandidateStructure or the current CandidateIdentifierStructure, this element
could express the necessary information. This assumes that the increased
share of the poll attribute has been added to the CandidateStructure type.

5line 92 340-410-430-include-v4-0.xsd
6line 147 emlcore-v4-0.xsd
7line 97 340-410-430-include-v4-0.xsd

79

1 <xs : e l ement name=" A f f i l i a t i o n ">
2 <xs:complexType>
3 <xs:complexContent>
4 <xs : e x t en s i on base=" A f f i l i a t i o n S t r u c t u r e ">
5 <xs : s equence>
6 <xs : c h o i c e>
7 <xs : e l ement r e f=" Cand ida t e I d en t i f i e r "
8 minOccurs="0"
9 maxOccurs="unbounded"/>
10 <xs : e l ement r e f="Candidate "
11 minOccurs="0"
12 maxOccurs="unbounded"/>
13 </ x s : c h o i c e>
14 </xs : s equence>
15 </ xs : e x t en s i on>
16 </xs:complexContent>
17 </xs:complexType>
18 </xs : e l ement>

Since the above still allows the current CandidateIdentifierStructure and
minOccurs for the CandidateStructure is 0, this constitutes a language ex-
tension with no language modification.

4.3.3 Input Documents to the Counting Server

In a Norwegian setting, the principle of an increased share of the poll makes
it necessary for the Counting subsystem to receive the CandidateList. When
counting in a Municipal Council Election the candidates that have received
such an increased share of the poll have to have this included in their count.

The document Count refers to the NumberOfPositions in the body up
for election. Unless the Counting subsystem receives the ElectionEvent doc-
ument, this information is unavailable. Since several of the counting al-
gorithms use this number when computing the lists list votes, this document
is necessary for the proper function of this subsystem.

4.4 Proposed Adaption of the Election Law and
Election Regulations

There are some considerations that concern the Election Law and regulations
themselves. These will be described below and possible solutions will be
suggested.

4.4.1 Enclosed Document

The law requires the list proposal to be separate from the enclosed document
[16, §6-1(3)]. This separation is not necessary as long as the information in

80

the enclosed document has no overlap with the information allowed to be
present in the list proposal. This will ensure that there is no miscommunic-
ation possible when submitting a list proposal.

4.4.2 Candidate Eligibility

A declaration that a candidate will be eligible has to be present if a candidate
has a position that currently makes him/her ineligible [16, §6-4(d)]. The
processing of these declarations is a manual process and should be separated
from the automated information exchange.

4.4.3 Electronic Signatures for Proposers

The signatures required for list proposals are today written on paper, in
accordance with regulation [13, §12]. This is probably practical when trying
to obtain them. In the future an electronic signature might suffice.

The form of the type SignatureType, shown on page 28, and its Object
element, allows for other than the most obvious uses. A scanned representa-
tion of the signature could be placed in the Object field, and the signatures
could then be transmitted by the Nomination document.

However, this is contrary to the “writing on paper” formulation in the
regulation, and is, for that reason, not pursued further.

4.4.4 Personal Identification Numbers for Candidates in List
Proposals

The nomination subsystem has to cross check the list proposals for a contest
to see if two list proposals list the same candidate. Since the Election Law
only allows the list proposals enclosed document to contain the candidates
date of birth, this cross check becomes computationally difficult.

There is no reason to believe that a situation cannot occur where two
candidates having the same name, also have the same date of birth. The
case where two candidates having the same name also have the same year of
birth is treated in the law by requiring profession and/or place of residence
to be supplied [16, §6-1(2c)]. This part of the law concerns itself with the
candidates on one list only. Though sharing a date of birth and name is not
likely, it is possible, and across several lists the probability of this occurring
increases.

This cross check would be simple if the candidates were listed with their
full personal identification numbers in the enclosed document.

4.4.5 Candidate Numbers for Municipal Council Elections

It is the opinion of this author that a unique candidate identifier should be
used when person voting for candidates on other lists in a Municipal Council

81

Election. This will eliminate the possible ambiguities in using candidate
names.

4.5 Future Work

4.5.1 Stress Testing of the Voting Server

Before EML 4.0 is used, it should be tested whether the format itself is
scalable to handle the amount of pressure that such a system will have to face.
Though EML has been tested in other countries, the size of the CastVote
document may be an issue that is unique to the Norwegian Electoral system.
Because of the actual listing of the candidates, this document can become
quite large. This increased size will be in addition to the bloating that occurs
with XML tags.

Other documents in the Electoral System can become a great deal larger
than a CastVote. Even though, the Voting Server will receive CastVotes on
a large scale and the processing of them will have to be efficient.

The prototype developed could be used to test the processing of CastVote
documents. This specific part of the Voting Server could be optimized to
perform this exchange more rapidly.

To ensure an auditable election where the votes cast can be recounted
and/or checked to see if they were counted, the votes received will have to
be stored on a persistent medium. This, together with network load, might
be the bottleneck in terms of the processing time of a CastVote. In both of
these contexts size does matter, and a cast vote in a Norwegian setting is
quite large.

4.5.2 Using EML as an Interface Language for a N-Version
Model

In addition to facilitating standardized communication, the EML documents
produced and received can be seen as standardized input and output. Secur-
ity models such as n-version [21] require a standardized interface like EML
to make it possible to compare the outputs of different implementations of
the same subsystem, receiving the same input. These models can further
assure a correct implementation of the subsystems in an electoral system.

An implementation of a n-version framework using EML as an interface
language, would reveal if EML is suitable for this model.

4.6 Conclusion

The Election Markup Language version 4.0 is very close to a suitable stand-
ard for the Norwegian Electoral System. There were, however, some prob-
lems when implementing it. These problems were addressed in this chapter

82

and changes to the schemas were proposed. The changes will only affect two
schemas in EML:

• Proposer date of birth: Change proposed in emlcore-v4-0.xsd

• Increased share of the poll: Change proposed in emlcore-v4-0.xsd

• More candidate information on the ballot: Change proposed in 340-
410-430-include-v4-0.xsd

• More documents to the Counting subsystem: Change proposed in the
documentation of the standard.

All the changes proposed were minor and can be achieved maintaining
backwards compatibility.

The following adaptations of the Election law and regulations are pro-
posed:

• No separation between the list proposal and the enclosed document.

• Separate the declaration of eligibility from the enclosed document.

• Allow a scanned representation of the signature of a proposer in a list
proposal.

• Using a candidate number instead of candidate name when person
voting.

• Including personal identification numbers for candidates listed in a list
proposal.

The use of an inter-system interface, like EML, together with a wide set of
system suppliers, will help to ensure a more transparent electoral information
system.

83

Appendix A

Evaluating Binding Compilers
by Compiling EML 3.0

A.1 Compiling Emlcore

A.1.1 Introduction

In 2001 the W3C introduced the XML Schema standard. The idea of strictly
formalizing XML documents through a schema was quickly applied in dif-
ferent programming tools through what is called a binding compiler. The
binding compiler takes schemas and DTDs as input and produces classes
and interfaces representing the elements of the schemas and DTDs. These
can then be used by instantiating them to objects. These objects can be
marshaled into XML documents and XML documents can be unmarshaled
into object instances of the same classes. EML (Election Markup Language)
chose the XML Schema format to define the communication and repres-
entation of various acts within an electoral system. The purpose of this
testing is to explore some of the various tools implemented to handle XML
Schemas and to create code for them. The tools that have been tested are:
XML Spy, <oXygen/>, XML Beans and JAXB. The EML version tested is
version 3.0 that can be obtained from the following URL: http://www.oasis-
open.org/committees/download.php/10021/EML%20version%203.0.zip

Validating Emlcore

Only schemas that are valid can be compiled with a binding compiler. The
XML schema that initially needed to be validated was emlcore.xsd, the
reason this schema was chosen is that it is imported by a great many other
schemas in EML. It would, for this reason, not be possible to validate these
before emlcore itself can be validated. The tools were initially tested on the
schema as is, with no changes and in the location it was when unzipped.
They were then tested after making 3 changes. These changes are:

84

1. Storing the file BS7666-v1.xsd in the same directory

2. Line 90 is changed from:
<xsd:attribute ref="xml:lang" type="xsd:language" use="optional"/>
To:
<xsd:attribute ref="xml:lang" use="optional"/>

3. Line 110 is changed from:
<xsd:attribute name="Id" use="optional"/>
To:
<xsd:attribute name="Id" use="required"/>

The effect of these changes had different results for the different com-
pilers. This will be discussed individually for each compiler. The results
are summarized in table A.1 and the errors emitted are summarized in table
A.2.

A.1.2 Testing the Binding Compilers

XMLSpy

XMLSpy1 is the tool used to create EML and, therefore, initially was as-
sumed to be the best tool for the job. It is a GUI based development en-
vironment and runs only on Windows. It is proprietary, but a trial “home
edition” can be downloaded from Altovas website. When one opens eml-
core in XMLSpy a pop up window appears telling the user that the schema
BS7666-v1.xsd can not be found, any attempt to validate the schema res-
ults in the same error message. When the BS7666 schema is stored in the
directory another error occurs when trying to validate emlcore. It is on line
110 and is the error referred to as error number 5 in table A.2. After this
is resolved, as mentioned above, the error referred to as error number 3 was
emitted. After its resolution error 9 was encountered and not resolved. As
the above indicates the downside to XMLSpy is that it only emits one error
message at a time.

<oXygen/>

Oxygen2 was recommended in the article “Article on EML (v3)” by David
Mertz, Ph.D and is also a GUI editing tool. It runs on multiple platforms and
is also proprietary with a thirty day trial period. It seems that oxygen uses
the same binding compiler that is in the command line based compiler xjc
discussed below. This means that the error messages emitted from oxygen
are the same word for word as the ones emitted by xjc. The upside to oxygen

1Can be downloaded from: http://www.altova.com/download_spy_home.html
2Can be downloaded from: http://www.oxygenxml.com/download.html

85

over XMLSpy is that all the errors are emitted at once. Even though, it still
could not validate the schema after the corrections were made.

xjc - JAXB

xjc3 is a command line binding compiler and is freely down-loadable with
the Java Web Services Pack from Sun. Since it is clearly the compiler behind
oxygen it is by far the best compiler in terms of finding errors and listing
the line numbers for the errors, which the other command line complier
scomp does not. The error messages are well formulated and, for debugging
purposes, invaluable. It is, however, command line based and does not give
you that ease of use that comes with oxygen and XMLSpy.

scomp - XMLBeans

scomp4 is also a command line compiler, open source and is also freely down
loadable. It has several options available as to the compilation process, but
the errors are emitted without line numbers. The options are, however, what
make this tool stand out as the only one in the test that actually managed
to compile emlcore after the corrections were made. This was done with the
following two options:

noupa: do not enforce the unique particle attribution rule

nopvr: do not enforce the particle valid (restriction) rule

The results of only for scomp are, therefore, divided into four:

Scomp(1): no corrections - no options

Scomp(2): no corrections - options: noupa

Scomp(3): no corrections - options: noupa and nopvr

Scomp(4): corrections - options: noupa and popvr

As shown in table A.1 scomp(2) removed the unique particle errors and
scomp(3) removed all but the three that were corrected. Scomp(4) compiled
emlcore and created java code for it.

3Can be downloaded from: http://java.sun.com/webservices/downloads/webservicespack.html
4Can be downloaded from: http://xmlbeans.apache.org/sourceAndBinaries/index.html

86

Validating the Rest of EML Using Scomp

The remaining schemas, with one exception, were then validated with only
one correction in each schema. This correction was in the id field for each
schema. Exemplified by the schema 110-electionevent.xsd. This field was
altered because it did not conform to the following rule:

NCName ::= (Letter | ’_’) (NCNameChar)*
NCNameChar ::= Letter | Digit | ’.’ | ’-’ | ’_’ | CombiningChar | Extender

Abbreviated this line was (line 3):

1 <xsd:schema targetNamespace=" [. . .] " xmlns:xsd=" [. . .] " xmlns=" [. . .] "
2 xmlns :x l i nk=" [. . .] " elementFormDefault=" [. . .] "
3 attr ibuteFormDefau l t=" [. . .] " version=" [. . .] " id="110">

It was slightly changed by adding an underscore:

1 <xsd:schema targetNamespace=" [. . .] " xmlns:xsd=" . . " xmlns=" [. . .] "
2 xmlns :x l i nk=" [. . .] " elementFormDefault=" [. . .] "
3 attr ibuteFormDefau l t=" [. . .] " version=" [. . .] " id="_110">

With this modification the field now conformed to NCName. This change
was made in all the numbered schemas and was sufficient to make them
validate with the exception of 510-count.xsd. The error in 510-count.xsd is
not included and still not resolved. This schema was, therefore, excluded
and the rest of EML 3.0 compiled. Other errors were discovered at a later
date, some are listed below:

Nomination (210): an any element was required in the element Pro-
poserStructure.

Authentication (420): an any element was required in the element
Component, used in the element VToken.

VTokenLog (470): same error as above in Authentication.

A.1.3 Results

Comparing the Error Emitting of the Binding Compilers

This table gives an overview of the results of the tests. Each row represents
an error. Refer to table A.2 for a brief look at the errors, “Num” in table
A.1 corresponds to “Num” in table A.2. scomp(4)5 is not in the table since
it did not produce any errors.

Note: scomp(1) does not specify line number. The errors are, therefore,
assumed to apply to the lines specified. Question mark is to indicate that
errors are produced, but it is not clear for which lines.

87

Num Line XMLSpy <oXygen/> xjc scomp(1) scomp(2) scomp(3)
1 BS7666 X X X X X X
2 90(1) X X X X X X
3 90(2) X X ?
4 90(3) X X ?
5 110 X X X X X X
6 170 X X ?
7 204 X X ?
8 275(1) X X ?
9 275(2) X X X X X
10 322 X X ?
11 344(1) X X ?
12 344(2) X X X X
13 392 X X ?
14 477 X X ?
15 525 X X ?
16 18 X X ?

Table A.1: Lists errors emitted by the binding compilers

Short Summary of the Errors Emitted

This table shows the errors and corresponding error numbers that map into
table A.1. An attempt has been made to keep them as succinct as possible.

Note: Line number for error 16 is the line number for a line in emlex-
ternals.xsd.

A.1.4 Conclusions

The different tools serve clearly different purposes in tying to validate em-
lcore. The GUI based tools are more user-friendly and are more forgiving
when it comes to the errors usually committed by a new user. They also
provide line numbers for the errors emitted, which is obviously necessary
when attempting to remove them. XMLSpy, however, loses points by its
one-at-a-time error emitting policy. The command line compilers score well
in two different categories. Xjc is by far the most powerful validator of the

5Errors 1, 2 and 5 were corrected.

88

Num ERROR Line
1 Unable to load following schema(s) [...]BS7666-v1.xsd
2 ’ref’ attribute precludes local simple type, ’form’ 90(1)

or ’type’ attribute
3 Cannot resolve the name ’xml:lang’ to a(n) 90(2)

’attribute declaration’ component.
4 Element ’attribute’ is invalid, misplaced, or 90(3)

occurs too often.
5 Basetype requests attribute to be required 110
6 Unique Particle Attribution 170
7 Unique Particle Attribution 204
8 There is not a complete functional mapping between 275(1)

the particles.
9 The particle of the type is not a valid restriction 275(2)

of the particle of the base.
10 Element ’attribute’ is invalid, misplaced, or 322

occurs too often.
11 There is not a complete functional mapping between 344(1)

the particles.
12 The particle of the type is not a valid restriction 344(2)

of the particle of the base.
13 Unique Particle Attribution 392
14 Unique Particle Attribution 477
15 Unique Particle Attribution 525
16 Cannot resolve the name ’apd:CitizenNameStructure’ 18

to a(n) ’type definition’ component.

Table A.2: Lists the errors emitted by the binding compilers validating em-
lcore in EML 3.0

89

set, this also gives points to oxygen since xjc is its compiler. Scomp has
no line numbers for errors, scant information on the error and is, therefore,
hopeless for debugging. On the upside, scomp was the only one that managed
to compile at all. It seems that the final success of the validation attempt
was a result of all of the tools in concert. The errors were discovered using
the GUI based tools, especially oxygen (and thereby xjc), but the only tool
that could validate it was the worst in debugging. The conclusion must be
that these tools are all insufficient by themselves.

90

Appendix B

Switching to EML 4.0 and the
Changes Made to it

B.1 Why EML 4.0 was Chosen.

EML 4.0 permits elections where an affiliation (read “party”) can submit a
list of candidates that the voter can vote for, and since the ballot itself also
includes a list of candidates, it seems that EML 4.0 can possibly be used
to accommodate the list manipulations called for by the Norwegian Election
Law.

This was, however, not the case with the previous EML releases. The
CandidateList schema (230) raises the fundamental differences in semantics,
concerning what an election is, that exists between EML 3.0 and the Norwe-
gian Election Law. EML 1.0 though 3.0 were based on elections where the
voters voted for people, that is, individuals. This is not the case in Norway,
at least not directly. In Norway, a party hands in a list proposal, which is
then evaluated by the appropriate committee, and, if approved, is used to
produce the party list which is what is actually voted for in an election. This
is a list of candidates representing the given party in this contest.

The Norwegian elections are, however, not as party focused as it may
seem. In the different elections the voter is given options to change party lists
by for example adding candidates from other parties, removing candidates
and/or changing the order of the candidates.

The fundamental difference is, nonetheless, apparent, EML 1-3 was meant
for elections where the voter voted for one candidate and not a list of candid-
ates. This semantic interpretation of an election is reflected throughout the
design of EML 1.0 to 3.0, making them not naturally tailored for handling
Norwegian elections. For this reason, and because of errors in the schemas
themselves in EML 3.0 (see appendix A), the focus of this thesis is EML 4.0.

91

B.2 Changes Made to EML4.0 for Compilation

As opposed to EML 3.0, all the schemas in EML 4.0 do compile individually,
with the exception of emlexternals discussed below. Together, however, this
is not the case. There were three problems:

1. Name conflicts: EML and result

Many of the schemas had a top level element EML, all of which were
named EML, although this is not a problem in practice since they do
not import each other, it was a problem under compilation. This ele-
ment would probably be useful if one had an automatic display facility,
since this construct provides an XPath field in an element Display-
Order. This construct is, however, not used in this thesis. The point
is that compiled together this common name became a name conflict
and was simply solved by giving them a new name. The element EML
in for example 210-nomination-v4-0.xsd was renamed to EML210. In
addition, the Result in 120-interdb-v4-0.xsd and 520-result-v4-0.xsd
were in conflict. Here the 520 schema seem more entitled to the name
Result and the name was changed to Resultdb in the 120 schema, with
no real loss of semantics.

1 e r r o r : Dupl i cate g l oba l element :
2 EML@urn: o a s i s : names : tc : evs : schema : eml
3 e r r o r : Dupl i cate g l oba l element :
4 Result@urn : o a s i s : names : tc : evs : schema : eml

2. 410-ballots-v4-0.xsd

This schema was not possible to use without using the EML construct
above. This schema was altered by moving the "Ballots" element out
of the EML element and placing a reference there instead:

1 <xs : element r e f="Ba l l o t s"/>

3. Differing names for the external files xAL.xsd and xNL.xsd
1 [. .] / emlexterna l s−v4−0.xsd : 0 : e r r o r :
2 java . i o . FileNotFoundException :
3 [. .] / e x t e rna l / xa l . xsd (No such f i l e or d i r e c t o r y)
4

5 [. .] / emlexterna l s−v4−0.xsd : 0 : e r r o r :
6 java . i o . FileNotFoundException :
7 [. .] / e x t e rna l / xnl . xsd (No such f i l e or d i r e c t o r y)

The files in the unzipped EML 4.0 are called xAL.xsd and xNL.xsd,
but in emlexternals-v4-0.xsd they are called xal.xsd and xnl.xsd. In a
non case sensitive environment this would not be a problem, here it
was. The names of the files were changed to minimize the changes to
the schemas themselves.

92

Appendix C

Prototype for elektroniske valg
basert på EML3.0-standarden

Oppgaven går ut på å bygge en prototype for et datamaskinbasert system
for gjennomføring av elektroniske valg til Storting, fylkesting og kommun-
estyrer i Norge. Prototypen skal følge Election Markup Language (EML)
standarden, versjon 3.01.

Prototypen skal bygges opp i samsvar med den arkitekturen som er vist
på Figure 2B - High Level Modell - Technical View på side 14 i dokumentet
EMLv3.0.doc som er å finne i ovennevnte zip-fil. Dataene skal overføres
mellom modulene i EML-format i overensstemmelse med de XML-skjemaene
som inngår i standarden.

Formålet med prototypen er å verifisere at standarden dekker informas-
jonsbehovet for gjennomføring av valg i Norge. I denne forbindelse står Lov
om valg til Storting, fylkesting og kommunestyrer2 sentralt. I prototypen er
det derfor spesielt viktig å utforske eventuelle særegenheter ved den norske
valgordningen.

Prototypen skal (foreløpig) ikke brukes til utprøving i brukermiljøer. Det
er derfor ikke vesentlig hvordan brukergrensesnittene tar seg ut.

Det skal leveres:

1. En kjørbar prototype

2. En dokumentasjon av prototypen

3. En liste over hvilke skjemaer i EML-standarden som er benyttet, hvilke
som ikke trengs, og hvilke endringer i skjemaene det eventuelt er behov
for.

17. januar 2005 GS

1Standarden er å finne på http://www.oasis-open.org/committees/download.php/10021/EML%20version%203.0.zip
2se http://www.lovdata.no/all/nl-20020628-057.html

93

Appendix D

Concept and Word
Clarification

The translation will follow the translations in the Local Government Act
(LGA) [12] where possible. In addition, the translation of the Election Law
[16] called the Representation of the People Act (RPA) [11] has been used,
however, this is an unofficial translation. The translation used is depicted in
table D.1.

94

English Norwegian
Advance Voting Forhåndsstemmegivning
County Fylke
County Council Fylkesting
County Council Election Fylkestingsvalg
Election Law Valgloven
Election Regulation Valgforskriften
Electoral Committee Valgstyre
Electoral Handbook Valghåndbok
Electoral List/party list Valgliste
Electoral Register Manntall
Enclosed Document Vedlegg til listeforslag
Final count Endelig opptelling
Increased share of the poll Stemmetillegg
List proposal Listeforslag
Ministry of Finance Finansdepartementet
Ministry of Local Government Kommunal- og
and Regional Development regionaldepartementet
Municipal Council Kommunestyre
Municipal Council Election Kommunestyrevalg
Municipality Kommune
Polling card Valgkort
Population Registry Folkeregisteret
Authority
Postal Code Postnummer
Postal Location Poststed
Provisional count Foreløping opptelling
Referendum Folkeavstemning
Regulation Forskrift
Storting Election Stortingsvalg
Voting circuit Valgkrets

Table D.1: Translation table

95

Appendix E

Design of Input/Output in the
Prototype

The following four classes were created and put in EML_Interface for three
reasons: to give them first hand access to the layer below, to keep such
implementation issues from the application, and to facilitate modifying the
input/output process if needed.

Each class will be briefly described since they are not a central part of
this thesis.

E.0.1 EMLServer.java

EMLServer is here to keep the transmission details from the application and
to separate the applications from the compiled schemas. When a part of a
subsystem needs to behave as a server it creates an object of this class and
delegates the actual sending and receiving of documents to that object.

EMLServer is in this manner a wrapper class for the network transmission
code, together with the EMLClient described below. Network transmission
code is, by its nature, repetitious and making modifications in only one place
is an established programming technique.

EMLServer uses java.nio and the select construct when listening for con-
nections, this was done to allow the server state to be ended by writing
“quit”. To accomplish this, the select construct was set up to also listen for
keyboard input. It does this using another class called SystemInPipe written
by Ron Hitchens, author of the book Java NIO. This class is not described
in the thesis since it was only slightly modified by this author.

The Splitting of Large Messages

A few of the messages sent in the prototype can become quite large, this has
to be accommodated in the prototype.

96

Message Repeated Element
330-electionlist VoterDetails
340-pollinginformation Polling
410-ballots Ballot
460-votes CastVote
470-vtokenlog VTokens
480-auditlog LoggedSeal

Table E.1: EML messages that can be split

The splitting of messages is commented upon in the EML Schema De-
scriptions, on page 12:

“When a message is split, each part must be a complete, valid mes-
sage. This will contain all the background information with a number of the
repeated element types. Information in the EML element indicates the se-
quence number of the message and the number of messages in the sequence.
Each message in the sequence must contain the same TransactionId, and
must indicate the repeated element according to the table below. Only the
messages shown in the table may be split this way.”

In the prototype, the above is not implemented. A message is split with no
regard to validity, and is rather reassembled, when received, back into a valid
message. The above can possibly be achieved by only modifying EMLServer
and EMLClient, so that the splitting is not visible from an application. A
complete document would then be passed to the server and, if necessary,
it is here split and sequence numbers attached. When received, it can be
reassembled or kept in it respective parts. The EML element mentioned in
the quote above is shown in figure E.1 [4, p. 28].

E.0.2 EMLClient.java

A client application does not present the same complications as a server
application, since only one connection is handled at a time. For this reason
EMLClient uses java.io rather than java.nio.

E.0.3 EML_io.java

This class is a utility class that mostly deals with files and keyboard input.

E.0.4 Global.java

This class is a container for global constants. Among others the addresses
of the servers are here, these are read from a file called Machinelist by a
method called setup when an application is run.

97

Figure E.1: EML Structure

98

Bibliography

[1] Oasis “EML 4.0” http://www.oasis-
open.org/committees/download.php/11150/EML%20v4.0.zip [Date
read: May 20 2005]

[2] Oasis “EML 3.0” http://www.oasis-
open.org/committees/download.php/10021/EML%20version%203.0.zip
[Date read: May 20 2005] http://xml.coverpages.org/EMLv30.pdf
[Date read: May 20 2005]

[3] Mertz, David “Article on EML (v3)”
http://grouper.ieee.org/groups/scc38/1622/email/msg00000.html
[Date read: May 20 2005]

[4] Ross, John, Paul Spencer, John Borras and Farah Ahmed “EML
Schema Descriptions Version 4.0 24. January 2005” http://www.oasis-
open.org/committees/download.php/11150/EML%20v4.0.zip [Date
read: May 20 2005]

[5] Ross, John, Paul Spencer, John Borras and Farah Ahmed
“EML Process & Data Requirements” http://www.oasis-
open.org/committees/download.php/11150/EML%20v4.0.zip [Date
read: May 20 2005]

[6] Office of the e-Envoy “EML: Customisation for UK Local Elections Ver-
sion 1.0” http://xml.coverpages.org/EML-UKv1.pdf [Date read: May
20 2005]

[7] Office of the e-Envoy “EML: Customisation for the UK Version 2.0”
http://www.govtalk.gov.uk/documents/EML%20UK%20Localisation%202003-
12-19.zip [Date read: May 20 2005]

[8] Spencer, Paul “Report on Alternative methods of
EML Localisation Version 1.0” http://lists.oasis-
open.org/archives/egov/200401/pdf00000.pdf [Date read: May 20
2005]

99

[9] Spencer, Paul “The Election Markup Language”
http://www.idealliance.org/papers/dx_xmle03/papers/03-05-07/03-
05-07.pdf [Date read: May 20 2005]

[10] Spencer, Paul “The Election Markup Language” First draft
for comment 23/3/2004 http://lists.oasis-open.org/archives/election-
services/200403/pdf00000.pdf [Date read: May 20 2005]

[11] “Representation of the People Act”
http://www.ub.uio.no/ujur/ulovdata/lov-20020628-057-eng.pdf [Date
read: May 20 2005]

[12] Ministry of Local Government and Re-
gional Development “Local Government Act”
http://odin.dep.no/filarkiv/237921/Local_government_act2005.pdf
[Date read: May 20 2005]

[13] Ministry of Local Government and Regional Development “FOR 2003-
01-02 nr 05: Forskrift om valg til fylkesting og kommunestyrer (valgfor-
skriften)” Replaced by [20] in April 2005 [Date read: Jan 27 2005]

[14] Ministry of Local Government and Regional Development “FOR-
2001-04-02-441: Forskrift om utførelse, trykking og utsendelse
av stemmesedler til stortingsvalg, sametingsvalg og kommunestyre-
og fylkestingsvalg.” http://www.lovdata.no/for/sf/kr/kr-20010402-
0441.html [Date read: May 20 2005]

[15] Ministry of Local Government and Regional Development “FOR
2003-01-02 nr 05: Forskrift om valg til Stortinget, fylkesting
og kommunestyrer (valgforskriften).” Sist endret FOR-2005-04-
19-323 http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-20030102-
0005.html [Date read: May 20 2005]

[16] Ministry of Local Government and Regional Development “LOV 2002-
06-28 nr 57: Lov om valg til Stortinget, fylkesting og kommunestyrer
(valgloven)” http://www.lovdata.no/all/nl-20020628-057.html [Date
read: May 20 2005]

[17] Ministry of Local Government and Regional Development “Lov om
endringar i lov 28. juni 2002 nr 57 om valg til Stortinget, fylkest-
ing og kommunestyrer (valgloven)” Norsk Lovtidend avd I nr 4 2005
http://www.lovdata.no/ltavd1/lt2005/t2005-1-04-62.html [Date read:
May 20 2005]

[18] Ministry of Local Government and Regional De-
velopment “Valghåndbok” Updated 06.04.2005
http://www.dep.no/filarkiv/242998/Valghandbok_05_samlet_versjon.pdf
[Date read: May 20 2005]

100

[19] Ministry of Finance “LOV 1970-01-16 nr 01: Lov om folkeregistrering”
http://www.lovdata.no/all/hl-19700116-001.html [Date read: May 20
2005]

[20] Ministry of Finance “FOR 1994-03-04 nr 161: Forskrift om
folkeregistrering” http://www.lovdata.no/cgi-wift/ldles?doc=/sf/sf/sf-
19940304-0161.html [Date read: May 20 2005]

[21] Liburd, Soyini D. “AN N-VERSION ELECTRONIC VOT-
ING SYSTEM” VTP WORKING PAPER, July 2004
http://www.vote.caltech.edu/media/documents/vtp_wp16.pdf [Date
read: May 20 2005]

[22] Recommendation Rec(2004)11 and explanatory memorandum
Adopted by the Committee of Ministers of the Coun-
cil of Europe on 30 September 2004 “LEGAL, OPERA-
TIONAL AND TECHNICAL STANDARDS FOR E-VOTING”
http://www.coe.int/T/e/integrated_projects/democracy/02_Activities/02_e-
voting/01_Recommendation/Rec(2004)11_Eng_Evoting_and_Expl_Memo-
3.pdf [Date read: May 20 2005]

101

List of Figures

1.1 Information flow between the subsystems 7

1.2 View of the layering of packages 10

2.1 State model of the prototype subsystems 15

2.2 Internal data structure for the Election Event Client . . 18

2.3 Internal data structure for the Election List Server . . . 21

2.4 Nomination Subsystem state diagram 25

2.5 Internal data structure for the Nomination Server 26

2.6 Internal data structure for the Nomination Client 27

2.7 Voting Subsystem state diagram 32

2.8 The Voting Server Java package - class diagram 33

2.9 The Voting Client java package - class diagram 35

2.10 Internal data structure of the Counting Server 40

E.1 EML Structure . 98

102

List of Tables

2.1 Lines of code in the subsystems 13

3.1 Table over the schemas in EML 4.0, indicating if they
are used in the prototype subsystems and on which page
they are discussed in this thesis. 46

3.2 Lines of code in EML_Interface 47

3.3 Public inserting methods in ElectionEvent110.java . . . 51

3.4 Public inserting methods in Nomination210.java 52

3.5 Public inserting methods in NominationResponse220.java 55

3.6 Public inserting methods in CandidateList230.java . . . 55

3.7 Public inserting methods in ElectionList330.java 58

3.8 Public inserting methods in Authentication420.java . . . 60

3.9 Public inserting methods in AuthenticationRe-
sponse430.java . 61

3.10 Public inserting methods in Ballot.java 62

3.11 Public inserting methods in CastVote440.java 64

3.12 Public inserting methods in VoteConfirmation450.java . 66

3.13 Public inserting methods in Votes460.java 66

3.14 Public inserting methods in Ballots410.java 68

3.15 Public inserting methods in Count510.java 69

3.16 Public inserting methods in Result520.java 71

A.1 Lists errors emitted by the binding compilers 88

A.2 Lists the errors emitted by the binding compilers valid-
ating emlcore in EML 3.0 89

D.1 Translation table . 95

103

E.1 EML messages that can be split 97

104

